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Introduction

Use of equations predicting tree height from diameter outside bark
at breast height (DBH) makes tedious height measurements unnecessary
in estimating tree volume in timber cruises (Larsen and Hann 1987) and
in ecological field studies. They also are vital as a means to predict tree
height growth and volume in growth-and-yield models (e.g., Hester et
al. 1989) and in ecological, process-based simulations of tree dynamics
(e.g., Garman et al. 1992; Urban et al. 1993; Hansen et al., 1995). Such
equations are especially important for the ecologically based ZELIG.PNW
gap model (Urban 1993), which simulates tree growth over very long
periods (500 years or more) and is being used increasingly to evaluate
ecological properties and dynamics of managed and natural stands in
the Pacific Northwest (Garman et al. 1992; Hansen et al. 1993a, 1995;
Urban et al. 1993).

Equations vary in underlying mathematical function, but generally are
species-specific and are generated from regression analysis of empirical
observations. Height-diameter equations based on non-asymptotic func-
tions (e.g., USDA Forest Service 1985a; Larsen and Hann 1987; Wang and
Hann 1988 and references therein) and even second-order polynomial
equations (e.g., McDonald 1983; Dale and Hemstrom 1984) provide rea-
sonable predictions in modeling and field applications where tree sizes
fall within the diameter range of the data used to generate equation co-
efficients. Because of their mathematical form, however, these equations
are deficient for extrapolations beyond the empirical data set—predicting,
for example, an unreasonable increase, or even decrease, in height for
diameters greater than observed values (Figure 1).

Because data spanning the range of possible diameters are not readily
obtainable, non-asymptotic height-diameter equations currently available
are inadequate when dealing with trees approaching their maximum di-
ameter, and thus are inappropriate for use in the ZELIG.PNW and related
models and in field studies involving old-growth individuals. Height-di-
ameter equations based on asymptotic
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require measures of age at DBH or stand age that are not always avail-
able in simulation applications or are of limited used in field applications,
where determining age of large individuals may be impossible.

Access to a collection of regional data bases provided us with the op-
portunity to develop height-diameter equations for common tree species
from a similar asymptotic function. Asymptotic equations for predicting
total tree height from DBH as a function of site class for seven ecoregions
in western Oregon are presented in this paper. Twenty-four species are

included:

Conifers

Pacific silver fir
White fir

Grand fir
Lindl.

Red fir

Noble fir
Incense-cedar
Port-Orford-cedar
Sitka spruce
Jeffrey pine

Sugar pine
Western white pine
Ponderosa pine
Douglas-fir

Pacific yew
Western redcedar
Western hemlock
Mountain hemlock

Abies amabilis (Dougl.) ex Forbes

Abijes concolor (Gord. & Glend.) Lindl. ex Hildebr.

Abies grandis (Dougl. ex D. Don)

Abies magnifica A. Murr.

Abies procera Rehd.

Calocedrus decurrens (Torr.) Florin
Chamaecyparis lawsoniana (A. Murr.) Parl.
Picea sitchensis (Bong.) Carr.

Pinus jeffreyi Grev. & Balf.

Pinus lambertiana Dougl.

Pinus monticola Dougl. ex D. Don
Pinus ponderosa Dougl. ex Laws.
Pseudotsuga menziesii (Mirb.) Franco
Taxus brevifolia Nutt.

Thuja plicata Donn ex D. Don

Tsuga heterophylla (Raf.) Sarg.

Tsuga mertensiana (Bong.) Carr.

Hardwoods

Bigleaf maple

Red alder

Pacific madrone
Chinkapin

DC.

Tanoak

Oregon white oak
California black oak

Acer macrophyllum Pursh

Alnus rubra Bong.

Arbutus menziesii Pursh

Castanopsis chrysophylla (Dougl.) A.

Lithocarpus densiflorus (Hook & Arn.) Rehd.
Quercus garryana Dougl. ex Hook.
Quercus kelloggii Newb.




Methods

Tree heights and diameters used in this study were obtained from six
sources:

1. USDA Forest Service, Inventory and Economics (IE) Research,
Development, and Application (RD&A) Program, 1984-1986
remeasurement period, western Oregon (USDA Forest Service
1985a,b);

2. USDI BLM Inventory Program, 1988 remeasurement period,
Salem, Eugene, Coos Bay, Roseburg, and Medford Districts
(USDI Bureau of Land Management 1987);

3. Ecology-plot data sets from Siuslaw, Willamette, Umpqua,
Siskiyou, and Rogue National Forest, USDA Forest Service,
National Forest Ecology Program (e.g., Hemstrom et al.
1987);

4. Permanent Plot Reference Stands in western Oregon, data
maintained in the Forest Science Data Bank by Oregon State
University, Forest Science Department (Hawk et al. 1978;
Michener et al. 1990). Four data sets were included: H. |.
Andrews Experimental Forest (OHJA), ponderosa pine growth
and yield (PPGY), hemlock-spruce growth and yield (HSGY),
and noble fir growth and yield (NFGY);

5. Old-Growth Douglas-fir Chronosequence Study, western
Oregon (Spies and Franklin 1991);

6. Douglas-fir Plantation Study, COPE, Oregon State University
(Hansen et al. 1993b).

Data were collected from 8727 fixed- and variable-radius plots rep-
resenting managed and natural stands about 15 to 475 years old. Dead
trees, stems with broken tops, and trees with estimated diameter or height
were eliminated from further consideration. For data sets with repeated
measures, only the most recent height-diameter measurement for an
individual was used.

Tree height was derived by the tangent method (Larsen et al. 1987)
in data sources 1 through 5 and with a telescoping fiberglass pole in data
source 6. Diameter at breast height was measured to the nearest centi-
meter in source 5 and to the nearest 0.1 cm in all other sources. Eleva-
tion of each plot was either provided in the data source or estimated by
locating the plot on a topographic map. Because of the wide geographic
range of data and the potential for physiographic effects on height-di-
ameter relationships, data were segregated into distinct ecoregions. This
was accomplished by overlaying geographic coordinates of each plot on
a modified map of the eight western Oregon ecoregions (Figure 2) with
the ARC/INFO geographic information system. Because data were limited,
the Willamette Valley region was not used in this analysis.

Although variability in height-to-diameter relationships has been related
to a variety of stand-level attributes, such as site productivity and basal
area (Larsen and Hann 1987), incomplete data precluded our considering
factors other than site productivity in building equations. We aggregated
data by site class primarily because models such as the current version
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Data Analysis

3. Where site index was not reported

in data source 3, plant association

guides (Hemstrom and Logan 1986;
Logan et al. 1987) were used to derive site index for Douglas-fir. For other
species in data source 3 and for all species in other data sources except
old-growth Douglas-fir, site index was estimated with the species-specific
site-index equations used by the USDA Forest Service IE program (USDA
Forest Service 1985a,b) and the USDI Bureau of Land Management Inven-
tory program (USDI BLM 1987). In deriving site index for a species, only
the largest individuals were used. Because using the site-index equations
for red alder led to unrealistic estimates, site index for this species was
estimated from site-index relationships between red alder and Douglas-
fir (Hoyer et al. 1978) when Douglas-fir was the site-index species. Site
class was estimated for old-growth Douglas-fir from the site-class maps
of Isaac (1949).

Height-from-diameter equations were generated by using the Chapman-
Richards function (Richards 1959). Equation parameters were estimated
by using the NonLinear Regression module (NLR) of SPSSX (SPSS 1988).
Regression equations were generated for each species by ecoregion:

Ht = 1.37 + (b, [1-exp(b, DBH)]"?) D)
where Ht = total tree height, m; DBH = diameter outside bark at breast




height, cm; b, = asymptote or maximum height; b, = steepness param-
eter; and b, = curvature parameter. Although several nonlinear equations
are well suited for estimating height-diameter curves (Huang et al. 1992),
we were most familiar with the Chapman-Richards function. Preliminary
equation fits for several species having large sample sizes (>1000) indi-
cated heterogeneity in error variances, which leads to incorrect estimates
of the variance of regression coefficients (Neter and Wasserman 1974). A
weighted regression approach with 1/DBH as the weight provided mini-
mum variance of parameters and was used in deriving all equations.

Species data were combined among site classes when sample sizes
were insufficient to produce a statistically significant (P < 0.05) asymptote
or when the predicted asymptote was unrealistically large. The latter case
occurred when observed data spanned only a limited range of diameters
and heights or when heights did not exhibit an asymptotic trend at large
diameters. A t-test was used to determine if coefficients were significantly
different (P < 0.05) between site-class regression equations for a species.
Site-class data were grouped if regression coefficients were not signifi-
cantly different.

Results and Discussion

Equation coefficients and statistics and descriptive statistics for the
empirical data sets for each species by ecoregion are presented in Table
1 (Appendix). For all but nine species, only one equation was derived
for an ecoregion because of limited sample sizes or similarity in regres-
sion coefficients among site classes. Because of the small sample size for
Pacific yew, data from all ecoregions and site classes were combined to
generate a significant height-diameter equation. Sample sizes of Douglas-
fir and western hemlock were adequate for generating equations for two
elevational zones (<1000 m, and >1000 m).

Overall, the high values of the adjusted coefficient of determina-
tion indicate the adequacy of the Chapman-Richards function to predict
height from DBH. In addition, predicted asymptotes of coniferous species
compared well with values reported by Waring and Franklin (1979) and
Franklin and Dyrness (1973) for “typical” maximum heights on good
growing sites. Some general species differences in goodness of equation
fit were evident.

The coefficient of determination was generally higher for coniferous
species (0.70-0.96) than for hardwood species (0.59-0.86) because of
differences in apical dominance between hardwoods and conifers and
greater variability in estimation of hardwood tree heights. For species
having separate equations for site-class groups, the estimated asymptote
(=maximum height) tended to decrease with lower site productivity.
Exceptions to this trend were evident for Douglas-fir >1000 m in the
southern Oregon Cascades region and for western hemlock <1000 m in
the northern Oregon Coastal region and >1000 m in the northern Oregon
Cascades region. In these cases, the asymptote increased with decreas-
ing site productivity, although asymptotes were not significantly different
(P > 0.05). The steepness parameters (b,) of these equations, however,

9
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Garman, S.L., S.A. Acker, |.L. Ohmann, and T.A. Spies, 1995. ASYMP-
TOTIC HEIGHT-DIAMETER EQUATIONS FOR TWENTY-FOUR TREE SPE-
CIES IN WESTERN OREGON. Forest Research Laboratory, Oregon State
University, Corvallis. Research Contribution 10. 22 p.

Equations for predicting height from diameter outside bark at breast
height (DBH) were generated for 24 tree species in western Oregon. The
equations were based on the asymptotic Chapman-Richards function.
Because geographic location and site productivity may influence height-
diameter relationships, height-diameter measures from 8727 plots were
first grouped by site class in each of seven ecoregions. Equation coefficients
were derived by weighted, nonlinear least-squares regression. Although
species differences in the degree of equation fit were evident, the Chap-
man-Richards function provided reliable predictions of height from DBH
overall. These equations were developed specifically for the ZELIG.PNW
forest dynamics model, but they can also be used in other models and
in field applications.
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