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Abstract

We consider an SI model of three competing species that are all affected
by a single pathogen which is transmitted directly via mass action. The total
population sizes of the three species satisfy a three-dimensional Lotka-Volterra
competition model. We address the interaction between competition and dis-
ease dynamics, and show that infected coexistence in the model is determined
by the values of the basic reproduction numbers as well as the relative strengths
of intraspecific crowding versus interspecific competition for all three species.
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1 Introduction

Competitive interactions are one of the primary ways that multiple species can inter-
act. Although many mathematical models of competing species have been developed
and analyzed, the influence of disease on a competitive system is less understood,
particularly among systems of more than two species.

Examples of disease that affect systems of competing species can be readily found
in nature [7]. The American grey squirrel was recently introduced to the UK, where
they have proven both competitively stronger than the native red squirrel and serve
as a vector of squirrelpox virus (SQPV) to which they are immune. This virus is
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nearly always fatal to red squirrels, who have little to no natural resistance to the
disease [11]. SQPV accelerates ecological replacement of red squirrels to 17–25 times
its rate in the absence of disease [9].

Competition between the native noble crayfish in Europe and the introduced
American signal crayfish is similarly affected by crayfish plague. Signal crayfish are
competitively stronger and are not killed by plague, which is fatal to noble crayfish [8].

The impact of the tick-borne louping ill virus can extend to much larger systems
of host species. Gilbert et al. investigated its effect on varying systems including
grouse, hares, and deer [3]. In their model, the host species do not directly compete
for resources and the population of the tick vector was explicitly modeled.

In 2006, Hatcher et al. presented a survey of literature describing the effect of
parasites on competitive and predatory relationships [4]. They note that complex
host communities may be able to better support disease, citing the tick-grouse-hare-
deer system. Additionally, they note that disease can produce apparent competition
between species that do not directly compete, since the presence of a vector species
is detrimental to the host species.

One of the first papers to examine a mathematical model for a system of three
species was published by May and Leonard in 1975 [5]. The model consists of a Lotka-
Volterra type system, assuming equal birth rates for all three species and symmetric
competition (species 2 affects species 1 as 3 affects 2 as 1 affects 3). The authors
demonstrate the existence of nonperiodic solutions with indefinitely increasing cycle
times. Although mathematically intriguing and an excellent example of the complex
dynamics of three-species systems, the biological relevance of this behavior is limited.

This work was continued in 1979 when Schuster et al. published an analysis of
three models of three competing species [10], including the original May-Leonard
model, a generalized version without the assumption of symmetry, and a related
model incorporating constraints of constant organization to simulate macromolecular
self-organization. They found that solutions of all models converged to cycles of three
saddle points and three orbits between them.

Chi et al. conducted a further analysis of the asymmetric May-Leonard model in
1998, using alternate assumptions on its parameters to find and determine stability
of equilibria, as well as obtain conditions for the existence of periodic solutions and
neutral orbits [2].

Our primary reference for models involving both competition and disease are those
developed by Bokil and Manore [1]. The authors examine two-species competition
and disease systems with either mass action or frequency incidence disease transmis-
sion. Their analysis of the models includes locating equilibria and determining the
biological conditions (in terms of the basic reproduction number and relative com-
petitive strengths) necessary for their feasibility and stability. In the mass-action
transmission case, the authors consider bifurcations in the model resulting in neutral
state equilibria.

In this paper, we extend and combine these previous models and results to the

2



three-species system with Lotka-Volterra competition and mass action disease trans-
mission. In particular, we show that in our model, the presence of disease cannot re-
verse the competitive outcome, indicating that system dynamics are primarily driven
by competitive interactions.

The remainder of the paper is organized as follows. In Section 2, we introduce
our model and the biologically-meaningful parameters with which we perform our
analysis. In Section 3, we list the equilibria of the model and derive the conditions
for their existence, using the basic reproductive numbers of the disease among 1, 2,
and 3 species. In Section 4 we conduct a local stability analysis on each equilibrium.
A summary of our results and further biological interpretation is given in Section 5.

2 Three Species Competition and Disease Model

Our three-species competition and mass action disease model is extended from the
two-species SI model by Bokil and Manore [1]. For species i = 1, 2, 3, we have

dSi
dt

= aNi

(
1− N1

θi1
− N2

θi2
− N3

θi3

)
− bSi − βSi(I1 + I2 + I3), (2.1a)

dIi
dt

= βSi(I1 + I2 + I3)− bIi, (2.1b)

where Si is the population of susceptible individuals of species i, Ii is the population
of infected individuals of species i, and Ni = Si + Ii is the total population of species
i. This results in a system of six equations, which we simplify by making the following
assumptions on its parameters:

(A1) The death rate b is constant, density-independent, and the same for all species
and for both susceptible and infected individuals.

(A2) Birth rates are density-dependent, with the intrinsic birth rate a reduced by
both interspecific and intraspecific Lotka-Volterra competition.

We define the intrinsic per capita growth rate for each species to be r = a− b > 0.
We focus on mass action disease transmission, which is density-dependent and

assumes contacts between individuals occur at a rate proportional to the total pop-
ulation size. Mass action is often used for directly-transmitted disease, whereas
frequency-incidence transmission, which assumes a fixed contact rate, is more suitable
for vector-transmitted disease [6]. Furthermore, mass action transmission is used in
the model of the red-grey squirrel system developed by Tompkins et al. [11], which
also leads us to assume:

(A3) The transmission coefficient β is constant for all species.

This model can be divided between dynamics due to competition and crowding
and dynamics due to disease, as shown in Figures 1 and 2.
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Figure 1: Conceptual model of competitive interactions between species. Dotted lines
indicate inhibitive relationships; solid lines indicate non-competitive dynamics.

Figure 2: Conceptual model of disease dynamics between species. Dotted lines indicate
infective relationships; solid lines indicate non-infective dynamics.
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2.1 Additional Parameters

The competition parameters θij are defined by the equality

a

θij
:=

r

Kij

, i, j = 1, 2, 3,

where 1
Kij
≤ 1 represents the inhibition strength of species j on species i. The carrying

capacity of species i is Kii. We make a final simplifying assumption:

(A4) All species have the same carrying capacity. Define K := K11 = K22 = K33;
similarly, θ := θ11 = θ22 = θ33.

We define the relative strength of intraspecific crowding versus interspecific com-
petition of species j on i to be

ξij =
1

Kjj

− 1

Kij

, i, j = 1, 2, 3. (2.2)

Since K = Kjj = Kii, there are two possible interpretations for this parameter. First,
ξij > 0 implies species j restricts its own growth more than it restricts the growth of
species i. Alternatively, ξij > 0 also implies growth of species i is more inhibited by
its own population than by the population of species j.

3 Equilibria and Feasibility

There are 15 equilibria. Nontrivial equilibria are written EC,i or EI,i, where the
subscript C denotes a disease-free equilibrium, I denotes an infected equilibrium, and
i is a combination of 1,2, or 3 indicating the species present. Equilibrium components
are notated

EC,i = (SC,i1 , SC,i2 , SC,i3 , 0, 0, 0)

and
EI,i = (SI,i1 , SI,i2 , SI,i3 , II,i1 , II,i2 , II,i3 ).

It is convenient to introduce the following lemma at this time:

Lemma 1. The per-species total population sizes of the nontrivial equilibria are the
same regardless of the presence of disease. Thus, for j = 1, 2, 3, we have NC,i

j = N I,i
j ,

i.e. SC,ij = SI,ij + II,ij .

Proof. From (2.1), the change in total population does not depend on the presence
of disease:

dNi

dt
= Ni

[
a

(
1− N1

θi1
− N2

θi2
− N3

θi3

)
− b
]

= rNi

[
1− N1

Ki1

− N2

Ki2

− N3

Ki3

]
. (3.1)

We now begin the equilibrium analysis.
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3.1 Trivial Equilibrium

The trivial equilibrium is
E0 = (0, 0, 0, 0, 0, 0)

and is always feasible.

3.2 One Host Disease-Free Equilibria

With one species and no disease, the susceptible population reaches carrying capacity:

EC,1 = (K, 0, 0, 0, 0, 0),

EC,2 = (0, K, 0, 0, 0, 0),

EC,3 = (0, 0, K, 0, 0, 0).

These equilibria are always feasible.

3.3 One Host Infected Equilibria

In the presence of disease, the total population remains at carrying capacity but
is divided between the susceptible and infected classes. For infected equilibria, a
threshold quantity called the basic reproduction number (BRN) [12] plays a very
important role.

The BRN is the expected number of secondary infections arising from the intro-
duction of an initial infected individual into an entirely susceptible population. For
a single species, the BRN is defined as

R0,1 =
Kβ

b
(3.2)

for the disease affecting a species i in isolation [1]. We can then write these equilibria
as

EI,1 =

(
b

β
, 0, 0,

b

β
(R0,1 − 1) , 0, 0

)
,

EI,2 =

(
0,
b

β
, 0, 0,

b

β
(R0,1 − 1) , 0

)
,

EI,3 =

(
0, 0,

b

β
, 0, 0,

b

β
(R0,1 − 1)

)
.

Feasibility of these equilibria requires R0,1 > 1.
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3.4 Two Host Disease-Free Equilibria

The two host disease-free equilibria are

EC,12 =

(
KK12

K12 +K ξ21
ξ12

,
ξ21

ξ12

(
KK12

K12 +K ξ21
ξ12

)
, 0, 0, 0, 0

)
, (3.3a)

EC,13 =

(
KK13

K13 +K ξ31
ξ13

, 0,
ξ31

ξ13

(
KK13

K13 +K ξ31
ξ13

)
, 0, 0, 0

)
, (3.3b)

EC,23 =

(
0,

KK23

K23 +K ξ32
ξ23

,
ξ32

ξ23

(
KK23

K23 +K ξ32
ξ23

)
, 0, 0, 0

)
. (3.3c)

The feasibility of these equilibria is determined by the ratio ξji/ξij, where i and j
represent the two persisting species. As described by Bokil and Manore [1], there are
four cases:

1. ξij > 0, ξji > 0: Intraspecific crowding is stronger than interspecific competition
for both species. The equilibrium is feasible.

2. ξij < 0, ξji > 0: Species i is inhibited most by interspecific competition, whereas
species j is inhibited most by intraspecific crowding. Species i “loses” the
competitive interaction and the equilibrium is not biologically feasible.

3. ξij > 0, ξji < 0: Species i is inhibited most by intraspecific crowding, whereas
species j is inhibited most by intraspecific competition. Species j “loses” the
competitive interaction and the equilibrium is not biologically feasible.

4. ξij < 0, ξji < 0: Interspecific competition is stronger than intraspecific crowding
for both species. The equilibrium is feasible.

3.5 Two Host Infected Equilibria

Theorem 1. The basic reproduction number for the two host equilibrium with popu-
lations of species i and j is

R0,ij =
β

b
(SC,iji + SC,ijj ) =

β

b
SC,iji

(
1 +

ξji
ξij

)
.

Proof. The proof follows from [1].
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We can then write the two host infected equilibria as

EI,12 =

 b

β
(

1 + ξ21
ξ12

) , ξ21

ξ12

b

β
(

1 + ξ21
ξ12

) , 0, b(R0,12 − 1)

β
(

1 + ξ21
ξ12

) , ξ21

ξ12

b(R0,12 − 1)

β
(

1 + ξ21
ξ12

) , 0
 , (3.4a)

EI,13 =

 b

β
(

1 + ξ31
ξ13

) , 0, ξ31

ξ13

b

β
(

1 + ξ31
ξ13

) , b(R0,13 − 1)

β
(

1 + ξ31
ξ13

) , 0, ξ31

ξ13

b(R0,13 − 1)

β
(

1 + ξ31
ξ13

)
 , (3.4b)

EI,23 =

0,
b

β
(

1 + ξ32
ξ23

) , ξ32

ξ23

b

β
(

1 + ξ32
ξ23

) , 0, b(R0,23 − 1)

β
(

1 + ξ32
ξ23

) , ξ32

ξ23

b(R0,23 − 1)

β
(

1 + ξ32
ξ23

)
 . (3.4c)

Therefore, feasibility of EI,ij requires R0,ij > 1 and ξji/ξij > 0, for i, j = 1, 2, 3.

3.6 Coexistence Disease-Free Equilibrium

We will denote the coexistence disease-free equilibrium as

EC = EC,123 = (NC
1 , N

C
2 , N

C
3 , 0, 0, 0).

The values of NC
1 , N

C
2 , and NC

3 can be determined analogously to the method used
by Chi et al. [2]. From (2.1) and (3.1), this equilibrium must satisfy

NC
1

Ki1

+
NC

2

Ki2

+
NC

3

Ki3

= 1, (3.5)

for i = 1, 2, 3, since each species’ birth rate equals its death rate. Let

M =

 1
K

1
K12

1
K13

1
K21

1
K

1
K23

1
K31

1
K32

1
K

 , ∆ = detM,

and ∆i for i = 1, 2, 3 be the determinant of the matrix formed by replacing the i-th
column of M with a vector of ones. Then, using (2.2), it can be shown that

∆1 = ξ12ξ23 − ξ23ξ32 + ξ32ξ13 (3.6a)

∆2 = ξ23ξ31 − ξ31ξ13 + ξ13ξ21 (3.6b)

∆3 = ξ31ξ12 − ξ12ξ21 + ξ21ξ32 (3.6c)

∆ =
∆1 + ∆2 + ∆3

K
− ξ13ξ32ξ21 − ξ12ξ23ξ31 (3.6d)

From Cramer’s rule, it follows that

(NC
1 , N

C
2 , N

C
3 , 0, 0, 0) =

(
∆1

∆
,
∆2

∆
,
∆3

∆
, 0, 0, 0

)
. (3.7)
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Making an assumption analogous to that made by Chi et al. [2], we have

0 <
1

K12

<
1

K
<

1

K13

, 0 <
1

K23

<
1

K
<

1

K21

, and 0 <
1

K31

<
1

K
<

1

K32

.

Rewritten in terms of the constants ξ, this is

(A5) ξ12, ξ23, ξ31 > 0 and ξ13, ξ21, ξ32 < 0.

This assumption guarantees that ∆ > 0 and ∆i > 0 for i = 1, 2, 3, so the equilibrium
EC is feasible.

3.7 Infected Coexistence Equilibrium

Denote this equilibrium

EI = EI,123 = (SI1 , S
I
2 , S

I
3 , I

I
1 , I

I
2 , I

I
3 ).

Theorem 2. Let ∆S = ∆1 + ∆2 + ∆3, where the ∆i are defined as in (3.6). The
basic reproduction number of the infection among 3 species is

R0,3 =
β

b

∆S

∆
.

Proof. We use the next-generation matrix approach to compute R0,3 [12]. Let X =

[ I1 I2 I3 ]T . Then the system (2.1) can be written as

dX

dt
= F(X)− V(X) =

βS1(I1 + I2 + I3)
βS2(I1 + I2 + I3)
βS3(I1 + I2 + I3)

−
bI1

bI2

bI3

 ,
where F(X) represents new infections and V(X) represents all other dynamics. Let
F and V be the Jacobians of F and V respectively evaluated at the coexistence
disease-free equilibrium EC . Then

F =

βNC
1 βNC

1 βNC
1

βNC
2 βNC

2 βNC
2

βNC
3 βNC

3 βNC
3

 and V =

b 0 0
0 b 0
0 0 b

 .
Then R0,3 is the spectral radius of the matrix

FV −1 =
β

b

NC
1 NC

1 NC
1

NC
2 NC

2 NC
2

NC
3 NC

3 NC
3

 .
A routine computation shows the eigenvalues of FV −1 are 0, 0 and β

b
(NC

1 +NC
2 +NC

3 ).
Then from (3.6),

R0,3 =
β

b

∆S

∆
.
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Theorem 3. The infected coexistence equilibrium has components SIi = b
β

∆i

∆S
and

IIi = SIi (R0,3 − 1) for i = 1, 2, 3.

Proof. Since dSi = 0 and dIi = 0 at the equilibrium, (2.1) gives

SIi

[
a

(
1−

3∑
j=1

N I
j

θij

)
− b

]
+ aIIi

(
1−

3∑
j=1

N I
j

θij

)
− βSIi

3∑
j=1

IIj = 0, (3.8)

βSIi

3∑
j=1

IIj − bIIi = 0. (3.9)

for i = 1, 2, 3. Let

γ = β

3∑
j=1

IIj . (3.10)

and assume γ 6= 0. Thus from (3.9),

SIi =
bIIi
γ
. (3.11)

Substituting (3.11) into (3.8) and using N I
i = SIi + IIi yields

bIIi
γ

[
a

(
1−

3∑
j=1

(
bIIj
θijγ

+
IIj
θij

))
− b

]
+ aIIi

[
1−

3∑
j=1

(
bIIj
θijγ

+
IIj
θij

)]
− bIIi = 0.

Divide by IIi 6= 0 and multiply both sides by γ2 to get

abγ − ab
3∑
j=1

(
bIIj
θij

+
γIIj
θij

)
− b2γ + aγ2 − aγ

3∑
j=1

(
bIIi
θij

+
IIj γ

θij

)
− bγ2 = 0,

⇒ (a− b)(b+ γ)γ − a(b+ γ)
3∑
j=1

(b+ γ)IIj
θij

= 0.

Since b+ γ 6= 0, it follows that

rγ − a(b+ γ)
3∑
j=1

IIj
θij

= 0.

Use 1
θij

= r
aKij

to get

γ − (b+ γ)
3∑
j=1

IIj
Kij

= 0, i = 1, 2, 3 (3.12)
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and subtract this from the equation (3.12) corresponding to i = l to obtain

3∑
j=1

IIj

(
1

Kij

− 1

Klj

)
= 0.

For i = 1 and l = 2, we have

II1

(
1

K
− 1

K21

)
+ II2

(
1

K12

− 1

K

)
+ II3

(
1

K13

− 1

K23

)
= 0.

Since ξij = 1
K
− 1

Kij
, we get

ξ21I
I
1 − ξ12I

I
2 + (ξ23 − ξ13)II3 = 0. (3.13)

Similarly, for i = 1 and l = 3,

ξ31I
I
1 + (ξ32 − ξ12)II2 − ξ13I

I
3 = 0. (3.14)

From (3.13) and (3.14), we have

II2

(
ξ12ξ31 − ξ12ξ21 + ξ32ξ21

ξ31ξ21

)
= II3

(
ξ13ξ21 − ξ13ξ31 + ξ23ξ31

ξ31ξ21

)
.

Thus, II2 = ∆2

∆3
II3 . It can be shown analogously that

IIj =
∆j

∆k

IIk , (3.15)

where k = 1, 2, 3 and j = 1, 2, 3. Setting ∆S = ∆1 + ∆2 + ∆3 and substituting (3.15)
into (3.12) for i = 1, we can obtain

β∆S

(
II1
∆1

)
−
[
b+ β∆S

(
II1
∆1

)](
II1
∆1

)(
∆1

K
+

∆2

K12

+
∆3

K13

)
= 0.

Setting δ1 = ∆1

K
+ ∆2

K12
+ ∆3

K13
, it follows that

β∆S − bδ1 −
βδ1I

I
1 ∆S

∆1

= 0.

Then

II1 =
b

β

∆1

∆S

(
β

b

∆S

δ1

− 1

)
. (3.16)

Similarly, for i = 2, 3, we obtain

IIi =
b

β

∆i

∆S

(
β

b

∆S

δi
− 1

)
with δi =

∆i

K
+

∆j

Kij

+
∆l

Kil

,
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and j, l = 1, 2, 3 where i 6= j, l.
Note that from (3.11) and (3.15), we have

SIi =
b

β

∆i

∆S

, (3.17)

for i = 1, 2, 3. Thus, (3.16) can be written as

II1 = SI1

(
β

b

∆S

δ1

− 1

)
. (3.18)

From (3.7) and (3.5) for i = 1, we know ∆i = ∆NC
i and

NC
1

K
+

NC
2

K12
+

NC
3

K13
= 1. Thus,

δ1 =
∆NC

1

K
+

∆NC
2

K12

+
∆NC

3

K13

= ∆. (3.19)

It follows that

∆S

δ1

= NC
1 +NC

2 +NC
3 ,

and therefore (3.18) can be written as II1 = SI1 (R0,3 − 1). This can be proved similarly
for the general case, and so for i = 1, 2, 3,

IIi = SIi (R0,3 − 1).

4 Local Stability Analysis

Trivial Equilibrium

The Jacobian of the system (2.1) evaluated at E0 is

J (E0) =


r 0 0 a 0 0
0 r 0 0 a 0
0 0 r 0 0 a
0 0 0 −b 0 0
0 0 0 0 −b 0
0 0 0 0 0 −b


The eigenvalues of J (E0) are r and −b, each with algebraic multiplicity 3. Since
r > 0, this equilibrium is always unstable.
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4.1 One Host Equilibria

One Host Disease-Free Equilibria

The Jacobian evaluated at, for example, EC,1, is

J (EC,1) =



−r − rK
K12

− rK
K13

2b− a− βK − rK
K12
− βK − rK

K13
− βK

0 rKξ21 0 0 − rK
K21

+ a 0

0 0 rKξ31 0 0 − rK
K31

+ a

0 0 0 βK − b βK βK
0 0 0 0 −b 0
0 0 0 0 0 −b

 .

J (EC,2) and J (EC,3) are similar. For i = 1, 2, 3, the equilibrium EC,i has eigenvalues
−r,−b,−b, βK − b, rKξji, and rKξki, where j and k represent the absent species.

Thus, stability requires ξji < 0, ξki < 0, and K < b
β
. From the basic reproduction

number (3.2), these conditions are that R0,1 < 1 and that species i inhibits the other
species more than it inhibits itself, preventing them from invading the system.

One Host Infected Equilibria

The Jacobian at EI,1 is

J (EI,1) =



2b− a− βK − rK
K12

− rK
K13

−r − rK
K12
− b − rK

K13
− b

0 a− βK − rK
K21

0 0 − rK
K21

+ a 0

0 0 a− βK − rK
K31

0 0 − rK
K31

+ a

βK − b 0 0 0 b b
0 βK − b 0 0 −b 0
0 0 βK − b 0 0 −b

 .

which has eigenvalues −r,−βK,−βK, b−βK, rKξ21, and rKξ31. The equilibria EI,2
and EI,3 are similar.

Thus, as in the disease-free case, species i must inhibit the other species more
than itself (implying ξji, ξki < 0). The requirement R0,1 > 1 implied by the feasibility
of the equilibria is now also a stability requirement.

4.2 Two Host Equilibria

Consider the equilibrium of species 1 and 2. For any equilibrium with nonzero popu-
lations of species i, (3.5) holds. Thus, the characteristic polynomial of the Jacobian
evaluated at Ee = (Se1, S

e
2, S

e
3, I

e
1 , I

e
2 , I

e
3) is

P (x) = (x+ η)2(x+ ε)
(
x3 + δ1x

2 + δ2x+ δ3

)
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where

η = b+ β(Ie1 + Ie2)

ε = b+ β(Ie1 + Ie2)− β(Se1 + Se2)

δ1 = r

[
N1

(
1

K
+

1

K31

)
+N2

(
1

K
+

1

K32

)
− 1

]
δ2 = r2

[
N1N2

(
1

K2
− 1

K12K21

)
+
N1 +N2

K

(
N1

K31

+
N2

K32

− 1

)]
δ3 = r3N1N2

(
1

K2
− 1

K12K21

)(
N1

K31

+
N2

K32

− 1

)

The eigenvalue−η is clearly negative. In the disease-free case, we can use Theorem
1 to rewrite the eigenvalue −ε as b(R0,12 − 1). In the infected case, Theorem 1 and
(3.4a) yield −ε = b(1−R0,12). By extension to the other two-host equilibria, it follows
that R0,ij < 1 is required for stability of the disease-free equlibria with species i and
j, and R0,ij > 1 is required for stability of the analogous infected equilibria.

The quantity x3 + δ1x
2 + δ2x+ δ3 is the characteristic polynomial of

Ã = −r


Ne

1

K

Ne
1

K12

Ne
1

K13
Ne

2

K21

Ne
2

K

Ne
2

K23

0 0
Ne

1

K31
+

Ne
2

K32
− 1

 .
Let Ã1 be the 2 × 2 matrix formed by removing the last row and column from Ã.
Since the bottom rightmost element of Ã is one of its eigenvalues, we can factor the
original cubic polynomial into (x+ γ)(x2 + α1x+ α2) where

γ = −r
(

1− N e
1

K31

− N e
2

K32

)
= −

[
1

N3

dN3

dt

]
EC,12

α1 =
r

K
(N e

1 +N e
2 ) =

[
−tr(Ã1)

]
EC,12

α2 = r2N e
1N

e
2

(
ξ12

K
+

ξ21

K12

)
=
[
det(Ã1)

]
EC,12

To simplify notation, define

κij =

[
1

Nl

dNl

dt

]
EC,ij

to be the per capita growth rate of species l at the coexistence disease-free equilibrium
of species i and j.

Then in order for the eigenvalue −γ = κ12 to be negative, we require the growth
rate of species 3 to be negative at the disease-free equilibrium of species 1 and 2,
indicating that it cannot invade the system.

14



(a) ξ12 > 0 and ξ21 < 0. Species 1 persists. (b) ξ12 < 0 and ξ21 > 0. Species 2 persists.

(c) ξ12 < 0 and ξ21 < 0. Coexistence is feasible
but unstable.

(d) ξ12 > 0 and ξ21 > 0. Coexistence is feasible
and stable.

Figure 3: Phase planes showing possible competitive interactions between two species in
the absence of disease. Here, species 1 and 2 are shown.

By the trace-determinant theorem, we need α1 > 0 and α2 > 0 for stability. It is
obvious that α1 is positive. Since ξ12/ξ21 > 0 for feasibility and stability of EC,12 and
EI,12 (cf. Section 3.4), the only way to have α2 > 0 is to have ξ12 > 0 and ξ21 > 0.
This indicates that species 1 and 2 are affected more by intraspecific crowding than
by interspecific competition.

These results can be extended to the other 2-host equilibria. Thus conditions for
stability of the disease-free equilibrium are R0,ij < 1, ξij > 0, ξji > 0, and κij < 0.

4.3 Coexistence Equilibria

Since (3.5) holds for any equilibrium with nonzero populations of species i, the Jaco-
bian of the system (2.1) computed at a coexistence equilibrium Ee = EC , EI can be

15



written as the block matrix

J (Ee) =

[
A(Ee) B(Ee)
C(Ee) D(Ee)

]
, (4.2)

where the 3× 3 sub-blocks are

A(Ee) = (Aij)− diag(b+ I(Ee)),

B(Ee) = (Aij)− (βSei ),

C(Ee) = diag(I(Ee)),

D(Ee) = (βSei )− diag(b),

with the definitions

I(Ee) = β(Ie1 + Ie2 + Ie3),

Aij = −rN
e
i

Kij

+ bδij,

where δij is the Kronecker delta function

δij =

{
1 i = j

0 i 6= j
.

A routine computation shows the characteristic polynomial of J (Ee) to be

P (x) = (x+ η)2(x+ ε)
(
x3 + δ1x

2 + δ2x+ δ3

)
, (4.3)

where

η = b+ β(Ie1 + Ie2 + Ie3), (4.4a)

ε = b+ β(Ie1 + Ie2 + Ie3)− β(Se1 + Se2 + Se3), (4.4b)

δ1 =
r

K
(N e

1 +N e
2 +N e

3 ), (4.4c)

δ2 = r2

[
1

K2
(N e

1N
e
2 +N e

1N
e
3 +N e

2N
e
3 )− N e

1N
e
2

K12K21

− N e
1N

e
3

K13K31

− N e
2N

e
3

K23K32

]
, (4.4d)

δ3 = r3∆N e
1N

e
2N

e
3 . (4.4e)

The eigenvalue −η is clearly negative. In the infected case, it follows directly from
Theorems 2 and 3 that the eigenvalue −ε is b(1−R0,3), so stability requires R0,3 > 1.
In the disease-free case, −ε = b(R0,3 − 1), so stability requires R0,3 < 1.

We then consider x3 + δ1x
2 + δ2x+ δ3. This is the characteristic polynomial of the

matrix

Q =

−
rNe

1

K
− rNe

1

K12
− rNe

1

K13

− rNe
2

K21
− rNe

2

K
− rNe

2

K23

− rNe
3

K31
− rNe

3

K32
− rNe

3

K

 = −r diag(N e
1 , N

e
2 , N

e
3 )M.
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This matrix has an eigenvalue λ1 = −r with corresponding eigenvector
[
N e

1 N e
2 N e

3

]T
,

since

−r

N e
1 0 0

0 N e
2 0

0 0 N e
3

 1
K

1
K12

1
K13

1
K21

1
K

1
K23

1
K31

1
K32

1
K

N e
1

N e
2

N e
3

 = −r

N e
1 0 0

0 N e
2 0

0 0 N e
3

1
1
1

 = −r

N e
1

N e
2

N e
3

 .
This follows as a consequence of Lemma 1 and (3.5).

To find the remaining eigenvalues λ2 and λ3, note that λ1λ2λ3 = −r3∆N e
1N

e
2N

e
3

and λ1 + λ2 + λ3 = − r
K

(N e
1 +N e

2 +N e
3 ). Thus we have

λ2λ3 = r2∆N e
1N

e
2N

e
3

and
λ2 + λ3 = − r

K
(N e

1 +N e
2 +N e

3 −K),

giving

λ2, λ3 =
1

2

[
r

K
(K−N e

1−N e
2−N e

3 )±
√

r2

K2
(N e

1 +N e
2 +N e

3−K)2 − 4r2∆N e
1N

e
2N

e
3

]
.

(4.5)

From Lemma 1 and (3.7), note that the discriminant of (4.5) is

r2

∆2

[(
∆1 + ∆2 + ∆3

K
−∆

)2

− 4∆1∆2∆3

]

=
r2

∆2

[
ξ2

13ξ
2
32ξ

2
21 + 2ξ13ξ32ξ21ξ12ξ23ξ31 + ξ2

12ξ
2
23ξ

2
31

− 4
(
ξ2

12ξ
2
23ξ

2
31 + ξ2

13ξ
2
32ξ

2
21 +G(ξ12, ξ13, ξ21, ξ23, ξ31, ξ32)

) ]
,

where G is a homogenous polynomial of ξij. Making the assumption (A5) guarantees
G > 0. Since we assume K > 1, the discriminant is negative, so the stability of the
equilibrium depends on

Re(λ2) = Re(λ3) = − r

2∆
(ξ13ξ32ξ21 + ξ12ξ23ξ31).

Thus, under these assumptions, we have local asymptotic stability for ξ13ξ32ξ21 +
ξ12ξ23ξ31 > 0 and a saddle point with one-dimensional stable manifold if ξ13ξ32ξ21 +
ξ12ξ23ξ31 < 0. A Hopf bifurcation occurs at ξ13ξ32ξ21 + ξ12ξ23ξ31 = 0.

5 Summary of Results

A review of the biological quantities used in our analysis is given in Table 1. Our
results from the feasibility analysis in Section 3 and local stability analysis in Section
4 are then summarized in Table 2.
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Parameter Definition

ξij The relative strength of intraspecific crowding versus interspecific com-
petition of species j on i.

R0,1 The basic reproduction number of the disease affecting one species in
isolation.

R0,ij The basic reproduction number of the disease affecting two species i and
j in coexistence

R0,3 The basic reproduction number of the disease affecting all three species.
κij The per capita growth rate of species l at the disease-free equilibrium of

species i and j

Table 1: Quantities used to define conditions for equilibrium feasibility and stability.

Equilibrium Feasibility Stability

Trivial always never

1-host DFE always ξmi, ξni < 0, R0,1 < 1
1-host Infected R0,1 > 1 ξmi, ξni < 0, R0,1 > 1

2-host DFE ξij/ξji > 0 ξij , ξji > 0, κij < 0, R0,ij < 1
2-host Infected ξij/ξji > 0, R0,ij > 1 ξij , ξji > 0, κij < 0, R0,ij > 1

3-host DFE ξ12, ξ23, ξ31 > 0, ξ13, ξ32, ξ21 < 0 ξ12ξ23ξ31 + ξ13ξ32ξ21 > 0, R0,3 < 1
3-host Infected ξ12, ξ23, ξ31 > 0, ξ13, ξ32, ξ21 < 0, ξ12ξ23ξ31 + ξ13ξ32ξ21 > 0, R0,3 > 1

R0,3 > 1

Table 2: Summary of conditions for feasibility and stability. In the one-host case, m and
n refer to the absent species and i to the persisting species. In the two-host case, i and j
refer to the persisting species and k to the absent species.

We conclude this section with a further interpretation of the ∆i, which we can re-
late to the stability of the 2-species coexistence disease-free equilibrium that does not
include species i. Consider the per capita growth rate of species 3 at the equilibrium
EC,12. From (2.1), this is

κ12 =
1

N3

dN3

dt

∣∣∣∣
EC,12

= r

(
1− NC,12

1

K31

− NC,12
2

K32

)
,

which, substituting in the equilibrium values given in (3.3a), can be shown to be

κ12 = r∆3
NC,12

1

ξ12

= r∆3
K

ξ12 + ξ21 −Kξ12ξ21

.

Therefore,

∆3 =
κ12

rK
(ξ12 + ξ21 −Kξ12ξ21) .
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In Section 4.2 we proved that stability of EC,12 requires ξ12, ξ21 > 0. Since

NC,12
1 =

Kξ12

ξ12 + ξ21 −Kξ12ξ21

, NC,12
2 =

Kξ21

ξ12 + ξ21 −Kξ12ξ21

,

and EC,12 is assumed feasible, then ξ12 + ξ21 −Kξ12ξ21 has the same sign as ξ12 and
ξ21. Note that the denominator can be rewritten as

K

(
1

K2
− 1

K12K21

)
,

so it is a measure of the strength of crowding versus the strength of competition in
species 1 and 2.

Therefore, ∆3 contains information about the competitive aspects of stability
of this equilibrium (there is no dependence on R0,12 so disease dynamics are not
included). ∆3 < 0 implies either stability or instability due to both the condition
on interspecific competition between species 1 and 2 and the condition on the per
capita growth rate of species 3 being unsatisfied. ∆3 > 0 implies exactly one of these
conditions is unsatisfied, resulting in an unstable equilibrium. A similar interpretation
can be made for ∆1 and ∆2.
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