
End-User Testing for the Lyee Methodology

Using the Screen Transition Paradigm and

WYSIWYT

Darren BROWN, Margaret BURNETT, and Gregg ROTHERMEL

TR#03-60-01

School of Electrical Engineering and Computer Science

Oregon State University, Corvallis, OR 97331

20 March 2003

burnett@cs.orst.edu

Abstract

End-user specification of Lyee programs is one goal envisioned by the Lyee method-

ology. But with any software development effort comes the possibility of faults. Thus,

providing end users a means to enter their own specifications is not enough; they

must also be provided with the means to find faults in their specifications, in a

manner that is appropriate not only for the end user’s programming environment

but also for his or her background. In this paper, we present an approach to solving

this problem that marries two proven technologies for end users. One methodology

for enabling end users to program is the screen transition paradigm. One useful vi-

sual testing methodology is “What you see is what you test (WYSIWYT)”. In this

paper, we show that WYSIWYT test adequacy criteria can be used with the screen

transition paradigm, and present a systematic translation from this paradigm to

the formal model underlying WYSIWYT.

Preprint submitted to Elsevier Science 27 May 2003

Key words: WYSIWYT, screen transition diagram, end-user software testing

PACS:

1 Introduction

One goal envisioned by the inventors of the Lyee methodology [1] is that even

an end user will someday be able to enter a set of software requirements—

without the assistance of a professional software developer—and that the

methodology will be able to generate software that conforms to these require-

ments. (Following convention in the literature, the term “end users” as used

here refers to people who are not professional programmers.) Indeed, other

collaborators in the Lyee project have been working on important fundamen-

tals that will contribute to this goal (e.g., [2], [3]). For this goal to become a

reality, many questions relating to the human aspects of this goal must also

be investigated, such as:

• Is it feasible to expect end users to enter software requirements at all?

• If so, to what level of detail must they descend to create requirements that

are complete enough to generate the desired software?

• How can we ensure that requirements entered by such users are non-contradictory?

• Can end users understand the implications of the requirements they are

entering well enough to recognize errors and correct them?

2

There is preliminary research contributing partial answers to the above ques-

tions, some of which is discussed in [4]. These partial results allow optimism

that the questions above can be resolved. With this in mind, we will make the

further assumption that these and related issues can be solved for the Lyee

methodology. But once they have been solved, at least one question remains:

• How can end users test the requirements they enter? Specifically, can a test-

ing methodology that has previously been developed for end users, known

as the WYSIWYT methodology, be adapted to the Lyee environment?

Addressing this question is our role in the Lyee collaboration project. This

paper makes the following specific contributions:

(1) We present a structure of Lyee requirements with two important at-

tributes: it is based on an approach of proven usefulness to end users,

and it is highly compatible with the Lyee methodology’s underlying struc-

tures.

(2) We show that WYSIWYT test adequacy criteria can be used with such

a structure.

(3) We present a systematic translation from the structure above to the for-

mal model underlying WYSIWYT.

In Section 2 we present a summary of the WYSIWYT methodology which has

previously been devised for the spreadsheet paradigm. Section 3 presents the

structure for end users of item (1) above. Section 4 brings up some specific

3

issues that must be resolved to ensure the viability of testing the structure.

Section 5 discusses the choice of adequacy criteria (item 2 above) and presents

the translation from the structure to the WYSIWYT methodology’s formal

model (item 3). Section 6 concludes.

2 Background: The WYSIWYT Testing Methodology

In previous work [5], [6], [7], we presented a testing methodology for spread-

sheets termed the “What You See Is What You Test” (WYSIWYT) methodol-

ogy. The WYSIWYT methodology provides feedback about the “testedness”

of cells in spreadsheets in a manner that is incremental, responsive, and en-

tirely visual. It is aimed at a wide range of spreadsheet users, including both

end users and professional programmers. We have performed extensive em-

pirical work, and our results consistently show that both end users and pro-

grammers test more effectively and efficiently using WYSIWYT than they do

unaided by WYSIWYT (e.g., [8], [9], [5], [10]).

This proven effectiveness of WYSIWYT for spreadsheets suggests WYSIWYT

as a possibility for testing in the Lyee methodology, provided that it can be

effectively adapted to Lyee. In this section, we summarize the WYSIWYT

methodology.

The underlying assumption behind the WYSIWYT methodology has been

that, as the user develops a spreadsheet incrementally, he or she could also

4

be testing incrementally. We have integrated a prototype of WYSIWYT into

our research spreadsheet language Forms/3 [11], [12]. In our prototype, each

cell in the spreadsheet is considered to be untested when it is first created,

except input cells (cells whose formulas may contain constants and operators,

but no cell references or if-expressions), which do not require testing. For the

non-input cells, testedness is reflected via border colors on a continuum from

untested (red) to tested (blue).

Figure 1 shows a spreadsheet used to calculate student grades in Forms/3.

The spreadsheet lists several students, and several assignments performed by

those students. The last row in the spreadsheet calculates average scores for

each assignment, the rightmost column calculates weighted averages for each

student, and the bottom right cell gives the overall course average (formulas

not shown). With WYSIWYT, the process of testing spreadsheets such as

the one in Figure 1 is as follows. During the user’s spreadsheet development,

whenever the user notices a correct value, he or she lets the system know of this

decision by validating the correct cell (clicking in the decision check box in its

right corner), which causes a check mark to appear, as shown in Figure 1. This

communication lets the system track judgments of correctness, propagate the

implications of these judgments to cells that contributed to the computation

of the validated cell’s value, and reflect this increase in testedness by coloring

borders of the checked cell and its contributing cells more tested (more blue).

On the other hand, whenever the user notices an incorrect value, rather than

5

checking it off, he or she eventually finds the faulty formula and fixes it. This

formula edit means that affected cells will now have to be re-tested; the system

is aware of which ones those are, and re-colors their borders more untested

(more red). In this document, we depict red as light gray, blue as black, and

the colors between the red and blue endpoints of the continuum as shades of

gray.

WYSIWYT is based on an abstract testing model we developed for spread-

sheets called a cell relation graph (CRG) [6]. A CRG is a pair (V, E), where V

is a set of formula graphs and E is a set of directed edges modeling dataflow

relationships between pairs of elements in V. A formula graph models flow

of control within a single cell’s formula, and is comparable to a control flow

graph. In simple spreadsheets, there is one formula graph for each cell. (See

[13], [14] for discussions of how complex spreadsheets are treated.) For exam-

ple, Figure 2 shows a portion of the CRG for the cells in Figure 1, delimited

by dotted rectangles. The process of translating an abstract syntax tree rep-

resentation of an expression into its control flow graph representation is well

known [15]; a similar translation applied to the abstract syntax tree for each

formula in a spreadsheet yields that formula’s formula graph. In these graphs,

nodes labeled “E” and “X” are entry and exit nodes, respectively, and repre-

sent initiation and termination of evaluation of formulas. Nodes with multiple

out-edges are predicate nodes (represented as rectangles). Other nodes are

computation nodes. Edges within formula graphs represent flow of control

6

between expressions, and edge labels indicate the value to which conditional

expressions must evaluate for particular branches to be taken.

Fig. 1. Visual depiction of testedness of a student grades spreadsheet. Blue-bordered
cells (black in this paper) such as the first cell in the Average row are tested,
red-bordered cells (light gray in this paper) such as the second cell in the Average
row are untested, and shades between such as the top cell in the Course column are
partially tested. The upper right corner of each spreadsheet reports a spreadsheet’s
overall testedness percentage. Check marks were placed by the user to indicate that
a value is correct, and question marks point out the cells in which check marks
would increase testedness according to the adequacy criterion.

We used the cell relation graph model to define several test adequacy cri-

teria for spreadsheets [6]. (A test adequacy criterion [16] is a definition of

what it means for a program to be tested “enough.”) The strongest criterion

we defined, du-adequacy, is the criterion we have chosen for our work. The

du-adequacy criterion is a type of dataflow adequacy criterion [17], [18], [19],

[20]. Such criteria relate test adequacy to interactions between definitions and

uses of variables in source code (definition-use associations, abbreviated du-

associations). In spreadsheets, cells play the role of variables; a definition of

cell C is a node in the formula graph for C representing an expression that de-

7

Fig. 2. A partial cell relation graph of Figure 1. These are the formula graphs
for the top row (“Abbott, Mike”). Dashed arrows indicate dataflow edges between
cells’ formula nodes. For clarity in this figure, we preface cell names with “Abbott”
instead of with the internal IDs actually used.

fines C’s value, and a use of cell C is either a computation use (a non-predicate

node that refers to C) or a predicate use (an out-edge from a predicate node

that refers to C). For example, in Figure 2, nodes 2, 5, 8, 12, and 13 are defi-

nitions of their respective cells, nodes 12 and 13 are computational uses of the

cells referenced in their expressions, and edges (11,12) and (11,13) are predi-

cate uses of the cells referenced in predicate node 11. Under this criterion, a

cell X will be said to have been tested enough when all of its definition-use

associations have been covered (executed) by at least one test. In this model, a

test is a user decision as to whether a particular cell contains the correct value,

given the inputs upon which it depends. Decisions are communicated to the

system when the user checks off a cell to validate it. Thus, given a cell X that

references Y, du-adequacy is achieved with respect to the interactions between

8

X and Y when each of X’s uses of each definition in Y has been covered by a

test.

Thus, if the user manages to turn all the red (light gray) borders blue (black),

the du-adequacy criterion has been satisfied. This may not be achievable, since

not all du-associations are executable in some spreadsheets (termed infeasible).

Even so, subjects in our empirical work have been significantly more likely

to achieve du-adequate coverage and do so efficiently using the WYSIWYT

methodology than those not using it [9], [10], du-adequate test suites have

frequently been significantly more effective at fault detection than random

test suites [5], and subjects have been significantly more likely to correctly

eliminate faults using the WYSIWYT methodology than those not using it

[8]. Both programmer [8], [10] and end-user [9] audiences have been studied.

3 Attributes of End-User Requirements Specification

To define an end-user methodology for testing Lyee specifications, basic at-

tributes of the user’s paradigm must be established for working with Lyee. Our

strategy was to consider end-user programming specification paradigms that

already exist, that also have strong compatibility with the Lyee methodology.

Our literature search revealed a paradigm that has been proven empirically to

be successful with one class of end users (namely, interface designers) [21], [22].

This paradigm is called the “screen transition paradigm”. The general idea is

9

that a user can design an interface by explicitly sketching how the intended

interface is to be used. See Figure 3.

The screen transition paradigm is an extremely good fit with the Lyee method-

ology, because much of it is already a part of the Lyee methodology. That is,

the Lyee methodology begins with similar diagrams that are currently manu-

ally simulated by developers. The Lyee objects such as words, formulas, and

conditions are extracted from these diagrams. Thus, this is a natural fit to

connect the users with the underlying Lyee structures. In this paper, we will

assume that this idea can be applied to end-user programming for the Lyee

methodology.

We are also assuming that end users will enter a complete set of requirements,

without the help of a professional developer. Thus, testing the screen transition

diagram is testing the program—because there will be no information in the

program that was not generated by the user’s screen transition diagrams. (We

simply assume that this is true for now; a later collaboration may design

exactly how this will work.)

The question that we consider in this paper is this: Given the assumption that

end users will provide complete specifications via screen transition diagrams,

how can testing be supported? The first issue to consider is how testing support

will be presented to users. We do not develop this issue here, but we do require

that its solution must satisfy two constraints: (1) the presentation of testedness

10

will be integrated with the screen transition diagrams, as in the WYSIWYT

methodology, and (2) any update or test made by the user will be immediately

and visually reflected in the presentation.

The second issue to consider is, what is the user going to test? In order to

consider this issue, it is necessary to define further conditions for the user’s

requirements specification elements.

Fig. 3. A SILK sketch (front) of a five-day weather forecast and storyboard (rear)
[22]. An experienced user-interface designer created the sketch. The designer has
also created buttons and drawn arrows to show the screen transitions that occur
when the user presses the buttons.

With screen transition diagrams, the user communicates a program using

screens, objects on those screens, and transition-actions. (It should be un-

derstood that we are attempting to relate only what the user communicates,

not how.) Thus, a screen is a collection of objects, which will be used and/or

11

1

5

6, 7

2, 3, 4

Calc::Main

Input_1

Input_2

Operator

Calculate

Calc::Exec

Output_1

Clear

Return

Calc::Error

Error_Disp

Return

Fig. 4. An example screen transition diagram.

produced by computations. In Figure 4, a screen is denoted as a large rounded

rectangle containing the screen name and the objects that are on the screen.

The general idea of how this technology can come together with the Lyee

methodology is illustrated in Figure 5.

The diagram of Figure 4 depicts requirements for a program named Calc,

which takes two numbers and an operator, and then returns the operator

applied to the two numbers as long as the numbers and the operator are valid.

(At the moment, this is just a hand-drawn depiction of the idea; in practice

the style of the diagram is expected to be similar to the style of Figure 3.)

In the diagram, input objects are denoted by soft-cornered rectangles within

the screens. For example, in the screen Calc::Main, there are the three input

objects: Input
1
, Input

2
, and Operator. An event object (an object capable of

generating events) is shown with an oval as with Calculate. Transitions to

12

screens are shown by connecting an event object to the title of the screen

that the event yields with a directed arrow, such as (Calculate, Calc::Exec).

Finally, output objects are denoted with a hexagon shape, as with Output
1
.

Transitions are defined in Table 1 and referred to by the numbers in the table.

style shown in Figures 3 and 4

Basic
and transitions using Visual

vector

Developer fills in data defining
condition and data defining
formulas for each word

User anotates screens/reports
Step 2:

directly into computer, in the
User draws screens/reports
Step 1:

and specified template
specified language using PRD

L−max

among screens/reports

Route Diagram (PRD) using

with transition information

 and reports: screens, reports,
 From diagrammed screens

is generated using the above
Process Route Diagram (PRD)

 vectors

 vectors.
 vector conditions, and routing
 vector formulas, signification
 From transitions: signification

 and databases.
 defineds, nouns, I/O vectors,

the following info:
System automatically extracts
Step 3−6:

such as that in Table 1

Lyee generates a program in
Step 7:

word list for each signification
Lyee generates a registered
Step 6:

Developer enters Process
Step 5:

and defineds using L−max
Developer identifies all nouns
Step 4:

Developer mocks up screens
Step 3:

User explains transitions
Step 2:

reports
with sketch of screens/
User supplies developer
Step 1:

 Already automatic: structural

Fig. 5. A strategy (right side) for applying end-user programming to the current (left
side) Lyee methodology (also assumes incorporation of work by other collaborators
in relevant ways).

The attributes of action objects are as follows. Action objects are what de-

13

Transition Screen Event Condition(s) Destination Action(s)

number Screen

1 Calc::Main Pressed AND (Calc::Exec output 1 =

calculate (input 1 != NAN) input 1 operator input 2

object (input 2 != NAN)

(OR

(operator != /)

(AND

(operator == /)

(input 2 != 0)

)

)

)

2 Calc::Main Pressed (input 1 == NAN) Calc::Error Error Disp =“input 1 is not

calculate a number”

object

3 Calc::Main Pressed (input 2 == NAN) Calc::Error Error Disp =“input 2 is not

calculate a number”

object

4 Calc::Main Pressed AND (Calc::Error Error Disp =“divide by

calculate (operator == /) zero”

object (input 2 == 0)

)

5 Calc::Error Pressed return Calc::Main

object

6 Calc::Exec Pressed return (clear ==“yes”) Calc::Main input 1 =“null”

object input 2 =“null”

operator =“null”

7 Calc::Exec Pressed return OR (Calc::Main

object (clear ==“no”)

(clear ==“null”)

)

Table 1
Transitions/actions for screen transition diagram depicted in Figure 4. (“NAN”
stands for“not a number”).

scribe and cause computations to occur. They consist of an event, a set of

conditions, a destination screen, and a set of actions to be taken. Actions

include Lyee’s notion of formulas, and can reference both input and output

14

objects; they can also affect both input and output objects.

We emphasize that the format shown in Table 1 is only for precision of this

discussion, and is not suitable for end users. As Pane and Myers showed em-

pirically [23], end users are not very successful at using Boolean AND and

OR, and do not tend to understand the use of parentheses as ways to specify

precedence. They suggest some alternatives to these constructs, and empir-

ically show that end users can use one set of such alternatives successfully

[24]. In addition to their suggested alternatives, other possibilities include the

demonstrational rewrite rules of Cocoa [25] or Visual AgentTalk [26], which

have been demonstrated to be usable by end users.

As the above example illustrates in part, there are three types of objects: input,

output, and action. A specialized kind of input object is an event object, which

generates a user event if the user interacts with it. A condition on input objects

is that they allow the user to enter input, via the keyboard or the mouse, but

are also updatable by the program. A condition on output objects is that they

cannot receive user inputs. Instead, their purpose is to receive the results of

computations, but they can also provide input values to computations.

Action objects are a slightly more powerful form of transition than is tradi-

tional, but in this document we use the terms interchangeably. The difference

is that the event and conditions that are required to execute the actions are

only a partial specification of state; however, the destination screen and the

15

actions to execute upon taking the transition completely specify a new state.

A transition from and to the same screen is legal.

Once an event occurs, the actions are performed and the destination screen

is displayed. Those actions performed are the ones in the action object that

matches the satisfied conditions. Since this is a deterministic machine, only

one transition can be allowed to be possible given an event and conditions.

Some possible ways to accomplish this are to require that conditions for a

given event are mutually exclusive, that transitions must be prioritized, or

that the first transition that meets the criterion for transition will be taken

without regard for further applicable transitions.

Events need not require user intervention. For example, an event may be

defined as a certain output cell reaching some threshold, or simply the current

screen being reached on a given transition.

To summarize this section, we have identified a set of attributes that we as-

sume to be present in a future approach to allowing end users to enter their

requirements into the Lyee set of tools. Resting upon these assumptions allows

consideration into how end users might test such requirements.

16

4 Testing End-User Requirements Specifications

Given the above attributes of end users’ requirements specifications via screen

transition mechanisms, we now consider end-user testing of Lyee requirements

specifications using WYSIWYT as a basis.

4.1 WYSIWYT-Based Testing

To make use of the WYSIWYT methodology for testing end-user spreadsheets,

a screen transition diagram can be modeled as a set of du-associations asso-

ciated with each transition. This model will be used to support testing of all

of the cases possible under the assumptions stated in this paper, except for

transitions into screens that contain no uses.

The following define the definitions and uses in this model:

Definition 1: Definition of input object

A definition of input object A is:

• the specification of A as an input value (including its initial value and any

future values input), or

• an assignment to A in an action (presence of A in the action’s left-hand

side).

Definition 2: Definition of output object

17

A definition of output object A is:

• the specification of A’s initial value, or

• an assignment to A in an action (presence of A in the action’s left-hand

side).

Definition 3: Use

A use of object A is:

• a reference to A the right-hand side of an action, or

• a reference to A in a condition.

Building upon these definitions in the same manner as in Section 2, du-

associations are interactions between definitions and uses, and the other defini-

tions follow. Using this model, WYSIWYT’s dataflow-based testing techniques

can be employed to try to cover each du-association. As with WYSIWYT, the

system will treat the user as an oracle and allow the user to state whether,

given a particular scenario of inputs, results are correct. Figure 6 sketches the

algorithm for this aspect of the methodology. We also adopt WYSIWYT’s no-

tion that testing is adequate when all feasible definition-use associations have

been exercised by at least one test.

The algorithm in Figure 6 covers only one testing situation, namely that in

which the user has asked the system to suggest possible input values (termed

the “Help Me Test” feature in our Forms/3 prototype of WYSIWYT) [27].

18

As in our previous work, this feature will work in tandem with the user’s

ability to specify their own input values when they prefer. Also as in the orig-

inal WYSIWYT methodology, feedback given to the user under this approach

will be entirely visual, using devices such as those used in WYSIWYT. We

are currently in the process of analyzing empirical data about the way end

users make use of “Help Me Test”; early indications suggest that the feature

positively impacts users’ abilities to find faults.

(1) Pick a transition T; let O be the set of objects with uses in T or in T’s
destination screen.

(2) Find definitions for O, whose du-associations are not yet covered. Set
new specific values for these definitions as necessary.

(3) Keep setting definitions’ values until T is traversed.
(4) Allow Oracle to say if, given current definitions and transition T, the

output is correct.

Fig. 6. Algorithm sketch for one run of a WYSIWYT test generator for screen
transition diagrams.

Note that the algorithm allows the user to validate the value, but it does not

actually require the user to do anything. This is an important aspect of our

approach, and follows principles implied in Blackwell’s end-user programming

model of attention investment [28]. That is, our approach does not attempt to

alter the user’s work priorities by requiring them to answer dialogues about

correctness, because the user might find that counter-productive and stop

using the feature. Rather, our approach provides opportunities (through deco-

rating the diagrams with clickable objects) for the user to provide information

if they choose. This allows the user to take the initiative to validate, but does

not interrupt them from their current processes by requiring information at

19

Transition 2:

Uncovered DU’s: 7, 8;

DU Picked: 7.

1st try: input1 = 3, input2 = NAN, operator = *, can’t cover.

2nd try: input1 = NAN, input2 = NAN, operator = *, T covered.

Oracle validates.

DU’s covered so far: 7.

Infeasible DU’s tried to cover: none.

Transition 2:

Uncovered DU’s: 8; DU Picked: 8.

1st try: input1 = null, input2 = null, operator = null, T covered.

Oracle validates.

DU’s covered so far: 7, 8.

Infeasible DU’s tried to cover: none.

Transition 1:

Uncovered DU’s: 1, 2, 3, 4, 5, 6, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24; DU Picked: 15.

1st try: input1 = NAN, input2 = 4 , operator = +, can’t cover.

2nd try: input1 = 3, input2 = NAN , operator = *, can’t cover.

3rd try: input1 = 3, input2 = NAN , operator = /, can’t cover.

4th try: input1 = 3, input2 = 4 , operator = +, T covered.

Oracle validates.

DU’s covered so far: 1, 3, 5, 7, 8, 15, 17, 19, 21, 23.

Infeasible DU’s tried to cover: none.

Transition 1:

Uncovered DU’s: 2, 4, 6, 16, 18, 20, 22, 24; DU Picked: 16.

1st try: input1 = null, input2 = null, operator = null, can’t cover. (cannot manipulate constants).

DU’s covered so far: 1, 3, 5, 7, 8, 15, 17, 19, 21, 23.

Infeasible DU’s tried to cover: 2, 4, 6, 16, 18, 20, 22, 24

....(and so on)...

Table 2
The beginning of one possible run of a WYSIWYT-based test generation.

any particular time. For example, this allows the user to fix a fault as soon

as a test reveals it, if they immediately spot the cause, rather than requiring

them to continue with additional test values.

For example, the screen transition diagram in Figure 4 has 27 du-associations,

20

which are listed in Table 3. The algorithm of Figure 6 begins by picking a

transition, and tries to cover the du-associations associated with that transi-

tion. To do so, it sets values of associated definitions until the condition for

taking the transition is met. It then visibly executes the program given these

values, and provides the user an opportunity to pronounce the demonstrated

behavior correct for these inputs (i.e., to validate). If the user validates, then

the objects, du-associations, and transitions are colored closer to the tested-

ness color (blue in our previous prototypes). One possible run of this method

on Calc might start out as in the sequence of Table 2.

4.2 Issues Introduced by WYSIWYT for Screen Transition Diagrams

There are two additional important attributes that must be present in order to

ensure the properties that are necessary to translate between screen transition

diagrams and cell relation graphs. First, spreadsheets require data flow to be

preserved locally at the cell level. This is accomplished by nesting “if expres-

sions”. To ensure this property translates to the screen transition diagram,

there must be a way to control the order of transitions. Second, aiding testing

in the spreadsheet paradigm, there is a distinguished value “undefined” that

is assigned to cells in which no predicate is satisfied and there is no “else”

clause that is reachable. There must also be a similar mechanism in the screen

transition paradigm if coverage equivalence is to be ensured in forward and

backward translation. Transition 4 in Table 4 is an example of a transition

21

DU-assoc. Definition Use

number

1 Input 1 (as program input) Transition 1 action

2 Input 1 (resulting from Transition 6 action) Transition 1 action

3 Input 2 (as program input) Transition 1 action

4 Input 2 (resulting from Transition 6 action) Transition 1 action

5 Operator (as program input) Transition 1 action

6 Operator (resulting from Transition 6 action) Transition 1 action

7 Input 1 (as program input) Transition 2 condition

8 Input 1 (resulting from Transition 6 action) Transition 2 condition

9 Input 2 (as program input) Transition 3 condition

10 Input 2 (resulting from Transition 6 action) Transition 3 condition

11 Operator (as program input) Transition 4 condition

12 Operator (resulting from Transition 6 action) Transition 4 condition

13 Input 2 (as program input) Transition 4 condition

14 Input 2 (resulting from Transition 6 action) Transition 4 condition

15 Input 1 (as program input) Transition 1 condition

16 Input 1 (resulting from Transition 6 action) Transition 1 condition

17 Input 2 (as program input) Transition 1 condition (1st occurrence)

18 Input 2 (resulting from Transition 6 action) Transition 1 condition (1st occurrence)

19 Operator (as program input) Transition 1 condition (1st occurrence)

20 Operator (resulting from Transition 6 action) Transition 1 condition (1st occurrence)

21 Operator (as program input) Transition 1 condition (2nd occurrence)

22 Operator (resulting from Transition 6 action) Transition 1 condition (2nd occurrence)

23 Input 2 (as program input) Transition 1 condition (2nd occurrence)

24 Input 2 (resulting from Transition 6 action) Transition 1 condition (2nd occurrence)

25 Clear (as program input) Transition 6 condition (1st occurrence)

26 Clear (as program input) Transition 6 condition (2nd occurrence)

27 Clear (as program input) Transition 7 condition

Table 3
Definition-use associations in the Calc example.

that would be built-in in some fashion for all output cells as a fall-through to

ensure that all values are well defined.

22

5 Translating Screen Transition Diagrams to CRGs

To show that there is validity in applying WYSIWYT to screen transition

diagrams, a loss-less translation method is needed between screen transition

diagrams and cell relation graphs (CRGs). CRGs are the formal model used

to define testing in the spreadsheet paradigm in WYSIWYT.

Consider the diagram in Figure 7 and the associated Table 4. These represent

a program in the screen transition paradigm. (We emphasize that the figure

and table are not in a format we would expect an end user to create.) For this

example program, there are four input cells EC, Asgn0, Asgn1, AsgnEC and

four derived transitions which are triggered any time an input cell is altered.

All of these transitions are self transitions because there is one screen in the

program. This will serve as a running example in the next few sections of the

paper.

Screen Event Predicate Dest Actions

1 Main Edited any cell (EC==0 AND !(Error? Asgn0) AND Main Asgn = Asgn0 + Asgn1

!(Error? Asgn1)) Main Total = Asgn

2 Main Edited any cell (EC==1 AND !(Error? Asgn0) AND Main Asgn = Asgn0 + Asgn1

!(Error? Asgn1)) Main Total = Asgn + AsgnEC

3 Main Edited any cell (Error? Asgn0) OR (Error? Asgn1) Main Asgn = Error

Main Total = Error

4 Main Edited any cell Else Main Asgn = Undefined

Main Total = Undefined

Table 4
Transitions for example screen transition diagram grades

The translation method proceeds as follows: First translate the screen tran-

23

sition diagram to a set of FAR rules via the method of Section 5.1. Next,

translate the FAR rules to a spreadsheet via the method of Section 5.2. Fi-

nally, translate the spreadsheet to a CRG via the method in Section 5.3.

1,2,3,4

88

76

20

Total

Asgn

56

12

AsgnEC

Asgn1

Asgn0

EC

1

Fig. 7. An example of what the only screen of the grades screen transition diagram
might look like if EC were true and Asgn0 and Asgn1 contained no errors. There is
a box around user editable cells.

5.1 Screen Transition Diagrams to FAR rules

The screen transition paradigm is highly related to the rule-based paradigm

[29]. The basic premise of the rule based paradigm is that the preconditions

for the execution of a rule are represented as the left hand side (LHS) of an

expression and the actions executed given the preconditions are represented

on the right had side (RHS) of the same expression. In Table 4, columns

Screen, Event and Predicate represent the preconditions of an action, the

LHS of a rule-based expression. Dest and Actions are the resulting actions

and state changes, or the RHS. Using this idea, our method translates the

screen transition paradigm to the rule-based paradigm.

24

(1) Define a FAR rule for each transition action definition of the form
(C, predicate, consequence), where C is the LHS of the assignment
statement, predicate is simply the predicate of the transition and con-

sequence is the RHS of the transition action definition.
(2) Define a FAR rule for each input variable of the form (C, predicate, con-

sequence), where C is the name of the variable, predicate is “always”
and consequence is the constant which has previously been input.

Fig. 8. Algorithm for translating a screen transition diagram to FAR rules.

This is where FAR (Formulas and Rules) comes in. FAR is an end-user pro-

gramming language that allows the user to program in either the spreadsheet

or rule-based paradigm by representing in both paradigms the program entered

[30]. Figure 8 presents an algorithm to translate a screen transition diagram

to a collection of FAR rules. FAR’s translation rules will then provide the

vehicle needed to translate FAR rules to the spreadsheet paradigm and hence

to WYSIWYT’s formal model, the CRG.

Example 1 : Derived FAR Rules

By applying the algorithm in Figure 8 to the screen transition diagram composed

of Figure 7 and Table 4, these action and input rules are derived:

• Transition Action Rules (one for each action in Table 4):

· (Asgn, (EC == 0 AND !(Error? Asgn0) AND !(Error? Asgn1)), Asgn0 + Asgn1)

· (Asgn, (EC == 1 AND !(Error? Asgn0) AND !(Error? Asgn1)), Asgn0 + Asgn1)

· (Asgn, ((Error? Asgn0) OR (Error? Asgn1)), Error)

· (Asgn, Else, Undefined)

· (Total, (EC == 0, !(Error? Asgn0) AND !(Error? Asgn1)), Asgn)

· (Total, (EC == 1, !(Error? Asgn0) AND !(Error? Asgn1)), Asgn + AsgnEC)

25

(1) For each FAR rule of the form (C, predicate, consequence expression),
translate to cell C with formula “If predicate then consequence expres-

sion” preserving required nestedness information.
(2) For each FAR rule of the form (C, “always”, consequence expression),

translate to cell C with formula “consequence expression”.

Fig. 9. Algorithm for translating FAR rules to a spreadsheet.

· (Total, ((Error? Asgn0) OR (Error? Asgn1)), Error)

· (Total, Else, Undefined)

• Input Rules (one for each input in Figure 7):

· (EC, Always, 1)

· (Asgn0, Always, 56)

· (Asgn1, Always, 20)

· (AsgnEC, Always, 12)

5.2 FAR Rules to Spreadsheet

The derived FAR rules can now be translated to a spreadsheet via the algo-

rithm in Figure 9.

Example 2 : Spreadsheet

Applying the algorithm in Figure 9 to the example’s results produces a set of cells

with size equal to the number of unique C’s in the FAR rules created by the al-

gorithm in Figure 8. Figure 10 sketches what this might look like in a spreadsheet

language.

26

561

20

12

Asgn0

Asgn1

AsgnEC

56

12

20

Total

Asgn

76

 Undefined

EC

1

88

 then Error

 then Asgn

 then Asgn + EC
else if (EC==1 && !(Error? Asgn0) && !(Error? Asgn1))

if (EC==0 && !(Error? Asgn0) && !(Error? Asgn1))

else if ((Error? Asgn0) && (Error? Asgn1))

Else
 Undefined

 then Asgn0 + Asgn1

 then Asgn0 + Asgn1

if (EC==0 && !(Error? Asgn0) && !(Error? Asgn1))

else if (EC==1 && !(Error? Asgn0) && !(Error? Asgn1))

else if ((Error? Asgn0) && (Error? Asgn1))
 then Error
else

Fig. 10. Grades translated to a spreadsheet via FAR rules. The format in the figure
is the cell name above the cell showing its value, with the formula attached to the
lower right of the cell.

5.3 Spreadsheet to CRG

Translating a spreadsheet to a CRG is taken directly from [7]. The input cells

are translated to three nodes. The first corresponding to an entrance node, the

second is a read node and the third is an exit node. Output cells are translated

with the entrance and exit nodes as well as control logic exactly mapping the

if-then formulas. The algorithm is given in Figure 11

27

(1) For each constant cell create a collection of three nodes connecting
them in the order listed:
• Entry Node
• Read Node
• Exit Node

(2) For each formula cell create a collection of nodes
• Entry Node
• Flow now continues either to a computation node or a predicate node

· Predicate Node: each branch (T or F) continuing flow to either
another predicate node or to a computation node. In the case
of a predicate node the definition is recursive.

· Computation Node: the flow continues to the exit node.
• Exit Node

Fig. 11. Algorithm for translating a spreadsheet to a CRG.

13: E

T

15: Asgn0 + Asgn1

T F

T

Total

F
T

F

22: E

23: if (EC==0 && !(Error? Asgn0) && !(Error? Asgn0))

24: Asgn 25: if (EC==1 && !(Error? Asgn0) && !(Error? Asgn0))

26: Asgn + AsgnEC 27: if ((Error? Asgn0) or (Error? Asgn0))

28: Error 29: Unassigned

30: X

4: E

6: X

Asgn0 Asgn1

7: E

9: X

AsgnEC

10: E

3: X

1: E

EC

12: X

2: Constant 5: Constant 8: Constant 11: Constant

14: if ((EC==0 and !(Error? Asgn0) and !(Error? Asgn0))

Asgn

T

17: Asgn0 + Asgn1

F

16: if (EC==1 and !(Error? Asgn0) and !(Error? Asgn0))

18: if ((Error? Asgn0) or (Error? Asgn0))

F
T

19: Error 20: Unassigned

F

21: X

Fig. 12. Grades represented and a CRG.

5.4 Comparing Du-Associations in CRGs and Screen Transition Diagrams

The methodology presented in [5] can be used to find all of the du-associations

that are associated with the sample program from the cell relation graph. The

following examples start with the sample program that has been the running

28

example in this paper. Figure 7 and Table 4 showed this program in the screen

transition paradigm, and Figure 12 now shows the CRG of the same program.

Examples 3 and 4 detail the definitions and du-associations corresponding to

the CRG. Examples 5 and 6 then detail the definitions and du-associations in

the screen transition version. These examples provide a concrete vehicle for

comparison.

Example 3 : Definitions in CRG

Definitions in a CRG are all the computations nodes connected to an exit node.

Thus, all of the definitions in Figure 12 are:

(1) 2,EC

(2) 5,Asgn0

(3) 8,Asgn1

(4) 11,AsgnEC

(5) 15,Asgn

(6) 17,Asgn

(7) 19,Asgn

(8) 20,Asgn

(9) 24,Total

(10) 26,Total

(11) 28,Total

(12) 29,Total

Example 4 : Du-associations in CRG

(1) 2,14t,EC

(2) 5,14t,Asgn0

(3) 8,14t,Asgn1

(4) 2,16t,EC

(5) 5,16t,Asgn0

(6) 8,16t,Asgn1

(7) 5,18t,Asgn0

(8) 8,18t,Asgn1

(9) 2,14f,EC

(10) 5,14f,Asgn0

(11) 8,14f,Asgn1

(12) 2,16f,EC

(13) 5,16f,Asgn0

(14) 8,16f,Asgn1

(15) 5,18f,Asgn0

(16) 8,18f,Asgn1

(17) 2,23t,EC

(18) 5,23t,Asgn0

(19) 8,23t,Asgn1

(20) 2,25t,EC

(21) 5,25t,Asgn0

(22) 8,25t,Asgn1

(23) 5,27t,Asgn0

(24) 8,27t,Asgn1

29

(25) 2,23f,EC

(26) 5,23f,Asgn0

(27) 8,23f,Asgn1

(28) 2,25f,EC

(29) 5,25f,Asgn0

(30) 8,25f,Asgn1

(31) 5,27f,Asgn0

(32) 8,27f,Asgn1

(33) 2,15,Asgn0

(34) 2,15,Asgn1

(35) 2,16,Asgn0

(36) 2,16,Asgn1

(37) 15,24,Asgn

(38) 17,24,Asgn

(39) 19,24,Asgn

(40) 20,24,Asgn

(41) 15,26,Asgn

(42) 17,26,Asgn

(43) 19,26,Asgn

(44) 20,26,Asgn

(45) 11,26,AsgnEC

Example 5 : Definitions in screen transition diagram

In Table 4, definitions all occur in the action portion of a transition, or in editing

cells. Thus, all of the definitions in Figure 7 and Table 4 are:

(1) Edit EC

(2) Edit Asgn0

(3) Edit Asgn1

(4) Edit AsgnEC

(5) Transition 1 Asgn

(6) Transition 1 Total

(7) Transition 2 Asgn

(8) Transition 2 Total

(9) Transition 3 Asgn

(10) Transition 3 Total

(11) Transition 4 Asgn

(12) Transition 4 Total

Note the one-to-one correspondence of these definitions with those of Example 3.

Example 6 : Du-associations in screen transition diagram

Now all definition-use associations are defined using the transitions and uses:

(1) Edit EC, 1 Predicate

(2) Edit Asgn0, 1 Predicate

(3) Edit Asgn1, 1 Predicate

(4) Edit EC, 2 Predicate

30

(5) Edit Asgn0, 2 Predicate

(6) Edit Asgn1, 2 Predicate

(7) Edit Asgn0, 3 Predicate

(8) Edit Asgn1, 3 Predicate

(9) Edit Asgn0, 1 Action Asgn

(10) Edit Asgn1, 1 Action Asgn

(11) Edit Asgn0, 2 Action Asgn

(12) Edit Asgn1, 2 Action Asgn

(13) 1 Action Asgn, 1 Action Total

(14) 2 Action Asgn, 1 Action Total

(15) 3 Action Asgn, 1 Action Total

(16) 4 Action Asgn, 1 Action Total

(17) 1 Action Asgn, 2 Action Total

(18) 2 Action Asgn, 2 Action Total

(19) 3 Action Asgn, 2 Action Total

(20) 4 Action Asgn, 2 Action Total

(21) Edit AsgnEC, 6 Action Total

In comparing the definitions and definition-use pairs between the CRG and the

screen transition diagram, note two points. First, there are an equal number of

definitions, and upon closer inspection, each definition in the screen transition

diagram maps to a definition in the CRG. There are 13 c-use pairs in each

diagram and they map 1:1 between the two representations. Second, while

there are 45 du-associations at the CRG level, there are only 21 at the screen

transition diagram level.

To understand this difference, consider exactly where it is. There are 8 p-uses

at the screen transition level and 32 p-uses at the CRG level. Comparing the

two, note that the CRG repeats predicates for each cell affected. For example,

each transition in Grades affects two cells. Thus, the predicate that is only

evaluated once in the screen transition diagram will be repeated twice in the

CRG. Also, screen transition diagrams may only have true uses on predicate

31

branches. Thus, having p-uses on both true and false branches as in the CRGs

are irrelevant in screen transition diagrams. Both of these reasons combined

explain why there are four times as many p-uses in the CRG as there are in

the screen transition diagram. We view this reduction as a potential asset,

if it means that equivalent testing can be accomplished in the screen transi-

tion paradigm with fewer du-associations than in original WYSIWYT, thus

requiring less input from the end user.

6 Conclusion

In this paper we introduced a Lyee requirements model that is both well-suited

with the Lyee methodology’s underlying structures and has been shown em-

pirically to be useful to end users. We showed that WYSIWYT test adequacy

criteria can be used with such a model and presented the necessary condi-

tions for which this is the case. Finally, we presented a systematic translation

method from the structure above to the formal model underlying WYSIWYT.

Thus, the translation method provides a formal model to define end-user test-

ing for the Lyee methodology using the screen transition paradigm.

We have presented this principle framework in order to show the feasibility

of applying the WYSIWYT methodology to the screen transition paradigm

as a front end to Lyee end users. The next steps will be to formally show

coverage equivalence between the two paradigms, and to consider visualization

32

techniques for WYSIWYT testing in the screen transition paradigm.

Acknowledgments

We thank the Institute of Computer Based Software Methodology and Tech-

nology, Catena Corporation, and Iwate Prefectural University for their support

of this project.

References

[1] F. Negoro, I. Hamid, A proposal for intention engineering, in: Int’l. Conf.

Advances in Infrastructure for Electronic Business, Science, and Education on

the Internet, 2001.

[2] C. Salinesi, M. B. Ayed, S. Nurcan, Development using LYEE: A case study

with LYEEALL, Tech. Rep. TR1-2, Institute of Computer Based Software

Methodology and Technology (Oct. 2001).

[3] C. Salinesi, C. Souveyet, R. Kla, Requirements modeling in Lyee, Tech. Rep.

TR2-1, Institute of Computer Based Software Methodology and Technology

(Mar. 2001).

[4] M. Burnett, Bringing HCI research to bear upon end-user requirement

specification, in: International Workshop on the Lyee Methodology, Paris,

France, 2002, pp. 227–236.

33

[5] G. Rothermel, M. Burnett, L. Li, C. DuPuis, A.Sheretov, A methodology for

testing spreadsheets, ACM Trans. Softw. Eng. Meth. 10 (1).

[6] G. Rothermel, L. Li, M. Burnett, Testing strategies for form-based visual

programs, in: International Symp. Software Reliability Engineering, 1997, pp.

96–107.

[7] G. Rothermel, L. Li, C. DuPuis, M. Burnett, What you see is what you test:

A methodology for testing form-based visual programs, in: Int’l. Conf. Softw.

Eng., 1998, pp. 198–207.

[8] C. Cook, K. Rothermel, M. Burnett, T. Adams, G. Rothermel, A. Sheretov,

F. Cort, J. Reichwein, Does a visual ‘testedness’ methodology aid debugging,

Tech. Rep. 99-60-07, Oregon State Univ., Corvallis, OR (Mar. 2001).

URL

ftp://ftp.cs.orst.edu/pub/burnett/TR.EmpiricalTestingDebug.ps

[9] V. Krishna, C. Cook, D. Keller, J. Cantrell, C. Wallace, M. Burnett,

G. Rothermel, Incorporating incremental validation and impact analysis into

spreadsheet maintenance: An empirical study, in: Int’l. Conf. Softw. Maint.,

2001, pp. 72–81.

[10] K. Rothermel, C. Cook, M. Burnett, J. Schonfeld, T. Green, G. Rothermel, An

empirical evaluation of a methodology for testing spreadsheets, in: Int’l. Conf.

Softw. Eng., 2000, pp. 198–207.

[11] M. Burnett, J. Atwood, R. Djang, H. Gottfried, J. Reichwein, S. Yang, Forms/3:

A first-order visual language to explore the boundaries of the spreadsheet

paradigm, J. Func. Prog. 11 (2) (2001) 155–206.

34

[12] M. Burnett, H. Gottfried, Graphical definitions: Expanding spreadsheet

languages through direct manipulation and gestures, ACM Trans. Computer-

Human Interaction 5 (1) (1998) 1–33.

[13] M. Burnett, B. Ren, A. Ko, C. Cook, G. Rothermel, Visually testing recursive

programs in spreadsheet languages, in: IEEE Symp. Human-Centric Comp.

Lang. and Env., 2001, pp. 288–295.

[14] M. Burnett, A. Sheretov, B. Ren, G. Rothermel, Testing homogeneous

spreadsheet grids with the ‘what you see is what you test’ methodology, IEEE

Trans. Softw. Eng. 28.

[15] A. Aho, R. Sethi, J. Ullman, Compilers, Principles, Techniques, and Tools,

Addison-Wesley, Reading, MA, 1986.

[16] E. Weyuker, Axiomatizing software test data adequacy, IEEE Trans. Softw.

Eng. 12 (1986) 1128–1138.

[17] P. Frankl, E. Weyuker, An applicable family of data flow criteria, IEEE Trans.

Softw. Eng. 14 (1988) 1483–1498.

[18] J. Laski, B. Korel, A data flow oriented program testing strategy, IEEE Trans.

Softw. Eng. 9 (1993) 347–354.

[19] S. Rapps, E. Weyuker, Selecting software test data using data flow information,

IEEE Trans. Softw. Eng. 11 (1985) 367–375.

[20] E. Weyuker, More experience with dataflow testing, IEEE Trans. Softw. Eng.

19 (1993) 912–919.

35

[21] J. Landay, Interactive sketching for the early stages of user interface design,

Ph.D. thesis, Carnegie Mellon Univ., Pittsburgh, PA (Dec. 1996).

[22] J. Landay, B. Myers, Sketching interfaces: Toward more human interface design,

Computer 34 (2001) 56–64.

[23] J. Pane, B. Myers, Tabular and textual methods for selecting objects from a

group, in: IEEE Symp. Vis. Lang., 2000, pp. 157–164.

[24] J. Pane, B. Myers, L. Miller, Using HCI techniques to design a more usable

programming system, in: IEEE Symp. Vis. Lang., 2002, pp. 199–206.

[25] N. Heger, A. Cypher, D. Smith, Cocoa at the visual programming challenge

1997, J. Vis. Lang. and Computing 9 (1998) 151–169.

[26] A. Ioannidou, A. Repenning, End-user programmable simulations, Dr. Dobb’s

Journal 24 (1999) 40–48.

[27] M. Fisher II, G. Rothermel, C. Cook, M. Burnett, Automated Test Generation

for Spreadsheets, in: Int’l. Conf. on Software Engineering, Orlando, FL, 2002,

pp. 141–151.

[28] A. Blackwell, T. Green, Investment of Attention as an Analytic Approach to

Cognitive Dimensions., in: T. Green, R. Abdullah and P. Brna (Eds.) Collected

Papers Workshop. Psychology of Programming Interest Group, 1999, pp. 24–35.

[29] M. Lin, J. Malec, S. Nadjm-Tehrani, On semantics and correctness of reactive

rule-based systems, in: Proc. Andrei Ershov Third Int’l. Conf. Perspectives of

System Informatics, 1999, pp. 235–246.

36

[30] M. Burnett, S. Chekka, R. Pandey, FAR: An end-user language to support

cottage e-services, in: IEEE Symp. Human-Centric Comp. Lang. and Env., 2001.

37

