
Technical Report# CS07-60-03 Oregon State University March 27, 2007

Explaining Debugging Strategies to End-User Programmers

Neeraja Subrahmaniyan, Cory Kissinger, Kyle Rector,
Derek Inman, Jared Kaplan, Laura Beckwith, and Margaret Burnett

Oregon State University
{subrahmn, ckissin, rectorky, inmand, kaplanja, beckwith, burnett}@eecs.oregonstate.edu

Abstract
There has been little research into how end-user

programming environments can provide explanations
that could fill a critical information gap for end-user
debuggers – help with debugging strategy. To address
this need, we designed and prototyped a video-based
approach for explaining debugging strategy, and ac-
companied it with a text-only approach. We then con-
ducted a qualitative empirical study with end-user de-
buggers. The results reveal the influences of the expla-
nations on end-user debuggers’ decision making, how
users reacted to the video versus textual media, and
the information gaps the explanations closed. The re-
sults also reveal issues of particular importance to
explanations of this type.

1. Introduction
Debugging is hard. Not only must programmers un-

derstand the program well enough to localize an erro-
neous piece of source code, they must also replace it
with new source code that is error free and introduces
no undesirable side effects. The complexity in debug-
ging becomes even more challenging when the pro-
grammers doing the debugging have little experience,
as is the case for many end-user programmers.

To help ameliorate the difficulty of debugging by
end-user programmers, there are several recent re-
search efforts in which the system carries out part of a
debugging strategy. For example, some end-user de-
bugging tools, such as WYSIWYT with fault localiza-
tion for spreadsheets [7], the GoalDebug tool for
spreadsheets [1], the WhyLine for event-oriented Alice
programs and for debugging application settings [14,
17], and Woodstein for debugging web applications
[20] are based on the program slicing strategy. How-
ever, none of these tools can debug entirely unaided,
because tools cannot be sure of the right way to fix
errors they find. Thus, in all of these approaches, user
problem-solving is a necessary part of the process.

Since most end-user programmers are not trained in
debugging, how to proceed with this problem-solving
process is sometimes very unclear to them. Evidence
that this is the case was demonstrated in a recent study

we performed [13]. In that study, we analyzed the
kinds of “information gaps”—explicit statements of an
absence of information—expressed by end-user pro-
grammers when working on spreadsheet debugging
tasks. Fully 30% of the information gaps expressed by
the participants were about what strategy they should
be using. For example, see Figure 1. In addition, an-
other 9% of the information gaps were self-judgment
questions, in which the participants questioned their
own abilities to do the necessary problem-solving (e.g.,
“I’m not sure if we’re qualified to do this problem”).

Thus, almost 40% of the participants’ information
gaps related to how to problem-solve—even given
tools that performed some of the problem-solving for
them. Because of this evidence, we decided to investi-
gate how to explain debugging strategy (as opposed to
explaining features) to end-user programmers.

A strategy is a reasoned plan or method for achiev-
ing a specific goal—in this case, successful problem-
solving about debugging. Teaching debugging strategy
to end users who are in the process of debugging is
especially challenging because the audience includes
“active users” [9]. Active users are engaged in their
task—in this case, debugging. As minimalist learning
theory’s paradox of the active user [9] points out,
learning is somewhat counter to the goal of completing
the task, because it takes away time from the task.
Blackwell’s model of attention investment [6] echoes
this aspect, showing how users weigh the attention cost
of learning something new against the risk that the
learning effort will not cause time savings.

Given these issues, we began our investigations by
turning to theories and to previous empirical data.
Building upon these and other design constraints, we
developed a prototype with two variants of debugging

F. Let’s change everything. [tries changing formula]
E. Yeah, but we got the right answer.
F. Did that change the answer at all?
F. Oh wait, did I change the symbol? [changes the formula]
F. Oh, now we’re down to 30 percent tested.
F. I wonder if I go like that [changes the formula back]...

Figure 1: Participants E and F discuss the debugging
strategy of “changing everything”.

 1

strategy explanations—video demonstrations and tex-
tual explanations—within a research spreadsheet envi-
ronment. In this paper, we present our approach, along
with its theoretical and empirical underpinnings. We
then present the results of a think-aloud study. The
overall research question this paper investigates is:

How can an end-user programming environment
explain debugging strategy “just in time” to active
end-user debuggers?

2. Related work
There is a large body of literature on on-line tutor-

ing. Some of this work (e.g., [2]) provided us with
insights for designing help in general. However, this
body of work is aimed at audiences whose purpose is
to learn per se. In contrast to this, our work is aimed at
audiences whose purpose is to get something done,
from which learning can be a distraction.

Turning to teaching strategy for complex computer
applications, [8] emphasizes the need to infuse teach-
ing of generalized strategies along with command
knowledge, in order to increase the users’ effectiveness
with complex computer applications. However, the
focus of that work is on optimal procedures, not strate-
gies for deeper problem solving. Moreover their ap-
proach is proposed as a teaching style for teachers in
schools, universities and companies whose focus is on
teaching, not just-in-time instruction for active users
engaged in a task.

The Whyline [14] debugging system aims at active
users engaged in debugging. It answers “why” and
“why didn’t” questions about the system’s state. In a
later extension [17], this concept was applied to de-
bugging about the behavior of complex commercial
applications such as Word. In addition to answering
“Why” and “Why didn’t” questions, the system in-
cluded a “How do I” link to change the behavior. The
answer (usually changing particular preference set-
tings) is not a strategy, but rather a fixed sequence of
steps that stop the particular undesirable behavior.
There has also been research on how to effectively
enforce known sets of procedural instructions. For
example, Stencils [12] is an interaction technique to
direct users’ attention to the correct interface compo-
nent, preventing them from interacting with other
components, thus requiring users to correctly follow
the proper procedure. However, since debugging
strategies cannot be constrained to a fixed set of inter-
actions in the interface, this work does not fulfill our
goals.

In the entertainment industry, games such as Crim-
son Skies and Jedi Knight: Jedi Academy include
hands-on tutorials and demonstrations of features and
strategies. In some, strategy hints are even offered dur-
ing the game. The constraints for game strategy expla-

nations differ from those for debugging strategy in
several ways. The most important is the fact that the
game is omniscient, having complete information
about where dangers lurk and how to avoid them,
whereas in debugging, a system cannot know with
certainty where bugs are or how to fix them, and there-
fore cannot provide guidance based on such knowl-
edge.

3. Explaining strategy and supporting self-
judgment

As we have pointed out, our goal for explaining de-
bugging strategy was to address the 30% of the infor-
mation gaps from our previous study [13] that were
about debugging strategy. We also included the self-
judgment information gaps in our target (an additional
9% of the prior study’s information gaps). These self-
judgments are instances of metacognition, reflection
about one’s own knowledge state. Because of the im-
portance of metacognition to learning and problem
solving [11], we view it as critical to learning about
and succeeding with strategies for debugging.

We emphasize that the goal of this research was to
help end-user programmers with their debugging
strategies. We were not interested in using these ex-
planations to explain features. To support features per
se, other explanations (described elsewhere [21]) al-
ready exist in our prototype, delivered in the form of
tool tips. The tool tips provide support about how the
features work and what their visual feedback portrays,
and also offer an entry point to strategy explanations,
but are not otherwise of interest in this paper.

3.1 Video demonstrations or static text?

What is the right medium for explaining strategies?
We considered both recorded video demonstrations
(“show me”) and static textual explanations (“tell
me”). The strengths of recordings, reported in [3, 18],
seemed likely to provide at least three advantages over
textual explanations: (1) videos can demonstrate pro-
cedure, (2) videos can potentially induce vicarious
learning experiences, (3) the representations in videos
actually look like the activities the users are doing (a
closeness of mapping advantage). We were therefore
convinced that video demonstrations would be indis-
pensable. But owing to distinct advantages of text,
such as ability to subdivide into smaller segments, al-
lowing the user to immediately navigate to an aspect of
interest, we included textual versions of the strategy
explanations as well, so that users could mix them
however they preferred.

3.2 Design constraints: “Show Me” strategies

The strategy information gaps of our previous

 2

study’s participants [13], end-user programmers de-
bugging spreadsheets, fell into six categories: (1) how
to find errors, (2) how to fix errors, (3) how can I test
my spreadsheet, (4) why should I change values, (5)
what is a good overall strategy, and (6) am I doing it
right. This list served as our requirements list for con-
tent coverage (i.e., what to cover).

As to how to cover this list, we turned to Plaisant
and Shneiderman’s guidelines on preparing recorded
demonstrations [18], which led to the constraint set in
Table 1. Due to the length constraint (Table 1), we
divided the above content into 6 video snippets. In
some cases though, we still could not meet the length
constraint—our videos range from 1-2.5 minutes.

Since these guidelines are predominately geared
towards the syntax, form, and structure of recorded
demonstrationns—not their content, we added con-
straints on semantic content, based on data from our
earlier study and on relevant theories (Table 2). Many
of these constraints are specific to presenting strategy

to end-users debugging. The complete collection of
demonstrations can be viewed at:
www.cs.orst.edu/~burnett/Forms3/RecordedDemos/

Each video snippet features two people, a male and
a female (Figure 2) problem solving and discussing a
strategy (e.g., how to find errors) on a sample spread-
sheet. The actions they take and the effects on the
spreadsheet are visible in the video. A male/female
pair of demonstrators was chosen to encourage both
males and females to identify with the demonstrators,
potentially leading to vicarious experiences and boost-
ing self-efficacy [4]. Because of the especially pro-
nounced effects of self-efficacy on female end-user
programmers [5], we particularly wanted to boost fe-
males’ self-efficacy. Thus, the female sometimes takes
on the role of a puzzled user who then follows up on a
strategy hint, which ultimately leads to her success.

3.3 Design constraints: “Tell Me” strategies

We maintained most of the constraints above for the
textual version of the strategy explanations, by con-
verting each video snippet to a set of textual questions
and answers, organizing them such that each snippet
became a “category” of text. Each question answered
by the video snippet was included in its corresponding
textual category. An example is in Figure 3. We main-
tained exactly the same wording, with the exception of
no example spreadsheet to which the text could refer
and no demonstrators. Thus the design constraints re-
lating to examples and to vicarious learning experi-
ences could not be met by the textual explanations.

The text was in a resizable panel attached to the
right of the spreadsheet. The user could select a topic
and press either “Show me” or “Tell me”. The panel
was labeled “Strategy Hints” rather than “help,” aim-

Constraint Type
Provide procedural instruction rather than con-
ceptual information

Semantic
Content

Keep segments short (15 to 60 seconds) Structure
Ensure that tasks are clear and simple Semantic

Content
Coordinate demonstrations with textual docu-
mentation

Syntax

Use spoken narration Form
Be faithful to the actual user interface Form
Use highlighting to guide attention Form
Ensure user control Structure
Keep file sizes small Structure
Strive for universal usability Form

Table 1: Guidelines for producing recorded
demonstrations [18].

Table 2: Design constraints specific to strategy explanations for end users debugging.
Constraint Type Source / Rational
Present information in a concrete to
general sequence

Semantic
Content

Begin by showing a concrete “how to” example. The generalization then
recounts the essence of the strategy, allowing application of the strategy
to other cases.

Include head shot of person perform-
ing actions

Form To give the user someone to relate to, presenting the opportunity for a
vicarious experience aimed at improving the user’s self-efficacy [4] and
hence self-judgment capabilities.

Interpret feedback Semantic
Content

To avert problems in the accuracy of the users’ self-judgments [13]. (Re-
lates also to Norman’s “Gulf of Evaluation”.)

Mention oracle problem and what to
do if values are hard to decide

Semantic
Content

Empirical evidence shows that end users struggle with this issue when
debugging (e.g. [13]).

Make benefits clear Semantic
Content

According to the model of Attention Investment [6], this will have a sig-
nificant impact on follow-up actions the user will take.

Keep active user in mind Semantic
Content

Our explanations are intended to help “active users” finish debugging a
spreadsheet now, not users whose primary goal is to learn about debug-
ging [9].

Use informal terminology Syntax Intimidating vocabulary about debugging and program faults could inter-
fere with the user relating to the demonstrators.

Verbalize the reasoning of the speaker Semantic
Content

To keep user apprised of the reasoning portion of the strategy (not just
the UI actions), the demonstrator should think out loud.

 3

ing to be acceptable even to those who do not like to
admit to needing help.

3.4 Layering and navigation

We used the layering notions from minimalist learn-
ing [10], which suggest that information be revealed in
“layers” that build upon previous information. We thus
linked each video strategy explanation from tool tips
for features playing a role in that strategy. For exam-
ple, the Make Testing Progress video snippet was
linked from the tool tips for arrows, the checkmark and
the testing progress bar, which play roles in making
testing progress. The text version had hyperlinks
within each topic, enabling the user to navigate to fur-
ther topics for deeper understanding.

According to the attention investment model [6],
keeping users’ perceived costs low increases their
probability of using a feature. To keep perceived costs
of learning to use and then using the explanations low,
we used standard navigation devices for the videos and
text. For example, the videos were played using Win-
dows Media Player in a browser, so they could be
paused/stopped/fast forwarded in standard ways. The

snippets and text were short, and we displayed the time
used by each video, to help users assess time costs.

4. Experiment
We made both of the above forms of strategy ex-

planations, as well as the tool-tips, available to the
participants at all times during their task. We used this
set-up to investigate the following questions:
RQ1: Were the strategy explanations successful in

closing the strategy and self-judgment information
gaps?

RQ2: In what ways did strategy explanations influence
the participants’ debugging strategy choices? Figure 2: A video explanation.

 RQ3: What attitudes did participants display about the
video and textual explanations, and which did the
participants prefer?

RQ4: What information processing styles did
participants exhibit with the strategy
explanations?

RQ5: What layering led to perusal of the strategy ex-
planations?

4.1 Participants and procedure

Strategy is a reasoned plan that exists only in the
participant’s head. Since we wanted to collect strategy
data, we needed participant verbalizations, and hence
used the think-aloud method. Each participant was
audio and video taped. There were 10 participants: 7
males and 3 females. The participants were under-
graduates from a variety of majors, excluding com-
puter science. They were required to have prior experi-
ence using spreadsheets, but could not have much pro-
gramming coursework or experience.

Figure 3: Textual strategy explanations.

The participants took a 25-minute, hands-on tuto-
rial, during which they debugged a sample spread-
sheet. The tutorial was careful not to disclose either
strategy or feature-oriented explanations. Participants
were asked to click on both “Show me” and “Tell me”,
to get an idea of what such explanations contained.
However they were allowed to view only a very small
portion of the explanations, as we did not want to give
away the strategy hints too early.

The main task was debugging Payroll, which con-
tained 5 faults. The time limit was 50 minutes. After
20-minutes, they were briefly interrupted and asked to
learn about any strategy hint of their choice (through
the videos or text). This was because our pilot studies
suggested that some participants might not use any
strategy explanations, which would have prevented
collecting the data necessary for our research ques-
tions. At the end of the task, a post-session question-
naire gathered participants’ opinions of the video and
textual explanations.

 4

4.2 Environment

The spreadsheet environment for debugging was
Forms/3, including a subset of WYSIWYT (What You
See Is What You Test) [7]. WYSIWYT is a collection
of testing and debugging features that allow users to
incrementally “check off” or “X out” values that are
correct or incorrect, respectively. In WYSIWYT, when
users check off a correct value, the cell and others con-
tributing to it may become more tested, which is re-
flected by their border colors (Figure 4). Xing out an
incorrect value triggers fault likelihood calculations,
which highlight cells likely to contain faulty formulas.
In addition, arrows show dataflow relationships be-
tween cells and are colored to reflect testedness.

5. Methodology for analysis
Our methodology for analysis was largely based on

codes. We devised our coding scheme, tested its stabil-
ity on a portion of the data, and then applied the veri-
fied codes to the entire data set. We used three code
sets to record the three types of data of interest to us:
information gaps encountered, strategies used, and
participants’ reactions.

The information gap code set was reused from our
previous study [13]. The ones of interest to this study
are (1) strategy information gaps (expressing a need
for strategy information), (2) self-judgment informa-
tion gaps (expressing a negative opinion or lack of
information about their own abilities), and (3) ora-
cle/specification information gaps (difficulty deciding
if a formula or value is right). The strategy code set
was drawn from another study of ours, in which par-
ticipants described their own strategies after debugging
a spreadsheet task. The only codes of interest to this
study are (1) testing (working with values displayed to
find errors) and (2) code inspection (reading the for-
mulas to find errors). Finally, we coded participants’
reactions. We devised a simple code set to flag mo-
ments when the participants were noticeably frustrated,
engaged or disengaged, clearly comprehending, or

expressing confidence about their own abilities. Two
of the researchers independently applied these codes to
random segments of the transcripts. After a few test
runs, agreement ranged from 89% to 96%, indicating
that the codes were robust. At that point, one of the
researchers completed the coding of the transcripts.

Figure 4: The environment.

6. Results
6.1 Information gaps: what got closed?

We began by considering every instance in which a
new information gap was opened. We then tracked
each gap to see if the participant showed either ver-
bally or through their actions that the particular gap
had been resolved. For example, the following state-
ment by participant F2 showed an information gap:
“It’s still purple. What am I missing?” (Purple told her
that part of the cell’s formula still had not been tested.)
Later F2 closed this information gap:
Let’s turn on the thing [arrows on]…there we go. So I
haven't tested [tool tips appears]. The relationship between
G13 and H13 is 0% tested. Oh!!

There were 130 gaps opened in total. Of interest to
this study were the 30% about self-judgment, the 25%
about oracle/specifications, and the 7% about strategy.
(The latter low number may be due to early viewing of
the explanations.) Of the gaps opened, 49% of the self-
judgment gaps, 75% of the oracle/specification gaps,
and 56% of strategy gaps were closed.

The high rate of closing oracle/specification gaps
surprised us. It may be due in part to the explanations’
influences on the participants’ debugging activities,
which we discuss in the next section.

The number of information gaps opened and closed
in each 10-minute interval (Figure 5) shows interesting
patterns. According to curiosity theory [15], two types
of advances in knowledge can trigger curiosity: incre-
mental and insights. Incremental knowledge closes a
gap or two, but does not lead immediately to a solu-
tion. Still, each increment in knowledge can produce
more curiosity, raising new questions (gaps). This
phenomenon, plus closing out initial easy gaps early
on, matches the pattern until the third interval.

But what happened in the third and fourth intervals?
Solving most challenging problems starts off incre-

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y

Aha!

Figure 5: Gaps opened (light) and closed (dark) over

time.

 5

mentally [15], but eventually, a flash of insight can
occur, resolving a number of gaps. The fourth interval
seems to contain such insights, showing a spike in gaps
closed (“Aha”!). According to the theory, when an
insight is just around the corner is when curiosity rap-
idly increases [15], leading to a surge in gaps opened,
as in intervals three and four.

6.2 Influences on debugging strategy choices
6.2.1 Direct influence on strategy choices

Because of the participants’ freedom of choice, ex-
tensively analyzing direct influences was not possible.
However, we were able to compare the effects in one
situation that featured relatively uniform exposure:
how choosing to read/view a strategy explanation dur-
ing the tutorial impacted participants’ strategy during
the first 10 minutes of the task. Participants were free
to access any feature, including explanations, during
the last 2 minutes of the tutorial. The 3 participants
who accessed explanations during that time chose the
explanation on testing. We compared their strategies
with the strategies of those who had not.

Figure 6 shows the frequency of code inspection
and testing strategies for each participant. The circled
participants accessed the explanation on testing, and
they are the only three whose strategies rested heavily
on testing. Even with this small sample size, Fisher’s
Exact test showed that the testing-explanation viewing
participants were significantly heavier users of testing
strategies than the other participants (p=0.0083).

6.2.2 Three categories of influences

Participants’ gains and losses from strategy expla-
nations fell into three categories: critical gains to suc-
cess, partial gains, and misinterpretations.

 In the first category, for two participants (males),
strategy explanations played a particularly critical role
in their success. Both started out debugging in a me-
thodical fashion, but soon needed help to refine their
strategies or to overcome specific information gaps.
For example, participant M3 was confused about how

border colors related to testedness.
[cell turns from purple to blue] Interesting. I guess may be
the blue means that I’ve checked so it’s, I don’t know, versus
purple, versus red. I’m not sure.

After reading the explanation on testing, he was
able to close this information gap and using the infor-
mation to ultimately fix all remaining bugs.
 So of the cells that I’ve done, there are a few that are
untested and a few that are tested, or need testing.

More than 50% of these two participants’ informa-
tion gaps were closed. In fact, 100% of M3’s gaps
were closed. Still, neither of these males chose expla-
nations voluntarily—they read the explanations only
when they were required to pick one at the 20-minute
point. It remains an open question as to how to moti-
vate users to use explanations when needed. Also, not
all users need any help, as was true of another partici-
pant (M6, who solved all the bugs without use of hints
from the explanations). One key may lie in understand-
ing how to make the benefits clear [19] to motivate
users to turn to explanations when needed.

In the second category (four participants), the ex-
planations helped, but perhaps not enough. For exam-
ple, participant M2 watched/read many of the explana-
tions, but was usually impatient, thus taking only a
little knowledge from an explanation. They did seem to
help him find bugs, but increasing complexity of the
bugs still to fix led to more and more difficulty and
sinking confidence.
The Monthly Adjusted Gross Pay is not correct [found a
bug?]. Can't be sure of that. Ok, I get it—no, I don’t. To be
honest, I have never done anything to do with taxes.

Participant M2’s impatience may have been due at
least in part to a mismatch of the explanations to his
information processing style. We will return to this
point in Section 6.4.

In the third category, there were three participants
for whom the strategy explanations helped at first, but
at some point they misinterpreted an explanation. This
led to a series of unfortunate events from which they
could not recover, even with further visits to the ex-
planations. For example, F3’s strategy involved a lot of
testing (encouraged by the video). But she became so
involved in testing, she neglected the task of fixing
bugs. She found bugs, but “fixed” them by hard coding
the formulas so that they would produce the value she
was looking for, so that she could continue testing.

0
1
2
3
4
5
6
7
8
9

1 2 3 4 5 6 7 8 9 10

Fr
eq

ue
nc

y

There is something I’m missing [changes LifeAmount to
10000] I think its 248. [changes cell reference to 248] times
.08 [changes .01 in ‘else’ to .08] [changes .08 to .075].That’s
too high, so .079, .078... [changes to .0785, then .0784]...

This category suggests a need to steer misled people
back on track, even when they do not realize they are
off the track. For example, F3 never realized some-
thing was wrong. A challenge remains as to how to
recognize debugging strategy misconceptions and di-Figure 6: Influence of the testing strategy explanation.

 Code inspection: dark. Testing: light.

 6

rect users to a more effective strategy.

6.3 Video vs. text
6.3.1 Preferences

In rating their preferences on the post-session ques-
tionnaire, one participant strongly preferred video over
text, and two participants strongly preferred text over
video. Of the remaining participants, one preferred the
two equally, and the rest had a mix of reactions, but
most preferred text a little more than video.

We expected the videos to have a clarity advantage,
and participants confirmed this. The most common
positive comment was “They were clear to follow.” In
contrast, the most common positive comment about the
text pertained to time cost of getting information:
“Useful as a quick reference.” The most frequent nega-
tive comment for both the videos and text was also
about time, namely that they were time-consuming.

Discussion: The time-oriented comments under-
score the participants’ task-oriented attitudes, minimiz-
ing time learning in favor of doing [9], and also point
to the cost/benefit tradeoffs of the attention investment
model [6]. Note also that it is not possible to draw con-
clusions about preferences for visual media from this
result. The videos were not just visual—they were dif-
ferent in many ways from textual explanations, using
concrete examples, a mix of animated and static visual
material, and audio (the spoken part).

6.3.2 Using videos vs. text: approach, follow-up

We analyzed video vs. text usage for two situations:
approaching a topic for the first time, and following up
on the same topic later. Surprisingly, the first-time
approach to a topic was almost always done via text. In
fact, 5 of the 10 participants used only textual explana-
tions for first-time approaches. Four used both media
for this, and one participant used only videos for first-
time approaches. The participant counts were consis-
tent with the instance counts: by any measure, for first-
time approaches, the most popular medium was text.

For follow-up visits to a topic, the mix was differ-
ent. The likelihood of follow-up being done via video
versus text was almost identical. Of the five partici-
pants who followed up, one used videos for this pur-
pose, and the rest used a mix of video and text.

There were multiple reasons for following up with
an explanation. At one end of the spectrum was the
need for a quick reference to a particular aspect. At the
other end of the spectrum was a need for clarification
via a detailed example, which could only be done us-
ing the video. For example, one of the female partici-
pants went back to the testing video to understand how
to find different test situations.

So how do I find the different situations? [Clicks on “show
me”] Oh right, the arrow connects is a good one. Forgot
about that.

These results make clear that the mix of text and
video was very important to our participants.

6.3.3 Video vs. text: success and self-efficacy

Videos seemed to be particularly helpful to partici-
pants whose debugging performance was less than
stellar (i.e., those who fixed fewer bugs than the me-
dian). The videos were marked as being helpful by all
5 of these “unsuccessful” participants, plus 1 of the
successful participants. The text, on the other hand,
was marked by all 5 of the successful participants but
not as uniformly by the unsuccessful participants: 3 of
the 5 unsuccessful participants marked it. Clearly, the
successful participants derived less benefit from the
videos, and hence did not need to bear the additional
time cost, whereas for the unsuccessful participants,
the opposite was the case.

Recall that one of the goals of the video was in-
tended to be a vicarious boost of self-efficacy. A pre-
vious study has indicated that this may be particularly
needed by females [5]. In fact, 2 of the 3 female par-
ticipants (the third female did not use the videos)
agreed with the questionnaire’s query as to whether the
videos “made me feel more confident”. Interestingly,
none of the 7 males marked this comment.

6.4 Information processing styles

How did participants process the explanations they
accessed? Information selectivity theory provides some
insights. Consider male M4, who brought up a video
near the beginning of the task and watched some of it,
but closed the video as soon as he learned something
he could try (using checkmarks when a cell’s values
are correct and X-marks when they are wrong). His
choice to return to the task without watching more of
the video is consistent with “heuristic processing” [16],
or following up one cue before looking for other cues.
(This style is statistically associated with males.)

On the other hand, female F2 decided to re-watch a
video she had watched in the tutorial. She navigated to
the part of the video that discussed strategy when a cell
turns purple. (She had purple cells in her spreadsheet
at that point.) As soon as she re-watched this part, her
face lit up, and she exclaimed “Oh!” Despite having
gotten this relevant information, she did not stop the
video; she continued to watch till the end. This style of
comprehensively gleaning all possible information
before moving onto apply it, is consistent with the
“comprehensive” style of information processing [16].
(This style is statistically associated with females.)

Discussion: Gender differences aside, these two
styles of information processing suggest the need for

 7

supporting both “modes” of viewing the explanations.
For heuristic- (cue-following) style users, direct access
to small snippets of information may be ideal. Our
study may have served these users reasonably well
with text but, since the videos were sometimes over
two minutes long, the video snippets were probably
better suited to comprehensive-style users.

6.5 Layering strategy explanations

Did layering matter? Recall that we supported both
direct access to the strategy explanations (through the
panel), and through “layers” [10] of additional infor-
mation via the “Show me” button inside the tool tips
and the hyperlinks among the textual explanations.

A count of the accesses to the strategy explanations
shows that, for videos, participants used direct and
layered accesses about equally. This suggests that pro-
viding layered access to make this medium accessible
is quite important. It further suggests that adding strat-
egy hooks to feature-centric help (e.g., the “Show Me”
button in the tool tips) is an effective way to attract
active users’ interest to strategy explanations. How-
ever, in contrast to video access through layering, par-
ticipants hardly used layering at all through the hyper-
links for the textual explanations.

Discussion: Hyperlinks among the textual strategy
explanations are layering in the sense that they offer
new information to supplement existing information;
still, the “distance” between layers is small in that both
layers pertain to strategy. This is different from the
tool tips/video connection, in which the tool tips were
feature-oriented, and the offer (“Show me” button) was
to provide information of a different type, namely
strategy. Thus, the increment in information content
promised may have seemed larger in the tool tip/video
case, which can increase curiosity [15].

Another factor may have been the usefulness of the
information just read. If a tool tip about a feature was
not useful alone, the participants may have felt the
need to find out about strategy. In the hyperlink case,
having just gotten a strategy hint, these active users [9]
may have felt more inclined to try it out on the task at
hand than to read more strategy hints.

These results suggest that feature-to-strategy infor-
mation layering is quite effective, but it is not clear if
strategy-to-strategy information layering is effective.

7. Conclusion
In this paper, we have presented an approach, de-

rived from theory and prior empirical results, to ex-
plaining debugging strategies to end-user program-
mers, and evaluated it. Some of our results were:

Positive influences: There was a statistically signifi-
cant effect on participants’ strategy choices. Females
were also particularly responsive to the confidence-

boosting goal. Regarding information gaps, 56%, 49%,
and 75% of the strategy, self-judgment, and ora-
cle/specification gaps, respectively, were closed.

Issues: The explanations were not a panacea. Issues
included participant misinterpretations of the explana-
tions and lack of motivation or interest in them.

Presentation: Pronounced differences in partici-
pants’ use of different media (video versus textual) and
information processing style (heuristic versus compre-
hensive) demonstrated the critical importance of sup-
porting a mix of presentation choices.

We emphasize that the above relate to cost-benefit-
risk decisions users make, as Blackwell’s model of
attention investment predicts and our participants bore
out. In fact, the participants’ explicit focus on time
costs particularly underscore the importance of consid-
ering attention investment and the “active user” audi-
ence in designing approaches to explain debugging
strategies to end-user programmers.

References
[1] Abraham, R. and Erwig, M. Goal-directed debugging of

spreadsheets, IEEE Symp. Visual Langs. Human-Centric
Comp., 2005, 37-44.

[2] Anthony, L., Corbett, A. Wagner, A., Stevens, S., Koed-
inger, K. Student question-asking patterns in an intelli-
gent algebra tutor, Conf. Intell. Tutoring Sys., 2004, 455-
467.

[3] Baecker, R. Showing instead of telling, SIGDOC, 2002.
[4] Bandura, A. Self efficacy: Toward a unifying theory of

behavioral change. Psych. Review 84(2), 1977, 191-215.
[5] Beckwith, L. Burnett, M., Wiedenbeck, S., Cook, C.,

Sorte, S., Hastings, M. Effectiveness of end-user debug-
ging software features: Are there gender issues? ACM
Conf. Human Factors Comp. Sys., 2005, 869-878.

[6] Blackwell, A. First steps in programming: A rationale for
attention investment models, IEEE Symp. Human-Centric
Comp. Langs. Envs., 2002, 2-10.

[7] Burnett, M., Cook, C., Rothermel, G. End-user software
engineering, Comm. ACM, Sept. 2004, 53-58.

[8] Bhavnani, K. S., Reif, F., John, B. Beyond command
knowledge: Identifying and teaching strategic knowledge
for using complex computer applications, ACM Conf.
Human Factors Comp. Sys., 2001, 229-236.

[9] Carroll, J. and Rosson, M. Paradox of the active user, In
Interfacing Thought: Cognitive Aspects of Human-
Computer Interaction, J. Carroll (Ed.), MIT Press, 1987.

[10] Farkas, D. Layering as a safety net for minimalist docu-
mentation, In Carroll, J. (Ed.), Minimalism Beyond the
Nurnberg Funnel, MIT Press, 1998, 247-274.

[11] Forrest-Pressly, D., MacKinnon, G., Waller, T. Meta-
cognition, Cognition, and Human Performance, Aca-
demic Press, 1985.

[12] Kelleher, C. and Pausch, R. Stencils-based tutorials:
Design and evaluation, ACM Conf. Human Factors
Comp. Sys., 2005, 541-550.

[13] Kissinger, C., Burnett, M., Stumpf, S., Subrahmaniyan,
N., Beckwith, L., Yang, S., Rosson, M. Supporting end
user debugging: what do users want to know? Advanced

 8

Visual Interfaces, ACM Press, 2006, 135-142.
[14] Ko, A., Myers, B. Designing the Whyline: A debugging

interface for asking questions about program behavior,
ACM Conf. Human Factors Comp. Sys., 2004, 151-158.

[15] Lowenstein, G. The psychology of curiosity, Psycho-
logical Bulletin, 116, 1, 1994, 75-98.

[16] Meyers-Levy, J. Gender differences in information
processing: A selectivity interpretation. In Cognitive and
Affective Responses to Advertising (Eds, Cafferata, P. and
Tybout, A.) Lexington Books, Lexington, MA, 219-260.

[17] Myers, B., Weitzman, D., Ko, A., Chau. H. Answering
why and why not questions in user interfaces, ACM Conf.
Human Factors Comp. Sys., 2006, 397-406.

[18] Plaisant, C. and Shneiderman, B. Show me! Guidelines

for producing recorded demonstrations, IEEE Symp. Vis-
ual Langs. Human-Centric Comp., 2005, 171-178.

[19] Venkatesh, V. and Morris, M. Why don’t men ever stop
to ask for directions? Gender, social influence, and their
role in technology acceptance and usage behavior, MIS
Quarterly, 24(1), 2000, 115-139.

[20] Wagner, E. and Lieberman, H. Supporting user hy-
potheses in problem diagnosis on the web and elsewhere,
ACM Int. Conf. Intell. User Interfaces, 2004, 30-37.

[21] Wilson, A., Burnett, M., Beckwith, L., Granatir, O.,
Casburn, L., Cook, C., Durham, M., Rothermel, G. Har-
nessing curiosity to increase correctness in end-user pro-
gramming, ACM Conf. Human Factors Comp. Sys., 2003.

 9

	1. Introduction
	2. Related work
	3. Explaining strategy and supporting self-judgment
	3.1 Video demonstrations or static text?
	3.2 Design constraints: “Show Me” strategies
	3.3 Design constraints: “Tell Me” strategies
	3.4 Layering and navigation
	4. Experiment
	4.1 Participants and procedure
	4.2 Environment

	5. Methodology for analysis
	6. Results
	6.1 Information gaps: what got closed?
	6.2 Influences on debugging strategy choices
	6.2.1 Direct influence on strategy choices
	6.2.2 Three categories of influences

	6.3 Video vs. text
	6.3.1 Preferences
	6.3.2 Using videos vs. text: approach, follow-up
	6.3.3 Video vs. text: success and self-efficacy

	6.4 Information processing styles
	6.5 Layering strategy explanations

	7. Conclusion
	References

