
A Survey of Sequential and Parallel Implementation

Techniques for Functional Programming Languages

Ralph C. Hilzer, Jr. Lawrence A. Crowl

Department of Computer Science

Oregon State University

Corvallis, Oregon 97331-3202

Technical Report 95-60-05

May 1995

Abstract

This paper surveys sequential and paral-
lel implementation techniques for functional
programming languages, as well as opti-
mizations that can improve their perfor-
mance. Sequential implementations have
evolved from simple interpreters to sophis-
ticated super-combinator-based compilers,
while most parallel implementations have ex-
plored a broad range of techniques. We ana-
lyze the purpose and function of each imple-
mentation technique and discuss the current
state-of-the-art in functional language imple-
mentation.
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1 Introduction

This paper surveys the current state of both
sequential and parallel functional program-
ming language implementations. First, back-
ground information on functional program-
ming (x 1.1), referential transparency (x 1.2),
language variants (x 1.3), and lambda calcu-
lus (x 1.4) is presented to provide context for
the survey. If background unneeded, the re-
mainder of the introduction may be safely
bypassed.

The sequential section (x 2) describes sev-
eral environment-based and combinator eval-
uation methods, each with roots in graph
theory. A common example illustrates the
operation of each method and serves as a ba-
sis for comparing them.

The optimizations section (x 3) presents
a number of methods to improve sequen-
tial performance such as: moving up de-
layed computations, providing more sharing,
eliminating unnecessary copying, precompu-
tation, and using mixed (lazy and eager)
evaluation.

The parallel section (x 4) assumes read-
ers are aware that each processor of a par-
allel system employs an evaluation method
described in the sequential section and may
also incorporate improvements from the op-
timizations section. Consequently, other is-
sues are addressed such as what the general
categories of parallel systems are, how par-
allel tasks are invoked and controlled, mem-
ory organizations that support parallel ex-
ecution, task blocking and resumption, the
placement and balancing of tasks and data
in memory, the average size of parallel tasks,
garbage collection, accessing data as aggre-
gates, and vectored operations. Actual char-
acteristics of several implementations are in-
cluded so that readers may judge the state
of current parallel implementations in these
categories for themselves.

The summary (x 5) brings major points
of the paper together and attempts to make
sense out of them. The picture that emerges
re
ects a signi�cant amount of progress and

budding opportunity for improvement in fu-
ture systems.
Wherever possible, code segments in this

paper are presented in Haskell. Appendix A
presents a brief introduction to Haskell for
those who are unfamiliar with this highly ex-
pressive functional language.

1.1 Functional Programming

Functional programming was introduced by
John McCarthy and others [1962] as an al-
ternative to the more conventional impera-
tive programming style used by FORTRAN
and COBOL. Since then, functional pro-
gramming has been re�ned and improved by
a number of others, many of whom drew
from longstanding and well-established re-
search into computable functions by math-
ematicians such as Sch�on�nkel [1924] and
Church [1941].
Functional or applicative programming

languages belong to a general class of lan-
guages in which the underlying model of
computation is function application [Church,
1941; Sch�on�nkel, 1924]. Functions map a
set of objects called the domain into ob-
jects in a \target set" called the codomain
or range. Function application invokes that
mapping, assigning actual arguments in the
domain (supplied by a function call) to for-
mal parameters in the function de�nition,
completing an expression-name association.
Once the associations are complete, opera-
tions on formal parameters in the function
body can be used to compute a result or set
of results in the function range.
Imperative languages also employ func-

tions. Although many other features are of-
ten used to distinguish functional and im-
perative languages, a fundamental di�erence
is in their treatment of variables. Whereas
functional languages only associate variable
names with expressions (or values once the
expressions are evaluated), imperative lan-
guages associate variable names (other than
functions) with memory locations [Abelson
et al., 1985; B�ohm et al., 1991]. Functional
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variables never change value, but imperative
variables do.
Functions appeal to mathematicians be-

cause they are very expressive and incor-
porate many useful mathematical properties
such as suitability for theorem proving. Sim-
ilarly, functional languages appeal to some
programmers because use of the math-like
syntax and semantics exports many math-
ematical properties to the programming lan-
guage. For example, proof of program cor-
rectness can be reasonably straightforward
with functional programs, whereas it is usu-
ally not with imperative programs.
Furthermore, concurrent (multi-processor)

programming can also be simpler with func-
tional languages than with imperative lan-
guages. Imperative program components of-
ten contain dependencies that require syn-
chronization during execution, whereas exe-
cutable functional program components are
independent and therefore are free of depen-
dencies.
Favorable mathematical properties and

concurrency potential make functional pro-
gramming languages an active and produc-
tive research topic. Paul Hudak [1989] chron-
icled this research from the perspective of
a language lexicon, highlighting the distin-
guishing features and speci�c contributions
of several languages. This paper extends that
survey to include a number of sequential and
parallel functional-language implementation
techniques. Readers unfamiliar with func-
tional languages are encouraged to consult
the Hudak article. It is easy to read and
very informative.

1.2 Referential Transparency

A language in which the evaluation of pro-
gram expressions does not introduce side ef-
fects is said to be referentially transparent
[Backus, 1978]. In referentially transparent
programs, the whole is determined by the
sum of the parts, so neither the position of
those parts nor the substitution of parts with
di�erent but equivalent parts can change the

program's outcome. Therefore, the parts are
like black boxes. They require initial test-
ing, but no further adjustment is necessary
if used properly.
It is the association of variable names with

values that makes functional languages refer-
entially transparent. Imperative languages
are not referentially transparent because,
when variable names are associated with
memory locations, the values may change.
When values are allowed to change, the re-
sult produced by any section of code may
depend on when it is executed. This type
of dependency is not possible in referentially
transparent languages. Some implications of
referential transparency are:

Static Semantics The semantics of func-
tional languages are closer to traditional
mathematical notation than are the seman-
tics of imperative languages [Appleby, 1991].
In particular, the semantics are static|inde-
pendent of time.
This static property makes it possible to

analyze and determine the behavior of func-
tional program code statically, whereas dy-
namic analysis is necessary with imperative
languages. Static (versus dynamic) charac-
teristics can also make it easier to describe
the semantics of a language using an abstract
notation such as operational, axiomatic, or
denotational semantics [Field and Harrison,
1988; Backus, 1978], and makes it possible
to prove the correctness of programs (includ-
ing non-trivial programs) using a technique
similar to mathematical induction.

Scheduling Flexibility As referentially
transparent expressions become eligible for
evaluation, the order used to evaluate them
can neither change their values nor alter the
program results. Therefore, schedulers can
be very 
exible. They are free to select from
among several task alternatives choosing the
best one for the current set of circumstances.
In parallel systems they can assign the tasks
to multiple processors without fear of inter-
ference caused by side e�ects.
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Single-Assignment Variables The asso-
ciation of variable names with values has a
consequence that those values cannot change
over the lifetime of the variable. For that rea-
son, functional-language variables are often
called single-assignment variables.

A negative side of single-assignment vari-
ables is that they do not allow imperative-
style assignment statements. Without the
assignment statement, repetition with iter-
ative looping is not possible. Other tech-
niques such as recursion must be used in-
stead. Unfortunately, recursion generally
consumes more space and time than itera-
tion.

1.3 Language Variants

The expressive features used in functional
languages vary widely from language to lan-
guage. Some of the more common language
variants are:

First- and Higher-Order Functions
First-order functional languages allow either
all or part of a language data set (exclud-
ing functions) to have the status of �rst-class
data types, meaning they can be passed as
parameters or returned as function values.
In higher-order functional languages, func-
tions themselves are elevated to the status of
�rst-class data types so that they too can be
passed as parameters or returned as function
values [Abelson et al., 1985].

Nearly all functional languages include
some form of higher-order functions. The ex-
ceptions usually involve experimental tech-
niques where the point is more clear using
�rst-order functions [Takano, 1991]. Unfor-
tunately, higher-order functions also increase
the complexity of both the language and
the language interpreter. Some languages,
such as FP, restrict higher-order functions
to a small �xed set called combining forms
or functional forms, reasoning that the in-
creased power gained when more choices are
included only leads to chaos [Backus, 1978].

Polymorphism Functions that are poly-
morphic can accept arguments of varying
data types. Functions with parametric poly-
morphism are indi�erent to data types of
their arguments [Hudak, 1989]. They behave
identically regardless of the argument type.
For example, in the identity function, ID, be-
low:

ID x = x 8 x

x is parametrically polymorphic. ID returns
x no matter what type of x is input.
The behavior of functions with ad hoc poly-

morphism or overloading does depend on the
types of arguments that are input. For exam-
ple, an overloaded function might perform in-
teger add when integer arguments are input
and 
oating-point add when 
oating-point
arguments are input.
Similar to higher-order functions, poly-

morphism improves language 
exibility and
expressibility. Polymorphism also reduces
the need to rewrite sections of code. This
can make programs shorter and more con-
cise. Therefore, program design and read-
ability may bene�t.
For example, consider the simplicity of a

polymorphic program that uses one routine
to sort a number of di�erent data types (e.g.,
integer, real, and alphabetic) as opposed to
a non-polymorphic program that must have
a di�erent sorting routine for each data type.
Unfortunately, polymorphism has some

negative features. For example, consider that
some non-polymorphic imperative languages
are able to detect and report data type er-
rors at compile time. Since polymorphic data
types may not be assigned until execution
time, error checking may be delayed until ex-
ecution time as well.

Imperative Features Some languages
such as LISP, ML, and Scheme allow im-
perative features such as the imperative-
style assignment statement (x 1.2) to sup-
port looping and iteration [McCarthy et al.,
1962; Gordon et al., 1979; Steel and Suss-
man, 1975]. These features are intended
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to improve performance by increasing speed
and/or reducing storage requirements. They
also make functional languages more palat-
able to imperative programmers. Unfortu-
nately, they destroy referential transparency,
so \pure" functional languages normally ei-
ther do not include them or discourage their
use. SISAL is an exception, allowing imper-
ative features in for statements and exter-
nally invoked functions. In both cases, when
execution of the imperative code is complete,
only value a single value is returned to the
calling function, so referential transparency
is preserved [B�ohm et al., 1991].

Eager and Lazy Evaluation The func-
tion f x1 x2 : : : xn where n � 0, is said to
be strict on argument xi, where 1 � i � n,
if it always requires the value of xi for evalu-
ation; otherwise it is non-strict on xi [Field
and Harrison, 1988; Peyton Jones, 1987]. For
example, the function:

g x y = x + y

is strict on both arguments x and y since
both are always required to evaluate +. Con-
versely, the function:

h x y z = if x>10 then y else z (1)

is strict on x, but non-strict on y and z (x
is always needed to evaluate h, but y is only
needed if x > 10, and z is only needed if
x � 10.

Functional languages are said to use eager
evaluation if they evaluate all arguments be-
fore the function application, regardless of
whether those arguments are strict or non-
strict. For example, eager evaluation would
evaluate all arguments in function h above.
If an argument is not needed (e.g., argument
b in the call (h 12 a b), its evaluation rep-
resents unnecessary work. If the argument is
not needed and fails to terminate (e.g., it is
in�nitely recursive or involves evaluation of
an in�nite list), the program will also fail to
terminate, possibly unnecessarily.

Many early functional programming lan-
guage implementations used strictly eager
evaluation including FP, ML, an early ver-
sion of Hope, and some data 
ow languages
[Backus, 1978; Gordon et al., 1979; Burstall
et al., 1980; Hudak, 1989].

Functional-language implementations are
said to use lazy evaluation if evaluation of ar-
guments is delayed until after application of
the containing function. Lazy arguments are
evaluated only when they are needed. Un-
needed arguments are never evaluated. If
each instance of a shared argument is eval-
uated separately, the implementation is said
to be partially lazy. Conversely, if shared ar-
guments are evaluated only once, the imple-
mentation is said to be fully lazy.

To illustrate the di�erence between lazy
and eager evaluation, assume ? is an expres-
sion whose evaluation fails to terminate. No-
tice that in equation 1 above (h 12 10 ?)
terminates normally returning 10 using lazy
evaluation, but fails to terminate using eager
evaluation. Consequently, some programs
that terminate with lazy evaluation, fail to
terminate with eager evaluation.

If evaluation of an expression terminates
using both lazy and eager evaluation, both
methods will return the same results, al-
though sometimes in a quite di�erent man-
ner. For example, eager evaluation would
execute slower and consume more space
than lazy evaluation if unneeded arguments
were frequently encountered. On the other
hand, eager evaluation is easier to imple-
ment. Therefore eager evaluation can exe-
cute faster if early evaluation of strict argu-
ments makes their values more conveniently
available than lazy evaluation's late evalua-
tion.

Another important di�erence between lazy
and eager evaluation is in how they han-
dle input/output. For example, assume that
ttyin is a function that returns a list of char-
acters typed at a terminal, and ttyout is
a function that receives characters and dis-
plays them on the terminal screen. Then,

5



the function (ttyout ttyin) displays char-
acters typed at the terminal. Notice that ea-
ger evaluation requires that ttyin complete
before any output appears on the screen,
whereas lazy evaluation outputs each char-
acter to the screen as it is typed [Eisenbach,
1987].
This ability to handle sequences of data

with undetermined length (frequently re-
ferred to as streams) illustrates of one of lazy
evaluation's chief attractions. It can do won-
ders for language expressiveness.
SASL, KRC, Lazy ML, Miranda, Orwell,

Ponder, and Haskell are all lazy functional
languages [Peyton Jones, 1987].

1.4 Lambda Calculus

The lambda calculus is a mathematical cal-
culus for computable functions proposed by
Alonzo Church [1941]. It is a simple means
of describing the properties of computable
functions, e�ectively treating the functions
as rules. Only a few constructs and simple
semantics are required. Furthermore, it is
expressive, su�ciently so that it can express
not only all functional languages but all com-
putable functions as well [Field and Harrison,
1988; Peyton Jones, 1987].
The subsections below describe the struc-

ture of lambda expressions (x 1.4.1), lists def-
initions associated with these lambda expres-
sions (x 1.4.2), lists rules to modify lambda
expressions structure (x 1.4.3), and describes
lambda lifting, a transformationmethod that
can enhance the suitability of lambda expres-
sions for compilation (x 1.4.4).

1.4.1 Lambda Expressions

Lambda expressions are unnamed functions
consisting of a lambda (�), some formal pa-
rameters, a function body, and the actual ar-
guments [Church, 1941; Field and Harrison,
1988; Peyton Jones, 1987]. For example, in
the expression:

(�x:+ x x) 4

� � identi�es the function as a lambda ex-
pression,

� the x prior to the period identi�es x as
the formal parameter,

� + x x is the body of the �-expression,
and

� 4 is the actual argument.

The lambda expression above is evaluated
(reduced) as follows:

(�x:+ x x) 4 ! + 4 4 ! 8

and a lambda expression with two parame-
ters is reduced in a similar manner:

(�x; y: � y x) 3 7
� ((�x:�y: � y x) 3) 7
! (�y: � y 3) 7
! � 7 3
! 21

Although this basic form is quite adequate
from an expressibility point of view, fre-
quently additional forms are added to pro-
vide a simpler representation for more com-
plex expressions.
For example the designers of Miranda in-

clude let and letrec forms in their lambda cal-
culus and refer to it as enriched lambda cal-
culus [Peyton Jones, 1987].
Let expressions have the structure:

let formal parameter = argument
in function body

and are equivalent to lambda expressions.
For example,

let x = 4 in + x x � (�x:+ x x) 4

is a let expression and its equivalent lambda
expression. One advantage of the let expres-
sion is that it requires no special keyboard
characters. Some feel that the meaning of a
let expression is clearer than that of an equiv-
alent standard (unenriched) lambda expres-
sion.
Letrecs have the same structure as let ex-

pressions, but also allow recursion. For ex-
ample:
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letrec factorial =

�n.if n == 0 then 1

else (* n factorial (- n 1))

in (factorial 10)

is a letrec expression for factorial invoked
with an argument of 10. The usefulness of
enriched lambda expressions becomes clear
when you consider how complex factorial

would be if it were implemented with stan-
dard lambda expressions.

1.4.2 Lambda De�nitions

The following de�nitions are frequently used
in conjunction with �-expressions.

Reducible Expression A functional call
is reducible when all of its arguments are
available (the arguments may be either re-
duced or unreduced). A reducible function
call is also called a reducible expression or
redex.

Normal Forms An expression is in Nor-
mal Form (NF) if it has either been reduced
to a unique value, such as 23, or it is a unique
data object that cannot be reduced further,
such as the list (23, 72, 49, 84).

An expression is in Head Normal Form
(HNF) if it is either in NF or it is a �-
expression or built-in function with one or
more of its outermost arguments (furthest
from the function) missing and either there
are either no innermost arguments or they
are all evaluated to NF. For example, (+ 20)
is in HNF; (+ (� 5 4)) is not (because (� 5 4)
is an unevaluated argument of +.

An expression is in Weak-Head Normal
Form (WHNF) if it is either in NF, HNF,
or it is a �-expression or a built-in function
with one or more of its outermost arguments
missing and either evaluated or unevaluated
innermost arguments. For example, all of
the HNF examples above are in WHNF. The
function (+ (� 5 4)) is in WHNF but is not
in HNF.

Bound and Free Variables Variables in
the body of a lambda expression can appear
either bound or free. A variable is bound if it
is a formal parameter in an enclosing lambda
expression. Otherwise, the variable is free.
For example, the variable y is bound in the
expression:

(�y: + y x)

but the variable x is free.

Instantiation Sometimes lambda expres-
sions are instantiated, meaning one copy (or
instance) of a common sub-expression is cre-
ated that can be shared. The instance is sim-
ply a graph sub-component. Sharing com-
ponents have pointers to the instance. One
bene�t of instantiation is that once the in-
stance is evaluated, other accesses to it do
not require re-evaluation.
Instantiation of expressions containing no

free variables is easy because, once evalu-
ated, the value of the instantiated expres-
sion cannot change. Instantiation of expres-
sions containing free variables is more di�-
cult, because bindings of the free variables
can change. However, it is possible when
some mechanism is used to maintain current
bindings for the free variables. These free-
variable bindings are called the environment
of the expression.

Currying It is possible to treat a function
of n arguments as a concatenation of n sin-
gle-argument functions [Field and Harrison,
1988; Peyton Jones, 1987]. This idea, called
currying, was proposed by Sch�on�nkel [1924]
but didn't get its name until it was exten-
sively investigated by Curry and Feys [1958].
The function f in (f x y z) can be inter-

preted as a function with three arguments
x, y, and z or, using currying, as a func-
tion with the single argument x. That is,
currying would interpret the expression as
(((f x) y) z) or:

� the function f with the single argument
x,
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� the function (f x) with the single argu-
ment y, and

� the function ((f x) y) with the single
argument z.

For example, currying interprets (+ 1) as a
function requiring one argument. It is equiv-
alent to (�x: + x 1). Both add one to their
argument.

In languages like Hope and Haskell, func-
tions have multiple arguments, whereas in
languages like Miranda they have single ar-
guments (use currying) [Field and Harrison,
1988].

Applicative-Order Reduction Applica-
tive-Order Reduction (AOR) reduces the left-
most innermost redex �rst The leftmost re-
dex is the one whose function operator is
textually to the left of all other redexes
in the expression, and the innermost re-
dex contains no other redexes. For exam-
ple, given the function (f (g arg)), AOR
would reduce the argument arg �rst, then
the argument (g arg), and then the func-
tion (f (g arg)). Since AOR reduces all
arguments prior to applying the outermost
function, it implements eager evaluation.

Normal-Order Reduction Normal-Or-
der Reduction (NOR) reduces the leftmost
outermost redex �rst. The leftmost redex is
the one whose function operator is textually
to the left of all other redexes in the expres-
sion, and the outermost redex is the one that
is not contained in any other redex. Given
the function (f (g arg)), NOR would initi-
ate reduction of the function f �rst, then f's
argument (g arg) if needed, and �nally g's
argument arg if it is needed. NOR always in-
vokes the function prior to reducing function
arguments. The sharing of common sub-ex-
pressions (introduced above in instantiation)
and NOR implements fully lazy evaluation.

1.4.3 Lambda Rules

Lambda rules are applied to lambda expres-
sions in order to change their form, ulti-
mately with the intent of reducing them (i.e.
obtaining a simple answer). The rules fall
into the following four categories:

reductions|reduces the expression to a sim-
pler form,

abstractions|abstracts the expression to a
more complex form (such as by adding
formal parameters), and

conversions|changes the expression to an
equivalent form (e.g., through a formal
parameter name change).

lifting{removes free variables from an ex-
pression so it can be instantiated.

The following rules can be applied to
lambda expressions.

Beta-Reduction A beta or �-reduction re-
duces a lambda expression by substituting
actual arguments for formal parameters in
the body of the lambda expression. For ex-
ample:

(�x:+ x x) 4
�r
! + 4 4

is a �-reduction.

Beta-Abstraction A beta or �-abstrac-
tion is the inverse of a �-reduction, abstract-
ing the expression instead of reducing it. For
example:

+ 4 4
�a
! (�y: + y y) 4

is a �-abstraction. Note that the name of
the formal parameter need not be the same
as was used in the �-reduction.

Delta-Reduction A delta or �-reduction
reduces a basic function. For example,

+ 4 4
�
! 8

is a �-reduction applied to the basic function
operator +.
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Alpha-Conversion An alpha or �-conver-
sion changes the name function parameters.
For example:

(�x:+ x x)
�
$ (�y: + y y)

is an �-conversion between the formal pa-
rameter names x and y. �-conversions are
used to avoid name clashes during reduction.

Eta-Conversion An eta or �-conversion is
used to convert an expression in one repre-
sentation to another equivalent representa-
tion. For example:

(�x:f x)
�
$ f

is an �-conversion where f is a function and
x does not occur free in f (x 1.4.2).

1.4.4 Lambda Lifting

Since y occurs free in the body of the expres-
sion:

�x:+ x y

the expression cannot be instantiated (and
therefore cannot be shared) as is because
the value of y depends on the binding it
is assigned by enclosing lambda expressions.
There are two approaches to instantiating an
expression with free variables. First, enclos-
ing environments can added to the expression
until all free variables are removed.
Alternatively, a process called lambda lift-

ing can be used. Lambda lifting involves ap-
plying �-abstractions and other conversions
to remove free variables. The basic idea is
to convert an expression with free variables
into a function with a formal parameter cor-
responding to that parameter. For exam-
ple, the �-abstraction and �-conversion be-
low convert the expression to a new form
where all variables in the body of �w are
bound:

(�x:+ x y)
�
! (�y:�x: + x y) y
�
! (�w:�x:+ x w) y

Therefore, the �w body can be instantiated.

2 Common Sequential

Evaluation Methods

This section presents common methods that
functional programming language implemen-
tations use to evaluate programs.

The success of sequential implementations
is heavily dependent on their ability to pro-
vide good performance, and good perfor-
mance is closely tied to e�cient storage man-
agement and fast execution speed. Major
contributors to poor performance in func-
tional implementations are:

� Unnecessary reevaluation of redundant
expressions,

� A reliance on recursion to perform rep-
etition, and

� Interpreting the code rather than com-
piling it.

Lazy evaluation can improve both storage
management and execution speed by foster-
ing sharing, so one criteria the methods are
judged by is how e�ciently they perform lazy
evaluation. Generally, the early methods
in this section require heavy administrative
support to provide lazy evaluation whereas
the latter methods e�ciently implement lazy
evaluation.

Unfortunately, lazy evaluation does not
provide for sharing among all redundant ex-
pressions, so other measures described later
(x 3) are necessary to locate and remove these
redundancies.

Another contributor poor performance is
a reliance on recursion to perform repetition.
Although the evaluation methods presented
in this section can do little to correct re-
cursion de�ciencies, some optimization tech-
niques described later (x 3) do address the
problem by either improving the e�ciency
of recursion or moving away from recursion
to other repetition methods (of course trying
to do so without undermining the functional
model).
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Finally, although there are arguments to
support using both interpretation and com-
pilation to translate programs, if the code is
to be executed numerous times, compilation
is the preferred technique because it requires
less execution-time analysis.
The evaluation methods contained in this

section are Abstract Syntax Tree Inter-
preters (x 2.1), the SECD Machine (x 2.2),
�xed-combinators (x 2.3), graph reduc-
tion of lambda expressions (x 2.4), super-
combinators (x 2.5), and compilation meth-
ods (x 2.6).

2.1 Abstract Syntax Tree

Interpreters

This subsection describes and analyzes tree-
traversal implementations called Abstract
Syntax Tree (AST) interpreters. Most early
functional-language interpreters were of this
type translating program source code to
lambda expressions and then, in turn, con-
verting the lambda expressions to a tree
format where tree-traversal algorithms are
used to reduce them. The advantage of
tree-traversal implementations is simplicity.
Eager implementations (x 1.3) are quite
straightforward. However, considerable ad-
ministration must be added to support fully
lazy evaluation, so lazy implementationsmay
not be so simple. Furthermore, neither the
eager nor the lazy implementations are fast
enough to compete with imperative language
implementations.

Abstract Syntax Tree An Abstract Syn-
tax Tree (AST) is a parse tree where some
nodes are annotated (decorated) with seman-
tic actions (meaning) [Field and Harrison,
1988, Chapter 8]. The semantic operators
typically include:

� app|apply the function valued expres-
sion at the left child node of app to the
expression at the right child node,

� int|the child is an integer constant,

� var|the child is a variable reference,

� prim{the child is a primitive function,

� lambda|the left child is a formal param-
eter; the right child is a lambda body,

� closure|a composite structure consist-
ing of a lambda expression and a list of
its current variable bindings.

app

�� @@
lambda int

3

�� @@
y app

�� @@
app var

�� @@
prim var y

+ y

Figure 1: AST Graph for (�y: + y y) 3

In the �rst phases of interpretation, the
program's source code is translated to
lambda expressions, and then the lambda ex-
pressions are converted to an AST format.
AST format for (�y: + y y) 3 is:

app(lambda(y; app(app(prim+; var y); var y));
int 3)

The AST format is presented graphically in
�gure 1.

Eager Interpreter Normally, two func-
tions are used to interpret AST code. They
are Apply and Eval [Field and Harrison,
1988, Chapter 9]. Apply returns the WHNF
(x 1.4.2) result of a function applied to its
argument. Eval evaluates an expression in a
manner speci�ed by a list of prede�ned rules.
Initially, Eval is applied to the program

AST. This and subsequent applications of
Eval and Apply transform program compo-
nents to new reduced forms. Ultimately, the
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program is reduced to a normal form repre-
senting the program result.

Translation rules for Eval, Apply, and some
other operators that comprise a small eager
interpreter are presented in �gure 2. This in-
terpreter leaves the body of a lambda expres-
sion intact throughout �-reduction (x 1.4.3),
maintaining variable bindings in a separate
structure called the environment [env]. The
�-reduction of each enclosing lambda expres-
sion adds a binding (i.e., formal parame-
ter, actual argument) to this environment.
When an expression has been reduced to a
state where only the lambda body and its
environment remain, the lambda body can
be evaluated. At that time, bindings for the
lambda body variables are accessed from the
environment.

The addition of a binding to an en-
vironment is represented symbolically by
(v; expr) :: [env], where [env] is an envi-
ronment and (v; expr) is the binding being
added (i.e., v is the variable name and expr

is the expression bound to it). Accessing a
binding from an environment is represented
symbolically by [env] k v where [env] is the
environment and v is the variable name be-
ing accessed. If 2 is the most recent binding
of v added to [env], then [env] k v returns
2.

Evaluation of the expression (�y: + y y) 3
is shown in Figure 3, where each reduction
step arrow is annotated with the rule that
was applied from �gure 2.

Notice that the application of rule 1 passes
the current environment to two sub-expres-
sions. That way, each sub-expression can
modify and access its own environment. This
requires that the implementation support the
dynamic creation, access, and termination of
environments. Languages such as LISP pro-
vide the support as a list of associations.

Notice also that rule 6 creates a composite
structure consisting of the lambda expression
and its environment. This structure is called
a closure (depicted by the semantic operator
closure in �gure 3). Rule 8 uses this closure
to add the binding (y; int 3) to the envi-

ronment. Further down, two applications of
rule 3 use this binding to replace instances
of var y with int 3 in the lambda body. Each
var y consults its own environment to form
the binding.

Rule 9 gathers the primitive function's pa-
rameters into a list. Prior to the application
of rule 9 each argument must be reduced to
the extent that it can be evaluated. Rules 12
and 13 perform delta reductions.

Lazy Interpreter In order to convert the
eager interpreter of �gure 2 to a lazy in-
terpreter it is necessary to add suspensions
that either temporarily or permanently re-
move sub-expressions from evaluation con-
sideration. This can be done by changing
rule 1 in �gure 2 to:

Eval (app (E1; E2); [env]) =)
Apply(Eval(E1; [env]); susp (E2; [env]))

If E1 is a lambda expression and E2 is its
argument, this causes the �-reduction to be
completed with an unevaluated (suspended)
argument. If it is not reawakened, the sus-
pended argument, called a suspension, is ig-
nored. Of course, sometimes the suspension
must be reawakened, so the new rule:

Eval (susp (E; [env])) =)
Eval (E; [env])

must be added. Furthermore, Eval must be
applied to susp ( : : : ) in order to invoke this
rule. This is accomplished by revising rules
12 and 13 in �gure 2 as follows:

funct + (E1; E2) =)
int (Eval (E1) + Eval (E2))

funct � (E1; E2) =)
int (Eval (E1)� Eval (E2))

Notice that in this case argument evaluation
commences only after evaluation of the con-
taining function has been initiated, or during
delta-reduction. Therefore, only required ar-
guments are awakened. Unneeded arguments
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1 Eval (app (E1; E2); [env]) =) Apply (Eval (E1; [env]); Eval (E2; [env]))
2 Eval (int i; [env]) =) int i
3 Eval (var v; [env]) =) [env] k v (Draw value of v from [env])
4 Eval (prim (p); [env]) =) op (p; arityof (p); nil)
5 Eval (op ( : : : ); [env]) =) op ( : : : )
6 Eval (lambda ( : : : ); [env]) =) closure (lambda ( : : : ); [env])
7 Eval (closure ( : : : ); [env]) =) closure ( : : : )

8 Apply (closure (lambda (v; B); [env]); A) =) Eval (B; (v; A) :: [env])
9 Apply (op (p; PAC; args); A) =)

if PAC = 1 then funct p (A :: args)
else op (p; PAC � 1; (A :: args))

10 arityof (+) =) 2
11 arityof (�) =) 2
12 funct + (int i1; int i2) =) int (i1 + i2)
13 funct � (int i1; int i2) =) int (i1 � i2)

Figure 2: Rules For An Eager AST Interpreter

Note: Underlined items show e�ects caused by application of the previous rule.

Eval(app(lambda(y; app(app(prim (+); var y); var y)); int 3); [nil])
1
�! Apply(Eval(lambda(y; app(app(prim (+); var y); var y)); [nil]);Eval(int 3; [nil]))
6
�! Apply(closure(lambda(y; app(app(prim (+); var y); var y)); [nil]);Eval(int 3; [nil]))
2
�! Apply(closure(lambda(y; app(app(prim (+); var y); var y)); [nil]); int 3)
8
�! Eval(app(app(prim (+); var y); var y); [(y; int 3)])
1
�! Apply(Eval(app(prim (+); var y); [(y; int 3)]);Eval(var y; [(y; int 3)]))
3
�! Apply(Eval(app(prim (+); var y); [(y; int 3)]); int 3)
1
�! Apply(Apply(Eval(prim (+); [(y; int 3)]);Eval(var y; [(y; int 3)])); int 3)
4
�! Apply(Apply(op +; arityof (+); nil);Eval(var y; [(y; int 3)])); int 3)
10
�! Apply(Apply(op (+; 2; nil);Eval(var y; [(y; int 3)])); int 3)
3
�! Apply(Apply(op (+; 2; nil); int 3); int 3)
9
�! Apply(op +; 1; int 3); int 3)
9
�! funct + (int 3; int 3)
12
�! int (3 + 3) � int 6

Figure 3: Eager AST Interpretation of (�y: + y y) 3)
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are ignored. This implements partial lazy
evaluation.

In order to be fully lazy (x 1.3), shared ex-
pressions must be evaluated only once. The
lazy AST interpreter described above fails to
do this. For example, it would beta reduce
(�y: + y y) arg to (+ arg arg), and then
evaluate arg twice during delta-reduction.

Added administration is needed to detect
common expressions and avoid their redun-
dant evaluation. For example, multiple in-
stances of formal parameters in lambda bod-
ies (such as the two instances of y in the ex-
ample above) can be detected and marked
during beta reduction, and then, during del-
ta-reduction, the function can evaluate one
suspension and apply its result at the po-
sitions of other suspensions. Unfortunately
this becomes quite complex and cumbersome
when it is applied to all shared expressions.

2.2 SECD Machine

The poor performance of AST interpreters is
due in large part to the overhead required
to maintain an execution environment. Al-
though, SECD is also an environment-based
system, it streamlines the administrative or-
ganization by using four stacks called the
Object Stack, Environment, Control, and
Dump (see [Landin, 1964; Henderson, 1980]
or [Field and Harrison, 1988, Chapter 10]).
The stacks are controlled by a driver func-
tion that changes their contents.

Initially, the control stack contains the in-
put string, and the other stacks are empty.
Then, translation rules are applied to change
stack contents as follows:

The control stack maintains the current re-
duced state of the input string. Whenever
closures, variables, or functions are recog-
nized in the control stack, they are shifted to
the object stack and are subsequently evalu-
ated as follows:

� Evaluation of closures adds new variable
bindings to the environment stack.

� Evaluation of variables uses bindings in
the environment stack to change the
variables to values.

� Evaluation of functions reduces them to
a value or WHNF (x 1.4.2).

Whenever a new environment is entered,
the old environment and the contents of all
other stacks are saved on the dump stack.
Whenever an environment is exited, the old
saved entries on the dump stack are restored
to the respective stacks.
When complete, the environment, control,

and dump stacks are empty, and the program
result is located on the object stack.

Eager Interpreter SECD Stack opera-
tions to invoke an eager interpreter are shown
in �gure 4.
If the stacks are implemented as linked

lists then head(stk) (where stk is a stack)
is the same as (CAR stk) in LISP, tail(stk)
is the same as (CDR stk), and elt :: stk is
equivalent to (CONS elt stk). If the stacks
are implemented as arrays, then head(stk) is
the element at the top of the stack, tail(stk)
is stk after the top item has been removed,
and elt :: stk is stk after elt has been added
to the top of stk. As is the case with the
AST implementations (x 2.1), the :: opera-
tor adds bindings to an environment, and the
k operator retrieves them (x 2.1).
Figure 5 shows the SECD stack transitions

used to reduce the expression (�y: + y y) 3.
The \Rule Applied" column refers to the
stack transformation rules in �gure 4.
Notice that transition 1.d in �gure 5 adds

the closure [y;+y y; [nil]] to stack S (where y
is a formal parameter of a lambda expression,
(+ y y) is its body, and [nil] is the current
environment. Next, transition 1.g uses the
closure and the argument 3 (also on stack S)
to add the binding (y; 3) to stack E. Tran-
sition 1.g also saves the appropriate SECD
stack contents on stack D. When transition
2 is applied at the bottom of �gure 5, the con-
tents of D is returned to the SECD stacks so
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1. If stack C is not empty and X = head(C) then:

Conditions Next State

a X = k where k is a constant. (k :: S;E; tail(C);D)
b X = b where b is a built-in

function. (b :: S;E; tail(C);D)
X = v where v is a variable

c identi�er and E k v returns
the binding of v in the
environment E. ((E k v) :: S;E; tail(C);D)
X = �-abstraction|

d Param(x) is formal
parameter, body(X) is body. ([param(X); body(X);E] :: S;E; tail(C);D)
X = EXPR1 EXPR2 where

e EXPR1 and EXPR2

are expressions. (S;E; EXPR2 :: (EXPR1 :: (@ :: tail(C)));D)
X = @ and the contents of
stack S consists of a2

f (an argument), a1 (another
argument), and S0

(remainder of stack S). ((a1; a2) :: S
0;E; tail(C);D)

X = @, and the contents of
stack S consists of c (the

g closure [v;B;E0]),
a (an argument), and S0

(remainder of stack S). ((); (v; a) :: E0; B; (S0;E; tail(C);D))
X = @, and the contents of

h stack S consists of f (built-in
function),args (arg-list),and
S0 (remainder of stack S). (f(args) :: S0;E; tail(C);D)

2. If stack C is empty and D = (S0;E0;C0;D0), the next state is: (head(S) :: S0;E0;C0;D0)

Figure 4: State Transitions for an Eager SECD Interpreter
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S E C D Rule Applied

() [nil] (�y: + y y) 3 () 1.e
() [nil] 3, �y:+ y y, @ () 1.a
3 [nil] �y: + y y, @ () 1.d
[y, + y y, [nil]], 3 [nil] @ () 1.g
() [(y, 3)] + y y (), [nil], (), () 1.e
() [(y, 3)] y y, +, @ (), [nil], (), () 1.e
() [(y, 3)] y, y, @, +, @ (), [nil], (), () 1.c
3 [(y, 3)] y, @, +, @ (), [nil], (), () 1.c
3, 3 [(y, 3)] @, +, @ (), [nil], (), () 1.f
(3, 3) [(y, 3)] +, @ (), [nil], (), () 1.b
+, (3, 3) [(y, 3)] @ (), [nil], (), () 1.h
6 [(y, 3)] () (), [nil], (), () 2
6 [nil] () ()

Figure 5: Eager Interpretation of (�y: + y y) 3 with SECD

execution can resume without further refer-
ence to the lambda expression.

A residual bene�t of this saving and restor-
ing of stacks is that only the current and
saved environments are necessary to support
SECD implementations (recall that AST im-
plementations spawn sub-environments for
each sub-expression (x 2.1)). SECD simply
saves the current environment on the dump
stack when a lambda expression is entered,
and then restores that environment when it
is exited.

The two transition 1.c's in �gure 5 ac-
cess the environment for the binding of 3 to
the variable y, each time placing the bound
value on stack S. When complete, all of
the lambda body arguments are available
so transition 1.h can evaluate the function
(+ 3 3). Since this is an eager interpreter,
the arguments have already been reduced to
WHNF (x 1.4.2).

Lazy Interpreter The eager interpreter
above can be converted to a partially lazy
interpreter just by changing some of the tran-
sitions in �gure 4.

First, transition 1.e is changed to:

(S; E; EXPR1 :: (EXPR2 ::
(@ :: tail(C)));D)

This simply reverses the positions ofEXPR1

and EXPR2 from that of the eager inter-
preter. What this means is if EXPR1 is a
function and EXPR2 is its argument, the
eager interpreter will evaluate the argument
�rst, and the lazy interpreter will evaluate
the function �rst.
Aside from that, the only real di�erence is

that functions and arguments (as well as clo-
sures and their arguments) of the lazy inter-
preter get pushed on stack S in reverse order
from that of the eager interpreter. This is
implemented by reversing the order they are
handled as follows:

� in transition 1.f look for a1 �rst followed
by a2,

� in transition 1.g look for the argument
�rst followed by the closure, and

� in transition 1.h look for the argument-
list �rst followed by the built-in func-
tion.

Eager evaluation is natural for SECD, and
limited lazy evaluation is just as natural
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with the modi�cations to the driver func-
tion (transitions) described above. Unfortu-
nately, full laziness with sharing, although
possible, is just as complicated and cumber-
some as it is in AST interpreters (x 2.1).
SECD sharing is normally provided by

adding o�-stack structures that contain bind-
ings of expressions to their reduced forms
[Field and Harrison, 1988]. Each time an ex-
pression is encountered, the expression and
its environment (e.g., (E; [env])) are used to
access the o�-stack structure for a binding.
If the expression was previously evaluated,
a binding will be returned so the expression
does not need to be evaluated. If no binding
is returned, when the expression completes
evaluation, its binding will be added to the
o�-stack structure.
This approach works, but at high cost.

Each expression may contain sub-expres-
sions, that in turn contain sub-expressions,
and so forth. All of the expressions, and all
of their sub-expressions, must be entered in
this o�-stack structure. Furthermore, since
there are probably many environments, an
expression evaluated in one environment is
di�erent from an expression evaluated in an-
other environment (even if the binding is the
same). Consequently, the space required to
support full laziness in SECD is huge, and
execution speed of fully lazy SECD systems
is unacceptably slow.

2.3 Fixed-Combinators

Fixed-combinators are constructed from
lambda expressions in a manner that removes
occurrences of free variables. The trans-
formations also remove lambda expressions
so �xed-combinators are said to be lambda
free. The bene�t of lambda free expressions
is they can be instantiated (x 1.4.2) and then
shared. This reduces copying and expression
re-evaluation.
In contrast to the environment-based AST

and SECD machines, �xed-combinators re-
quire no outside administrative overhead to
maintain the environment, even if lazy eval-

uation is desired and they can be compiled
[Peyton Jones, 1987; Field and Harrison,
1988].
Combinatory Logic (CL) was introduced

by Sch�on�nkel [1924], and later was adapted
to functional programming languages by
Curry and Feys [1958]. The appeal of CL
to functional programming languages is that
a small �xed set of combinators can imple-
ment a fully lazy language. In theory, only
two �xed-combinators, S andK are required,
but the I (identity) and a wide assortment of
other �xed-combinators can be included to
optimize translation.
Lambda expressions can be transformed

into S, K, and I combinators using the fol-
lowing transformations [Peyton Jones, 1987,
Chapter 16]:

S (�x: e1 e2) ) S (�x: e1)(�x: e2)

K (�x: c) ) K c (c 6= x)

I (�x: x) ) I

For example, the following is a transforma-
tion of (�x:+x x) 5 (note that transformation
rules are indicated above the transformation
arrows):

(�y: + y y) 3
S
) S (�y: + y) (�y:y) 3
S
) S (S (�y: +) (�y: y)) (�y:y) 3
I
) S (S (�y: +) I) (�y: y) 3
I
) S (S (�y: +) I) I 3
K
) S (S (K +) I) I 3

The compiled expression S (S (K +) I) I 3
is inApplicative Formmeaning it consists en-
tirely of functions and arguments and it does
not contain any lambda expressions. In fact,
the compiled expressions are inConstant Ap-
plicative Form (CAF) since they do not con-
tain variables. CAF is a desirable form be-
cause its application depends solely on its
arguments, not on any free variables in its
body. Thus translation either involves ap-
plying a CAF to its arguments, also in CAF,
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or applying a built-in function to its argu-
ments, again in CAF.

Once compiled, CL expressions can be
evaluated using the following reductions:

S S f g x ! f x (g x)
K K c x ! c

I I x ! x

For example, the following is a reduction of
S (S (K +) I) I 5 (note that the reduc-
tion type is indicated above each reduction
arrow):

S (S (K +) I) I 3
S
! S (K +) I 3 (I 3)
S
! K + 3 (I 3) (I 3)
K
! + (I 3) (I 3)
I
! + 3 (I 3)
I
! + 3 3
�
! 9

Fixed-combinators can be directly imple-
mented in hardware, bypassing a level of in-
terpretation. Furthermore, it is not only pos-
sible to instantiate lambda bodies (avoiding
copying and re-evaluation), but the instanti-
ation is performed lazily. This means unused
expressions are not evaluated. Therefore, CL
is fully lazy. Finally, since only a few �xed-
combinators must be recognized, a CL inter-
preter is simple to implement.

Unfortunately, however, CL compilation
generates a large object program consisting
of numerous �xed-combinators. Because the
grain size of each �xed-combinator is small,
a large number of steps is required to reduce
a program. Furthermore, the reduction pro-
cess creates many intermediate expressions
that, following creation, are discarded almost
immediately. Therefore, execution is still
slow and consumes large amounts of tran-
sient storage. Caching schemes to speed up
execution are hampered by the small task
grain size.

2.4 Graph Reduction of
Lambda Expressions

Another approach is to represent program
expressions as a graph, and reduce the graph
using reduction and conversion rules such
as those presented for lambda expressions
(x 1.4.3). This is called graph reduction [Pey-
ton Jones, 1987; Field and Harrison, 1988].
Although graph reduction can be applied
to programs with other intermediate forms
(x 2.6), this subsection only considers the
graph reduction of lambda expressions.
It has already been shown that lambda ex-

pressions can be represented as binary trees
called abstract syntax trees, and that these
trees, in turn, can be reduced by AST in-
terpreters (x 2.1). If this type of binary
tree structure is modi�ed to allow the shar-
ing of common sub-expressions, the tree is
transformed into a graph. Such graphs have
the advantage that common sub-expressions
need be evaluated only once. Therefore, sus-
pensions (x 2.1) or supporting stacks (x 2.2)
are not needed to provide sharing during lazy
evaluation.

Graph Organization Graph nodes fall
into one of the following three categories:

� data|variables, values or lists of vari-
ables and values.

� functions|built-in functions or lambda
abstractions.

� application (@)|connection nodes (i.e.,
applies the argument at right-child to
the function at left-child).

A special node called the Root is either a
data, function, or @-node located at the base
(root) of a sub-expression's graph, a position
where evaluation begins. This evaluation,
called sparking (because it sets activities in
motion like setting a match to the root), pro-
ceeds as follows. While the root node is @,
a search is made downwards from the root
along the leftmost path (always selecting the
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Figure 6: Graph Spine

leftmost child), bypassing @-nodes, until a
function is located. This is called a spine
search because the leftmost path looks like
the spine of a rib cage (where diverging edges
to rightmost nodes along the way represent
the ribs). For example, the spine in �gure 6
is the path from the root to node f and the
ribs are the edges connecting the spine with
arg1, arg2, and arg3. A spine search of the
graph in �gure 6 locates the function f. Once
located, the function becomes a reduction ex-
pression (redex). Each redex in the graph is
an independent and non-interfering compo-
nent of work.

Beta-Reduction If the spine search lo-
cates a � node, a �-reduction is performed
as follows:

1. If eager evaluation is used (x 1.3),
the lambda argument must be sparked
and reduced before proceeding. This
is accomplished by conducting a spine
search from the argument's root node
and then applying appropriate reduc-
tions described here and in succeeding
paragraphs to reduce the argument to
WHNF (x 1.4.2). If lazy evaluation
is used, the argument should not be
sparked. Instead, go immediately to
step 2.

2. Copy the lambda expression's body into
a new data area.

3. Substitute the actual argument for the
formal parameter wherever it appears in
the copied body of the lambda expres-
sion.

4. Overwrite the old redex root with the
root of the copied body.

For example, the �-reduction

(�y: + y y) 3
�
! + 3 3

is performed graphically as shown in �g-
ure 7 (a).
Notice that y is shared in the lambda body.

As a consequence, the argument 3 is applied
to one location instead of two during �-re-
duction.
Since �-reduction overwrites the root node

of the old graph with the root node of the
new graph, when �-reduction is complete,
any nodes of the old graph that do not
have other connections to the overall pro-
gram graph, will never be used again dur-
ing program evaluation. These nodes are
garbage (i.e., they consume space unneces-
sarily and should be reclaimed).
Nodes in the old graph are connected if

they are shared with components in the over-
all program graph. For example, if the old
graph is (�y: b) a), and an external graph
component accesses bc (where bc is a com-
ponent of to old lambda body b), then the
nodes in bc are connected to the larger pro-
gram graph and are not garbage. Assuming
bc is the only shared component, other nodes
in (�y: b) a are garbage.

Delta-Reduction If the spine search lo-
cates a built-in function (such as +, �, or if),
a �-reduction is performed as follows:

1. A table is consulted to determine the
number and types of arguments required
by the built-in function.

2. Arguments are found at the right-child
of @ nodes encountered when retracing
the redex spine from the built-in func-
tion to the root node.
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Figure 7: Graphical Representation of Beta- and Delta-reductions

3. If lazy evaluation is used, unevaluated
arguments must be sparked and reduced
to WHNF before proceeding. If eager
evaluation is used, they are already in
WHNF.

4. Evaluate the function using the appro-
priate arguments.

5. Overwrite the root node of the built-in
function redex with the a node contain-
ing the evaluation results.

For example, the delta-reduction

+ 3 3
�
! 6

is performed graphically as shown in �g-
ure 7 (b).
If the argument 3 was an expression in-

stead of a value, sharing would cause it to be
evaluated once instead of twice during �-re-
duction.
The result, 6, overwrites the root node of

the old graph. Therefore, any components of

the old graph that are not shared with the
overall program graph are garbage.

Organization Implications Lazy evalua-
tion with normal order reduction (x 1.4.2) is
natural in graph reduction systems. When
a spine search locates a lambda function, it
is more natural to complete the �-reduction
with an unevaluated argument rather than
reducing the argument �rst. However, both
eager and lazy evaluation are possible. In
fact, it is possible to mark graph function
and application nodes as either strict or non-
strict during intermediate translation, and
invoke the speci�ed evaluation method dur-
ing execution. This leads to mixed-order
evaluation which is able to draw upon the
advantages of both techniques.

Parallel evaluation is also quite natural in
graph systems. As was noted earlier, reduc-
tion expressions are independent and non-in-
terfering components of work. As redexes are
identi�ed, the graph component correspond-

19



ing to it can be transferred to another pro-
cessor where its root node is sparked. In this
way, multiple processors can be evaluating a
program concurrently.
For example, during the eager evaluation

of a lambda abstraction, the �-reduction and
evaluation of the argument can be performed
in parallel. Additionally, evaluation of the
argument could recursively spark more �-re-
ductions and argument evaluations theoreti-
cally leading to an unlimited number of par-
allel activities. Unfortunately, eager evalu-
ation enjoys no parallelism during �-reduc-
tion. All of the arguments are evaluated, so
�-reduction is the only remaining activity.
The situation is virtually reversed for lazy

evaluation. Lazy evaluation never sparks ar-
guments until �-reduction, so no parallelism
is possible during �-reduction, but the ar-
guments can be sparked in parallel during
�-reduction. This is extremely limited par-
allelism in comparison to eager evaluation.
One reason is that �-reduction takes place
later than �-reduction, so lazy-evaluation's
parallelism is concentrated at the end of the
reduction process. Also, the parallelism is
concentrated within only the expression be-
ing �-reduced. It doesn't fan out to other
graph expressions like eager evaluation's par-
allelism does.
Parallelism will be covered more thor-

oughly later (x 4).

Garbage Collection It is important to
recognize that large amounts of garbage are
normally generated during �- and �-reduc-
tions. The garbage problem implies using
mechanisms such as a garbage collector to
detect and reclaim unused space. Unfor-
tunately, collection mechanisms add over-
head that diminishes system performance.
Garbage collection techniques are exam-
ined more thoroughly in the parallel section
(x 4.7).

Compilation Compilers are used to trans-
late languages from a form that is conve-
nient for humans to understand and manip-

ulate (such as Haskell) to a form that is eas-
ier for machines to execute. One alternative
is the compilation of high-level languages to
lambda expressions. However, if lambda ex-
pressions contain free variables, they cannot
be evaluated until the free variable bindings
have been determined (x 1.4.2). Frequently
these bindings are not applied until run-time,
and late bindings make compilation impossi-
ble. If compilation is still desired, the bind-
ings must be made available earlier by us-
ing mechanisms such as closures (x 2.1 and
x 2.2). These closures store the bindings in
an environment as they come available. A
compiler can access bindings from the envi-
ronment as they are needed. Unfortunately,
the implementation of closures involves ad-
ministration that leads to poor performance,
so this form of compilation may not be a re-
alistic alternative.

Unnecessary Copying By sharing graph
nodes, the recomputation of common sub-ex-
pressions can be avoided, but graph imple-
mentations still can encounter a loss of laz-
iness from unnecessary copying. For exam-
ple, consider the �-reduction of (�y: E1) E2

shown in �gure 8 (a). Also, assume that
there are no occurrences of the formal pa-
rameter y in E1. In that case, E1 would be
copied as is from its current position to the
root node as shown. This copying is unnec-
essary and extremely undesirable if E1 is a
large structure. If E1 is shared, there are two
accessible copies of E1 following �-reduction
(see right-hand side of �gure 8 (a)).
A solution is to use an indirection node as

shown in �gure 8 (b). Instead of overwriting
the old root with a copy ofE1, the indirection
node � is placed there instead. � points to
the original E1 obviating the need to copy
it. Although indirection nodes do solve the
copying problem they exhibit the following
problems:

� they require some administration to de-
tect circumstances where they can be
applied,
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Figure 8: Indirection

� they can lead to long chains of indirec-
tion if it is necessary to use them fre-
quently, and

� there is a loss of e�ciency when compo-
nents are accessed indirectly.

A greater problem arises when there are
occurrences of y in E1. Then, �-reduction
changes E1. If the change is made in place
and an indirection node points to it as shown
in �gure 8 (b), the changed copy will be the
one accessed by other components sharing
E1, although they are expecting to access
the original copy. In this case, indirection
nodes should not be used. Instead, the mod-
i�ed E1 should be copied to the root (e.g.,
�gure 8 (a)).

Projection Functions Projection func-
tions return unmodi�ed components of their
arguments. Those arguments can be re-

evaluated unnecessarily if they are shared.
For example, consider the expression:

(�x: x) (+ 6 9) (2)

and assume the argument (+ 6 9) is shared
with another component of the graph. A
normal �-reduction is shown in �gure 9 (a).
Notice that when the reduction is complete,
node @1 (the root node where expression 2
above will evaluate (+ 6 9)), is di�erent from
node @2 (the root node where the sharing
component will evaluate (+ 6 9)). Conse-
quently, the result computed by one is not
available to the other. Therefore, recompu-
tation is necessary.
As was the case with the unnecessary copy-

ing problem above, one solution is to employ
indirection nodes. For example, The indirec-
tion node � in �gure 9 (b) is expression (2)'s
root node. With this change, it makes no
di�erence whether (+ 6 9) is evaluated indi-
rectly through �, or directly by the sharing
expression. Once one completes the compu-
tation, recomputation is unnecessary. The

21



Old Graph Component

@1��
@@�x

@2
��

@ x
�� @@

@ 9
�� @@

+ 6

(Shared with Larger Graph)

�-reduction
=)

New Graph Component

@1PPPPP

@2
��

�� @@
@ 9

(Shared)

�� @@
+ 6

(a) Normal Reduction with Projection Functions

Old Graph Component

@1��
@@�x

@2
��

@ x
�� @@

@ 9
�� @@

+ 6

(Shared with Larger Graph)

�-reduction
=)

New Graph Component

�
@@

@2
��

�� @@
@ 9

(Shared)

�� @@
+ 6

(b) Projection Functions with Indirection

Figure 9: Projection Functions

problems encountered when using indirection
nodes have already been identi�ed.

2.5 Super-Combinators

A lambda expression that contains no free
variables can become a super-combinator
[Hughes, 1984]. Unlike the �xed-combinators
discussed earlier (x 2.3), super-combinators
are formed from the user's program, rather
than from a �xed set of combinators. The
lambda expression is normally transformed
to a special super-combinator format by as-
signing it a name, associating the bound vari-
ables with it, and setting it equal to the body
of the lambda expression. For example, since
all variables are bound in the lambda ex-
pression to the left of the arrow below, it
can be transformed to super-combinator no-
tation shown at the right of the arrow.

�x: �y:+ y x =) $Y x y = +y x

Like Combinatory Logic (CL), (x 2.3), su-
per-combinators support fully lazy evalua-
tion and compilation without outside admin-
istrative support such as closures and sus-
pensions (x 2.1 and x 2.2). However, the task
grain size of super-combinators is larger than
CL, so its performance can be better.

As is the case with CL, super-combinators
involve the translation of lambda expressions
to Constant Applicative Form (CAF), a form
that contains no free variables and no �'s (see
x 2.3, [Peyton Jones, 1987; Field and Harri-
son, 1988]. However, unlike CL, super-com-
binators do not have �xed types (e.g., S, K
, I). Instead, an unlimited number of super-
combinator types are generated dynamically
as a program's lambda expressions are trans-
lated.

Since super-combinators contain no free
variables, they are not dependent on outside
in
uences. Therefore, they can be instanti-
ated (x 1.4.2) and shared.
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Lambda Lifting Prior to Translation
Free variables are removed from lambda ex-
pressions using a process called lambda lift-
ing (x 1.4.4). Therefore, all lambda expres-
sions can be converted to super-combinators.
For example, consider the conversion of:

(�x: (�y: + y x) x) 4

The sub-expression:

(�y: + y x)

is not a super-combinator because it contains
the free-variable x. However, lambda lifting
removes the free-variable as follows:

(�y: + y x)
�a
! (�x: �y:+ y x) x
�
! (�w: �y: + y w) x

where �a is a beta-abstraction to remove
the free-variable and � is an �-conversion
(x 1.4.3) to change the name of x inside the
parentheses (where it is bound) to w so it is
not confused with the x outside the parenthe-
ses (which is free). Substituting this result in
the original expression yields:

(�x: (�w: (�y: + y w)) x x) 4

which can be transformed to super-combina-
tors as follows.
First, note that all variables are bound in:

(�w: (�y: + y w))

so it can be rewritten as the super-combina-
tor:

$Y w y = +y w

Then, the original expression is transformed
to:

$Y w y = +y w

(�x: $Y x x) 4

Next, notice that (�x: $Y x x) is also a su-
per-combinator. Assign it the name $X. The
expression then is:

$Y w y = +y w

$X x = $Y x x

$X 4

Finally, since $X 4 is another super-combi-
nator, assign it the name $PROG. The �nal
translated code is comprised entirely of su-
per-combinators:

$Y w y = +y w

$X x = $Y x x

$PROG = $X 4
$PROG

Execution of the translated program is
shown below (note that labels on execution
step arrows identify the reduction actions ac-
complished at each step and subscripts iden-
tify variables involved in the reduction).

$PROG
! $X 4
�x! $Y 4 4
�y;w
! + 4 4
�
! 8

Lambda Lifting During Translation
Instead of lambda lifting prior to conver-
sion to super-combinators, the lambda lift-
ing process can be performed concurrently
with translation. The following algorithm
performs both the lifting and translation.

REPEAT (until there are no more lambda
expressions)

1. Choose a lambda expression that con-
tains no other lambda expressions.

2. Assign an arbitrary super-combinator
name to the selected lambda expression.

3. Assign all bound and free variables
found in the lambda expression body as
the super-combinator's parameters.

Using this algorithm, the expression:

(�x: (�y:+ y x))

would be compiled as follows. The innermost
lambda expression is (�y: + y x), and when
translated, the original expression becomes:

$Y x y = + y x

�x: $Y x
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Then, when (�x: $Y x) is translated the ex-
pression becomes:

$Y x y = + y x

$X x = $Y x

$X

where the �nal entry, $X, invokes the code.
However, eta conversion (x 1.4.3):

$X x
�
$ $Y x

implies that the super-combinators $X and
$Y are equivalent, so the translated code can
be reduced to:

$Y x y = + y x

$Y

Maximally Free Expressions Both of
the translation methods described above in-
volve lambda lifting. The �rst performs the
lifting before translation, and the second per-
forms it during translation. In both cases,
only the free variables are lifted from the ex-
pression. This subsection will show that bet-
ter sharing is possible when lambda lifting
removes the entire sub-expressions contain-
ing free variables rather than just the free
variables.
Sub-expressions that do not contain bound

variables are said to be free expressions. If a
free expression is not contained in any other
free expression it is said to be maximally free.
For example, the underlined sub-expressions
below are maximally free in �x:

� (�x: sqrt x)

� (�x: log 20)

� (�y: �x: (� y y)) (maximally free in � x,
not � y)

Now consider the lambda expression:

(�f:+(f 4)(f 7))(�x:�y:+ y(sqrt x))9) (3)

which translates to the following super-com-
binators when lambda lifting only removes
free variables:

$T x y = + y (sqrt x)
$F = $T 9
$PROG = +($F 4) ($F 7)
$PROG

Notice that the expression sqrt 9 is evaluated
twice during execution of that program:

$PROG
�! + ($F 4) ($F 7)
�! + ($T 9 4) ($T 9 7)
�! + ($T 9 4)) (+ 7 (sqrt 9))
�! + ($T 9 4)) (+ 7 3)
�! + ($T 9 4)) 10
�! + (+ 4 (sqrt 9)) 10
�! + (+ 4 3) 10
�! + 7 10
�! 17

If expression (3) above is recompiled using
lambda lifting to remove maximally free ex-
pressions, evaluation of the sub-expression
sqrt 9 will be shared. Only the following
small adjustments to step 3 of the algorithm
on page 23 are required:

3. Choose a name for each maximally
free expression and then assign both
bound variables and maximally free
expressions as the super-combinator's
parameters.

For example, consider the sub-expression:

�x: �y: + y (sqrt x)

When the innermost abstraction (�y) is pro-
cessed, note that the variable y in the lambda
body is bound and sqrt x is a maximally
free expression. The super-combinator for
�y must be given a name, say $T1. Its max-
imally free expression must also be given a
name, say rootx. Then �y becomes the su-
per-combinator:

$T1 rootx y = + y rootx

and �x becomes

�x: $T1 (sqrt x)
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If the �x super-combinator is given the name
$T2, it becomes:

$T2 x = $T1 (sqrt x)

The entire super-combinator program for ex-
pression (3) is:

$T1 rootx y = + y rootx
$T2 x = $T1 (sqrt x)
$F = $T2 9
$PROG = +($F 4) ($F 7)
$PROG

Instead of instantiating the maximally free
expression, a pointer to the single shared in-
stance is substituted in its place. This idea
was �rst proposed by Wadsworth in 1971
[Wadsworth, 1971] and was adapted to su-
per-combinators by Hughes in 1984 [Hughes,
1984].

It is important to recognize that there is
sharing during execution. Shared expres-
sions are underlined in the execution se-
quence below so they stand out. Because of
the sharing, (sqrt 9) is only evaluated once.

$PROG
�! +($F 4) ($F 7)
�! +($T2 9 4) ($T2 9 7)
�! +($T1 (sqrt 9) 4) ($T1 (sqrt 9) 7)

�! +($T1 (sqrt 9) 4) (+ 7 (sqrt 9))

�! +($T1 3 4) (+ 7 3)
�! +($T1 3 4) 10
�! +(+ 4 3) 10
�! +7 10
�! 17

2.6 Compilation

Compilation performs a large share of the
analysis required to transform high-level lan-
guage programs to machine-executable form.
Consequently, compiled code is easy to inter-
pret and tends to execute quickly. This sub-
section discusses imperative style, source-to-
source, and super-combinator compilers.

Imperative Style Compilers Functional
languages can be compiled in the same man-
ner as imperative languages, but they usually
are not. Two reasons for this are the func-
tional paradigm's use of higher-order func-
tions and the occurrence of free variables in
expressions during lazy evaluation.

Higher-order functions (x 1.3) allow func-
tions themselves to be passed as parameters.
In this way, functions can be used to con-
struct more powerful functions.

Some imperative languages also pass func-
tions (and procedures) as parameters, refer-
ring to them as formal procedures [Fisher
and Leblanc, 1988; Aho et al., 1986; Sebesta,
1989]. Unfortunately, formal procedures
add considerable overhead to the compile
and run-time organization of imperative lan-
guages. Since functional languages rely very
heavily on function parameters, they can ill
a�ord to contend with these cumbersome im-
plementation procedures.

Also, functional-language free variables
(x 1.4.2) are similar to global variables in
imperative languages. Imperative languages
allocate space for both global and local vari-
ables in run-time data areas called activation
records. Compile time addresses that access
these data areas consist of a lexical level des-
ignator (to access the appropriate activation
record) and an o�set (to identify the vari-
able's position in the activation record). If all
variables were passed call-by-value (x 1.4.2),
functional languages could use the activation
record scheme too, accessing the required
free-variable value bindings from appropri-
ate activation records. However, functional
languages use call-by-name, and it is call-by-
name that causes the biggest problem. In
call-by-name, bindings are to expressions not
values. These expressions cannot be stored
in an activation record because they are in
the form of code, not a single value, and
the identity of the expression that will be
bound is unknown at compile time. The few
imperative languages that use call-by-name
store code for the expression (called thunks)
in static memory, and invoke the code when
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the parameter is accessed. Thunks are slow
and ine�cient. They are not an acceptable
alternative for languages that frequently use
call-by-name.
Note, however, that a sophisticated func-

tional compiler could identify sections of code
using only call-by-value parameter passing
and compile that code imperatively.

Source-to-Source Translators An ap-
proach used by Streams and Iterations
in a Single Assignment Language (SISAL)
[Haines and B�ohm, 1991] and some ver-
sions of Haskell [Hudak and Wadler, 1988]
is to translate the functional source code
(e.g., SISAL) to source code in an imper-
ative language (e.g., `C') and then compile
the imperative source to machine executable
form. This method has the advantage that if
the target source is a popular language like
`C', the resulting implementation is highly
portable.
SISAL uses `C' as its target language. Its

translation organization shown in �gure 10
is comprised of a front-end, back-end, and
run-time system [Haines and B�ohm, 1991].
The front-end ensures syntactic correctness,
translates SISAL programs to an intermedi-

ate form called IF1 [S.K.Skedzielewski and
Glauert, 1985]. The back-end outputs an-
other intermediate form called IF2 that in-
cludes storage requirement directives and
code optimizations (such as copy removal).
IF2 is in turn is translated to `C' code which
is compiled in the environment of a special-
ized run-time library. Among other things,
the run-time library generates memory man-
agement calls to the host operating system
which satisfy IF2's storage directives. This
provides the added bene�t of a simple yet
powerful dynamic storage allocation scheme.
The question of course is whether source-

to-source translation sacri�ces performance
as a result of the translation. Timings re-
ported for SISAL in [B�ohm et al., 1991] in-
dicate that it does not. In fact, SISAL's ex-
ecution speed is quite good.

Super-Combinator Compilers An al-
ternative to imperative-style compilation is
to remove free variables using lambda lift-
ing and transform lambda expressions to su-
per-combinators. FPM [Field and Harrison,
1988, Chapter 15] and the G-Machine [Au-
gustsson, 1984; Johnsson, 1984] use this ap-
proach to compilation.
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FPM was originally developed to sup-
port the original Edinburgh version of Hope
[Burstall et al., 1980]. It implements purely
eager evaluation and can be viewed as an op-
timized version of the SECD machine (x 2.2).
Hope code is lambda lifted and translated to
an intermediate form called FC [Baily, 1985]
and then is further translated to compiled
code.

The limitation to eager evaluation is a se-
rious problem for FPM, one that undermines
its usefulness. Since the G-Machine can al-
low both eager and lazy evaluation, it is used
as the implementation example for super-
combinator compilers.

The G-machine was developed at Chal-
mers Institute of Technology, G�oteborg, Swe-
den by Augustsson and Johnsson. It uses
lazy evaluation to execute compiled code,
called G-code, derived from super-combina-
tors. The machine can be adapted to exe-
cute some expressions eagerly. Compilation
is straightforward since there are no free vari-
ables to contend with. The compiled instruc-
tions use a stack to successively instantiate
(x 1.4.2) bodies of a super-combinator pro-
gram. As a consequence of the instantiation,
the program is reduced to normal form [Field
and Harrison, 1988; Peyton Jones, 1987;
Peyton Jones and Lester, 1992].

The following is a list of G-code instruc-
tions along with explanations of their opera-
tion.

� add|Pops the top two items from the
stack, adds them, and then pushes the
result on the stack in their place.

� mkap|Pops the top two items from the
stack and pushes an application node
in their place, with the �rst popped
item as the left-child (function) node
and the second as the right-child (argu-
ment) node.

� push i|Pushes the expression at stack
position i on the stack (stacktop is 0,
stacktop� 1 is 1, : : : , stacktop� i is i).

� pushglobal j|Pushes the global expres-
sion j on the stack.

� unwind 1|Performs a spine search
(x 2.4) starting at stacktop. Pushes the
function found on the stack.

� unwind 2|Consult a table to determine
the number of arguments required by
the function found at the previous in-
struction (unwind 1). Locate those ar-
guments at the right child of applica-
tion nodes proceeding up the spine from
the function towards the root. Pop the
function o� the stack and push the ar-
guments on in its place.

� update k|Place stacktop in temporary
t. Pop k+1 items from the stack. Push
t on the stack in their place.

A lazy super-combinator compilation algo-
rithm is is shown in �gure 11:
To demonstrate the G-machine's opera-

tion, consider the lambda expression:

(�y:+ y y) 3

which can be translated to the following su-
per-combinators (x 2.5):

$D y = + y y

$P = $D 3
$P

which in turn is compiled to the G-Code in-
structions shown in �gure 12.
Execution of those instructions is shown

in �gure 13. This example clearly demon-
strates how instantiation contributes to the
reduction process. Notice that the �rst two
instructions, pushglobal 3 and pushglobal $D,
push the body of super-combinator $P on
the stack. Then, makp makes an applica-
tion node out of it and update 1 replaces $P
with the application node. As a result of
these instructions, $P's body is instantiated
and stacktop is updated so it points to that
application node (which is the root of that
instantiated body).
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1. Start with a super-combinator at the stacktop.
2. Use pushglobal to push super-combinator body on stack.
3. Recursively apply mkap to top two items in stack until all items in the super-

combinator body are combined into a subgraph with stacktop pointing to the
root application node of the subgraph.

4. Use update to replace the super-combinator in 1. above with the root application
node of the super-combinator body.

REPEAT
a. Conduct spine search using unwind 1 to locate a function.
b. IF the function locate is a super-combinator THEN
(1) Use unwind 2 to place super-combinator arguments in order at stacktop.
(2) Use push or pushglobal to push super-combinator body on stack. Push is used

when item is already on stack; pushglobal is used when it is not on the stack.
(3) Apply step 3. above.
(4) Use update to replace the super-combinator in b. above with the root

application node of the super-combinator body.
c. ELSE IF a built-in function is located THEN
(1) Use unwind 2 to place the built-in function arguments in order at the stacktop.
(2) Apply built-in function to arguments and place result at stacktop.
(3) Use update to replace built-in function in c. above with the result.

UNTIL (The expression is evaluated|result is at stacktop)

Figure 11: Super-combinator Compilation Algorithm

pushglobal 3 Push 3 on stack
pushglobal $D Push $D on stack Instantiate
mkap Make application node out of $D 3 body of $P
update 1 Replace $P with its instantiated body
unwind 1 Conduct spine search to locate $D
unwind 2 Locate $D's argument
push 0 Push �rst argument in $D's body on stack
push 1 Push second argument in $D's body on stack Instantiate
pushglobal + Push + on stack body of $D
mkap Make application node out of + 3
mkap Make application node out of + 3 3
update 2 Replace root node with $D's instantiated body
unwind 1 Conduct spine search to locate +
unwind 2 Locate +'s argument Perform
add Perform addition addition
update 2 Replace root node with result

Figure 12: G-Code for (�y: + y y) 3
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The next instruction, unwind 1, performs
a spine search that locates the super-combi-
nator $D. This determines that $D's body,
+ y y, will be the next expression instanti-
ated on the stack. However, before beginning
the instantiation, unwind 2 locates $D's argu-
ment 3. The next three instructions, push 0,
push 1, and pushglobal + add the body ele-
ments to the stack, but notice that instead
of pushing the variable y on the stack, push
0 and push 1 push the argument identi�ed by
unwind 2 instead. The two successive mkap
instructions complete the instantiation, and
update 2 places the root of the instantiated
body at the stacktop.

The cumulative e�ect of instantiating $D 3
and + y y is the completion of a �-reduction
on the original lambda expression. That is,
the lambda body, + y y, is positioned at the
top of the stack with the argument 3 applied
to y. Also, notice that the argument 3 is
shared. Therefore, if it requires evaluation,
the reduction will only be performed once.
The remaining instructions unwind 1, unwind
2, add, and update 1 perform a �-reduction
on + 3 3 and place the result, 6, on top of
the stack.

Combinator compilation schemes repre-
sent an organized approach to compilation.
Implementations like the G-machine require
little overhead in comparison with environ-
ment-based systems such as AST interpreters
(x 2.1) or SECD (x 2.2). The stack used with
the G-machine neatly organizes operations,
and provides the additional bene�t of allo-
cating and de-allocating memory.

On the negative side, although the task
grain size is larger than CL (x 2.3), it is
still small enough to be the subject of crit-
icism. Also, all of the copying and sharing
problems that apply to lambda expression
graph reduction also apply to super-combi-
nator graph reduction (x 2.4).

3 Optimizations

All of the implementation techniques pre-
sented so far have limitations that diminish
their usefulness. Some of these limitations
are listed below.

� \Pure" functional languages do not use
iteration to implement repetition. Since
other repetition methods such as recur-
sion are slower and tend to use more
space than iteration, functional lan-
guages usually are slower and consume
more space than imperative languages
during repetition. Subsection 3.1 below
demonstrates that a technique called tail
recursion elimination can convert some
recursive functions to either iterative or
non-tail recursive functions.

� Although \full" laziness signi�cantly re-
duces copying and the re-evaluation of
expressions, it does not provide for the
sharing of equivalent function calls in
separate parts of a program or equiv-
alent function calls generated during
recursion. Functions such as the Fi-
bonacci function that do not take ad-
vantage of this sharing can have a much
higher order of complexity than those
that do share or their iterative equiv-
alents. Subsection 3.2 describes how
memoization changes the form of a func-
tion so it acts like a memo pad remem-
bering and reusing previously computed
results.

� Multiple instances of the same variable
in a lambda body are usually not shared
if the expression to which the variable is
bound contains free variables (x 1.4.2).
The problem is those free variables will
receive di�erent bindings during the re-
duction process. Subsection 3.3 demon-
strates that the free variables can be
identi�ed and handled separately during
the reduction, allowing other variables
in the expression to be shared.

30



� Reduction steps that could be per-
formed at compile time are delayed until
execution time. Subsection 3.4 demon-
strates that some function de�nitions
can be partially evaluated with respect
to one or more parameters during com-
pilation, saving work at execution time.

� The implementations generally seek to
implement either fully lazy or fully ea-
ger evaluation, whereas a mixed-order
reduction scheme might yield more op-
timal performance. Subsection 3.5 an-
alyzes several mixed-order evaluation
techniques.

3.1 Tail Recursion Elimination

The last thing a tail recursive function does
is call itself [Appleby, 1991; Davie, 1992;
Field and Harrison, 1988; Peyton Jones,
1987]. Computation of a tail recursive func-
tion's value cannot begin until the �nal re-
cursive call is completed. This delays the
computation unnecessarily, wasting time and
consuming space. Consider the following ex-
ample (adapted from [Peyton Jones, 1987])
that sums a list of numbers. Note that n is a
number, ns is a list of numbers, and square
brackets (i.e., [ and ]) enclose lists.

sum [ ] = 0

' (n:ns) = n + (sum ns)

Notice that the recursive call to sum oc-
curs at the end of each reduction step in the
following evaluation of sum [1,2,3]:

sum [1,2,3]

=) 1+(sum [2,3])

=) 1+(2+(sum [3]))

=) 1+(2+(3+(sum [ ])))

=) 1+(2+(3+0))

=) 1+(2+3)

=) 1+5

=) 6

Computation of (1+(2+3)) cannot begin un-
til the �nal tail recursive call (3+0) is com-
pleted.

Either applicative or iterative techniques
can be used to eliminate tail recursion. Both
rewrite the function so it includes a new pa-
rameter called the accumulating parameter
which accumulates operations such as sums
at the beginning (not the end) of recursive
calls. Examples of applicative and iterative
tail recursion elimination are provided in the
following paragraphs.

Applicative Tail Recursion Elimination
It may be desirable to eliminate tail recursion
by translating the tail recursive function to
applicative rather than imperative form (e.g.,
so that the entire translator can be written
in an applicative language).
One applicative solution involves rewriting

the tail recursive function to include an accu-
mulating parameter that stores intermediate
function results. For example, the accumu-
lating parameter acc is included in sum1 be-
low (again, n is a number and ns is a list of
numbers):

sum1 acc [ ] = acc

' acc (n:ns) = (sum1 (acc + n) ns)

Sum1 can be invoked by the following func-
tion call to sum (where L is a list):

sum L = (sum1 0 L)

The revised call to sum [1,2,3] is evaluated
faster and in constant space as follows:

sum [1,2,3]

=) (sum1 0 [1,2,3])

=) (sum1 (0+1) [2,3])

=) (sum1 1 [2,3])

=) (sum1 (1+2) [3])

=) (sum1 3 [3])

=) (sum1 (3+3) [ ])

=) (sum1 6 [ ])

=) 6

Notice that sum1 is applied at the beginning
of each reduction step, and the accumulating
parameter holds intermediate sums. Step-
by-step calculation of the intermediate sums
is forced by eager evaluation but not by lazy
evaluation.

31



Iterative Tail Recursion Elimination
Another imperative method to eliminate tail
recursion replaces the tail recursive call with
a goto statement that transfers control to
the beginning of the tail recursive code with-
out initiating a new activation record. An
accumulating parameter located inside the
iterative loop holds results of the required
operations [Davie, 1992]. For example, the
function sum described above could be trans-
formed to the iterative function sum2 below
(A C-like syntax is used where acc is the ac-
cumulating parameter, L is a list, nil (L) is
true if the list is empty and false otherwise,
head(L) is the head of list L, and tail (L)

is the tail of list L):

int sum2 (L);

list:L;

int acc = 0;

{

top: if nil (L) return acc;

else acc = acc + head (L);

L = tail (L);

go to top;

}

Then sum = sum2 [1,2,3] would compute
6 iteratively with no recursive calls.

3.2 Memoization

Since referential transparency (x 1.2) guaran-
tees that function application cannot cause
side e�ects, a function with a speci�c set of
arguments always reduces to the same nor-
mal form (x 1.4.2), regardless of the number
of times it is evaluated. Rather than reval-
uating equivalent expressions, memoization
changes the form of a function so it can reuse
previously computed results [Michie, 1968].
The memoized function acts like a memo pad
that can be consulted to recall previous com-
putations.

If multiple instances of a function occur
inside the same expression, detection of the
equivalence is easy. For example, a compiler

can detect that the two instances of (f 4)

in:

(f 4) + (f 7) * ( f 4)

are equivalent and emit code to evaluate
(f 4) only once. However, normal compilers
would fail to detect equivalence if the equiv-
alent instances were to occur in di�erent ex-
pressions, particularly if they are widely sep-
arated in the program.
Similarly, equivalent functions applied

during recursive expansion could go unde-
tected. For example, consider the following
Fibonacci function example:

fib 0 = 0

' 1 = 1

' n = (fib (n-1)) + (fib (n-2))

Partial expansion of (fib 5) is shown below:

(fib 5)

) (fib 4) + (fib 3)

) (fib 3) + (fib 2) + (fib 3)

) : : :

Notice that the expansion creates two in-
stances of (fib 3). Since they are created
by di�erent invocations of fib, their equiv-
alence would normally go undetected and
each instance would cause evaluation or re-
evaluation of (fib 3). Revaluation of ex-
pressions can be disastrous. In fib, it causes
time complexity to grow exponentially with
the size of n.
The goal of memoization is to detect all

equivalent function applications in a pro-
gram. The �rst evaluation causes the func-
tion's value to be stored in a temporary data
area. This is referred to as caching. Sub-
sequent equivalent applications access the
cache for the value avoiding recomputation.
A function whose values are saved is called a
cached function and the results that are saved
are called cached values. A directory is used
to record where cached values are stored.
For example, a programmer might iden-

tify Fibonacci as a cached function as follows
[Hudak, 1989]:
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cached memo fib

fib 0 = 0

' 1 = 1

' n = (fib (n-1)) + (fib (n-2))

As is the case with tail recursion elimina-
tion (x 3.1), either imperative or applicative
techniques can be used to perform memo-
ization. Use of the imperative techniques is
generally more powerful, but requires a shift
from applicative to imperative execution in
order to handle memo functions. Imperative
and applicative memoization techniques are
described below.

ImperativeMemo Functions A transla-
tor could convert the applicative function to
an imperative function called a memo func-
tion. For example fib could be converted
to an imperative memo function cache_fib

using the C-like syntax shown below:

int cache_fib (i);

int i;

{

int r;

if present (i,dir)

return value (i,dir);

r = if (i<2) 1

else (cache_fib (i-1)) +

(cache_fib (i-2));

insert (r,i,dir);

return r;

}

where the following de�nitions apply:

� dir|is a directory data structure (e.g.,
array or linked-list).

� present (i,dir)|is a function that
returns true if a previous invocation of
(cache_fib i) has stored its value in
dir at index position i; otherwise, it re-
turns false.

� value (i,dir)|is a function that re-
turns the value stored in dir at position
i.

� insert (r,i,dir)|is a function that
inserts the value r at position i in di-
rectory dir.

Cache_fib behaves as follows. The func-
tion present examines the directory to see
if results for the current function call have
already been calculated. If so, value ac-
cesses that result directly from the directory.
If not, the computation is initiated. When
complete, insert stores the computed value
in the directory so it is available when future
function calls are invoked.

Applicative Memo Functions As was
established earlier, a problem with imper-
ative memo functions is that they require
translation of an applicative function de�n-
ition to imperative format. It may be prefer-
able to use applicative memo functions (e.g.,
if the entire translator must be written in an
applicative language).
The method outlined below can be used

to construct applicative memo functions. It
was originally proposed by Keller and Sleep
[1986] and was adapted to Haskell by Hudak
in [1989].
Functional languages often use data struc-

tures called streams to represent in�nite or-
dered lists of values (or rather semi-in�-
nite lists, because nothing can be in�nite
in the �nite space of a digital computer).
These streams can be viewed as semi-in-
�nite arrays where the integers � 0 (e.g.,
0, 1, 2, 3, : : :) are subscripts of the ar-
ray. Eager evaluation of a stream fails to
terminate, but lazy or \demand" evaluation
returns stream elements one at a time.
If the domain of a function is of integer

type � 0, a stream can be used as the func-
tion's directory. For example, if the function
is (fib n) and dir is a stream representing
the function's directory, the value of (fib i)

for 0 � i � max would be stored in the ith
element of stream dir.
In the example that follows, assume the

function uses constructs called suicidal sus-
pensions [Friedman and Wise, 1976]. That
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means when a function is evaluated for the
�rst time, its value is automatically inserted
in directory dir. Since the value in the di-
rectory will be accessed on subsequent calls
instead of re-evaluating the function, the ex-
pression is said to \commit suicide."
During reduction the cached Fibonacci

function:

cached memo fib

fib 0 = 0

' 1 = 1

' n = (fib (n-1)) + (fib (n-2))

could be translated to:

fib = (cache dir)

where

dir 0 = 1

' 1 = 1

' n = (fib (n-1)) + (fib (n-2))

This causes fib to invoke cache each time
fib is accessed. It is important to note that
cache can be any user-de�ned function that
achieves the implementor's desired results.
For example, cache is implemented as an
array below (the array has similar behavior
characteristics to streams introduced above).

cache dir = \n -> (array(0,max)

[(i,(dir i))| i <- [0..max]]) ! n

Incorporating this cache de�nition yields the
following applicative memo function for fib:

fib n = (array (0,max)

[(i,(dir i)) | i <- [0..max]) ! n

where dir 0 = 1

' 1 = 1

' n = (fib (n-1))+(fib (n-2))

The array dir is instantiated only once
and that instantiation is used for each in-
vocation of fib. Therefore, the same direc-
tory is used for each access to fib. The �rst
access to (fib i) for 0 � i � max causes
dir to compute its value. When evaluation
is complete, the computed value is automati-
cally stored in dir at location i. Subsequent

accesses to (fib i), draws the value directly
from the array (i.e., recomputation is unnec-
essary). Then the accessing expression com-
mits suicide.

Directory Structures Three cache stor-
age schemes can be implemented using either
applicative (\purely" functional) or impera-
tive techniques. A linked-list cache (where
domain elements are accessed by a list search
using an equality test) is able to handle func-
tions with in�nite domains, but the access
times grow linearly with the size of the list.

In contrast, a tuple cache stores cached val-
ues in a �xed-sized contiguous space and ac-
cesses domain elements by index. This places
a limit on the size of the function domain but
function values can be accessed in constant
time. It can also make spacing between range
values sparse, but it does not limit the size
of the range. Tuple cache also requires that
the tuples be mapped to integers. This is not
always possible with strings and other struc-
tures.

A tree organization referred to as tries
cache is able to represent in�nite domains
like the linked-list cache, but the domain el-
ements must have an order (e.g., they are
suitable for comparison with a relational
operator) and it consumes slightly more
space (one pointer per linked-list node and
two per tries node). It has a respectable
log2(directory size) access time when the
tree is balanced.

Tuple cache storage schemes require that
the demanded function arguments be sparse
with respect to space allocated to the func-
tion directory. This is called the sparse ma-
trix problem and leads to unused (wasted)
space in the directory. A solution is to re-
organize the directory to minimize unused
space. This is called an arbitrary argument
structure because entries correspond to ar-
bitrary arguments. Unfortunately, methods
to implement arbitrary structures require ex-
tensive analysis that has rendered them im-
practical so far [Haines and B�ohm, 1991].
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Figure 14: �-Argument Copying

Analysis of Memoization Memoization
is necessary to invoke sharing across function
calls and improve repetition performance
when recursion is used. However it su�ers
from the following problems:

� Caching adds a signi�cant amount of ad-
ministration to the original implementa-
tion design.

� No single cache storage scheme is best
for all situations; it is di�cult to eval-
uate the current conditions and invoke
the appropriate method.

� It may be necessary to periodically
purge large unused data structures or re-
duce them to a more manageable size to
conserve storage space.

� Since the directory is a shared struc-
ture that is both read from and writ-
ten to, access to the same directory el-
ement must be limited to one process

at a time. These access restrictions can
cause bottlenecks and deadlock if inter-
rupts are allowed. The deadlocks must
be detected and cleared.

3.3 �-Argument Copying

During �-reduction, an actual argument is
substituted for the formal parameter, wher-
ever the formal parameter variable appears
in the body of the �-expression (x 2.4).
This substitution is typically accomplished
by copying, and may involve unnecessary
copying if there are multiple instances of the
formal parameter variable in the �-body. For
example, when the �-expression

(�x:+ x x) expr

is �-reduced as shown in �gure 14 (a), its ar-
gument expr is copied twice. Furthermore,
expr must be evaluated twice during the en-
suing �-reduction, duplicating work.
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Copying may be avoided if it is possible
to share a single instance of expr as shown
in �gure 14 (b). However, sharing is compli-
cated if expr contains free variables, because
it will evaluate di�erently depending on the
bindings of those free variables.
If free variables are present, sometimes

a prudent evaluation of the expression will
minimize copying. For example, eager eval-
uation of expr would reduce it to WHNF
(x 1.4.2) prior to the �-reduction, possibly
reducing the size of the copied data struc-
ture.
However, Lamping [1990] notes some �-

expressions require copying regardless of the
evaluation method used. For example,

(�g:g g(�x:x))(�h: ((�f:f f(�z:z))h(�y:y)))

(graphically represented in �gure 15) has two
redexes, �g (outer|reduced �rst using lazy
evaluation) and �f (inner|reduced �rst us-
ing eager evaluation).
If the outer redex is evaluated �rst by per-

forming a �-reduction (x 1.4.3) on �g, its ar-
gument, (�h : : : ), which includes the inner
redex will be applied to the dual instances
of g in the �g body as shown in �gure 16.
Sharing similar to �gure 14 (b) is not possi-
ble, because each �h is bound to a di�erent
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Figure 16: Dual Bindings for �h

argument. Figure 16 demonstrates that the
rightmost �h (�h2) is bound to the argument
�x: x, while the leftmost (�h1) is bound to
the expression that �h2 reduces to (which is
�z: z).

If the inner redex is evaluated �rst, the
same problem is encountered. Eventually,
there will be two di�erent bindings for �h,
so the dual instances of f in the body of �f
cannot be shared.

However, in both cases it is only vari-
ables that are duplicated and receive di�er-
ent bindings that cannot be shared. Dupli-
cate variables, all of which receive the same
bindings, can be shared.

Lamping seeks to exploit these extra shar-
ing opportunities and avoid duplication of
work. To do this he adds a new control struc-
ture to the graph that indicates partial shar-
ing. For example, the sharing of the variables
f and g in �gure 15 is represented by the
triangular fan-in control structure shown in
�gure 17 (where the ? path connects f and g

to the leftmost parent and � connects them
to the rightmost parent). The �-reduction
of �g replaces g with �h (and its associated
structure) as shown in �gure 18.

Next, �h is moved to the top of the fan-in
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control structure and is separated into two
parts (�h and �h0) to re
ect the di�erent
bindings. Occurrences of h in the body of
�h are also separated (into h and h0) with
a fan-out control structure as shown in �g-
ure 19. Notice that most of the graph is
shared. The control structure indicates there
are two bindings for �h (�h and �h0) and the
fan-out structure shows that �h is bound to
h and �h0 is bound to h0.
To implement reduction, Lamping intro-

duces a list of rewrite rules that cover all pos-
sible reduction situations. At any time, sev-
eral di�erent rewrite rule applications may
be present in a graph, and due to referential
transparency, they can be reduced in any or-
der. Therefore, the algorithm is appropriate
for both sequential and parallel implementa-
tions.
This technique is sensible and appears sim-

ple on the surface, but it can become quite
complex. For example, the expression in �g-
ure 15 contains two shared expressions, g and
f . During reduction, each can generate a
number of fan-in control structures, each of
which must be associated with a unique fan-
out structure. The more sharing there is, the
more complex is the control structure. Fur-
thermore, pattern matching is required to
identify where the rewrite rules can be ap-
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Figure 18: �-Reduction of �g

plied. This can be expensive, and the tech-
nique does not even identify all sharable ex-
pressions in a graph. Other techniques such
as applicative caching/memoization are nec-
essary to do that, adding to already abun-
dant overhead costs.
The matter of complexity raises the ques-

tion of whether algorithms such as this one
are truly an improvement over more limited
sharing algorithms. Storage and garbage col-
lection requirements seem to be reduced be-
cause less copying is required, but overhead
(e.g., to support pattern matching) undoubt-
edly reduces these gains. It is even unclear
whether methods such as this one execute
faster. Increased complexity certainly raises
a specter of doubt. Unfortunately, perfor-
mance comparisons are not available to allay
those doubts.

3.4 Partial Evaluation

Partial evaluation reduces a functional pro-
gram using static compile-time inputs to a
residual program that is intended to have
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more desirable run-time performance than
the original program. For example, assume
a program p requires several inputs to com-
plete execution, and some of those inputs, s,
can be applied statically, while the remain-
ing inputs, d, must be applied dynamically.
Applying s to p produces a residual program
r, or p s = r, where r ful�lls r d = p s d.
When r is run with a series of dynamic

inputs d1; d2; : : : ; dn, more e�cient execu-
tion results can be achieved than if each of
p s d1; p s d2; : : : ; p s dn is run independently
instead. If the execution of p happens to re-
peat the static computations, there can be
a reduction in execution time, even if r is
applied only once [Holst and Gomard, 1991;
Takano, 1991].
For example, the Ackerman program:

ack m n = if m == 0 then n+1

elseif n == 0 then (ack (m-1) 1)

else(ack (m-1) (ack m (n-1)))

partially evaluated by applying the static
value 2 to m generates the following residual
program:

ack2 n = if n == 0 then (ack1 1)

else (ack1 (ack2 (n-1)))

ack1 n = if n == 0 then (ack0 1)

else (ack0 (ack1 (n-1)))

ack0 n = n+1

Unfortunately, residual programs are only
valid for the speci�c static inputs that are
selected. If other static inputs are desired,
a new residual program must be produced.
Also, either the user or the compiler must
generate the residual program. If the user
does it, e�ort is diverted away from the prob-
lem solving task and if the compiler does it,
translation complexity is increased. Perhaps
the biggest problem, however, is that, if lazy
evaluation is used, execution speed is slow
and if eager evaluation is used, the partially
evaluated program may not terminate.

3.5 Mixed-Order Evaluation

There are good reasons to use both eager and
lazy evaluation [Field, 1990]. This type of
evaluation is referred to as hybrid or mix-
ed-order evaluation. John Field notes that
hybrid schemes use the least amount of steps
yet still allow component sharing.
For example, given that I is the identity

function, consider N � N1N2, where N1 �
�x: (x w) (x z) and N2 � �y: (I y). Fig-
ure 20 (a) uses purely normal order or lazy
evaluation, whereas �gure 20 (b) uses mixed-
order evaluation.
Notice that mixed-order evaluation uses

one less reduction step in �gure 20. The dif-
ference is that the shared argument �y: (I y)
is applied lazily in the second step of the lazy
evaluation example, whereas it is reduced ea-
gerly in the second step of the mixed-order
evaluation example.
Consequently, mixed-order evaluation can

be used to improve performance. Some
methods used to invoke mixed-order evalu-
ation are listed below.

User Annotations Hudak suggests using
a language implementation that is lazy, ex-
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Figure 20: Evaluation of Shared Expressions

cept the syntax allows users to mark (anno-
tate) expressions with a hasher (#) to in-
voke eager evaluation [Hudak, 1986a; Hudak,
1986b]. His rationale is that educated users
can make prudent decisions on which expres-
sions to annotate. Some proponents of user
annotations do not feel that compilers are ca-
pable of making the same informed decisions.

Compiler Annotations In contrast, Bur-
ton chooses to annotate intermediate-code
application nodes as either @L for lazy, or
@E for eager [Burton, 1984]. Their assign-
ment at the intermediate-code level implies
the compiler will insert the annotations, but
no formal method to e�ect those decisions is
included in the description.

Burton's seeks to control the size of data
structures by prudently labeling application
nodes. For example, if there are no other as-
signment considerations and eager evaluation
will terminate (i.e. is strict) and reduce the
size of an application node's data structure,
label the node as eager. If there are no other
considerations, and eager evaluation will not
terminate (i.e. is not strict) or it will increase
the size of the application node's data struc-
ture, label the node as lazy. Burton calls
this evaluation scheme Mixed-Order Evalua-
tion to distinguish it from Normal- and Ap-
plicative-Order Evaluation.

Strictness Analysis It is possible to de-
termine which application nodes can safely
be reduced eagerly through a procedure
called strictness analysis. C. D. Clack, Si-
mon Peyton Jones and others have proposed
techniques that allow compilers to identify
and annotate strict functions and function
arguments [Clack and Peyton Jones, 1985b;
Peyton Jones, 1987]. As a consequence,
strict function arguments can be evaluated
eagerly without violating lazy semantics.
This can dramatically improve the perfor-
mance of lazy implementations [Langendoen,
1993].
A function that always requires an argu-

ment is said to be strict on that argument
(x 1.3). More formally, assume a function f

has n arguments x1, x2, : : : , xn, and xi is
one of them (where 1 � i � n). Function f

is strict on argument xi i�:

(f x1 : : : xi�1 ? xi+1 : : : xn) � ?

where ? is a non-terminating expression. A
function that is strict on all of its arguments
is said to be a strict function.
The strictness analysis method in [Peyton

Jones, 1987] assumes that each argument xi
is in turn ? (while the other arguments are
assumed to terminate). In each case, if f
can be shown to be ? then f is strict on
that argument and the argument can safely
be evaluated eagerly. If not, f is not strict
on that argument and the argument should
be evaluated lazily.
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Strictness can be computed by converting
functions to Boolean expressions that evalu-
ate to false if the functions are strict for a
given set of argument inputs or true if they
are not. For example, the following algo-
rithm is adapted from [Peyton Jones, 1987].
Given an argument of the function

(f a1 a2 : : : an) � expr

for n > 0, the following determines whether
f is strict on that argument (assume _ is log-
ical or and ^ is logical and):

1. Select an argument ai where 0 < i � n

and assume it does not terminate. Non-
termination is represented by the value
false (e.g., ai = false).

2. All other arguments may or may not
terminate, but to ensure the termina-
tion of f is dependent only on ai, as-
sume they do terminate, where termi-
nation is represented by the value true
(e.g., aj = true where 0 < j � n and
i 6= j).

3. Apply the Boolean values to all argu-
ments in sub-expressions of expr as fol-
lows:

(a) A constant sub-expression always
terminates so it is assigned the
value true.

(b) Any sub-expression of the form
e1 op e2 (where op is a binary
arithmetic operator) terminates if
e1 or e2 terminates (i.e., if e1 ^ e2
terminates).

(c) Any sub-expression of the
form if e1 then e2 else e3 ter-
minates if e1 terminates and e2 or
e3 terminates (i.e., if e1 ^ (e2 _ e3)
terminates).

As a practical example consider the func-
tion:

g p q r = if p then (q+r) else (q+p)

Assume p fails to terminate but q and r do
terminate (e.g., p = false, q = true, and
r = true). Application of the algorithm
rules transforms g to:

g p q r

) (p ^ true) ^ ((q ^ r) _ (q ^ p))

) p ^ (q ^ (p _ r)

Now, substituting p = false, q = true,
and r = true yields:

g false true true

) false ^ (true ^ (false _ true))

) false

Therefore, when p does not terminate, g also
does not terminate, so g is strict on p. Simi-
larly:

g true false true ) false

g true true false ) true

Therefore, g is strict on q, but g is not strict
on r.
This method assumes that the function

contains no free variables (x 1.4.2). For that
reason, it works well when applied to lambda
lifted expressions such as super-combinators.
Complications also arise when strictness

analysis is applied to recursive functions
since at any point during evaluation informa-
tion may be required that is currently being
computed [Langendoen, 1993; Peyton Jones,
1987; Hughes, 1990]. One solution is to com-
pute successive approximations incorporat-
ing more re�ned information at each step.
For example, at �rst all arguments are as-
sumed to be non-strict. This information
is propagated through the tree and yields
a subset of the arguments that are strict.
The second traversal yields more strict ar-
guments, and so on until all strict arguments
have been detected. This limit, often called
the �xed point, is very time consuming to
determine.
Although the above techniques determine

which arguments to evaluate, further com-
piler analysis can be performed to determine
just how far to evaluate the argument based
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on the function applied and the data-struc-
ture of the argument. For example, if the
function is empty and the strict argument is
a list, there is no need to evaluate individual
components of the list. On the other hand,
if the function is performs summation, all
members of the list must be reduced to val-
ues before the function is applied. The eval-
uation transformer model takes the function
and data-structure of list type arguments
into consideration during strictness analysis
[Langendoen, 1993; Burn, 1991].

Multitudes of other strictness analysis
schemes have been proposed. For exam-
ple, refer to [Mycroft, 1981; Hall and Wise,
1987; Nielson, 1987; Kuo and Mishra, 1987;
Wadler, 1988].

In some cases, fully eager evaluation is
a better alternative than fully lazy evalua-
tion and vice versa. Mixed-order schemes
can capitalize on the advantages of each and
avoid their disadvantages. Most mixed-order
evaluation schemes involve an implementa-
tion that is lazy except strict expressions are
marked (or annotated) for eager evaluation.
Hudak [1986a; 1986b] allows the programmer
to specify those annotations and thus con-
trol the evaluation, whereas, Burton [1984],
Clack and Jones [1985b; 1987] apply compiler
annotations transparent to the programmer.

4 Parallel Implementa-

tion Techniques

Because of referential transparency (x 1.2),
the evaluation of a reducible expression (re-
dex) does not interfere with the evaluation
of any other redex. Since they do not inter-
fere with one another, redexes may be evalu-
ated in parallel. This is desirable since it im-
plies that no new language constructs must
be added to enforce synchronization [Peyton
Jones and Lester, 1992]. Implementations
that can in fact parallelize these independent
components of work could achieve very high
levels of performance. For that reason, par-

allel implementations are being actively re-
searched.

Much of the information presented in ear-
lier sections of this survey also applies to par-
allel implementations. For example, many
parallel implementations use an intermediate
representation based on lambda calculus. It
is also likely that one of the sequential eval-
uation methods (x 2) will be applied to in-
dividual processors in a multiprocessor sys-
tem, and that one or more of the optimiza-
tion techniques (x 3) will be used to improve
multiprocessor performance.

However, parallelism introduces some
problems which are very di�erent from those
encountered in sequential implementations.
The remainder of this section is devoted to
describing methods used to invoke parallel
tasks (x 4.1); demonstrating how the par-
allelism can be viewed as either conserva-
tive or speculative in nature (x 4.2); de-
scribing various parallel memory organiza-
tions (x 4.3); identifying problems caused
by the blocking and resumption of parallel
tasks (x 4.4); analyzing task and data dis-
tribution issues (x 4.5), investigating the im-
plications of task size in parallel implemen-
tations (x 4.6); discussing methods used to
reclaim garbage (x 4.7); accessing data as
aggregates rather as individual components
(x 4.8); and applying vectorization to pro-
gram components (x 4.9).

Wherever possible, the techniques are cor-
related with the features found in actual im-
plementations. The implementations are Ap-
plicative Language Idealized Computing En-
gine (ALICE) [Darlington and Reeve, 1981],
Abstract Machine for Parallel Graph Re-
duction (AMPGR) [George, 1989], Flagship
[Watson and Watson, 1986; Watson and
Watson, 1987; Banach et al., 1988], GAML
[Maranget, 1991], Graph Reduction in Par-
allel (GRIP) [Peyton Jones et al., 1987;
Clack and Peyton Jones, 1985a; Hammond
and Peyton Jones, 1991], Highly Distributed
Graph-Reduction (HDG) [Kingdon et al.,
1991], Parallel Experimental Reduction Ma-
chine (HyperM) [Barendregt et al., 1992],
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Parallel ABC (PABC) [Plasmeijer and van
Eekelen, 1993; N�ocker et al., 1991], Paral-
lel Abstract Machine (PAM) [Loogen et al.,
1989], Parallel Functional Language (Par-
Al
) [Hudak, 1986a; Hudak, 1986b; Hudak,
1989], Parallel SML [George and Lindstrom,
1992], Qlisp [Goldman and Gabriel, 1988;
Goldman and Gabriel, 1989], Streams and
Iterations in a Single Assignment Language
(SISAL) [B�ohm et al., 1991], and <�,G>
[Augustsson and Johnsson, 1989].

4.1 Invoking Parallelism

While parallelism is implicit in functional
languages, not all of it is useful parallelism.
There are several ways to determine which
tasks are invoked in parallel. Each method
handles the problem of useful tasks di�er-
ently. For example, random implementa-
tions blindly select tasks without regard to
their usefulness; explicitly annotated imple-
mentations require the programmer to des-
ignate parallel tasks by annotating them,
again without regard to their usefulness; cur-
rent implicitly annotated systems use com-
piler generated strictness annotations (x 3.5)
to invoke only useful tasks; and structure ori-
ented systems rely on program structure to
determine parallel tasks, not all of which are
useful. Each of these alternatives is described
in greater detail below.

Random Parallelism If the invocation of
parallelism is dependent on a random selec-
tion process such as picking arbitrary compo-
nents from a pool of tasks, that parallelism
is referred to as random parallelism.

ALICE and Flagship both invoke paral-
lelism randomly. They represent program
graph nodes as packets and then processors
select these packets arbitrarily from a pool.

Random parallelism has the advantage of
being simple, but lacks the discipline of or-
ganized reduction methods and therefore can
be very ine�cient.

Explicit Annotations Explicit annota-
tions are special constructs added to lan-
guage syntax that allow programmers to in-
voke parallelism. For example, Parallel SML
invokes parallel tasks with the spark primi-
tive. The statement:

spark expression

invokes the expression on an available pro-
cessor. GAML, PAM, PABC, ParAl
, Qlisp,
and <�,G> use similar explicit annotations
to invoke parallel tasks.
ParAl
's annotations include the capabil-

ity to specify processor numbers. The state-
ment:

expression on proc n

invokes the expression on processor number
n.
Qlisp includes a propositional parameter in

its annotations that allows parallelism to be
either invoked or suppressed. For example:

spawn prop expression

invokes the expression in parallel with the
current task if prop evaluates to true (non-
zero) or evaluates the expression on the same
processor as the current task if prop evalu-
ates to false (zero).
Qlet is another means of explicitly invok-

ing parallel tasks in Qlisp. It has the form:

qlet prop ((x1 arg1): : : (xn argn)).body

In this statement, arg1 : : :argn are invoked on
separate processors if prop evaluates to true
or they are all evaluated on the same pro-
cessor as the current task if prop evaluates
to nil (i.e., qlet behaves like a normal let
expression).
If prop evaluates to the special symbol

eager, arg1 : : :argn are invoked on separate
processors and the body of the qlet is also
invoked in parallel. This means that if the
body requires any unevaluated arguments
during execution, it must block until they are
evaluated.
An advantage of explicit annotations is

that the programmer maintains control over
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processor activities. The primary disadvan-
tage is that the programmer must worry
about parallelism, so parallelism is not trans-
parent to the programmer.

Implicit Annotations Implicit annota-
tions are applied to the program intermedi-
ate code by the compiler. Recall that Bur-
ton annotates intermediate code application
nodes as either eager, @E , or lazy, @L (x 3.5).
Usually, an application node's left child is
a function and the right child is the argu-
ment, so @E means evaluate the argument
eagerly and @L means evaluate the argument
lazily. Burton also applies a parallel annota-
tion, @P , that behaves in the same manner
as @E except the argument in @P is sparked
immediately on another processor [Burton,
1984].
A strictness analysis technique proposed

by C.D. Clack and Simon Peyton Jones uses
the compiler to identify strict arguments and
annotate them for eager evaluation (x 3.5).
In a parallel system, when the annotation
is encountered, the argument can be trans-
ported to another processor for evaluation in
parallel.

Strict arguments sometimes annotated
with an exclamation point. Actually, [Pey-
ton Jones, 1987] suggests applying strict-
ness annotations to function nodes, argu-
ment nodes, or both depending on the sit-
uation. For example, in �gure 21 (a) the
function node $F in the super-combinator:

$F $A1 $A2

is annotated, while in �gure 21 (b) @1 (the
application node associated with argument
$F's �rst argument $A1) is annotated. Al-
though both annotations indicate that $F is
strict on $A1, $F! implies that $F is strict on
all arguments (e.g., $A1 and $A2), while @1!
indicates $F is only strict on $A1.
Both function and argument annotations

are useful. For example, in the expression

(if $C $T $F) $A

@2

� @
@1 $A2

� @
$F ! $A1

@2

� @
@1 ! $A2

� @
$F $A1

(a) Function (b) Argument

Figure 21: Annotations for $F $A1 $A2

if $T is strict and $F is not, there is no way to
annotate the application node for argument
$A correctly. If the condition $C is true, $A
can be evaluated in parallel with the if func-
tion. If $C is false, it cannot be. The so-
lution here is to annotate the $T! function
node as shown in �gure 22 (a). The function
reduces to ($T!) $A if $C evaluates to true,
or ($F) $A if $C is false.
Conversely, if $T and $F are both strict,

annotation of $A's application node as shown
in �gure 22 (b) is useful. It invokes evalua-
tion of the argument $A in parallel with the
if statement.

@
� @

@ $A
� @

@ $F
� @

@ $T!
� @

if $C

@!
� @

@ $A
� @

@ $F
� @

@ $T
� @

if $C

(a) Function (b) Argument

Figure 22: Annotations for (if $C $T $F) $A

AMPGR, GRIP, HDG, and SISAL all in-
voke parallelism with implicit annotations.
Implicit annotations require more complex

compilers than explicit annotations, but the
programmer's task is easier. Parallelism is
transparent to the programmer.

Structure-Oriented Parallelism can also
be derived from a program's structure. For
example, if the program uses a divide-and-
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conquer algorithm, whenever division takes
place, new parallel tasks can be invoked.
This is referred to as structure-oriented par-
allelism. However, only HyperM uses this
approach to parallelism.

Structure-oriented parallelism is reason-
ably simple to implement. However, it can
only be applied to programs with the requi-
site structure. If the program's structure is
not appropriate, it must be transformed to
the required structure. This complicates the
programming process and can adversely ef-
fect reliability.
Figure 23 summarizes methods used by

current functional programming language
implementations invoke parallelism.

Parallelism Implementation

Random ALICE
Flagship
Parallel SML
ParAl


Explicitly Annotated <�,G>
systems GAML

PAM
PABC
Qlisp
AMPGR

Implicitly Annotated GRIP
HDG
SISAL

Structure-Oriented HyperM

Figure 23: Invocation of Parallelism

4.2 Conservative and Specula-
tive Parallelism

The process of making reduction expressions
(redexes) available to a processor is called
sparking tasks. The term spark is intended to
convey the image of a lighted match touch-
ing a redex. The `�re that the match causes'
(e.g., execution of the redex) spreads when
execution invokes (sparks) other redexes. At

program start, the program's root redex is
sparked, and then as other redexes become
executable and there are processors to ac-
commodate them, they are sparked too.

Conservative Parallelism The sparking
of tasks only when it is certain they will be
needed is referred to as conservative paral-
lelism. The e�ect of conservative parallelism
is similar to lazy evaluation in sequential im-
plementations. Both invoke tasks only when
they are needed. For example, consider the
function:

if e1 then e2 else e3 (4)

where e1 is a conditional (Boolean) expres-
sion, e2 is executed on a true condition, and
e3 is executed on a false condition. Only one
of e2 and e3 needs to be evaluated. Which
one is not known until e1 is evaluated. Con-
servative parallelism holds o� sparking e2
and e3 until e1 has terminated, and then
sparks only one of them. Unless it is shared,
the other expression is discarded.
The problem with conservative parallelism

is that some delayed tasks eventually are
needed, either because evaluation of the cur-
rent function or another sharing function
sparks them. When a need for them is es-
tablished, late evaluation must be initiated.

Speculative Parallelism The sparking of
tasks when they may or may not be needed is
referred to as speculative parallelism. The ef-
fect of speculative parallelism is similar to ea-
ger evaluation in sequential implementations.
Both invoke tasks that may not be needed.
For example, in expression 4 above, specu-
lative parallelism would spark e1, e2, and e3
in parallel, so all three could be in reduced
form when they are needed by the if state-
ment. Unfortunately, sometimes speculative
parallelism evaluates unneeded tasks. If the
unneeded task is non-terminating, it would
cause unnecessary program non-termination.

Comparison of Conservative and Spec-
ulative Parallelism The e�ects of conser-
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Argument Eager Evaluation Lazy Evaluation

Evaluation Conservative parallelism Overly conservative parallelism
required No wasted e�ort No wasted e�ort
Evaluation Speculative parallelism Possibly overly conservative parallelism
might be Possibly wasted e�ort No wasted e�ort
required
Evaluation Wasted parallelism No parallelism
not required Wasted e�ort No wasted e�ort

Figure 24: Speculative versus Conservative Parallelism

vative and speculative parallelism are shown
in �gure 24. As the �gure indicates, if it can
be determined that the evaluation of argu-
ments is required, both eager and lazy eval-
uation invoke conservative parallelism with
no wasted e�ort. However, lazy evaluation is
overly conservative. It may delay some tasks
and therefore bypass parallelism opportuni-
ties.

When a technique such as compile-time
strictness analysis is unable to determine
whether or not the evaluation of arguments
is required, eager evaluation invokes specula-
tive parallelism on them and lazy evaluation
invokes conservative parallelism. Speculative
parallelism proves worthwhile if the argu-
ments are eventually needed, but wastes ef-
fort if one or more of the arguments are never
needed. Speculative evaluation of lengthy
unneeded tasks could tie up processors, deny-
ing access to other higher priority tasks.
Worse yet, speculative tasks could fail to ter-
minate, removing their processors from fur-
ther productive activity. Again, conservative
parallelism simply postpones evaluation of
speculative arguments until they are needed,
perhaps bypassing some parallelism opportu-
nities.

The eager evaluation of unneeded argu-
ments is speculative parallelism at its worst
where none of the speculation is productive.
Lazy evaluation just ignores the unneeded ar-
guments|it produces no parallelism but no
e�ort is wasted either.

The inclusion of speculative parallelism
signi�cantly complicates the design of a par-
allel scheduler. Speculative schedulers usu-
ally require a priority scheduling scheme that
is fair to equal priority tasks, and must be ca-
pable of canceling unneeded tasks. Conser-
vative schedulers have less need to prioritize
tasks and are never required to cancel tasks.

Implementation Alternatives The fol-
lowing summarizes the alternatives for con-
servative and speculative implementations.
Assume that eager tasks are invoked in par-
allel.

� Purely Eager Evaluation|Has all of the
bene�ts and problems associated with
maximum speculation. Only ALICE
uses this alternative and it is ine�ec-
tive at controlling unnecessary specula-
tive tasks.

� Lazy Evaluation with Eager Annotations
on Strict Tasks|Implicitly annotated
systems such as AMPGR, GRIP, HDG,
and SISAL use this alternative. Tasks
annotated by the compiler are sparked
on available processors, but since they
are strict tasks they are sure to be
needed. Therefore, implicitly annotated
systems implement purely conservative
parallelism.

� Lazy Evaluation with Eager Annotations
on Some Strict and Non-Strict Tasks|
Explicitly annotated systems such as
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Parallel SML, ParAl
, <�,G>, GAML,
PAM, and PABC use this alternative.
The annotated tasks are sparked on
available processors. Other than AL-
ICE, explicitly annotated systems are
the only current implementations that
implement speculation, and the pro-
grammer makes the speculation deci-
sions.

Only <�,G> and Qlisp attempt to
address the problem of killing un-
needed tasks created during speculation.
<�,G> uses its garbage collector to re-
move them from the system.

Qlisp also uses the garbage collector,
but since the garbage collector is usu-
ally called upon infrequently, two other
explicit task deletion methods are pro-
vided.

The �rst, kills explicitly named pro-
cesses. For example:

kill-process name

kills the process identi�ed by name.

The second method kills more general
processes. Its behavior is modeled af-
ter the catch and throw primitives used
in Common Lisp. Recall that Com-
mon Lisp tree searches can be termi-
nated e�ciently when the desired ele-
ment is found by having the locating
task invoke a throw to a catch in the ini-
tial search generation task. This causes
termination noti�cation to proceed from
the central location of the root node.

Throw and catch have the same purpose
in Qlisp except in Qlisp the tasks may
be running in parallel. Therefore, throw
and catch may initiate the termination
of speculative tasks.

Each time a structure-oriented system
divides the problem in two it speculates
on those two components. HyperM par-
allelizes every task that results from the
division and has no mechanism to kill
unneeded speculative tasks.

Figure 25 summarizes how randomly par-
allel, explicitly annotated, implicitly anno-
tated, and structure-oriented systems ad-
dress conservative and speculative paral-
lelism.

Compiler Speculation Compiler annota-
tions applied by AMPGR, GRIP, HDG, and
SISAL invoke the eager evaluation of strict
tasks in parallel (e.g., tasks that are known
to be needed at compile time). Therefore,
they invoke purely conservative parallelism.
Unfortunately, conservative implementations
occasionally bypass parallel opportunities.
On the other hand, speculative implementa-
tions sometimes waste processor time or un-
needed tasks may fail to terminate. An in-
tegrated approach might exploit the advan-
tages of one while avoiding the disadvantages
of the other.

Explicitly annotated systems solve the
problem by granting the programmer author-
ity to speculate. This emboldens the pro-
grammer with power, but it also leaves spec-
ulation at the mercy of the programmer, a
choice that may or not be wise.

If a programmer can do it, why can't a
compiler do the speculating? Some feel that
this would be a step in the wrong direction.
They argue that the compiler is not sophisti-
cated enough to make speculation decisions
whereas humans are, or even if the compiler
can be made sophisticated, the administra-
tive costs would eat away any derived bene-
�ts. In any case, compile-time (and possibly
even run-time) speculation is an alternative
that should be investigated. Maybe it is a
viable alternative in some cases.

In [Peyton Jones, 1989], Simon Peyton
Jones makes the following observations about
integrated (e.g., speculative and conserva-
tive) systems:

� Conservative tasks should run in prefer-
ence to speculative tasks. For example
in the expression if e1 then e2 else e3, the
conditional e1 is conservative and should
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Implementation Conservative/ Method used to eliminate
Speculative unnecessary speculative tasks

Randomly Parallel Speculative None
Conservative N/A

Qlisp uses either the garbage
collector or explicit annotations
to delete speculative tasks

Explicitly Annotated Speculative <�,G> uses the garbage collector
to delete speculative tasks
In all other explicitly annotated
systems, speculative tasks are not
deleted at run time

Implicitly Annotated Conservative N/A
Structure-Oriented Speculative None

Figure 25: Conservative/Speculative Parallelism

have priority over the speculative tasks
e2 and e3.

� Speculative tasks may become conser-
vative. For example, when the condi-
tional e1 completes execution, one of e2
and e3 will become conservative, and the
other will become unneeded (unless it is
shared). The priority of a speculative
task should be increased when it changes
to a conservative task. Speculative tasks
that become unneeded should be killed
(along with their o�spring).

� Speculative tasks should be scheduled
fairly so that the speculation e�ciently
explores all alternatives.

Is speculation really wise? Well, some-
times it is and sometimes it is not. If a num-
ber of speculative tasks are sparked at the
same time, and each of them in turn sparks
a 
ood of subtasks, the system could become
overloaded. The subtasks could exhaust a
resource such as memory.
Even if there are su�cient resources to

support a large number of tasks, what if some
of the initial tasks are found to be unneeded?
In the worst case, what if all of them are
unneeded? Each must be killed along with

their subtasks. In what order do you kill
them? What if one or two are forgotten? The
compiler must be reasonably sophisticated to
handle situations like these. Furthermore,
the killing process will likely consume huge
amounts of processor time.

The killing of even a small number of
speculative tasks is a problem. Some say a
garbage collector could serve the dual role of
removing garbage from the graph and killing
unneeded speculative tasks [Wadler, 1987].
However, by the time the garbage collector
responds, tasks may have consumed (wasted)
many resources. For example, large chunks
of processor time could be wasted.

A rule prohibiting the invocation of non-
terminating speculative tasks is impossible to
enforce. If it is possible to determine whether
a speculative task will terminate, then it is
possible to solve the halting problem, a clas-
sic unsolvable problem in computing theory.
Maybe massively parallel systems are the an-
swer. If non-termination were encountered in
such a system it would merely incapacitate a
few of the many processors. This incapaci-
tation may not block or impede the program
solution process.

The designers of current parallel im-
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plementations certainly considered compile-
time speculation. The fact that none chose
to include it in their design is testimony to
the di�culty of the task.

4.3 Memory Organization

Memory organization is an important con-
sideration when designing parallel functional
systems. Although many memory designs
are possible, the three alternatives consid-
ered in this paper are single address space
or shared-memory, multiple disconnected ad-
dress spaces or distributed memory, and a
combination of the two called hybrid mem-
ory.

Shared-Memory Shared-memory is a sin-
gle storage space available to a number
of processors through a single addressing
scheme. If memory access times for each of
these processors is the same, the system is
said to be a uniform-access shared-memory
system; otherwise, it is a non-uniform-access
system [Quinn, 1993].
GAML, <�,G>, and Qlisp are imple-

mented in uniform-access shared memory
on the Sequent Balance, Sequent Symme-
try, and Alliant FX/8 machines respectively,
while AMPGR and Parallel SML use the
BBN Butter
y's non-uniform-access shared-
memory organization. ALICE and Flagship
arrange the Transputer's distributed memory
organization into a single non-uniform-access
shared space.
In graph-based systems, shared-memory is

a convenient place to locate the graph. In-
dividual processors access graph components
associated with their redex using simple ma-
chine operations and update the graph when
reduction is complete. Therefore, as execu-
tion proceeds, shared-memory contains the
current state of the graph. Referential trans-
parency guarantees that processor operations
will not interfere with one another.
Normally, a single processor queue is also

located in shared-memory and all processors
access it for tasking. This centralizes con-

trol and makes it possible to evenly balance
processor workloads (i.e., provide load bal-
ancing). Unfortunately, only one processor
can access shared queues at a time, so access
must be coordinated by some type of shared
locks. Contention for shared locks increases
as the number of processors accessing them
increases. This places a limit on the number
of processors that can be added to shared-
memory systems and still enjoy satisfactory
performance gains.

Caching Locality of reference refers to the
proximity of data and tasks that access that
data. Good locality means most data ref-
erences are local (i.e., on the same processor
and in the same memory as the task), so data
is referenced quickly. With bad locality, data
must frequently be communicated from pro-
cessors remote to the accessing task.
If each processor has local memory in ad-

dition to shared address space, one way to
improve locality of reference is to store local
copies of remote graph nodes in the sparking
processor's local memory. This is called data
caching [Peyton Jones, 1989].
These data caches are di�erent from im-

perative language caches in the following
ways:

� The most likely unit of caching is the
graph component associated with a re-
dex. Since redexes can vary in size
this means the cache must accommodate
variable rather than �xed length data.

� Unlike imperative cached data, func-
tional graph components are usually not
stored in contiguous cache locations.
This complicates the transfer and fetch-
ing of cached data. Therefore, the la-
tency of a cache miss may be substan-
tial.

If graph components are shared, cache co-
herence can be a problem, but it is less of
a problem in graph reduction systems than
imperative systems. The �rst task to eval-
uate a graph node can mark it with an ac-
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cessed annotation. Other tasks encountering
that annotation will block until the �rst task
completes its evaluation, updates the eval-
uated node with its result, and clears the
blocking annotation. This means the cache
should use a write-through policy so the an-
notation is entered in and removed from the
global graph.

Distributed Memory In distributed me-
mory systems, each processor has its own lo-
cal memory. Non-local access is possible only
by passing messages from one processor to
another.

PAM, PABC, and HDG are implemented
in distributed memory on the Transputer.

Since there is no shared-memory to store
the program graph in, the graph is normally
divided into components and distributed
among the available processors. Then each
processor locally reduces its assigned compo-
nent.

Since each graph component could contain
a number of redexes, each processor must
have its own task scheduling queue. This is a
more decentralized form of task control than
that described above for shared-memory sys-
tems. The immediate bene�t of decentral-
ized control is that processors do not have to
compete with each other for access to shared
locks. The disadvantage is decentralized con-
trol requires explicit interprocessor commu-
nication to access non-local data, transfer
results, and evenly distribute the processor
workload during execution.

Referential transparency can reduce the
level of communications. For example, if
each processor receives an unshared graph
component, there may be no need to synchro-
nize or otherwise communicate with other
processors until the graph component has
been reduced to normal form (x 1.4.2).
Even then, the required communication only
blocks links between the communicating pro-
cessors. Other processor links remain free to
handle other communication requirements in
parallel.

Hybrid Memory Hybrid systems orga-
nize memory into both shared and dis-
tributed address spaces. The motivation for
doing this is that if both organizations are
available, the best features of each can be
employed.

The following two alternatives can be used
to implement hybrid memory systems.

1. Processor memories are organized into a
single shared space, except part of each
processor's memory is dedicated to a lo-
cal cache that is not available to other
processors. Collectively, the local caches
form a distributed space. This o�ers the
advantages of centralized addressing and
control in the shared space and faster ex-
ecution (if remote addressing is unneces-
sary) in the local processor memories.

GRIP implements this alternative using
MC68020 processors and SISAL imple-
ments it on the nCUBE2.

2. A number of local processor memories
can be arranged into n memory clusters.
Memory organization within each clus-
ter is shared, but the organization be-
tween clusters is distributed. The ad-
vantage of this organization is it pro-
vides a good tasking hierarchy. Small
tasks can be executed quickly in a single
processor's local memory and medium-
sized tasks can be executed in a cluster's
shared-memory with no need for remote
accesses. Only large-sized tasks overlap
cluster boundaries and require remote
access.

HyperM implements this alternative us-
ing 4-processor memory MC88000 clus-
ters.

Figure 26 summarizes memory organiza-
tion alternatives used by current functional
programming language implementations.
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Memory Organization Implementation Hardware

Uniform-access shared space <�,G> Sequent Symmetry
GAML Sequent Balance
Qlisp Alliant FX/8

Non-uniform-access shared space AMPGR BBN Butter
y|
Parallel SML MC68020

Distributed arranged into non- ALICE
uniform-access shared space Flagship

PAM Transputer
Distributed space PABC

HDG
Each processor has a local memory
cache. Collectively, the processor Up to 20 circuit
caches form a distributed-memory. GRIP boards each contain-

Hybrid Processor memories outside the ing 4-MC68020 pro-
cache are connected into a single cessors and one IMU
large shared-memory space.

SISAL nCUBE 2
Distributed among clusters, HyperM Several 4-processor
shared within clusters MC88000 clusters

Figure 26: Memory Organization

4.4 Task Blocking and Resump-

tion

In spite of referential transparency, there are
still two occasions where the blocking and re-
sumption of tasks is necessary [Peyton Jones,
1989]. First, in a distributed organization
tasks normally block when they access data
on a remote processor. When the data be-
comes available, the blocked task is resumed.
Second, graph nodes are frequently shared.
To avoid redundant evaluation, only one task
should be allowed to reduce a shared compo-
nent. Others should block upon attempting
evaluation, to be resumed when the blocking
process updates the graph structure.

Distributed-memory implementations like
PAM, PABC, HDG and SISAL all block
when remote nodes are accessed, and all par-
allel implementations address the redundant
evaluation problem. Therefore, virtually all
implementations resort to some form of task
blocking and resumption. Normally, a �eld

in the accessed expression's root node identi-
�es that the expression is either shared or
remote. Access to a remote node usually
blocks the accessing task immediately, to be
resumed when the required data overwrites
the blocking node.

If the node is shared, the �rst accessing
task is allowed to continue, but it invokes a
locking mechanism that blocks further access
to that node while evaluation is in progress
[Peyton Jones, 1987; Peyton Jones, 1989;
Field and Harrison, 1988]. Frequently, the
blocked processes are added to a list origi-
nating at another �eld in the root node data
structure. When evaluation completes and
the root node is rewritten, blocked processes
are reactivated (e.g., by adding the list of
blocked processes to the active tasking pool).

The following are blocking and resumption
alternatives:
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Noti�cation Model In the noti�cation
model, the parent blocks when a value is
needed from a child. When the child has the
value, it noti�es the parent and the parent re-
sumes execution. The parent can also block
on a noti�cation count and require noti�ca-
tion from several children before unblocking.
Blocking the parent may be unnecessary if
the child has not begun to evaluate the de-
sired task. For this reason, the noti�cation
model can be ine�cient.

Evaluate and Die Model In the eval-
uate-and-die model, the parent attempts to
evaluate the graph as though it never created
a child. If the child has �nished the eval-
uation, the parent simply accesses the up-
dated value. If the child has not started the
evaluation, the parent evaluates the graph as
though the child was never created. In the
latter case, if the child task is not shared it
becomes an orphan. An advantage of eval-
uate-and-die is the parent blocks only if the
child is currently evaluating the sub-graph.
GAML and <�,G> use the evaluate and die
model.

Signal Set Noti�cation ALICE and
Flagship place reducible packets in an active
pool. Selection of a function packet causes
the packet to be rewritten if the function ar-
guments are resolved, or blocked and added
to a suspended pool if the arguments are un-
resolved. Blocked packets are in the signal
set of the unresolved argument packets. Each
time an argument is resolved, the signal set is
used to notify the blocked packet. When all
arguments are resolved, the blocked packet is
transferred from the suspended to the active
pool.
The ALICE and Flagship signal set mech-

anism is not designed to eliminate the redun-
dant evaluation of shared nodes, but it can
easily be adapted to do so. Multiple func-
tion packets can identify a particular packet
as one of its arguments. All of the referencing
packets are in the signal set of the argument.
If the argument is not resolved, referencing

packets will block. When the argument is re-
solved, all referencing packets (both blocked
and unblocked) are noti�ed.

Interrupt Noti�cation Interrupts can be
used to coordinate blocking and resumption.
For example, SISAL implements blocking re-
sumption as follows: When a remote refer-
ence is encountered, a request is sent to the
processor containing the remote node and a
new thread is added to the top of the request-
ing processor's activation stack. When the
requested value returns, it will invoke an in-
terrupt handling routine that adds the value
and a presence bit to a value array that is in-
dexed by frame number. Upon reactivation,
the requesting thread checks the value array
for the presence bit using its frame number
as an index. If the presence bit is not set, the
thread blocks again and another new thread
is added to the activation stack. This pro-
cess repeats itself until the requesting thread
�nds its presence bit set. It then accesses the
value from the value array (again using its
frame as an index) and continues execution.

Possibly Shared Nodes GAML reduces
the scope of the evaluate-and-die problem
by identifying nodes that can participate in
sharing. It limits blocking and resumption
consideration to only those nodes. Blocking
and resumption overhead need not be ap-
plied to other nodes. The trade-o� here is
an increase in compile-time complexity for
improved execution speed and simplicity.

Indirection Nodes HDG adds two new
node types to the graph structure to facili-
tate sharing. The �rst is an input indirec-
tion node. It contains a reference count and
points to a shared node in the evaluating pro-
cessor's memory. With respect to blocking
and resumption, it alerts evaluating process
that the node is shared internally. Evalua-
tion of the shared node applies the result to
all referencing components.
The second is an output indirection node

which points to a shared node on a re-
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Blocking and Resumption Method Implementation

Blocks on evaluation of function packets with unresolved ALICE
parameters. Argument signal set reactivates blocked packets. Flagship
Uses interrupts to implement both blocking and non-blocking SISAL
communications. Remote references are coordinated by interrupts.
Restricts blocking consideration to possibly shared nodes GAML
(determined at compile time).
Output indirection node points to shared external reference. Input HDG
indirection node contains reference count and points to shared
internal node.
No blocking. Shared expressions are evaluated eagerly prior to HyperM
distribution.
Blocks for futures and critical sections. Both implicit and explicit Qlisp
resumption is provided.

Figure 27: Task Blocking and Resumption

mote processor's memory. This output indi-
rection extends blocking and resumption to
distributed-memory. It is HDG's main con-
tribution to improving sharing. In contrast,
implementations like PAM may re-evaluate
remotely shared components.

Eager Evaluation Prior to Distribution
HyperM evaluates shared components ea-
gerly prior to sparking them on remote clus-
ters. No work is duplicated because any du-
plication candidate is already reduced when
the redex containing it is sparked. There-
fore, blocking to prevent duplication caused
by sharing is unnecessary. This simpli�es ex-
ecution issues at the expense of some loss of
parallelism during eager evaluation.

Futures and Critical Sections In Qlisp,
every new process has a data structure as-
sociated with it that identi�es whether the
process is evaluated or not. Processes that
are not yet evaluated are called futures. Task
bloking in Qlisp takes place either when one
process requires the value of an incomplete
future or when when a process wishes to ac-
cess a busy critical section. Task resumption
is either implicitly or explicitly invoked.

Implicit resumption takes place when fu-
tures are accessed. For example, if prop eval-
uates to true in:

qlet prop ((x1 arg1): : : (xn argn)).body

any other process accessing body will block
until the future (associated with body) is re-
alized (i.e., arguments of the qlet are all eval-
uated).
Since qlambda expressions of the form:

(qlambda prop lambda-list.body)

are atomic, only one process at a time can
evaluate them. Others block and await their
turn (resume implicitly).
Qlisp also provides for explicit resumption.

For example;

qwait(future)

causes a future to be invoked and blocks the
calling process until the future is realized.
Qlisp also provides two type of locks to ex-

plicitly protect critical sections. The �rst,
called a spin lock, causes blocked processes
to loop repeatedly (busy-wait) awaiting en-
try to the critical section. The other, called
a sleep lock removes blocked processes from

52



the processor and places them in a waiting
queue.
Figure 27 summarizes blocking and re-

sumption alternatives unique to some current
functional programming language implemen-
tations.

4.5 Task and Data Distribution

The even distribution of tasks among proces-
sors is an important issue in parallel design.
To improve data access times, this distribu-
tion should also locate data in close proxim-
ity to the tasks that access that data. In this
case the graph can be viewed as data (a re-
source) that is reduced by a task (executable
instructions).
In uniform-access shared-memory systems

where all processors have uniform access to
memory, it makes little di�erence where task-
ing pools and data are located. However,
in non-uniform access shared-memory and
distributed-memory systems, the location of
tasking pools and resources in di�erent pro-
cessor memories could signi�cantly degrade
performance.
Resource access times can be improved in

distributed and non-uniform access shared-
memory systems if the task scheduler and
resource allocator communicate with one an-
other when making processor assignments
[Haines and B�ohm, 1991]. For example,
when a task is assigned to a particular pro-
cessor, the data it will use should be located
in that processor's memory or in the mem-
ory of a nearby processor. However, early
data assignments may become less appealing
as changes caused by the initiation of new
tasks and task completions occur.
The same thing goes for the early assign-

ment of tasks. In fact, it may become nec-
essary to transfer tasks from one processor
to another in order to balance the work load
among processors. This is referred to as load
balancing or task migration. Load balanc-
ing schemes are normally either sender initi-
ated or receiver initiated [Haines and B�ohm,
1991].

In sender initiated migration, the sender
detects that the number of tasks in its
scheduling queue awaiting execution is above
a certain threshold and either o�oads some
of the tasks randomly to another processor
(blind migration), or makes an intelligent de-
cision regarding the processor to send the
tasks to (coordinated migration).

In receiver initiated migration, the re-
ceiver detects that the number of tasks in its
scheduling queue is below a certain threshold
and either requests tasking directly from a
random processor (blind migration) or makes
an intelligent decision on which processor
to receive tasking from (coordinated migra-
tion).

Di�usion migration represents a compro-
mise between blind and coordinated migra-
tion. Transfers are coordinated, but less co-
ordination is necessary because the transfer
is only between a �xed set of nearby proces-
sors (e.g., with the north, east, south, and
west neighbors in a mesh). The idea is to
provide some transfer alternatives and yet
keep transfer decisions simple and the tasks
in close proximity to their data. Blind and
coordinated migration allows tasks to jump
anywhere in the processor structure.

If the resources are not moved along with
the tasks that use them, access times can in-
crease signi�cantly (because communications
distance between tasks and resources is in-
creased). On the other hand, moving the re-
sources with the tasks increases the complex-
ity of load balancing and requires the transfer
of more data during migration.

No matter how load balancing is imple-
mented, tasks should only be allowed to mi-
grate a �xed maximum number of times to
prevent thrashing [Peyton Jones, 1989].

The remaining paragraphs in this sub-
section describe how current uniform-access
shared-memory, non-uniform-access shared-
memory, distributed-memory, and hybrid
memory implementations address task and
data distribution issues.
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Uniform-Access Shared-Memory Sys-
tems The proximity of tasks and their data
is not an issue in uniform-access shared-
memory systems because the time to ac-
cess data does not change with its placement
in memory. Therefore, only task migration
must be considered in shared systems.

<�,G>|The <�,G> machine allocates and
de-allocates space for the graph as large
chunks of heap space located in shared-
memory. When explicit sparking annota-
tions are encountered during execution, the
new tasks are added to a global tasking pool.
Each processor has a local cache of su�cient
size to store a local tasking pool and in the
form of linked frames. Processors are tasked
from the local pool. When a local pool is
empty, the associated processor queries the
global pool for work. The processors execute
tasks until both the local and global pools
are empty.

After initial distribution, tasks do not mi-
grate from their assigned processors.

Access to the global pool is not protected
so tasks are occasionally lost. This is not a
problem because the evaluation transformer
method requires parents to evaluate their
children if they are not already evaluated.

The programmer controls the number of
tasks and task grain size in <�,G> with ex-
plicit sparking annotations.

GAML|GAML's task and data distribution
is similar to <�,G>. Data is allocated and
de-allocated in large hunks to �xed memory
locations in the shared-memory heap. When
sparked by explicit annotations, tasks are
routed to the least busy processors, but no
further migration is performed to balance a
lopsided load. However, GAML limits the
programmer's ability to control the number
of tasks and task grain size by overriding ex-
plicit annotations whenever the system load
is heavy.

Qlisp|Qlisp adds new tasks to a single
queue located in shared-memory. Processors
request work from the queue and then exe-

cute their assigned task to completion before
requesting another. Neither data nor tasks
migrate after their initial assignment. A sin-
gle cache located in shared-memory is avail-
able to all processors.

Non-Uniform-Access Shared-Memory
and Distributed Systems It is in non-
uniform access shared-memory and dis-
tributed systems where coordination of task
and data migration becomes important. It
would be best if tasks were moved along with
their data, but that alternative can be ex-
pensive. Di�usion migration is often used
as an alternative where tasks are moved but
not the data. Reasonable proximity is main-
tained because tasks can only migrate to
neighboring processors, one hop away from
data that is left behind.

AMPGR|A two-level scheduling strategy is
used where tasks are initially assigned to
the local tasking pools of available proces-
sors. Their execution may spawn other tasks
that over�ll the local pool. In that case, ex-
cess tasks are forwarded to a global tasking
pool located in non-uniform access shared-
memory where they are redistributed.

Data distribution is coordinated with the
distribution of tasks. When a task is sparked
at a processor, the graph reducer �rst tries
to allocate space for the data in the proces-
sor's local memory. If no space is available,
the data is allocated in the heap of a remote
processor. Once space for data has been as-
signed, however, there is no facility to move
it with tasks during load balancing.

AMPGR uses two mechanisms to control
the number of tasks and to increase task
grain size. First, one of a function's child
tasks is executed on the sparking processor
(i.e., at home). This reduces communications
and ensures the sparking processor has work
to perform while other processors are eval-
uating the other children. Also, the total
number of system tasks is limited. When the
limit is reached, processors evaluate tasks in-
line rather than sparking them to other pro-
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cessors.

Parallel SML|Like AMPGR, a two-level
scheduling strategy initially assigns tasks to
the local tasking pools of available proces-
sors. Their execution may spawn other tasks
that over�ll the local pool. The excess tasks
are forwarded to a global tasking pool lo-
cated in non-uniform access shared-memory
where they are redistributed.

ALICE and Flagship|In ALICE and Flag-
ship, distributed memory space is orga-
nized into a non-uniform access shared space.
Nodes of a program graph are represented
as packets and these packets are placed into
a pool in shared-memory. Processors select
these packets randomly and attempt to mod-
ify them according to some packet rewrite
rules. A function packet can be rewritten
when all of its necessary arguments are avail-
able. Rewriting discontinues when the root
node packet is rewritten with a value.

In this design, the packet function is the
task and its arguments are the data. Before
a function packet is rewritten, the required
arguments must be transferred from global
memory to the evaluating processor's local
cache. The further away the arguments are,
the more communication time is required.

In Flagship, load balancing information is
communicated along with packets. When a
packet is routed to a processor for evalua-
tion, it is automatically routed to the least
busy processor. Following routing, the load
balancing information is readjusted. Unfor-
tunately, this scheme does not take local-
ity into consideration. Therefore, Flagship
also attaches a desired processor number to
each packet (e.g., processor nearest to mem-
ory containing packet arguments). However,
when system load is heavy, the processor rec-
ommendation is ignored.

In Flagship, there is an active pool and
a holding pool located in each processor's
memory. Active pool tasks in excess of some
prede�ned limit are reassigned to the holding
pool where they are ignored until the load
reduces to a level where they can be reacti-

vated.

PAM|PAM derives parallelism from explicit
user annotations and uses a distributed-
memory organization. Each processor has
its own graph reducer process and a separate
communications process to distribute tasks.
Initially, the program graph is distributed
among the system processors. The graph re-
ducer evaluates its graph component using
the communications process to fetch remote
arguments. The communications process is
also responsible for task migration to e�ect
load balancing. A simple di�usion migration
strategy is used. An idle processor queries its
neighbors for work. After any migration, the
task is at most one hop away from its data.

The user explicitly controls the number of
tasks and the task grain size.

PABC|Like PAM, PABC derives its paral-
lelism from explicit user annotations and uses
a distributed-memory organization. Further-
more, tasks and data are distributed as graph
components at program start and each pro-
cessor has a graph reducer process to reduce
its graph component. PABC di�ers from
PAM in that when each processor's commu-
nications unit transfers graph components to
other processors, it is on a sub-component
basis rather than a single node basis. There-
fore, multiple data items can be fetched in
a single communications request and data
can be migrated with the associated tasks.
Unfortunately, communications complexity
is increased and the task of maintaining shar-
ing is complicated.

The user explicitly controls the number of
tasks and the task grain size.

HDG|Like PAM and PABC, HDG employs
a distributed-memory organization, but it
derives its parallelism from implicit compi-
ler-derived annotations, not explicit annota-
tions. Task distribution is regulated by two
tasking pools per processor. The processor
is assigned work from the active pool, while
freshly sparked tasks are added to the mi-
gratable pool.
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Tasks can migrate but data does not.
When the processor needs work, it checks
its own active pool �rst, its own migratable
pool next, and the migratable pool of a di-
rect neighbor last. This amounts to di�usion
migration.

Hybrid Memory Systems Data position
is unimportant in uniform-access shared-
memory systems, but it is critical to good
performance in non-uniform access shared
and distributed-memory systems. On the
other hand, contention for shared queues is a
problem with shared-memory systems while
there is no queue contention in distributed
systems. In order to gain the bene�ts of
both memory organizations, some designers
blend them both into a hybrid memory struc-
ture. Some examples of this approach are de-
scribed below.

SISAL|The nCUBE 2 SISAL implemen-
tation arranges one megabyte of each pro-
cessor's memory into a single large shared-
memory space. The remaining `local' mem-
ory at each processor is not directly address-
able by other processors. Collectively, the
local memories form a distributed space.

SISAL compiles its source programs to `C'
code, which in turn is compiled to machine
executable code. Therefore, there is no graph
data structure at execution time. Instead,
there is machine code and the data it ac-
cesses. To enhance performance, the code
and scalar data structures are replicated in
the local memory of all processors.

Vector data structures such as arrays,
records, and streams are allocated in blocks
of variable sizes and then are distributed
equally across the shared-memory space. In
an attempt to enhance locality, the size of
blocks is variable, normally tied to the data
size required by a loop.

Each processor has its own local ready
queue. New tasks are added to the local
queue whenever the currently executing task
encounters a spawn or fan out instruction.
Task activation records consist of pointers to

the code and arguments for that task. Simple
scalar parameters are passed by value while
vector values are referenced where they are
in shared-memory. Processes are blocked on
remote reference, and are resumed by inter-
rupt when the data becomes available.

The current SISAL implementation per-
forms no task or data migration. Conse-
quently, the load can become quite unbal-
anced and locality is a problem. A `greedy'
sender-initiated load balancing scheme is be-
ing considered by the designers.

GRIP|The GRIP design includes both
shared- and distributed-memory. Groups
of four-processor memories are connected
together into an Intelligent Memory Unit
(IMU), and IMUs are connected by a network
into a single shared memory space. How-
ever, part of each processor's local memory
is devoted to a cache which is not accessible
by other processors. Collectively, these local
memory caches form a distributed-memory
space.

There are global tasking queues located at
each IMU and local tasking queues located
in each processor's cache. Processors receive
direct tasking from the local queue.

The current con�guration of the program
graph resides in shared-memory. Each time
a processor accesses a global node, a copy of
the node and its substructure is is created
in cache and is subsequently reduced there.
Therefore, data is transferred to processors
along with their tasks. Since the copying
may duplicate work, the IMU sets a lock bit
when a node is accessed the �rst time and
adds subsequent accessing tasks to a wait-
ing list. When the node is updated in global
memory, the waiting tasks are added to the
IMU tasking pool where they are distributed
to local processors.

New nodes and the tasks associated with
them are created in local cache, not in the
IMU. Any time a local task completes, the
entire reduced local sub graph is used to up-
date the global graph. This 
ushing mecha-
nism prevents remote pointers from appear-

56



Placement of New task Tasked Tasking Remarks
Graph Tasking placement From

Pool(s)

Local Spill-over to global AMPGR
pool pool|then redis- Parallel

Shared Local & Local tributed SML
memory global pool

Global Processor requests <�,G>
pool work Qlisp

Distributed to least GAML
Global| busy processor ALICE

Shared active & Normal load|distri-
memory/ suspended Global Local buted to processor
locally Local| active active with best locality Flagship
cached active & Heavy load|distri-
packets holding buted to least busy

processor
Local Local Local Di�usion scheduling PABC

pool pool PAM
Distributed Local| If local active pool is

active & Local Local empty|consult local HDG
migratable migratable active migratable pool �rst,

then remote
migratable pools

Shared Tasks exported to
memory/ Local & global pool for redis-
locally global Local Local tribution when load GRIP
cached pool pool is low
redexes

Local No Load Distribution SISAL
Low
complexity

Distributed/ |local Local
shared Cluster cluster cluster Sandwich|divide- HyperM
within High pool and-conquer
clusters complexity

|remote
clusters

Figure 28: Data Placement and Tasking
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Migration of
Tasks Data

Excess local tasks spill over Attempt to allocate data space in local AMPGR
into global pool and are memory �rst, then in remote memory
redistributed Parallel SML

<�,G>
Distributed from global pool; GAML
no further migration ALICE

No Migration Flagship
Qlisp

Access neighbor migratable
pools if no local tasks HDG
Di�usion migration PAM

Data migrates with tasks PABC
Local tasks exported to Redex copied from global pool to local GRIP
global pool for redistribution cache when assigned to processor; SISAL
when load is low redex copied from local cache to global

pool when redistributed
Assigned to cluster; no Transmitted to remote cluster with HyperM
further migration task; no further migration

Figure 29: Task and Data Migration

ing in the global graph.

When the system load is low enough, ex-
cess tasks are transferred from the local pool
to the global IMU pool for redistribution and
the sub graphs associated with those tasks
are used to update the global graph. Conse-
quently both tasks and data migrate at con-
siderable communications expense.

HyperM|HDG memory space is shared
within four-processor clusters, but each
cluster forms a processing element in a
distributed-memory space.

Each processor runs a divide-and-conquer
reducer task called the sandwich. A disad-
vantage of this organization is that the pro-
gram must either designed in or translated
to divide-and-conquer form. Also, HyperM
employs a hierarchical scheduling strategy
that requires a complexity measure as input.
The user provides this complexity measure
by explicitly annotating the program tasks.
For example, annotations for a sorting rou-

tine could range from very simple to complex
based on the length of the list to be sorted.
Simple to moderately complex tasks are

evaluated on the sparking processor's clus-
ter where they can exploit shared-memory,
while course grained tasks are distributed
among two or more clusters. Since shared ar-
guments are evaluated prior to distribution,
both tasks and data can migrate to remote
clusters with no fear of generating remote
pointers.
Data placement and tasking information

for current functional programming language
implementations is summarized in �gure 28.
Task and data migration information is sum-
marized in �gure 29.

4.6 Task Grain Size

A large factor in the e�cient operation of a
functional programming language implemen-
tations is the average task size that proces-
sors must accommodate. As task grain size
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varies, so does the total number of tasks.
An increase in grain size decreases the to-
tal tasks; a decrease in grain size increases
the total tasks. Communication costs and
context switching overhead imply that grain
size should not be too small. Conversely, too
large a grain size could reduce the tasks to a
number less than the number of processors,
failing to utilize the entire system.
Excessively large grain sizes are seldom a

problem with functional programming lan-
guage implementations. Normally the grain
size is far too small and must be increased
in size to be acceptable. The alternatives as
grain size are:

� A single graph node|Which is far too
small.

� A single redex|Which still is too small.

� A graph component that contains a
number of redexes|Acceptable with the
right number of redexes.

One of the following methods can be used
to address grain size:

� Do nothing|The easiest alternative
from an implementation standpoint, but
costly in terms of e�ciency.

� User annotations|Most explicitly an-
notated systems can increase task size
by having the user annotate larger tasks.

� In-line tasks|Instead of sparking tasks
to new processors evaluate them on the
parent processor. This increases the
number of redexes executed by the par-
ent processor.

� Cuto� tasks|This is similar to in-lining
except the tasks that would have been
sparked are not scheduled for execu-
tion on the would-be sparking proces-
sor. The tasks could be evaluated in-line
on the parent processor if the evaluate-
and-die model is used. Otherwise, they
are either lost or are placed in a holding
queue to return and aggravate the grain
size problem again later.

ALICE, Flagship, HDG, and SISAL do
nothing to control grain size. SISAL notes
that the small grain size hides remote laten-
cies (an argument similar to the one used
to support RISC hardware). ALICE and
Flagship aggravate the grain size problem by
scheduling tasks at the node level.

PAM, PABC, and <�,G> use both user
annotations and cuto� to control task size.
GRIP also uses cuto� but GRIP and
<�,G> invoke inadvertent in-lining since
the evaluate-and-die model causes tasks dis-
carded by children to be eventually evaluated
by the parent.

Qlisp also uses explicit annotations to con-
trol task size. Recall that propositional pa-
rameters are included in statements that in-
voke parallel tasks such as:

spawn prop expression

If the propositional parameter is true, the
appropriate tasks (the task represented by
expression in this case) are invoked in paral-
lel with the current task. If the propositional
parameter is false, the appropriate tasks are
evaluated in-line with the current task. Con-
sequently, the propositional parameter can
be viewed as an explicit annotation to control
task grain size.

HyperM is not classi�ed as an explicitly
annotated system, but it allows the user to
apply complexity annotations that can be
used to adjust the grain size.

On the other hand, GAML is an explic-
itly annotated system, but it is the compiler
that invokes its parallel tasks based on sys-
tem load. Tasks that are not sparked are
evaluated in-line. AMPGR evaluates tasks
in line by not sparking tasks that are already
in head normal form, retaining the �rst child
process on the parent processor, and evalu-
ating tasks in-line when a certain threshold
is reached.

Figure 30 summarizes the task grain size
methods used by current functional program-
ming language implementations.
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Grain Size Control Implementation

ALICE
None Flagship

HDG
SISAL

User Annotations and Cuto� PAM
PABC

User Annotations and Cuto�| <�,G>
Inadvertent In-Lining
Cuto�|Inadvertent In-Lining GRIP
Complexity Annotations HyperM
In-Lining (By Compiler) AMPGR

GAML
In-Lining (By User Annotations) Qlisp

Figure 30: Grain Size Control

4.7 Garbage Collection

Since most Functional Programming Lan-
guage Implementations apply some form of
graph reduction and the graph is most likely
allocated in heap, garbage collection is an im-
portant consideration. The functional lan-
guage implementations in this paper either
do nothing about garbage or they apply one
or a combination of the following techniques:
reference counting, mark and sweep, and
stop and copy. Each of these techniques is
summarized below.

� Do Nothing|One way to deal with
garbage is to simply ignore it. Any im-
plementation that adopts this alterna-
tive does so in the interest of faster exe-
cution speed, sacri�cing space, or maybe
because it's the easiest alternative to de-
sign.

� Reference Counts|Reference Counting
allocates a counter �eld to all nodes in
the graph. Each structure's counter is
initialized to zero and is incremented by
one every time another structure refer-
ences it and is decremented by one each
time a reference is terminated. If the
reference count is zero, the structure is

garbage and can be reclaimed. Theoret-
ically, if the count is greater than zero,
the structure is referenced by some other
structure and is therefore not garbage.
However, this fails to consider cycles
that may be disconnected from the pro-
gram structure. Nodes involved in the
cycles may be garbage but reference
counting garbage collection would not
reclaim them.

� Mark and Sweep|Mark and Sweep al-
gorithms allocate a marked/unmarked
�eld to all nodes in a graph. Initially all
nodes are initialized to unmarked. Then
all paths from the root node are followed
changing the �eld of each structure en-
countered along the way to marked.
When �nished, all unmarked nodes are
garbage. A major problem with mark
and sweep is that it is extremely di�cult
to �nd the pointers to follow in variable
sized nodes.

� Stop and Copy|Stop and copy algo-
rithms normally compact the graph into
one contiguous data area. The com-
paction requires time, but once complete
garbage does not occur in the compacted

60



Garbage Collection Method(s) Implementation

None AMPGR
Reference Counting ALICE

PAM
Mark-and-Sweep Qlisp
Reference Counting (Primary) Flagship
Mark-and-Sweep to Reclaim Cycles
Stop and Copy GAML

<�,G>
Parallel SML

Stop and Copy|Local HDG
Reference Counting|Global PABC
Stop and Copy|Local and Global GRIP
Stop and Copy|Clusters HyperM

Figure 31: Garbage Collection

structure. Another bene�t is that allo-
cation of new nodes simply amounts to
advancing the free space pointer by the
size of the new node. Stop and copy is
the most widely used garbage collector
due to its speed and ability to work with
variable-sized nodes.

Only AMPGR chooses to ignore garbage
collection. ALICE and PAM use reference
counting, Qlisp uses Mark-and-Sweep, and
GAML, <�,G>, Parallel SML, and HyperM
use stop and copy. HyperM has a hybrid
memory organization so it applies the algo-
rithm by task within its shared-memory clus-
ters.
All of the other implementations use two

garbage collectors to reclaim space. Flag-
ship uses reference counting as its primary
garbage collector but invokes mark and
sweep occasionally to reclaim cycles. HDG
and PABC both use stop and copy as a fast
local memory garbage collector and reference
counting as a global collector.
GRIP uses two stop and copy garbage col-

lectors. Recall that GRIP's memory organi-
zation is hybrid. One compacts local mem-
ories quickly, while the other to compacts
global memory at a slower pace.

Garbage collection methods used by cur-
rent functional programming language im-
plementations are summarized in �gure 31.

4.8 Aggregate Memory Access

Most modern computer architectures are de-
signed to access memory one word at a time.
They are called von Neumann architectures
in recognition of John von Neumann, one of
the originators. The word-at-a-time limita-
tion is frequently referred to as the von Neu-
mann bottleneck, and languages designed for
von Neumann architectures are called von
Neumann languages [Backus, 1978].
Unfortunately, the von Neumann bottle-

neck prevents many current computers from
accessing and manipulating multiple data
items expeditiously (such as vectors and
lists). This type of data is commonly re-
ferred to as aggregate data. In order to han-
dle aggregate data e�ciently, modi�cations
to the von Neumann architecture are neces-
sary (e.g., the addition of parallel memories
and multiple processing elements). However,
even when parallel hardware is available, lan-
guage features may not allow programmers
to exploit them. A good parallel language
should include these aggregate features.
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Combining Forms For that reason, John
Backus includes combining forms such as
construction and apply-to-all in his func-
tional language FP [Backus, 1978]. Con-
struction applies a list of functions to a single
data object and apply-to-all applies a single
function to aggregate data objects.

Backus chooses to limit FP to a small num-
ber of �xed combining forms arguing that
this limited number can be applied in orga-
nized and manageable framework, whereas a
greater number would only lead to chaos.

Although APL is not a functional lan-
guage, it also uses combining forms. Un-
like FP, APL's combining forms are numer-
ous and very general. This enables APL to
apply compact and succinct syntax when ma-
nipulating arrays and lists [Iverson, 1962].

Recognizing that the combining forms
used by FP and APL are well suited for pro-
cessing aggregate data, Budd and Pandey
have proposed the following �-based scheme
to exploit them on parallel architectures
[Budd and Pandey, 1991].

Since pure �-calculus contains no simple
aggregate data forms, they have extended
the basic set of lambda de�nitions to include
a kappa-form (used to construct data aggre-
gates) and a sigma-form (used to reduce data
aggregates).

Collection (�) Form|The collection or �

(kappa) form uses labels to identify the com-
position and size of data aggregates. It is
formed as follows:

� size (� x: expression)

The size �eld is used to store the
data aggregate's size. It has the form
(dim; length). For example, (0; 1) is a struc-
ture with dim (e:g:; dimension) = 0 and
len(e:g:; length) = 1, or a constant. Size

(1; 200) identi�es a one-dimensional array of
length 200.

The �-form's lambda expression deter-
mines the contents of the structure identi�ed

in the size �eld. For example:

� (1; 200) (�p: p+ 1)

is a one-dimensional array of size 200 initial-
ized with the numbers 0 to 199.

The �-form is a single value (structure)
that can be manipulated as an aggregate like
the value of any other � expression. When it
is manipulated in conjunction with other ag-
gregates, the �-form imposes no speci�c or-
dering on the evaluation of its elements. This
is important when generating parallel code
because it allows 
exibility.

For example, the outer product is a com-
posite function meaning it consists of one
function, �, that takes another dyadic scalar
function, op, as its argument. Outer prod-
uct performs op on all pairs of elements
taken from the two arguments. For exam-
ple, if op is �, outer product applied to vec-
tors � (1; 4) (� p:p) � 0 1 2 3 and
� (1; 4) (� q:q + 1) � 1 2 3 4 can be ex-
pressed in Budd and Pandey's notation as:

(� (1; 4) (� p:p)) � :� (� (1; 4) (� q:q+1)) �

(1 2 3 4) � : � (0 1 2 3) �

1 1 1 1
1 2 4 8
1 3 9 27
1 4 16 64

The �rst row is 10 11 12 13 (the �rst element
of 1 2 3 4 to the power of the elements in
0 1 2 3); the second row is 20 21 22 23 (the
second element of 1 2 3 4 to the power of the
elements in 0 1 2 3); and so on.

Translation of (a � :op b) for this example
is shown in �gure 32.

The 10th element (i.e., element (2; 2)),
would be computed as follows:

(a:item (10 div 4)) � (b:item (10 mod 4)) �
(a:item 2) � (b:item 2) � 3 � 2 � 9

Reduction (�) Form The reduction or �
(sigma) form is used to reduce aggregate data
types to a single scalar value. It consists of a
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�: a; b (� ((a:dim+ b:dim); (a:len; b:len))
(� p: (a:item (p div a:len)) op (b:item (p mod b:len)))) �

�: a; b (� ((2; (4; 4)) (� p: (a:item (p div a:len)) � (b:item (p mod b:len))))

Figure 32: Translation of (a � :op b)

function (e.g., addition) and a data generator
as follows:

� fun limit (� x: expression)

During reduction, the �-expression is repeat-
edly evaluated with arguments for the formal
parameter (i.e., x above) ranging from 0 to
lim. The function speci�ed by the fun �eld
is then applied to the set of values reducing
them to a scalar value (e.g., the �-expression
results are summed).

4.9 Vectorization

Many languages such as FORTRAN-90 and
APL allow programmers to apply standard
mathematical operations such as addition
and multiplication to aggregate data objects
like arrays (instead of just applying them to
scalar values). These aggregate objects are
called vectors. For example, in FORTRAN-
99, if A, B, and C are vectors, A = B + C

adds B and C element-by-element and stores
each result in the corresponding location of
array A. In APL, the same action is repre-
sented by A  B + C. If the implementa-
tion is sequential, the vector operations can
be performed one at a time using a pro-
cess called dragthrough (e.g., start at the �rst
element of the vector and continue (drag-
through) to the last index) [Budd, 1984]. If
a compiler performs these operations concur-
rently, it is called a vector compiler and a
vector compiler is said to perform vectoriza-
tion.

5 Summary

Functional languages are very di�erent from
imperative languages. An important dif-
ference is that functional languages asso-
ciate variable names with values (single as-
signment variables), whereas imperative lan-
guages associate variable names with mem-
ory locations (multiple assignment variables)
(x 1.2). Proponents of functional languages
argue that in spite of any di�erences, func-
tional languages are just as powerful as im-
perative languages and that the simplic-
ity of single assignment variables can trans-
late to better program readability and, per-
haps, more reliable programs. Further-
more, executable functional-language tasks
do not impose any side e�ects on each other.
This characteristic, called referential trans-
parency, can simplify translation, particu-
larly in parallel implementations.

An objective of functional-language im-
plementations is to realize these bene�ts,
and in doing so to become more competi-
tive with the imperative programming lan-
guage paradigm. The progress of sequential
and parallel functional-language implemen-
tations in this regard is summarized in the
following paragraphs.

Sequential Implementations In order
to be considered worthwhile, sequential im-
plementations must support lazy evaluation
and compilation with low operational over-
head, but not all of them do.

Abstract Syntax Tree (AST) interpreters
and the Object Stack, Environment, Con-
trol, and Dump (SECD) machine do not
handle either lazy evaluation or compila-
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tion e�ciently (x 2.1 and x 2.2). They are
both environment-based techniques meaning
that they store variable bindings in mem-
ory when the bindings are formed, and re-
trieve the bindings from memory when they
are needed. The SECD machine outperforms
AST interpreters because its stacks are a con-
venient place to store the environment. How-
ever, it is di�cult if not impossible to reduce
binding overhead to an acceptable level in
environment-based systems.
Fixed-combinators do support lazy eval-

uation, can be compiled, and do not in-
cur the same administrative overhead as
environment-based systems (x 2.3). How-
ever, they su�er from another damag-
ing overhead problem. Since the �xed-
combinators are small, task grain size is like-
wise small. This results in a penalty at exe-
cution time that degrades performance.
Graph reduction of lambda expressions

lends itself well to lazy evaluation (x 2.4),
but because of free variables (x 1.4.4), com-
pilation is not straightforward. However,
lambda lifting can remove the free vari-
ables. If lambda lifting is performed prop-
erly, the result is a maximally free expres-
sion called a super-combinator (x 2.5). These
super-combinators can be fully lazy and they
can also be compiled reasonably e�ciently
(x 2.6).
Compiled super-combinators compilers

and source-to-source compilers (x 2.6) seem
to be emerging as the translation methods of
choice as evidenced by the use of source-to-
source in recent SISAL implementations and
the use of both methods in di�erent imple-
mentations of Haskell.

Optimizations In spite of their success at
achieving compiled and fully lazy implemen-
tations, unoptimized functional implementa-
tions still do not achieve levels of perfor-
mance comparable with imperative imple-
mentations. A number of optimization tech-
niques (x 3) narrow the gap.
Certain tail recursive functions delay some

computations unnecessarily, resulting in a

waste of time and space. Tail recursion elim-
ination (x 3.1), performed either by the pro-
grammer or by the compiler, can rearrange
computations and reduce the delays. This
technique can conserve space, speed up exe-
cution, or both.

Although lazy evaluation requires the
sharing of common components inside an ex-
pression during evaluation, it fails to consider
sharing in some cases, such as calling a func-
tion with the same arguments as an earlier
call. Memoization corrects this problem by
establishing a cache for previously computed
results (x 3.2).
Imperative memoization uses an impera-

tive language compiler to perform memoiza-
tion, whereas applicative memoization uses
a single functional-language compiler to to
perform both translation and memoization.
Imperative memoization tends to be faster
because it allows the use of iterative looping.

Sometimes function arguments are unnec-
essarily copied during the reduction of �-
expressions. It may be possible to identify
these arguments in advance and alter evalu-
ation to avoid the copying. Techniques such
as �-Argument Copying (x 3.3) do eliminate
the copying but at the expense of heavy ad-
ministrative overhead.
Partial Evaluation assigns values to some

arguments of a multiple-argument function
and partially evaluates the function body
with respect to those values at or before com-
pile time (x 3.4). If the values are correct
(i.e., they turn out to be the ones that are
needed), the partially evaluated function will
require less work to reduce during execution
than the original function.
Finally, although lazy evaluation is very

expressive, eager evaluation is frequently the
more e�cient alternative of the two. Conse-
quently, some translators apply either lazy or
eager evaluation to program expressions de-
pending on the circumstances. Such transla-
tors are said to apply mixed-order evaluation
(x 3.5).

Generally, mixed-order translators eval-
uate all program expressions lazily except
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those specially marked (e.g., those annotated
by the user or compiler) for eager evalua-
tion. The annotated expressions are nor-
mally strict (i.e., their result is de�nitely re-
quired).
It can be argued these optimization tech-

niques and the compilers and interpreters
they enhance do not exhibit the elegance of
design that imperative implementations do.
Perhaps that is because more attention has
been devoted to imperative languages than
functional languages, or perhaps it is be-
cause we are more used to abstracting away
imperative language complexities. In any
case, a goal of functional implementation de-
signers should be to narrow this gap and/or
counter the perceived notion that functional-
language implementations are not as elegant
as imperative implementations.

Parallel Implementations Since the in-
troduction of parallelism to functional-
language implementations is recent, the long
term implications of parallel implementation
features are quite unclear.
Parallel functional-language implementa-

tions use four methods to invoke paral-
lelism: random, explicitly annotated, im-
plicitly annotated, and structure-oriented
(x 4.1). In random implementations, each
processor draws work components blindly
from a pool of contenders and executes those
components as tasks. In explicitly annotated
systems, users insert special annotations into
source code. During execution the annotated
tasks are run in parallel. Parallel activity
is also invoked by annotations in implicitly
annotated systems, but it is the compiler,
not the user, that inserts implicit annota-
tions into code. In explicitly annotated sys-
tems, the programmer controls parallel activ-
ity whereas in implicitly annotated systems
parallelism is transparent to the program-
mer. Finally, structure-oriented systems re-
quire that programs either be in, or trans-
formed to, a certain structure. For exam-
ple, the structure could be one that imple-
ments a divide-and-conquer algorithm. Then

tasks identi�ed at each divide-and-conquer
step would be invoked in parallel.

Parallel tasks are invoked with either con-
servative or speculative parallelism (x 4.2).
In conservative parallelism, only needed
tasks are invoked in parallel. Strict func-
tions and arguments are always needed, so
conservative parallelism always invokes them
in parallel. Non-strict tasks may or may
not be needed so conservative implementa-
tions do not invoke them in parallel. On
the other hand, speculative implementations
take a chance on some non-strict tasks by in-
voking them in parallel. The chance proves
worthwhile if the task is later determined to
be needed, or it leads to wasted e�ort if the
task is found to be unneeded.

Structure-oriented and explicitly anno-
tated systems must invoke speculative par-
allelism, whereas all current implicitly an-
notated systems choose to invoke conser-
vative parallelism. Random implementa-
tions are mainly speculative but can achieve
some awkward measure of conservative par-
allelism.

Only <�,G> and Qlisp address the prob-
lem of killing speculative tasks when they
are found to be unneeded. Both use their
garbage collector to remove tasks and residue
from the system. However, since the garbage
collector is invoked infrequently, Qlisp pro-
vides two additional explicit task deletion
alternatives. One kills tasks in conjunc-
tion with catch and throw primitives that
are used to terminate operations (such as a
search when the desired item is found). The
other kills speci�cally named processes (i.e.,
kill-process name).

No single memory organization is preferred
by parallel functional language implemen-
tors (x 4.3). Actual implementations are
fairly evenly divided between uniform-access
shared-memory, non-uniform-access shared-
memory, distributed memory, and hybrid
memory (i.e., combinations of shared and
distributed memory). Many implementa-
tions assign each processor a cache to speed
up local operations.
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There also is little correlation between task
blocking and resumption methods employed
by parallel systems (x 4.4). Each implemen-
tation that blocks uses a method that is quite
di�erent from the others and which is based
on its own requirements.

It is disappointing that functional imple-
mentations need to consider task blocking
and resumption at all. Due to referential
transparency (x 1.2) executable functional-
language tasks are free of side e�ects and
therefore cannot interfere with one another.

However, blocking is necessary for other
reasons. For example, in non-uniform-access
shared-memory systems (where a single ad-
dress space is divided among a number of
processors) if a task on one processor accesses
an address located on another processor, the
accessing task may block until the requested
component has been supplied. Also, to avoid
duplication of e�ort, processors accessing a
shared expression that is already being eval-
uated by another processor may block and
wait until the computation is complete and
the result is available.

There appears to be no single plan used
to handle data and task placement (x 4.5).
A number of combinations of local and/or
global tasking queue organizations are imple-
mented where control is either centralized or
localized and data accessed by tasks may or
may not be located near the processor exe-
cuting those tasks.

It seems appropriate that steps be taken to
balance the load during execution by migrat-
ing tasks (and data required by those tasks)
from busy to lightly-loaded processors. How-
ever, many implementations in this survey
perform no migration at all. Those that do
most often use a very simple method such
as di�usion migration (migration only be-
tween neighboring processors). Furthermore,
most migrate only to balance tasks, making
no attempt to move data associated with the
tasks. Of course this migration simplicity is
adopted to avoid the overhead required to
support more complex migration. However,
the simplicity may incur penalties in other

areas such as poor performance due to load
imbalance or due to a large number of remote
accesses.
As is the case with migration, parallel

implementations tend to opt for simplicity
when dealing with the size of tasks (i.e., task
grain size) (x 4.6). Many make no attempt
to adjust task grain size. Since grain size
is usually too small, this can lead to a large
number of parallel tasks, and the administra-
tion required to start up and support these
parallel tasks can eat up performance gains.
Other implementations use a cuto� to limit
the number of tasks. When a certain thresh-
old of task activity is reached, subsequent
tasks are suppressed (not invoked) until the
activity dies down. Only a few implementa-
tions retain selected parallel tasks on the in-
voking processor (rather than spawning them
on other processors). This technique called
in-lining does increase task grain size.
There is no uniform agreement on the type

of garbage collector to be used with parallel
functional-language implementations (x 4.7).
The alternatives represented in this survey
are none (i.e., no garbage collection), ref-
erence counting, mark-and-sweep, stop and
copy, and various combinations of the above.
The more aggressive implementations have
separate local and global garbage collectors
sometimes with di�erent methods applied at
each level.
None of the parallel functional-language

implementations mention aggregate memory
access or seem to place much emphasis on
vectorization. It could be that these features
are included but discussions about are sup-
pressed for some reason. However, it is more
likely that they are either not included or are
not exploited to their full potential. If so,
they are practical performance improvement
features that deserve consideration in future
implementations.

Analysis Based on the contents of this sur-
vey, the following comments on functional-
language implementations are o�ered for
consideration:

66



The best alternative to perform sequen-
tial operations appears to be compiled super-
combinators. It is necessary to resort to
this form of compilation rather than imper-
ative compilation techniques because func-
tional languages frequently pass functions as
parameters and include call-by-need param-
eter passing (whereas most imperative lan-
guages do not include these language fea-
tures).

Each of the sequential optimization tech-
niques (x 3) seem to be considered in isola-
tion. Some attention ought to be directed
towards integrating the techniques together,
and determining how they interact. Further-
more, there is virtually no mention of these
optimization techniques in any of the parallel
implementation papers included in this sur-
vey. Certainly many of the techniques are
just as applicable to parallel systems.

Unfortunately, referential transparency
does not appear to be realizing some of its
expected bene�ts. For example, recall that
because of an absence of side e�ects, refer-
entially transparent expressions do not inter-
fere with one another during execution. This
should translate to less blocking in parallel
functional implementations than in parallel
imperative implementations, but, in fact, the
survey indicates that a good deal of block-
ing is still necessary. True, referential trans-
parency is not the cause of the blocking, but
the fact that blocking is still needed is disap-
pointing.

Conservative parallelism bypasses some
parallel opportunities, so to optimize par-
allelism it is sometimes necessary to spec-
ulate. Explicitly annotated systems specu-
late wisely only if the programmer speculates
wisely. If that is not the case, the execution
of unnecessary tasks can wipe away the ad-
vantages of parallel activity.

The feasibility of an implicitly annotated
system that speculates should be investi-
gated. A simple heuristic could used to
identify suitable speculative tasks (fallible, of
course, due to the halting problem). Once
invoked, the system would need to monitor

speculative tasks removing them and their
residue when they are determined to be un-
needed. Such a system would be expected to
outperform conservatively parallel systems,
but it would probably not achieve the per-
formance of elegant programs designed for
explicitly annotated systems.

Migration in parallel implementations
needs a lot of work to determine what to mi-
grate (i.e., data and/or tasks), where to mi-
grate it (i.e., to a neighbor or to any proces-
sor), and when to migrate. Current migra-
tion policies are too simplistic showing only
pockets of creativity and little regard for the
penalties of inaction.

The average size of tasks, or task grain
size, is a problem in parallel implementa-
tions. In-lining parallel tasks (retaining them
on the invoking processor for execution) can
correct the problem but only if prudent de-
cisions are made on which tasks to retain.
As is the case with speculation above, such
decisions are bound to be fallible because of
the halting problem (the execution time of
tasks is unknown at the time the tasks are
scheduled).

Most sequential and parallel implementa-
tions can capitalize on the bene�ts of aggre-
gate memory access and vectorization, but
few of them seem to do so. It is possible that
these features were de-emphasized in early
implementations in order to reduce overall
complexity. They should included in the ba-
sic design of future systems.

Finally, a very important matter that
seems to be largely neglected in parallel im-
plementations is portability. Most of the cur-
rent systems are implemented in fairly spe-
ci�c hardware that is not widely available
elsewhere. This impedes improvement since
only selected sites can exercise the system.
The creators of Haskell understand this prob-
lem and are directing their e�orts towards a
system that sits on top of Parallel Virtual
Machine (PVM) [Sunderam, 1992] and runs
on a network of workstations.
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A Introduction to

Haskell

The September 1987 Conference on Function
Programming Languages and Computer Ar-
chitecture in Portland, Oregon determined
that there were more than a dozen non-
strict, purely functional programming lan-
guages, all with similar semantics and ex-
pressive power. A consensus of the confer-
ence attendees felt widespread use of func-
tional languages was hampered by a lack of a
common language. A committee was formed
to design a new language, one with strong se-
mantic power and highly expressive syntax.
The result of this e�ort isHaskell, a program-
ming language named in honor of the logician
Haskell B. Curry who contributed to the de-
velopment of the Combinatory Logic (x 2.3)
[Curry and Feys, 1958].
A rigorous description of the Haskell syn-

tax and semantics is contained in [Hudak and
Wadler, 1988] while a more limited descrip-
tion intended only to introduce the language
is contained in [Hudak, 1989].
A brief introduction to Haskell is presented

here for two reasons. First, because it is ex-
pressive and this clarity makes it a good rep-
resentative of the functional programming
language paradigm. Second, all functional
program segments in this survey are pre-
sented in Haskell (except for those that de-
scribe another language's syntax and seman-
tics). The introduction is very limited, in-
tended only to provide an appreciation of
Haskell's expressiveness while at the same
time making it possible to interpret the sur-
vey's program segments.

Formal Parameters Haskell does not en-
close formal parameters in parentheses, nor
does it separate formal parameters with com-
mas. The mathematical function:

f (x1; x2; x3; : : : ; xn) = expression

for n > 0 would be represented in Haskell as:

f x1 x2 x3 : : : xn = expression

Pattern Matching Haskell applies pat-
tern matching to its formal parameters. The
general structure of a Haskell program is:

f pat1 = exp1
f pat2 = exp2
f pat3 = exp3

...
...

f patn = expn

where f is a function and expi is the expres-
sion or function body for the function applied
to parameter pattern pati for 1 � i � n.
Consider the following example adapted

from [Hudak, 1989]. It is a program to de-
termine whether an element x is a member
of a list:

member x [ ] = False

member x (x:xs) = True

member x (y:xs) = (member x xs)

One way to represent lists is by placing a
list of elements inside brackets. Therefore,
elt1; elt2; elt3; : : : ; eltk is a list of k el-
ements and [ ] is the empty list. The �rst
pattern of member is x [ ] where the param-
eter x is the element to be matched and the
parameter [ ] is the empty list. If this pat-
tern is matched, the function returns False.
The structure (elt:sub-list) can also be

used to represent lists where : is similar to
the LISP CONS operator. Parentheses enclose
the list for clarity. The second pattern of
member is x (x:xs) where again x is the el-
ement to be matched and (x:xs) is a non-
empty list.
The third pattern of member is x (y:xs).

If pattern matching proceeds from top to
bottom, the pattern where y = x must have
failed when matching of the previous pattern
was attempted. Therefore, y 6= x. The ex-
pression invoked by this pattern recursively
calls upon member with x and the reduced
list as parameters.

Qualifying Parameters It is possible to
limit the values of Haskell parameters or
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limit values of elements within parameters
by placing a | operator and a relational ex-
pression after the element. Haskell relational
operators are ==, /=, >=,<=, <, and >. If the
third pattern of member were changed to:

member x (y|x/=y:xs) = (member x xs)

the patterns of member would reduce to two
cases with the empty list matched �rst.

Lambda Expressions It is convenient to
use �-expressions such as � x.+ x x (x 1.4)
in functional programs. Unfortunately, the �
character is not an ASCII character. Haskell
solves this problem by replacing � with the
backwards slash character. Additionally, it
replaces the period following the formal pa-
rameter with an arrow and uses in�x rather
than pre�x operators in the body of the �-
expression. For example:

�x.+ x x

would appear in Haskell as:

\x -> x + x

Arrays The following notation is used to
de�ne arrays in Haskell:

array(low,up)[(i,expr)|i<-[min..max]]

The keyword array identi�es the expression as
an array function. The �rst parameter pro-
vides the lower (low) and upper (up) bounds
of the array using the syntax (low,up). The
second parameter is read \index i has value
expr where i is between the values of min
and max." For example,

array(1,10)[(i,i*i)|i<-[1..10]]

is an array where the array value at index i

is i*i for 1 � i � 10.
The exclamation point is used to identify

elements of an array. For example,

array(1,10)[(i,i*i)|i<-[1..10]] ! 5

identi�es the array's �fth index and has the
value 5*5.

User-De�ned Types Haskell allows the
user to de�ne data types. For example, the
user de�nes or instantiates (x 1.4.2) the vari-
able a as an array type with the statement:

data a =

array(1,10)[(i,i*i)|i<-[1..10]]

Within the scope of this de�nition a ! 7

would return the value 7*7 or 49.
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