
-fv 

TR- 86 -~ 
IO - I 

5C~ErlCE 

YASHAR: A RULED BASED META-TOOL FOR 

PROGRAM DEVELOPMENT 

Abbas Birjandi 

T . G. Lewis 

Department of Computer Science 
Oregon State University 
Corvallis, Oregon 97331 

(503) 754-3273 



l 
l 
n 
n 
n 
l 
l 
1 

I 
J 

J 

I 
j 

J 

I 
u 

J 

Yashar:A Ruled Based Meta-Tool For 

Program Development 

Abbas Birjandi 

T.G. Lewis 

Department of Computer Science 

Oregon State University 

Corvallis, Oregon 97331 

(503) 754-3273 

1 



l 
rl 
n 
l 

J 

I 
I 
] 

J 

J 

J 

J 

,1.11.5 

Abstract: 

Yashar is a rule based meta-tool for rapidly producing tools to 

increase programming speed through automating restructuring of 

existing source code modules so they can be reused, generating of 

syntax-directed tools, language-to-language translation, automated 

document generation , and various debugging tools. The main 

significance of Yashar is that it can be tailored to a wide variety 

of applications through the specification of rules. In this paper 

we describe the rule processor, rule syntax, and how to create an 

instance of Yashar for translating Modula-2 source programs into 

equivalent C source programs, automatically. Finally, we conclude 

that Yashar is a generalized meta-tool which can be tailored to a 

wide variety of application-specific tools by hand-crafting a small 

number of application-specific interface and support routines. 

Keywords: Programming environment, program transformation, 

source code mutation, syntax directed tools, rapid prototyping, 

source language to source language translation. 

2 



1 

I 

j 

I 
I 
J 

J 

1 Introduction 

A tool in a programming environment is a generally useful program for helping 

with day-to-day computing tasks [KM81] . For example, a syntax-directed editor is 

a programming environment tool which helps a programmer produce syntactically 

correct source code. The main purpose of programming environment tools is to 

increase programmer productivity, decrease development time, reduce maintenance 

costs, and minimize errors. 

Two distinct approaches have been taken in building programming environments: 

1) tool box system, and 2) integrated approach. In a tool box system the collection 

of tools, their application and the output produced by the tools must be directly 

managed by the programmer [Ost81]. The Unix operating system contains many 

examples of tool boxes. For example, the MAKE utility [Fel79] is a useful tool for 

managing the compile -link phase of implementation. A programmer must know 

how to set-up, apply, and understand the output produced by MAKE. 

The integrated approach attempts to directly automate program development by 

embedding tools in a high level language. Therefore, the programming environ­

ment becomes identical to the language environment. Interpreters, syntax directed 

editors, consistency checkers, correctness verifiers, and compilers are typical tools 

found in programming language environments . The interlisp programming environ­

ment can be considered an example of the integrated approach [TM81]. 

Yashar is a a meta-tool for generating programming environment tools. A tool 

produced by Yashar takes advantage of both approaches, but it is oriented more 

toward the integrated approach than the tool box approach. Like Interlisp [TM81] , 

in which tools operate on a common representation of data (lists), Yashar tools 

operate on a tree-structured representation of its input. However, unlike interlisp, a 

3 



Yashar tool is not bound to one specific language and can support multiple languages 

within the same programming paradigm. Thus, Yashar is a meta-tool because it 

can be tailored into a specific tool through modification of its operation-a subject 

to be described more fully in this paper . Each time Yashar is specialized to perform 

a certain tool function, we say the tool is an instance of the meta-tool. It is our 

intention to show how instantiation of a meta-tool such as Yashar can be of benefit 

to both tool developers and software developers, alike. 

The main significance of Yashar is that it is a meta-tool for generating an application­

specific tool through specification of rules. These rules are interpreted by a general­

ized rule processor which transforms the tree-structured inputs into useful outputs. 

It is because of these rules that we call an instance of Yashar a rule-based environ­

ment. The usefulness of this approach is the central theme of this paper. 

Our notion of a rule differs from the notion used in logic programming [ CM84]. In 

logic programming, a rule states a proposition corresponding to a logical implication 

[Col85]. In other words rules can be viewed as a formalism for defining knowledge 

independent of the method of computation . In contrast, Yashar rules are imperative 

commands which describe the computation itself rather than declarative commands 

which state some logical implication. 

This project is mainly concerned with block structured programming languages and 

syntax directed processing of modular languages such as Ada[DOD82], Pascal[JW76], 

and Modula-2[Wir83]. Yashar is written in C and runs on the Apple Macintosh per­

sonal computer-thus converting a Macintosh into a low-cost programmer's work -

station. 

4 

l 
l 
n 
n 
l 
l 

I 
. I 

j 

J 

I 
j 



I 
I 

J 

J 

j 

I 
J 

~ 

J 
j 

u 

1.1 Objectives of Yashar 

The primary goal of Yashar is to study the practicality of a rule-based meta-tool 

as a basis for building specialized programming tools. A practical meta-tool is one 

that can be tailored into many useful tools. A tool is an instance of Yashar, where 

an instance is obtained by binding Yashar's rules and rule-processor to a certain 

application-specific domain such as suggested by the list of tools below: 

• A tool for building reusable software components 

• A language directed editor 

• An incremental code generator 

• A language-to-language translator 

• A source code debugger and performance monitor 

• A structured document generator 

• An adaptive language based prettyprinter 

Instances of Yashar which we have studied are: 1) building reusable source programs 

by incorporating application interface routines called a Generalizer and a Refiner, 

2) creation of an adaptive prettyprinter for Modula-2, 3) creation of a structured 

document processor, and 4) creation of a language-to-language translator. In addi­

tion it is our belief that Yashar is a viable meta-tool for building language directed 

editors, incremental code generators, and other syntax based tools. These will be 

reporting on in a later paper. 

5 



2 Overall System Architecture 

There are two class of users of Yashar; 1) designers, who build application-specific 

instances of Yashar, and 2) programmers who use instances of Yashar during their 

daily programming. Designers must write C routines to perform the following func­

tions shown in Figure 1: 

• Application Interface Routines 

• Internal Data Model Builder 

In addition, a designer must write a series of rules which are stored in a rule repos­

itory, see Figure 1. These rules are actions to be carried out by the Yashar Rule 

Processor when a programmer uses Yashar as a tool. There are two kinds of rules 

stored in the rule repository: 1) application-specific rules, and 2) user-defined rules. 

All application-specific rules are written by the designer and installed in the rule 

repository by hand when instantiating Yashar. All user-defined rules are generated 

automatically by Application Interface Routines, which are written by the designer. 

That is, user-defined rules are written by user-defined routines which are installed 

by a designer. Figure 1 shows the parts of Yashar which must be installed manually 

Figure 1: A Generic Yashar Programming Environment 

by someone who creates a tool as an instance of Yashar. 

Once a tool has been created, a programmer uses the tool as follows. Input text is 

read from a User Input Text file and converted by the Internal Data Model Builder 

6 

l 
l 
n 
n 
l 
l 
l 
l 
I 

j 

J 

I 
J 



l 
~ 

~ 

l 
rl 
l 
I 
I 
. I 

j 

I 
j 

J 

J 

into a Yashar tree structure, and if appropriate, into Data Dictionary information. 

The programmer controls this process through the user's interface specified by the 

Application Interface Routines. Recall that these routines are specific to an instance 

of Yashar, and they may change from one instance to another. A collection of 

Application Interface Routines for a Modula-2 to C translator tool, for example, will 

differ from the Application Interface Routines for a tool that restructures reusable 

modules. 

Next, a programmer directs the tool to process the tree structured input file by 

requesting actions from the Rule Processor. In Figure 1, the Rule Processor obeys 

commands from the programmer, takes rules from the Rule Repository, and applies 

these rules to the tree representation of the input. In some application, a tool might 

require additional information from the Data Dictionary, also shown in Figure 1. 

Figure 2: A Modula-2 to C Translator Tool 

An instance of Yashar is shown in Figure 2, which contains application-specific 

versions of the components shown in Figure 1. In Figure 2 a designer has written 

Application Interface Routines to perform the Modula-2 to C Translator User Inter­

face functions; written an Internal Data Model Builder called the Modula-2 Internal 

Data Model Builder to parse Modula-2 source code and store it as an internal tree; 

and finally, supplied both application-specific and user-defined rules for recognizing 

Modula-2 statements and then re-writting them as equivalent C statements. 

The input to Figure 2 is a Modula-2 source program file and the output 1s an 

equivalent C source program file. Input and output processing is done by the Rule 

Processor, which takes commands from the Rule Repository, operates on the tree 

representation of the Modula-2 sources code, accesses symbol table information 

stored in the Data Dictionary for Modula-2 identifiers, and returns the results to 

7 



the Modula-2 to C Translator User Interface. 

3 Internal Structure of Y ashar 

In order to understand how Yashar works, a designer must understand three central 

structures: 

• The Internal Tree and Data Dictionary containing input document data, 

• The Rule Processor , Rule Repository, and Syntactic and Semantic structure 

of Rules, 

• The Interaction between Rules, Rule Processor, and the Internal Tree/Data 

Dictionary. 

These three structures, and their associated processing routines, must be set-up 

by a tool designer. This is a one-time only step, and once accomplished, it is not 

necessary for a programmer to be familiar with them. 

3.1 Internal Tree Structure 

Yashar uses the notion of a hierarchical software document as its input data model 

[KS83]. A hierarchical software document is a tree representing the objects that are 

to be processed by an instance of Yashar. Trees were chosen as Yashar's data model 

because they are capable of expressing complex information and at the same time 

are simple enough to be handled algorithmically by a computer. For example, source 

programs can be easily converted to a tree representation before being manipulated 

by Yashar's rule processor. 

8 

l 
7 
n 
l 
n 

I 
J 
I 
J 



l 
rl 

n 
n 
fl 
I 

J 

J 

J 

I 
J 

All inputs to Yashar are first converted to a tree structure by the Internal Data 

Model Builder as shown i:r{ Figure 1. The Internal Data Model Builder is written in 

C by the tool designer and combined with other C routines to be compiled into an 

instance of Yashar. For example, Figure 3 shows a Modula-2 source code program 

as it is converted into a tree structure by the Internal Data Model Builder. 

Figure 3: Internal representation of an object in Yashar 

Each node of the tree holds four categories of information: 

Label Info.: Each node is assigned a label which indicates its type. Type Infor­

mation is used by the rule processor to decide what rule to apply to the values 

stored at each node. In Figure 3 node types 17, 43, 70, ... refer to different 

logical parts of a typical Modula-2 source program. Note that the tree rep­

resentation of the sample has some extra node types (45, 43 second subtree 

of node 88) not usually found in an abstract syntax tree. The extra nodes 

merely make translation to C and regeneration of Modula-2 easier. 

Data Dictionary Reference Pointer: The data dictionary captures and dissem­

inates information related to attributes of the nodes of the tree. For example, 

the Modula-2 to C translator in Figure 2 uses a data dictionary to hold the 

type, scope, and value of variables declared in the original source program. 

The scope of the main module is assumed to start from 1, so the scope value 

for W will be 1 in the data dictionary. 

Link Information: Link information maintains the internal representation of a 

tree. Children of each node are numbered sequentially from the left to right. 

This sequence number is used to access a child of a node. For example, in 

Figure 3 node label 17 has four childern that are numbered from left to right 

9 



as 1 (node 43), 2 (node 44), 3 (node 70), and 4 (node43). Internally,general 

n-ary trees like the one shown in Figure 3 are maintained as a binary tree 

based on the natural transformation in [Knu73]. 

Application data/linkage: The exact amount of detail stored in the tree depends 

on the nature of the specific application. In Figure 3 this field was not used, 

but in some other example this pointer would reference additional information. 

For example, the tree might represent an abstract syntax tree which has been 

augmented with extra information needed to regenerate the original source 

program from the tree. Or, the tree might be used in a language directed 

editor to maintain a mapping between a node of the program tree and the X­

,Y-Coordinates of the text on the screen. Thus, each node of the tree contains 

an application data/linkage field that is used to either hold user-defined values 

or extend the data structure of each node without altering other portions of 

the system. All such application specific data can be captured in this user 

defined data structure, and associated with the corresponding tree nodes. 

3.2 Internal Data Model Builder 

The Internal Data Model Builder produces a tree representation of the input text. 

A special purpose Internal Data Model Builder must be hand-crafted for every 

instance of Yashar . To facilitate this work, there is a set of pre-compiled Yashar 

support routines that provide primitive operations for creating and manipulating a 

tree, see Appendix B. This reduces the designer's task to deciding the most logical 

order of creating tree nodes and saving the attributes of each node through the use 

of Application data/linkage field and/ or the application defined data structure. 

In general there is no specific requirement in building the tree. A useful guideline 

10 

1 

n 
n 
1 
l 
1 

l 
l 
J 

l 
I 

I 
I 
J 



I 
l 

I 
I 
j 

J 

J 

in deciding the logical order of tree nodes and the amount of information stored 

at each node is to consider what is needed to write rules which regenerate the 

input. Caution should be exercised, however, because keeping extra information to 

make writing the rules easier may result in creating unnecessary node types and 

adding extra storage and processing time overhead. The second useful guideline 

is to consider the effort needed to automatically generate rules in an interactive 

environment. 

11 



3.3 Yashar's Rule Processor 

Yashar 's Rule Processor is a transformational unit which converts input stored 

in the tree representation into various kinds of output. Figure 4 is the execution 

environment of Yashar's rule processor. Rules direct Yashar's rule processor to 

perform transformational operations on an input tree. The transformational opera­

tions are carried out by either application-specific rules or by user-defined rules. The 

application-specific rules are installed in the Rule Repository by a designer prior to 

instantiating Yashar. The user-defined rules are installed in the Rule Repository 

on the fly by user-defined support functions. A user-defined support function is a C 

Figure 4: Yashar's Rule Processor Execution Environment 

routine written and installed by the designer of an instance of Yashar. Such a func­

tion is executed as a consequence of a reference to its function table number. This 

number is also assigned to the user-defined support routine by a designer. When 

called, a user-defined support function may modify an existing application-specific 

rule, or write an entirely new rule. 

Function Table 

Function Table is a vector that stores the address of different user-defined support 

functions for execution. All the user-defined support functions must be installed in 

the Function Table prior to activation of the rule processor. 

Rule Repository 

The Rule Repository is the storage element where application-specific and user de­

fined rules are stored and accessed by the rule processor. This storage element is 

12 

l 
1 
n 
n 
l 
l 
l 
I 

l 
I 
J 



l 
~ 

n 
n 
I 
1 

divided into two logical parts. The first part contains application-specific rules and 

the second part stores user -defined rules. 

Application-Specific Rules 

Application-specific rules define the default sequence of processing and semantic ac­

tions of the rule processor when processing the tree-structured input. For example, 

in an adaptive prettyprinter for Modula-2, the application-specific rules govern the 

traversal of the tree and tell how to produce the formatted output text. 

User-Defined Rules 

User-defined rules modify or augment existing application-specific rules. A rule can 

be modified more than once and the most recent modification is the one which is 

used by the rule processor. Furthermore, a modification to an application-specific 

rule can be reversed. The rule processor keeps a copy of the original rule and simply 

removes the most recent modification. 

Rule Processing 

The input to Yashar's rule processor is a tree-representation of the application­

specific input, application-specific rules, and possibly a set of user-defined rules. 

Scratch Pad Area 

The Scratch Pad Area is a set of Registers used to communicate among user-defined 

support functions, between user-defined support functions and the rule processor, 

13 



l 
l 

and among the rules themselves. Access from within a rule is symbolically referenced 7 
11 

as Rn where n is a two digit register number. Currently there are 40 registers {R01 -

R4 0) defined for such purposes. Access is also possible from a user-defined function ~ 

through two pre-compiled Yashar support routines GetRegister and PutRegister. 

Yashar Pre-compiled and Used-defined Support Functions 

The pre-compiled support functions are used by an instance of Yashar to access and 

operate on the tree-representat'ion of the input and Scratch Pad Area. The pre­

compiled support functions are accessible through user-defined support functions 

and Application Interface Routines. Refer to Appendix B for a list of pre-compiled 

support functions. 

The user-defined support functions are application-specific routines that are called 

by the rule processor to perform certain application-specific tasks. User-defined 

support functions are installed in the rule processor's predefined Function Table by 

using a pre-compiled Yashar support routine called InstFunc. User-defined support 

functions can be viewed as trap routines which extend the instruction set of Yashar's 

rule processor. The rule processor executes functions installed in the Function Table 

automatically when they are referenced in any rule. 

As an example suppose user interaction is required to satisfy one of the rules being 

processed by Yashar's rule processor. The designer would have to write a C function 

which handles the user interaction as a dialogue and passes the user's input to 

Yashar's rule processor. Prior to activation of the rule processor this function is 

installed in the Function Table by using the pre-compiled Yashar support function 

InstFunc. The rule processor automatically executes such functions in the course 

of processing the rules. 

14 

l 

I 
] 

J 



I 

I 

I 
n 
n 
n 
I 

I J 

J 

I 
J 

J 

Tree Traversal 

The rule processor traverses the tree and processes each node in the tree according 

to navigational and operational directives that are specified in each rule. When 

a node is visited, the repository is searched for a rule with a corresponding label. 

Then the rule is applied to the tree node. Furthermore, the next node to be visited 

is determined by the rule. The minimum sequencing instruction for each rule is @* 

which causes the tree to be traversed in depth first order. 

For example, the following rule directs the rule processor to ignore the second child 

of the tree node with label 39 and recursively process its first, third and forth 

children respectively. 

39: @01@[02@03@04 

The rule processor reads this rule and does the following: 

• Process the first child of node 39 (@01) 

• Do not process the second child of node 39 (@I02) 

• Process the third child of node 39 (@03) 

• Process the forth child of node 39 (@04) 

The above sequence of activities applies to all nodes with label 39. To traverse the 

tr~e according to the rules stored in the rule repository, the rule processor maintains 

a context for each node. A context consists of: 

15 



Node Priority: used in generation of parenthesized expression. There exists a 

classical problem of regenerating expressions from expression trees when the 

priority of their operators is altered by using parenthesis [Bro72,CH73,Bro77]. 

We have adopted the solution in [Fri83] in which expression sub-trees are as­

signed priorities and associativity values. These values provide the capability 

to decide where to emit parenthesis in regeneration of expressions. Yashar's 

solution is a generalization that assigns priorities to a node type rather than 

the expression node so that the rule processor will emit the proper parenthe- · 

ses. In this new method there is no need to specify the associativity relation 

of a node. See the explanation of @"'n in Appendix A. 

Delimiter String Pointer: used to replicate common strings of symbols shared 

by children of a node. Such delimiters are assigned to a delimiter string 

buffer area and emitted when they are needed. See the explanation of @D in 

Appendix A. 

Pointer to Rule Definition: refers to the rule definition of a node. The rule for 

each node to be processed is prefetched prior to its execution and its address 

is passed to the rule processor. 

3.3.1 Rule Processor Instruction Set 

For a complete list of the instruction set of Yashar's rule processor and their seman­

tic definition refer to Appendix A. The instruction set of Yashar's Rule Processor 

is divided into the following: 

• Tree Navigation 

• Formating 

16 

1 

l 
n 
7 
l 
l 

I 
I 
I 
J 

J 



l 
n 
n 
n 
l 
l 
I 
I 
I 

I 
1 

I 
j 

j 

J 

• Escape and Breaking 

• Register Manipulation 

• Miscellaneous 

Rule Syntax 

Each rule is a mixture of text, active and passive instructions. To distinguish 

between instructions and the text that is passed along, instructions are prefixed by 

an@ symbol. 

The components of a rule are: 

• a label, always 

• one or more active instructions, always 

• text, optionally 

• one or more formatting instructions, optionally 

The label designates the type of node to be operated on by the rule processor. The 

rule is applied to all nodes of the type specified by the label. Active instructions are 

responsible for, 1) sequencing the processing order of tree nodes, and 2) providing 

a mechanism for communicating data and control values · among the rules, pre­

compiled Yashar support functions, and user-defined support functions. Formatting 

instructions and text do not have any effect on tree nodes, and serve only to format 

the output. For example the following rule: 

17 



label ,,...,,..__ 
02 : BEGIN ..___,_, 

t ext 

F ormattingl n at . ,........,,.___ 
@n@+ @M$R03 = (@01)$ @01 

activ eln at . 

f ormattingl nat. ,,...,,..__ 
@- END ..___,_., 

t ext 

directs the rule processor to transform every node of type 02 as follows: 

• Emit a BEGIN (BEGIN) 

• Emit a newline symbol (@n) 

• Increment the indentation level by one increment unit (@+). An increment 

unit is assumed to be four character positions, the default value can only be 

altered prior to activation of the rule processor. 

• Save the address of the first child of the current node in register R03 

(@M$R03=(@01)$) 

• Process the first child of the current node (@01). To make the rule processor 

operate on a specific child of a node. A child's sequence number is used. Thus 

@01 designates the first child of every node of type 02. 

• Decrement the indentation level by one increment unit (@-) 

• Emit an END 

It is important to note the difference between rules in Yashar and syntax definitions 

that are used in syntax directed editors. Like definitions in a syntax directed editor, 

Yashar rules can specify syntactic structure, but in addition Yashar rules specify 

semantic and deep structure of the information stored in the tree. 

For example, consider the case in a language directed editor where it is desired to 

hide the details of certain sections of code to avoid cluttering the focus of attention. 

18 

l 
7 

7 

l 
l 

-I 

J 

J 

I 
J 



1 

n 
n 
n 
rl 
1 

l 
1 

J 

} 

I 
J 

l 
1 

I 
J 

j 

J 

The following rule defines the processing of a while loop to show only the predicate 

and number of statements of its body rather than showing all the statments of its 

body. 

added for hiding details 

38: W HILE@C+@0l@Dj;@nj@C-DO@+@n@An/ < whilebody > j@02@n@-END 

Assuming that there is a while loop with ten statments in its body the following is 

what would be seen after the above rule takes effect. 

Before After 

Detailed While loop 

WHILE a <= b DO 

While loop abstraction without details of its body 

WHILE a <= b DO 

END 

a:= a +1; 

IF b <> 0 

THEN ... 

<whilebody> 10 

END 

The following is an explanation of the rule: 

• Emit a WHILE (WHILE) 

• Activate conditional filling (@C+) 

• Process the first child if the current node (@01) 

• Emit a semicolon(;) and newline (@n) after processing of each child of second 

child of current node (@Dj;@nf). Note that in (@D/;@n/) the slashes(/) are 

used to enclose the delimiter pattern. 

• Turn off conditional filling (@C-) 

19 



• Emit a DO (DO) 

• Increment the indentation level by one increment unit (@+) 

• Emit a newline symbol (@n) 

• Abstract the second child of current node and return <while body> and num­

ber of statements ( children) of second child of current node 

(@An/ <whilebody> /@02) 

• Emit a newline symbol (@n) 

• Decrement the indentation level by one increment unit (@-) 

• Emit an END (END) 

Tree Navigational Instructions 

The order in which children of a tree node are processed is specified by a sequence 

number prefixed with an@. For example the following causes the rule processor to 

process first, second, and forth children of all nodes labeled 20 respectively. 

20: @01@02@103@04 

Formatting Instructions 

Formatting instructions are for prettyprinting of the textual representation of the 

input tree. These instructions do not effect the state of the nodes of a tree. For 

example @n, @+,and@- cause the rule processor to emit the control sequence to 

generate a new line, increment indentation level, and decrement the indentation 

level respectively. 

20 

l 
n 
~ 

n 
l 
l 
) 

l 
l 

I 
J 

I 

l 
I 
I 
j 



l 
7 

n 
n 

J 

J 

j 

I 
I 
j 

I 
u 

Formating In•t . 
,-"--.. 

02: BEGIN @n@+ 

Formating In•t. 
,-,__ 

@01 @- END 

Therefore the above rule causes the rule processor to do the following: 

• Emit BEGIN (BEGIN) 

• Emit a newline symbol (@n) 

• Increment the indentation level by one increment unit (@+) 

• Process the child number one (@01) 

• Decrement the indentation level by one increment unit (@-) 

• Emit an END (END) 

Escape and Break point Instruction 

The % symbol designates an escape instruction. If a navigation instruction has an 

% appended to it, the rule processor will execute the function referenced by the next 

two digits instead of processing the node referenced by the navigation instructions. 

The two digit number following % is an index into the Function Table which selects 

the user-defined support function to be executed. For example the following directs 

the rule processor to skip the second child of every node whose label equals 34 and 

to pass control and context of the rule processor to the 5th function in the Function 

Table. 

34: @01@02%05 

21 



The @Jn designates a user-defined support function call instruction. The rule 

processor executes the nth function in the function table. In contrast to (%n), 

when using @Jn the context information is not passed to the called function. 

Yashar's rule processor supports the insertion ( definition) , activation, and removal 

of break points to temporarily interrupt the processing of a rule. One can use the 

break point facility to step through a class of tree nodes, for example. Definition, 

activation and removal of break points are done as follows: 

Definition: of a break point for a node type is done by using @P and providing 

the node type and function number in the Function Table to be activated at 

the time of breaking. For example: 

05: 

define break separator .--.. .--.. 
@P I 20 ._.,-, 

separator .--.. 
I 03 CONST@D ... ._.,-, 

node t11pe function to breakin 

defines a break point for all nodes of type 20 and designates the function 

number 3 in the Function Table as the function to be executed when a break 

happens. 

Removal: of a break point for a node type is done by using @V and the specifi­

cation of the node type. For example the following: 

remove break .--.. 
84: BEGIN@n@+@0l ... END @V 

removes the break definition for node type 20. 

I 20 I ._.,-, 
node t11pe 

A·ctivation: of break points is done by using @Z. to alert the rule processor to 

check for a possible break point definition for the current node type. The 

sole purpose of @Z is to not hinder the efficiency of the rule processor when 

22 

7 
n 
n 
l 

I 
. l 

j 

J 



n 
n 
n 
f I 
1 

I 

I 
j 

J 

J 

checking for break points after execution of each rule. However, by adding 

@z to all rule definitions, checking for a break point after every rule can be 

achieved. For example , 

16:IF @01 THEN ... END @Z 

38:WHILE @01 @Dj;@nj .. . END @Z 

50:(@0l > @02)@Z 

will cause the rule processor to check for a possible break point definition for 

node types 16, 38, and 50 after processing them. Notice that by putting @Z 

at the beginning one can cause the rule processor to check for possible break 

points at the beginning of a rule. Practically, @z can be placed anywhere 

within a rule and it's execution is immediate. 

Arithmetic and Relational Instructions 

Arithmetic operations use Scratch Pad registers and constant values. The binary 

arithmetic operators +, -, *, /, and relational operators ==, >=, <, <=, ! = are 

supported. 

@M$R03 = ( R02 + R07)$ 

This rule assigns the sum of the values stored in register two and seven to regis­

ter three. The precedence and order of evaluation is the same as for the C lan­

guage [KR 78]. 

Miscellaneous Instructions 

The instructions to manipulate the rule repositories, access the data dictionary 

information, etc. belong to this category. For example: 

23 



30: @m16$IF@01%12THEN@+@Dj;@nf@* j@nj@n@- END$ ... 

will cause the rule processor to first modify the rule definition 16 to what is en­

closed between two $ delimiters, and then continue with the remainder of rule 30. 

To restore the original definition of rule 16, some rule must contain the following 

... @r16. Alternatively, the RestoreRule pre-compiled Yashar support routine can 

be called from within a user-defined interface or support routine to change rule 16 

back to its original form. 

3.4 Application Interface Routines 

Application Interface Routines are written by the designer and linked to Yashar 

support routines during the creation stage of an instance of the Yashar. They are 

generally responsible for: 

• Communicating with the user of the environment, 

• Generating new application-specific rules automatically, 

• Loading of the newly generated rules, 

• Activating the rule processor, and 

• Capturing the results of the operation 

As part of initialization of an instance of Yashar, Application Interface Routines 

must install the user-defined support functions in the Function Table that are in 

turn activated by the rule processor automatically when referenced within the rules. 

24 

l 
l 
n 
n 
l 

J 

J 

J 

J 



l 
n 
n 
n 
n 
I 

J 

I 
j 

I 
j 

j 

u 

Loading of the newly generated rules could be done either prior to activation of the 

rule processor through installation of a user-defined support function in a prede­

fined location of Function Table, or interactively by calling the pre-compiled Yashar 

support routine ModifyRule by user-defined application interface routines, or by the 

rule themselves, or any combination of the above methods. 

Changing the default storage size of Rule Repository, rule size, and maximum al­

lowed number of rules in the Rule Repository could be done by calling SetRepository, 

SetRuleLen and SetRuleMax respectively. 

25 



4 Creation of An Instance of Yashar 

An instance of Yashar is created by a designer who must tailor Yashar to a specific 

application. Since Yashar is written in C, and the designer must provide a small 

number of C support routines, the steps in Figure 5 involve the C complier and 

linker. This is a one time only process which we call instantiation of a tool. 

Figure 5: Creation of an Application Specific Version of Yashar 

First, the tool designer must write application interface routines. This usually 

involves writing C functions to handle windows, dialogues, and menus. Next, the 

designer must write application-specific rules which are used by the Rule Processor. 

For example, to instantiate Yashar as a Modula-2 to C translator, a designer would 

have to write interface routines for the keyboard, screen, and mouse, and string 

processing routines. Figure 2 displays the dataflow and control flow of an instance of 

Yashar for translating Modula-2 source code programs into semantically equivalent 

C source code programs. 

The Modula-2 to C Translator User Interface is a C program written by a tool de­

signer which provides the communication channel between the user and the transla­

tor environment. The Translator User Interface takes care of selecting the Modula-

2 source code to be translated, activation of the Modula-2 Internal Data Model 

Builder, and installation of user-defined support functions prior to activation of 

rule processor, by requests to translate . 

Four user-defined support routines were written; 1) the first function maps the 

scalar types of Modula-2 that are not supported in C; 2) the second function maps 

variable parameters to semantically correct C form; 3) the third function to resolve 

26 

l 
~ 

n 
n 
n 

l 

-l 

I 
J 

I 
j 

J 

J 



1 

n 
n 
n 
l 

I 
I 
I 
I 
j 

J 

j 

the scope problem of variables referenced in nested procedures in Modula-2 when 

they are de-nested for C; and 4) the fourth function accesses the data dictionary to 

get the variable names and their attributes . 

Figure 6 is a sample Modula-2 program and it's C program equivalent produced by 

this instance of Yashar . 

Figure 6: A Sample Modula-2 program and its C equivalent 

5 Conclusions 

Yashar originally started as an experiment in building a tool for program trans­

formation [BGW76,Che83] and understanding to study reusability of existing pro­

grams in block structured languages. The initial approach was based on the idea 

of unparsing in structured program editors [TR80,DVHK80]. Some of the ideas 

for prettyprinting source programs are adopted from [Fri83]. The instruction set 

of Yashar's rule processor provides a powerful mechanism for manipulating struc­

tured data and to experiment and build interface tools specially interactive that are 

mostly useful in program development environments. The terse notation ofYashar's 

instruction set facilitates automatic generation of the rules by interface programs. 

The capability of modifying rules during execution is valuable in adjusting the ac­

tions of an instance of Yashar to respond to various possible cases, and adds to its 

versality. Furthermore, esacping the ordinary sequence of processing of the nodes 

through escape and break point instructions (@Jn, @n%m , ... ) allows extensi­

bility and enhancement of the functionality of the rule processor. Also breaking 

instructions provide a simple means of creating interactive environments . 

27 



l 
~ 

Manual creation of the Application User Interface Routines, Internal Data Model n 
Builder, and writing of user-defined support routines may seem as a drawback , 

however this is nominal and worth the effort because an entire family of tools are n 
obtained as a result. 

28 

l 
l 
l 

l 
I 

I 
I 
I 
j 



l 
,1 

n 
f I 
l 
I 

J 

J 

I 

A Yashar's Rule Processor Instruction List 

This appendix lists the instructions of Yashar's rule processor and their seman ­

tics . Instructions are preceded by an @ to distinguish them from ordinary textual 

information. The mandatory portions of the commands are enclosed between { 

and }. The optional portions are enclosed between [ and ] . Also a .. . a means a 

string of characters enclosed by two identical symbols. The symbol a can be any 

printable character. The string must not contain the symbol a. The notation of 

the instruction is partly influenced by [Fri83].The meta symbols < and > enclose 

non-terminals such as arithmetic expressions. 

A.1 Formatting Instructions 

The @Cm, @C+, and @C- instructions provide a means of adjusting textual output 

to line size, and number of pixels of the display device. They provide the knowledge 

to make the best judgement as to where to break the output text. 

@+ Increment current indentation level by a predefined indentation value . The 

execution of this command is immediate. 

@- Decrement current indentation level. This is the reverse of@+. 

@C+ Enable adaptive formation of output text. This signals the rule processor to 

attempt to break lines of output text that does not fit on a single line . 

@C- Disable adaptive formation of output text. This disables the effect of a previ­

ous @C+. Afterward the rule processor does not make any attempt to adjust 

the display of the text if it does not fit in a line . 

29 



@Cm This is a marker which to mark the spots that would be a reasonable place 

to emit proper escape sequence (e.g newline) to break the output lines. When 

the adaptive formation of output text is enabled. This marker provides the 

knowledge to the rule processor in calculating the best logical places that a 

line can be broken. 

@.F [+I -]n where F can be any of the following font styles: Bold, Italic, Underline, 

Outline, Shadow, and Normal. These font styles can be selected independent 

of each other and their effects are accumulative. To reset the font style to the 

default one one should select Normal. 

@.G[+l-]nl r In this instruction Then option can be used to set the font size. 

The r option resets the font size to the default value, or the font size prior to 

the application of a set operation. 

@An Set the arithmetic priority of current node to n. This is for generating of 

parenthesized expression in a correct form when generating program text. 

A.2 Tree Navigational Instructions 

@n Process the nth child of the current node. If the child does not exist the rule 

processor ignores this instruction. 

@Xn Process the tree ( subtree) pointed to by the contents of register Rn. This 

command is used in conjunction with the @M, move command, see A.4. The 

execute instruction takes the register n as the current root node, register 

n+ 1 as the current arithmetic priority, and register n+2 as pointer to current 

delimiter string. 

30 

l 
l 
fl 
n 
l 
I 
I 
l 

I 
j 

I 
J 

J 

I 



I 
l 

I 
J 

J 

j 

I 
J 

@.RT{A} Remove the subtree pointed by A where A is either a register number 

which points to the subtree. If the pointer is null, no action take places. Not 

implemented yet. 

@.CT{A 1 , A2 } Make a copy of the subtree pointed by A1 and set A2 to the address 

of created subtree. A1 andA 2 must be registers only. Not implemented yet. 

@.PT{A 1, A2 ,[SIK]n} Paste subtree pointed by A2 , to subtree pointed by A1 as 

nth sibling (S) or child (K). Not implemented yet. 

@In Do not process the children number n of the current node. Continues with 

the next children if there is any. 

@Aa . . . a@nn Instead of processing child number nn of this node take whatever 

enclosed between a:'s as the result of processing and continue with the next 

instruction. 

@ARna: .. . a:@nn Set register n to number of children of children number nn of 

current node. Instead of processing it return whatever is enclosed between 

a's as the result of processing this node. 

@Ana: .. . a:@nn Instead of processing children number nn of current node take 

whatever is between the delimiters and append to it number of children of child 

number nn as the result of processing and continue with the next instruction . 

@AnRna: .. . a@nn Do as above but also save the number of children of children 

number nn of current node in register number n. 

@Da .. . a Emit whatever is enclosed between delimiters after processing of each 

child of the current node that comes afterwards. 

31 



@*D After processing of each child of current node emit the same information that l 
I 

is defined by the most currently set D instruction prior to this. 

@* a ... a Emit whatever is enclosed between delimiters after processing of each 

child of the current node. Note this is only local to this node. 

A.3 Escape and Break point Instructions 

@n %m Causes the rule processor to by pass processing of child number n and 

execute function referenced at location m of the Function Table. The rule 

processor passes the context to the function too. 

@Jn Calls nth function in Function Table. No context information is passed to the 

function. 

@P anam Defines a break point for node type n and designates the mth function 

in the Function Table to be the breaking function. 

@V ana Removes the break point definition for node type n. 

@Z Defines the check points for existence of a break point. Meaning that any time 

a @Z is encountered the rule processor checks to see if a break point is defined 

for the rule and if so executes the breaking function as it is defined in @P for 

the rule. 

A.4 Arithmetic and Conditional Instructions 

true part 

@?( <exp>)?[n : newrule]? [n: newrule]? Conditionally modifies a command de-

false part 

pending on whether the condition being test is true or false. The <exp> is 

evaluated and if the result is true the true part is used otherwise the false part. 

32 

l 
1 

l 

l 
) 

l 
I 
l 



l 
7 
~ 

1 

n 
I 
I 
I 
I 

I 
I 
I 
J 

J 

@M$Rn = (<exp>)$ Set the contents of register n to the result of the expression. 

Expressions can contain any combination of arithmetic operations ( eg. +, - , etc.) 

and relational operators (eg. ==, <=, etc.) in case of conditional instructions. If 

the expression is a register assignment, the next two consecutive registers are used 

to store the current value of arithmetic priority, and the pointer to current active 

string delimiter. For example 

05: GONST@Dj;@nj@n@+@M$R02 = (@01)$@* //;@n@-

In the above the sequence operation related to assignment is as follows: 

• Store the pointer to subtree @01 in register 02 

• Store the current arithmetic priority in register 03 

• Store the pointer to current delimiter string which happens to be ;@n in 

register 04 

A.5 Miscellaneous Instructions 

Rule Repository Manipulation Instructions 

@Mna .. . a Redefine rule labeled n to the new definition enclosed in between de­

limiters. After the execution of this command the new definition will be in 

effect. 

@Rn Restore the definition of rule labeled n to its previous one . If there is no 

previous definition nothing will be changed . 

@F Restor all the rules that are redefined to their original definitions. 

33 



Data Dictionary Access and Pre-Loading of Modified Rules 

@d The access to Data Dictionary from within rule is through the use of @d. 

However to make that possible prior to activation of rule processor a user­

defined support function is installed in a predefined element of Function Table. 

Then afterwards anytime the rule processor encounters @d it will execute 

the installed function in the pre-defined location of the Function Table and 

the content of Data Dictionary Reference Pointer field of the current node is 

passed to it. The return value is expected to be a string of characters. However 

a null string can also be returned. The data dictionary access routine must 

always be installed as function number 41. 

Pre-Loading of Modified Rules For pre-loading modified rules before starting 

activation of rule processor, a user-defined support function must be installed 

as a pre-defined element of Function Table. Yashar rule processor always 

attempts to execute this function before start of processing the rules. If there 

is no function installed in that location nothing will happen and processing 

will continue. The user-defined support routine to modify or augment the 

application-specific rules prior to activation of rule processor must be installed 

as function number 42. Further more this function must use pre-compiled 

Yashar support routine ModifyRule, refer to Appendix B, to actually modify 

the rules. 

B Pre-Compiled Support Routines 

This section explains the pre-compiled support routines that are available for application­

specific interface and user-defined support routine to access the tree-representation 

34 

7 
n 
n 
l 

l 
l 
I 

l 
J 
J 

J 



l 
l 
~ 

11 

fl 

l 
I 

J 

. J 

J 

J 

J 
J 

u 

of input, the Scratch Pad area and rule repository. 

Tree Manipulation Routines 

Tree manipulation routines provide the necessary support for creating and accessing 

tree nodes. 

NewTreeNode(): creates a tree node and returns a pointer to it. 

GetithSib(treenode, sibNum): returns a pointer the sibNumth sibling of the tree 

or subtree passed to it as its argument. treenode is the pointer pointing to 

the specified tree or subtree, and sibNum is the desired siblings. If the desired 

sibling does not exist the return pointer will be null. 

GetlthKid(treenode, kidNum): returns a pointer the kidNumth child of the tree 

or subtree passed to it as its argument. treenode is the pointer pointing to the 

specified tree or subtree, and kidNum is the desired child. If the desired child 

does not exist the return pointer will be null. 

AddSib(treenode,newsibs): adds the tree node pointed by newsibs as the last sib­

ling of the tree subtree pointed by treenode. 

AddKid(treenode,newkids): adds the tree node pointed by newkids as the last child 

of the tree pointed by treenode. 

N oOfSibs ( treenode): returns an integer value representing the number of the sib­

lings of the tree pointed by treenode . 

N oOfK.ids ( tree node): returns an integer value representing the number of the chil­

dren of the tree pointed by treenode. 

35 



CopySubTree( tree node): makes a copy of the tree pointed by treenode and returns 

a pointer to the newly created tree. 

Set Type( treenode, Type Value): set the type of the node pointed by tree node to the 

value of Type Value. Currently the Type Value can only be in the range O to 

255. 

Get Type( tree node): returns an integer as the value of type field of the tree pointed 

by treenode. 

SetDRef( treenode,DDReflnfo): sets the data dictionary reference field of the node 

pointed by treenode with the content of DDReflnfo. 

GetDRef( treenode): returns the contents of data dictionary reference field of the 

node pointed by treenode. The return value is four byte long and can be casted 

to a pointer or a long integer in C. 

SetALink(treenode,ALinklnfo): sets the application linkage/data field of the node 

pointed by treenode with the contents of ALinklnfo. 

GetALink(treenode): returns the contents of application linkage/data field of the 

node pointed by treenode. The return value is four byte long and can be casted 

to a pointer or a long integer in C. 

Repository Manipulation Routines 

These routines provide access mechanism to the rule repository, and the ability of 

l 
~ 

n 
l 
l 

l 
l 

modifying the default size of them. Except ModifyRule and RestoreRule below, all J 

the rest of functions must be applied only one time and prior to activation of the 

rule processor. If they are applied after activation of the rule processor the result J 

36 I 

J 



f j 

I 

I 
J 
J 

and behavior of the system would be unpredictable if it does not cause crashes. If 

they are not applied the predefined values would be used. 

SetRuieMax(MaxNoO/Rules): sets the maximum allowed number of rules for the 

rule repository to the value of MaxNoO/Rules . MaxNoO/Rules must be a 

positive integer value. 

SetRepository( RepositorySize): sets the maximum allocation size of the rule repos­

itory to the value of RepositorySize. RepositorySize must be a positive integer 

value. 

SetRuleLen(RuleLength): sets the maximum rule length to the value of Rule­

Length. RuleLength must be a positive integer. 

SetRuieFName(ApplRules): notifies the rule processor to load the rules that are 

stored in the file referenced by App/Rules. The rule processor prior to acti­

vation of Yashar engine will load the rule repository with the rule definitions 

provided by App/Rules. The default file that will be searched for loading the 

repository is lnterpGmd.text. 

ModifyRuie(RuleLabel,NewRuleStr): modifies the current definition of the rule 

referenced by RuleLabel to the new definition referenced by NewRuleStr. Rule­

Label must be a value in the range of O to 255 and does not exceed the maxi­

mum number of allowed rules in the repository. NewRuleStr is a pointer to a 

character string containing the new rule definition. 

RestoreRuie(RuleLabel): removes the most current modification to the rule refer­

enced by RuleLabel. If there has not been any modification the function will 

do nothing. 

37 



Register Manipulation and Miscellaneous Routines 

These routines provide access mechanism to Scratch Pad areas (registers), and the 

ability to change the default setting of other predefined values. 

GetRegister(RegisterNo): returns the current value of the register referenced by 

RegisterNo. The return value is four byte long and can be casted to a pointer 

or a long integer in C. RegisterNo must be a positive integer within the pre­

defined range of 1 to 40. 

PutRegister(RegisterNo,RegisterValue): sets the value of register referenced by 

Register No to the value of Register Value. Register Value can be any thing at 

the most four bytes long. RegisterNo must be a positive integer within the 

predefined range of 1 to 40. 

Setlndent( UnitSize): Set the default indentation unit length to UnitSize. UnitSize 

must be a positive integer value. The new size will be used by @+ and @- in 

formatting the output text . 

38 

1 

l 
n 
l 

J 

J 
I 
j 



l 
l 
n 
n 
l 

l 
J 

I 
j 

. J 

J 

I 
J 

J 

J 

References 

[BGW76] R. Balzer, N. Goldman, and D. Wile. On the transformational im­

plementation approach to programming. In Proceedings of the Second 

International Con/ erence on Software Engineering, IEEE Computer So­

ciety, Long Beach, Calif., 1976. 

[Bro72] P. J. Brown. Re-creation of source code from reverse polish form. 

Software-Practice and Experience, 2:275-278, 1972. 

[Bro77] P . J. Brown. More on the re-creation of source code from reverse polish 

form. Software-Practice and Experience, 7:545-551, 1977. 

[CH73] C. C. Charlton and P. G. Hibbard. A note on recreating source code 

from the reverse polish form. Software-Practice and Experience, 3:151-

153, 1973. 

[ Che83] T .E. Cheatham. Reusability through program transformations. In Pro­

ceedings of Workshop on Reusability in Programming, pages 122-128, 

The Media Works, Inc., Newport, RI, September 1983. 

[CM84] W. F. Clocksin and C. S. Mellish. Programming in Prolog. Texts and 

Monographs in Computer Science, Springer-Verlag, New York, 2 edition, 

1984 . 

[Col85] Alain Colmerauer. Prolog in 10 figures. Communication Of The ACM, 

28:1296-1324, December 1985. 

[DOD82] DOD. Reference Manual for the Ada Programming Language. United 

States Department of Defense, Washingtoh DC, July 1982. 

39 



(DVHK80] V. Donzeau-Gouge, Veronique, Huet, and G. Kahn. Programming en­

vironment based on structured editors:the mentor experience. In Work­

shop on Programming Environments, Ridgefield, CT, June 1980. 

[Fel79] 

[Fri83] 

(JW76] 

(KM81] 

[Knu73] 

[KR78) 

[KS83] 

(Ost81] 

(TM81] 

S. I. Feldman. Make-a program for maintaining computer programs. 

Software Practice and Experience, 9( 4) :255-266, 1979. 

Peter Fritzson. Adapti"ve Prettyprinting of Abstract Syntax Applied to 

ADA and PASCAL. Technical Report, Deptartment of Computer Sci­

ence, Linkoping University, Linkoping, Sweden, September 1983. 

K. Jensen and Niklaus Wirth. Pascal User Manual and Report. Texts 

and Monographs in Computer Science, Springer-Verlag, 2 edition, 1976. 

Brian W. Keringhan and John R. Mashey. The unix programming en­

vironment. IEEE Computer Magazine, 14(4):12-24, 1981. 

Donald E. Knuth. The Art of Computer Programming. Volume 1, Ad­

dison Wesley, 2 edition, 1973. 

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan­

guage. Prentice-Hall Software Series, Prentice-Hall, 1978. 

Gary D. Kimura and Alan C. Shaw. The Structure of Abstract Docu­

ment ObJ·ects. Technical Report, Computer Science Dept. University of 

Washington, Seattle, Washington, September 1983. 

Leon Osterweil. Software environment research: directions for the next 

five years. IEEE Computer Magazine, 14(4):35-43, 1981. 

Warren Teitelman and Larry Masinter. The interlisp programming en­

vironment. IEEE Computer Magazine, 14(4):25-33, 1981. 

40 

l 
n 
l 
l 

I 
I 
I 

I 
j 



l 
l 
n 
l 
I 
l 
l 

I 
I 
I 
j 

J 

J 

[TR80] 

[Wir83] 

Tim Teitelbaum and Thomas Reps. The Cornell Program Synthesizer:A 

Syntax-Directed Programming Environment. Technical Report, Com­

puter Science Dept. Cornell University, MAY 1980. 

Niklaus Wirth. Programming In Modula-2. Texts and Monographs in 

Computer Science, Springer-Verlag, Berlin Heidelberg, 1983. 

41 



Programmer 

Designer 

Requests 
------------•-

Rule Repository 

Application­
specific 
Rules 

Designer 

Application 
Interface 
Routines 

Intern.a I Data 
Model 
Builder 

Application 
outputs 

Attribute 

Tree 

User- Input 
Text 

~ep. ----­
Tree Reps. 
of input 
for Yashar 

Tree Reps. o_f✓ 

input // 

// 

Editor 

VASHAR 
Rule 
Processor Oat.a Dictionarg info. of input 

.. 
------♦ 

,,.,....----... 

i nsta11ation 
Data flow 

Contro 1 flow 

l __ ) Stor.age Elements 

D Processing Elements 

l 
Program mer I 

~ l 

I 
J 

I 
J 



f I 
n 
I l 

l 
l 

I 
I 

I 
l 

Programmer 
Requests Modula-2 to C 
------------+-Translator User 

Interface 

Rule Repository 

r----- ...... 

C source 
output 

Modula-2 
Source co7 

,.,,./ 

Data 

Modul.a-2 
Source code 

Rules to 
recognize 
ModuJa-2 
source 
code 

Modula-2 
Internal Data 
Mode 1 Builder 

Attribut@ Dah 

...... 

produce C 
source code 

,0 
C -~ 
~ 

GI 
<> ... 
:, 
0 

(f) 

(J 
Tree Reps. o_y/ 
Modula-~urce 

_.,..-/_/ 

Dictionary 
for Modula-2 
Identifiers 

Tree Reps. 
of Modula-2 
for Y .ash.ar-

Editor 

YASHAR 
Rule 
Processor 

DD info. for Modul.a-2 sour-ce 

.. Data flow 

Contro 1 flov 

0 Storage Elements 

□ Pr-ocessing Elements 

j A Modula-2 to C Translator 

J 

J 

Progr-amme, 



n 

Legend 

n : Node sequence number-

labe 1: Node Tgpe 
DDP: Data Dictionary Reference 

Pointer 
AOL : Application /Data L inlcage 

DOP = 0 no Data Oictionar-y Referenctc­
ADL = 0 no Application /Data Link age 

17: implementation 
37: list of variable declarations 
42: numbet· 
43: id 
44:; 
45 : : 
66 : assignment statement 
70: block 

71 : d.;-olaration part 
79 : list of statements: 
84: body of module 
88 : first variable 

Data Didionary 

PAT12A (43) 

2 W (43) ...... 1 

3 INTEGER ( 43) 

4 0 (42) 

(n) = node type 
...... m = scope 

IMPLEMENT AT ION MODULE PAT 12 A; 

VAR Y : INTEGER; 
BEGIN 

,,, := 0; 

END PAT12A. 

Figur-e 3 :The Internal Tree Representation of a Modula-2 sour-ce 
program as it vould appear- in a Modula-2 to C 
Translator tool. 

I 
J 

J 

j 

J 

l 
l 
I 



, l 

7 
~1 
~ 

:1 
l 
I 
n 
l "a 

C 
t'O 

I 
g ... ... )( 
., GI 
t'O ., 
► C .... 0 

l 
~ 0 

<· 

I 
j 

J 

I 
I 
J 

j 

J 

Data Dictionarg Information 

Tree 
Representation------. 
of Input 

Use,- -defi ned 
Support function _ .... ~_t __ 1._, ______ _ 

_);~~::::::::::::::::: YASHAR •◄◄--- ::!::i~~~; Rule 
Function 
Table 

~--- 1 Sgstem Engine 
~ function calls 

read /v rite ; ~ ., 
4) 

Pre-Compiler Yashar 
Suppor-t Routines 

.~ data g' 

~ User-defined Support 
Functions 

.... 
«I 
.c 
C,,) 

G> -~ ~~ 1, ~ 

1---~~• Output 

1-Predefined Gen_ Register;?, 

'~~ 
State Vector and Scratch Pod Area 

·-4·······~· Contro 1 flov 

◄ Iii Data flov 

Yashar Rule Processor Execution Environment 



Desginer 

User-defined 
Support 
Functions 

C source code 

C Compiler 

Application 
lnterfoce 
Routines 

Pre-Compi 1 ed 
Voshor 

l 
l 
I I 

Support Routines 

Applicotion :
1 

t-------1~ Specific 

Yashar Objects 

Linker 

Objects 
~-.---...L.---~ 

Appl 1 cat 1 on 
Objects 

Executable 
Instance 
of Yashar 

Version of I 
Vashor } 

:1 

I 

I 
I 
I 
I 
J 

I 
j 

J 

j 



l,.. s File Edit Browser Constructor Refiner Tools 

7 .. t .. k 1 i 1n 1,J, I ; 

pot 10.C 

l~ meinO 
~ { 

for ( i = 23 ; i <= 45 ; i ++ ) 

{ 

j = k; 
1 = k * k ~ 

} 

IMPLEMENT AT I ON MODULE PAT 1 0; 
VAR i , j, k, 1 : I NT EGER; 

BEGIN 
FOR i := 23 TO 45 DO 

j :=k; 
1 := k*k; 

END 
,1.__ ___________ -1 END PAT 1 0 . 

I 
j 

1 

j 

l 

1 

.J 

I 

'I 


	Birjandi_Lewis_86_10_01_A
	Birjandi_Lewis_86_10_01_B



