
Scaling Up an End-User Dependability Framework for Spreadsheets

Tyler Creelan Marc Fisher II
tyler.creelan@orst.edu

August 17, 2004

A technical report submitted to the
School of Electrical Engineering and Computer Science

Oregon State University

Technical Report# 04-60-09

Presented: August 17, 2004

Copyright (c) 2004 Tyler F. Creelan

Permission is hereby granted, free of charge, to any person obtaining a copy of this document, to
deal in the document without restriction, including the rights to copy, modify, publish, distribute,
and/or sell copies, provided the above copyright notice is included in all copies.

2

Abstract

The WYSIWYT (What You See is What You Test) methodology applies formal analysis
and testing techniques to the spreadsheet paradigm. So far the methodology has been applied
to a research spreadsheet prototype, Forms/3. However, this prototype lacks the mathematical
libraries, referential functions, ranges, and macros of commercial spreadsheets like Excel and
Lotus 1-2-3. Study subjects are also accustomed to the grid-like interface of commercial spread-
sheet packages and many spreadsheets of interest are available in the Excel file format. This
project addresses these areas by implementing WYSIWYT in Microsoft Excel and Gnumeric.

Contents

1 Introduction 6
1.1 Approaches to Improving Dependability . 6
1.2 Problems of Scale . 6

1.2.1 Complexity . 7
1.2.2 Correctness Decisions . 7
1.2.3 Motivating Different Users . 7

1.3 Solution . 7
1.4 Organization of this Report . 7

2 Background and Related Work 8
2.1 Forms/3 . 8
2.2 WYSIWYT . 8
2.3 Regions . 9
2.4 Assertions . 9
2.5 Microsoft Excel and Gnumeric . 10
2.6 Definitions, Acronyms, Abbreviations . 10

3 System Requirements 12
3.1 Introduction . 12

3.1.1 Scope of the System . 12
3.2 General Description . 12

3.2.1 System Perspective . 12
3.2.2 System Environment . 12
3.2.3 User Characteristics . 12
3.2.4 General Constraints . 13
3.2.5 Assumptions and Dependencies . 13

3.3 Specific Requirements . 13
3.3.1 Environment . 13
3.3.2 Features and Constraints by Layer . 14
3.3.3 Performance . 16
3.3.4 Extensibility/Maintenance . 16
3.3.5 Architecture . 17
3.3.6 External Interfaces . 17
3.3.7 Internal Interfaces . 17
3.3.8 Development . 17
3.3.9 Support . 18

4 Plan of the Work 19
4.1 Initial Plan . 19
4.2 Revised Plan . 19

5 Design 22
5.1 Overall Architecture . 22
5.2 Frontend Design . 23
5.3 Backend Design . 24
5.4 Communications . 24

2

5.4.1 Communications Format . 27
5.4.2 Specification . 27
5.4.3 Excel-Specific Messages . 27
5.4.4 Validation . 28

6 User Interface Design 29
6.1 Guidelines . 29
6.2 WYSIWYT User Interface . 30
6.3 Regions User Interface . 31

6.3.1 Region Borders . 31
6.3.2 Discontiguous Regions . 32
6.3.3 Modifying Regions . 32

6.4 Progress Bar User Interface . 33
6.5 Fault Likelihood User Interface . 33
6.6 Test Case Generation (HMT) User Interface . 33
6.7 Assertions User Interface . 35
6.8 Arrows User Interface . 36
6.9 Explanations User Interface . 38

7 Implementation 39
7.1 Communications . 39

7.1.1 General Sockets . 39
7.1.2 Windows Sockets . 39
7.1.3 MacOS X Sockets . 40
7.1.4 Message Processing . 40

7.2 Excel Formula Analysis . 40
7.2.1 Lexical Analysis . 42
7.2.2 Parsing . 43
7.2.3 Reference Conversions . 43
7.2.4 Evaluation Conversions . 43

7.3 Testboxes . 43
7.4 Request Evaluation . 44
7.5 Fault Localization . 45
7.6 Form-Level Indicators . 46

7.6.1 Testedness Overview . 46
7.6.2 Fault Localization Overview . 46

7.7 Arrows . 47
7.8 Explanations . 47
7.9 Transcripts . 48
7.10 Clean Up . 48
7.11 Test Case Generation (HMT) . 49
7.12 Optimizations . 49
7.13 Redesign Issues . 49

3

8 System Execution and Development 51
8.1 Execution and Installation . 51
8.2 Version Control . 51
8.3 Style Requirements . 52

8.3.1 General . 53
8.3.2 Visual Basic for Applications . 53
8.3.3 Common Lisp and CLOS . 55

9 Gnumeric 57
9.1 Excel Shortcomings . 57

9.1.1 Inflexible User Interface . 57
9.1.2 Difficult Native Language . 57
9.1.3 Design Holes . 57
9.1.4 Testmeric . 58

9.2 Architecture . 58
9.3 Implementation . 59

9.3.1 Build System . 59
9.3.2 Library Communications . 59
9.3.3 Execution . 59

9.4 Results . 60

10 Conclusions and Future Work 61

11 Appendix A: Excel Formula Grammars 64
11.1 An Excel Formula Grammar . 64
11.2 Original Precedence Grammar . 65
11.3 Formula Lexemes as Regular Expressions . 65

12 Appendix B: Communications Format 67
12.1 From Frontend to Backend Specification . 67
12.2 From Backend to Frontend Specification . 68

List of Figures

1 A cell relation graph. 8
2 A diagram of interoperability requirements for the system. 17
3 The initial project plan. 20
4 The revised project plan. 21
5 The overall Excel architecture. 22
6 The Application hierarchy under ExcelForms. 23
7 The Collection and OLEObject hierarchies under ExcelForms. 24
8 The displayable hierarchy under LispForms. 25
9 The GSearchable hierarchy under LispForms. 26
10 A mockup of primary and paired testboxes. 31
11 A mockup of the user interface for Regions. 32
12 The testedness indicator originally used in Forms/3. 33
13 A case of Fault Localization masking testedness. 33

4

14 A mockup of the Regions user interface with Fault Localization. 34
15 A mockup of the Help Me Test (HMT) user interface. 34
16 An example spreadsheet with all cells having assertions. 36
17 An example of the floating assertions toolbar. 36
18 A mockup of the curved inter-row arrows. 37
19 A mockup of arrows between subexpressions under formula view. 37
20 An example of arrows between cells under non-formula view. 37
21 An example of arrows sharing endpoints, with the reddest arrows on top. 38
22 Evaluation of predicates under Excel for tracing. 45
23 Use of toolbar buttons to implement a progress bar on the Windows platform. . . . 46
24 The Fault Localization overview bar. 47
25 Arrows under WYSIWYT-XL. 47
26 The tooltip-based explanation system. 48
27 A diagram of the overall Testmeric architecture. 58
28 A screenshot of Testmeric. 60

List of Tables

1 Spreadsheet Package Candidates . 10
2 The platform requirements for WYSIWYT-XL. 14
3 Formula and Value View . 30
4 Excel Formula Lexemes and Tokens . 42
5 References Across Workbooks and Worksheets Are Scanned Specially 42
6 Excel Formula Conversions . 44
7 Use of VarType with Variant Function . 58

List of Algorithms

1 Message Processing Algorithm . 41
2 Importing and Exporting CodePanes . 52

5

1 Introduction

Traditionally, software has been created for users by professional programmers, using languages like
C++, Fortran, or Java. End users, however, are increasingly creating some of their own software.
Often this software is created using special frameworks, such as spreadsheet systems, email filtering
rules, and sensor collection systems. The number of such end-user programmers within the US is
expected to reach 55 million by 2005, dwarfing an expected 2.75 million professional programmers
[8]. The programs these users create are used for such critical tasks as managing retirement funds,
updating credit histories, and processing small business sales.

Yet how dependable is the software created using such systems? One of the most popular
systems is the spreadsheet, and although it is perceived as simple, spreadsheet-based programs
frequently have faults. (Following standard terminology [4], a failure is an incorrect computational
result, and a fault is the portion of a program causing a failure.) For example, of 54 field-audited
spreadsheets, over 91% contained faults; in eleven trials of users creating spreadsheets, 60.8%
contained faults; and in four experiments where participants inspected spreadsheets for faults,
55.8% of the faults were missed [24, 25]. End users also have unwarranted confidence in the
correctness of their spreadsheets [23, 24].

The failures caused by faulty spreadsheets have consequences at both the household and national
level. For example, an erroneous spreadsheet formula inflated the University of Toledo’s projected
annual revenue by $2.4 million, requiring sudden budget cuts [33]. Another spreadsheet formula
error caused the stocks of Shurgard Inc. to be devalued after two employees were overpaid by
$700,000 [31]. And a cut-and-paste error in a bidding spreadsheet cost Transalta Corp. $24
million [13] through overbidding. As recommended by two NSF workshops [7], the dependability
of spreadsheet programs is in need of serious improvement.

1.1 Approaches to Improving Dependability

In professional software engineering, approaches have been developed to ensure dependable, high-
quality software, such as Slicing [2] and Test-First Development [6]. These techniques must be
applied carefully to spreadsheet programming, however. For example, spreadsheet users may be
less interested in learning formal theory than professional programmers because it is not directly
applicable to their everyday job. End users also rarely begin working with the well-defined specifica-
tion that many methodologies may require, and many conventional validation tools are designed for
running in batch over a completed program, rather than over incremental versions of a spreadsheet.

Previous research shows it is possible for end users to use formalized approaches successfully
under certain conditions. For example, Rothermel et al. [26] define a WYSIWYT (What You
See is What You Test) methodology for testing spreadsheet-like languages, which is incremental,
validation-driven, and distills testing theory into intuitive visual devices. Others have built upon
this approach to provide spreadsheet assertions [10], automated generation of spreadsheet test cases
[15], test reuse and regression [16], and fault localization [28]. All these approaches promise to bring
the rigorous techniques of professional software engineering to spreadsheets.

1.2 Problems of Scale

WYSIWYT and associated approaches have only been investigated in academic settings, in the
context of the research programming language Forms/3 [9]. It has not been shown whether their
results will scale up to real-world problems and commercial spreadsheets. Doing so involves ad-

6

dressing three problems related to scale: complexity of feature space, correctness decisions, and
motivation of different users.

1.2.1 Complexity

Previous efforts to improve spreadsheet correctness address only core features of the language
paradigm, such as arithmetic operators. Commercial spreadsheet systems like Microsoft Excel,
however, involve macros, external data sources, non-numeric data types, recursive formulas, and
complex conditionals like SUMIF. Their condensed, massive, and grid-like interface are also wholly
unlike the Forms/3 interface. A testing approach like WYSIWYT may not scale to such a larger
feature space without loss of performance or user-centered characteristics.

1.2.2 Correctness Decisions

Decisions about a spreadsheet value’s correctness must be linked to which formula or spreadsheet
action created the value. This must be decided even when the only model of how the system should
work is carried mentally by the user. This linkage could be better adapted after observing users
over time in a real-world setting.

1.2.3 Motivating Different Users

In practice, real-world spreadsheets attract users of different cultures and with vastly different
motivations. For example, people may use spreadsheets to perform relatively trivial non-conditional
programming, store data without any computation at all, or even solely to diagram or plot values.
Each of these users may have different motivations or needs regarding the dependability of their
programs.

1.3 Solution

To address these three problems of scale, in this project, WYSIWYT and underlying techniques
have been embedded inside two commercial spreadsheet packages, Microsoft Excel and Gnumeric.
This adaptation has advantages for spreadsheet users, who can perform tasks of maintenance and
development on their own software, and researchers, who can study how to improve their algo-
rithms within a user’s natural environment. Also, by working inside the framework of commercial
spreadsheet packages, the researcher is freed from having to implement the spreadsheet system and
associated computation engine. This makes WYSIWYT simpler, since low-level calculations can
be performed outside the analysis engine, ensuring encapsulation. By reusing existing spreadsheet
functionality, this approach also provides the system user a wider array of calculations than could
be feasibly implemented by the researcher.

1.4 Organization of this Report

The remainder of this report provides background material (Section 2), a requirements document
for the system (Section 3), a plan of the work (Section 4), design decisions in general and for
the user interface (Sections 5, 6), implementation details (Section 7), directions on execution and
development (Section 8), details on the implementation under Gnumeric (Section 9), and concluding
remarks (Section 10). Grammars and other specifications are included as appendices (Sections
11,12).

7

19:E

21:X

20: Mon + Tues + Wed + Thurs + Fri

TotalHours

16:E

18:X

17:constant

PayRate

22:E

23: if TotalHours <= 40

26:X

T F

GrossPay

25: Payrate * 40 + (TotalHours − 40) * Payrate * 1.524: Payrate * TotalHours

Figure 1: A cell relation graph.

2 Background and Related Work

This section presents necessary background on Forms/3, WYSIWYT, Assertions, Regions, and
spreadsheet packages. Frequently used definitions, terminology and abbreviations are also listed.

2.1 Forms/3

Forms/3 is a general purpose, spreadsheet-based programming language [9]. It is an academic
research language, supports strings, integers, reals, and booleans as data types, and embodies a
notion of time. The language is descended from Forms/2 and Forms, created in 1991 and 1986
respectively. The language’s analysis and computation engine is implemented in Common Lisp,
making extensive use of the Common Lisp Object System (CLOS). The Forms/3 visual environment
is implemented in Java, and has also been implemented using Garnet and CLX under the X Window
System.

2.2 WYSIWYT

What You See Is What You Test (WYSIWYT) is an application of formal testing methodologies
to spreadsheets [26]. It uses an abstract model of the spreadsheet called a Cell Relation Graph
(CRG). This CRG is used to define “test adequacy criteria”, which determine if the spreadsheet is
sufficiently tested. A CRG is composed of control flow graphs (CFGs) and cell-dependence edges.

Each formula graph models the flow of control within the cell formula, and is composed of entry
and exit nodes representing when formula evaluation starts and stops. Each node within the CFG
is either a computation or predicate node. Edges from predicate nodes indicate flow of control, and
are labeled with the value the predicate must have for the edge to be traversed. The traversal of a
path from entry to exit nodes is called an execution trace.

8

Dependencies between cells are modeled using Cell Dependence Edges. In Figure 1 these are
depicted using dashed lines. The heads of each line show the direction of dataflow, and connect to
the source and destination nodes of the cell’s interior CFG.

The preferred method used to determine test adequacy within this CRG model is all-uses
dataflow. This criterion is used because it exercises both expressions between formulas and inter-
actions between cells. Cells serve as variables and each reference to that cell is a computation use
or c-use of the cell, and each reference to that cell within a predicate is a p-use. The association
between each cell’s definition and use of that definition is a definition-use pair, or du-pair. To en-
sure adequate tests are available for each spreadsheet under the all-uses criterion, only executable
du-pairs are used. This method has been shown to be useful to both programmers and end users
[21, 27].

2.3 Regions

One problem of scale for commercial spreadsheets is efficient handling of large, grid-based spread-
sheets. Although large, these spreadsheets are often created through copy and pasting of a few
formulas over many cells. Recognizing and handling this repetition can reduce the amount of rea-
soning an analysis engine must do, as well as reduce the number of tests a user must apply to obtain
a tested spreadsheet. One approach is to condense repeated formulas into regions, by recognizing
similar cells and treating them equivalently under WYSIWYT.

Repetition can be detected using a criterion called cp-similarity [14], wherein two formulas are
identical if their formulas could have resulted from a copy/paste action. Since copy and paste actions
are often not retained as part of the spreadsheet, the cp-similarity must be inferred dynamically.
Inference is mostly easily done using the R1C1 representation of references under Excel, which
encode absolute references directly while offsetting relative references. Determining cp-similarity
under this “absolute-direct, relative-offset” [30] referencing is trivial, since formulas pasted between
cells are identical. Formulas can also be grouped into regions based on their contiguity to other
regions as well as cp-similarity.

Once cp-similarity is found, similar formulas can be grouped into the same region. Then within
the CRG model of the spreadsheet, testedness applied to one du-edge applies to all equivalent
du-edges. Du-edges are equivalent if their definition and use nodes are in the same location in their
respective CFGs, or corresponding [14]. Alternatively, a single du-edge can represent cell equivalent
du-edges in or out of a region [11].

2.4 Assertions

A spreadsheet’s formulas contain information on how to generate a desired result, but they do not
necessarily communicate expectations on the result. These expectations are often made explicit
in professional programming through assertions. Summet and Creswick describe ways to apply
assertions to spreadsheet programming [35, 12], and distinguish between initial static assertions,
entered by the user, and dynamic assertions, which are derived by deductively propagating initial
assertions through a program.

The latter class of assertions prove useful when multiple dynamic assertions meet on the same
cell and can be compared to cross-check the program with the specifications. If a conflict arises
between assertions, either the spreadsheet formulas used to derive the assertions, or the static
assertions from which the dynamic assertions were propagated must be incorrect. Dynamic assertion
conflicts are therefore effective at identifying faults in both the program and the user’s mental model
of how the program should operate.

9

Spreadsheet Flexibility Platform Language License XLS Compat. Codebase Userbase
Gnumeric Good Unix C GPL Good Good 0.2M
Excel Poor Win32, OSX VBA Proprietary Best N/A 50M
Forms/3 Best Unix Java/Lisp Proprietary Poor Fair N/A
OpenOffice Fair Unix, Win32 C++ SSIG/GPL Good Poor 3M
KOffice Good Unix C++ LGPL Fair Fair 0.1M

Table 1: Spreadsheet Package Candidates

2.5 Microsoft Excel and Gnumeric

Microsoft Excel is one of the most commercially popular spreadsheets, and is used ubiquitously in
both businesses and schools. Excel is available as part of the popular Microsoft Office suite, fre-
quently distributed with Microsoft Windows. The program outputs spreadsheets with .xls filename
extensions. Each spreadsheet, or workbook, is composed of individual worksheets on which cells
are laid in a grid-like fashion. Excel also supports procedural programming on the spreadsheet
through the use of macros. Because of its popularity, this project focused largely on implementing
WYSIWYT within Excel.

Gnumeric is a free software clone of Microsoft Excel. Unlike Excel, the Gnumeric spreadsheet
environment can be changed and extended through direct modification of source code. Gnumeric
also offers a clean and small codebase, is written in a simple language (C), and uses the ubiquitous
Gtk+ library for graphics. Gnumeric is also fairly compatible with .xls files from Excel, and supports
prototyping of user interfaces with Glade. Under Gnumeric, files are saved with a .gnumeric
extension in compressed XML.

While this project focuses on Gnumeric and Excel, other spreadsheets were considered for
implementation as well. Table 2.5 lists the programming fitness of three spreadsheet packages:
Gnumeric, OpenOffice, and KOffice, relative to Excel and Forms/3. Of the four, Excel offers
the widest user-base, while Gnumeric offers the best programmability and cleanest codebase of
the free software alternatives. While the report focuses on implementation under Excel, special
considerations for the partial Gnumeric implementation are described in Section 9.

2.6 Definitions, Acronyms, Abbreviations

The following terms and definitions are used frequently in this report.

1. ActiveX Control - An applet using ActiveX technologies, with full access to the Windows
operating system. ActiveX controls are usually executed within a web browser or Microsoft
Office document.

2. Correctness - The degree to which a system or component is free from faults in its specification,
design, or implementation.

3. Correct - The quality of a system such that it produces the proper outputs for all inputs.

4. Dependability - The property of how much reliance can justifiably be placed on a computer
system. [5].

5. Fault - The portion of a program causing a failure [4].

6. Failure - An incorrect computational result [4].

10

7. HCI - (Human-Computer Interaction) The study of how humans interact with computers,
and how to design computer systems that are effective to use.

8. HMT - (Help Me Test) A framework for automatically suggesting inputs and assertions to
spreadsheet users [15], [16].

9. Liveness - When used regarding user interfaces, liveness is the property of how immediate
updates are made to the display. Four levels of liveness are often recognized [36].

10. Macro - Under VBA, a public procedure of type Sub defined in a general module. Macros
have special properties, such as being callable through the Application.Run method.

11. OS X - Latest generation of the Macintosh OS, which uses a BSD-derived operating system
and two systems libraries, Cocoa and Carbon.

12. R1C1 Format - An address-direct, relative-offset referencing scheme for spreadsheet cells [30].
It is available under Excel, although the address-offset, relative-offset A1 format is used by
default.

13. ScriptPlayer - An engine under Form/3 for replaying user sessions.

14. Socket - A host and port open for communication. For the system described in this report,
sockets are exclusively connection-based (TCP/IP).

15. Test - A way of assessing whether an input/output pair is correct [22].

16. VBA - Visual Basic for Applications, a derivative of Visual Basic specialized for Microsoft
Office.

17. Visual Basic 6 - An object-based, BASIC-like programming language designed for rapid
application development. The language is most often written within a special IDE under
Microsoft Windows.

11

3 System Requirements

3.1 Introduction

This section provides requirements for WYSIWYT-XL, an application of spreadsheet software
engineering methods to Microsoft Excel and Gnumeric. It describes the system for developers
and users, and supports writers of validation tests. The section is patterned on the IEEE/ANSI
830-1993 requirements document standard [1]. See Section 2.6 for definitions and terminology.

3.1.1 Scope of the System

The system will facilitate short and long term studies of subjects in a familiar spreadsheet setting.
The system will be deployed across computer labs at universities and commercial offices.

3.2 General Description

The system shall add dependability and testing mechanisms explored within the Forms/3 language
to Microsoft Excel via a distributable library. The system may use Forms/3’s implementation
of these mechanisms in design. The overall system goal is to expand WYSIWYT to a familiar
spreadsheet environment, which can be used practically in long term studies.

3.2.1 System Perspective

Challenges to the system are ensuring cross-platform compatibility, maintaining compatibility be-
tween multiple front and back ends of the system, and preserving modularity so different aspects
of the system can be updated or replaced. Other risks are limitations of the target language
(VBA), accommodation of customized Office installations, and difficulty of scaling algorithms to
large workbooks.

3.2.2 System Environment

The system shall be deployed for Office version 2000 and later under Windows 2000 and Windows
XP, and for Office version 10 and later under MacOS 10.2. Latest service packs and patches on the
target machine are assumed, as well as a working Excel installation with a default configuration.

3.2.3 User Characteristics

To help elicit requirements, we identify three classes of people who shall use the system: Short-term
subjects, Long-term subjects, and Researchers. The latter class can be further decomposed into
Technical and Administrative groups.

Short-term subjects are users involved in short-term, usually 1-3 hour, HCI or software engineer-
ing experiments. These subjects may have beginning to intermediate familiarity with spreadsheets.
For example, students drawn from university classes such as CS 101 may serve as short-term sub-
jects.

Long-term subjects are users involved in a long-term, ethnographic study of professional users
at work. For these users, some familiarity with spreadsheets is assumed. These users may have
complex needs or use spreadsheets in unforeseen ways. For example, a business administrator work-
ing within a corporate office might deal with Excel workbooks customized within the organization,
share workbooks with coworkers, and embed charts into other Office documents.

12

Research users will be responsible for distributing, installing, and maintaining the system, and
will be at Oregon State University, University of Nebraska at Lincoln, Drexel University, and other
institutions. They are described as Administrative or Technical. Administrative researchers are
external to the Forms/3 group and shall evaluate and deploy the system in experiments with many
possible goals in mind. This includes researchers in the Masters Education or Saturday Academy
program at OSU. The system must support independent maintenance and installation by these
researchers.

Technical users focus on how the system affects the dependability of software produced by the
system, or the system algorithms themselves. They are faculty or students in Computer Science
fields such as HCI and Software Engineering. For these users, a high degree of technical apti-
tude is assumed. The system codebase must be maintainable and extensible by these researchers.
Requirements for Technical users are addressed in Section 3.3.4.

3.2.4 General Constraints

The system shall be developed within a typical academic grant budget, for example limited funds
($1000 or less) can be spent on external software and additional hardware. One primary developer
is available over the course of one year, with other students and faculty available for guidance and
assistance in adding specific features.

3.2.5 Assumptions and Dependencies

We assume the system can be made compatible with future versions of Microsoft Office, without
major modifications, given the program’s history. In general we assume that the system will not be
used within strange environments, such as Office versions with non-English character sets, or in a
virtual machine environment such as VMware or Crossover Office. We assume security risks posed
by the system, e.g., attackers executing macros remotely, are not important. We assume that our
design does not infringe on actively protected US software patents.

3.3 Specific Requirements

3.3.1 Environment

The system must be supported on multiple versions of Office, as shown in Table 2. The system
must be compatible with later versions of Office, with modifications, and need not be compatible
with versions of Office earlier than 2000 under Windows or version 10 under MacOS X. The system
must be supported on multiple operating systems, as follows:

1. The system shall be supported on Microsoft Windows 2000 and XP.

2. The system shall be supported on MacOS 10.2, for deployment in MacOS X labs in the
Education department.

3. The existing backend of the system runs under Solaris 2.8, with plans to port it to MacOS,
Linux, and Windows NT-based systems as well.

13

Platform Office Version
Windows XP Office 2000, XP, 2003
Windows 2003 Server XP, 2003
MacOS 10.x (Jaguar - Panther) Office X, 2004
Linux backend only
Solaris backend only

Table 2: The platform requirements for WYSIWYT-XL.

3.3.2 Features and Constraints by Layer

System attributes are arranged in four developmental phases of the system. These phases are to
aid in understanding requirements and overall priorities among them, and need not yet correspond
to the actual cycle of system development.

Foundation, Phase I. The system shall receive and parse internal messages between Excel and
and the Forms/3 engine. For validation purposes, a spreadsheet user can enter a raw message
to Forms/3 in a spreadsheet cell, and transmit it by pressing a button. Also for validation,
parsed messages from the Forms/3 engine will be displayed and received within Excel using
the “Unhandled Message” message, to demonstrate system functionality.

1. Communication sessions must be initiated from within Excel.

2. Communication shall function under both MacOS and Windows Excel versions.

3. Communication must be supported between a spreadsheet system client and a Solaris
system server, as the Lisp-based Forms/3 engine runs only under Solaris.

4. If the server has been successfully ported to MacOS and Windows, the system may
support local communication instead of remote communication.

5. The API and messages passed between the spreadsheet frontend and analysis engine
shall be documented.

Basic Algorithms, Phase II. The system will support WYSIWYT, Fault Localization, HMT,
and Regions. These features involve core algorithms needed for other features which experi-
ments require and are of current research interest.

1. The system must add new functionality to the system, as follows:

(a) Testedness information shall be calculated for each Excel worksheet, as follows:
i. The system shall provide a device within Excel to let users make testing deci-

sions, e.g., a checkbox.
ii. The system shall provide device(s) in Excel that display testedness information.
iii. The system shall update testedness information incrementally after a user edits

a cell’s formula.
iv. The system shall update testedness information after the user makes a testing

decision.
v. To support WYSIWYT, a CRG will be constructed for the worksheet.

(b) Fault Localization information shall be displayed within the spreadsheet.
(c) Help-Me Test (HMT) information shall be displayed for each workbook.

14

i. HMT feedback may be activated by selecting a device within Excel.
ii. Through HMT, Excel shall provide support for test case generation.

(d) The system shall support Regions.

2. The system cannot support every use of Excel. Listed below are uses of Excel which
must be supported, and those which are optional:

(a) The system shall be compatible with built-in Excel functions in the Math/Trig,
Statistical, Date/Time, and Logical categories.

(b) The system need not be compatible with functions of in the Lookup or Information
categories.

(c) The system shall work with absolute and relative cell references.
(d) The system shall work with cell designation by range and list, for example, (A1:A3)

or (A1,A2,A3).
(e) The system must not change the Excel spreadsheet language.
(f) The system need not work with multiple worksheets.

3. The system must not extend the input limitations of Excel. The system must not
interfere with the following commonly used Excel features:

(a) Charting (the built-in graphical display program for Excel)
(b) Cell-locking (protection of changes to cells)
(c) Validation (Excel’s built-in assertion mechanism)
(d) Auditing (Excel’s built-in Arrows system)
(e) Open/Closing Files (using standard dialogs)
(f) Quit (closing Excel must cleanly close the system as well)
(g) Undo (should still work between testedness updates)

4. The system may be incompatible with these less commonly used Excel constructs:

(a) Add-ins
(b) Macros
(c) Circular References
(d) Multiple Worksheets/Workbooks
(e) External Data Sources: SQL, web pages.
(f) Undo Between Testedness Actions

Advanced Algorithm and Experiment Support, Phase III. At this stage, the system will
support Arrows, Assertions, Explanation, Transcripting, and Replaying. The system shall
be suitable for short-term, locally sited studies. Researchers can do experiment-related work
previously done with JavaForms.

1. The system shall link cells with Arrows to indicate testedness information as described
in literature.

2. The system shall support HMT-suggested, defined, and forward-propagated Assertions.

3. The system shall provide modes of explanation with easily customizable textual content.

4. The system shall record a machine-readable transcript of each spreadsheet session.

5. The system shall be able to replay transcripted sessions.

15

6. The system shall support disabling of specific interface features via the Forms/3 engine’s
“policy” mechanism.

General Release, Phase IV. The system shall support distribution and installation by Admin-
istrative Researchers. The system will work fully with multiple worksheets, and workbooks
shared with non-users of the system. The system shall be robust, reliable, documented, and
suitable for long term studies.

1. The system can be distributed to others for collaboration and demonstration.
2. The system can be installed with an integrated installer.
3. All non-functional and performance constraints are met.
4. Evaluation of multiple workbooks and worksheets is supported.
5. The system is robust and handles incompatible elements gracefully.

3.3.3 Performance

The following performance requirements shall be met by the system.

1. The spreadsheet will remain responsive to user actions. For example, no more than 3 seconds
of delay shall be introduced after clicking a cell. Performance metrics shall be measured on
Intel 3 GHz or later PC systems, or Apple G4 1 GHz and later Mac systems, with 512 MB
of main memory.

2. Individual spreadsheets of less than 1000 cells must load in under 5 minutes.

3. Maximum spreadsheet size to be supported is 1000 x 300 cells, to keep cell-bounded algorithms
tractable.

3.3.4 Extensibility/Maintenance

1. The system shall be extensible to later versions of Office.

2. Compatibility with versions of Excel earlier than 2000/X will not be supported.

3. The system must be maintainable and usable with regression tests.

4. Existing naming conventions from the Forms project shall be applied where applicable.

5. If available, a standardized documentation system shall be applied.

6. Programs shall be coded to maximize readability and modularity where possible, and following
the style requirements described in Section 8.3.

7. If needed, the system shall use auxiliary Version Control system such as Visual SourceSafe to
accommodate binary Excel VBA modules and sample spreadsheets.

8. The system shall use the Forms/3 project’s current JIRA-based bug-tracking system.

9. The system shall support Scriptplayer functionality.

10. The system’s User Interface shall be easily customized and extended.

11. The codebase will support long-term development and ease of use.

16

Excel (Mac/Win)

Forms/3 Backend (Lisp)

XL WYSIWYT (VBA)

JavaForms (Java)

ScriptPlayer

Figure 2: A diagram of interoperability requirements for the system.

3.3.5 Architecture

The system must work with Microsoft Excel, and be installable onto an existing build of Excel.
Client and server systems shall be connected through a low-latency network supporting TCP/IP. All
algorithmic and control functionality must be implemented within the backend. The architecture
must be compatible with multiple backends, and must not interfere with other frontends. The
system must interoperate with Scriptplayer, a program to play transcripts under Forms/3 (Section
2.6). A rough outline of how the system must interoperate is shown in Figure 2.

3.3.6 External Interfaces

The system must communicate with Excel, through the Excel VBA language or an equivalent
mechanism. The system may communicate with host operating system to write files, display
messages, and read sockets. This shall be done primarily through native VBA or VBA-embedded
controls. Imported platform-specific libraries should be used only when necessary.

3.3.7 Internal Interfaces

Communication from the frontend to the engine and vice versa must be made using a standard
format. This format must permit compatibility with multiple analytical backends and multiple
spreadsheet systems. The communication format must be general enough to accommodate analysis
engines written in different programming languages on different platforms, as well as different
spreadsheet packages, while remaining reasonably efficient.

System components must be separated to ensure engine functions do not directly read data
structures of the frontend. Additionally, frontend functions should not directly read or write data
structures within Forms/3, although this requirement has not been maintained conventionally for
reading. The frontend and backend can cache and update values for efficiency.

3.3.8 Development

For developer convenience, system development must be supported on Windows terminal server
sessions as well as local machines.

17

3.3.9 Support

The system documentation will be provided in source code and upon release in a manual or webpage.

18

4 Plan of the Work

4.1 Initial Plan

The project was divided into four phases across seven months, closely following the four required
layers of the system (Section 3.3.2), with each phase introducing a new layer. Figure 3 shows the
initial project phases in Gantt chart format. The first foundational phase involved adapting to the
Excel system and implementing a communications adapter for the Lisp-based analysis engine, and
was completed roughly on time. The second “basic algorithms” phase involved supporting basic
WYSIWYT, Fault Localization, HMT and Regions. This phase was to be executed in parallel
with development of a suitable transcripting engine, and elicitation of user-interface requirements
for the new system. The third phase involved adding assertions, arrows, and explanations to the
new system, in an effort to support all the desired algorithms. The fourth and final phase involved
optimization, validation, and development of an integrated installer with a Lisp interpreter.

4.2 Revised Plan

Due to changes in requirements and problems in implementing the interface and socket channel,
the project schedule was amended, as shown in Figure 4. Originally Phase II also included Help Me
Test (HMT) support, however at this stage the decision to perform evaluation remotely was made,
complicating implementation of test case generation since this feature requires constant evaluation.
Therefore this feature was delayed until Phase III. Some requirements on handling interaction with
the user during a spreadsheet session were also delayed until Phase III. At Phase III the system
was also redesigned to be independent of the matrix subsystem of Forms/3 for simplicity.

19

Foundation Phase I 49d

Excel Net Library (pc) 11d

Define Mesg Format 3d

Mesg Format Spec

Parse Mesgs 10d

Excel Net Library (Mac) 43d

Field each Mesg w/Unhandled

Basic Algorithms Phase II 79d

Develop UI Guidelines 12d

WYSIWYT UI Guidelines

Basic UI Design 28d

Wysiwyt Design 7d

Regions Design 7d

Fault Localization Design 7d

HMT Design 7d

Formula Parsing 14d

Region Identification 28d

CRG Construction 10d

Sample CRG

WYSIWYT 8d

HMT 12d

Fault Localization 6d

Validation 16d

Meets Excel Constraints 7d

Performance Evaluation 4d 7h

Preserves Features 9d

Phase II Release

Adv. Algorithms and Experiments Phas... 122d

Transcription 14d

Record Sample Session

Replayable Sessions 30d

Replay Sample Session

Adv UI Design 23d

Assertion Display 9d

Arrow Display 7d

Explanation Display 14d

Assertions 35d

Arrows 18d

Explanation Framework 18d

UI "Policy" Support 22d

Validation 26d

Meets Excel Constraints 14d

Performance Evaluation 6d 7h

Preserves Features 5d

Phase III Release

General Release Phase IV 34d...

Installer 9d

Reliability 20d

Large Worksheets 3d

Multiple Sheets 14d

Handle Anomalies 20d

Performance Evaluation 6d 4h

Optimization 8d

Application/Installer Release

2004, H1 2004, H2

Nov 2003 Dec 2003 Jan 2004 Feb 2004 Mar 2004 Apr 2004 May 2004 Jun 2004 Jul 2004 Aug...

Name Work

Shrinu

Joey

Rogan

Shrinu, Mike

Joey

Rogan

UI Design Group

Mike

Mike

Joey

Marc

Marc

Marc

Joey

Marc

Dr. Burnett

UI Design Group

UI Design Group

Figure 3: The initial project plan.

20

Foundation Phase I 122d

Excel Net Library (pc) 40d

Define Mesg Format 3d

Mesg Format Spec

Parse Mesgs 20d

Excel Net Library (Mac) 116d

Field each Mesg w/Unhandled

Basic Algorithms Phase II 154d

Develop UI Guidelines 12d

WYSIWYT UI Guidelines

Basic UI Design 42d

Wysiwyt Design 7d

Regions Design 14d

Fault Localization Design 14d

HMT Design 7d

Formula Parsing 11d

Region Identification 78d

CRG Construction 24d

Sample CRG

WYSIWYT 24d

HMT 12d

Fault Localization 10d

Validation 16d

Meets Excel Constraints 7d

Performance Evaluation 5d

Preserves Features 9d

Phase II Release

Adv. Algorithms and Experiments Phas... 140d

Transcription 74d

Record Sample Session

Replayable Sessions 30d

Replay Sample Session

Adv UI Design 23d

Assertion Display 9d

Arrow Display 7d

Explanation Display 14d

Assertions 34d

Arrows 18d

Explanation Framework 18d

UI "Policy" Support 22d

Validation 16d

Meets Excel Constraints 8d

Performance Evaluation 5d

Preserves Features 3d

Phase III Release

General Release Phase IV 29d

Installer 12d

Reliability 17d

Large Worksheets 5d

Multiple Sheets 7d

Handle Anomalies 5d

Performance Evaluation 4d

Optimization 8d

Application/Installer Release

2004, H1 2004, H2

Nov 2003 Dec 2003 Jan 2004 Feb 2004 Mar 2004 Apr 2004 May 2004 Jun 2004 Jul 2004 Aug...

Name Work

Shrinu

Joey

Rogan

Shrinu, Mike

Joey

Rogan

UI Design Group

Joey

Marc

Marc

Marc

Joey

Marc

Dr. Burnett

UI Design Group

UI Design Group

Figure 4: The revised project plan.

21

Figure 5: The overall Excel architecture.

5 Design

This section describes high-level design decisions on the overall system and the communications,
backend, and frontend subsystems. Where practical the section refrains from specifying how a
particular design must be implemented. System diagrams are shown in UML format, with arrows
denoting inheritance and diamonds showing composition. We focus here on Excel; design decisions
specific to Gnumeric are described in Section 9.

5.1 Overall Architecture

The overall architecture for Excel is depicted in Figure 5. The general system architecture begins
with a connection module, whose function is to establish a socket to the backend analysis engine.
Under Excel, this module must link to a larger package of frontend code via event handlers on the
socket. When data is written to the socket, it is passed by these handlers to a parser, and parsed
into message objects.

These messages are passed to a “message-handler” module which fields each message to an
appropriate function based on its contents. This design is modeled after the “Intelligent Children”
pattern [17]. Before being fielded however, the messages are filtered through an Adaptor module,
which performs tasks such as converting Forms/3 color values into local values, such as Color.RGB
under Excel. Similarly, strings must be converted to floats and doubles, and lists of cells are de-
serialized into references to the cells themselves. By isolating these adaptor functions to a single
module, conversion of data between the engine and frontend is easier, as well as modification of
the communications protocol itself. The EngineFacade module of each system is used to serialize
cells into messages and send them to the backend for analysis. This event must be called under the
frontend when a spreadsheet is opened.

Since the analysis backend and spreadsheet are completely decoupled, a second class of messages
must be implemented to enable the tracing of predicate nodes within CFGs. This tracer function-
ality requires evaluation of arbitrary predicates, hence the backend must occasionally query the
frontend for the value of a particular predicate. Although part of the same spreadsheet session,
this Evaluator module must be kept distinct from functions which actually update the spreadsheet
display (Figure 5). This module must reserve a cell in a spreadsheet for evaluation of the arbitrary
expressions passed from the backend, and return the messages using the protocol described in Sec-
tion 3.3.7. Although the evaluation may fail under Excel, it will not signal an error to the user

22

Figure 6: The Application hierarchy under ExcelForms.

because the formula is updated non-interactively on the spreadsheet of the Addin rather than the
user’s spreadsheet.

5.2 Frontend Design

Visual Basic for Applications (VBA) was selected as the language for the frontend of the system
because it is simple, portable to MacOS, and offers the most complete interface into Microsoft
Excel. Other options included the Office .NET framework, the C++ based COM framework, the
deprecated XLL framework, Applescript, and Real Basic.

The Office .NET framework was appealing because it enabled implementation of the system in
any CLR1-supported language, including managed C++, C#, the java-like J#, and Visual Basic
.NET. This approach would permit developers of the system to work on modules in a preferred
language and still interoperate with other modules. Unfortunately the interface for .NET was
only available in Office 2003 under Windows 2003 Server or Windows XP, breaking cross-platform
compatibility. Furthermore, Office 2003 was not planned for deployment at the university for at
least one more year.

Excel is also programmable using the COM (Common Object Model) library, from C++ and
other systems-oriented languages. The features of Excel are less accessible through this interface,
however, and COM is not supported on MacOS X. Similarly, the XLL library permitted access to
Excel through a conventional language at the cost of less programmability, and was deprecated for
newer versions of Office.

Programs within Visual Basic for Applications are composed of conventional C-like modules,
Class Modules, Forms, and Worksheet and Workbook code panes. The latter two are usually used
to store event handlers for graphical objects on the worksheet and workbook, such as command
buttons. Forms are not used in this project, except for special purposes. Macros (Section 2.6) must
be stored in modules. Figure 6 shows the hierarchy and composition of classes for spreadsheet
objects under the Frontend, and Figure 7 summarizes the relationship of utility objects. Unlike
object-oriented languages, inheritance is not supported between class modules in VBA, so the
relationship between the classes is actually composition rather than generalization.

1Common Language Runtime, the .NET virtual environment.

23

Figure 7: The Collection and OLEObject hierarchies under ExcelForms.

5.3 Backend Design

The backend was designed to reuse the analysis engine of Forms/3 where possible. It involved sub-
classing and extending the primary classes used to store and represent spreadsheets under Forms/3.
As shown in Figure 8 the Form class was extended to represent Excel workbooks (Workbook) and
the Cell class was extended to represent cells as XLCell. Originally, XLRegion and Worksheet
descended from Matrix and Region, but the latter were buggy and did not implement regions
in the desired way. XLRegion and Worksheet were eventually adapted to descend directly from
CellGrp.

Extending WYSIWYT data structures under Forms/3 was relatively simple, and primarily
involved adapting existing classes to work correctly with ranged references. This extension was
achieved by sub-classing the representations of CRGNodes for Matrices and Regions in the former
Matrix system, and composing these within XLCells and XLRegions. The hierarchy is shown in
Figure 9. Each cell and region is represented by node classes in the Cell Relation Graph (CRG)
system, in the following manner:

Cell -> CellCRGNode
MatrixPlainCell -> EltCRGNode
XLCell -> xlEltCRGNode

Region -> RgnCRGNode
xlRegion -> xlRgnCRGNode

5.4 Communications

To promote modularity and reuse of existing code, the system requirements stipulate abstraction of
the system’s analytical engine from the spreadsheet system itself. This requirement arises from the
desire to reuse the same analytical functions used in the Lisp-based Forms/3 system. To fulfill this
requirement, the system is physically and conceptually decomposed into a frontend and backend,
tied together using a special communications format.

24

Figure 8: The displayable hierarchy under LispForms.

25

Figure 9: The GSearchable hierarchy under LispForms.

26

5.4.1 Communications Format

The communication scheme employed between JavaForms and the Lisp-based Forms/3 engine con-
sists of evaluable S-expressions. This format is used again for Excel because it is easily analyzed
under the Lisp engine. XML was also considered as a format, since it could enable simple trans-
lation of messages, has free parsers available, and would make transcripts externally portable. It
was not clear however if XML would be useful in a small locally-coupled system where the commu-
nications format was well known in advance, and it might introduce additional network overhead.
Furthermore, adapting Forms/3 to send XML might be difficult since the logic to format messages
is not entirely centralized.

5.4.2 Specification

The communications format used between the engine and Frontend of the system is described
below. The format syntax is useful when constructing a lexical analyzer, and the list of symbols
describes the syntax of the communications language. A complete specification of message syntax
is listed in Section 12.

MESSAGE -> (DIRECTIVE ARGUMENTS) | (DIRECTIVE)
ARGUMENTS -> ATOM ARGUMENTS | ATOM
ATOM -> NUMBER | STRING | SYMBOL | LIST
LIST -> ’(ARGUMENTS)
STRING -> ".*"
SYMBOL -> [A-Za-z][A-Za-z0-9_\-\?]*
NUMBER -> [\+\-]?[0-9]*\.?[0-9]+

5.4.3 Excel-Specific Messages

To support Excel, the following messages were added to the system, listed below by keyword. See
Section 12 for a description of other messages.

Make-Workbook-From-List This is the message used first by the system when a workbook is
loaded by the user. It contains the name of the workbook, followed by each worksheet, and
for each worksheet the used range of the worksheet and the row, column, formula, and value
of each cell.

Gui-Update-Workbook This message is sent when the user initiates a change on the work-
book. Under Excel this is caused by the Worksheet Change event. For convenience, both the
formulas of cells which changed and the values of their dependents are sent.

NameRegion This message identifies to the frontend how cells are grouped into regions.

Request-Evaluation This message gives an arbitrary expression to the frontend for evaluation,
as described in Section 7.4.

Return-Evaluation This message returns the result of a request-evaluation call.

27

5.4.4 Validation

Implementation of a Gnumeric-based frontend (Section 9) and a Java-based backend [14] afforded
an opportunity to check the communications design for implementation-specific features. Under
Gnumeric, the only changes needed to message formats was to introduce additional functionality
for parsing and sending A1-formatted messages, since Gnumeric did not support R1C1 format.
Under the Java-based system, messages related to the authentication subsystem were discarded,
but other specifications were implemented without incident. Although rooted in message calls to
Lisp, the scheme has been successfully extended to new languages and spreadsheet systems.

28

6 User Interface Design

This section outlines overall user interface guidelines (Section 6.1) and the user interface for WYSI-
WYT (Section 6.2), Regions (Section 6.3), Explanations (Section 6.9), and Arrows (Section 6.8).
Where practical, this section focuses on behavior and appearance rather than implementation,
although known programmability shortcomings of Excel are addressed.

6.1 Guidelines

A set of overall goals for the design of the user interface were put together for designers and
implementors. The general goal is to design the project UI using established empirical results [26].

1. Generally, interfaces must conform to these guidelines:

(a) The viability of the interface for empirical studies must be preserved.

(b) System interfaces should not interfere with a user’s expectation of Excel’s behavior.

(c) The UI system shall not perform reasoning about testedness; this should be done in the
Engine instead.

(d) The UI system shall be frugal in its use of screen space.

2. UI devices must be careful about how they solicit the attention of the user, as follows:

(a) UI devices should use a negotiated rather than an immediate style of interruptions.

(b) UI devices should avoid modal interaction.

(c) Generally devices should not make high demands on the user’s attention.

(d) UI elements must avoid putting “water in the beer”, that is, diluting features of interest
with trivia.

(e) The cost of a UI device must not exceed its benefit. For example, activating a feature
should not require the user to dig through multiple ancillary dialog boxes.

3. UI elements are expected to maintain specific response characteristics:

(a) The system shall be fast; actions must result in immediate response.

(b) The system shall be live, with displays being updated immediately. With respect to
spreadsheets, live refers to Tanimoto’s third level of liveness, when incremental semantic
feedback is automatically provided whenever the user performs an incremental program
edit, and all affected on-screen values are automatically redisplayed [36].

(c) The system shall “tell no lies”; out of date information must not be retained.

(d) UI elements shall be displayed statically when possible.

(e) Dynamic displays must have high benefit to justify their use in the system.

Conflicts between these high-level goals will probably arise during system design and implemen-
tation. The recommendation in this case is to discuss conflicts with the UI design group, to ensure
a consistent UI policy. Resolving conflicts in an ad hoc manner should be avoided, to prevent the
UI from becoming fragmentary and inconsistent.

29

Value View Excel Formula View WYSIWYT Formula View
3 = A1 * 6.02 3 = A1 * 6.02

5.14 = PI() + 2 3.14 = PI() + 2

Table 3: Formula and Value View

6.2 WYSIWYT User Interface

Features related directly to WYSIWYT’s visual feedback are testboxes, cell border colors, and the
testedness progress bar. The design of the testedness toolbar is summarized in Section 7.6.1 along
with the Fault Likelihood Overview Bar. The overall WYSIWYT system will be triggered by a
toolbar button, added to the auditing, review, or validation toolbars as appropriate. The system
may also include a facility for more easily changing the name of a cell, for example via a drop-down
menu, or textbox tag.

Testedness cell-border colors are displayed using the bottom and rightmost borders of each cell,
as shown in Figure 10. Only two of the borders are engaged because borders of cells under Excel
are shared and using all four would overwrite the borders of other cells. Although complete borders
are still desirable, this half-border approach is cogent, especially when supplemented with coloring
of testboxes. Testbox color is depicted in Figure 10 (gray or black in a printed copy).

Testboxes shall be placed at the leftmost side of each cell, to complement the default right-
alignment of cell numbers and formulas. Testboxes shall be faded 50% to remain “demure” and
avoid overwhelming the user, and share the color of the border, adding impact to the “testedness”
UI element as well and compensating for the missing two borders. Ideally the testboxes should
adjust themselves upon left-alignment of the cell contents.

Care must be taken for question marks, minus signs, plus signs, and circles to appear correctly
in the testbox. Under various fonts and configurations, these can be misaligned, whereas others
may be too “busy” or visually heavy. If necessary, a custom checkbox character may be created
from scratch. Other possibilities include a grayed-out checkbox, an angular, simplified question
mark, and shading of the checkbox. Note the latter seems to have a special nuance already under
Windows.

To promote equality of testedness and fault likelihood while minimizing extra UI devices, a
paired approach is used for testboxes. Under this approach, each referential cell in the spreadsheet
contains a single, primary testbox by default. Clicking on the primary testbox causes two paired
testboxes to appear, shown in cell D10 of Figure 10. These paired testboxes display an X and check
mark respectively. After clicking on one of these boxes, the paired testbox reverts to a primary,
single box, shown in cell D8.

The paired testbox approach differs from Forms/3, where fault likelihood and testedness inter-
action is distinguished by left and right clicking on the testboxes. The change was made for the
following reasons:

1. The distinction between left and right clicking can be confusing.

2. Right-clicking is often used for contextual popups under Excel.

3. For AutoShape objects, right-clicking selects the object and cannot be captured, prohibit-
ing the design of testboxes and causing inconsistencies if other objects are implemented as
AutoShapes.

4. Standard Apple mice do not have a right-click button, limiting portability or causing changes
to directions to control-click.

30

Figure 10: A mockup of primary and paired testboxes.

Finally, formulas under WYSIWYT should be shown as equations instead of partial computa-
tions. For example, an Excel formula is conventionally shown as = bX + cX, but should appear
as a = bX + cX under WYSIWYT. This could be supported via a Value view and Formula view,
shown in Table 3. This way users can observe both the formula and value at the same time, rather
than toggling between them. This view also makes experiments under the system more comparable
to those under Forms/3.

6.3 Regions User Interface

As described in Section 2.3, Regions are the grouping of cells into clusters to aid in both algorithmic
efficiency and in ease of testing [11]. This section describes how interfaces relating to regions must
appear and behave. Contiguous regions are assumed in most cases.

6.3.1 Region Borders

For contiguous regions, there will be a single testedness border encompassing the entire region, as
in JavaForms. The border must be a bit thicker than the regular testedness border. The individual
cells in the region will not have their own testedness borders. A sample region border is shown at
the bottom of cells B4 to D4 in Figure 11. Region borders will be subject to the following properties
as well:

1. Regions will not be identified by name, because names do not seem useful and may be incon-
sistent with other names.

2. The system will support the user’s ability to break up a region from the inferred region when
a region inference mechanism is wrong. A method for the user to indicate regions to be
modified must be provided.

3. Editing order does not matter: if the user adds a neighboring cell that would have been part
of the region if it had been there before, it becomes part of the region now.

31

Figure 11: A mockup of the user interface for Regions.

6.3.2 Discontiguous Regions

The system shall be flexible enough to support discontiguous regions, but need not actually imple-
ment them, because it is not clear whether discontiguous regions will actually be used. Discontigu-
ous regions will have the following properties as well:

1. The discontiguous pieces of the same region theoretically have a shared boundary. For exam-
ple, they all share the same color.

2. The pieces are connected with a black line with a dot on either end, from the bottom right of
one piece to the top left corner of another, as shown in column B of Figure 11. The direction
of the line is determined either spatially or from reading order.

3. The connector line should be more transparent if the region is not one that has a cell in it
selected. If we cannot support the same transparency for arrows in unselected cells, however,
connector lines must not be transparent.

4. It should be possible for connector lines to be enabled or disabled in the same way as arrows
are enabled or disabled. The default setting must be on if WYSIWYT is enabled.

6.3.3 Modifying Regions

Modification of regions would be targeted towards region-experienced users; hence, it does not
have to be comfortable for first-time users. Both splitting and recombination must be supported
if modification is supported. Furthermore, modifications must not be so easy that it is likely to
be done accidentally. Modification may be done by selecting a region connector, then selecting a
separate “Modify” button from the toolbar. Within a contiguous region, the user would have to
select the desired break-off piece and go to the toolbar to find the button.

32

Figure 12: The testedness indicator originally used in Forms/3.

Figure 13: A case of Fault Localization masking testedness.

6.4 Progress Bar User Interface

The percent testedness indicator has been shown to exert a strong motivational influence on study
subjects and is important to preserve in WYSIWYT-XL. Under JavaForms it is implemented as
a bar of changing color, as shown in Figure 12. However it is difficult to implement this in a
less programmable environment like Excel. One approach is to chain together individual toolbar
buttons to form the indicator. Unfortunately this toolbar lacks a continuous bar-like appearance
(see Figure 23 on page 46). Design tradeoffs in the implementation of the indicator are described
in Section 7.6.1.

6.5 Fault Likelihood User Interface

Fault Localization isolates spreadsheet faults to certain cells [28], and requires interfaces to indicate
suspect cells, and denote cells as wrong. Additionally, fault localization over regions (Section 2.3)
may require a special interface.

To trigger fault localization, users will enable the paired testbox over a cell as described in
Section 6.2. The user will then mark the cell’s value as incorrect by selecting the right mark of the
paired testbox. To unmark the cell, the user clicks once upon the primary testbox, just as a cell is
unchecked.

The fault localization technique shall shade the interiors of suspect cells, but not change the
cell borders. Care should be taken so testedness colors are not inundated by interior colors, as
shown in Figure 13. When used with regions, the fault localization can be used conventionally, or
optionally distilled into touched cells and untouched cells (Figure 14).

The fault localization convention of coloring the background of each cell has the drawback of
overwhelming users with too many changes (“too much red”). Additionally, using red to signal a
high fault likelihood conflicts with the use of red to indicate testedness. Also, by necessity, the
shading method may overwrite a user’s custom cell shading, or interiors shaded by Excel. The
system should be flexible enough to permit addressing these drawbacks in the future.

6.6 Test Case Generation (HMT) User Interface

Automated generation of spreadsheet test cases is called Help Me Test (HMT) under Forms/3.
It requires interface devices for activation, selecting an area of interest, highlighting changed in-

33

Figure 14: A mockup of the Regions user interface with Fault Localization.

Figure 15: A mockup of the Help Me Test (HMT) user interface.

puts, and highlighting generated cases. Additionally, at certain timepoints user interaction on the
spreadsheet must be frozen.

HMT will be activated through a toolbar button, and support indicating an “area of interest”
as follows: if nothing is selected, the entire active spreadsheet is considered the area of interest
and a test case will be generated that increases the testedness of the spreadsheet. Alternatively, if
some combination of arrows or cells are selected, then these are considered the area of interest, and
a test case will be generated that increases the testedness of one of these arrows or cells. These
two tasks must be implemented via separate buttons under Excel, since in Excel there is no easy
way to not have at least one cell selected. Selection of arrows (Section 6.8) for HMT need not be
implemented, since it may be difficult to limit user interactions with arrows if users are allowed to
select them at all.

Under JavaForms, changed input cells are indicated by thickening their borders. This is a
problem in Excel because the system already uses different thicknesses of borders to indicate various
regions to the user (Section 6.3) and input cells do not have borders. Instead the font of the changed
inputs should be emboldened or changed to a different color, as shown in Figure 15. Green would
be a possible color as it has no special meaning elsewhere in the system.

After HMT has been performed, cells containing fresh question marks must be signaled spe-
cially. Under JavaForms this was done using thicker borders, but this device is already in use for
regions. An alternate approach could be to use the font value of the cell or decrease the checkbox

34

transparency. Alternately, the decision box border could be thickened. Thickening also draws the
user’s attention to the decision box itself, encouraging them to test the fresh value.

HMT also requires freezing interaction with the spreadsheet during updates. In Excel (and
Windows and MacOS in general) there are two ways that are generally used to prevent the user
from interacting with an application. One is the use of the busy mouse cursor, depicted as an
hourglass on Windows, a watch on MacOS 9 and earlier, and a pinwheel on MacOS X. This device
may be unsuitable however, because it indicates there are no actions the user can perform, yet
users are able to optionally cancel HMT and resume work. The second convention is to display a
modal dialog box, which could have a cancel button. The dialog box approach in JavaForms was
discarded primarily because it could get lost, since X Windows does not support modality. This
is not a problem with Excel, because Windows and MacOS will enforce the ordering of the dialog
box over the spreadsheet.

The display for all of the cells shall be updated continuously as new values are tried. This
updating should only be limited for performance reasons. In that case, current updates could be
described in a status bar or in an interactive dialog box.

6.7 Assertions User Interface

To help the user create specifications and guards for a spreadsheet, the system supports creation of
static and dynamic assertions on each spreadsheet cell (Section 2.4). Supporting this system under
Excel would require introducing the following required and optional user interface devices:

1. Value violations must be displayed, for example with red ovals over a value.

2. Assertion sources must be displayed and sometimes made editable by the user.

3. Assertion conflicts must be displayed, for example with a triangle in the top left of the cell,
a red circle, or an icon on an assertion toolbar.

4. Placing assertions on input and formula cells must be supported.

5. Cells and other assertion interfaces should be spatially tied.

6. Assertion editing should be closely tied to formula editing.

7. Assertion interfaces should be easy to show or hide, through a button on the WYSIWYT
toolbar.

8. Assertions should be visible alongside values and formulas.

9. Assertion conflicts should be signaled to the user even when the assertions themselves are not
visible.

10. The user should be able to view and edit multiple assertions at once on various cells.

Assertions will be placed on cells by clicking on a global assertions toolbar. Assertion conflicts
may be signaled with a triangle in the top left of the cell (Figure 16). Once a cell contains
assertions, it will contain a semi-transparent gray shield icon “embedded” in its middle (Figure
17). This approach is similar to the floating shield icon under Forms/3, and visually indicates
which cells contain assertions.

35

Figure 16: An example spreadsheet with all cells having assertions.

Figure 17: An example of the floating assertions toolbar.

Ideally, if a cell has assertions placed on it, then selecting the cell would pop up a floating
assertions toolbar. This toolbar may be implemented using a VBA form or a comment box. If
a floating toolbar proves too difficult to implement, then the assertions can be listed in a global
assertions toolbar. The latter is less desirable however because it has no spatial tie to the cell.

6.8 Arrows User Interface

The system must display arrows to draw attention to untested portions of the spreadsheet and
indicate which du-associations are validated. This association should be shown at both the gran-
ularity of cells (arrows between cells) and sub-expressions. Arrows must have certain properties,
require interface devices for local and global triggering, and must be displayed specially under
certain circumstances. Described below are the specific properties arrows must have:

1. An arrow must be drawn from source cells to destination cells.

2. If formulas are displayed, the arrow must be clearly drawn from affecting subexpression to
affected subexpression.

3. Arrows must reflect du-associations at both the cell and sub-expression levels.

4. The user must be able to hide individual arrows.

5. The user must be able to show and hide all arrows for a spreadsheet.

6. The device to trigger arrows for a particular cell should be tied to that cell, and likewise of
individual arrows.

7. Arrows should not obstruct values of source or destination cells.

36

Figure 18: A mockup of the curved inter-row arrows.

Figure 19: A mockup of arrows between subexpressions under formula view.

Arrows shall be displayed starting and ending at the leftmost end of each cell. If the arrow
points to cells in the same row or column, then the arrow shall be curved so the tip of the curve is
at the arrow’s midpoint and halfway up the preceding row, as shown in Figure 18. This approach
avoids obstructing values of source and destination cells.

If formulas are displayed, the arrow should be clearly drawn from the affecting subexpression
to the affected subexpression, as shown in Figure 19, unless the cell is an input cell (Figure 20).
Additionally, a bracketed box must appear above individual subexpressions, outlining the subex-
pressions to which arrows point. Again, arrows are curved if source and destination cells are in the
same row.

The top of arrows from one cell to another may share the same pixels where necessary. Also
arrows may share the same “bus” or connection point from another cell. The reddest arrows must
be topmost in any clustering of arrows, as shown in Figure 21.

Under JavaForms, arrows were hidden or shown by middle-clicking the mouse button, but this
was an action some users seemed unused to. Also, there is no middle-click on a standard Macintosh
or PC mouse. Instead, arrow activation will be done via a hotkey or menubar button. There does
not seem to be a mechanism for getting a “click and hold” under Excel, though this might be ideal
in other environments.

Regions pose a special problem for arrows, since arrows can be drawn to indicate a many-to-
many relationship. For contiguous regions, a single or bunched “wiry” arrow may be employed. In
general, however, the simple approach of continuing to draw arrows between cells is sufficient.

Figure 20: An example of arrows between cells under non-formula view.

37

Figure 21: An example of arrows sharing endpoints, with the reddest arrows on top.

6.9 Explanations User Interface

Explanations shall be performed under WYSIWYT-XL via tooltips. These tooltips will appear
when the user hovers his or her mouse over a cell for a certain number of seconds, and disappear
when the mouse is moved away. The tooltip should resemble standard Windows tooltips if possible.
Due to practical limitations under Excel, the tooltip may be removed if the mouse moves at all.
Multi-level tooltips should be employed for longer explanations.

38

7 Implementation

This section describes how the system was implemented, based on requirements and design. Draw-
backs of the implementation and workarounds are presented. When the design could not be imple-
mented as initially designed, alternate approaches are described.

7.1 Communications

Since the system is designed as a client-server architecture (Section 3.3.7), implementation of the
communications subsystem was requisite to begin. Correctness at this lowest layer of the system was
also important for robustness and to ensure flexibility when deploying the system across multiple
platforms.

7.1.1 General Sockets

As the target system is client-server and network-based, a major task of the project was to find a
reliable means by which to write and read sockets under Excel VBA, a language designed for rel-
atively simple spreadsheet manipulation. This socket functionality is necessarily platform-specific,
although the system uses the same events and scheduling independent of the underlying socket.
This is achieved via a Socket module, which provides basic socket-related client functionality such
as sending messages and connecting to the remote host. This Socket module contains a CSocket or
MacOS library, depending on which platform the system is built on. The implementation of each
networking subsystem is described below.

7.1.2 Windows Sockets

One option for networking under Windows was Winsock, a socket library distributed with the
Visual Basic 6 runtime. Using this library, however, required installing and registering the ActiveX
control mswinsck.ocx on each machine where the system would be run. Since registering the control
requires super-user privileges, this requirement proved burdensome when installing the prototype
on systems where obtaining super-user privileges is difficult, such as university computer labs.

Linking the system to the Winsock control also required a Visual Basic 6.0 license on the
machine where the linking occurred. This requirement conflicted with the design of the version
control system since to accommodate multiple developers, VBA modules had to be combined into
an Excel VBA Addin dynamically from version control (Section 8.2). If the system required linking
to Winsock on the fly, then the bundling could only be performed by developers on machines with
VB6 installed. This problem was worked around by retaining a base spreadsheet with Winsock
linked, and adding modules to it dynamically to create a second working spreadsheet. This editing
requirement caused confusion, however, because sometimes developers were uncertain which copy
of the Socket module should be edited. Developers were prone to directly editing the secondary
copy and losing their modifications when the secondary copy was recreated from the base copy.

A second option for networking under Windows was the IP*Works! control, available from
/N software [34]. This control runs as a separate thread on Windows, precluding the problems
with Winsock involving interference from MsgBox and other procedures that halted Visual Basic.
Although reasonably priced, the license for this product did not seem suitable for the system since
it prohibited multiple developers.

Socket access was achieved under Windows with the freeware CSocket library [18]. This library
uses the Declare keyword of VBA to create C to VBA wrappers on the ws2_32.dll networking

39

library. CSocket is conveniently designed to resemble Winsock, so few changes were necessary to
adapt the system from Winsock to CSocket. Several changes were made to CSocket to make it
function under VBA, such as setting the running application to Office instead of a Visual Basic
application.

Although CSocket avoids the memory leaks and inflexibility of the built-in Winsock, it has other
robustness issues. Unlike Winsock, the CSocket wrapper generates events by retaining a pointer to
the window used by the running application. This triggering is tricky and requires accessing Excel
at a very low level, promoting instability. For example, clicking the “Stop Macro” button under
Excel with CSocket enabled causes Excel to crash with a general protection fault. This problem
can also cause developers to lose their changes if the changes cause the socket to be terminated
unexpectedly. Similarly, users of the system could potentially lose their spreadsheet work if they
press the stop macro button.

Since Excel VBA is a single-threaded application, both CSocket and Winsock are incompatible
with methods which could cause Excel to stall or sleep. For example, MsgBox, a function commonly
used to pop up a dialog box, causes Excel to block until the box is dismissed. While Excel is
blocking, messages transmitted to Excel are ignored, causing inconsistencies in the system.

7.1.3 MacOS X Sockets

Under MacOS X, socket communications were implemented using AppleScript and a separate Java
application, ExcelSocket, which used the Cocoa framework. ExcelSocket used standard TCP/IP
sockets to connect to the backend, and AppleScript to communicate between the ExcelSocket
application and VBA under Excel.

7.1.4 Message Processing

According to the Communications Specification of Section 5.4.2, each incoming message is delimited
by two parentheses in a format resembling a Lisp S-expression. Under ExcelForms, a special module
MesgParser was created to process and unpack these messages. The messages can contain nested
lists, strings, and numbers, as shown in Figure 5.4.2. Therefore before delegation of messages inside
the system, the incoming data stream is broken up into messages, each of which is composed of
tokens of four types: string, list, value and symbol. Because the data stream may terminate before
a complete message has been entered, the parsing system needs to retain any previous incomplete
messages and append these to the current input string. The method used for the parser is listed in
Algorithm 1.

VBA does not provide a built-in regular expression scanner, but it does provide a basic glob-
like2 pattern matching mechanism, called Like. This was used to identify tokens of type value, and
numbers in ratio format. Because VBA does not have a built-in ratio format, these values were
approximated by the parser using basic division. Special care was taken to detect nested strings.

7.2 Excel Formula Analysis

Since we do not have access to the interior data structures Excel uses to store cell formulas, the
formulas must be scanned and parsed by the system. For efficiency, compatibility, and ease of
implementation, this is performed on the Lisp-based backend, by sending each cell’s formula to
the backend as a simple string. The chief goal of this conversion is to recognize references and

2Globbing is the expansion of wildcards such as * and ?, usually to match filenames.

40

Algorithm 1 Message Processing Algorithm
Require: length(msg) > 1

msg ← input(socket)
for i = 1 to length(msg) do

nextChar ← msg[i]
if nextChar = “doublequote” then

5: if isString and not msg[i - 1] = “backslash” then
isString ← FALSE

else
isString ← TRUE

end if
10: end if

if isString then
continue

end if
if nextChar = “leftparen” then

15: parenSum← parenSum− 1
if parenSum = 0 then

token← msg[tokStart, i]
queue← queue + token

else if parenSum = 1 then
20: isList← FALSE

end if
else if nextChar = “rightparen” then

isList← TRUE
parenSum← parenSum + 1

25: else if nextChar = ’ ’ and not isList then
token← msg[tokStart, i]
queue← queue + token
tokStart← i + 1

end if
30: end for

41

Token Sample Lexemes Extended Regular Expression Informal Description
id grades01 [[:alnum:]] Alphanumeric
string “Jane Doe” "(\"|[^"])+" Double-quoted string
sstring ’My Grades’ ’[\^’]+’ Single-quoted string
addr R[-1]C R(\[(-)?[1-9]+\])?C(\[(-)?[1-9]+\])? Relative ref
addr R1C2 R[0-9]+C[0-9]+ Absolute ref
colrow R1 (R|C)[(-)?[1-9]+] Column or row ref
dec -343 [+-]?[0-9]+([.][0-9]+)? Decimal or Integer
flt -343.43E-04 [+-]+[0-9]+([.][0-9]+)?(E[+-][0-9])? Exponential

Table 4: Excel Formula Lexemes and Tokens

Sample Input Scanned Output
Sheet1!R1C1 (id Sheet1) ! (addr..)
’She et1’!R1C1 (sstring "She et1") ! (addr..)
[Book1.xls]Sheet1!R1C1 [(id Book1.xls)] (id Sheet1) ! (addr..)
’[Book 1.xls]Sheet1’!R1C1 [(sstring "Book 1.xls")] (sstring "Sheet1") ! (addr..)
Book1.xls!TESTT (id Book1.xls) ! (id TESTT)
’Book 1.xls’!TESTT (sstring "Book 1.xls") ! (id TESTT)

Table 5: References Across Workbooks and Worksheets Are Scanned Specially

conditional expressions inside the formula, although the system supports limited evaluation of the
formulas if necessary.

Unlike in a conventional scanner or parser, little error-checking needed to be done on the
formulas because the editor under Excel only accepts certain inputs. Therefore syntax errors in the
formula do not raise an error visible to the user.

7.2.1 Lexical Analysis

For simplicity in the parser, the formulas are first split into lexemes identified by tokens, using
lexical analysis [3]. Lexical analysis of the formulas is done manually, per the specification in
Section 11.3. Several lexemes and tokens used by the scanner are listed in Table 4.

The scanner was implemented by constructing functions for each token which returned the
scanned lexeme and an index into the string where the lexeme ended. Returning multiple values
from a function was accomplished using Lisp’s multiple-value-setq function, and was patterned
on the built-in parse-integer function.

Cross-workbook cell and name references are handled specially, to minimize the amount of work
needed in the scanner and leave the tougher work for the parser generator. Specifically, under Excel,
workbook and worksheet names are grouped together inside the same singly quoted string if one
of them contains spaces, and workbook names are singly quoted normally when containing spaces,
shown in the first column of Table 5. A literal scanning of the tokens would lead to worksheet
and workbook names being occasionally included in the same string lexeme. This inclusion would
prohibit identification of the reference within the parser, and require adding extra logic to the
scanner to specially recognize cross-workbook and worksheet references. Instead, singly quoted
strings containing spaces are treated specially by the scanner, as shown in Table 5.

42

7.2.2 Parsing

Parsing is done using a LALR(1) parser generator [20] which accepts a grammar as a list of tokens
and lambda functions to be applied against their corresponding lexemes. The parser generator
outputs a closure which acts as a parser. Upon compilation, the system writes this closure to a
temporary file to be read upon system load. System statistics, dates, and other information is
written to the header of the generated file to preclude manual modification.

Scanned formulas are parsed according to the grammar listed in Section 11.1 of the Appendix.
One goal while analyzing formulas was to convert the formula to an expression easily usable by
Lisp, since during WYSIWYT, portions of formulas must sometimes be analyzed. Therefore the
actual productions used by the grammar are broken down so operators are ordered with the correct
precedence. Parsing is performed according to the grammar listed in Section 11.2 of the Appendix.

During parsing Excel operators are substituted for Lisp operators and references recognized.
Ranged references involving the “:” operator, named references, cross-workbook and cross-worksheet
references, and ranged referential functions are tagged with special identifiers like excel-name,
excel-range, and excel-func. The if conditional is tagged with excel-func rather than being
treated specially.

7.2.3 Reference Conversions

Following parsing, the references in each Excel formula are converted to CellRef structures for com-
patibility with the Forms/3 system. The actual conversion is performed by recursively traversing
the formula list and substituting elements of type excel-ref with CellRef objects. This step is
problematic, however, because CellRef does not support ranged or named references, and since a
structure of type defstruct is not subclassable under CLOS. For ranges this is worked around by
giving the CellRef structure a special cellid which identifies the reference as a range.

A second version of the formula is created next, wherein relative references are converted to
absolute ones. This is required because some portions of the analysis system require an easily
evaluable, absolute formula (displayable-formula), whereas other portions, such as the region
inference engine, prefer reasoning about relative references (displayable-general-formula).

7.2.4 Evaluation Conversions

The request evaluation system (described in Section 7.4) requires certain sections of the parsed
formulas to be evaluated by the spreadsheet package itself outside of Lisp, for the reasons described
in Section 7.4. This means these formula segments must be translated back from a Lisp list into a
format evaluable by Excel. The conversion must generally replace prefix operators with infix ones.
Additionally, all references must be made absolute and prefixed with their correct workbook and
worksheet because the evaluation is performed within the Excel Addin to avoid interfering with the
target workbook itself. An example of the conversion is shown in Table 6.

7.3 Testboxes

Implementation of testboxes requires displaying a box on certain cells of the spreadsheet, fielding
clicks on them, and updating the X or checkmark displayed on them, as described in Section
6.2. Under Windows, testboxes are implemented as OLEObject Labels, because these objects also
support mouse motion events. The programmability of OLEObjects under VBA is roughly the
same as the Label, Checkbox, and other objects commonly used under Visual Basic 6.0, except
VBA does not support control arrays. Since VBA lacks control arrays, the objects cannot be

43

Stage Formula
Original =if(R[-1]C1 > 75, 0, 1)
Scanned eq_op (id if) ’(’ (addr (rel -1) (abs 1)) gt (dec 75) ’,’ 0 ’,’ 1 ’)’
Parsed (excel-func if (> (addr (rel -1) (abs 1)) 75) 0 1)
Relative (excel-func if (> #<CellRef Sheet1[i-1@1]> 75) 0 1)
Absolute (excel-func if (> #<CellRef Sheet1[4@1]> 75) 0 1)
Evaluable =(([Book1.xls]Sheet1!R4C1 > 75))

Table 6: Excel Formula Conversions

assigned event handlers dynamically, so while testboxes can be created dynamically, clicks on them
are not readily detectable. This problem is worked around by having the VBA addin program
textually insert event handlers into the user’s spreadsheet, and letting each event handler call back
to the cell’s associated system data structure (XLCell).

Textual insertion of event handlers has several drawbacks however. For example, the code
which inserts the macros may trigger false positives in some virus scanning programs. Also, the
technique does not scale well to larger spreadsheets, which could exceed 1,000 cells, as an event
handler must be inserted for each referential cell. If the system terminates prematurely, the user’s
spreadsheet can also be left riddled with unwanted macros. Finally, the program insertion can
crash Excel when the event handler indirectly creates new buttons and modifies its own code pane.
The use of OLEObject thus adds additional functionality to the system at the cost of complexity
and instability.

Keeping testboxes aligned to their respective cells is done by iterating over all testboxes in
the spreadsheet and realigning them every time a cell is added. This was previously done using
a special property of the testbox object type, OLEObject, which linked the object to the cell, so
when the cell was moved, so was the associated testbox. This property also caused clones of the
testbox to be created when the cell was copied and pasted, however, so the complete realignment
approach was taken instead.

Under MacOS and earlier implementations for Windows, testboxes are implemented as Au-
toShape objects (OLEObjects are not functional under MacOS). With AutoShapes, event handling
is performed by assigning each testbox a name corresponding to it’s associated XLCell and assign-
ing it’s OnAction property to a special clickhandler macro. This macro uses Application.Caller
to execute a method in the cell’s associated XLCell. Both mechanisms are encapsulated within the
XLBox class.

The paired testbox defined in Section 6.2 is implemented using two objects of type XLBox. For
efficiency and simplicity, the paired boxes are properties of the worksheet, so only one is created
per worksheet.

7.4 Request Evaluation

To gauge the testedness of a conditional cell’s precedents, the system needs to determine which
branch of the condition has been executed, as described in Section 2.2. Although the system can
determine the cell’s value and formula, it cannot necessarily infer which branch of the condition
is taken without evaluation. Specifically, the system must evaluate either the predicate or both of
the branches and get the predicate’s value through inference. Given the distributed nature of the
system, however, evaluation is non-trivial because a predicate written under Excel could contain
expressions which are not evaluable by the Lisp engine. For example, the expression might contain

44

Figure 22: Evaluation of predicates under Excel for tracing.

a function such as BESSELJ, the Bessel function, which has no built-in equivalent under Lisp.
Furthermore, Lisp might evaluate even simple expressions differently than Excel, given differences
in how floating point and integer length are handled, leading to incorrect identification of tested
branches within CFGs.

Rather than evaluating expressions itself, therefore, the engine sends predicates back to Excel
to be evaluated. The predicate snippets must be converted back to a format evaluable by Excel, as
described in Section 7.2.4. This operation is tricky, however, because backend/frontend communi-
cation is asynchronous (Section 3.3.7) and the system must wait until the predicate is evaluated to
continue gauging testedness, or “tracing” (Section 2.2). In a multi-threaded system, the tracer for
that particular cell might be put to sleep and wake up again when the evaluation was returned, but
the tracing system in use was not designed to run as a single thread. Instead a different method is
adopted whereby the evaluated message contains an identifier that calls back to continue tracing
on the original cell.

The callback method is performed by keeping a global table containing callbacks to each trace
waiting upon an evaluation. The identifier for the trace is unique to each request, as shown in
Figure 22. When the evaluation is complete, tracing resumes for the given cell.

7.5 Fault Localization

At the visual interface level, Fault Localization is implemented by simply converting the desired
fault likelihood RGB (Red Green Blue) value to Excel’s format and setting the background of the
desired cell to that color. Unlike in JavaForms, if an RGB color of white is specified, shading of
the cell is disabled, since when shaded white the cell’s gridlines are not visible. This more closely
follows the semantics of normal shading under Excel.

45

Figure 23: Use of toolbar buttons to implement a progress bar on the Windows platform.

7.6 Form-Level Indicators

7.6.1 Testedness Overview

As specified in Section 6.4, the testedness of the entire workbook must be displayed in a constant,
uniform place, to indicate progress as the user tests the spreadsheet. This is done under Excel by
creating a CommandBar object of type CommandBarButton and filling it with 20 buttons of red and
blue colors. The percent testedness of the spreadsheet is reflected in the proportion of red to blue
(Figure 23). This differs from the JavaForms progress bar, but still serves to show the information
visually.

Updating the progress meter requires pasting Shape objects from the Excel Addin’s internal
workbook to the clipboard, and then pasting them to the toolbar. After this operation the clipboard
is cleared to prevent the user from inadvertently pasting a Shape object into a workbook. However,
because progress bar updating can occur anytime after a user has marked a cell as tested, this
clearing of the clipboard can interfere with normal copy and paste operations. For example, a user
may cut a tract of cells, then mark a cell as tested, causing the progress meters to update and clear
the clipboard of the cut cells. The user then cannot paste the cut cells, possibly losing work.

An alternative implementation of the progress bar could involve creating a VBA Form displaying
the progress bar. Only Win32 Excel supports non-modal forms, however, so it could prove difficult
to include a non-modal progress bar in a platform-independent implementation. Such a bar would
also float around over the spreadsheet and could be lost from the user’s field of view, or conversely
obscure important cells of the spreadsheet. The file loading indicator is also programmable under
Win32 Excel, but in practice this indicator is too inconspicuous and inflexible.

In the first user study of the system, the button-based progress bar was not apparent to the user
as a progress bar. Instead the user seemed to view the indicator only as a series of buttons. Work
is still needed to make this progress bar apparent to the user while working inside the framework
of Excel.

7.6.2 Fault Localization Overview

To give fault localization equal status with WYSIWYT, a second progress bar was designed to
distill relative fault likelihood over a given workbook [29]. This overview bar displays the relative
proportion of cells with very low, low, medium, high, and very high fault likelihood. Each clas-
sification appears as a different color in a progress bar (Figure 24). Like the testedness toolbar,
the progress bar is implemented as a sequence of twenty (20) toolbar buttons, and each button
represents 5% of the entire spreadsheet. In large spreadsheets however, the number of cells with a
given fault likelihood may well comprise less than 5% of the total cells. Under a straightforward
interpretation of the fault likelihood, therefore, most of the information is lost. The approach used
instead is to represent each fault likelihood level less than 5% with one button, and reduce the
number of buttons of the most well represented fault likelihood level as necessary.

46

Figure 24: The Fault Localization overview bar.

Figure 25: Arrows under WYSIWYT-XL.

7.7 Arrows

Arrows are displayed by drawing a line from the source to sink cell, using constant offsets to create
the curves when drawn between cells on the same row. Arrows are displayed for the actively selected
cell by clicking a button on the WYSIWYT toolbar, as shown in Figure 25. The testedness of each
cell’s du associations is reflected in these arrows (Section 2.2).

7.8 Explanations

The system is a testbed for studying our group’s Surprise-Explain-Reward strategy [37]. This
strategy leverages the user’s curiosity (triggered by a surprise) to educate and entice him or her
to use the system through an unintrusive negotiated explanation system. The explanation system
hinges on tooltips available over each of the major interface devices. The system displays a tooltip
when the user hovers the mouse over either the primary or paired testbox for 3 seconds, as shown
in Figure 26.

Equivalent tooltips are not available on borders, shaded cells and arrows, since the objects used
to create them have no mouse-related events. The OLEObject objects used to create testboxes
under Excel do have mouse-related events, but they are not directly helpful to detect the hovering
required for tooltips. Rather these events, such as MouseMove, only trigger when the user moves
his or her mouse over the testbox. More adaptation was required to generate tooltips with this
facility. Specifically, the system records every MouseMove event and secondly records the position
of the mouse using the operating system level GetCursorPos library in user32.dll. Next, the
system sets an OnTime event to occur in a given number of seconds. Because OnTime only accepts

47

Figure 26: The tooltip-based explanation system.

macros as event handlers, the Testbox object must delegate itself through a module-level macro for
this timer. When the timer expires the position of the mouse is checked again, assuming no other
timers have intervened, and if the position is the same, then a tooltip is displayed. If the mouse is
moved again away from the testbox, the tooltip is hidden and the process begins again.

Because of limitations in the MouseMove event, these hand-made tooltips do not disappear as
readily as they should. Specifically, if the mouse is moved away from the testbox very quickly, no
MouseMove event is generated. This means tooltips may be left on the testbox after the user moves
the mouse away. Tooltips may also not appear if the user moves the mouse to the center of the
testbox very quickly and waits, although this situation is very uncommon: usually the user moves
the mouse at least twice over the object before hovering. The former situation is not necessarily
troublesome either, since a lingering tooltip will be dismissed when the user move the mouse over
any testbox.

The text of the tooltips is updated dynamically from the testedness information in the analysis
engine. Because of the paired testbox approach used with WYSIWYT-XL, the tooltip content
for the system is different than in JavaForms. The tooltip text label itself is implemented using
an object of type XLTooltipable (Figure 7), so the label itself can generate tooltips, permitting
multi-level tooltips. Because MacOS does not support OLEObjects, tooltips are not available on
that platform.

7.9 Transcripts

Event-based transcripts are captured under the Excel Frontend and written to a file on the fly
as the user sessions occurs. This permits study of every possibly relevant user action, such as
hovering over a testbox to elicit a tooltip, or switching between worksheets. Additionally, hooks
were added to the system to record roughly how long a tooltip was displayed. Data transcripts were
implemented using the existing transcripting system, which operates purely on the Lisp backend.

7.10 Clean Up

When the user saves a workbook or stops the WYSIWYT session, the system must remove WYSI-
WYT, Arrows, and Fault Localization formatting to prevent the formatting from being saved along
with the workbook. This is done by simply clearing the workbook of all borders, shading, and shape
objects. A more sophisticated approach would cache previous shapes, borders and shading, then
selectively restore the formatting when the workbook is saved, to avoid losing user-generated for-
matting.

48

Additionally, the event handlers inserted into the user’s spreadsheet for testboxes (Section 7.3)
must be removed upon saves, to avoid leaving the spreadsheet riddled with macros, potentially
triggering security warnings under Excel when the workbook is opened later. The system therefore
clears the worksheet code panes of all macros upon saves. While this approach could also remove
user-created macros from the workbook, recorded macros are stored in modules rather than work-
sheet code panes, and these would be preserved by the system. Other user written macros would
also probably be preserved, since it is more conventional to store macros in modules than worksheet
code panes.

7.11 Test Case Generation (HMT)

The test case generation engine used with Forms/3 is also employed under the partial Excel imple-
mentation, with minor modifications. HMT involves changing the input cells of the spreadsheet,
evaluating their result, and checking to see if the changed input selects a new test available for
the user. Under the system’s distributed evaluation architecture however, evaluation can only be
done within the spreadsheet system itself (Section 7.4). This means that test case generation must
issue a request to evaluate cells for a particular input cell, and wait for the result before contin-
uing. Fortunately, HMT is implemented as a separate thread under Forms/3, so after issuing the
request to evaluate a cell, HMT blocks itself until the desired evaluation returns. As in Forms/3,
the spreadsheet is updated automatically as HMT seeks values that select tests. Currently only a
random test case generation approach has been tested with the system, on single cells. One side
effect of the decision to test over whole workbooks rather than worksheets is that HMT operates on
a whole workbook, potentially requiring the user to give attention to multiple worksheets at once.

7.12 Optimizations

The majority of execution time for the system is spent processing and unpacking messages in the
frontend. Since the message format is delimited by opposing parentheses, the processor must scan
the input stream character by character. Since reasonably sized spreadsheets may exceed 1 million
characters of messages when loading, this takes time. This bottleneck is optimized slightly by using
InStr$, Mid$, and Left$. Unlike other functions, these operate exclusively on fixed-length strings
instead of Variants, and so run slightly faster.

Since no testboxes are required on input cells under WYSIWYT, another minor optimization
used is to check the text of each cell prior to creating a primary testbox for it and not create one
if the text is not a formula cell. This check is effective because a cell must contain a formula to
contain a cell reference.

7.13 Redesign Issues

Originally the MesgHandler (Section 6) was designed as a class, however it was changed to be a
simple module. The change was made because the VBE debugger apparently cannot break into
code executed by classes, rather, it simply highlights the last statement executed by a non-class
module. Therefore if the MesgHandler were implemented as a class, system developers confronting
an error could not isolate which class their message was dispatched to, and hence which class was
generating the error. Since the MesgHandler is only instantiated once, it was trivial to convert to
a simple module. This has helped developers to find faults in the system sooner.

During insertion of event handlers under Excel, an optional check can be made whether the
event handler already exists. Although this is expensive, Excel can cause crashes when an event

49

handler with the same name already exists in the given CodePane, so this check can be valuable
when debugging. Excel may also crash when an event handler directly or indirectly inserts code
into its own CodePane, although checking for this condition is not feasible.

50

8 System Execution and Development

This section describes how the WYSIWYT-XL system is run, installed, and modified. Details on
how the system is modified to work within version control are described (Section 8.2), and style
templates are provided. The section is targeted towards technical users and developers.

8.1 Execution and Installation

To run the system, the user must run a lispserver or equivalent backend. They then open Frame-
work.xla under Excel, and specify the host and port number in the toolbar, click the “WYSIWYT”
toolbar button, and open an existing workbook to trigger the system.

Like JavaForms, the system will try higher port numbers if the first port is closed. This
process is slower under this system, because as some connection attempts fail non-deterministically
the system will retry upon failure. If no ports are available an error is eventually thrown. For
debugging output, developers may set the Global defVerbosity variable to higher value. This
output is available in the Immediate Window of the Excel VBA editor.

While the system supports use of Remote Desktop Protocol (RDP) clients, rdesktop version
1.3 has a clipboard redirection feature which interferes with the testing toolbar. To run rdesktop
or another RDP-based client with the system, developers must disable this feature, for example by
calling rdesktop with the -4 flag.

8.2 Version Control

Under the Lisp backend, developers edit, run, and optionally compile each file in plaintext format.
These files are committed into a CVS (Concurrent Versions System) repository. Under Excel,
however, code must be edited using the Excel VBA Editor (VBE) inside of a binary Excel Add-in
(.xla) file. Although the binary spreadsheet may be entered into version control, all of the class
modules and general modules comprising the system would be stored in the same file under version
control. Versioning all the modules in the same file means concurrent changes made by developers
to different modules of the system would always produce conflicts. Furthermore, the conflicts would
be difficult to resolve, since CVS could not even indicate which modules conflicted, let alone the
lines of conflicting code.

Instead of entering the entire .xla file into version control, the XLA is exported into separate
modules. For example, to compile the system, developers open a spreadsheet ImportExport.xls
and click Build. This creates a Framework.xla file, by importing files from a modules directory, and
a base spreadsheet containing static Shape objects called Framework.xls. Some of the modules are
platform-specific. The Import script detects the current operating system and selects the directory
from which to import platform-specific modules. For example under Windows the CSocket and
MSocketSupport modules are imported, whereas on MacOS X, MacLib is imported.

After importing files, developers make changes with the VBA Editor and run the system using
the XLA. Then to update or commit changes, developers open the ImportExport.xls file and
click “Prepare for CVS”. This exports the new or changed modules and removes the .xla file. The
developer then performs the update or commit, and clicks Build to re-create the spreadsheet and
begin working again. In the original windows version, the Socket file could only be edited by opening
Framework.xls separately and saving it, because the Winsock control could not be dynamically
generated on machines without a VB6 development license.

Module and class module (*.bas and *.cls) filetypes are treated as nonmergeable text files under
CVS, using the cvswrappers setting. This means CVS prompts the developer for a manual merge

51

upon updates when intra-module conflicts occur. Line ending conversion is enabled under CVS
because it is coupled with keyword expansion, which is needed to identify each file with the correct
version number and last author. The line ending conversion is only problematic if a developer
breaks Forms/3 development rules and checks in new files using a Windows CVS client such as
WinCVS, and others check out the file under Unix. Files with *.xls or *.xla are treated as binary,
to avoid keyword expansion and line conversions interfering with the files.

While keyword expansion is enabled, the Log keyword is not used inside the VBA source files
because the appended log information will trick CVS into thinking the file was modified after it has
been committed, making it difficult for developers to discern which files they’ve actually modified.
This is not problematic for normal (e.g. C) source files because CVS usually determines file modifi-
cation status based on the file’s modification time or mtime rather than directly checksumming it.
However, this system continually exports each code module to a new file, so the mtime consistently
changes betweens updates and commits.

Algorithm 2 Importing and Exporting CodePanes
procedure Update
Export
cvs update or commit
Import

5: end procedure
procedure Import
if Addin exists then

Terminate
end if

10: Create Addin from Base
for all file such that file is *.bas or *.cls do

Addin← Addin + file
end for
Restart Excel

15: end procedure
procedure Export
if Addin exists then

Remove all files
for all codepane such that codepane is ext module or vb module do

20: file← codepane
end for
Close Excel

else
Terminate

25: end if
end procedure

8.3 Style Requirements

This section describes requirements on development style, coding format, and programming conven-
tions for the system developer. It lists examples of cases and preferred programming constructs, in

52

general (Section 8.3.1), for Visual Basic for Applications programs (Section 8.3.2), and for Common
Lisp (Section 8.3.3).

8.3.1 General

Unreachable or inactive code must be removed from the project. For example, old code cannot be
included in comments, or in unreferenced files. If code is needed for reference or insurance purposes
it may be entered into version control prior to removal.

Editing history shall be contained in version control and at the end of each source file. Initials,
dates on when code was added, and other modification-related commentary may not be included
elsewhere in the code itself. Inclusion of history may done automatically via the cvs Log keyword
or with the rcs2log utility, which generates a ChangeLog file. If done manually, care should be
taken to ensure the comments are identical, and the history in source is changed before committing
the file, to reduce trivial changes.

Commit only one file at a time, unless a functionally similar change is made across many files.
Each commit must be accompanied by a unique descriptive, complete, and correctly spelled log
entry.

8.3.2 Visual Basic for Applications

1. Pascal Case (“PascalCase”) must be used for functions, subs, properties, and classes. Camel
Case (“camelCase”) must be used for variables. Variables shall not be annotated with their
type, as in Hungarian Notation. For example, the code below is correct:

Public Sub StartSystem(boxEnabled As Boolean)
Set system = New XLApplication(boxEnabled)

End Sub

If a developer chooses local variable names which match existing variable names, ensure the
case matches the existing names; otherwise VBA may change the existing variable name. For
example, if a variable with name “value” is introduced, the following line of code may change
inadvertently:

cell.Value

2. Within each function, variables must be declared at the top, C-style. Within each module,
code will be structured in the following order:

(a) (file comment header)

(b) public module-level variables, objects first

(c) private module-level variables, objects first

(d) constructors/destructors

(e) regular procedures

(f) mutator procedures

(g) accessor procedures

53

(h) (file comment footer)

3. For consistency, follow these recommendations on procedure calls:

(a) Do not use the Call keyword when calling Subs – for example, do not use them with
parentheses.

(b) Specify the module when calling module-level subs, functions, and variables, but not
class module-level procedures.

(c) Use the With keyword to reduce use of temporary variables. For example:

With XLWorkbook
.New(.row, .col)
End With

instead of:

Set tmp = XLWorkbook
tmp.New(tmp.row, tmp.col)

4. Use the custom SafeCollection class instead of Collection. This prevents runtime errors.

5. Follow these recommendations on defining variables and procedures.

(a) Always specify the type of a variable, parameter or function. Explicitly specify Variant
where applicable to multiple types.

(b) Always specify private/public/friend for module-level definitions.

(c) Always use Option Explicit to ensure all variables are declared.

6. To prevent “spaghetti code”, confusion, and missed errors while using error handlers, follow
these recommendations:

(a) For clarity, use labels only for error-handling. Avoid unconditional gotos.

(b) Put Errorhandler labels, if any, at the end of a procedure.

(c) Avoid general error-handlers; limit error-handling to a minimal region of code, to make
debugging more effective.

7. VBA provides three different kinds of procedures, subs, functions, and properties. Described
below are when to use each:

(a) When values are not being returned, use Subs instead of void Functions. This is more
clear since Functions tend to indicate that values will be returned. Always use the
returned value of a Function.

(b) For better readability, use VB Properties instead of getFoo or setFoo functions.

8. For readability, the following conventions must be observed on comments and formatting:

(a) When indenting use the default tab (four spaces).

(b) Include a Function header comment for each function, per the template provided in
functionHeader.txt, reproduced below:

54

’===
’ FunctionName
’===
’ Description:
’
’ Given:
’ Returns:
’ Precondition:
’ Postcondition:
’===

In this template note the Given, Returns, Precondition and Postcondition fields are
optional. To avoid redundancy, the Given and Returns fields, if any, should not merely
list parameter types.

(c) Include a Header and Footer in non-trivial source files, per the template provided in
header.txt and footer.txt, reproduced below with cvs keywords escaped:

’==
’ $\RCSfile: SafeCollection.cls,v $
’ $\Revision: 1.4 $
’==
’ Description:
’ Place a description of your module here.
’==
’ See footer for history.
’==

’==
’ History Footer
’==
’ Original Author: Your Name
’ Created: Jan 9, 2004
’ Organization: Oregon State University
’==
’ $\Log: SafeCollection.cls,v $

Optionally, update the modification history manually instead of using cvs keywords. For
trivial source files or documentation, the Id keyword or equivalent may be used.

8.3.3 Common Lisp and CLOS

For Common Lisp, standard Lisp formatting conventions should be followed. For example, devel-
opers should group closing parentheses on the last function statement, rather than breaking them
up “C-style” across several lines. Developers should wrap all lines at 80 characters or less, and
since tab interpretation varies between editors (4 space vs 8 space) configure their editor to expand
tabs into spaces for better readability. Where tabs are used, they often correspond to 8 spaces, the
Unix standard. For the Vim editor, this can be configured as follows:

set lisp
set expandtab
set autoindent

55

For readability, developers may configure their editor to use syntax highlighting, for example
use set syntax on in Vim. Use grep or find to locate function definitions across different files.
The following bash functions may be useful for this:

Search lisp function, method, or struct definitions
defgrep() {

egrep -in "^[^;]*def(class|un|method|struct|setf).*$1" *.lisp
}

Search for a string in lisp files.
lispgrep() {

egrep -in "^[^;]*$1" *.lisp;
}

New functions should have descriptive headers on top, describing the inputs, outputs, and what
the function does. A template for this header is in functionHeader.lisp.

56

9 Gnumeric

To help validate the extensibility of our architecture, and to overcome shortcomings in Excel,
implementation of WYSIWYT was explored in a second spreadsheet package. As free software,
this spreadsheet package, Gnumeric, is more flexible and programmable than Excel. Although less
commonly used than Excel, Gnumeric supports the same file format and uses a similar graphical
interface. Implementation under Gnumeric was limited to testedness and fault localization.

9.1 Excel Shortcomings

Under Excel, WYSIWYT is partially restricted by Excel’s lack of programmability. Specifically, a
user interface suitable for HCI studies cannot feasibly be created under Excel, the VBA language
is not suited for programming in the large, and a VBA Addin cannot handle many actions a user
performs on the spreadsheet.

9.1.1 Inflexible User Interface

For the testing theory behind WYSIWYT to be accessible to users, it is distilled into visual
metaphors. For example to show that a du-association between two cells is exercised, a cell is
marked with a checkmark and dominated cells marked as blank. This illustrates to the user how
further testing of the blank cells is less useful. The overall testedness of the spreadsheet is also
indicated via a form-level progress bar. Yet it is difficult to create such user-interface elements
under Excel.

For a testedness toolbar, the best approximation has been to fill a regular toolbar with specially
colored buttons (Figure 23). These custom buttons must be individually copied and pasted from
the clipboard, interfering with the user’s copy and paste operations. Testboxes can be created, but
their event handlers are not designed to be added on the fly, and the VBA addin must textually
insert event handlers into the user’s spreadsheet. This is problematic because it can leave a user’s
spreadsheet with extra macros, triggers virus scanners, and can crash Excel. Furthermore, this
approach does not scale well to larger spreadsheets.

9.1.2 Difficult Native Language

The programming features of Excel are made available via Visual Basic for Applications, a language
with automated memory management and a low learning curve for many tasks. However, while
object-based, VBA is not object-oriented (Section 5), so it is difficult to subclass and extend existing
objects and classes. Furthermore, working with object variables under VBA is often confusing since
they must be assigned differently than scalar variables. This means sometimes the type of function
calls must be tested before they can be assigned to a variable (Table 7). Excel VBA is also difficult
to use within a version control system, since the source code is stored as code panes inside a binary
.xls file (Section 8.2).

9.1.3 Design Holes

Finally many user actions are possible under Excel which cannot be adequately handled through
a VBA Addin. For example, Excel permits deletion of rows, columns, and individual cells, but
does not distinctly signal this event. Since a WYSIWYT implementation needs to store testedness
and other information for dependents of each spreadsheet cell, deleting cells without warning could
cause incorrect results. Moreover, some features of the Excel language, such as macros, necessarily

57

itemType = VarType(col.Item(index))
If itemType = vbObject Then

Set Item = col.Item(index)
Else

Item = col.Item(index)
End If

Table 7: Use of VarType with Variant Function

Figure 27: A diagram of the overall Testmeric architecture.

cannot be supported since they conflict with the WYSIWYT mechanism itself. This permanently
limits WYSIWYT to a subset of the spreadsheet language.

9.1.4 Testmeric

To help address these problems, implementation of WYSIWYT was partially explored within Gnu-
meric. The resulting implementation was called Testmeric (Test + [Gnu]meric). Gnumeric was
chosen for implementation since it seemed most conducive to fast modification and compared fa-
vorably with other packages in terms of programmability. Since Excel and Gnumeric share a
common structure, Testmeric uses the same backend for analysis as Excel.

9.2 Architecture

The architecture for Testmeric is similar to WYSIWYT-XL, with socket-based communication
between a frontend and backend, with Gnumeric used as the frontend instead of Excel. Under
Testmeric, instead of using a built-in event-generating socket module, watches are added for write
and error events on the Gtk main event loop. This is summarized in Figure 27.

58

9.3 Implementation

Some salient aspects of Testmeric’s implementation are described in this section. Since WYSIWYT-
XL and Testmeric use the same architecture, the backend implementation was identical to that
described in Section 7.

9.3.1 Build System

Some difficulty was encountered linking a WYSIWYT module into the Gnumeric build system. The
build system involves over 2000 files, in C, XML, SGML, YACC, LEX, and M4 format. These files
are tied together using Makefiles which are autogenerated from a configure script. These configure
scripts are in turn auto-generated using GNU Autoconf files, and the autoconf files are influenced
by GNU Automake files. This condenses the build system to a basic listing of source files, with
Makefiles being constructed automatically by automated analysis of their dependents, but requires
some familiarity with Automake and Autoconf to add new files. For Testmeric, a “wysiwyt”
subdirectory of the Gnumeric source directory was created and linked in as “libwysiwyt.a” using
GNU Libtool, a portable library linker.

Another challenge of the build system was how creating the Gnumeric executable required
compiling over 100 KSLOC (source lines of code). Building the executable from scratch took about
15 minutes, extending the testing/debugging cycle.

9.3.2 Library Communications

Testmeric also focused on reusing the existing analytical WYSIWYT engine and being API-
compatible with an Excel-based system. The system added functionality for communication over
a TCP/IP (connection-based) socket. Like the Excel system, the Gnumeric application provides
data to the backend and receives information such as testedness in return, in an asynchronous
manner. However, since the communications are continuous there is no end-of-transmission (EOT
or EOF) signal over the socket to signal the current communication is finished, and when running
of Gnumeric should resume. Since Gnumeric is a purely user-interface driven system, integrating
this additional socket-based method of input was non-trivial.

Fortunately, Gnumeric uses a C library subsystem “Glib” 3. Glib provides common data struc-
tures such as linked lists and queues, basic reference counting, and portability wrappers. It also
provides a class of objects called GIOChannels [19], which can be wrapped around conventional
BSD sockets. Using this library, a basic socket to the backend library was established, wrapped
around a GIOChannel. The main event loop within Gnumeric was extended to “watch” for events
on this GIOChannel, and handle them with a default priority. Since GIOChannels also handle
writing and reading concurrently on the same channel, it was only necessary to flush the write
buffer before and after writes to keep the GIOChannel consistent.

9.3.3 Execution

Testmeric runs either locally on a GNU/Linux based machine or using X-forwarding. Since Gnu-
meric runs on Solaris, MacOS, and Windows as well, Testmeric could also be ported to these
platforms. Since Gnumeric is dependent on the XInputExtension property under X-Windows, it
must be run remotely using xhosts, rather than ssh.

3Glib should be distinguished from glibc, the GNU C library. The similar name arises from its origin as the library
for GTK, itself a toolkit for GIMP, the GNU Image Manipulation Program.

59

Figure 28: A screenshot of Testmeric.

9.4 Results

Like Excel, cells under Testmeric are appropriately colored with a Red/Blue value indicating their
testedness (Figure 9.4). Checking of cells is supported by a testbox per the WYSIWYT speci-
fication. Since the static GnomeCanvas image was used for creating the testboxes, updating of
the testbox’s status proved difficult and is not yet supported. The sending of Fault Localization
(X-marks) is also supported, however a suitable scheme for indicating this information is not in
place.

60

10 Conclusions and Future Work

To help study problems of scale, WYSIWYT was implemented in two spreadsheet packages, Mi-
crosoft Excel and Gnumeric. While the Excel implementation contains more features, Excel’s lim-
ited programmability required limiting how arrows, tooltips, and spreadsheet-level progress bars
could be implemented. Running the system as a VBA macro also made the system vulnerable to
unexpected termination from Excel or the user, limiting how well the system could be applied in
long-term studies. As part of dealing with these limitations, however, innovative interfaces were
developed which may be preferable to the original design.

With interactivity added, the Gnumeric implementation may be more suitable for studies in this
respect than Excel. Gnumeric might also be suitable for future work in spreadsheet visualization,
such as Shiozawa’s 3D visualization scheme [32] of spreadsheet dependencies. Experimenting with
new ways to display fault localization information, for example through “sunken” cells, may also be
rewarding under both Excel and Gnumeric. By using commercial spreadsheet packages, this project
provides a framework for studying WYSIWYT and associated dependability-enhancing techniques
in a new and promising environment.

References

[1] IEEE Std 830-1993. Recommended Practice for Software Requirements Specifications. IEEE
Computer Society Press, New York, NY, 1993.

[2] H. Agrawal and J.R. Horgan. Dynamic program slicing. In Proceedings of the ACM SIGPLAN
’90 Conference on Programming Language Design and Implementation, pages 246–256, June
1990.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, Massachusetts, 1986.

[4] ANSI/IEEE. IEEE Standard Glossary of Software Engineering Terminology. IEEE, New York,
1983.

[5] Mario. Barbacci, Mark H. Klein, Thomas H. Longstaff, and Charles B. Weinstock. Quality
attributes. Technical Report CMU/SEI 95-TR-021, Carnegie Mellon University, Pittsburgh,
PA, January 1995.

[6] Kent Beck. Extreme Programming Explained: Embrace Change. Addison-Wesley Professional,
New York, 1999.

[7] B. Boehm and V. Basili. Gaining intellectual control of software development. Computer,
33(5):27–33, May 2000.

[8] B.W. Boehm, C. Abts, A.W. Brown, and S. Chulani. Software Cost Estimation with COCOMO
II. Prentice Hall PTR, Upper Saddle River, NJ, 2000.

[9] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein, and S. Yang. Forms/3: A
first-order visual language to explore the boundaries of the spreadsheet paradigm. Journal of
Functional Programming, 11(2):155–206, March 2001.

61

[10] M. Burnett, C. Cook, O. Pendse, G. Rothermel, J. Summet, and C. Wallace. End-user soft-
ware engineering with assertions in the spreadsheet paradigm. In Proceedings of the 25th

International Conference on Software Engineering, pages 93–103, Portland, OR, May 3–10,
2003.

[11] M. Burnett, A. Sheretov, and G. Rothermel. Scaling up a ‘What You See Is What You
Test’ methodology to spreadsheet grids. In Proceedings of the IEEE Symposium on Visual
Languages, pages 30–37, Tokyo, Japan, September 13–16, 1999.

[12] E. Rogan Creswick. Dynamic, incremental assertion propagation in end-user programming.
Master’s thesis, Oregon State University, School of Electrical Engineering and Computer Sci-
ence, Corvallis, Oregon, June 2004.

[13] D. Cullen. Excel snafu costs firm $24m. The Register, 67, June 2003. http://www.the-
register.co.uk/content/67/31298.html.

[14] M. Fisher II. WYSIWYT-XL. Proceedings of the IEEE Conference on Software Engineering,
In preparation 2004.

[15] M. Fisher II, M. Cao, G. Rothermel, C.R. Cook, and M.M. Burnett. Automated test case
generation for spreadsheets. In Proceedings of the 24th International Conference on Software
Engineering, pages 141–151, Orlando, Florida, May 19–25, 2002.

[16] M. Fisher II, D. Jin, G. Rothermel, and M. Burnett. Test reuse in the spreadsheet paradigm. In
Proceedings of the IEEE International Symposium on Software Reliability Engineering, Novem-
ber 2002.

[17] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-
Wesley, Reading, Massachusetts, 1995.

[18] Oleg Gdalevich. Csocket class, a replacement for the ms winsock control. VBIP, Viewed April
20, 2004. http://www.vbip.com/winsock-api/csocket-class/csocket-class-01.asp.

[19] GNOME. The Glib Reference Manual, April 2004.
http://developer.gnome.org/doc/API/2.0/glib/.

[20] Mark Johnson. Lalr parser generator. Open-source software written by Mark Johnson, Viewed
January 1, 2004. http://www.cog.brown.edu/ mj/Software.htm.

[21] V. Krishna, C. Cook, D. Keller, J. Cantrell, C. Wallace, M. Burnett, and G. Rothermel.
Incorporating incremental validation and impact analysis into spreadsheet maintenance: An
empirical study. In Proceedings of the International Conference on Software Maintenance,
pages 72–81, Florence, Italy, November 2001.

[22] Institute of Electrical and Electronics Engineers. IEEE Standard Computer Dictionary: A
Compilation of IEEE Standard Computer Glossaries. IEEE, New York, NY, 1990.

[23] R. Panko. Finding spreadsheet errors: Most spreadsheet errors have design flaws that may
lead to long-term miscalculation. Information Week, page 100, May 1995.

[24] R. Panko. What we know about spreadsheet errors. Journal on End User Computing, pages
15–21, Spring 1998.

62

[25] R. Panko and R. Halverson. Spreadsheets on trial: A survey of research on spreadsheet risks.
In Proceedings of the 29th Hawaii International Conference on System Sciences, January 1996.

[26] G. Rothermel, L. Li, C. Dupuis, and M. Burnett. What You See Is What You Test: A
methodology for testing form-based visual programs. In Proceedings of the 20th International
Conference on Software Engineering, pages 198–207, June 1998.

[27] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. Green, and G. Rothermel. An empirical
evaluation of a methodology for testing spreadsheets. In Proceedings of the 22nd International
Conference on Software Engineering, pages 230–239, June 2000.

[28] J. Ruthruff, E. Creswick, M. Burnett, C. Cook, S. Prabhakararao, M. Fisher II, and M. Main.
End-user software visualizations for fault localization. In Proceedings of the ACM Symposium
on Software Visualization, pages 123–132, San Diego, CA, June 11–13, 2003.

[29] J.R. Ruthruff, A. Phalgune, L. Beckwith, M. Burnett, G. Rothermel, and C. Cook. Rewarding
good behavior: End-user debugging and rewards. In IEEE Symposium on Visual Languages
and Human-Centric Computing, September 2004.

[30] J. Sajanieme. Modeling spreadsheet audit: A rigorous approach to automatic visualization.
Journal on Visual Languages and Computing, 11(1):49–82, 2000.

[31] A. Scott. Shurgard stock dives after auditor quits over company’s accounting. The Seattle
Times, November 18 2003.

[32] H. Shiozawa, K. Okada, and Y. Matsushita. 3d interactive visualization for inter-cell depen-
dencies of spreadsheets. ACM Conference on Information Visualization, 1999.

[33] R.D. Smith. University of Toledo loses $2.4M in projected revenue. The Toledo Blade, May
2004.

[34] /N Software. Ip*works! v6 visual basic edition. Online, Viewed November 1, 2003.
http://www.nsoftware.com/products/showprod.aspx?part=IPV6-A.

[35] J. Summet and M. Burnett. End-user assertions: Propagating their implications. Technical
Report 02-60-04, Oregon State University, Corvallis, OR, August 2002.

[36] S. Tanimoto. Viva: A visual language for image processing. Journal of Visual Languages and
Computing, 2(2):127–139, June 1990.

[37] A. Wilson, M. Burnett, L. Beckwith, O. Granatir, L. Casburn, C. Cook, M. Durham, and
G. Rothermel. Harnessing curiosity to increase correctness in end-user programming. In
Proceedings of the ACM Conference on Human Factors in Computing Systems, pages 305–
312, Fort Lauderdale, FL, April 5–10, 2003.

63

11 Appendix A: Excel Formula Grammars

11.1 An Excel Formula Grammar

Excel Formula Grammar

Exp -> Constant
| identifier
| string
| Exp ’+’ Exp
| Exp ’-’ Exp
| Exp ’*’ Exp
| Exp ’/’ Exp
| Exp ’^’ Exp
| Exp ’&’ Exp
| Exp ’=’ Exp
| Exp ’<’ Exp
| Exp ’>’ Exp
| Exp GTE Exp
| Exp NE Exp
| Exp LTE Exp
| Exp ’ ’ Exp
| ’-’ Exp
| ’+’ Exp
| Exp ’%’
| ’(’ Arglist ’)’
| ’{’ Arraycols ’}’
| Func
| NamedRef
| CellRef

Func -> string ’(’ Arglist ’)’

NamedRef -> SheetRef string
| WorkbookRef string

SheetRef -> StringOrId ’!’
| WorkbookRef StringOrId ’!’

WorkbookRef -> StringOrId

CellRef -> Rangeref
| Func ’:’ Func
| Rangeref ’:’ Func
| Func ’:’ RangeRef

Arglist -> Exp

64

| Exp ’,’ Arglist
| ’,’ Arglist
| epsilon

StringOrId -> identifier | string

Constant = ’#’ identifier
| true
| false
| int
| double

Rangeref -> SheetRef Address
| Workbookref StringOrId ’:’ StringOrId ’!’ Address
| RangeRef ’:’ RangeRef
| colRowRef
| address

11.2 Original Precedence Grammar

FORMULA -> =EXPRESSION
EXPRESSION -> EXPRESSION COP EXPR1 | EXPR1
EXPR1 -> EXPR2 & EXPR1 | EXPR2
EXPR2 -> EXPR2 AOP EXPR3 | EXPR3
EXPR3 -> EXPR3 MOP EXPR4 | EXPR4
EXPR4 -> EXPR4^EXPR5 | EXPR5
(This precedence may differ in other spreadsheet systems)
EXPR5 -> EXPR5% | EXPR6
EXPR6 -> -EXPR6 | EXPR7
EXPR7 -> REFERENCE | FUNCTION | CONSTANT | (EXPRESSION) | NAMEDREF | CELLREF
FUNCTION -> FNAME(ARGUMENTS)
ARGUMENTS -> EXPRESSION, ARGUMENTS | EXPRESSION | epsilon
REFERENCE -> ADDRESS | ADDRESS:ADDRESS | NAME
CELLREF -> RANGEREF | FUNC : FUNC | RANGEREF : FUNC | FUNC : RANGEREF
RANGEREF -> SHEETREF ADDRESS | WORKBOOKREF STRINGORID : STRINGORID ! ADDRESS |
RANGEREF : RANGEREF | COLROWREF | ADDRESS
NAMEDREF -> SHEETREF string | WORKBOOKREF string
STRINGORID -> string | id
COP -> = | < | <= | > | >= | <>
AOP -> + | -
MOP -> * | /

11.3 Formula Lexemes as Regular Expressions

colRowRef -> (R|C)[(-)?[1-9]+]

address -> R[(-)?[1-9]+]C[(-)?[1-9]+]

65

| R[0-9]+C[0-9]+

quoted_string = ".+"
int = [:digit:]+
double = [:digit:]+([.][:digit:]+)?([E][+-][:digit:])?
string = [:alphanum:]

66

12 Appendix B: Communications Format

A grammar describing the syntax of messages is described in Section 5.4.2.

12.1 From Frontend to Backend Specification

Overall - Overall Communications

1. (quit) :- Quits the system

2. (gui-unknown-message messageName) :- Returns unhandled messages

Testedness - Showing and Hiding Spreadsheets

1. (gui-mark-placed formID cellID type) :- Tells Lisp a a mark has been placed in a check
mark

2. (gui-split-regions formID cellID rowIndex colIndex) :- Tell Lisp a region is ready to split

Arrows/HMT Related - Showing and Hiding Spreadsheets

1. (gui-do-slice formID formID cellID) :- Asks Lisp to display/undisplay a slice on a given
cell.

2. (gui-erase-arrow formID CellID StartIdx EndIdx destFormID destCellID destStartIdx
destEndIdx) :- Tells Lisp that the user has hidden a single arrow.

3. (gui-help-test formID :cells cellIDList :dupair duPair) :- Specify a form to be used in a
GUI help test.

4. (gui-stop-help-test status ’formID) :- Ceases a help test session for a given spreadsheet.

Transcription - Controls Transcripting Oriented Features

1. (transcript-start name) :- Asks Lisp to start a transcript file with the given name

2. (transcript-stop) :- Asks Lisp to stop any running transcript files

3. (transcript-transcribe text) :- Tells the engine to add a string message to the transcript

4. (load-all-policies fileName T) :- Asks Lisp to load the given policy file

Cell Manipulation - Working with individual cells

1. (gui-name-cell formID cellID name) :- Asks Lisp to rename a cell.

2. (gui-cell-set-formula formID cellID formula) :- Asks Lisp to set a cell’s formula.

3. (gui-xlcell-set-formula formID cellID formula dependents w/new values) :- Asks Lisp to
set a cell’s formula.

Assertions - Assertion-related Messages

1. (gui-set-assertion formID roCellID status) :- Tells the Engine to change the assertion(s)
on a cell.

2. (gui-assertion-parser formID roCellID result) :- Tells the Engine to create a new asser-
tion.

3. (gui-assertion-priorityset formID roCellID assertionID priority radioBoxChoice) :- Set
priority of an assertion.

67

4. (gui-remove-hmt-assertions ’formID’) :- Removes Help Me Test Assertions for a given
spreadsheet.

5. (gui-send-assertion-conflict-and-violation-list) :- Requests that the engine send us a list
of all cells that are in value violation and assertion conflict.

6. (gui-assertion-posted formID cellID isPosted) :- Informs Lisp that an assertion is posted.

12.2 From Backend to Frontend Specification

WYSIWYT - Testedness Features

1. (Update-Form-Testedness) - Show the testedness of a Workbook.

2. (Update-Ro-Testedness) - Show the testedness of a cell or region.

3. (Update-Ro-Checkbox-Status) - Show the status of a checkbox.

Overall - Overall disabling/enabling of features

1. (LoginOk) - Accepted login.

2. (LoginFailed) - Login was not accepted.

3. (NameForm)

Assertions - Placement and Control of Assertions

1. (DisplayAssertion) - Show an assertion.

2. (RemoveAssertion) - Hide an assertion

3. (AssertionValueConflicted) - Show a conflict.

4. (Assertion-display-order)

Cells - Control of Cells and Regions

1. (NameCell) - maps worksheet names to IDs

2. (SetFormula) - sets a formula for HMT.

3. (NameRegion) - regionID memberCells

Arrows - Drawing Arrows Features

1. (Draw-Arrow)

2. (Erase-Arrow)

3. (Erase-Ro-Arrows)

4. (Update-Arrow-Testedness)

Fault Likelihood - Visualization of faultiness

1. (Update-Ro-Fault-Likelihood)

2. (Update-Fl-Overview)

Policy - Enabling and disabling of GUI features.

1. (UpdateEnabledWidgets)

68

2. (UpdateEnabledTools)

3. (UpdateTooltipTranscript)

HMT - The test-case generation system.

1. (HmtStopped)

2. (HmtStarted)

3. (HmtMessage)

Explanations - Subsystem to keep tooltips up to date.

1. (UpdateToolTip)

69

