
Approximation Algorithms for Solving

Cost Observable Markov Decision Processes

Ph.D. Proposal

Department of Computer Science

Oregon State University

Valentina Bayer

Fall, 1998

1 Introduction

Partial observability is a result of noisy or imperfect sensors that are not able
to reveal the real state of the world. For example, consider a robot moving
in a building. If its sensors detect only walls, then rooms with similar con�g-
urations will look the same. People have to deal with partial observability,
too. If there is a truck in front of his/her car, the driver will have a limited
visibility of the road ahead.

The problems that su�er from partial observability have been modelled
as Partially Observable Markov Decision Processes (POMDPs). They have
been studied by researchers in Operations Research and Arti�cial Intelligence
for the past 30 years. Nevertheless, solving for the optimal solution or for
close approximations to the optimal solution is known to be at least NP-hard
([26]). Current algorithms are very expensive and do not scale well.

Many applications can be modelled as POMDPs: quality control, au-
tonomous robots, weapon allocation, medical diagnosis ([4]). In medical
diagnosis, for example, the internal state of the patient is never known with
certitude. Actions available to the physician are: administer laboratory tests,
prescribe medicine, perform surgery. Costs are attached to actions and trade-
o�s must be made between the health-risks/costs of actions and the accuracy
of their resulting observations.

Problem de�nition
The speci�c problem addressed in this proposal is the development of

good approximation algorithms for solving problems that have partial observ-
ability. The model we propose associates costs with obtaining information
about the current state. We want to predict when and how much it is neces-
sary to observe. We want to use our Cost Observable Markov Decision Process
(COMDP) model to �nd good solutions for real-world problems.

The proposal is organized as follows: Section 2 introduces the MDP model
and Section 3, its extension to account for partial observability (POMDP).
Section 4 reviews the POMDP literature. Section 5 introduces the COMDP
model and a current approximation method to solve it. The last section
outlines the future work.

1

2 Markov Decision Processes (MDPs)

A (discrete) Markov Decision Process ([29]) is a model of interaction between
an agent and the world, where the agent always knows what state of the world
it is currently in. We say that an MDP is fully observable.

It can be formally described as a tuple hS;A; P (SjS;A); R(SjS;A)i, where:

� S = the set of states of the world (we assume we are able to model
every state in which the world might be)

� A = the set of actions

� P (SjS;A) = the transition probabilities

� R(SjS;A) = the immediate reward of the actions

An action can have a deterministic or a stochastic e�ect. If it is deter-
ministic, we know for sure what the next state is. If it is stochastic, there
may be more than one possible resulting state. We write P (st+1jst; at) for
the probability of ending in state st+1 at time t+ 1, after performing action
at in state st at time t. Note that

P
st+12S P (st+1jst; at) = 1 (so this is a

probability distribution over the next states).
An action has an immediate reward (or cost). Here, we will consider only

negative rewards. We write R(st+1jst; at) for the reward associated with the
transition from st to st+1, after performing action at.

The reason we wrote only the current state st and action at as a condition
for the next state st+1 is the Markov property. It says that the next state
(and reward) depends only on the current state and action, and not on the
history of past states and actions:

P (st+1jst; at; st�1; at�1; : : : ; s0; a0) = P (st+1jst; at):

A \candidate solution" to an MDP is called a policy. A policy is a map-
ping from states to actions � : S ! A, and chooses an action to take for each
state. The goal is to maximize some utility function (such as the expected
sum of rewards). An optimal policy is an optimal solution to the MDP and
chooses the best action to be performed in each state.

MDPs can be formulated over a �nite horizon (when the agent reaches the
goal state(s) after a �nite number of steps) or over an in�nite horizon (when

2

the agent has an in�nite lifetime). The utility function can be expressed as
the expected sum of discounted rewards:

E

"
k�1X
t=0

tR(st+1jst; at)

#

for a �nite horizon of k steps, where 0 <
 < 1 is a discount factor. This is the
utility for a �xed policy that is choosing the actions at, and the expectation
is taken with respect to the randomness in the e�ects of the actions.

The value function of an MDP associates with each state a value that is
the expected reward of following an optimal policy from that state. Value
iteration and policy iteration algorithms solve MDPs and �nd their optimal
value functions and optimal policies.

The (optimal) value function V � is the solution of the Bellman equations
(one equation for every state):

V (s) = max
a

X
s02S

P (s0js; a)� (R(s0js; a) +
V (s0)):

Given the optimal value function, the optimal policy �� is computed as:

��(s) = argmax
a

X
s02S

P (s0js; a)� (R(s0js; a) +
V �(s0)):

Both value iteration and policy iteration require a model of the probability
of transitions and a model of the immediate rewards. When these models
are not available, reinforcement-learning approaches can be used ([17] and
[32])). The model-based approaches learn a model by interacting with the
environment (such as Dyna and prioritized sweeping), and use the model to
�nd the optimal policy. The model-free ones learn a controller (a policy)
without learning a model, as is the case with Sarsa(�) and Q-learning.

3

3 Partially Observable Markov Decision Processes

(POMDPs)

The following is an analogy taken from Monahan ([25]): \Howard described
movement in an MDP as a frog in a pond jumping from lily pad to lily pad.
. . . we can view the setting of a POMDP as a fog shrouded lily pond. The
frog is no longer certain about which pad it is currently on. Before jumping,
the frog can obtain information about its current location".

In the POMDP model, the agent does not know the real state of the world;
instead it can perceive it through some observations. The observations can
be probabilistic, so an observation model will specify the probability of each
observation for every state in the model.

Typical applications of POMDPs are robot navigation in noisy environ-
ments and management of a sick patient in the face of imperfect information
about the patient's actual state.

A formal model of a POMDP is a tuple hS;A;O; P (SjS;A); P (OjS;A); R(SjS;A)i
where S;A; P (SjS;A); R(SjS;A) are the same as in the MDP de�nition,

� O = the set of observations

� P (OjS;A) = the observation probabilities; we write P (otjst; at�1) for
the probability of observing ot in state st at time t, after executing at�1

At time t, the agent has a certain belief P (st) of being in state st, such thatP
st2S P (st) = 1 (some of the probabilities may be zero). This distribution

is called the belief state at time t. How do we maintain a belief state? One
method is to remember the initial belief state and the entire history of actions
and observations until the present. In some problems, the history of the last
K steps (actions and observations) may be su�cient.

It turns out that simply maintaining a probability distribution over all
of the underlying MDP's states (i.e a belief state) provides us with the same
information as if we maintained the complete history. So the belief state is
a su�cient statistic for the history, and the Markov property holds for belief
states:

P (bt+1jbt; at; ot+1; bt�1; at�1; ot; : : : ; b0; a0; o1) = P (bt+1jbt; at; ot+1)

where we denote the belief state at time t as bt.

4

Therefore a (discrete) POMDP can be converted into a continuous-state
MDP (or a belief MDP) over the belief space. If an agent adopts the optimal
policy for the belief MDP, the resulting behavior will be optimal for the
POMDP. Exact solutions for belief MDPs are mentioned in the next section.

The belief state is updated after performing an action and receiving an
observation.

The solution to a POMDP is a policy mapping from belief states to
actions. How do we represent a policy, since there are uncountably many
belief states? For a �xed horizon, there is a �nite number of policies that
can be followed, starting in a belief state b. Given the value function Vp
associated with a policy p, the value of a belief state b for policy p is the
weighted sum of the individual state values Vp(b) =

P
s2S P (s)Vp(s): If we

denote the vector of Vp(s) as �p, then Vp(b) = b ��p and the optimal value of
belief state b is V (b) = maxp b � �p:

Each policy induces a value function that is linear in belief state b, and
the value function V is the upper surface of those functions (see Figure 1).
So V is piecewise linear and convex and only a �nite number of � vectors
are needed to represent it for any �xed horizon. Some of the vectors are
completely dominated by others, so V consists only of the useful ones, i.e.
vectors that are the best over a region of the belief space.

 0 1

Vp
1

Vp
2

Vp
3

P(s_1)

Figure 1: The value function over a �nite horizon is piecewise linear and
convex; this example shows the value function of a POMDP with 2 states.

5

4 Literature Review

4.1 History: Operations Research and Arti�cial Intelligence

POMDPs were formulated by A. Drake in 1962 ([11]) and have been in the
attention of researchers in Operations Research (see Monahan's and Lovejoy's
surveys [25] and [21]). About ten years ago people in the Arti�cial Intelligence
community approached the �eld, and in the recent years there have been a
number of PhD theses about POMDPs ([24], [18], [15], [3] and [12]).

4.2 Piecewise Linear Convexity

Smallwood and Sondik formulated the optimal control problem for POMDPs
over a �nite horizon ([30]). The paper demonstrates, for a �nite horizon,
that the optimal value function is piecewise linear and convex over the state
probabilities of the underlying Markov process. The authors showed that the
current belief state is a su�cient statistic for the past history of actions and
observations of a POMDP.

Sondik also explored the POMDPs over an in�nite horizon, the discounted
case ([31]). In general, in�nite horizon POMDPs' optimal value functions are
not piecewise linear. However, they can be approximated arbitrarily closely
by a �nite horizon value function for a su�ciently long horizon.

4.3 Exact Solutions

Exact solutions for (�nite horizon) POMDPs compute a set of linear functions
(vectors) de�ning the optimal value function. Each vector corresponds to a
policy that is optimal in some region of the belief space. There are di�erent
ways to compute the optimal set of vectors:

� generate all possible linear functions �rst, and eliminate redundant ones
afterwards, as in Monahan's enumeration algorithm.

� generate useful linear functions by evaluating and checking a �nite num-
ber of points of the belief state space, as in Sondik's method ([30]) and
Cheng's linear support algorithm ([7]). Improved algorithms include
the witness algorithm ([5] and [16]) and Zhang's incremental pruning
algorithm ([6]).

6

It is possible to represent a policy as a �nite state controller, where the
nodes are actions and the arcs are labelled with observations. At run-time,
the initial belief state is used to choose the starting node. At every step, the
action speci�ed by the current node is taken, and depending on the observa-
tion received, a transition to a new node is made; the process continues. This
representation has the advantage of not having to maintain a belief state at
run time.

Existing exact algorithms can take an exponential amount of space and
time to compute the policy, even if the policy itself does not require an
exponential size representation.

4.4 Complexity Issues

Papadimitriou and Tsitsiklis showed that, for both �nite and in�nite hori-
zon MDPs, computing the optimal policy is in P ([27]). They also showed
that �nding optimal policies for POMDPs is PSPACE-complete (PSPACE
is the class of problems that can be solved in a polynomial amount of space;
NP � PSPACE).

Mundhenk, Goldsmith, Lusena and Allender analyzed the complexity of
POMDPs and the hardness of their approximate results ([26]), such as:

� The stationary (i.e. time independent) policy existence problem for
POMDPs is NP-complete. The policy existence problem asks whether
there exists a policy whose expected reward is greater or equal to a
given value.

� The optimal stationary policy for POMDPs can be ��approximated
for any � < 1 if and only if P = NP .

4.5 Approximate Solutions

The simplest approximate methods for solving POMDPs include:

� Most Likely State: the system assumes that it is in the state with the
highest occupation probability and executes the action given by the
optimal MDP policy for that state.

� Action Voting: states vote for their MDP optimal actions in proportion
to their occupation probabilities.

7

� Q-MDP: estimates the Q value for a (belief state, action) as a linear
function of the MDP's Q values for (states,actions).

Nevertheless, they all fail in situations where there is a lot of uncertainty
in the belief state (see [3] for comparison results).

Parr and Russell introduced an approximate method for determining in-
�nite horizon policies for POMDPs, called SPOVA ([28]). They used a gra-
dient descent search and a continuous, di�erentiable representation of the
value function (\soft" max), but they only tested it on very small problems.

Loch and Singh showed that Sarsa(�) (that is, the eligibility traces ver-
sion of Sarsa) works well on small POMDPs that have good memoryless
policies or low-order-memory-based policies ([19]). In their paper, Sarsa(�)
learns a control policy while treating the immediate observation and a history
of the past K observations as the current state of the system.

Another approach to approximately solve POMDPs is to search in the
policy space (all the above algorithms searched in value function space). Eric
Hansen represented a policy explicitly as a �nite state controller and used
policy iteration to solve POMDPs for all belief states ([13]). His approach
outperforms value iteration in solving in�nite-horizon POMDPs.

Hansen also used heuristic search to solve POMDPs given the starting
belief state. This had the advantage of focusing computation on regions of
the belief space that are likely to be reached from the starting belief state.
In general, the controller obtained with heuristic search is smaller than the
controller computed by policy iteration (because that one optimizes the value
of each possible belief state).

I also intend to study grid-based methods for solving POMDPs ([20], [2])
and upper/lower bounds of the POMDP value function ([14], [34]).

4.6 Scalability

Current methods for �nding optimal or approximately optimal policies for
POMDPs are very expensive and do not work for problems with more than
a few hundred states. They are impractical for most real world applications.

One possible solution is to develop better approximation algorithms and
to exploit the problem structure.

8

4.7 Factored Models

Craig Boutilier and David Poole represented POMDPs as dynamic Bayesian
networks and used this model to structure the belief space ([1]). The value
function is represented as a tree, where the branches correspond to di�erent
values for the state features. This idea seems better �tted for approximation
algorithms where small di�erences between states could be ignored.

4.8 Learning Control Policies: Model-free Approaches

One approach to learn POMDP models is to extend techniques for learning
hidden Markov models to learn POMDP models. Another approach is to
learn a controller without learning a model (the model-free approach). The
second method is brie
y discussed in this section.

Whitehead and Ballard solved a restricted class of partially observable
problems, by having their system learn to focus its attention on the relevant
aspects of the domain ([35]). They introduced the term perceptual aliasing
to denote situations where the agent's internal representation does not dis-
tinguish world states that perceptually look the same, but require di�erent
actions.

Chrisman extended the previous technique by allowing actions with stochas-
tic e�ects and tasks that require memory. His predictive distinctions approach
([8]) learns a predictive model (i.e. a POMDP) by interacting with the world
and discovering important distinctions. A single state in the model may cor-
respond to several possible world states. When there are distinctions in the
world not currently accounted for by the model, this will increase its number
of states to �t the observed data.

While Chrisman's algorithm creates new states based on predicting per-
ception, McCallum's utile distinctions algorithm creates new states if this
helps predict reward (see [22]). Utility-based distinctions will build a state
space as large as needed to perform the current task, while perception-based
distinctions will build a state space as complex as the perceived world.

McCallum learns on-line a relevant history of perceptions and actions,
and stores it as a branch in a su�x tree; a leaf node stores the policy for
that history ([23]). This approach does not scale well for large number of ob-
servations, but his PhD thesis ([24]) presents an algorithm that incorporates
perceptual distinctions in the su�x tree.

9

5 Cost-observable Markov Decision Processes

(COMDPs)

In POMDPs, observations are received for free; we want to explicitly model
how expensive it is to gather information. If the agent is pretty sure where
it is or that it is doing the right thing without having to know its exact
position, then it does not have to observe. But if it is confused, then it is
better to observe. And the more it observes, the more it will have to pay.

To model this \cost-observability" we introduce the COMDP model, in
which actions are of two kinds:

� world actions that change the state of the world, but return no obser-
vation information

� observation (or sensing) actions that return observation information,
but the state of the world does not change while performing them

COMDPs are intended to model situations that arise in diagnosis and
active vision where there are many observation actions that do not change
the world and relatively few world-changing actions. We are particularly
interested in problems where there are many alternative sensing actions (in-
cluding, especially, no sensing at all) and where, if all observation actions
are performed, the entire state of the world is observable (but presumably
at very great cost). Hence, COMDPs can also be viewed as a form of fully
observable MDPs where the agent must pay to receive state information (i.e.,
they are "cost-observable").

Our long-term goal is to model the acquisition of human visual observa-
tion strategies within an air-tra�c control simulation.

5.1 Example

Imagine a skier that is faced with a choice of either going down a longer
way, in a valley, or going along a shorter way, near a cli�. The valley is safe
so the skier does not have to do any observation actions. The cli� way is
very dangerous, such that the skier has to observe where he is at every step,
making it very expensive. If the skier were not to observe, his belief state will
be equally spread among relatively safe states and very dangerous states. He
will have to behave cautiously and take expensive actions (as required by the

10

dangerous states), not bene�ting at all from the safer states (where he can
take cheaper actions). So if he takes the cli� way, he is forced to observe.

5.2 Mathematical Model

A formal model of a COMDP is a tuple

hS;A; C;O; P (SjS;A); P (OjS;C); RA(SjS;A); RC(C)i; where

� S = the set of states of the world

� A = the set of actions

� C = the set of observation actions

� O = the set of observations

� P (SjS;A) = the transition probabilities

� P (OjS;C) = the observation probabilities

� RA(Sj; S; A) = the immediate costs (rewards) of the actions

� RC(C) = the costs of the observation actions

At each time t, the agent chooses to perform a world action at 2 A and
an observation action ct+1 2 C. The world action causes the world to make
a transition from some state st 2 S to a new state st+1 2 S according to
P (st+1jst; at). Then the agent receives an observation ot+1 2 O according
to P (ot+1jst+1; ct+1) (see Figure 2). The agent also receives a scalar reward
equal to

R(st+1jst; (at; ct+1)) = RA(st+1jst; at) +RC(ct+1):

We assume that the costs of the observation actions depend only on the
action, not on the state, so we write RC(ct+1) for the cost of the observation
action performed at time t+ 1.

If the current belief state bt is a vector of P (st), then after performing
world action at and observation action ct+1 and receiving observation ot+1,
the belief state can be updated as:

11

a(t+1)

 Ra Ra

S(t+1)

O(t+1)

S(t)

a(t)

S(t+2)

O(t+2)

c(t+1)

Rc

c(t+2)

Rc

Figure 2: Decision diagram for a COMDP

P (st+1) = P (st+1jbt; at; ct+1; ot+1)

=
P (ot+1jst+1; ct+1)�

P
st2S P (st+1jst; at)P (st)P

st+12S P (ot+1jst+1; ct+1)�
P

st2S P (st+1jst; at)P (st)
:

A COMDP policy is a mapping from belief states to world actions and
observation actions. At time t, for the current belief state, the policy chooses
a pair of (action, observation action) = (at; ct+1).

5.3 Complexity Equivalence with POMDPs

Every POMDP can be transformed, in polynomial time, into a COMDP
whose optimal policy can be mapped back into an optimal policy for the
POMDP. For each COMDP we can construct a POMDP in polynomial time.

12

Let M1 be the underlying MDP for the COMDP (the states are fully observ-
able, at no cost), with the reward function R1(st+1jst; at) := RA(st+1jst; at).
Let k := 0
repeat

� k := k + 1

� �nd the value function Vk of MDP Mk

� for each state st, perform a lookahead search to choose the best action
at, observation action ct+1, and subsequent action at+1. At time t + 2,
we will use the value Vk(st+2) from MDPk.

� de�neMk+1 to be the same asMk except that the reward function Rk+1

is changed to re
ect the cost of ct+1 (this is incorporated into the cost
of all actions that enter state st):

Rk+1(stjst�1; at�1) := RA(stjst�1; at�1) +RC(ct+1); 8st; st�1

until Mk+1 = Mk

De�ne V̂ := VK, where MK is the last MDP constructed by this algorithm.

Figure 3: Approximation algorithm for solving a COMDP

This means that POMDPs and COMDPs have the same worst case com-
plexity (and therefore a complete exact solution method for one problem
will provide a complete exact solution method for the other problem). The
POMDP $ COMDP reductions are presented in the appendix.

What we want to do is approximately solve COMDPs and see what classes
of the POMDPs these approximations are good for (this is an open problem).

5.4 Approximation Algorithm

To �nd an approximately optimal policy for a COMDP, we developed the
following algorithm (see Figure 3).

The algorithm constructs a series of (fully observable) Markov Decision
Processes M1; : : : ;MK . The MDPs are identical, except for the immediate

13

reward function that is changed to include the cost of observation actions.
The algorithm converges when the rewards stop changing.

At each iteration, we perform a lookahead search from each state st,
assuming the world is cost observable for one step and fully observable af-
terwards. The world action at spreads the belief over the resulting states,
according to the model P (st+1jst; at). Then we have to consider each obser-
vation action ct+1 and each possible observation ot+1. We update the belief
state using (at; ct+1; ot+1). Then another world action at+1 is chosen and we
assume the resulting state st+2 is fully observable, so we can use its value as
given by the current MDP. We are interested in the pair (at; ct+1) that max-
imizes the expected return. Finally we modify the costs of all actions at�1
that have transitions into the state st to include the cost of the observation
action ct+1. The next MDP will make state st more expensive to enter.

At run-time, we perform a lookahead search from the current belief state
to �nd the best (action, observation action) to perform. In the process,
we use the value function V̂ and the modi�ed rewards computed for the
last MDP, MK , and we marginalize out the uncertainty about the current
(and resulting) states. After executing the (action, observation action) and
receiving an observation, we update the belief state and so on.

Either the world action or the observation action (but not both) can be
a no-operation, so it is possible to have many observation actions between
two world actions, as well as many world actions between two observation
actions.

A disadvantage of our algorithm is that its o�-line computation is based
only on belief states that result after the agent starts in a known state and
takes a world action. These belief states are not very spread out, so they are
less likely to encompass situations where the agent is highly confused.

The advantage of this approximation algorithm is that it can be used for
COMDPs with a large number of states (tens of thousands of states), because
the main computational e�ort is concentrated on solving the chain of MDPs.
Existing algorithms for solving POMDPs do not scale for a large number of
states.

For the skier example, the POMDP's optimal policy is to take the valley
way and our COMDP approximation method is able to �nd it, too. Our
algorithm will examine possible future states where expensive observation
actions will be needed, and propagate this information backwards, so the
skier avoids the cli� way altogether.

14

6 Future Work

6.1 Methods and Experiments

We plan to develop new approximation algorithms for COMDPs and use
mathematical analysis to understand how these algorithms compare to each
other. We will do experimental testing to evaluate the quality of the approx-
imation algorithms and to compare their running times.

Once provable good results are obtained for small benchmark problems,
we will switch our research to a real world application (the Air Tra�c Control
simulation or a medical diagnosis problem).

6.2 Long Term Goal

We want to apply the COMDP approximation algorithms to the problem of
active visual perception in real-time problem-solving tasks such as air tra�c
control. Active vision refers to systems that not only sense, but also interact
with the world during sensing, by focusing attention, processing selectively,
choosing where to look, etc. ([9], [10], [33]).

We want to look at reinforcement learning algorithms for learning the
COMDPs. During the early phases of learning, the controller can observe
the entire state of the system and acquire an accurate model.

6.3 Schedule

� 1999:

{ work on approximation algorithms for COMDPs

{ do a comparative study of COMDP and POMDP's algorithms

{ write paper for NIPS

� 2000:

{ learn COMDPs using factored models

{ work on a real world application

{ write papers

� 2001: write thesis and defend

15

7 Appendix

7.1 POMDP to COMDP Reduction

The POMDP = hS;A;O; P (SjS;A); P (OjS;A); R(SjS;A)i is transformed
into the COMDP= hS 0; A0; C; O0; P 0(S 0jS 0; A0); P 0(O0jS 0; C 0); RA(S

0jS 0; A0); RC(C)i,

� S 0 = S�A�f1; 2g; if action at results in state st+1, then the COMDP
state at time t+ 1 is written (st+1; at; lt+1), where the tag lt+1 2 f1; 2g

� A0 = A� f1; 2g

� C = fobs; no� opg

� O0 = O � f1; 2g

� P 0((st+1; at; 1)j(st; at�1; lt); (at; lt)) = P 0((st+1; at; 2)j(st; at�1; lt); (at; lt))
= 1

2
P (st+1jst; at), that is, when the action tag matches the state tag,

a standard state transition occurs, but the resulting state tag is set at
random (half the time to 1, half the time to 2)

P 0((st; at�1; l1)j(st; at�1; l1); (at; l2)) = 1, i.e. the state does not change
if the action tag does not match the state tag l1 6= l2

� P 0((ot+1; lt+1)j((st+1; at; lt+1); obs)) = P (ot+1jst+1; at), where ot+1 2 O,
so 'obs' reveals the current tag with certainty, and also gives the obser-
vation associated with the previous action

� RA((st+1; at; 1)j(st; at�1; lt); (at; lt)) = RA((st+1; at; 2)j(st; at�1; lt); (at; lt))
= R(st+1jst; at) andRA((st; at�1; l1)j(st; at�1; l1); (at; l2)) = �1, if l1 6= l2,
so if the action tag does not match the state tag, there is a huge penalty

� RC(c) = 0

Every state, world action and observation in the COMDP has a tag,
1 or 2. If an action tag does not match the state tag, there is a huge penalty.
When the tags match, a standard state transition occurs, but the tag for
the resulting state is set at random (half the time to 1, half the time to 2).
The observation 'obs' reveals the current tag with certainty, and also gives
the observation associated with the previous action. Rewards are associated
with the transitions as normal.

16

We must show than an optimal COMDP policy can be transformed into
an optimal POMDP policy. For every belief state bt, the optimal COMDP
policy chooses (at; obs). But at is also the optimal action the POMDP chooses
for belief state bt.

7.2 COMDP to POMDP Reduction

The COMDP= hS;A; C;O; P (SjS;A); P (OjS;C); RA(SjS;A); RC(C)i is trans-
formed into the POMDP= hS 0; A0; O0; P 0(S 0jS 0; A0); P 0(O0jS 0; A0)); R0(S 0jS 0; A0)i,
where

� S 0 = S

� A0 = A� C

� O0 = O

� P 0(st+1jst; (at; ct+1)) = P (st+1jst; at)

� P 0(ot+1jst+1; (at; ct+1)) = P (ot+1jst+1; ct+1)

� R0(st+1jst; (at; ct+1)) = RA(st+1jst; at) +RC(ct+1)

The equivalent POMDP's set of actions is the cross product of the COMDP's
set of actions and observation actions.

We must show than an optimal POMDP policy can be transformed into
an optimal COMDP policy. The optimal POMDP policy will choose, for
belief state bt, the action (at; ct+1). This is mapped back into the COMDP's
(optimal) choice of the couple (at; ct+1) for the belief state bt.

17

References

[1] C. Boutilier and D. Poole. Computing optimal policies for partially ob-
servable decision processes using compact representations. Proceedings
of the Thirteenth National Conference on Arti�cial Intelligence, pages
1168-1175, 1996.

[2] R.I. Brafman. A heuristic variable grid solution method for POMDPs.
Proceedings of the Fourteenth National Conference on Arti�cial Intelli-
gence, pages 727-733, 1997.

[3] A. Cassandra. Exact and approximate algorithms for partially observable
Markov Decision Processes. PhD thesis, Brown University, 1998.

[4] A. Cassandra. A survey of POMDP applications. Technical report,
Microelectronics and Computer Technology Corporation (MCC), 1998.

[5] A. Cassandra, L. P. Kaelbling, and M. Littman. Acting optimally in
partially observable stochastic domains. Proceedings of the Twelfth Na-
tional Conference on Arti�cial Intelligence, pages 1023-1028, 1994.

[6] A. Cassandra, M. Littman, and N. Zhang. Incremental pruning: A
simple, fast, exact method for partially observable Markov decision pro-
cesses. Proceedings of the Thirteenth Annual Conference on Uncertainty
in Arti�cial Intelligence (UAI-97), pages 54{61, 1997.

[7] H.T. Cheng. Algorithms for partially observable Markov decision pro-
cesses. PhD thesis, University of British Columbia, 1988.

[8] L. Chrisman. Reinforcement learning with perceptual aliasing: the per-
ceptual distinctions approach. Proceedings of the Tenth National Con-
ference on Arti�cial Intelligence, pages 183-188, 1992.

[9] T. Darell. Reinforcement learning of active recognition behaviors. Tech-
nical report, Interval Research, 1997.

[10] A.J. Davison and D.W. Murray. Mobile robot localisation using active
vision. Proceedings of the European Conference on Computer Vision,
1998.

18

[11] A. Drake. Observation of a Markov process through a noisy channel.
PhD thesis, Massachusetts Institute of Technology, 1962.

[12] E.A. Hansen. Finite-memory control of partially observable systems.
PhD thesis, University of Massachusetts Amherst, 1998.

[13] E.A. Hansen. Solving POMDPs by searching in policy space. Proceedings
of the Fourteenth Conference on Uncertainty in Arti�cial Intelligence,
pages 211-219, 1998.

[14] M. Hauskrecht. Incremental methods for computing bounds in partially
observable Markov decision processes. Proceedings of AAAI-97, pages
734-739, 1997.

[15] M. Hauskrecht. Planning and control in stochastic domains with im-
perfect information. PhD thesis, Massachusetts Institute of Technology,
1997.

[16] L. P. Kaelbling, M. Littman, and A. Cassandra. Planning and acting
in partially observable stochastic domains. Arti�cial Intelligence, 101:
1-2, pages 99-134, 1998.

[17] L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning:
A survey. Journal of Arti�cial Intelligence Research, Vol. 4, pages 237-
285, 1996.

[18] M.L. Littman. Algorithms for sequential decision making. PhD thesis,
Brown University, 1996.

[19] J. Loch and S. Singh. Using eligibility traces to �nd the best memoryless
policy in partially observable Markov decision processes. Proceedings of
the Fifteenth International Conference on Machine Learning, 1998.

[20] W.S. Lovejoy. Computationally feasible bounds for partially observed
Markov decision processes. Operations Research, Vol 39, No. 1, pages
162-175, 1991.

[21] W.S. Lovejoy. A survey of algorithmic methods for partially observable
Markov decision processes. Annals of Operations Research, Vol 28, pages
47-66, 1991.

19

[22] A. McCallum. Overcoming incomplete perception with utile distinction
memory. Proceedings of the Tenth International Conference on Machine
Learning, 1993.

[23] A. McCallum. Instance-based utile distinctions for reinforcement learn-
ing with hidden state. Proceedings of the Twelfth International Confer-
ence on Machine Learning, 1995.

[24] A McCallum. Reinforcement learning with selective perception and hid-
den state. PhD thesis, University of Rochester, 1996.

[25] G.E. Monahan. A survey of partially observable Markov decision pro-
cesses: Theory, models and algorithms. Management Science, Vol 28,
No. 1, pages 1-16, 1982.

[26] M. Mundhenk, J. Goldsmith, C. Lusena, and E. Allender. Encyclopae-
dia of complexity results for �nite-horizon Markov decision processes.
Technical report, University of Kentucky, 1997.

[27] C.H. Papadimitriou and J.N. Tsitsiklis. The complexity of Markov de-
cision processes. Mathematics of Operations Research, Vol 12, Number
3, pages 441-450, 1987.

[28] R. Parr and S. Russell. Approximating optimal policies for partially
observable stochastic domains. Proceedings of the International Joint
Conference on Arti�cial Intelligence, 1995.

[29] M.L. Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, New York, 1994.

[30] R.D. Smallwood and E.J. Sondik. The optimal control of partially ob-
servable Markov processes over a �nite horizon. Operations Research,
Vol. 21, pages 1071-1088, 1973.

[31] E.J. Sondik. The optimal control of partially observable Markov pro-
cesses over the in�nite horizon: discounted costs. Operations Research,
Vol. 26, No. 2, pages 282-304, 1978.

[32] R.S. Sutton and A.G. Barto. Reinforcement Learning (An Introduction).
The MIT Press, 1998.

20

[33] M.J. Swain and M. Stricker. Promising directions in active vision. In-
ternational Journal of Computer Vision, Vol. 11, No. 2, pages 109-126,
1993.

[34] R. Washington. BI-POMDP: Bounded, incremental partially-observable
Markov-model planning. Proceedings of the 4th European Conference on
Planning, 1997.

[35] S.D. Whitehead and D.H. Ballard. Learning to perceive and act by trial
and error. Machine Learning, Vol 7, No. 1, pages 45-83, 1991.

21

