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Abstract

Data structures are more easily understood when
they are presented visually rather than textually.  We have
developed a system, Calypso, to allow the visual
definition of data structures programs using pictorial
pattern/action pairs in an imperative setting. We present
several examples including rebalancing an AVL tree and
sorting an array using the Quicksort algorithm.  These
examples demonstrate the superiority of this visually-
based approach over textual specifications.  Calypso is
based on a general framework for building and
combining visual notations in various domains.  This
framework permits Calypso to be easily extended with
new data structures and abstractions.

1. Introduction

The human brain can process certain kinds of visual
information virtually instantaneously, whereas language is
processed sequentially.  Designing programming
formalisms that effectively engage the brain’s fast visual
processing capabilities could lead to programs that are
significantly easier to understand and maintain. Many
researchers are exploring ways of incorporating pictorial
and other kinds of information into programming on many
levels [1, 2].

The principal task of many programs is creating and
transforming data structures, and many data structures and
associated operations have natural pictorial
representations familiar to most working programmers.
Many operations on data structures are difficult to
understand when presented in a purely textual form.  A
data structure can only be viewed in a very local way in a
textual program because each operation refers only to one
or two components of the structure.  Using pictorial
representations in which individual transformations can
readily be seen in the context of the entire data structure
aids substantially in understanding programs.

The data structures programming literature has been a
rich source of ideas and inspiration, suggesting among
other things pictorial patterns and pattern
transformations, the key concepts on which Calypso is
based.  The pictures generally used to show AVL-tree
rebalancing following the insertion of a new node form an
excellent example.  Figure 1, adapted from [3], is taken
from a typical presentation of this operation:

The top patterns represent the AVL tree after
insertion but before rebalancing, and the bottom patterns
represent the AVL tree after rebalancing.  These patterns
are simple and general, naturally subordinating
unnecessary detail, yet a brief perusal is sufficient to
garner an extraordinary amount of information.  They are
unquestionably easier to understand than a purely textual
description.

Using patterns also fits well with the well-known and
powerful “divide-and-conquer” problem solving
approach: finding and solving subproblems, then
combining the subproblem solutions to get the solution to
the original problem.  In data structures programming the
subproblems are associated with substructures such as the
subtrees in Figure 1.  This correspondence of patterns to
the divide-and-conquer technique suggests that such
patterns will find natural use in a wide range of
applications.

This paper presents an overview of a visual
programming language Calypso designed for specifying
algorithms on data structures. Calypso uses compile-time
type checking with an ML-style [4] type system with
parametric polymorphism.  Calypso is an imperative
language because destructive manipulations on data
structures are readily and intuitively represented visually,
because current practice and education in data structures
programming is still principally imperative, and because
the imperative approach still results in more efficient
programs on conventional architectures using well-
understood and tested compilation techniques.  Many
efficiency issues simply cannot be addressed in a
functional language.  For instance, Quicksort is more
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useful than other “fast” sort algorithms because it can be
done wholly “in-place,” that is, without copying the
structure being sorted.  This characteristic is critically
dependent on how the Partition phase is implemented.  In
functional programming languages the distinction between
copying and non-copying algorithms cannot be expressed,
the Partition phase becomes trivial, and the point of
Quicksort is lost.

Calypso is based on a general framework for building
picture editors.  These editors allow interactive creation of
representations of objects in various domains, such as data
objects, pictorial patterns, and programs.  Translators
attached to the picture editors then process these
representations.

Calypso was implemented in X2 [5, 6], which was
designed by David Sandberg at Oregon State University in
the 1980’s.

2. Motivating Examples: What Can be Done

2.1 AVL-Tree Rotations with Pictorial Patterns

A good example of the use of pictorial patterns, and
the one that provided the initial impetus for the work
presented here, is the collection of pictures that most data
structures textbooks use in some form to show how to
rebalance an AVL tree after inserting a new node.

The set of pictures in Figure 1 is from Knuth’s
Sorting and Searching [3], but all texts that discuss AVL
trees present the rebalancing algorithm in basically the
same way.

Figure 1 is interesting in many ways.  First, it is
general.  There are two patterns and a specification of a
small set of unconditional transformations on those
patterns.  These pictures cover two of the four possible
cases that can arise — the others occur when the
directions of imbalance are opposite from the ones shown
here, and the pictures are just reflections of the ones
shown.  By elaborating this notation a little, and not being
too literal about left-to-right orientation, all the possible

cases in this situation can be represented with just these
two pictures.

The bars D, E, etc., represent arbitrary subtrees.
These bars represent actual run-time objects that have
attributes and can be referred to by other objects.  For
instance, the subtrees in Figure 1 have an attribute height
and have pointers from nodes A, B, and X.

The height attribute is used together with some
textual expressions in the variable h to specify assertions
about the relative heights of the subtrees when the
directions and amounts of imbalance are as shown in the
nodes.  In these pictures the information provided by the
height attribute notation is just intended to provide useful
information to the human reader, but it suggests a way to
pictorially represent a class of functions on data structures
and usefully incorporate invocations of those functions
into pictorial patterns.

Figure 1 shows the transformation by labeling the
various components and using before-after pairs, with the
labels showing the correspondence of objects.  There are
other ways to do this — for instance, as shown in Figure
2, “before” positions of pointers could be represented with
dotted lines, “after” with solid lines, and the nodes and
subtrees left where they are.  Viewed this way, it is easy to
see that the transformation can be represented as a set of
direct manipulations, and the object labels are no longer
needed.  On the other hand, this representation would
rapidly become confusing for more complex
transformations.  A complete system on the lines of
Calypso would offer multiple views of transformations.

Another interesting thing about this transformation is
that none of the unit transformations is dependent on the
outcome of any of the other unit transformations, so they
can be done in any order or even simultaneously.

The final point of interest relates to the node X in
Case 2.  It is analogous to the height attribute
specifications in that — in terms of tests implied by the
pattern — it is redundant: the imbalance information on
the two nodes imply its existence.  On the other hand, it is
needed in the transformation specification: it must be
referred to, and its components must be modified.  It is
necessary to be able to distinguish “essential” components
of a pattern — those things meant to imply run-time tests

Figure 1: AVL-Tree Rebalancing

Figure 2: AVL-Tree Detail
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— from components whose existence follows from the
fact that the run-time structure being tested matches the
“essential” pattern.

Figure 3 is what the AVL tree example looks like as a
procedure in Calypso.  This picture has two levels.  The
top level consists of a pattern formation box, a case
object, pattern elaboration boxes, pattern manipulation
boxes, and directed arcs linking everything together.  This
level essentially specifies flow of control.  The bottom
level, which consists of the pictures inside the individual
boxes, represents pictorial patterns and operations on
them.

The pattern formation box f specifies the formal
parameters and the argument structure, and provides the
basis for an initial binding of pattern components to run-
time structure components.  All the components of the
argument structure are assigned internal names, and run-
time values are assigned (bound) to these names when the
procedure is invoked.  All the values bound to the names
are functions of the formal parameters.  In this example,
the formal parameter is the pointer at the top; all the
bindings are expressed in terms of the run-time value of
this pointer.  The pattern formation box is also an
assertion about the structure of the argument — in the
example it consists of a pointer and a tree with at least two
nodes.  If the argument does not satisfy this assertion,
there is a run-time error, and the result is undefined.

The Case object c indicates that the pattern
elaboration boxes following it are to be considered tests of
the argument structure.  In this case there are two, and
they test the values of the imbalance fields of the two
nodes.  If the argument structure happens to match none of
the patterns in the following elaboration boxes, it is again
considered a run-time error, and the result is undefined.

In the top case, the elaboration box e0 is followed
directly by a pattern manipulation box m0, in which the
“rotation” shown in Knuth’s case 1 is specified.  In the

bottom case, the elaboration box e1 after the Case object is
followed by another pattern elaboration box e2 in which
the left subtree of the node with the “-1” imbalance value
is elaborated to a non-nil value.  Because this second
elaboration box does not directly follow a Case object, it
is an assertion about the argument structure; if this
assertion is not satisfied, there is a run-time error.  Code is
generated to bind the appropriate components of the
argument structure to internal names for the new pictorial
pattern components.  Finally, the pattern manipulation box
m1 connected to this elaboration box specifies the
manipulation shown in Knuth’s Case 2.  The pattern
variable ?i communicates imbalance information to text
expressions in m1.

2.2 Quicksort with Pictorial Patterns

Recursive structure objects appear again, this time as
arbitrary sub-arrays, in the discussion of Quicksort found
in Jon Bentley’s book Programming Pearls [7] (Figure 4).
This use of pictorial patterns is more abstract than the
ones seen earlier.  The first pattern pictorially represents
an invariant, a set of relationships between data structure
components that must hold if another iteration of an
unspecified process is to be performed.  The second
pattern represents the state of the data structure when the
loop terminates — that is, when the invariant represented
by the first pattern no longer holds.  The third pattern
simply shows the result of exchanging two elements of the
second pattern.  Such an exchange is a fixed-length, non-
conditional transformation that can be specified by direct
manipulation of the second pictorial pattern.  The patterns
shown in Figure 4 were originally intended for use by
humans and had to be adapted for use in Calypso, but also
inspired some enhancements in the Calypso model and
notations.

Figure 3: AVL-Tree Rotation Procedure

Figure 4: Quicksort Patterns
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The Quicksort definition shown in Figure 5 has two
components.  The top picture defines the Quicksort
procedure itself; the bottom picture defines the partition
procedure used by Quicksort.  Quicksort is defined on an
arbitrary array.  Partition is defined on an argument that
consists of an array with at least one element and a special
“marker” unit which is basically an integer variable whose
value marks a “current location” in an array.  The
Partition procedure uses the first element of its array
argument as the partition element and partitions the rest of
the array using that partition element.  Thus, the first
element of the array passed to Partition is not in its proper
location following the execution of Partition.

These two definitions have basically the same
structure displayed in the AVL tree example.  One
extension is that a pattern manipulation, for instance
where the Partition procedure is invoked, results in a
pattern that can be further elaborated and manipulated.
Another extension is in the Partition definition, where a
loop construct, from-iterate-until , has been used. This
construct starts with a structure that matches an initial
pattern and repeatedly performs some manipulations on it
until it matches some terminating pattern.  In the Partition
definition, the initial pattern is an array with two markers,
the manipulations are moving markers and interchanging
array values, and the terminating pattern has the I marker
at the end of the array.

As exemplified by the use of the markers, an
argument structure can be augmented with additional
components in pattern manipulation boxes.  These
additional components are local to the branch of the
program beginning at the box where they are defined.

Pattern variables ?v, ?q, and ?m are used to
communicate between textual and graphical parts of the
Quicksort specification.  Values for these variables are
bound at run time using expressions derived by the picture
processor at edit/compile time.

3. System Architecture

It became clear early in the development of Calypso
that a number of kinds of small picture editors would be
needed, so a significant initial effort was put into
developing a framework for building general picture
editors. The procedure definition editor alone consists of
four sub-editors, one for the upper definition level
representing control flow and one for each of the three
kinds of pattern transformation editors.  Picture editors
have translators that can be invoked at any time after an
edit session with that picture is completed.

Picture editors are tools for building external
representations of objects in specific domains.  These
representations can then be translated into an internal
representation suitable for a given application.  The term
“picture editor” is somewhat misleading because it seems
to imply that the representation in question is necessarily
graphical.  In fact, the representation could be textual or
three-dimensional.  The source code that constitutes the
external representation of program in textual
programming languages also fits this paradigm.

Because it is built on this framework, Calypso is
readily augmented with new abstractions and constructs.
In particular, an interface object template editor could be
added, permitting new kinds of pattern objects to be
created and given meaning in terms of existing static
structure and procedure definitions.  New abstractions
could then be defined entirely within Calypso, whereas
now interface object templates must be built in the host
environment.

4. Procedure Definitions: An Example

Figure 5: Quicksort Program

Figure 6: A Procedure Definition
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Figure 6 is the definition of a procedure A in Calypso.
This recursively-defined procedure takes a binary tree as
its argument and interchanges left and right sub-trees
throughout the tree.

The argument structure is represented in the pattern
formation box b0.  The symbol in the box b0 is a
recursive-structure template for binary trees.  It represents
the disjunction of two possibilities, that the argument is a
binary tree node or it is the nil  object.

The box b0 is connected to the case object c, which is
a conditional construct.  A case object is connected via
outgoing arrows to pattern elaboration boxes, which
represent tests for branches of the conditional statement.
Here there are two cases, one where the argument tree is
non-nil  and the other where it is nil , tested in the pattern
elaboration boxes b1 and b2, respectively.  The patterns in
b1 and b2 are elaborations of the pattern in b0.

In the case where the tree is non-nil , the procedure
swaps the children pointers so that the left child field
points to the right sub-tree and the right child field points
to the left sub-tree and invokes itself recursively on the
two sub-trees. These operations are represented by the
contents of the pattern manipulation box b3.
Reassignment of pointer values is represented by moving
the destination feature of the arrow representing the
pointer to the object representing the value it is to be
assigned.  In this case, the small boxes enclosing the sub-
trees in b3 and tagged with "A" are instances of the call
form for the procedure A being defined.

When the argument tree is nil , A simply returns
without performing any operations.  This null operation is
represented by the picture in the pattern manipulation box
b4 being identical to the picture in the pattern elaboration
box b3.

The code generated by this picture would be similar
to the Pascal-like procedure definition given in Figure 7.

The variables whose names begin with "i" in that
figure are internal variables generated by the system.  The

values of internal variables are not modified after the
initial assignment.  They provide a way, invariant over all
definable manipulations, of accessing the run-time objects
represented by pictorial pattern components.  The scope
of internal variables in the target language code does not
necessarily correspond to the scope of the corresponding
pictorial pattern component.  For instance, the internal
variables i1, i2 correspond to the child tree recursive-
structure objects bound in the elaboration box b1, whose
scope is over the boxes b1 and b2, but the scope of the
internal variable names i1 and i2 is over the entire
procedure definition in the target language.

The Pascal type definitions needed for this definition
are associated with the binary tree recursive-structure
template and the binary tree node record template, and are
shown in Figure 8.

The following figures are a series of snapshots of the
process of constructing the procedure definition shown in
Figure 6.

Before this series of snapshots, a new procedure
definition form pictorial object has been instantiated (this
would look like Figure 6 with no internal structure), and
the user has specified the procedure name (A) and double-
clicked on the interior of the form.  This action invokes
the clickOp for the interior feature, which activates the
procedure definition Picture editor.

In snapshot 1, the pattern formation box pictorial
object template has been selected from the palette
representing the pictorial syntax environment and a
pattern formation box is being placed on the left side of
the procedure definition picture.

procedure A(i0:BTreeP); {argument
 definition and binding from b0}

var i1,i2:BTreeP; {from b1}
begin

if  i0 <> nil  then
{from c and b1}
i1 := i0^.lc; i2 := i0^.rc;

{i1, i2 bindings from b1}
A(i1); i0^.lc := i2; A(i2); i0^.rc := i1

{manipulations from b3}
elsif i0 = nil  then skip {from c, b2  and b4}
else signal_error {from c}
end if {from c}

end proc;
Figure 7: Generated Code

type
BTreeP = ^BTree;
BTree = record

v:integer; lc,rc:BTreeP
end;

Figure 8: Structure Definitions

Figure 9: Snapshot 1
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In snapshot 2, the user has double-clicked on the
interior of the pattern formation box, activating the editor
for a pattern formation picture.  Note the presence of a
new picture window and associated pictorial syntax
environment palette.  The binary tree recursive-structure
template has been selected from the palette and the
recursive-structure object is being placed in the picture.

In snapshot 3, the pattern formation picture has been
closed, a case pictorial object, an arrow pictorial object,
and a pattern elaboration box have been added to the main
procedure formation picture, and an arrow is being placed
between the case object and the pattern elaboration box.

In snapshot 4, the arrow between the case object and
the pattern elaboration box has been placed, and the
system has copied the binary tree recursive structure
object in the pattern formation box to the pattern
elaboration box.  Since the pattern in the pattern
elaboration box must be an elaboration of the pattern in
the pattern formation box, the system provides the pattern

in the pattern formation box as a starting place for the
elaboration.

In snapshot 5, a second pattern elaboration box and
an arrow connecting it to the case object have been added
to the main picture, and the editor for pattern elaboration
picture has been activated.

In snapshot 6, the user has double-clicked on the
binary tree recursive structure object, bringing up a palette
from which the non-nil  alternative is being selected for
incorporation into the elaboration picture.

In snapshot 7, the pattern elaboration box has been
edited to specify that the recursive structure object in it
must represent the value nil , and the two pattern
manipulation boxes have been added and connected with
arrows to the elaboration boxes.  Calypso has copied the
patterns from the elaboration boxes to the connected
manipulation boxes.  The manipulation boxes, as they
stand in this snapshot, both represent the Null
transformation.

Figure 10: Snapshot 2

Figure 11: Snapshot 3

Figure 12: Snapshot 4

Figure 13: Snapshot 5

Figure 14: Snapshot 6

Figure 15: Snapshot 7
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In snapshot 8, the top pattern manipulation box
picture is being edited.  Note that the pictorial syntax
environment palette for this picture includes a pictorial
object template, procedure A's call form, from which are
generated pictorial objects representing the invocation of
procedure A.

5. Related Work

Calypso is related to a number of systems described
in the visual programming literature.  It is a significant
generalization of these systems because it is based on a
framework that permits the formation of complex
representations of objects in arbitrary domains, allowing
new kinds of abstractions to be created at all levels.
Because this framework does not distinguish between
pictorial and textual representations, Calypso can integrate
pictures and text more flexibly and with an unprecedented
fineness of granularity.

AMBIT/G [8] is the earliest system that clearly
addresses the same general issues as Calypso. AMBIT/G
is based on pattern matching and on representing data
structure transformations as before/after pairs, with
succeed/fail arcs connecting the patterns to indicate flow
of control.  The notion of recursive-structure templates is
not used. The principal problem with AMBIT/G is that it
has no abstraction mechanisms, so the pictures quickly
become large and intricate

Pygmalion [9] is a graphical programming-by-
example system that permits the definition of operations
on data structures.  It permits the formation, graphical
representation, and composition of objects in diverse
domains, for instance electrical circuit components.
Pygmalion uses concrete examples and dynamic
representations of programs exclusively.

PiP [10] is a pictorial programming-by-demonstration
system that permits operations on data structures to be
specified by direct manipulation of graphical
representations of those structures.  PiP is based on the
functional programming model. PiP does not have
recursive-structure templates.  Transformations are
specified and shown in individual windows that provide
only local views.

ThinkPad [11] uses direct manipulation of pictorial
representations of record structures to specify data
structure transformations.  The graphically specified
programs are translated into Prolog.  Pointer relationships
between nodes are not shown, and ThinkPad does not
have recursive-structure templates.  The data structure
pictures in ThinkPad are only patterns in the sense that
they impose type constraints on function arguments.
Their use is to allow record structures and record structure
components to be referenced via mouse-clicking rather
than using textual names in forming conditions and
expressions.

The stated objectives for DataLab [12] are similar to
those for Calypso, and within its range of expression the
programs look very similar to the ones created using
Calypso.  However, DataLab was not designed with
extendibility in mind and only operates on data structures
composed of records and pointers.  DataLab has
something that looks like a recursive-structure template,
but it has no real functionality — it cannot be elaborated
from a fixed set of choices, and it cannot be used to
express constraints.

GRClass [13] is a system for pictorial specification of
algorithms on graph data structures.  These structures are
represented as relations, in the database sense.  Many-one
relationships are permitted, but not many-many. GRClass
provides a static representation of programs, but like
ThinkPad and other systems this representation is spread
over several windows.

Pfeiffer [14,15] describes a visual language using
pattern/action pairs for manipulating graph data structures.
The language has a notion of type declaration, but does
not seem to otherwise provide for data abstraction.  Since
all data structures are represented as graphs, with different
kinds of relationships denoted by differently labeled arcs,
there is inadequate differentiation among pattern
components.

ChemTrains [16] is a graphical simulation language
that uses pattern/result picture pairs. ChemTrains was
developed for non-programmers, and does not use
procedural abstractions.  Its only control structure is the
repeated application of elements of a set of pattern/result
pairs to a picture constituting a data structure until none of
the pattern/result pairs is applicable to the resulting
picture.  ChemTrains does not have the notion of
recursive-structure templates; parts of a data structure not
relevant to a pattern are simply left out of that pattern.

DEAL [17] is a visual language addressing many of
the same issues and using a very similar approach to
Calypso.  It is based on the functional programming
model, though it provides some constructs, such as
iteration, that give it an imperative flavor.  It permits
implicit iteration, and as a consequence of the

Figure 16: Snapshot 8
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representation used for that construct, the pictorial
patterns do not necessarily mean all that they might seem
to imply.  Two distinct elements in a pattern might refer to
the same entity, and the fact that one element in a pattern
representing an array is to the left of another element in
the array does not necessarily mean that its index in the
array is smaller.  This could be confusing in some
circumstances.

A general system for integrating visual and textual
programming languages is proposed in [18].  As an
example the paper presents an AVL tree maintenance
procedure formed in a language combining Prolog and
pictorial data structure patterns.  Since pictures and text
are treated as fundamentally different entities, a rich
interaction and blending of the two forms is not possible.

6. Conclusions

We have presented Calypso, a system for visually
specifying algorithms on data structures.  Calypso is
applicable to the entire range of data structures and can be
readily extended with pictorial representations of new
abstract data types and control structures. Using pictorial
patterns permits the effect of local actions on the complete
structure to be readily grasped.  Recursive-structure
templates enlarge the class of specifiable constraints.  The
breakdown of effectiveness that many visual languages
suffer when applied to large and complex problems should
not be an issue with Calypso because of its support for
multiple levels of abstraction and variety of pictorial
relationships.  The approach used in Calypso promises to
be a significant leap forward in the interaction of
programmers with computers.

7. References

1. K. Kahn (1996), Drawings on napkins, videogame
animation, and other ways to program computers,
Communications of the ACM, 39(8) (August), 49-59.

2. A. Cypher (ed.) (1993)  Watch What I Do:  Programming
by Demonstration, MIT Press, 652 pp.

3. D. E. Knuth (1973)  The Art of Computer Programming:
Sorting and Searching, Addison-Wesley, 723 pp.

4. R. Milner (1978)  A theory of type polymorphism in
programming.  Journal of Computer and System Sciences
17, 348-375.

5. D. Sandberg (1985)  The design of the programming
language X2. Technical Report 85-60-1 Dept. of Computer
Science, Oregon State University.

6. D. Sandberg (1986)  An alternative to subclassing.  Object-
Oriented Programming Systems, Languages and
Applications Conference Proceedings, pp. 424-428.

7. J. Bentley (1986)  Programming Pearls, Addison-Wesley,
195 pp.

8. C. Christensen (1968)  An example of the manipulation of
directed graphs in the AMBIT/G programming language.
In: Interactive Systems for Experimental Applied
Mathematics, ( M. Klerer and J. Reinfelds, ed.) Academic
Press, pp. 423-435.

9. D. C. Smith (1975)  Pygmalion: a creative programming
environment.  PhD Dissertation, Stanford University, 234
pp.

10. G. Raeder (1984)  Programming in pictures.  PhD
Dissertation, University of Southern California, 181 pp.

11. R. Rubin, R., E. Golin,, and S. Reiss (1985)  ThinkPad: a
graphical system for programming by demonstration.  IEEE
Software 2(2), 73-79

12. M. Al-Mulhem (1990). DataLab: a graphical system for
specifying and synthesizing abstract data types.  PhD
Dissertation, Oregon State University, 153 pp.

13. G. Rogers (1990)  The GRClass visual programming
system.  1990 IEEE Workshop on Visual Languages, pp.
48-53.

14. J. Pfieffer (1990)  Using graph grammars for data structure
manipulation.  1990 IEEE Workshop on Visual Languages,
pp. 42-47.

15. J. Pfeiffer (1995)  Ludwig2:  decoupling program
representations from processing models. Proceedings, 11th

IEEE Symposium on Visual Languages, pp. 133-139.
16. B. Bell and C. Lewis (1993)  ChemTrains:  a language for

creating behaving pictures. Proceedings, 1993 IEEE
Symposium on Visual Languages, pp. 188-195.

17. M. Erwig (1994)  DEAL - A language for depicting
algorithms.  Proceedings, 10th IEEE Symposium on Visual
Languages, pp. 184-185.

18. M. Erwig and B. Meyer (1995)  Heterogeneous visual
languages — integrating visual and textual programming.
Proceedings, 11th IEEE Symposium on Visual Languages,
pp. 318-325.


