SDI 144
07
A 45
no. 39
cop. 2
COMPACT
A KEY TO THE LITERATURE ON
FOREST GROWTH AND YIELD IN THE PACIFIC NQRTHWEST: 1910-1981
D.W. HANN
K. RIITTERS

Since 1941, the Forest Research Laboratory--part of the School of Forestry at Oregon State University in Corvallis-has been studying forests and why they are like they are. A staff of more than 50 scientists conducts research to provide information for wise public and private decisions on managing and using Oregon's forest resources and operating its wood-using industries. Because of this research, Oregon's forests now yield more in the way of wood products, water, forage, wildlife, and recreation. Wood products are harvested, processed, and used more efficiently. Employment, productivity, and profitability in industries dependent on forests also have been strengthened. And this research has helped Oregon to maintain a quality environment for its people.

Much research is done right in the Laboratory's facilities on the campus. But field experiments in forest genetics, young-growth management, forest hydrology, harvesting methods, and reforestation are conducted on 12,000 acres of School forests adjacent to the campus and on lands of public and private cooperating agencies throughout the Pacific Northwest.

With these publications, the Forest Research Laboratory supplies the results of its research to forest land owners and managers, to manufacturers and users of forest products, to leaders of government and industry, and to the general public.

As a research bulletin, this publication is one of a series that comprehensively and in detail discusses a long, complex study or summarizes available information on a topic.

The Authors

David W. Hann is an assistant professor in the Department of Forest Management and Kurt Riitters is a graduate research assistant in the Departments of Forest Management and Forest Science, School of Forestry, Oregon State University, Corvallis.

To Order Copies

Copies of this and other Forest Research Laboratory publications are available from:

Forest Research Laboratory
School of Forestry
Oregon State University
Corvallis, Oregon 97331
Please include author(s), title, and publication number if known.

CONTENTS
2 INTRODUCTION
3 TREE SPECIES MENTIONED
4 TABLE PREFIXES
4 INDEX 1. TABLES BY SPECIES AND FORM OF INFORMATION
6 INDEX 2. TABLES BY LITERATURE REFERENCE
7 TABLES
7 Series A: Normal Yield Tables
21 Series B: Empirical Yield Tables
28 Series C: Stand Growth Tables
33 Series D: Tree Growth Tables
36 Series E: Stand Yield Equations
48 Series F: Stand Growth/Mortality Equations
59 Series G: Tree Growth/Mortality Equations
64 Series H: Whole-Stand Simulators
67 Series I: Single-Tree/Distance-Independent Simulators
G9 Series J: Single-Tree/Distance-Dependent Simulators
72 LITERATURE CITED

INTRODUCTION

The practice of forest management has historically been based, to a large degree, on predictions of forest growth and yield. Yield tables have been used for most of this century to determine rotation lengths and to estimate harvest volumes. As the complexity of the questions faced by forest managers has increased, so has the sophistication of the inforination sources used to answer them. Today, computerized simulators of individual tree and stand growth provide a framework for the study of forest dynamics and make possible the analysis of management techniques ranging from harvest scheduling to pest control.

This key was compiled to aid forest managers in search of useful growth and yield information on Northwest tree species. ${ }^{1}$ We have limited ourselves to the literature published from 1910 through 1981 and have excluded unpublished material from government agencies and companies as well as Master's and Doctoral theses. We have also excluded publications dealing with Northwest species grown in other areas of the world (unless the results have been republished in the Northwest) and those that only provide average data on thinned or fertilized stands at a particular location.

Growth and yield information is available in three forms: tables, equations, and simulators. Tables are displays of average sample data, while equations are mathematical expressions describing a particular stand component on the basis of sample data. Simulators consist of several equations or tables and are usually designed to describe the basic processes of the forest (i.e., growth, death, and regeneration). Each of these forms has its own capabilities.

Yield tables are either "normal," which means that they represent natural stands that are fully stocked and undisturbed, or "empirical," which means that they represent managed stands under average conditions. The usual stand attributes described by yield tables include number of trees, basal area, average d.b.h., height, and volume. Examples of normal yield tables are those by Barnes (1962) for western hemlock and by McArdle et al. (1961) for Douglas-fir. Good examples of
empirical yield tables are those by McKeever (1947) for Douglas-fir. Most National Forest management plans include empirical yield tables for specific management regimes (Al Lampi, personal communication).

While yield tables are commonly applied to even-aged stands, the description of periodic yield in uneven-aged stands is provided by growth tables. Two examples of growth tables are those for ponderosa pine by Meyer (1934) and Roe (1952).

It is sometimes desirable to develop equations that describe the growth and yield of forest stands. This is often done to smooth yield data from even-aged stands for presentation in tabular format (Dahms 1964, Chambers 1974). For uneven-aged stands, growth equations are more flexible than growth tables. Lemmon and Schumacher's (1962) growth equations describe changes in attributes of ponderosa pine stands.

When several growth equations are combined with equations that predict mortality (and sometimes regeneration in uneven-aged stands), the result is a simulator. Munro (1974) describes the advantages and disadvantages of three types of simulators:

1. Single-tree/distance-dependent,
2. Single-tree/distance-independent, and

3. Whole-st and/distance-independent.

The level of resolution of these simulators is either the individual tree or the stand; "distance-dependence" refers to the need for data on spacing between individual trees. Many simulators have been developed, but only a few are widely used. It is probable, however, that the future of growth and yield predictions lies in the development of simulators. Existing single-tree simulators that are distance-dependent include those developed for Douglas-fir by Arney (1974), Mitchell (1975), and Lin (1974). A single-tree/distance-independent simulator for northern Rocky Mountain species has been developed by Stage (1973). Programs DFIT (Bruce et al. 1977) and DFSIM (Curtis et al.

[^0]1981) are examples of whole-stand/distanceindependent simulators for Douglas-fir.

In the tables that follow, the published literature on growth and yield is sorted first by form of information, then by species, and finally by literature reference. On each table, these descriptions are followed by a listing (when available) of the data sources used to develop the information: species composition; site index species, range, and type; age distribution; plot sizes; measurement years; and vegetation zones (Franklin and Dyrness 1973). Vegetation zone is included because of recent interest in the use of habitat types or plant communities as a parameter of forest growth
prediction (Hall 1973; Stage 1973, 1975; Volland 1976). Last, each table briefly lists the "required input" (the data needed to predict growth and yield) and the "corresponding output" (the data predicted) for each reference.

To aid the user, a list of scientific names of the tree species mentioned, a list of the letter prefixes used to group the tables according to form of information, and two indices precede the tables. The first index lists all tables by species and form of information. The second index lists all tables by literature reference. Literature Cited appears after the tables at the end of the report.

TREE SPECIES MENTIONED

Common Name

Alaska-cedar
Bigleaf maple
Black cottonwood
Douglas-fir
Engelmann spruce
Grand fir
Incense-cedar
Jeffrey pine
Lodgepole pine
Mountain hemlock
Noble fir
Oregon white oak
Pacific madrone
Pacific silver fir
Ponderosa pine
Red alder
Red fir, includes
California red fir
and Shasta red fir
Redwood
Rocky Mountain ponderosa pine
Sitka spruce
Subalpine fir
Sugar pine
Tanoak
Western hemlock
Western larch
Western redcedar
Western white pine
White fir

Latin Name

Chamaecyparis nootkatensis (D. Don) Spach
Acer macrophyllum Pursh
Populus trichocarpa Torr. and Gray
Pseudotsuga menziesii (Mirb.) Franco
Picea engelmannii Parry ex Engelm.
Abies grandis (Dougl. ex D. Don) Lindl.
Calocedrus decurrens (Torr.) Florin.
Pinus jeffreyi Grev. \& Balf.
Pinus contorta Dougl. ex Loud.
Tsuga mertensiana (Bong.) Carr
Abies procera Rehd.
Quercus garryana Dougl. ex Hook
Arbutus menziesii Pursh
Abies amabilis Dougl. ex Forbes
Pinus ponderosa Dougl. ex Laws.
Alnus rubra Bong.
Abies magnifica A. Murr.
Abies magnifica var. shastensis Lemm.
Sequoia sempervirens (D. Don) Endl.
Pinus ponderosa var. scopulorum Engelm.
Picea sitchensis (Bong.) Carr.
Abies lasiocarpa (Hook.) Nutt.
Pinus lambertiana Dougl.
Lithocarpus densiflorus (Hook. \& Arn.) Rehd.
Tsuga heterophylla (Raf.) Sarg.
Larix occidentalis Nutt.
Thuja plicata Donn ex D. Don
Pinus monticola Dougl. ex D. Don
Abies concolor (Gord. \& Glend.) Lindl. ex Hildebr.

TABLE PREFIXES

Table prefix letter	Form of information
A	
Normal yield tables	
C	Empirical yield tables
D	Stand growth tables
E	Stand yrowth tables
F	Stand growth/mortality equations

Table prefix letter

G Tree growth/mortality equations
H Whole-stand simulators
1 Single-tree/
distance-independent simulators
Single-tree/
distance-dependent simulators

INDEX 1. TABLES BY SPECIES AND FORM OF INFORMATION ${ }^{1}$

Species	Table prefixes and designate					
	A (Normal yield tables)	B (Empirical yield tables)	C (Stand growth tables)	D (Tree growth tables)	E (Stand yield equations)	F (Stand growth/ mortality equations)
						-Table numbel
Bigleaf maple		1				
B lack cottonwood		1				
Douglas-fir	1,2,3,4,5	1,2,3,4,5,7		1,2,5	1,2,3,4	$\begin{aligned} & 1,2,3,4,5,6 \\ & 7,8,9 \end{aligned}$
Engelmann spruce		1				
Grand fir		1			15	22
Lodgepole pine		1,5			5,6	10
Mountain hemlock		1				
Noble fir						11
Pacific silver fir						
Ponderosa pine	6,7,8	1,6,7	1,2,3,4,5	3,4	7,8	$\begin{aligned} & 12,13,14,15, \\ & 16 \end{aligned}$
Red alder	9	1,8,9,10			9,10	
Red fir	10					
Redwood	11	11			11	17.18
Sitka spruce	12,13	1				
Subalpine fir		1				
Sugar pine		7	6,7			
T anoak						
Western hemlock	12,13,14	1,5			12,13	
Western larch		1		5	14	19,20
Western redcedar		1,12				
Western white pine	15	1				21
White fir	16	7			15	22

${ }^{l}$ Each table is designated by a letter prefix indicating the form of information and by a number In this index, the table prefixes are found at the top of the column headings and the table num bers are within the column. For example, Table B. 6 summarizes an empirical yield table for pon derosa pine.
G H J
(Tree growth/ mortality equations)
(Single-tree) (Single-tree)
distance- distanceindependent dependent simulators) simulators)

Species

1,2,3,4,6,7	1,2,3	1,3	1,2,3,4	Douglas-fir
2,6,7		1		Engelmann spruce
2,5,6,7		1		Grand fir
2,6,7		1	5,6	Lodgepole pine
2,6,7		1		Mountain hemlock Noble fir
2,6,7,8		1,2		Pacific silver fir Ponderosa pine
4		3		Red alder
9				Red fir
4		3		Redwood Sitka spruce
2,6,7		1		Subalpine fir Sugar pine
4		3		T anoak
2,6,7		1	3	Western hemlock
2,6,7		1		Western larch
2,6,7		1		Western redcedar
2,6,7		1		Western white pine White fir

INDEX 2. TABLES BY LITERATURE REFERENCE

Literature reference	Table	Literature reference	Table
Alexander et al. (1967)	G.6, 1.1	Krumland and Wensel (1981)	1.3
Arney (1974) (1964)	J. 2 ,	Krumland et al. (1977)	C. 4
Arvanitis et al. (1964)	F. 12	Larsen (1916)	C. 6
Barnes (1953)	B. 12	Lee (1967)	J. 6
Barnes (1955)	B. 3	Lee (1971)	F. 10
Barnes (1962)	A. 14, J. 3	Lemmon and Schumacher (1962)	C. 8
Barrett (1978)	F. 14	Lemmon and Schumacher (1963)	1.2
Behre (1928a)	A. 7	Lin (1974)	J. 3
Behre (1928b)	A. 7	Lindquist and Palley (1961)	B. 11, F. 17
Briegleb (1942)	F. 1	Lindquist and Palley (1963)	B. 11
Briegleb (1943)	D. 3	Lindquist and Palley (1967)	F. 17
Briegleb (1948)	A. 3	Lynch (1954)	C. 4
British Columbia		Lynch (1958a)	D. 4
Forest Service (1936)	F. 10	Lynch (1958b)	E. 7
Bruce (1923)	A. 11	McArdle and Meyer (1930)	A.3, A.4, A.5,
Bruce (1948)	A. 4		B.2, D.1, F. 1
Bruce (1981)	F. 9	McArdle et al. (1949)	A.5, B.3, D.2,
Bruce et al. (1977)	H. 2		E.1, F.2, F. 4
Chambers (1974)	E. 10	McArdle et al. (1961)	A.5, B.4, B. 10,
Chambers (1980)	E. 2		C.1, H.2, J. 3
Chambers and Wilson (1971)	E. 2	McKeever (1947)	B. 2
Chambers and Wilson (1978)	E. 12	Meyer (1934)	C. 2
Cochran (1979a)	E.4, E. 15	Meyer (1937)	A. 12
Cochran (1979b)	E.4, F. 8	Meyer (1938)	A.8, C.3, C.4,
Cochran (1979c)	E.15, G.5, F. 22		D.3, D.4, E.7,
Cole and Stage (1972)	6.6		F.13, G.8, 1.2
Crown et al. (1977)	G. 3	Mitchell (1975)	J. 4
Cummings (1937)	E.14, F. 19	Newnham and Smith (1964)	J.1, J. 5
Curtis (1967)	B.4, F. 5	Oliver (1972)	F. 13
Curtis et al. (1974)	F. 6	Oliver (1979)	F. 16
Curtis et al. (1981)	H. 3	Oliver and Powers (1978)	E. 8
Dahms (1964)	E.5, E.6, J. 5	Powers and Oliver (1978)	E.8, F.15, F. 16
Dahms (1975)	E. 6	Roe (1951)	D. 5
Douglas-fir Second-Growth Management Committee		Roe (1952)	C. 3 C. 7
Dunning (1942)	C.7 ${ }^{\text {B.9 }}$, 1	Reukema and Bruce (1977)	C. H
Dunning and Reineke (1933)	B. 7	Schmidt et al. (1976)	E.14, F.19, F. 20
Ferrell (1980)	C. 9	Schumacher (1926)	A. 16
Fligg (1960)	B. 1	Schumacher (1928)	A. 10
Flora and Fedkiw (1964)	C. 1	Schumacher (1930)	A. 2
Gallaher (1913)	C. 1	Seidel (1980a)	C. 5
Gedney et al. (1959)	C. 5	Seidel (1980b)	F. 20
Haig (1932)	A.15, F. 21	Show (1925)	A. 6
Hall et al. (1980)	C. 3	Smith (1968)	A.9, B. 10
Hamilton and Edwards (1976)	C. 2	Smith et al. (1961)	B. 12
Hanzlik (1914)	A. 1	Smithers (1961)	F. 10
Herman et al. (1978)	F. 11	Staebler (1953)	F. 2
Hoyer (1966)	B. 4	Staebler (1955)	E. 1
Hoyer (1967)	B. 5	Staebler (1960)	F. 4
Hoyer (1975)	H. 1	Stage (1973)	1.1
Johnson et al. (1926)	B. 8	Stage (1975)	G. 7
King (1966)	B.4, E.2, E.3,	Stoate and Crossin (1959)	D. 2
	F.5, F.7, F.9,	Taylor (1934)	A. 13
	C.3, H.1, H.3,	Terry (1910)	B. 6
	J.2. J. 4	Turnbull and Peterson (1976)	F. 7
Krumland and Wensel (1977a)	E.11, F.18, 1.3	Warrack (1959)	F. 3
Krumland and Wensel (1977b)	E. 11	Wiley (1978a)	E. 13
Krumland and Wensel (1980a)	1.3	Wiley (1978b)	E. 13
Krumland and Wensel (1980b)	1.3	Wiley and Murray (1974)	E. 3
Krumland and Wensel (1980c)	1.3	Wiley and Chambers (1981)	E. 13
Krumland and Wensel (1980d)	1.3	Worthington et al. (1960)	E. 9

Series A: Normal Yield Tables

TABLE A. 1
SPECIES: Douglas-fir

FORM OF INFORMATION: Normal yield tables
REFERENCE: Hanzlik (1914)

DATA SOURCES

Vegetation Zones: Willamette Valley, Western hemlock
Site Quality Range: |-1||
Site Quality Type: Soil quality
Notes: 598 plots

Plot Sizes: 0.0625-1.0 acre
Even-Age
Age Range: 20-140 years

REQUIRED INPUT

CORRESPONDING OUTPUT

Soil quality, age

```
For all trees > 0.00 inch or \geqslant 12 inches d.b.h.:
    Average height, No. trees, average diameter,
    basal area, total cubic volume
For all trees \geqslant 12 inches d.b.h.:
    Board foot volume
```


TABLE A. 2

SPECIES: Douglas-fir

FORM OF INFORMATION: Normal yield tables
REFERENCE: Schumacher (1930)

DATA SOURCES

Species Composition: Douglas-fir, ponderosa pine, redwood, white fir, sugar pine, incense-cedar, grand fir

Site Index Species:	Douglas-fir	Even-Age	
Site Index Range:	$75-214$	Age Range:	
Site Index Type:	Schumacher (1930) years		

Notes: 159 plots from northern California.

REQUIRED INPUT

CORRESPONDING OUTPUT

For all trees $\geqslant 0.5$ inch d.b.h.:
Height of average dominant, No. trees, basal area, average d.b.h., quadratic mean diameter, total cubic volume

For all trees $\geqslant 8$ inches d.b.h.:
No. trees, International 1/8-inch board foot volume to a 5-inch top

For all trees:
No. trees by 2-inch d.b.h. classes

TABLE A. 3
SPECIES: Douglas-fir

FORM OF INFORMATION: Normal yield tables
REFERENCE: Briegleb (1948)

DATA SOURCES

Vegetation Zones: Sitka spruce, western hemlock, Willamette Valley, Pacific silver fir
Species Composition: Douglas-fir, western hemlock, western redcedar, grand fir, Pacific silver fir, noble fir, western white pine, bigleaf maple, red alder, black cottonwood, Oregon white oak

Site Index Species: Douglas-fir Even-Age
Site Index Range: 80-200 Age Range: 20-180 years
Site Index Type: McArdle and Meyer Years Measured: 1909, 1911, 1924-25
Plot Sizes: $\quad 0.0625-4.0$ acres
Notes: 1,916 plots from 245 tracts. These data represent a minor adjustment to the International $1 / 4$-inch board-foot volume tables in McArdle and Meyer (1930).

REQUIRED INPUT CORRESPONDING OUTPUT
Total age, site index
For all trees $\geqslant 12$ inches d.b.h.: International $1 / 4$-inch board foot volume to an 8 -inch top

TABLE A. 4
SPECIES: Douglas-fir

FORM OF INFORMATION: Normal yield tables
REFERENCE: Bruce (1948)

DATA SOURCES

Vegetation Zones: Sitka spruce, western hemlock, Willamette Valley, Pacific silver fir
Species Composition: Douglas-fir, western hemlock, western redcedar, grand fir, Pacific silver fir, noble fir, western white pine, bigleaf maple, red alder, black cottonwood, Oregon white oak

Site Index Species: Douglas-fir Even-Age
Site Index Range: 80-200 Age Range:
20-180
Site Index Type: McArdle and Meyer (1930)

Plot Sizes: $\quad 0.0625-4.0$ acres
Notes: 1,916 plots from 245 tracts. This diameter-based yield table was subsequently included in McArdle et al. (1949, 1961).

REQUIRED INPUT
CORRESPONDING OUTPUT
Quadratic mean diameter

Quadratic mean diameter, total age
Quadratic mean diameter, tree d.b.h.

Average height
For all trees $\geqslant 1.5$ inches d.b.h.: No. trees, total cubic volume

For all trees $\geqslant 5$ inches or $\geqslant 7$ inches d.b.h.: Cubic volume to a 4 -inch top

For all trees $\geqslant 12$ inches d.b.h.: Cubic volume to a 4 -inch top, International 1/8-inch board foot volume to a 5-inch top, Scribner board foot volume to an 8-inch top

Net 10 -year change in quadratic mean diameter Tree height

TABLE A. 5
SPECIES: Douglas-fir

FORM OF INFORMATION: Normal yield tables
REFERENCE: McArdle and Meyer (1930), McArdle et al. (1949, 1961)

DATA SOURCES

Vegetation Zones: Sitka spruce, western hemlock, Willamette Valley, Pacific silver fir. Species Composition: Douglas-fir, western hemlock, western redcedar, grand fir, Pacific silver fir, noble fir, western white pine, bigleaf maple, red alder, black cottonwood, Oregon white oak

Site Index Species:	Douglas-fir	Even-Age	
Site Index Range:	$80-200$	Age Range:	20-180 years
Site Index Type:	McArdle et al. (1961)	Years measured: 1909, 1911, 1924-25	
Plot Sizes:	$0.0625-4.0$ acres		
Notes: 1,916 plots from 245 tracts.			

REQUIRED INPUT
Total age, site index

Quadratic mean diameter

Quadratic mean diameter, tree d.b.h.

Total age, quadratic mean diameter

CORRESPONDING OUTPUT

For all trees $\geqslant 1.5$ inches or $\geqslant 6.6$ inches or $\geqslant 11.6$ inches d.b.h.:
No. trees, quadratic mean diameter, basal area, total cubic volume
For all trees $\geqslant 5$ inches d.b.h.:
Total cubic volume
For all trees $\geqslant 6.6$ inches or $\geqslant 11.6$ inches d.b.h.:
International $1 / 8$-inch board foot volume to a 5 -inch top

For all trees $\geqslant 11.6$ inches d.b.h.:
Scribner board foot volume to an 8-inch top;
International $1 / 4$-inch board foot volume to an 8 -inch top
For all trees $\geqslant 15.6$ inches d.b.h.:
Scribner board foot volume to a 12-inch top
For all trees:
No. trees by 2 -inch diameter classes

No. trees, average height
For all trees $\geqslant 1.5$ inches d.b.h.:
Total cubic volume
For all trees $\geqslant 5$ inches or $\geqslant 7$ inches or $\geqslant 12$ inches d.b.h.:
Cubic volume to a 4 -inch top
For all trees $\geqslant 12$ inches d.b.h.:
International $1 / 8$-inch board foot volume to a 5 -inch
top, Scribner board foot volume to an 8 -inch top
Tree height

Net 10 -year change in quadratic mean diameter

TABLE A. 6
SPECIES: Ponderosa pine

FORM OF INFORMATION: Normal yield tables
REFERENCE: Show (1925)

DATA SOURCES

Species Composition:	Ponderosa pine, white fir		
Site Index Species:	Ponderosa pine	Plot Sizes:	$0.05-1.0$ acre
Site Index Range:	$80-170$	Even-Age	
Site Index Type:	Show (1925)	Age Range:	$50-240$ years

Notes: 175 plots in virgin stands from the Lassen National Forest.

REQUIRED INPUT

Total age, site index

Age at breast height

CORRESPONDING OUTPUT

For all trees:
No. trees, basal area, quadratic mean diameter, height of dominants, total cubic volume, Clark International $1 / 8$-inch board foot volume, board foot/cubic foot ratio

For white fir stands:
Board foot volume

TABLE A. 7
SPECIES: Ponderosa pine

FORM OF INFORMATION: Normal yield tables
REFERENCE: Behre (1928a,b)

DATA SOURCES
Site Index Species: Ponderosa pine Even-Age
Site Index Range: 40-120 Age Range: 30-180 years Site Index Type: Behre (1928a, b) Plot Sizes: 0.0625-0.75 acre

Notes: 83 plots in northeast Washington and northern Idaho.

REQUIRED INPUT

Total age, site index

CORRESPONDING OUTPUT

For all trees $\geqslant 3$ inches d.b.h.:
No. trees, quadratic mean diameter, Average height, total cubic volume, International $1 / 4$-inch board foot volume to a 4-inch top

TABLE A. 8

SPECIES: Ponderosa pine

FORM OF INFORMATION: Normal yield tables
REFERENCE: Meyer (1938)

DATA SOURCES

Vegetation Zones:	Ponderosa pine Ponderosa pine, lodgepole pine, white fir, Douglas-fir, western Species Composition:
	larch, Engelmann spruce

Site Index Species: Ponderosa pine Even-Age

Site Index Range: 40-160
Site Index Type: Meyer (1938)
Age Range: 20-200 years
Plot Sizes: <0.1-1.0+ acre
Years Measured: 1910-1938

Notes: 450 plots from Washington, Oregon, California, Idaho, Montana, and South Dakota.

REQUIRED INPUT
CORRESPONDING OUTPUT
Total age; site index

Quadratic mean diameter
For all trees $\geqslant 0.6$ inch, or $\geqslant 6.6$ inches, or $\geqslant 11.6$ inches d.b.h.:

No. trees, basal area, quadratic mean diameter, total cubic volume

For all trees $\geqslant 6.6$ inches d.b.h.:
International 1/8-inch board foot volume to
a 6-inch top
For all trees $\geqslant 11.6$ inches d.b.h.:
Scribner board foot volume to an 8-inch top
Percentage of total number of trees, percentage
of total stand cubic volume and percentage
of total stand Scribner board foot volume
by 2-inch diameter classes.

TABLE A. 9

FORM OF INFORMATION: Normal yield tables
SPECIES: Red alder
REFERENCE: Smith (1968)

DATA SOURCES
$\begin{array}{ll}\text { Site Index Species: } & \text { Red alder } \\ \text { Site Index Range: } & 70-130\end{array}$
Even-Age
Age Range: 10-60 years
Notes: From yield tables issued by the British Columbia Forest Service (1936).

REQUIRED INPUT

Age, site index

Average diameter

TABLE A. 10
SPECIES: Red fir

CORRESPONDING OUTPUT

Average diameter, average height of dominants For all trees $\geqslant 1$ inch d.b.h.:

No. trees, total cubic volume
For all trees $\geqslant 6.6$ inches d.b.h.: British Columbia 3/8-inch board foot volume to an 8-inch top

Percentage of total number of trees by 1-inch diameter classes

DATA SOURCES

Species Composition: Red fir, white fir, western white pine, lodgepole pine, ponderosa pine, incense-cedar, sugar pine

Site Index Species: Red fir
Site Index Range: 20-60
Site Index Type: Schumacher (1928)
Notes: 149 plots from California.
REQUIRED INPUT
Total age, site index

Plot Sizes: <0.1-0.8 acre
Even-Age
Age Range: $\quad 30-160$ years

CORRESPONDING OUTPUT

Average height, average diameter, basal area, total cubic volume

No. trees by 2-inch diameter classes
For all trees $\geqslant 8$ inches d.b.h.: No. trees, International $1 / 8$-inch board foot volume to a 5 -inch top

TABLE A. 11
SPECIES: Redwood

FORM OF INFORMATION: Normal yield tables
REFERENCE: Bruce (1923)

DATA SOURCES

Species Composition: Redwood, Douglas-fir, white fir, sugar pine

Site Quality Species: Redwood
Site Quality Range: $1-\mid 11$
Notes: 135 plots from Callfornia.
REQUIRED INPUT
Total age, site index

Site quality $=11$, age $=\mathbf{5 0}$
D.b.h.

Plot Sizes: 0.049-1.570 acres
Even-Age
Age Range: 20-67 years
CORRESPONDING OUTPUT
For all trees >2.6 inches d.b.h., and for all dominant and codominant trees: No. trees, height of tree of quadratic mean diameter, quadratic mean diameter, basal area, total cubic volume, International 1/8-inch board foot volume to a 5-inch top, board foot/cubic foot ratio

No. trees by 1-inch d.b.h. classes
Form factor

TABLE A. 12
SPECIES: Sitka spruce, western hemlock REFERENCE: Meyer (1937)

DATA SOURCES

Vegetation Zones: Sitka spruce
Species Composition: Western hemlock, Sitka spruce, Douglas-fir, western redcedar, Pacific silver fir

Site Index Species: Sitka spruce
Site Index Range: 60-200
Site Index Type: Meyer (1937)
Notes: 658 plots from western Oregon, western Washington, and Alaska.

Even-Age
Age Range: 20-200 years
Years Measured: 1933-1934

REQUIRED INPUT

Total age, site index

Quadratic mean diameter

Total age, site index

CORRESPONDING OUTPUT

For all trees $\geqslant 2.6$ inches, or $\geqslant 11.6$ inches, or $\geqslant 15.6$ inches d.b.h.:

No. trees, basal area, quadratic mean diameter, total cubic volume

For all trees $\geqslant 6.6$ inches d.b.h.:
International 1/8-inch board foot volume to a 6-inch top

For all trees $\geqslant 15.6$ inches d.b.h.:
Cubic volume of the dominant stand, Scribner board foot volume to an 8 -inch top, Scribner board foot volume to a 12 -inch top

No. trees, basal area, average height, cubic volume, International 1/8-inch board foot volume to a 8 -inch top

For all trees $\geqslant 11.6$ inches d.b.h.:
Scribner board foot volume to an 8-inch top
No. trees by 2-inch diameter classes

TABLE A. 13
FORM OF INFORMATION: Normal yield tables
SPECIES: Western hemlock, Sitka spruce REFERENCE: Taylor (1934)

DATA SOURCES
Vegetation Zones: Sitka spruce
Species Composition: Sitka spruce, western hemlock, western redcedar, Alaska-cedar Site Index Species: Western hemlock or Sitka spruce
Site Index Range: 50-150 Even-Age
Site Index Type: Taylor (1934) Plot Sizes: 0.1-1.0 acre
Notes: 288 plots
Age Range: 30-150 years
REQUIRED INPUT
CORRESPONDING OUTPUT
Total age, site index
No. trees by 1 -inch diameter classes
For all trees $\geqslant 0.6$ inch or $\geqslant 6.6$ inches d.b.h.: Average height, No. trees, quadratic mean diameter. basal area

For all trees $\geqslant 0.6$ inch d.b.h.:
Total cubic volume
For all trees >6.6 inches d.b.h.: Cubic volume to a 6 -inch top, International $1 / 8$-inch board foot volume to a 5 -inch top

TABLE A. 14
SPECIES: Western hemlock

FORM OF INFORMATION: Normal yield tables
REFERENCE: Barnes (1962)

DATA SOURCES

Vegetation Zones:	Sitka spruce	Site Index Type: Barnes (1962)	
Site Index Species:	Western hemlock	Even-Age	
Site Index Range:	$100-210$	Age Range:	$20-300$ years

Notes: Local tables for Oregon and Washington included.

REQUIRED INPUT

Total age, site index

Quadratic mean diameter

CORRESPONDING OUTPUT

Average height
For all trees $\geqslant 1.5$ inches d.b.h.: No. trees, quadratic mean diameter, basal area, total cubic volume

For all trees $\$ 6.5$ inches d.b.h.:
Total cubic volume, International 1/4-inch board foot volume to a 6-inch top

For all trees $\geqslant 11.5$ inches d.b.h.:
Scribner board foot volume to an 8-inch top, International $1 / 4$-inch board foot volume to a 6-inch top

Average height
For all trees $\geqslant 1.5$ inches d.b.h.:
No. trees, basal area, total cubic volume
For all trees $\geqslant 6.5$ inches d.b.h.:
Total cubic volume, International 1/4-inch board foot volume to a 6-inch top

For all trees $\geqslant 11.5$ inches d.b.h.:
Scribner board foot volume to an 8 -inch top, International $1 / 4$-inch board foot volume to a 6-inch top

Tree height

TABLE A. 15
SPECIES: Western white pine

FORM OF INFORMATION: Normal yield tables
REFERENCE: Haig (1932)

DATA SOURCES

Species Composition: Western white pine, western larch, western hemlock, white fir, Douglas-fir, western redcedar

Site Index Species:	Western white pine	Even-Age	
Site Index Range:	$40-70$	Age Range:	20-160 years
Site Index Type:	Haig (1932)	Years Measured: 1909-1912, 1924-1926	
Plot Sizes:	$0.05-2.0$ acres		

Notes: 271 plots from northern Idaho and northwest Montana.

REQUIRED INPUT

CORRESPONDING OUTPUT

Total age, site index

Quadratic mean diameter
For dominant and codominant trees: Average height, quadratic mean diameter, total cubic volume

For all trees $\geqslant 0.6$ inch, or $\geqslant 6.6$ inches or $\geqslant 12.6$ inches d.b.h.:

No. trees, quadratic mean diameter, basal area

For all trees $\geqslant 0.6$ inch d.b.h.:
Total cubic volume
For all trees $\geqslant 6.6$ inches d.b.h.: International $1 / 8$-inch board foot volume to a 5-inch top

For all trees $\geqslant 7.6$ inches d.b.h.:
Scribner board foot volume to a 5-inch top
For all trees $\geqslant 12.6$ inches d.b.h.:
International $1 / 8$ inch board foot volume to a 5 -inch top, Scribner board foot volume to a 5-inch top

Percentage of total number of trees, percentage of total stand basal area, percentage of total stand cubic volume and percentage of total stand board foot volume by species and 1 -inch diameter classes.

TABLE A. 16
FORM OF INFORMATION: Normal yield tables
SPECIES: White fir
REFERENCE: Schumacher (1926)

DATA SOURCES

Species Composition: White fir, sugar pine, Dougals-fir, ponderosa pine, red fir, incense-cedar

Site Index Species:	White fir	Plot Sizes:	$0.10-0.99$ acre
Site Index Range:	$25-95$	Even-Age	
Site Index Type:	Schumacher (1926)	Age Range:	$40-150$ years

Notes: 157 plots from California.
REQUIRED INPUT

CORRESPONDING OUTPUT

Total age, site index

Quadratic mean diameter
For all trees $\geqslant 4$ inches d.b.h.:
No. trees, height of tree of quadratic mean diameter, quadratic mean diameter, basal area, total cubic volume

For all trees $\geqslant 8$ inches d.b.h.:
No. trees, height of tree of quadratic mean diameter, quadratic mean diameter, basal area, International $1 / 8$-inch board foot volume to a 5 -inch top

For all trees $\geqslant 4$ inches d.b.h.: No. trees by 1-inch d.b.h. classes

Series B: Empirical Yield Tables

TABLE B. 1
FORM OF INFORMATION: Empirical yield tables
SPECIES: Bigleaf maple, black cottonwood, Douglas-fir, Engelmann spruce, grand fir, lodgepole pine, mountain hemlock, Pacific silver fir, ponderosa pine, red alder, Sitka spruce, subalpine fir, western hemlock, western larch, western redcedar, white pine

REFERENCE: Fligg (1960)

DATA SOURCES

Years Measured: 1953-1958
Notes: 13,371 inventory clusters (composed of $4+$ plots) located throughout British Columbia.

REQUIRED INPUT

CORRESPONDING OUTPUT

Provincial Zone, forest type, site class, total age

For trees $\geqslant 3.1$ inches, 9.1 inches, 11.1 inches, and 13.1 inches d.b.h.:

Cubic volume to a 4 -inch top, cubic volume to a 4-inch top Periodic Annual Increment, cubic volume to a 4 -inch top Mean Annual Increment

TABLE B. 2

SPECIES: Douglas-fir

FORM OF INFORMATION: Empirical yield tables
REFERENCE: McKeever (1947)

DATA SOURCES

Site Quality Species: Douglas-fir Even-Age
Site Quality Range: I-V
Site Quality Type: McArdle and Meyer (1930)
Notes: Data from Western Oregon and Washington.

REQUIRED INPUT
 REQUIRED INPUT

Total age, site quality, stocking

Total age, stocking

Age Range: 20-160 years

CORRESPONDING OUTPUT

For all trees $\geqslant 11.6$ inches d.b.h.: Scribner board foot volume to an 8inch top

Growth correction factor in percent

TABLE B. 3
SPECIES: Douglas-fir

FORM OF INFORMATION: Empirical yield tables
REFERENCE: Barnes (1955)

DATA SOURCES

Site Quality Species: Douglas-fir
Site Quality Range: I-IV
Site Quality Type: McArdle et al. (1949)
Notes: Derived from British yield tables.

Even-Age
Age Range: $10-50$ years

REQUIRED INPUT

CORRESPONDING OUTPUT

Age, site quality
No. trees, basal area, cubic volume to a 3 -inch top

TABLE B. 4
SPECIES: Douglas-fir

FORM OF INFORMATION: Empirical yield tables
REFERENCE: Hoyer (1966)

DATA SOURCES

Site Index Species:	Douglas-fir
Site Index Range:	$70-150$
Site Index Type:	King (1966)

Notes: Data for tables from McArdle et al. (1961) and Curtis (1967).

REQUIRED INPUT

Even-A ge
Age Range: 15-100 years

CORRESPONDING OUTPUT

Total age, site index
Height, optimal thinning intensity, average diameter of stand, average diameter of thinning removals, ratio of Scribner board foot volume to a 6 -inch top to total cubic volume for removals, annual Scribner board foot volume to a 6 -inch top in removals, 5 -year total cubic volume in removals, 5 -year Scribner board foot volume to a 6 -inch top in removals

TABLE B. 5
SPECIES: Douglas-fir, lodgepole pine, and western hemlock

FORM OF INFORMATION: Empirical yield tables
REFERENCE: Hoyer (1967)

DATA SOURCES

Even-Age
Age Range: 10-80 years
Notes: Data from British Forest Management Tables. Productivity is called yield class and is expressed as maximum Mean Annual Increment.

REQUIRED INPUT

CORRESPONDING OUTPUT

Yield class, total age

For main crop after thinning and for yields from thinning:

No trees, top height, average diameter, basal area, cubic volume to 3-, 7-, and 9-inch tops

For total production:
Basal area, cubic volume to a 3-inch top
For gross increment:
Current annual basal area, current annual cubic volume to a 3 -inch top, mean annual cubic volume to a 3 -inch top

TABLE B. 6
SPECIES: Ponderosa pine

FORM OF INFORMATION: Empirical yield tables
REFERENCE: Terry (1910)

DATA SOURCES

Species Composition: Ponderosa pine, western larch, Douglas-fir
Site Quality Range: I-III
Site Quality Type: Soil quality
Notes: Data from western Montana.

REQUIRED INPUT
CORRESPONDING OUTPUT
Age, soil quality, species
No. trees, average diameter, average height, board foot volume

TABLE B. 7

SPECIES: Ponderosa pine, sugar pine, Douglas-fir, white fir mixture

FORM OF INFORMATION: Empirical yield tables
REFERENCE: Dunning and Reineke (1933)

DATA SOURCES

Species Composition: Ponderosa pine, sugar pine, Douglas-fir, white fir, red fir, incense-cedar
Site Index Species: Douglas-fir, ponderosa pine, red fir, white fir
Site Index Range: 25-110 Age Range: 30-150 years
Site Index Type: Dunning and Reineke (1933) Years Measured: 1912-1923
Even-Age
Notes: 311 plots. Six forest types recognized: ponderosa pine-fir, ponderosa pinesugar pine, ponderosa pine-sugar pine-fir, sugar pine-fir, white fir--Dougals-fir, white fir-red fir. Data are from mixed conifer type of California.

REQUIRED INPUT

Total age, site index

Actual stand:
Stand density index, ponderosa pine: percent of basal area, sugar pine: percent of basal area, Douglas-fir: percent of basal area, white fir: percent of basal area, incense-cedar: percent of basal area, red fir: percent of basal area

Quadratic mean diameter, No. trees

CORRESPONDING OUTPUT

For all trees $\geqslant 2$ inches d.b.h. in the composite "stand:"

No. trees, quadratic mean diameter, basal area, total cubic volume

For all trees $\geqslant 8$ inches d.b.h. in the composite "stand:"

Board foot/cubic foot ratio, International $1 / 8$-inch board foot volume to a 5 -inch top

Correction to composite "stand" values to obtain estimates of actual stand:

Basal area, no. trees, total cubic volume

TABLE B. 8
SPECIES: Red alder
FORM OF INFORMATION: Empirical yield tables
REFERENCE: Johnson et al. (1926)

DATA SOURCES

Vegetation Zones:	Western hemlock
Even-Age	
Age Range:	$30-80$ years
Notes: 16 plots	

REQUIRED INPUT CORRESPONDING OUTPUT
Age For all trees $\geqslant 0.0$ inch or $\geqslant 8$ inches d.b.h.: Basal area, No. trees, cubic volume to a 2-inch top, cubic volume of dominants

For trees $\geqslant 8$ inches d.b.h.:
Board foot volume

TABLE B. 9
FORM OF INFORMATION: Empirical yield tables
SPECIES: Red alder
REFERENCE: Douglas-fir Second-growth Management Committee (1947)

DATA SOURCES

Vegetation Zones: Western hemlock
Even-Age
Notes: Data from Lewis County, Washington.

REQUIRED INPUT
CORRESPONDING OUTPUT
Age
For all trees $\geqslant 5$ inches d.b.h.:
Cubic volume to a 4 -inch top
For all trees $\geqslant 11$ inches d.b.h.:
Scribner board foot volume to a
10-inch top

TABLE B. 10

SPECIES: Red alder

FORM OF INFORMATION: Empirical yield tables
REFERENCE: Smith (1968)

DATA SOURCES

Site Quality Species: Douglas-fir		
Site Quality Range:	II-IV	Even-Age
Site Quality Type:	McArdle et al. (1961)	Age Range: $10-60$ years

Notes: Data from Powell River, British Columbia.

REQUIRED INPUT

Age, site quality

CORRESPONDING OUTPUT
For all trees $\geqslant 5$ inches d.b.h.: No. trees, quadratic mean diameter, basal area, cubic volume to a 4-inch top, average height of dominants

TABLE B. 11
SPECIES: Redwood

FORM OF INFORMATION: Empirical yield tables
REFERENCE: Lindquist and Palley (1963)

DATA SOURCES

Species Composition: Redwood, Douglas-fir, Sitka spruce, grand fir, western hemlock, tanoak, Pacific madrone, red alder

Notes: 152 plots from Del Norte, Humboldt, Mendocino, and Sonoma counties of California.

REQUIRED INPUT

Site index, age at breast height

CORRESPONDING OUTPUT

For trees $\geqslant 4.6$ inches d.b.h.: Basal area, quadratic mean diameter, No. trees, cubic volume to a 4 -inch top

For trees $\geqslant 10.6$ inches d.b.h.:
Basal area, quadratic mean diameter, No. trees, board foot/cubic foot ratio, International 1/4-inch board foot volume to an 8-inch top

TABLE B. 12
SPECIES: Western red cedar

FORM OF INFORMATION: Empirical yield tables
REFERENCE: Smith et al. (1961)

DATA SOURCES

Site Index Species: Western hemlock Site Index Range: 70-210

Barnes (1953)

Age Range: 15-96+ years

Notes: Data from 202 trees on the University of British Columbia Forest at Haney, British Columbia.

REQUIRED INPUT

CORRESPONDING OUTPUT

Site index, total age
Average height of dominants and codominants, average diameter, No. trees, gross total cubic volume

Series C: Stand Growth Tables

TABLE C. 1
SPECIES: Ponderosa pine

FORM OF INFORMATION: Stand growth tables
REFERENCE: Gallaher (1913)

DATA SOURCES

Notes: Data from second-growth stands on the west side of Sierra Nevada Mountains.

REQUIRED INPUT

CORRESPONDING OUTPUT
D.b.h.

Height at age 50
Age
For all trees:
Clark International $1 / 8$-inch board foot volume to a 5 -inch top, total cubic volume to a 5-inch top

TABLE C. 2
FORM OF INFORMATION: Stand growth tables
SPECIES: Ponderosa pine
REFERENCE: Meyer (1934)

DATA SOURCES

Site Quality Species: Ponderosa pine
Site Quality Range: IV
Site Quality Type: Meyer (1934)

Uneven-Age
Years Measured: 1928-1930

Notes: 179 plots from eastern Oregon and Washington.

REQUIRED INPUT

CORRESPONDING OUTPUT

Site quality, residual basal area,
Change in residual basal area
No. years since thinning
Site quality, residual cubic volume, No. years since thinning

Site quality, residual board foot volume for all trees $\geqslant 11.6$ inches d.b.h., No. years since thinning

Tree class, d.b.h., No. years since thinning

Change in residual cubic volume

For all trees $\geqslant 11.6$ inches d.b.h.:
Change in residual board foot volume

For each tree:
Change in d.b.h.

TABLE C. 3

SPECIES: Ponderosa pine

FORM OF INFORMATION: Stand growth tables
REFERENCE: Roe (1952)

DATA SOURCES

Species Composition: Ponderosa pine, Douglas-fir

Site Quality Species: Ponderosa pine	Uneven-Age	
Site Quality Range:	IV-V	
Site Quality Type:	Meyer (1938)	Plot Sizes:

Notes: 60 plots in western Montana.

REQUIRED INPUT

Site quality, residual board foot volume for all trees $\geqslant 9.6$ inches d.b.h., No. years since thinning

Site quality, Keen age, residual basal area for all trees $\geqslant 9.6$ inches d.b.h., No. years since thinning

Site quality, d.b.h., No. years since thinning

CORRESPONDING OUTPUT

For all trees $\geqslant 9.6$ inches d.b.h.: Net change in residual board foot volume

For all trees $\geqslant 9.6$ inches d.b.h.: Gross change in residual basal area

For each tree:
Future board foot volume

TABLE C. 4

SPECIES: Ponderosa pine

FORM OF INFORMATION: Stand growth tables
REFERENCE: Lynch (1954)

DATA SOURCES

Species Composition: Ponderosa pine, lodgepole pine, Douglas-fir

Site Quality Species: Ponderosa pine	Even-Age		
Site Quality Range:	II-IV	Age Range:	20-100 years
Site Quality Type:	Meyer (1938)	Years Measured: 1949	
Plot Sizes:	$0.1-1.0$ acre		

Notes: 50 plots from northeast Washington, northern Idaho, and northwest Montana.

REQUIRED INPUT

Site quality, average diameter, age
Stocking, age

Age, site quality

CORRESPONDING OUTPUT

10-year change in total cubic volume
10-year gross change in total cubic volume, 10 -year percent mortality of total cubic volume

Stocking

TABLE C. 5
SPECIES: Ponderosa pine

FORM OF INFORMATION: Stand growth tables

REFERENCE: Gedney et al. (1959)

DATA SOURCES

Species Composition: Ponderosa pine, Douglas-fir, western larch, white fir, Engelmann spruce, lodgepole pine

Plot Sizes: 0.1-0.5 acre
Years Measured: 1955 - 1956
Notes: Data from Middle Fork Working Circle, Malheur National Forest.

REQUIRED INPUT

Forest type, board foot volume

Forest type

Species, d.b.h.

CORRESPONDING OUTPUT

For sawtimber stands:
Annual gross change in board foot volume
Annual gross and net change in board foot volume

For sawtimber trees:
Annual gross change in board foot volume

TABLE C. 6
SPECIES: Sugar pine

FORM OF INFORMATION: Stand growth tables
REFERENCE: Larsen (1916)

DATA SOURCES
Species Composition: Sugar pine, ponderosa pine, incense-cedar, white fir, Douglas-fir
Site Quality Species: Ponderosa pine Site Quality Type: Soil Quality
Site Quality Range: 11 Age Range: 10-400 years
Notes: Data from Sierra Nevada Mountains.

REQUIRED INPUT

CORRESPONDING OUTPUT

Age

Age, soil quality, forest type

Age, species

```
For each tree:
Maximum, minimum, and average height; maximum, minimum, and average diameter growth
```

For all trees:
Maximum board foot volume, maximum annual board foot volume growth

For each tree:
D.b.h., height, board foot volume

TABLE C. 7
SPECIES: Sugar pine

FORM OF INFORMATION: Stand growth tables
REFERENCE: Roy (1955)

DATA SOURCES

Species Composition: Sugar pine, ponderosa pine, Douglas-fir, white fir, incense-cedar

Site Index Species: Ponderosa pine
Site Index Range: 125-200
Notes: Data from California.

Site Index Type: Dunning (1942)
Uneven Age

REQUIRED INPUT

Residual board foot volume, percent residual board foot volume in sugar pine and white fir, percent residual board foot volume in tree class 1, site index, average board foot volume per tree

No. poles, percent poles in sugar pine and white fir, percent poles in tree class 1 , average diameter of pole stand, site index

Residual board foot volume, percent residual board foot volume in white fir, percent residual board foot volume in tree classes 4 through 7, site index

CORRESPONDING OUTPUT

For trees >11.6 inches d.b.h.: Gross annual Scribner board foot volume growth

For trees $\geqslant 11.6$ inches d.b.h.:
Annual ingrowth in Scribner board foot volume from original pole stand

For trees >11.6 inches d.b.h.:
Annual mortality in Scribner board foot volume

32
 Series D: Tree Growth Tables

TABLE D. 1
SPECIES: Douglas-fir

FORM OF INFORMATION: Tree growth tables
REFERENCE: Douglas-fir Second-Growth Management Committee (1947)

DATA SOURCES

TABLE D. 2
SPECIES: Douglas-fir

FORM OF INFORMATION: Tree growth tables
REFERENCE: Stoate and Crossin (1959)

DATA SOURCES

Site Index Species: Douglas-fir
Site Index Range: 60-160
Site Index Type: McArdle et al. (1949)
Notes: Data from coastal British Columbia. For trees $\leqslant 24 \mathrm{ft}$ in height.

REQUIRED INPUT
Total height, site index

Even-Age
Age Range: See Notes

Annual height growth of dominant

CORRESPONDING OUTPUT

 and codominant trees
TABLE D. 3

SPECIES: Ponderosa pine

FORM OF INFORMATION: Tree growth tables
REFERENCE: Briegleb (1943)

DATA SOURCES

Site Index Species: Ponderosa pine	Uneven-Age Site Index Range: $64-92$ Site Index Type: Meyer (1938)
Notes: 30 plot Sizes: 10 acres	
plots from eastern Oregon.	

REQUIRED INPUT
Age class, tree vigor

Keen tree class, d.b.h. class

Site index

CORRESPONDING OUTPUT

10-year change in d.b.h., 10 year percent mortality in board foot volume

10-year change in d.b.h. and board foot volume, annual gross and net percent change in board foot volume

Correction of d.b.h. growth estimates

TABLE D. 4
SPECIES: Ponderosa pine

FORM OF INFORMATION: Tree growth tables
REFERENCE: Lynch (1958a)

DATA SOURCES

Species Composition: Ponderosa pine, lodgepole pine, Douglas-fir
Site Quality Species: Ponderosa pine Even-Age
Site Quality Range: II-VI
Site Quality Type: Meyer (1938)
Plot Sizes: $\quad 0.1-1.0$ acres

Age Range: $\quad 20-100$ years
Years Measured: 1949

Notes: 50 plots from northeast Washington, northern Idaho, and northwest Montana.

REQUIRED INPUT
Site quality, d.b.h., age

CORRESPONDING OUTPUT
For each tree:
10-year change in d.b.h.

TABLE D. 5

SPECIES: Western larch, Douglas-fir

FORM OF INFORMATION: Tree growth tables
REFERENCE: Roe (1951)

DATA SOURCES

Species Composition: Western larch, Douglas-fir, Engelmann spruce, lodgepole pine

Site Index Species: Western larch Site Index Value: 83

Uneven-Age
Plot Sizes: 0.2 acre

Notes: 124 plots in 20 stands in western Montana.

REQUIRED INPUT

CORRESPONDING OUTPUT

D.b.h., species, tree vigor, No. years since cutting

For each tree $\geqslant 9.6$ inches d.b.h.: Change in Scribner board foot volume since cutting

Scribner board foot volume ingrowth since cutting for trees $\geqslant 9.6$ inches d.b.h.

Series E: Stand Yield Equations

TABLE E. 1			FORM OF INFORMATION: Stand yield equations
SPECIES:	Douglas	fir	REFERENCE: Staebler (1955)
	DATA SOURCES		
Vegetation Zones: Western hemlock, Sitka spruce			
Site Index	Species:	Douglas-fir	Even-Age
Site Index	Range:	110-200	Age Range: 26-93 years
Site Index	Type:	McArdle et al. (1949)	Years Measured: Up to 35-year records
Plot Sizes:		0.4-1.0 acre	
Notes: 36 permanent plots.			
	REQU	IRED INPUT	CORRESPONDING OUTPUT
Site index,	age		For all trees $\geqslant 1.5$ inches d.b.h.: Basal area, total cubic volume
			For all trees $\geqslant 7$ inches d.b.h.: International $1 / 8$-inch board foot volume to a 5 -inch top
			For all trees $\geqslant 12$ inches d.b.h.: Scribner board foot volume to an 8-inch top

TABLE E. 2
SPECIES: Douglas-fir

FORM OF INFORMATION: Stand yield equations
REFERENCE: Chambers and Wilson (1971), Chambers (1980)

DATA SOURCES

Vegetation Zones: Western hemlock
Species Composition: Douglas-fir, western hemlock, red alder, western redcedar, bigleaf maple, others

Site Index Species: Douglas-fir
Site Index Range: 80-150
Site Index Type: King (1966)
Plot Sizes: 20 basal area factor
Even-Age
Age Range: 20-120 years
Notes: 356 permanent plots and 30 temporary plots.

REQUIRED INPUT
CORRESPONDING OUTPUT
Age at breast height, site index
For trees $\geqslant 7$ inches d.b.h.: Basal area

Percent normal basal area, age at breast height, site index

Basal area, quadratic mean diameter

Age at breast height, site index

Basal area, age at breast height, site index

For trees $\geqslant 7$ inches d.b.h.:
No. trees, quadratic mean diameter total cubic volume, Scribner board foot volume to a 6-inch top

For trees $\geqslant 7$ inches d.b.h.: Total cubic volume, Scribner board foot volume to a 6-inch top

For trees $\geqslant 5$ inches d.b.h.: Average height

For trees $\geqslant 7$ inches d.b.h.: Net basal area growth

TABLE E. 3
SPECIES: Douglas-fir

FORM OF INFORMATION: Stand yield equations
REFERENCE: Wiley and Murray (1974)

DATA SOURCES

Vegetation Zones:	Western hemlock	Plot Sizes: $0.1-0.2$ acre
Site Index Species: Douglas-fir	Even-Age	
Site Index Range:	$85-145$	Age Range:
Site Index Type:	King (1966) years	

Notes: 311 plots: 205 thinned, 106 unthinned.

REQUIRED INPUT

CORRESPONDING OUTPUT

For all trees $\geqslant 5.6$ inches d.b.h.: Ratio of cubic volume to a 4-inch top to total cubic volume

Quadratic mean diameter No. trees

Thinned (yes or no), age at breast height at time of thinning, site index, No. trees after thinning, age at breast height

For all trees $\geqslant 1.6$ inches d.b.h.:
Average height of site trees, No. trees, quadratic mean diameter, basal area, total cubic volume, cubic volume to a 4-inch top

TABLE E. 4
SPECIES: Douglas-fir

FORM OF INFORMATION: Stand yield equations
REFERENCE: Cochran (1979a)

DATA SOURCES

Vegetation Zones: Grand fir, Douglas-fir
Species Composition: Douglas-fir, white fir, grand fir, western larch, Engelmann spruce, ponderosa pine, western white pine

Site Index Species: Douglas-fir
Plot Sizes: 0.1-0.2 acre
Site Index Range: 50-110
Site Index Type: Cochran (1979b)
Even-Age
Age Range: 0-120 years
Notes: 26 plots were used for the equation for net basal area, 31 for the equation for net total cubic volume, 43 for the equation for net basal area Periodic Annual Increment, and 27 for the equation for gross total cubic volume Periodic Annual Increment.

REQUIRED INPUT

CORRESPONDING OUTPUT

Age at breast height, site index
Net per-acre estimates of:
Basal area, total cubic volume
Gross per-acre estimates of:
Total cubic volume Periodic Annual
Increment, basal area Periodic Annual
Increment

TABLE E. 5
SPECIES: Lodgepole pine

FORM OF INFORMATION: Stand yield equations
REFERENCE: Dahms (1964)

DATA SOURCES

Vegetation Zones: Ponderosa pine Site Index Species: Lodgepole pine Site Index Range: 60-110 Site Index Type: Dahms (1964)

Plot Sizes: 0.1-0.2 acre
Even-Age
Age Range: 0-120 years

REQUIRED INPUT

Total age, site index

Average diameter, basal area

CORRESPONDING OUTPUT

Change in gross annual total cubic volume, gross total cubic volume, net total cubic volume

Crown competiton factor

TABLE E. 6
SPECIES: Lodgepole pine

Vegetation Zones: Ponderosa pine Site Index Species: Lodgepole pine Site Index Range: 30-70 Site Index Type: Dahms (1964)
Notes: 94 plots

REQUIRED INPUT
Total age, site index

FORM OF INFORMATION: Stand yield equations
REFERENCE: Dahms (1975)

DATA SOURCES

Plot Sizes: 0.1-0.2 acre
Even-Age
Age Range: 28-161 years

CORRESPONDING OUTPUT

Change in gross annual basal area
For all trees $\geqslant 1.0$ inch d.b.h.: Net basal area, net total cubic volume, gross total cubic volume

TABLE E. 7
SPECIES: Ponderosa pine

FORM OF INFORMATION: Stand yield equations
REFERENCE: Lynch (1958b)

DATA SOURCES

Vegetation Zones: Ponderosa pine, Grand fir--Douglas-fir
Site Index Species: Ponderosa pine
Even-Age
Site Index Range: 50-110
Site Index Type: Meyer (1938)
Plot Sizes: $\quad 0.025-1.0$ acre
Years Measured: 1953-1954
Notes: 209 plots from northeast Washington, northern Idaho, and northwest Montana.

REQUIRED INPUT

CORRESPONDING OUTPUT

No. trees, basal area, total age, average height of dominants

Average height of dominants, total age, basal area

Quadratic mean diameter, average height of dominants, No. trees, board foot/cubic foot ratio

Total age, site index
For all trees $\geqslant 0.6$ inch d.b.h.:
No. trees, average height of dominants, basal area, quadratic mean diameter, total cubic volume, International 1/4-inch board foot volume to a variable top

TABLE E. 8
SPECIES: Ponderosa pine

FORM OF INFORMATION: Stand yield equations
REFERENCE: Oliver and Powers (1978)

DATA SOURCES

Species Composition:	Ponderosa pine	Plot Sizes:	0.05-0.1 acre
Site Index Species:	Ponderosa pine	Even-Age	
Site Index Range:	$35-120$	Age Range:	16-50 years
Site Index Type:	Powers and Oliver (1978)		

Notes: Data from 367 trees in 12 plantations in northern California.

REQUIRED INPUT

Age since planting, site index, spacing at initial planting

CORRESPONDING OUTPUT

Net total cubic foot volume (less stump)

TABLE E. 9
SPECIES: Red alder

FORM OF INFORMATION: Stand yield equations
REFERENCE: Worthington et al. (1960)

DATA SOURCES

Vegetation Zones: Sitka spruce, western hemlock
Site Index Species: Red alder
Even-Age
Site Index Range: 60-120
Site Index Type: Worthington et al. (1960)
Plot Sizes: 0.025-0.2 acre
Notes: 428 plots

REQUIRED INPUT

CORRESPONDING OUTPUT

Total age, site index
For all trees $\geqslant 0.6$ inch, or $\geqslant 5.6$ inches, or $\geqslant 9.6$ inches d.b.h.:

No. trees, quadratic mean diameter, basal area

For all trees $\geqslant 5.6$ inches or 29.6 inches d.b.h.:

Cubic volume to a 4 -inch top
For all trees $\geqslant 9.6$ inches d.b.h.:
Scribner board foot volume to an 8-inch top

TABLE E. 10

SPECIES: Red alder

FORM OF INFORMATION: Stand yield equations
REFERENCE: Chambers (1974)

DATA SOURCES

Vegetation Zones: Western hemlock, Sitk a spruce
Species Composition: Red alder, Douglas-fir, western hemlock, bigleaf maple, western redcedar, Sitka spruce, others
Site Index Species: Red alder
Site Index Range: $70-120$
Site Index Type: Worthington et al. (1960)
Plot Sizes: $\quad 20$ basal area factor
Notes: 174 permanent plots

REQUIRED INPUT

Even-Age
Age Range: 25-60 years
Plot Sizes: 20 basal area factor

Notes: 174 permanent plots

CORRESPONDING OUTPUT

Total age, site index
For all trees $\geqslant 7$ inches d.b.h.: Basal area

Percent of normal basal area, total age, site index

Site index, quadratic mean
diameter, basal area

For all trees $\geqslant 7$ inches d.b.h.:
No. trees, quadratic mean diameter, total cubic volume, Scribner board foot volume to a 6-inch top

For all trees $\geqslant 7$ inches d.b.h.: Total cubic volume, total Scribner board foot volume

TABLE E. 11
SPECIES: Redwood and Douglas-fir mixture

FORM OF INFORMATION: Stand yield equations
REFERENCE: Krumland and Wensel (1977b)

DATA SOURCES

Species Composition:	Redwood, Douglas-fir	Plot Sizes: $0.1-0.5$ acre		
Site Index Species:	Redwood or Douglas-fir Site Index Type:	Krumland and Wensel (1977a) or King (1966)		Age Range:
:---				

Notes: 159 permanent growth plots from Del Norte, Humboldt, and Mendocino counties of California.

REQUIRED INPUT

Age at breast height, site index, basal area $\geqslant 11.5$ inches, percent basal area in Douglas-fir

CORRESPONDING OUTPUT

For trees $\geqslant 11.5$ inches d.b.h.:
Total cubic volume (less stump volume), Scribner board foot volume to a 6-inch top

TABLE E. 12
SPECIES: Western hemlock

FORM OF INFORMATION: Stand yield equations
REFERENCE: Chambers and Wilson (1978)

DATA SOURCES

Vegetation Zones: Sitka spruce, western hemlock
Species Composition: Western hemlock, Douglas-fir, Pacific silver fir, Sitka spruce, western redcedar, others

Site Index Species: Western hemlock
Site Index Range: 70-150
Notes: 277 permanent plots

REQUIRED INPUT

Plot Sizes: 20 basal area factor
Even-Age
Age Range: 30-100 years

CORRESPONDING OUTPUT

Basal area
For all trees $\geqslant 7$ inches d.b.h.: No. trees, quadratic mean diameter, total cubic volume. Scribner board foot volume to a 6-inch top

For all trees $\geqslant 7$ inches d.b.h.:
Total cubic volume, Scribner board foot volume to a 6-inch top

TABLE E. 15
SPECIES: White fir or grand fir

FORM OF INFORMATION: Stand yield equations
REFERENCE: Cochran (1979a)

DATA SOURCES

Vegetation Zones: Grand fir, Douglas-fir
Species Composition: White fir, grand fir, Douglas-fir, western larch, Engelmann spruce, ponderosa pine, western white pine

Site Index Species: White fir, grand fir
Site Index Range: 50-110
Site Index Type: Cochran (1979c)

Plot Sizes: 0.1-0.2 acres
Even-Age
Age Range: $\quad 0-120$ years

Notes: 26 plots were used for equation on net basal area, 37 for equations on net total cubic volume and gross total cubic volume Periodic Annual Increment, and 46 for equations on net basal area Periodic Annual Increment.

REQUIRED INPUT

CORRESPONDING OUTPUT

Age at breast height, site index
Net per-acre estimates of:

Basal area, total cubic volume

Gross per-acre estimates of :
Total cubic volume Periodic Annual
Increment, basal area Periodic Annual
Increment

Series F: Stand Growth/Mortality Equations

TABLE F. 1
SPECIES: Douglas-fir

FORM OF INFORMATION: Stand growth equations
REFERENCE: Briegleb (1942)

DATA SOURCES

Site Index Species: Douglas-fir	Plot Sizes: 1 acre or less	
Site Index Range: $98-203$	Even-Age	
Site Index Type: McArdle and Meyer (1930)	Age Range: 24-93 years	
Notes: 45 plots distributed over western Oregon and Washington.		

REQUIRED INPUT

Total age, current percent normality

CORRESPONDING OUTPUT

5-year change in percent normality for: No. trees, basal area, cubic volume, International board foot volume, Scribner board foot volume

TABLE F. 2

SPECIES: Douglas-fir

FORM OF INFORMATION: Stand mortality equation

REFERENCE: Staebler (1953)

DATA SOURCES

Vegetation Zones: Western hemlock, Sitka spruce

Site Index Species: Douglas-fir
Site Index Range: 110-200
Site Index Type: McArdle et al. (1949)
Plot Sizes: 0.4-1.0 acre

Notes: 36 permanent plots

Total age, d.b.h., site index, crown class

REQUIRED INPUT

Even-Age
Age Range: 26-93 years
Years Measured: Up to 35 years of records

CORRESPONDING OUTPUT

10-year mortality in percent of total number of trees by 2-inch diameter classes

TABLE F. 3
SPECIES: Douglas-fir

FORM OF INFORMATION: Stand growth equations
REFERENCE: Warrack (1959)

DATA SOURCES

Even-Age
Age Range: 10-68 years
Notes: European case histories; British yield tables; 11 plots in British Columbia.

REQUIRED INPUT
 CORRESPONDING OUTPUT

Quadratic mean diameter before and after Percent change in residual basal area thinning, age, residual basal area

Quadratic mean diameter before and after thinning

Quadratic mean diameter before and after thinning, age

Change in average height per unit of change in d.b.h.

Ratio of average height before thinning to average height after thinning

TABLE F. 4
SPECIES: Douglas-fir

FORM OF INFORMATION: Stand growth equations
REFERENCE: Staebler (1960)

DATA SOURCES

Site Index Species: Douglas-fir	Site Index Type: McArdle et al. (1949)
Site Index Value: 170	Even-Age

Notes: Western Oregon and Washington.

REQUIRED INPUT

CORRESPONDING OUTPUT

Desired thinning age(s) and average d.b.h., total height at thinning age(s), total cubic volume per tree at thinning age(s), gross total cubic volume at thinning age(s) (normal yield)

No. of trees at thinning age(s), cubic volume removed at thinning age(s), cubic volume normality at thinning age(s)

TABLE F. 5
SPECIES: Douglas-fir

Vegetation Zones: Western hemlock Species Composition: At least 80 percent Douglas-fir

Site Index Species: Douglas-fir	Plot Sizes: $0.05-1.0$ acre	
Site Index Range: $60-150$	Even-Age	
Site Index Type: King (1966)	Age Range: $15-115$ years	

Notes: 80 permanent and 19 temporary plots in western Oregon and Washington.

REQUIRED INPUT

Basal area, age at breast height, site index

Total age, site index, basal area

CORRESPONDING OUTPUT

Gross total cubic volume growth

Gross basal area growth

TABLE F. 6
SPECIES: Douglas-fir

FORM OF INFORMATION: Stand growth equations
REFERENCE: Curtis et al. (1974)

DATA SOURCES

Vegetation Zones: Pacific silver fir
Species Composition: Douglas-fir, Pacific silver fir, western hemlock, noble fir
Site Index Species: Douglas-fir
Site Index Range: 60-160
Site Index Type: Curtis et al. (1974) Age Range: 80-400 years
Notes: Data from 52 trees from 520.25 -acre plots; site index curves also presented. Data were from stem analysis.

REQUIRED INPUT
CORRESPONDING OUTPUT

Age at breast height, site index
Height of dominants

TABLE F. 7
SPECIES: Douglas-fir
FORM OF INFORMATION: Stand growth equations
REFERENCE: Turnbull and Peterson (1976)

DATA SOURCES

Vegetation Zones: Sitka spruce, western hemlock
Species Composition: At least 80 percent Douglas-fir
Site Index Species: Douglas-fir Plot Sizes: 0.1 acre
Site Index Range: 76-152
Site Index Type: King (1966)
Even-Age
Age Range: $10-50$ years
Notes: 87 installations with 6 plots in each.

REQUIRED INPUT

Age at breast height, site index, basal area, No. trees

Site index, pounds of nitrogen

CORRESPONDING OUTPUT

4-year cubic volume Periodic Annual Increment of untreated stands

Increase in 4-year cubic volume Periodic Annual Increment as a result of fertilization

TABLE F. 8
SPECIES: Douglas-fir

FORM OF INFORMATION: Stand growth equations
REFERENCE: Cochran (1979b)

DATA SOURCES

Vegetation Zones: Grand fir and Douglas-fir
Site Index Species: Douglas-fir
Site Index Range: 50-110
Site Index Type: Cochran (1979b)
Plot Sizes: Single trees
Even-Age
Age Range: $10-100$ years
Notes: Site index curves also presented; 3-5 trees on each of 32 plots were sectioned.

> REQUIRED INPUT

Age at breast height, site index

CORRESPONDING OUTPUT

Height of dominants

TABLE F. 9
SPECIES: Douglas-fir

FORM OF INFORMATION: Stand growth equations
REFERENCE: Bruce (1981)

DATA SOURCES

Species Composition: At least 80 percent Douglas-fir

Site Index Species: Douglas-fir	Even-Age
Site Index Type:	King (1966)

Notes: 2,796 plot-growth period combinations from the data described in Curtis et al. (1981).

REQUIRED INPUT

Age at breast height, site index
Age at breast height, site index, average total height of 40 largest trees/acre, pounds of nitrogen, time since fertilization

CORRESPONDING OUTPUT

Average total height of 40 largest trees/acre
Average total height-growth rate of 40 largest trees/acre

TABLE F. 10
SPECIES: Lodgepole pine

FORM OF INFORMATION: Stand mortality equations
REFERENCE: Lee (1971)

DATA SOURCES

Even-Age

Notes: Data for developing models came from British Columbia and Alberta yield tables (British Columbia Forest Service 1936, Smithers 1961)

REQUIRED INPUT

Total age

Average diameter

CORRESPONDING OUTPUT

Annual stand mortality in percent of total trees

Annual stand mortality in percent of total trees

TABLE F. 11

SPECIES: Noble fir

FORM OF INFORMATION: Stand growth equations
REFERENCE: Herman et al. (1978)

DATA SOURCES

Vegetation Zones: Pacific silver fir Plot Sizes: Single-tree

Site Index Species: Noble fir
Site Index Range: 60-160
Site Index Type: Herman et al. (1978)

Even-Age
Age Range: $10-400$ years

Notes: Data from 60 trees on 600.25 -acre plots. Site index curves also presented. Data collected from stem analyses.

REQUIRED INPUT
Age at breast height, site index

CORRESPONDING OUTPUT

Total height of dominants

TABLE F. 12
SPECIES: Ponderosa pine

FORM OF INFORMATION: Stand growth equations
REFERENCE: Arvanitis et al. (1964)

DATA SOURCES

Site Index Species: Ponderosa pine Site Index Range: 60-180+
Site Index Type: Arvanitis et al. (1964)
Notes: 208 trees from Mineral to Sonora, California

REQUIRED INPUT
Site index, age at breast height

Plot Sizes: Single-tree
Even-Age
Age Range: $11-100$ years old at breast height

CORRESPONDING OUTPUT
Height of dominants

TABLE F. 13
SPECIES: Ponderosa pine

FORM OF INFORMATION: Stand growth equations
REFERENCE: Oliver (1972)

DATA SOURCES

Species Composition: Ponderosa pine, Jeffrey pine

Site Index Species: Ponderosa pine	Even-Age		
Site Index Range:	$65-80$	Age Range:	28-70 years
Site Index Type:	Meyer (1938)	Years Measured:	1945-1970
Plot Sizes:	$0.12-2.00$ acres		

Notes: 12 plots in Modoc and Lassen counties of California.

REQUIRED INPUT
Basal area

CORRESPONDING OUTPUT

D.b.h. Periodic Annual Increment, height Periodic Annual Increment, cubic volume Periodic Annual Increment

TABLE F. 14
FORM OF INFORMATION: Stand growth equations

SPECIES: Ponderosa pine
REFERENCE: Barrett (1978)

DATA SOURCES
Vegetation Zones: Ponderosa pine, Douglas-fir, grand fir

Site Index Species: Ponderosa pine
Site Index Range: 72-145
Site Index Type: Barrett (1978)

Plot Sizes: Single trees
Even-Age
Age Range: 10-180 years old at breast height

Notes: 177 trees on 30 1/5-acre plots. Data collected from stem analyses.

REQUIRED INPUT
CORRESPONDING OUTPUT

Age at breast height, site index
Height of tallest tree

TABLE F. 15

SPECIES: Ponderosa pine

FORM OF INFORMATION: Stand growth equations
REFERENCE: Powers and Oliver (1978)

DATA SOURCES

Species Composition:	Ponderosa pine	Plot Sizes: $0.05-0.5$ acre
Site Index Species:	Ponderosa pine	Even-Age
Site Index Range:	$31-117$	Age Range:
Site Index Type:	Powers and Oliver (1978) years	

Notes: Data from 135 trees on 26 plots in northern California.

REQUIRED INPUT

Total age, site index

CORRESPONDING OUTPUT

Height of dominants

TABLE F. 16
SPECIES: Ponderosa pine

FORM OF INFORMATION: Stand growth equations
REFERENCE: Oliver (1979)

DATA SOURCES

Species Composition: Ponderosa pine, Jeffrey pine
Site Index Species: Ponderosa pine
Site Index Range: 45-55
Site Index Type: Powers and Oliver (1978)
Plot Sizes: $\quad 0.75-2.00$ acres
ven-Age
Age Range: 28-45 years
Years Measured: 1959, 1960 or 1961; 1966, 1970 or 1971; 1975
Notes: 6 plots in extreme northeastern California.

REQUIRED INPUT
Basal area, years since thinning

CORRESPONDING OUTPUT

5-year Periodic Annual Increment for: average d.b.h., basal area, total cubic volume (less stump)

TABLE F. 17
SPECIES: Redwood

FORM OF INFORMATION: Stand growth equations
REFERENCE: Lindquist and Palley (1967)

DATA SOURCES

Species Composition: At least 80 percent redwood

REQUIRED INPUT
Age at breast height, basal area

Age at breast height, basal area, site index

CORRESPONDING OUTPUT

Net 10 -year basal area growth for trees $\geqslant 4.5$ inches d.b.h.

Net 10-year growth in cubic volume to a 4 -inch top for trees $\geqslant 4.5$ inches d.b.h.

Net 10-year growth in International 1/4-inch board foot volume to an 8-inch top for trees $\geqslant 10.5$ inches d.b.h.

Net 10-year growth in International 1/4-inch board foot volume to an 8-inch top for trees $\geqslant 15.5$ inches d.b.h.

TABLE F. 18
SPECIES: Redwood

FORM OF INFORMATION: Stand growth equations REFERENCE: Krumland and Wensel (1977a)

DATA SOURCES

Site Index Species: Redwood
Site Index Range: 70-140
Site Index Type: Krumland and Wensel (1977a)

Even-Age
Plot Sizes: Single-tree
Age Range: 10-80 years

Notes: 123 felled trees and 37 permanent plot records were used for analysis from Del Norte, Humboldt, and Mendocino counties of California.

Site Index, age at breast height
Total height of dominants

TABLE F. 19

SPECIES: Western larch

FORM OF INFORMATION: Stand growth equations
REFERENCE: Schmidt et al. (1976)

DATA SOURCES

Site Index Species: Western larch
Even-Age
Notes: Based on a re-analysis of Cummings' (1937) basic data.

REQUIRED INPUT CORRESPONDING OUTPUT

Total age, site index
Height of dominant and codominant trees

TABLE F. 20
SPECIES: Western larch

FORM OF INFORMATION: Stand growth equations
REFERENCE: Seidel (1980b)

DATA SOURCES

Vegetation Zones: Grand fir
Species Composition: Western larch, Douglas-fir, grand fir, Engelmann spruce, ponderosa pine

Site Index Species: Western larch
Even-Age
Age Value: $\quad 55$ years
Years Measured: 1970, 1974, 1979

Site Index Value: 83
Site Index Type: Schmidt et al. (1976)
Plot Sizes: 0.286 acre

Notes: 16 plots: 4 density levels (50, 90,130 , and 170 square feet/acre); 2 types of thinning (above and below); and 2 replications.

REQUIRED INPUT
Basal area, thinning type, time since thinning

Periodic annual diameter growth, net and gross periodic annual basal area growth, periodic annual net and gross total cubic volume growth, periodic annual net and gross International $1 / 4$-inch board foot volume growth for trees $\geqslant 10.0$ inches d.b.h.

TABLE F. 21
SPECIES: Western white pine

FORM OF INFORMATION: Stand growth equations
REFERENCE: Watt (1960)

DATA SOURCES

Species Composition: Western white pine, Douglas-fir, grand fir, western larch, western hemlock, lodgepole pine, western redcedar, subalpine fir

Site Index Species: Western white pine Plot Sizes: 0.025-2.0 acre
Site Index Range: .16-95 Even-Age
Site Index Type: Haig (1932) Age Range: 16-125 years
Notes: 94 plots from northern Idaho, 88 plots used in equation for change in site index, 94 plots in equation for change in normality.

REQUIRED INPUT

CORRESPONDING OUTPUT

5-year change in site index
20-year change in site index
Percent change in normality for basal area, total cubic volume and Scribner board foot volume

TABLE F. 22
SPECIES: White fir or grand fir

FORM OF INFORMATION: Stand growth equations
REFERENCE: Cochran (1979c)

DATA SOURCES

Vegetation Zones: Grand fir, Douglas-fir

Site Index Species: White fir, grand fir	Plot Sizes:	Single-tree	
Site Index Range:	$50-110$	Even-Age	
Site Index Type: Cochran (1979c)	Age Range:	$10-100$ years	

Notes: Site index curves also presented; 2-5 trees on each of 34 plots were sectioned.

REQUIRED INPUT
Age at breast height, site index

CORRESPONDING OUTPUT
Height of dominants

Series G: Tree Growth/Mortality Equations

TABLE G. 1
SPECIES: Douglas-fir

FORM OF INFORMATION: Tree growth equations
REFERENCE: Flora and Fedkiw (1964)

DATA SOURCES
Site Index Species: Douglas-fir
Site Index Range: $110-200$
Site Index Type: McArdle et al. (1961)

REQUIRED INPUT

Age, site index, d.b.h., number of rings in last breast-high radial inch

CORRESPONDING OUTPUT

For each tree:
Annual or 5-year change in Scribner board foot volume to a 6 -inch top

TABLE G. 2
SPECIES: Douglas-fir, grand fir, western larch, western redcedar, western white pine

FORM OF INFORMATION: Tree mortality equations
REFERENCE: Hamilton and Edwards (1976)

DATA SOURCES

Plot Sizes: 25 basal area factor points \quad Years Measured: 1964-1970; 1968-1974
Notes: Data from northern Idaho. Number of trees measured by species: Douglas-fir, 2,036; grand fir, 3,864; western larch, 784; western redcedar, 3,282; western white pine, 1,363. Equations also available for ponderosa pine, western hemlock, Engelmann spruce, subalpine fir, mountain hemlock, lodgepole pine.

REQUIRED INPUT

For Douglas-fir:
Tree height, tree d.b.h.
For grand fir and western redcedar:
Percent of tree that is defective, and crown class; or stand basal area, and tree d.b.h.

For western larch:
Stand age, tree height, tree d.b.h.
For western white pine:
Stand basal area, tree d.b.h.

CORRESPONDING OUTPUT

Annual mortality rate (as a proportion of total No. trees)

TABLE G. 3
SPECIES: Douglas-fir

FORM OF INFORMATION: Tree growth equations
REFERENCE: Crown et al. (1977), Hall et al. (1980)

DATA SOURCES

Species Composition: Douglas-fir

Site Index Species:	Douglas-fir	Even-Age	
Site Index Value:	69	Age Range:	$24-27$ and $24-30$ years
Site Index Type:	King (1966)	Years Measured: 1971,1972 to 1974, 1975;	
Plot Sizes:	0.1 acre		1971,1972 to 1977, 1978

Notes: 36 plots from Shawnigan Lake area of British Columbia.

REQUIRED INPUT
CORRESPONDING OUTPUT

Level of fertilization, level of thinning, d.b.h.

For 3 and 6 years:
D.b.h. Periodic Annual Increment, basal area Periodic Annual Increment, height Periodic Annual Increment, total cubic volume Periodic Annual Increment

TABLE G. 4
SPECIES: Douglas-fir, red alder, redwood, and tanoak

FORM OF INFORMATION: Tree mortality equations
REFERENCE: Krumland et al. (1977)

DATA SOURCES

Species Composition: Redwood, Douglas-fir, white fir, western hemlock, Sitka spruce, tanoak, red alder, Pacific madrone, bigleaf maple

Age Range: $\quad 10-100$ years
Plot Sizes: $\quad 0.1-0.5$ acre
Notes: $\quad 506$ permanent plots from Del Norte, Humboldt, and Mendocino counties of California.

REQUIRED INPUT

CORRESPONDING OUTPUT

Tree d.b.h., quadratic mean
Probability that tree will die diameter of stand, average in the next year diameter of stand, No. trees
in stand, species

TABLE G. 5
SPECIES: Grand fir

FORM OF INFORMATION: Tree growth equations
REFERENCE: Seidel (1980a)

DATA SOURCES

$\begin{array}{ll}\text { Vegetation Zones: } & \text { Grand fir } \\ \text { Species Composition: Grand fir, Douglas-fir, western larch, ponderosa pine, lodgepole }\end{array}$ pine

Site Index Species: White fir Plot Sizes: Single-tree
Site Index Value: 45
Site Index Type: Cochran (1979c)
Years Measured: 1974, 1976, and 1979

Notes: 115 trees measured on a 40-acre stand. Released understory trees.

REQUIRED INPUT CORRESPONDING OUTPUT

Crown ratio, height growth 1 year before release, crown diameter, height, height growth 5 years before release

2-year d.b.h. growth, 5-year d.b.h. growth, 2-year height growth, 5-year height growth

TABLE G. 6
SPECIES: Lodgepole pine

FORM OF INFORMATION: Tree growth equations
REFERENCE: Cole and Stage (1972)

DATA SOURCES

Site Index Type: Alexander et al. (1977) Years Measured: 1957-1960
Even-Age
Notes: 264 trees on 88 permanent plots located in Idaho, Montana, Wyoming, and Utah. Equations also available for Rocky Mountain ponderosa pine, Douglas-fir, western larch, western white pine, western redcedar, western hemlock, Engelmann spruce, subalpine fir, grand fir, mountain hemlock.

REQUIRED INPUT

CORRESPONDING OUTPUT

Tree d.b.h., crown competition factor,
10-year basal area increment
average diameter, elevation, site index, age at breast height

TABLE G. 7
SPECIES: Lodgepole pine

FORM OF INFORMATION: Tree growth equations
REFERENCE: Stage (1975)

DATA SOURCES

Plot Sizes: Single-tree
Years Measured: 1969-1972

Notes: 1,165 trees used to develop equations. Equations also available for Rocky Mountain ponderosa pine, Douglas-fir, western larch, western white pine, western redcedar, western hemlock, Engelmann spruce, subalpine fir, grand fir, mountain hemlock.

REQUIRED INPUT
Habitat type, diameter growth, height, d.b.h., crown ratio

CORRESPONDING OUTPUT

For each tree:
10 -year change in height

TABLE G. 8
SPECIES: Ponderosa pine

FORM OF INFORMATION: Tree growth equations
REFERENCE: Lemmon and Schumacher (1962)

DATA SOURCES

Site Index Species: Ponderosa pine
Site Index Range: 40-160
Site Index Type: Meyer (1938)

Even-Age
Age Range: $\quad 31-160$ years
Years Measured: 1954-1957

Notes: Some single-tree plots. Data from Montana, Idaho, Washington, Oregon, California, and Arizona.

REQUIRED INPUT

CORRESPONDING OUTPUT

Total age, site index, basal area of dominants and codominants, d.b.h., height

Total age, basal area of dominants and codominants, d.b.h.

Total age, site index

5-year radial growth, No. growth rings in last radial inch at breast height
5- and 10 -year change in cubic volume

No trees basal area, quadratic mean
diameter, total cubic volume, international 1/8-inch board foot volume for the dominant stand

TABLE G. 9

SPECIES: Red fir, white fir

FORM OF INFORMATION: Tree mortality equations
REFERENCE: Ferrell (1980)

DATA SOURCES

Species Composition: White fir, red fir, grand fir
Plot Sizes: $\quad 1.0$ and 20.0 acres \quad Years Measured: 1975-1977
Notes: 1,012 trees from 47 clusters composed of a 20-acre plot for measuring mortality and a 1.0-acre subplot of live trees in northern California.

REQUIRED INPUT

Crown class, crown ratio, top condition, ragged crown percent, species

CORRESPONDING OUTPUT

One-year probability of mortality

Series H: Whole-Stand Simulators

TABLE H. 1
SPECIES: Douglas-fir

FORM OF INFORMATION: Whole-stand simulator
REFERENCE: Hoyer (1975)

DATA SOURCES

Vegetation Zones: Western hemlock
Site Index Species: Douglas-fir
Site Index Range: 60-140
Site Index Type: King (1966)
Notes: 308 plots

REQUIRED INPUT

Total age, basal area, site index, nature and intensity of thinning, fertilization (yes or no)

Even-Age
Age Range: 11-42 years

CORRESPONDING OUTPUT

For all trees $\geqslant 1.5$ inches d.b.h. before thinning:

Average height, average tarif, No. trees, quadratic mean diameter, basal area, total cubic volume, Scribner board foot volume to a 6 -inch top

For all removals $\geqslant 1.5$ inches d.b.h.:
Average tarif, No. trees, quadratic mean diameter, basal area, total cubic volume, Scribner board foot volume to a 6 -inch top.

For residual trees $\geqslant 1.5$ inches d.b.h.: Average tarif, quadratic mean diameter, total cubic volume, Scribner board foot volume to a 6 -inch top, basal area, 5-year basal area growth.

TABLE H. 2
SPECIES: Douglas-fir

FORM OF INFORMATION: Whole-stand simulator
REFERENCE: Bruce et al. (1977); Reukema and Bruce (1977)

DATA SOURCES

Vegetation Zones: Sitka spruce, western hemlock, Willamette Valley, Pacific silver fir
Species Composition: Douglas-fir, western hemlock, western redcedar, grand fir, Pacific silver fir, noble fir, western white pine, bigleaf maple, red alder, black cottonwood, Oregon white oak

Site Index Species: Douglas-fir
Even-Age
Site Index Range: 80-200
Site Index Type: McArdle et al. (1961)
Age Range: $\quad 20-180$ years
Plot Sizes: $\quad 0.0625-4.0$ acres
Notes: Based on a combination of data from McArdle et al. (1961) and more recent data from thinning experiments.

REQUIRED INPUT

CORRESPONDING OUTPUT

Site index, merchantability standards,
nature and intensity of:
thinning, precommercial thinning, fertilization, genetic improvement

For removals and residuals: Quadratic mean diameter, basal area, No. trees, total cubic volume, cubic volume to a 4-inch top, International $1 / 4$-inch board foot volume to a 5-inch top

TABLE H. 3

SPECIES: Douglas-fir

FORM OF INFORMATION: Whole-stand simulator
REFERENCE: Curtis et al. (1981)

DATA SOURCES

Vegetation Zones: Sitka spruce, western hemlock, Willamette Valley, Pacific silver fir
Species Composition: At least 80 percent Douglas-fir

Site Index Species:	Douglas-fir	Plot Sizes:	$0.05-1.0$ acre
Site Index Range:	$52-162$	Even-Age	
Site Index Type:	King (1966)	Age Range:	$12-91$ years

Notes: 203 installations consisting of 1,434 plots.

REQUIRED INPUT

To project a regional "average" stand: Site index; stand origin (natural, seeded or planted); age and intensity of precommercial thinning; number, timing and type or intensity of commercial thinning; timing and quantity of fertilization; timing of final harvest.
Additional required input to project an existing stand:
Total age and No. trees $\geqslant 1.6$ inches d.b.h.; or total age and No. trees $\geqslant 1.6$ inches d.b.h. and quadratic mean d.b.h. $\geqslant 1.6$ inches; or total age, and quadratic mean diameter $\geqslant 1.6$ inches, and basal area $\geqslant 1.6$ inches at breast height; or total age and No. trees $\geqslant 1.6$ inches d.b.h and basal area $\geqslant 1.6$ inches at breast height.

CORRESPONDING OUTPUT

For all trees $\geqslant 1.6$ inches d.b.h.:
Height of 40 largest trees, Lorey's height, quadratic mean diameter, basal area, No. trees, total cubic volume, net annual total cubic volume growth, net total cubic volume Mean Annual Increment, net cubic volume to a 4 -inch top Mean Annual Increment for trees $\geqslant 5.6$ inches d.b.h., net cubic volume to a 4 -inch top Mean Annual Increment for trees $\geqslant 7.6$ inches d.b.h. For all trees $\geqslant 5.6$ inches d.b.h.: Quadratic mean diameter, basal area, No. trees, total cubic volume, cubic volume to a 4-inch top For all trees $\geqslant 7.6$ inches d.b.h.: Quadratic mean diameter, basal area, No. trees, total cubic volume, cubic volume to a 4 -inch top, cubic volume to a 6 -inch top, International $1 / 4$-inch board foot volume to a 6 -inch top, Scribner board foot volume to a 6 -inch top

FORM OF INFORMATION:
Single-tree/distance-independent simulator

SPECIES: Lodgepole pine
REFERENCE: Stage (1973)

DATA SOURCES

Site Index Type: Alexander et al. (1967)
Notes: Adapted to the following northern Rocky Mountain species: ponderosa pine, Douglas-fir, western larch, western white pine, western redcedar, western hemlock, Engelmann spruce, subalpine fir, grand fir, mountain hemlock.

REQUIRED INPUT

CORRESPONDING OUTPUT

Stand characteristics:
Site index, habitat type, age,
total area, elevation, latitude,
slope, aspect
Tree data from representative
sample:
D.b.h., height, crown ratio,
radial increment, species, expansion
factor

For each stand:

Average diameter, No. trees, basal area, relative density, cubic volume, bole surface area, bole length

For each tree:
D.b.h., height, crown ratio factor

Sample design information
Management information

TABLE 1.2 FORM OF INFORMATION: Single-tree/distance-independent simulator

SPECIES: Ponderosa pine REFERENCE: Lemmon and Schumacher (1963)

DATA SOURCES

Site Index Species: Ponderosa pine
Site Index Range: 40-160
Site Index Type: Meyer (1938)

Even-Age
Age Range: $\quad 31-160$ years
Years Measured: 1954-1957

Notes: Some single-tree plots. Data from Montana, Idaho, Washington, Oregon, California, and Arizona.

REQUIRED INPUT

CORRESPONDING OUTPUT

For normal stands at age 30 :
Quadratic mean diameter, No. trees, basal area, site index, nature and intensity of thinning

Basal area, No. trees, quadratic mean diameter, cubic volume to a 4 -inch top, International $1 / 8$-inch board foot volume to an 8 -inch top

TABLE 1.3

SPECIES: Redwood, Douglasfir, red alder. tanoak

FORM OF INFORMATION: Single-tree/distance-independent simulator

REFERENCE: Krumland and Wensel (1980a, b, c, d; 1981)

DATA SOURCES

Species Composition: Redwood, Douglas-fir, white fir, western hemlock, Sitka spruce, tanoak, red alder, Pacific madrone, bigleaf maple
Site Index Species: Redwood and Douglas-fir
Site Index Type: Krumland and Wensel (1977a) or King (1966)
Plot Sizes: 0.1-0.5 acre
Notes: 512 plots from Del Norte, Humboldt, and Mendocino counties of California.

REQUIRED INPUT

CORRESPONDING OUTPUT

Stand characteristics:
Age at breast height, site index, timing and type/intensity of cutting (both thinning and harvest)

Tree data from representative sample:
D.b.h., height, crown ratio, species, expansion factor

For redwood, Douglas-fir, and the stand total:

Quadratic mean diameter, No. trees, basal area, total cubic volume, Scribner board foot volume to a 6-inch top, 5-year basal area growth, 5-year total cubic volume growth, 5-year Scribner board foot volume to a 6-inch top growth

For individual trees:
Species, d.b.h., height, crown ratio, expansion factor, 5-year d.b.h. growth, 5-year height growth, absolute fraction of normal height growth, absolute fraction of normal tree basal area growth

TABLE J. 1

SPECIES: Douglas-fir

FORM OF INFORMATION: Single-tree/distance-dependent simulator

REFERENCE: Newnham and Smith (1964)

DATA SOURCES

REQUIRED INPUT

CORRESPONDING OUTPUT

```
For each tree:
D.b.h., height
```

For each stand:
No. trees, average diameter, basal area

TABLE J. 2
FORM OF INFORMATION: $\begin{aligned} & \text { Single-tree/distance-dependent } \\ & \text { simulator }\end{aligned}$
SPECIES: Douglas-fir REFERENCE: Arney (1974)

DATA SOURCES

Vegetation Zones:	Western hemlock	Site Index Type:
Site Index Species:	Douglas-fir (1966)	
Site Index Range:	$80-116$	Even-Age
		Age Range: 25-60 years

REQUIRED INPUT

Site index, stem coordinates, No. years to reach breast height, nature and intensity of thinning

CORRESPONDING OUTPUT

Cubic volume, basal area, No. trees, quality and form classes

TABLE J. 3

SPECIES: Douglas-fir, western hemlock

FORM OF INFORMATION: Single-tree/distance-dependent simulator

REFERENCE: Lin (1974)

DATA SOURCES

Vegetation Zones: Sitka spruce, western hemlock
Site Index Species: Douglas-fir or western hemlock
Site Index Range: $90-170$
Notes: Data from western Oregon.

Site Index Type: McArdle et al.
(1961) or
Barnes (1962)

Even-Age
Age Range: $\quad 15-70$ years

REQUIRED INPUT
Site index, age, thinning specifications
For each tree:
D.b.h., coordinates, past average space index, last space index, competition status, position status, species

TABLE J. 4

SPECIES: Douglas-fir
FORM OF INFORMATION: Single-tree/distance-dependent
ORM OF Nimulator

REFERENCE: Mitchell (1975)

DATA SOURCES

Vegetation Zones: Sitka spruce
Site Index Species: Douglas-fir
Site Index Range: 100-130
Site Index Type: King (1966)
Notes: Data from 60 trees and 3 plots on Vancouver Island, British Columbia.

REQUIRED INPUT

CORRESPONDING OUTPUT
For each tree:
D.b.h., height, upper stem diameters, crown sizes
For each stand:
Basal area, cubic volume

Species, age, coordinates, site index method, No. site trees/acre, sequence of ages to be simulated, nature and intensity of: thinning, fertilization, pruning, defoliation, genetic improvement

Even-Age
Age Range: 5-60 years

Stem map
For each tree:
D.b.h., growing space index, cubic volume, status

CORRESPONDING OUTPUT

TABLE J. 5

SPECIES: Lodgepole pine

FORM OF INFORMATION: Single-tree/distance-independent simulator

REFERENCE: Newnham and Smith (1964)

DATA SOURCES

V egetation	Zones:	Ponderosa pine		
Site Index	Species:	Lodgepole pine	Plot Sizes:	0.1-0.2 acre
Site Index	Range:	30-70	Even-Age	
Site Index	Type:	Dahms (1964)	Age Range:	28-161 years
Notes: 94	plots			

REQUIRED INPUT

For each tree:
Coordinates, species, d.b.h., Nature and intensity of thinning

CORRESPONDING OUTPUT

For each tree:
D.b.h., height

For each stand:
No. trees, average diameter, basal area

TABLE J. 6

SPECIES: Lodgepole pine

FORM OF INFORMATION: $\begin{aligned} & \text { Single-tree/distance-dependent } \\ & \text { simulator }\end{aligned}$
REFERENCE: Lee (1967)

DATA SOURCES

Even-Age

REQUIRED INPUT
Average d.b.h. and standard deviation of d.b.h., average spacing

CORRESPONDING OUTPUT

For each tree:
D.b.h., height, crown width, basal area, cubic volume

LITERATURE CITED

ALEXANDER, ROBERT R., DAVID TACKLE, and WALTER G. DAHMS. 1967. Site indexes for lodgepole pine, with corrections for stand density. USDA Forest Service Research Paper RM-29. Rocky Mountain Forest and Range Experiment Station, Fort Collins, Colorado.

ARNEY, JAMES D. 1974. An individual tree model for stand simulation of Douglas-fir. P. 38-43 in J. Fries, ed., Growth models for tree and stand simulation. Department of Forest Yield Research, Royal College of Forestry, Stockholm, Research Note 30.

ARVANITIS, L.G., J. LINDQUIST, and M. PALLEY. 1964. Site index curves for evenaged young-growth ponderosa pine of the westside Sierra Nevada. University of California, School of Forestry, California Forestry and Forest Products No. 35. Berkeley, California.

BARNES, GEORGE H. 1953. Yield of evenaged stands of western hemlock. Pacific Northwest Forest and Range Experiment Station Preliminary Report. Portland, Oregon.

BARNES, GEORGE H. 1955. Yield tables for Douglas-fir under intensive thinning regimes. Oregon State College, Forest Experiment Station Research Note No. 1. Corvallis, Oregon.

BARNES, GEORGE H. 1962. Yield of evenaged stands of western hemlock. U.S. Department of Agriculture Technical Bulletin No. 1273. Washington, D.C.

BARRETT, JAMES W. 1978. Height growth and site index curves for managed, even-aged stands of ponderosa pine in the Pacific Northwest. USDA Forest Service Research Paper PNW-232. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

BEHRE, C. EDWARD. 1928a. Preliminary normal yield tables for second-growth western yellow pine in northern Idaho and adjacent areas. Journal of Agricultural Research 37:379-397.

BEHRE, C. EDWARD. 1928b. Preliminary yield tables for second-growth western yellow pine in the inland empire. University of Idaho Bulletin 1. Moscow, Idaho.

BRIEGLEB, PHILLIP A. 1942. Estimating trend of normality percentage. Journal of Forestry 40:785-793.

BRIEGLEB, PHILLIP A. 1943. Growth of ponderosa pine by Keen tree class. USDA Forest Service Research Note PNW-32. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

BRIEGLEB, PHILLIP A. 1948. The yield of Douglas-fir in the Pacific Northwest measured by International 1/4-inch kerf log rule. USDA Forest Service Research Note PNW-46. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

BRITISH COLUMBIA FOREST SERVICE. 1936. Volume, yield and stand tables for some of the principal timber species of British Columbia. Research Division, British Columbia Forest Service. Victoria, British Columbia.

BRUCE, DAVID. 1981. Consistent heightgrowth and growth-rate estimates for remeasured plots. Forest Science 27:711-725.

BRUCE, DAVID, DONALD J. DEMARS, and DONALD L. REUKEMA. 1977. Douglas-fir managed yield simulator--DFIT user's guide. USDA Forest Service General Technical Report PNW-57. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

BRUCE, DONALD. 1923. Preliminary yield tables for second-growth redwood. University of California, College of Agriculture, Agricultural Experiment Station Bulletin No. 361. Berkeley, California.

BRUCE, DONALD. 1948. A revised yield table for Douglas-fir. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

CHAMBERS, CHARLES J. 1974. Empirical yield tables for predominantly alder stands in western Washington. Washington State Department of Natural Resources Report No. 31. Olympia, Washington.

CHAMBERS, CHARLES J. 1980. Empirical growth and yield tables for the Douglas-fir zone. Washington State Department of Natural Resources Report No. 41. Olympia, Washington.

CHAMBERS, CHARLES J., and F.M. WILSON. 1971. Empirical yield tables for the Douglas-fir zone. Washington State Department of Natural Resources Report No. 20. Olympia, Washington.

CHAMBERS, CHARLES J., and F.M. WILSON. 1978. Empirical yield tables for the western hemlock zone. Washington Department of Natural Resources Report No. 22R. Olympia, Washington.

COCHRAN, P.H. 1979a. Gross yields for even-aged stands of Douglas-fir and white or grand fir east of the Cascades in Oregon and Washington. USDA Forest Service Research Paper PNW-263. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

COCHRAN, P.H. 1979b. Site index and height growth curves for managed even-aged stands of Douglas-fir east of the Cascades in Oregon and Washington. USDA Forest Service Research Paper PNW-251. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

COCHRAN, P.H. 1979c. Site index and height growth curves for managed even-aged stands of white fir or grand fir east of the Cascades in Oregon and Washington. USDA Forest Service Research Paper PNW-252. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

COLE, DENNIS M., and ALBERT R. STAGE. 1972. Estimating future diameters of lodgepole pine trees. USDA Forest Service Research Paper INT-131. Intermountain Forest and Range Experiment Station, Ogden, Utah.

CROWN, M., R.V. QUENET, and C. LAYTON. 1977. Fertilization and thinning effects on a Douglas-fir ecosystem at Shawnigan Lake. Canadian Forestry Service, Pacific Forest Research Centre Information Report BC-X-152. Victoria, British Columbia.

CUMMINGS, L.J. 1937. Larch-Douglas-fir board foot yield tables. USDA Forest Service Northern Rocky Mountain Forest and Range Experiment Station Applied Forestry Note 78.

CURTIS, ROBERT O. 1967. A method of estimation of gross yield of Douglas-fir. Forest Science Monograph 13.

CURTIS, ROBERT O., GARY W. CLENDENEN, and DONALD J. DEMARS. 1981. A new stand simulator for Douglas-fir--DFSIM user's guide. USDA Forest Service General Technical Report PNW-128. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

CURTIS, ROBERT O., FRANCIS R. HERMAN, and DONALD J. DEMARS. 1974. Height growth and site index estimates for Douglasfir (Pseudotsuga menziesii) in high-elevation forests of the Oregon-Washington Cascades. Forest Science 20:307-316.

DAHMS, WALTER G. 1964. Gross and net yield tables for lodgepole pine. USDA Forest Service Research Paper PNW-8. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

DAHMS, WALTER G. 1975. Gross yield of central Oregon lodgepole pine. P. 208-232 in David M. Baumgartner, ed., Management of lodgepole pine ecosystems proceedings. Washington State University, Cooperative Extension Service, Pullman, Washington.

DOUGLAS-FIR SECOND-GROWTH MANAGEMENT COMMITTEE. 1947. Management of second-growth forests in the Douglas-fir region. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

DUNNING, DUNCAN. 1942. A site classification for the mixed-conifer selection forests of the Sierra Nevadas. USDA Forest Service California Forest and Range Experiment Station Research Note 28.

DUNNING, DUNCAN, and L.H. REINEKE. 1933. Preliminary yield tables for secondgrowth stands in the California pine region. USDA Forest Service Technical Bulletin 354. Washington, D.C.

FERRELL, GEORGE T. 1980. Risk-rating systems for mature red fir and white fir in northern California. USDA Forest Service General Technical Report PSW-39. Pacific Southwest Forest and Range Experiment Station, Berkeley, California.

FLIGG, D.M. 1960. Empirical yield tables. British Columbia Forest Service Forest Survey Note 6. Victoria, British Columbia.

FLORA, DONALD, and JOHN FEDKIW. 1964. Volume growth percent tables for Douglas-fir trees. USDA Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

FRANKLIN, JERRY F., and C.T. DYRNESS. 1973. Natural vegetation of Oregon and Washington. USDA Forest Service General Technical Report PNW-8. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

GALLAHER, W.H. 1913. Second growth yellow pine. Forestry Quarterly 11:531-536.

GEDNEY, DONALD R., FLOYD A. JOHNSON, and VERNON E. HICKS. 1959. Some estimates of growth and mortality from the Malheur National Forest in eastern Oregon. USDA Forest Service Research Note PNW-166. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

HAIG, IRVINE T. 1932. Second-growth yield, stand and volume tables for the western white pine type. U.S. Department of Agriculture Technical Bulletin No. 323. Washington, D.C.

HALL, FREDERICK C. 1973. Plant communities of the Blue Mountains in eastern Oregon and southeastern Washington. USDA Forest Service Pacific Northwest Region Area Guide 3-1. Portland, Oregon.

HALL, T.H., R.V. QUENET, C.R. LAYTON, and R.J. ROBERTSON. 1980. Fertilization and thinning effects on a Douglas-fir ecosystem at Shawnigan Lake. Canadian Forestry Service, Pacific Forest Research Centre Information Report BC-X-202. Victoria, British Columbia.

HAMILTON, DAVID A., JR., and BRUCE M. EDWARDS. 1976. Modeling the probability of individual tree mortality. USDA Forest Service Research Paper INT-185. Intermountain Forest and Range Experiment Station, Ogden, Utah.

HANZLIK, E.J. 1914. A study of the growth and yield of Douglas-fir on various soil qualities in western Washington and Oregon. Forestry Quarterly 12:440-451.

HERMAN, FRANCIS R., ROBERT O. CURTIS, and DONALD J. DEMARS. 1978. Height
growth and site index estimates for noble fir in high-elevation forests of the OregonWashington Cascades. USDA Forest Service Research Paper PNW-243. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

HOYER, GERALD E. 1966. Provisional optimum thinning intensity tables; a basis for thinning yield control of Douglas-fir. Washington State Department of Natural Resources Report 6. Olympia, Washington.

HOYER, GERALD E. 1967. British thinning yield tables converted to American units of measure. Washington State Department of Natural Resources Report 9. Olympia, Washington.

HOYER, G.E. 1975. Measuring and interpreting Douglas-fir management practices (explanation of a simulation technique, its results and meaning). Washington State Department of Natural Resources Report 26. Olympia, Washington.

JOHNSON, HERMAN M., EDWARD J. HANZLIK, and WILLIAM H. GIBBONS. 1926. Red alder of the Pacific Northwest. U.S. Department of Agriculture Bulletin 1437. Washington, D.C.

KING, JAMES E. 1966. Site index curves for Douglas-fir in the Pacific Northwest. Weyerhaeuser Forest Research Center, Weyerhaeuser Forest Paper No. 8. Centralia, Washington.

KRUMLAND, BRUCE, JOEL DYE, and LEE C. WENSEL. 1977. Individual tree mortality models for the north coast region of California. University of California, Berkeley, College of Natural Resources Cooperative Redwood Yield Research Project Research Note 6.

KRUMLAND, BRUCE, and LEE. C. WENSEL. 1977a. Height growth patterns and fifty year base age site index curves for young growth coastal redwood. University of California, Berkeley, College of Natural Resources Cooperative Redwood Yield Research Project Research Note 4.

KRUMLAND, BRUCE, and LEE C. WENSEL. 1977b. Variable density yield equations for natural stands of coastal conifers. University of California, Berkeley, College
of Natural Resources Cooperative Redwood Yield Research Project Research Note 6.

KRUMLAND, BRUCE, and LEE C. WENSEL. 1980a. Concepts, design, and uses of coastal growth models. University of California, Berkeley, College of Natural Resources Cooperative Redwood Yield Research Project Research Note 14.

KRUMLAND, BRUCE, and LEE C. WENSEL. 1980b. CRYPTOS(I)--User's guide. University of California, Berkeley, College of Natural Resources Cooperative Redwood Yield Research Project Research Note 16.

KRUMLAND, BRUCE, and LEE C. WENSEL. 1980c. Illustrative yield tables for coastal conifers in California (preliminary version). University of California, Berkeley, College of Natural Resources Cooperative Redwood Yield Research Project Research Note 18.

KRUMLAND, BRUCE, and LEE C. WENSEL. 1980d. User's guide to GENR. University of California, Berkeley, College of Natural Resources Cooperative Redwood Yield Research Project Research Note 17.

KRUMLAND, BRUCE, and LEE C. WENSEL. 1981. A tree increment model system for north coastal California: Design and implementation. University of California, Berkeley, College of Natural Resources Cooperative Redwood Yield Research Project Research Note 15.

LARSEN, LOUIS T. 1916. Sugar pine. U.S. Department of Agriculture Bulletin No. 426. Washington, D.C.

LEE, YAM (JIM). 1967. Stand models for lodgepole pine and limits to their application. Forestry Chronicle 43:387-388. (Thesis abstract.)

LEE, YAM (JIM). 1971. Predicting mortality for even-aged stands of lodgepole pine. Forestry Chronicle 47:29-32.

LEMMON, PAUL E., and F.X. SCHUMACHER. 1962. Volume and diameter growth of ponderosa pine trees as influenced by site index, density, age, and size. Forest Science 9:236-249.

LEMMON, PAUL E., and F.X. SCHUMACHER. 1963. Theoretical growth and yield of hypothetical ponderosa pine stands under different thinning regimes. Forest Science 9:33-43.

LIN, J.Y. 1974. Stand growth simulation models for Douglas-fir and western hemlock in the northwestern United States. P. 102-118 in J. Fries, ed., Growth models for tree and stand simulation. Department of Forest Yield Research, Royal College of Forestry, Stockholm, Research Note 30.

LINDQUIST, JAMES L., and MARSHALL N. PALLEY. 1961. Site curves for young-growth coastal redwood. California Forestry and Forest Products 29:1-4.

LINDQUIST, JAMES L., and MARSHALL N. PALLEY. 1963. Empirical yield tables for young-growth redwood. University of California, College of Agriculture, Agricultural Experiment Station Bulletin No. 796. Berkeley, California.

LINDQUIST, JAMES L., and MARSHALL N. PALLEY. 1967. Prediction of stand growth of young redwood. University of California, College of Agriculture, Agricultural Experiment Station Bulletin No. 831. Berkeley, California.

LYNCH, DONALD W. 1954. Growth of young ponderosa pine stands in the inland empire. USDA Forest Service Research Paper INT-36. Intermountain Forest and Range Experiment Station, Ogden, Utah.

LYNCH, DONALD W. 1958a. Diameter growth of young ponderosa pine trees in the inland empire. USDA Forest Service Research Note INT-59. Intermountain Forest and Range Experiment Station, Ogden, Utah.

LYNCH, DONALD W. 1958b. Effects of stocking on site measurement and yield of second-growth ponderosa pine in the inland empire. USDA Forest Service Research Paper INT-56. Intermountain Forest and Range Experiment Station, Ogden, Utah.

MCARDLE, RICHARD E., and WALTER H. MEYER. 1930. The yield of Douglas-fir in the Pacific Northwest. U.S. Department of Agriculture Technical Bulletin 201. Washington, D.C.

McARDLE, RICHARD E., WALTER H. MEYER, and DONALD BRUCE. 1949. The yield of Douglas-fir in the Pacific Northwest. (Revised.) U.S. Department of Agriculture Technical Bulletin 201. Washington, D.C.

McARDLE, RICHARD E., WALTER H. MEYER, and DONALD BRUCE. 1961. The yield of Douglas-fir in the Pacific Northwest. (Second revision.) U.S. Department of Agriculture Technical Bulletin 201. Washington, D.C.

McKEEVER, D.G. 1947. Empirical yield tables for Douglas-fir: Board feet Scribner rule by site and stocking classes. Weyerhaeuser Co., Tacoma, Washington.

MEYER, WALTER H. 1934. Growth in selectively cut ponderosa pine forests of the Pacific Northwest. U.S. Department of Agriculture Technical Bulletin 407. Washington, D.C.

MEYER, WALTER H. 1937. Yield of even-aged stands of Sitka spruce and western hemlock. U.S. Department of Agriculture Technical Bulletin 544. Washington, D.C.

MEYER, WALTER H. 1938. Yield of even-aged stands of ponderosa pine. U.S. Department of Agriculture Technical Bulletin 630. Washington, D.C.

MITCHELL, KENNETH J. 1975. Dynamics and simulated yield of Douglas-fir. Forest Science Monograph 17.

MUNRO, DONALD D. 1974. Forest growth models--a prognosis. P. 7-21 in J. Fries, ed., Growth models for tree and stand simulation. Department of Forest Yield Research, Royal College of Forestry, Stockholm, Research Note 30.

NEWNHAM, R.M., and J.H.G. SMITH. 1964. Development and testing of stand models for Douglas-fir and lodgepole pine. Forestry Chronicle 40:494-502.

OLIVER, WILLIAM W. 1972. Growth after thinning ponderosa and Jeffrey pine pole stands in northeastern California. USDA Forest Service Research Paper PSW-85. Pacific Southwest Forest and Range Experiment Station, Berkeley, California.

OLIVER, WILLIAM W. 1979. Fifteen-year growth patterns after thinning a ponderosaJeffrey pine plantation in northeastern California. USDA Forest Service Research Paper PSW-141. Pacific Southwest Forest and Range Experiment Station, Berkeley, California.

OLIVER, WILLIAM W., and ROBERT F. POWERS. 1978. Growth models for ponderosa pine. 1. Yield of unthinned plantations in northern California. USDA Forest Service Research Paper PSW-133. Pacific Southwest Forest and Range Experiment Station, Berkeley, California.

POWERS, ROBERT F., and WILLIAM W. OLIVER. 1978. Site classification of ponderosa pine stands under stocking control in California. USDA Forest Service Research Paper PSW-128. Pacific Southwest Forest and Range Experiment Station, Berkeley, California.

REUKEMA, DONALD L., and DAVID BRUCE. 1977. Effects of thinning on yield of Douglas-fir: Concepts and some estimates obtained by simulation. USDA Forest Service General Technical Report PNW-58. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

ROE, ARTHUR L. 1951. Growth tables for cut-over larch-Douglas-fir stands in the upper Columbia Basin. USDA Forest Service Northern Rocky Mountain Forest and Range Experiment Station Paper 30. Missoula, Montana.

ROE, ARTHUR L. 1952. Growth of selectively cut ponderosa pine stands in the upper Columbia Basin. USDA Forest Service Agriculture Handbook No. 39. Washington, D.C.

ROY, D.F. 1955. The Clements growth prediction charts for residual stands of mixed conifers in California. USDA Forest Service California Forest and Range Experiment Station Technical Paper No. 9. Berkeley, California.

SCHMIDT, WYMAN C., RAYMOND C. SHEARER, and ARTHUR L. ROE. 1976. Ecology and silviculture of western larch forest. U.S. Department of Agriculture Technical Bulletin 1520. Washington, D.C.

SCHUMACHER, FRANCIS X. 1926. Yield, stand, and volume tables for white fir in the California pine region. University of California, College of Agriculture, Agricultural Experiment Station Bulletin No. 407. Berkeley, California.

SCHUMACHER, FRANCIS X. 1928. Yield, stand, and volume tables for red fir in California. University of California, College of Agriculture, Agricultural Experiment Station Bulletin No. 456. Berkeley,
California.
SCHUMACHER, FRANCIS X. 1930. Yield, stand, and volume tables for Douglas-fir in California. University of California, College of Agriculture, Agricultural Experiment Station Bulletin No. 491. Berkeley, California.

SEIDEL, K.W. 1980a. Diameter and height growth of suppressed grand fir saplings after overstory removal. USDA Forest Service Research Paper PNW-275. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

SEIDEL, K.W. 1980b. Growth of western larch after thinning from above and below to several density levels: 10-year results. USDA Forest Service Research Note PNW-366. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

SHOW, S.B. 1925. Yield capacities of the pure yellow pine type on the east slope of the Sierra Nevada Mountains in California. Journal of Agricultural Research 31:1121-1135.

SMITH, J. HARRY G. 1968. Growth and yield of red alder in British Columbia. P. 273-286 in Biology of alder, Proceedings of a Symposium of the Northwest Scientific Association. USDA Forest Service General Technical Report PNW-70. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

SMITH, J. HARRY G., JOHN WALTERS, and JOHN W. KER. 1961. Preliminary estimates of growth and yield of western red cedar. University of British Columbia, Faculty of Forestry Research Paper 42. Vancouver, British Columbia.

SMITHERS, L.A. 1961. Lodgepole pine in Alberta. Canadian Department of Forestry Bulletin 127. Ottawa, Ontario.

STAEBLER, GEORGE R. 1953. Mortality estimation in fully stocked stands of young-growth Douglas-fir. USDA Forest Service Research Paper PNW-4. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

STAEBLER, GEORGE R. 1955. Gross yield and mortality tables for fully stocked stands of Douglas-fir. USDA Forest Service Research Paper PNW-14. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

STAEBLER, GEORGE R. 1960. Theoretical derivation of numerical thinning schedules for Douglas-fir. Forest Science 6:98-109.

STAGE, ALBERT R. 1973. Prognosis model for stand development. USDA Forest Service Research Paper INT-137. Intermountain Forest and Range Experiment Station, Ogden, Utah.

STAGE, ALBERT R. 1975. Prediction of height increment for models of forest growth. USDA Forest Service Research Paper INT-164. Intermountain Forest and Range Experiment Station, Ogden, Utah.

STOATE, T.N., and E.C. CROSSIN. 1959. Site quality determination in young Douglas-fir. Forestry Chronicle 35:22-29.

TAYLOR, R.F. 1934. Yield of secondgrowth western hemlock-Sitka spruce stands in southeastern Alaska. USDA Forest Service Technical Bulletin 412. Washington, D.C.

TERRY, B.E.I. 1910. Yield tables of western forests. Forestry Quarterly 8:174-177.

TURNBULL, K.J., and C.E. PETERSON. 1976. Analysis of Douglas-fir growth response to nitrogenous fertilizer, part 1: regional trends. University of Washington, Institute of Forest Products Technical Note 13. Seattle, Washington.

VOLLAND, LEONARD A. 1976. Plant communities of the central Oregon pumice zone. USDA Forest Service Pacific Northwest Region Area Guide 4-2. Portland, Oregon.

WARRACK, G.C. 1959. Forecast of yield in relation to thinning regimes in Douglasfir. British Columbia Forest Service Technical Publication T51. Victoria, British Columbia.

WILEY, KENNETH N. 1978a. Net and gross yields for natural stands of western hemlock in the Pacific Northwest. Weyerhaeuser Co., Forestry Paper No. 19.

WILEY, KENNETH N. 1978b. Site index tables for western hemlock in the Pacific Northwest. Weyerhaeuser Co., Forestry Paper No. 17.

WILEY, KENNETH N., and CHARLES J. CHAMBERS. 1981. Yields of natural western
hemlock stands: A supplement to Weyerhaeuser Forestry Paper No. 19. Washington State Department of Natural Resources Report No. 43. Olympia, Washington.

WILEY, KENNETH N., and MARSHALL D. MURRAY. 1974. Ten-year growth and yield of Douglas-fir following stocking control. Weyerhaeuser Co., Forestry Paper No. 114.

WORTHINGTON, NORMAN P., FLOYD A. JOHNSON, GEORGE R. STAEBLER, and WILLIAM J. LLOYD. 1960. Normal yield tables for red alder. USDA Forest Service Research Paper PNW-36. Pacific Northwest Forest and Range Experiment Station, Portland, Oregon.

HANN, D.W., and K. RIITTERS. 1982. A KEY TO THE LITERATURE ON FOREST GROWTH AND YIELD IN THE PACIFIC NORTHWEST: 1910-1981. Forest Research Laboratory, Oregon State University, Corvallis. Research Bulletin 39. 77 p.

Tables are presented that summarize 108 published articles on forest growth and yield in the Pacific Northwest. Each table describes the form of the information presented, the species to which the information is applicable, the data sources used to develop the information, the data needed to predict growth and y ield, and the form of the predicted data.

HANN, D.W., and K. RIITTERS. 1982. A KEY TO THE LITERATURE ON FOREST GROWTH AND YIELD IN THE PACIFIC NORTHWEST: 1910-1981. Forest Research Laboratory, Oregon State University, Corvallis. Research Bulletin 39. 77 p.

Tables are presented that summarize 108 published articles on forest growth and yield in the Pacific Northwest. Each table describes the form of the information presented, the species to which the information is applicable, the data sources used to develop the information, the data needed to predict growth and yield, and the form of the predicted data.

[^0]: 1 Northwest is defined as encompassing Oregon, Washington, southern British Columbia, northern California, Idaho, and western Montana.

