
un~UEAS~TY

5C~EnCE

Exploiting Symmetry Properties in the Evaluation of Inductive Learning Algorithms:
An Empirical Domain-Independent Comparative Study

91-30-09

Hussein Almuallim
Department of Computer Science

Oregon State University
Corvallis, OR 97331-3202

n
l
l
n
fl

1

u
1

J

J

J

Exploiting Symmetry Properties in the
Evaluation of Inductive Learning Algorithms:

An Empirical Domain-Independent
Comparative Study 1

Hussein AlmualEm

303 Dearborn Hall
Department of Computer Science

Oregon State University
Corvallis, OR 97331-3202

Phone: (503) 737-5568
Email: almualh©cs . orst . edu

Abstract

Although numerous Boolean concept learning algorithms have been introduced in the literature, little
is known about what categories of concepts are actually learned satisfactorily by most of these algorithms .
Conventional comparison studies, which test various algorithms in some chosen domain, do not provide such
information, since their conclusions are limited to the domain considered . A more general way to evaluate
a learning algorithm is to test it on all the possible concepts defined on a given number of Boolean features.
However, this immediately leads to unaffordable computational costs, since we need to consider as many as
22 n concepts, when the number of features is n. In [D89], experiments of this type were reported for the
case of three features, while the cases of four or more features were concluded to be infeasible .

This paper directly builds on the work of [D89]. We introduce two techniques that significantly cut
the computational costs of the desired experiments and enable us to perform experiments over the space of
concepts defined on up to five variables. The first technique is to exploit the fact that inductive learning
algorithms are generally insensitive to permuting and/or complementing the features of the domain. We
give a method for eliminating redundancy in the experiments by computing a set of representative concepts
that suffices to characterize the behavior of a given algorithm over the space of all concepts . The second
technique is to resort to statistical approximation to avoid running algorithms on all the possible samples of
a concept . We show that testing a feasibly small number of samples suffices to obtain results with a high
level of confidence .

Applying these techniques, we report experimental results analogous to those of [D89] on some deci­
sion tree building algorithms over five Boolean features. The results we present are rather surprising and
demonstrate that there is still much to be learned about the algorithms we tested.

The paper also discusses the possibility of enhancing the above techniques to work for the cases of six
or more Boolean features.

1Thanks to Tom Dietterich for his many helpful comments on this work, to Bella Bose and Paul Cull for suggesting
relat ed references, to Robert Rowley for insightful discussions on permutation groups and to Prasad Tadepalli and
Ghulum Bakiri for valuable comments on earlier version of this paper. This work was supported in part by NSF
grant number IRl-86-57316 (Presidential Young Investigator Award) .

0

l
l
l
l
n

u
J

J
J

1 Introduction

The conventional way of evaluating and comparing inductive learning algorithms has been to empirically
examine the generalization performance of these algorithms in some selected domains. Studies of this type
necessarily lead to conclusions that apply only to the domains in which the algorithms are tested. A more
desirable direction, which we follow in this paper, is to perform wider-scope evaluation studies that are aimed
at the characterization of the type of concepts on which a given learning algorithm does or does not work
well. Not enough attention has been paid to this topic, and the behavior of many well-known algorithms
that lack formal analysis (such as ID3 [Q86], FRINGE [PH89], Backpropagation [RHW86], etc.), is still not
well understood.

In his paper [D89], Dietterich proposed to take the number of concepts reliably learned by a given learning
algorithm as the assessment figure for the algorithm. In this work, we call this quantity the "coverage" of
the algorithm, and follow Dietterich's notion of Frequently Approximately Correct (FAC) learning as the
definition of reliable learning of a concept. Dietterich proved an upper bound on the maximum coverage that
no learning algorithm can exceed when given a fixed number of examples. He also measured the coverage of
some learning algorithms in the space of concepts defined over 3 Boolean features. The number of concepts in
this case is only 256, and thus, it was computationally possible to measure the coverage by running exhaustive
experiments on all these concepts. However, for 4 or more Boolean features, running such experiments was
concluded to be infeasible due to the explosive number of concepts and of samples per concept needed to be
tested.

In this work, we introduce some techniques that lead to substantial cuts in the computational costs of
coverage measurement. The first technique is to exploit the fact that most of the known learning algorithms
are symmetric with respect to permuting and/or negating the domain features . Cost reduction is realized as
a result of the elimination of redundant runs caused by these symmetry properties . The second technique
is to resort to statistical approximation to avoid running the algorithms on a prohibitively large number
of samples per concept. Both of these techniques are algorithm-independent in the sense that they are
applicable to almost any Boolean concept learning algorithm. The details of this approach are given in
Sections 3 and 4.

By employing the above two techniques, we were able to measure the coverage of some decision-tree
building algorithms on concepts defined on up to 5 features. The experimental results we obtained are
reported in Section 5. Running the same experiments for 6 or more features was not feasible using the above
techniques alone. To extend this work, we propose in Section 6 some ideas that we believe may help in
performing experiments with larger number of features.

2 Notation

Consider the space of Boolean concepts (or equivalently, functions) defined on n Boolean features (variables) .
A truth assignment, x E {O, l}n, to these n variables is called an instance and, for a concept c, a pair {x, c(x))
is called an example of c. When c(x) = 1 (=0) the example is called positive (negative), respectively.

We represent a concept as a 2n-bit vector, which is just the right-most (output) column of the truth
table of the concept, and call this the bit-vector representation of the concept. That is, for O ::; i < 2n, the
i-th bit is assigned the value c(x) where xis the i-th instance (i.e., the instance obtained by using the binary
representation of i to assign the values to the n variables, in the obvious way). For convenience, we use the
the hexadecimal representation to express the bit-vector representation of concepts. For example, aaaa00ff

denotes the function •X1•X5 V x1x2.

The integer interpretation of the bit-vector representation of a concept is called the integer value of the
concept. The weight of a concept is the number of positive examples in the concept (or, equivalently, the
number of l's in the bit-vector representation of the concept).

We assume the uniform distribution on the space of instances and say that a concept c1 is f-close to a
concept c2 , if the hamming distance between the bit-vector representation of the two concepts divided by 2n
(the total length of the bit-vectors) is at most L

In this work, examples of the target concept are drawn without replacement . An m-sample of a concept
c is a set of m distinct examples of c. m is called the size of the sample. Clearly, there are (;,'.;) different
m-samples for any concept. A learning algorithm is an algorithm that maps samples to concepts. Following

1

l
7

l

j

J

j

J
j

[D89], we say that an algorithm Frequently Approximately Correctly (FA CJ learns a concept c, with respect
tom , E and 8, if a fraction of at least 1 - 8 of the m-samples of care mapp ed by th e algorithm to concepts
that are f.-close to c.

For a given learning algorithm L, testing th e FAC learnability of a concept c given m, f. and 8, means
determining whether or not L FAC learns c with respect to these parameters . Finally, the coverage of a
learning algorithm, is the number of concepts that are FAC learned by the algorithm, for given values of
m , E and 8.

3 Exploiting Symmetry Properties

One source of the prohibitive computational cost in the empirical measurement of coverage is that the space
of concepts to be considered grows very rapidly as n becomes larger . When n = 5, for example, the number
of concepts in the space is 225 which is more than 4 billion concepts. Measuring the coverage by directly
testing the FAC learnability of all these concepts is clearly not practical.

In this section , we argue that it is not necessary to test algorithms against all possible concepts in the
space. We will first introduce two kinds of symmetry properties generally satisfied by algorithms that learn
Boolean concepts, and then describe how these properties can be exploited to reduce the cost of coverage
measurem ent.

3.1 Symmetry Properties

Most of the known inductive learning algorithms (e.g. ID3 [Q86), FRINGE [PH89), Backpropagation
[RHW86]) are insensitive to permuting and/or negating the features of the domain. For given values of
f. and 8 and a given sample size, if we know that an algorithm FAC learns a concept represented by a
Boolean function say f(x 1, x2, • • •, x;, • • •, Xj, · · •, xn) then this implies that the same algorithm also learns
the concepts represented by f(x1, x2, · · · , Xj, · · ·, x;, · · ·, Xn), f(x1, x2, ·· ·,-ix;, · · ·, Xj, · · ·, Xn) and so on for
all the functions obtained by permuting and/or negating the features in /.

More formally, let OPn be the set of all operators that permute and/or negate the set { x1, x2, ... , Xn}
in all possible ways . For example, op1 E OPs might be the operator that maps x1x2x3x4x5 to x2x1x3x4-ix 5

(i.e., exchanges x1 and x2 and negates xs). Clearly, operators in OPn can also be applied to Boolean concepts
by carrying out the transformations of the operator on the variables of the corresponding Boolean function.
In our example, op1(aaaa00ff) gives 550055ff. We can then argue that for any symmetric algorithm A,
the fact that A FAC learns a concept c implies that A also learns all the concepts op(c), op E OPn.

This says that the operators in OPn partition the space of concepts into equivalence classes in terms
of FAC learnability . For every pair of concepts, c1 and c2, if there exist some op;, opj E OPn such that
op; (c1) = c2 and opj(c 2) = c1, then c1 and c2 are in the same equivalence class, and thus c1 is FAC learned
if and only if c2 is. On the other hand, if there exist no operators that map c1 to c2 (or the opposite), then
c1 and c2 are in two different classes.

For algorithms that satisfy the above symmetry properties, testing an algorithm against one concept in
an equivalence class suffices to determine the FAC learnability of all the concepts in the class. Therefore, to
obtain a list of the concepts that are learned by a given algorithm in a given setting, we need to test the
algorithm only on a list of representative concepts, one from each equivalence class. The next subsection
gives one method of computing a set of such representative concepts.

3.2 Finding a Set of Representative Concepts

The proc edure we used to obtain a set of representative concepts is shown in Figure 1. The choice of which
concept is to represent an equivalence class can, of course, be done arbitrarily . In this work, we let the
concept with the maximum integer value (over all the concepts in the same class), be the representative
of th e class . Therefor e, to check whether a given concept c is the representative of its class (step 4.1), we
simply apply all th e operators in OPn and check whether ther e exists no operator op such that op(c) gives
a concept with a high er integer value than c. 2

2 Thi s is, definitely, impractical for large values of n, since there are as many as n!2n operators in OPn. An
alternative impl ementation of the test in step 3.1, is the the use of invariants of a concept [H65]. These are a set

2

l
7
n

1

J

1

I

j

J

J

J

Algorithm: Find-Representatives
Input: n

1. Let REP be empty
2n

. -----2. Let Q contam the concept 000 ... 00
3. Let c be the concept at the head of Q
4. While weight(c) ~ 2n-1, repeat:

4.1. If for all op E OP,
the integer value of c > the integer value of op(c) then:

4.1.1. Add c to REP
4.1.2. Add Successors(c) to the tail of Q

4.2. Remove c from Q
4.3. Let c be the concept at the head of Q

5. Return REP

Figure 1: Algorithm for finding a set of representative concepts

Step 4.1.2 calls the function Successors(c). This function computes and returns the successors of the
concept c as follows: Let j be the position of the right-most bit in c with the value 1 (letting j = -1 if
c = 000 ... 00). Then the successors of c are all the concepts generated by setting the k-th bit of c to 1, for
k = j + 1, j + 2, ... , 2n -1. For example, the successors of abcdf0f8 are abcdfOfc, abcdfOfa and abcdf0f9 .

The procedure given in Figure 1 maintains a queue Q which initially contains only the concept 00 ... 00.
In each iteration, the concept at the head of Q is removed form the queue. The concept is added to the set
REP and its successors are attached to the end of Q, only if the concept was found to be a representative.
When the algorithm terminates, the set REP will contain all the representatives of the equivalence classes
of weights O to 2n-l . The rest of the equivalence classes (of weights 2n-l + 1 to 2n) can be easily obtained
by complementing the representatives of weight 2n-l - 1 down to 0, as found by the given procedure.

The proof of correctness for this procedure is omitted here due to the limited space. The number of
equivalence classes and the number of concepts per equivalence class can be computed using P6lya's theory
of counting which is discussed in detail in [H65].

3.3 Usefulness and Limitations of the Technique

How much reduction in the computational cost is obtained by considering only the representative concepts?
For n features, there are n! permutations and 2n ways of negating. Therefore, this will result in an asymptotic
reduction factor of O(n!2n). The following table shows specific numbers for n up to 6.

n 22·· # of equivalence classes
3 256 22
4 65,536 402
5 > 4.2 X 109 1,228,158
6 > 1.8 X 1019 400,507,806,843,728

These numbers show that the technique we give contributes to a significant cut in the number of concepts
to be considered. Indeed, without employing this technique, experiments for n = 5 would not be feasible.

Unfortunately, it is clear that performing experiments for n 2'.: 6 is far from feasible, unless further cost
reduction techniques are also incorporated. Some ideas that may help for larger number of features are
discussed in Section 6 of the paper.
of quantities whose values are common for all concepts in a given equivalence class , but different from all other
classes; i.e. a set of quantities that identify the equivalence class to which a given concept belongs . However, in the
experiments carried out in this work, n is up to 5, and thus, th e simple method of applying all the operators in OPn
was found adequate to perform the experiments.

3

l
l

f l

j

J

I
J

J
J

4 Statistical Determination of FAC Learnability of a Concept

Another source of computational expense in the empirical measurement of coverage is the fact that for each
concept, there exists a very large number of samples on which algorithms must be executed. For example,
when n = 5, there are (~~), i.e . more than 600 million distinct samples of size 16, per concept .

To reduce the cost for testing the FAC learnability of a concept, we resort to statistical approximation
and estimate the coverage by giving upper and lower bound values such that the true value of coverage lies,
with high confidence, between these two bounds.

To determine the FAC learnability of a concept by a given learning algorithm, we run the algorithm
on a sufficiently large number of randomly-chosen samples of the desired size. We then compute the ratio
6 of those samples on which the algorithm does not return an t:-close hypothesis. If 6 is less than 8 by a
certain threshold, say 0, then we conclude that the concept is FAC learned. Conversely, if 6 exceeds 8 by 0
or more, then we conclude that the concept is not FAC learned. The lower bound on coverage is computed
by counting all those concepts for which the first case applies, and the upper bound by counting those for
which the second case does not apply .

The level of confidence of the above estimate depends, of course, on the value of 0 and the number of
samples tested per concept. For example, in the experiments of the next section, setting 8 = 0.10, we have
chosen to test 10,000 samples per concept, and let 0 be 0.007 . Three possible outcomes were considered:
(i) 6 < 0.093, (ii) 0.093 :S 6 :S 0.107, and (iii) 6 > 0.107. The concept was counted FAC learned in the
first case, and not FAC learned in the last case. Using the standard normal approximation of the binomial
distribution, we can show that, for a given concept, the probability of making a wrong conclusion in this
setting (i .e. counting a FAC learned concept as not FAC learned, and vice versa) is at most 0.01. Thus, this
test gives a 99% level of confidence.

5 Experiments

The techniques introduced in the previous sections were directly applied in the evaluation of the following
four learning algorithms:

1. 1D3 of Quinlan [Q86].

2. FRINGE as given in [PH89], with the maximum number of iterations set to 10.

3. MDT(Minimum Decision Tree): The algorithm that exhaustively searches for a decision tree
consistent with the sample with a minimum number of nodes (ties broken randomly) .

4. RSC(Random Selection Criterion): Same control structure as 1D3 but choosing the root of the
tree arbitrarily in each recursive call.

The last two algorithms are tested to check how the feature selection criteria implemented in 1D3 and
FRINGE are compared to the optimal (MDT) and arbitrary (RSC) behavior. Particularly, RSC was reported
to achieve a level of performance surprisingly comparable to that of 1D3 in some real domains [M89].

We also give the coverage of BALLS, the simple algorithm that classifies all the unseen examples as
positive (negative) if the majority of the examples in the sample are positive (negative), respectively, breaking
ties randomly. The exact coverage of this algorithm is obtained analytically using methods given in [AD90].

With the exception of FRINGE, all the algorithms given here are also symmetric with respect to comple­
menting the concept itself. That is, if 1D3 FAC learns the concept abcdOOOO, for example, then this implies
that 1D3 also FAC learns the complement concept 5432ffff. Therefore, we actually ran our experiments
for these algorithms only on the representative concepts of weight 0 to 2n- 1 .

The learning parameters were as follows: n = 5, m = 8, 10, 12, 14 and 16, t: = 0.10 and 8 = 0.10.
The number of representatives tested was 1,228,158 for FRINGE, and 698,635 for the other algorithms.
Determining the FAC learnability of these concepts was done in two passes. In the first pass, only 100
randomly-chosen samples per concepts were tested. Concepts for which the number of samples that resulted
in t:-close hypothesis is less than 60 out of 100 (i.e. 6 > .4), were considered not FAC learned and thus
excluded. In the second pass, the rest of the concepts were tested using 10,000 randomly-chosen samples, as
explained in Section 4.

4

I

l
l
l
l
n
n

l

j

lJ
j

j

J
J

j

The specific concepts FAC learned by the five algorithms are shown in the appendix. The coverage
figures of these algorithms are given in the following table. The last row in the table gives the maximum
coverage that can not be exceeded by any algorithm, using the upper bound result given in [D89].

Sample size
Algorithm 8 10 12 14 16
ID3 12±0 332±0 396±0 1,756±0 4,954±640
FRINGE 12±0 332±0 396±0 1,756±0 5,284±970
MDT 12±0 12±0 116±40 496±0 3,694±0
RSC 66±0 66±0 226±0 226±0 1,698±0
BALLS 10,978 10,978 10,978 82,898 82,898
Upper Bound 661,333 2,041,173 6,148,551 17,985,991 50,753,991

Examining the above table and the results listed in the appendix, we found the behavior of the five
tested algorithms to be largely unexpected, and sometimes counter-intuitive. We give here a few interesting
points based on these data:

1. It is rather surprising that MDT always has less coverage than ID3 and FRINGE. MDT covers,
however, some interesting concepts that both ID3 and FRINGE miss. An example of such a concept
is ffOOOOff , or x1 EB x2 , form= 14. On the other hand, the concepts ff800000 and its complement
(which have rather complex trees) are covered by ID3 and FRINGE but not MDT, for the same sample
size. There is a total of 1280 concepts in the equivalence classes of ff800000 and its complement,
compared to only 20 in that of ffOOOOff.

2. ID3 and FRINGE cover the same concepts for m S 14. When m = 16, FRINGE starts covering
concepts such as ffOOOOff that are not covered by ID3 .

3. Unexpectedly, RSC has higher coverage than ID3 and FRINGE form S 12 . This is reversed, however,
for larger sample sizes. We noticed that RSC works much better than ID3 or FRINGE for concepts
like 80000000 (x 1x 2x 3x 4x 5) and cOOOOOOO (x 1x2x3x 4), but miserably misses very simple concepts
such as ffffOOOO (xi)-

4. The coverage of all the above algorithms is far below [D89]'s upper bound.

5. The simple algorithm BALLS has substantially higher coverage than all of the other algorithms.
However, the set of concepts that are covered by this algorithm are not interesting in a practical sense.
Namely, this algorithm learns all the concepts of weight O to 3, and 29 to 32 for m S 12, and those
of weight O to 4, and 28 to 32 for m = 14 or 16, whereas simple concepts such as ff ff 0000, are not
learned by this algorithm unless almost all the examples are included in the sample. Nevertheless, the
fact that there exists an algorithm with such a high coverage may possibly mean that the algorithms
considered here stand substantial improvements.

6. Careful observation of the patterns shown in the appendix revealed that ID3 and FRINGE work well
on concepts that can be either represented or t:-approximated by intuitively simple decision trees.
However, when we tried to restrict the definition of simplicity using (i) the number of nodes (or,
similarly, the number of leaves) in the tree [FI90], (ii) the rank of the tree [EH88], (iii) the average
depth of the tree, or (iv) the number of distinct features tested in the tree, we found no single measure
of these to be adequate to fully explain the behavior of these two algorithms. We expect that a more
appropriate measure might be some weighted combination of these.

The above remarks motivate two things. First, the plain coverage does not seem suitable as the assessment
figure oflearning algorithms . This is illustrated by the points (1) and (4) above. Instead, one should consider
assigning different weights to the concepts according to some preference measure that reflects a specific bias,
and then take the weighted coverage as the evaluation measure. Alternatively, we might fix some ordering
on the space of concepts and count a concept as covered only if all the preceding concepts are. Such
measures would, of course, reflect how well a learning algorithm implements the underlying bias represented
by the weights or the ordering over the concept space. Second, the overall results reported here indicate
that expanded experiments with larger number of features, combined with formal analysis of the algorithms
wherever possible, are needed to resolve the observed ambiguity in the behavior of these algorithms.

5

l

. l

n

j

1

J

J

6 Conclusion

This paper dealt with reducing the computational cost of the empirical coverage measurement of inductive
learning algorithms that learn Boolean concepts from examples. Two algorithm-independent techniques were
introduced and applied to compare some of the well-known decision-tree building algorithms over the space
of all Boolean concepts defined on five Boolean features. The coverage of the algorithms, and a list of all
the concepts reliably learned by these algorithms in this setting were reported and discussed .

Carrying on such experiments would not be possible without the application of the two techniques we
introduce. Unfortunately, however, analogous experiments with six or more Boolean features are still not
feasible even when these cost reduction techniques are applied. Additional techniques that further help in
cutting the cost of the experiments, are needed. We give here one promising direction.

Given the fact that any learning algorithm can learn only a small fraction of the concept space [D89],
an encouraging approach is to analytically show, for a given algorithm, that a large portion of the space of
concepts is not learned by the algorithm. One then needs to run the algorithm only on representatives of
the potentially FAC learnable concepts, rather than testing for the whole concept space. For example, if it
is known for some given learning parameters that H is the hypothesis space of a particular algorithm, then
we can show that only the concepts in H and those concepts that are c-close to some concept in H, are
possibly learned by the algorithm. All other concepts can not be FAC learned by the algorithm and thus
can be ignored. Clearly, unlike the techniques introduced in this paper, this method is algorithm-dependent.
That is, the success of the method depends on how easy it is to analyze the algorithm in order to restrict H
enough to make the experiments feasible. Also, the value of c must be small for this approach to be useful.
The validity of this and other approaches is currently under investigation .

Finally, an interesting future direction is to conduct the domain-independent comparative study we
followed here on some other learning algorithms, with the possible extension of using noisy data, to test the
robustness of the algorithms against the presence of noise.

References

[AD90]

[D89]

[EH88]

[FI90]

[H65]

[M89]

[PH89]

H. Almuallim, T. G. Dietterich. Coverage of Inductive Learning Algorithms. Workshop on Com­
putational Learning Theory and Natural Learning Systems, Princeton, NJ. Sep 5-6, 1990.

T. G. Dietterich. Limitations on Inductive Learning. In Proceedings of the Sixth International
Conference on Machine Learning (pp. 124-128). Ithaca, NY. San Mateo, CA: Morgan Kaufmann,
1989.

A. Ehrenfeucht and D. Haussler. Learning Decision Trees From Random Examples. Proceedings
of the First Workshop on Computational Learning Theory, 182-194, 1988.

U. Fayyad and K. Irani. What Should Be Minimized in a Decision Tree? Proceedings of the
Eighth National Conference on Artificial Intelligence p. 749-754, 1990.

M. Harrison. Introduction to Switching and Automata Theory. McGraw Hill, 1965.

J. Mingers. An Empirical Comparision of Selection Measures for Desicion-Tree Induction. Ma­
chine Learning, 3 (4), 319-342, 1989.

G. Pagallo and D. Haussler. Boolean Feature Discovery in Empirical Learning. Machine Learning,
5 (1), 71-100, 1990.

[Q86] J . R . Quinlan . Induction of Decision Trees, Machine Learning, 1(1):81-106, 1986.

[RHW86] D.E. Rumelhart, G.E. Hinton and R.J. Williams. Learning Internal Representations by Error
Propagation. In D.E. Rumelhart and J .L. McClelland, (eds.) Parallel Distributed Processing, Vol
1.

6

7

n

I

J

j

J

J

J

Appendix:
The table on the right shows the representative concepts that
were found to be FAC learned by at least one of the algorithms
we tested. The FAC learnability result for any concept f in the
tab le, app lies to all the concepts obtained by permuting and / or
negating the features off . All other concepts are not FAC learned
by any of the algorithms under consideration . A ✓ is used to
indicate that the concept was FAC learned (8 < 0.093), while
a x means that the concept was not FAC learn ed (8 > 0.107) .
Concepts at the border (0.093 ~ 8 ~ 0.107) for which no confident
decision is made (and, thus, fall in the range between th e upp er
and lower estimates of coverage) are marked by a !:::,.. In the tab le,
only the representative concepts of weight 0 to 16 are listed. For
1D3, MST and SRC, the results of th ese determine the results
for concept classes of weight 17 to 32, since these algori thms
are symmetric with respect to complementation of concepts. For
FRINGE, however, for each representative concept f of weight
0 to 15, the result of f is given explicitly in the table. "size"
indicates the number of concepts in the equivalence class. Th e
decision tree representation of each concept is given below.

1 1 1

I\ ;0 ix + -

+ - + - - +

ffff0000 ff000000 ff0000ff

fffe0000 ff800000 fe000000

+ -
fff80000 fffc0000 ffc00000

I' :l'
+ - ~ -

+- - +
+- - +

c0000000 90000000 81000000

f 1\2 __
2

3

4 _ _ 4

4 5 5

+ + -- -_ +
+ -
e0000000 80000001

1

I
+ -
80000000

ff000080

+ -
ff0000fe

2

+- - +

80010000

7

id3 fringe rndt rsc

f m J,! f l t,l t ,l
0 8

~ ✓ v v
10 ✓ ✓ ✓ ✓

size: 12 ✓ ✓ ✓ ✓ ✓
1 14 ✓ ✓ ✓ ✓ ✓

16 ✓ ✓ ✓ ✓ ✓
ffffOOOO 8 ✓ v ~

X
10 ✓ ✓ X

size: 12 ✓ ✓ ✓ X

10 14 ✓ ✓ ✓ X
16 ✓ ✓ ✓ X

ffOOOOOO 8 X X X X X
10 X X X X X

size : 12 X X X D. X
40 14 ✓ ✓ ✓ ✓ X

16 ✓ ✓ ✓ ✓ X

ffOOOOff 8 X X X X
10 X X X X

size : 12 X X X X

20 14 X X ✓ X
16 X D. ✓ X

80000000 8 X X X X

~ 10 X X X X
size : 12 ✓ ✓ ✓ ✓ ✓
32 14 ✓ ✓ ✓ ✓ ✓

16 ✓ ✓ ✓ ✓ ✓
fffeOOOO 8 X X X X X

10 ✓ ✓ .j X X

size: 12 ✓ ✓ ✓ X X

160 14 ✓ ✓ ✓ ✓ X

16 ✓ ✓ ✓ ✓ X

ff800000 8 X X X X X

10 X X X X X

size: 12 X X X X X

640 14 ✓ ✓ ✓ X X

16 ✓ ✓ ✓ ✓ X

feOOOOOO 8 X X X X X

10 X X X X X

size: 12 X X X X X

320 14 X X X X X

16 ✓ ✓ ✓ ✓ X

ff000080 8 X X X X X

10 X X X X X

size: 12 X X X X X

32 0 14 X X X X X

16 D. D. X ✓ X

fff80000 8 X X X X X

10 X X X X X

size: 12 X X X X X

960 14 X X X X X

16 ✓ ✓ ✓ X X

fffcOOOO 8 X X X X X

10 X X X X X

size: 12 X X X X X

320 14 X X X X X

16 D. D. D. X X

ffcOOOOO 8 X X X X X

10 X X X X X

size: 12 X X X X X

960 14 X X X X X

16 X X D. X X

ffOOOOfe 8 X X X X X
10 X X X X X

size: 12 X X X X X

320 14 . X X X X X

16 X X X ✓ X

cOOOOOOO 8 X X X X X
10 X X X X X

size: 12 X X X X ✓
80 14 X X X X ✓

16 X X X X ,I
90000000 8 X X X X X

10 X X X X X

size: 12 X X X X X

160 14 X X X X X

16 X X X X ✓
8 1000000 8 X X X X X

10 X X X X X

size : 12 X X X X X

160 14 X X X X X

16 X X X X ✓
80010000 8 X X X X X

10 X X X X X

s ize: 12 X X X X X

80 14 X X X X X

16 X X X X ✓
eOOOOOOO 8 X X X X X

10 X X X X X

s ize : 12 X X X X X

320 14 X X X X X

16 X X X X ✓
80000001 8 X X X X X

10 X X X X X
size: 12 X X X X X
16 14 X X X X X

16 X X X X ✓

	Almuallim_Hussein_91_30_09_A
	Almuallim_Hussein_91_30_09_B

