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Abstract

In this paper we consider models of two competing species that are both affected
by a pathogen which is transmitted directly. We consider both mass action as well
as frequency incidence models of disease spread, and Lotka-Volterra competition. Our
aim is to address the interaction between competition and disease dynamics. We do
this by presenting previously known results along with new results in a unified manner
that stresses the role of the basic reproduction number as well as the relative strengths
of intra- versus inter-specific competition for both species.

For both types of disease models we compute the basic reproduction numbers. For
the mass action case we compute all the equilibria except infected coexistence, and
analyze the equilibria for their stability. To analyze infected coexistence, we consider a
simplified ecologically relevant model and prove a conjecture made in [18, 9] about the
stability of the infected coexistence equilibrium. The model with frequency incidence
is shown to have a unique endemic equilibrium whose existence and stability depends
on the value of the basic reproduction number.
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1 Introduction

Competitive interactions as well as predator prey dynamics have dominated investigations
of species interactions in ecology and influence community structure via the distribution,
abundance and resource use of species in natural communities [35, 14, 17]. Classical compe-
tition theory predicts competitive exclusion of species with similar requirements. An impor-
tant ecological question is as follows: what mechanisms drive the coexistence of competing
species?
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The effect that parasites and pathogens have on the coexistence or exclusion of their
hosts and in the structure of biological communities is also important in community ecology.
Pathogens can be a very important controlling factor in wildlife communities. For example,
it was found that during the first half of the 20th century, the wildebeest herds in the
Serengeti were in fact being regulated not exclusively by predator prey interactions, but
primarily by a virus called rinderpest. Once rinderpest was controlled through vaccination,
both predator and prey populations in the area changed dramatically [16]. Pathogens seem
to be difficult to detect and quantify in an empirical study, but host-pathogen interactions
can be studied through mathematical models that combine elements of population dynamics
and epidemiology [7, 12, 13]. Such models can give important qualitative insight into the
effects of pathogens on plant and animal populations and the factors that influence species
coexistence or exclusion in communities [5, 26, 18].

Both theoretical and empirical investigations have shown that a generalist pathogen can
alter host species diversity and community composition [7, 10, 23, 27, 29, 32]. Empirical
studies have also demonstrated the importance of the combined effects of inter- and intra-
specific competition between species and the effects of pathogens (apparent competition) on
the population dynamics of multi-host systems [20]. A review of empirical studies in [15]
finds strong evidence for parasite-induced extinction of one species (usually a native species
replaced by an introduced exotic) as a result of the reservoir effects of apparent competition.

Recent work suggests that multi-host pathogens can mediate the outcome of inter-specific
competition, facilitating and maintaining invasion by novel species [7]. For example, in [38],
the authors show that it is likely that a shared disease, in addition to competition for space
and food, is the impetus for the continued decline of the native red squirrel in the U.K. in the
presence of the introduced grey squirrel. Another experimental study in [28] considered the
effects of a pathogenic water mold on competitive interactions between two larval amphibian
species in the Cascade mountains of Oregon, USA. The authors in this work showed that
the presence of the mold reversed the outcome of competitive interactions between the two
species. Similarly, the composition of the host community can control pathogen dynamics.
For example, in one experiment with a generalist grass pathogen, all grass species in treat-
ments containing a highly competent virus reservoir species had higher pathogen prevalence
compared to their counterparts in communities lacking the spillover species [32]. As in this
example, the composition of host communities can cause either amplification or fadeout of a
pathogen. Thus we can see that the interaction between community and disease ecology can
help us understand the structure of a biological system and the reasons why species coexist
with each other [25].

Mathematical models that include competition between multiple species in addition to a
shared pathogen are notoriously hard to analyze. The correct choice of the type of disease
incidence (for example, mass action or frequency incidence transmission) depends on many
factors. These include the species that is infected, the transmission routes of infection of the
disease, and population sizes, among other things. In [6], the authors considered the cowpox
virus in coexisting populations of bank voles and wood mice. Their analysis indicates that
for each species in isolation frequency dependent transmission is a superior descriptor. In
[33, 39] the authors used a SIR/SI type model with mass action disease transmission and
density independent death rates to study the effects of a parapoxvirus in competing grey/red
squirrel species in the United Kingdom. Using parameters estimated from data they found
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that the invading grey squirrels eventually win the competition, displacing the native red
squirrel. They also found that the presence of disease speeds up this process of replacement.
We refer the reader to the papers [24, 4, 30] for a good synopsis of different disease incidence
types and their appropriate use.

1.1 Interacting Species and Disease

Two species models in which one or both species share a common pathogen and may or may
not interact competitively have been discussed in several papers. Models for two host species
which share a pathogen but do not compete directly have been studied in [26, 5, 18, 24].
Although the equilibria that result in the exclusion of one of the species were analyzed,
finding conditions for the stability of the coexistence equilibria proved to be quite difficult.
Through numerical simulations it was found that two host SIS models with mass action
incidence can have complicated behaviors including several infected coexistence equilibria
and multiple attractive periodic solutions.

In [11], the authors consider a model of the population dynamics of two host species
which share a common pathogen, but do not interact competitively and do not self regulate.
The transmission of disease is via mass action. This model, developed in [26], evolved from a
single host model considered in [2]. The authors in [11] identified circumstances under which
the shared pathogen leads to the coexistence of the two host species in either a periodic or
persistent form that depend largely on the overall growth and death rates. This study shows
the importance of the differences in birth rates and death rates of the two hosts.

In [3, 42, 41] the authors consider a two species model in which both species compete
directly and one is subject to a pathogen. The models assume mass action transmission of
disease and in [42] the existence of limit cycles is shown. In [41] it was found that in the
absence of disease there is competitive exclusion between the two species and the presence
of disease can lead to stable or oscillatory coexistence of both species.

In [9], the authors consider a two species model in which both species compete via
Lotka-Volterra competition and both species share a common pathogen transmitted via mass
action. In this model death rates were density independent. They partially analyzed their
model using the notions of forces of infection and invasion criteria. These criteria determine
whether resident populations allow small invasions of other species to prosper or cause them
to decay. They are therefore relevant to questions of species coexistence or exclusion and
allow biologically motivated classifications of such long term outcomes to be obtained. As
with previous models, the coexistence equilibria proved impossible to fully analyze. In [22],
the authors consider a model with Lotka-Volterra competition between the two species which
share a common pathogen. Mass action disease transmission is used in the model which in
its complete generality is intractable. Both density-dependent and disease related death
rates are considered. The birth rates are density dependent, but do not include inter-specific
effects. The authors provide local stability results only for boundary equilibria, and mainly
concentrate on conditions that guarantee the persistence of either hosts or pathogens. Using
Hopf bifurcation theory and numerical simulations, complex behaviors of a simplified model
are demonstrated.

In [21] the authors considered an SIRS epidemic model of two competitive species using
frequency incidence disease transmission with no disease related deaths. Under these con-
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ditions, the authors in [21] were able to show stability conditions for all possible equilibria.
In [24] the authors considered many different models with frequency incidence disease trans-
mission. The models were shown to have the classic endemic model behavior; the disease
dies out below a threshold and approaches an endemic equilibrium above the threshold.

1.2 Outline of Paper

In this paper we consider two species models in which both the species compete directly via
Lotka-Volterra competition and share a directly transmitted pathogen. We consider both
mass action and frequency incidence type transmission and investigate the stability of the
infected coexistence equilibrium. We present previously known results in this area along
with new results in a unified setting that simplifies the analysis, and stresses the role of
the basic reproduction number as well as the relative strengths of intra- versus inter-specific
competition for both species. This unification makes our new results more intuitive from
both a mathematical and ecological point of view.

Our results extend the work done in [9] for the case of mass action disease transmission.
Similar to the mass action model in [9], we keep the natural mortality rates for the two species
to be density-independent, while the birth rates are density dependent. Our motivation for
this choice comes from the case of the red/grey squirrel system discussed in [33, 39], and other
similar systems [28, 37, 36]. In this aspect our model differs from other similar two species
models analyzed in [24, 22, 21]. As opposed to the model in [9] we also consider frequency
incidence disease transmission. Our results provide a rigorous mathematical analysis as
opposed to the biologically motivated analysis provided in [9], except for the case of infected
coexistence which was not analyzed in [9]. For this case we consider an ecologically simplified
version of the mass action model in which a complete analysis of infected coexistence is
provided. Such an analysis is usually not possible in the most general case, and to our
knowledge is not attempted in any of the papers mentioned for the case of density dependent
birth rates and mass action transmission. Our paper has two main new results:

1. In [5, 18, 9] a conjecture was made, based on numerical simulations, about the sta-
bility of the infected coexistence equilibrium for the model with mass action disease
transmission. The conjecture stated that the conditions under which this equilibrium
is stable cause all the other equilibria to be unstable. We prove this conjecture for a
special case in which the infected coexistence equilibrium is tractable. This allows the
full analysis of the infected coexistence equilibrium to be achieved. Such an analysis
is usually not possible.

2. For the case of frequency incidence transmission we prove existence and uniqueness
of an infected coexistence equilibrium. We also prove partial results on stability of
infected coexistence with density dependent birth rates which include inter-specific
effects. In the literature one can find similar results for the case of density dependent
death rates with no inter-specific effects, and density independent birth rates [31].
However, the analysis is simpler than the case that we consider here.

The outline of the paper is as follows. In Section 2 we develop a model for two competitive
species that share a common pathogen. In Section 3 we analyze the two species competition
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model assuming mass action disease transmission. Using local stability analysis we compute
the basic reproduction number for the model and analyze all the equilibria except the infected
coexistence equilibrium which is intractable. We consider a special ecologically relevant case
[8] in which infected coexistence is tractable and analyze this case completely. For the special
case we prove a conjecture made in [5, 18, 9] about the stability of the infected coexistence
equilibria.

In Section 4 we analyze the behavior of a two species competition model with frequency
incidence disease transmission. We compute the basic reproduction number R0 and stability
conditions for the infected coexistence equilibrium. We present conclusions in Section 5.

2 Two Species Models Combining Population Dynam-

ics and Disease Transmission

We consider two species models which incorporate a species birth function and a disease
incidence function in the form

dS1

dt
= g1(N1, N2)N1 − b1S1 − I1(I1, I2)S1, (2.1a)

dS2

dt
= g2(N1, N2)N2 − b2S2 − I2(I1, I2)S2, (2.1b)

dI1

dt
= I1(I1, I2)S1 − Γ1I1, (2.1c)

dI2

dt
= I2(I1, I2)S2 − Γ2I2. (2.1d)

For i, j = 1, 2, Si denotes the density of susceptible individuals in the population of species i,
Ii represents the density of infected individuals in the population of species i, and Ni = Si+Ii

is the total population density of species i. We assume that the birth terms are density-
dependent. Thus the birth functions for species i, denoted by gi, are functions of N1 and
N2. We consider Lotka-Volterra competition including both intra-specific and inter-specific
competition. Thus, the birth functions for the two species are

g1(N1, N2) = a1

(

1 −
N1

θ11

−
N2

θ12

)

, (2.2a)

g2(N1, N2) = a2

(

1 −
N2

θ22

−
N1

θ21

)

. (2.2b)

We define Kij :=
riθij

ai

. The carrying capacity for species i is Kii and the terms θ−1

ij

for i 6= j are competition coefficients. Here ri := ai − bi is the intrinsic per capita growth
rate for species i, with ai(1 − Ni/θii), and bi, the per capita birth and natural death rates,
respectively, for species i in isolation. We assume that ai > bi > 0 and hence ri > 0 for
i = 1, 2. The terms Γi := αi + bi, for species i, are per capita net rates of loss of infected
individuals incorporating death due to disease αi ≥ 0, and natural mortality bi.

5



The disease transmission term, given here by the disease incidence functions Ii for species
i, describes the rate at which susceptible hosts are converted into infected hosts by their
contact with infectious material. Transmission is the driving force in the dynamics of any
infectious disease and hence the functions Ii are a very important part of epidemiological
models. We model the disease incidence functions Ii as

I1(I1, I2) = Λ11(N1)
I1

N1

+ Λ12(N2)
I2

N2

, (2.3a)

I2(I1, I2) = Λ22(N2)
I2

N2

+ Λ21(N1)
I1

N1

, (2.3b)

with an intra-species transmission term with rate Λii(Ni), and an inter-species transmission
term with rate Λij(Nj) for i = 1, 2. Depending on whether the mass action or frequency
incidence approach is used these transmission terms take on different forms.

3 Two Species Models with Lotka-Volterra Competi-

tion and Mass Action Disease Transmission

In this section we consider two species models in which the disease transmission dynamics
follows the mass action approach. The intra-species and inter-species transmission rates in
(2.3a)-(2.3b) are defined as

Λij(Nj) = βijNj , (3.1)

where for i, j = 1, 2, βij > 0 and are constants. From (2.3a), (2.3b) and (3.1) we can write
the disease incidence functions as

I1(I1, I2) = β11I1 + β12I2, (3.2a)

I2(I1, I2) = β21I1 + β22I2. (3.2b)

In [26, 24], the authors consider mass action transmission dynamics and the case of no
direct competition, either within or between two species. Thus, the birth functions g1 and
g2 were modeled as exponential growth and each population increases exponentially in the
absence of the disease. In [5, 24], each of the host populations is subject to self-regulation
(intra-specific competition) and settle at their individual carrying capacity in the absence of
disease. In this case, the birth functions g1 and g2 were modeled as logistic growth and mass
action disease transmission is used.

In [9, 19, 24, 22], both hosts are inhibited by intra- and/or interspecific competition and
the birth functions g1 and g2 are modeled as Lotka-Volterra type competition along with mass
action disease transmission. As mentioned in the introduction, the model that we consider
in this section is the same as that considered in [9], in which the authors partially analyzed
the model from a biological perspective to determine stability conditions for exclusion and
uninfected coexistence equilibria.

Using the birth functions defined in (2.2a)-(2.2b) and the disease incidence functions
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defined in (3.2a)-(3.2b) we obtain the two species SI model

dS1

dt
= a1

(

1 −
N1

θ11

−
N2

θ12

)

N1 − b1S1 − (β11I1 + β12I2)S1, (3.3)

dS2

dt
= a2

(

1 −
N2

θ22

−
N1

θ21

)

N2 − b2S2 − (β22I2 + β21I1)S2, (3.4)

dI1

dt
= (β11I1 + β12I2)S1 − Γ1I1, (3.5)

dI2

dt
= (β22I2 + β21I1)S2 − Γ2I2. (3.6)

The model (3.3)-(3.6) makes ecological sense and is mathematically well-posed in the domain
D1 = {(S1, S2, I1, I2) ∈ R

4|S1, S2, I1, I2 ≥ 0, 0 ≤ Ni ≤ Kii, i = 1, 2}.
Before analyzing model (3.3)-(3.6) we summarize from the literature the relevant results

for a two species pure competition model and a single species SI mass action disease model
with logistic growth in the species.

3.1 The Logistic Growth and Mass Action Disease Model for a

Single Species

In this section, we summarize from the literature results of the analysis of the SI disease
model for one species with mass action transmission (see for e.g., [5, 22]). Our contribution
here is to rewrite the coexistence equilibria in a form that stressed the role of the basic
reproduction number, R0 ≤ 1, of the species. We will use this same form for the equilibria
of the combined competition and disease model for two species (3.3)-(3.6).

Consider the single species SI model with logistic growth in the species,

dS

dt
= a

(

1 −
N

θ

)

N − bS − βSI, (3.7)

dI

dt
= βSI − ΓI, (3.8)

where the variables and parameters have the same meaning as in Section 3 with Γ = α + b,
and N = S + I. The model (3.7)-(3.8) is well-posed on the domain ΩD = {(S, I)T |S, I ≥

0, 0 ≤ N ≤ K}. Let r = a − b > 0. The carrying capacity of the species is K =
rθ

a
. The

equilibria for model (3.7)-(3.8) can be written in the form ED
1 = (0, 0), ED

2 = (K, 0), and

ED
3 =





Γ

β
,
Γ

β



−

(

1 +
R0λ

2

)

+

√

(

1 +
R0λ

2

)2

+ (R0 − 1)







 , (3.9)

where λ =
α − r

r
and R0 =

βK

Γ
is the basic reproduction number for the model. We have

the following result.

Lemma 3.1 For the model (3.7)-(3.8), the trivial equilibrium ED
1 is always unstable. If

R0 < 1 then the disease-free equilibrium ED
2 is globally asymptotically stable in the domain

ΩD. If R0 > 1 then the infected coexistence equilibrium ED
3 is globally asymptotically stable

in the domain ΩD.
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3.2 The Pure Competition Model for Two Species

We summarize, from the literature (see for e.g., [22]), the analysis of the two-species Lotka-
Volterra (pure) competition model. Our contribution here is to rewrite the equilibria of the
pure competition model in a form that involves two parameters ξ1 and ξ2, as defined below
in (3.14)-(3.15). This form of the equilibria simplifies the analysis and we obtain stability
results based on the values taken by these two parameters. This is very useful as we can
apply similar notation to the computation of equilibria of the two competitive species SI
model with mass action disease transmission (3.3)-(3.6), and again obtain stability results
depending on the values that the parameters ξ1 and ξ2 assume.

Consider the two species model with Lotka-Volterra competition,

dN1

dt
= r1

(

1 −
N1

K11

−
N2

K12

)

N1, (3.10)

dN2

dt
= r2

(

1 −
N2

K22

−
N1

K21

)

N2, (3.11)

where Ni is the total population density of species i, for i = 1, 2. This model is well-posed on
the domain ΩC = {(N1, N2)

T |0 ≤ Ni ≤ Kii, i = 1, 2}. The parameters ri, Kij have the same
meaning as described in Section 2. The equilibria for model (3.10)-(3.11) are EC

1 = (0, 0),
EC

2 = (K11, 0), EC
3 = (0, K22), and the coexistence equilibrium EC

4 = (NC
1 , NC

2 ), where

NC
1 =

K11K12

K12 + K11(ξ1/ξ2)
, (3.12)

NC
2 =

ξ1

ξ2

NC
1 . (3.13)

The parameters ξ1, and ξ2 are defined as

ξ1 :=
1

K11

−
1

K21

, (3.14)

ξ2 :=
1

K22

−
1

K12

. (3.15)

For this pure competition model, the existence (feasibility) and stability of equilibria
depend on the positivity or negativity of the parameters ξ1 and ξ2. We can interpret the
term 1/Kij as the inhibition strength of species j on species i [34]. We have the following
result

Lemma 3.2 For the pure competition model (3.10)-(3.11), the trivial equilibrium EC
1 is

always unstable. In addition, we have the following cases

1. ξ1 > 0, ξ2 > 0: Intra-specific competition is stronger than inter-specific competition for
both species. The equilibria EC

2 , EC
3 are unstable while EC

4 is globally asymptotically
stable in the domain ΩC.

2. ξ1 < 0, ξ2 > 0: Intra-specific competition is stronger for species 2 and inter-specific
competition is stronger for species 1. EC

4 is not feasible. EC
2 is globally asymptotically

stable, while EC
3 is unstable.
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3. ξ1 > 0, ξ2 < 0: Intra-specific competition is stronger for species 1 and inter-specific
competition is stronger for species 2. EC

4 is not feasible. EC
3 is globally asymptotically

stable, while EC
2 is unstable.

4. ξ1 < 0, ξ2 < 0: Inter-specific competition is stronger than intra-specific competition
for both species. The coexistence equilibrium EC

4 is a saddle. There is a separatrix
that separates the domain ΩC into two regions. We have bistability of EC

2 and EC
3

with stability (or instability) determined by the location of the initial conditions in two
regions of ΩC . If the initial conditions lie on the separatrix, then the solution tends to
EC

4 .

3.3 Equilibria of the Combined Two Species Competition and SI

Mass Action Disease Model

We will denote equilibrial susceptible densities for species i by Si,∞ and similarly Ii,∞ for the
infected equilibrial densities of species i, for i = 1, 2. The equilibria for model (3.3)-(3.6) are

1. The Trivial or Zero Equilibrium

E1 = (S1

1,∞ = 0, S1

2,∞ = 0, I1

1,∞ = 0, I1

2,∞ = 0). (3.16)

2. The Disease Free One-Host Equilibria

(a) Species 1 survives in an uninfected state and reaches carrying capacity. Species 2
dies out. The corresponding disease free one-host equilibrium is

E2 = (S2

1,∞ = K11, S
2

2,∞ = 0, I2

1,∞ = 0, I2

2,∞ = 0). (3.17)

(b) Species 2 survives in an uninfected state and reaches carrying capacity. Species 1
dies out. The corresponding disease free one-host equilibrium is

E3 = (S3

1,∞ = 0, S3

2,∞ = K22, I
3

1,∞ = 0, I3

2,∞ = 0). (3.18)

3. The Disease Free Coexistence Equilibrium

E4 = (S4

1,∞, S4

2,∞, I4

1,∞ = 0, I4

2,∞ = 0), (3.19)

with

S4

1,∞ =
K11K12

K12 + K11(ξ1/ξ2)
, (3.20)

S4

2,∞ =
ξ1

ξ2

(

K11K12

K12 + K11(ξ1/ξ2)

)

=
ξ1

ξ2

S4

1,∞, (3.21)

and the parameters ξ1 and ξ2 are as defined in (3.14), and (3.15), respectively. We note
that S4

i,∞ = NC
i , i = 1, 2, where NC

1 , and NC
2 are as defined in (3.12)-(3.13).

4. The Infected One-Host Equilibria
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(a) Species 1 survives and species 2 dies out. The corresponding infected one-host
equilibria are

E5,6 = (S5,6
1,∞ =

Γ1

β11

, S5,6
2,∞ = 0, I5,6

1,∞ =
I∗
5,6

β11

, I5,6
2,∞ = 0), (3.22)

where I∗
5,6 are roots of the quadratic polynomial

P56(x) = x2 + 2Γ1

(

1 +
R1

0λ1

2

)

x + Γ2

1

(

1 −R1

0

)

, (3.23)

with the parameter λ1 defined as

λ1 :=
α1 − r1

r1

, (3.24)

and R1
0 is the basic reproduction number for species 1 alone, defined as

R1

0 :=
K11β11

Γ1

. (3.25)

Solving for the roots, we have the infected component of species 1 in the one-host
equilibria E5,6 to be

I5,6
1,∞ = S5,6

1,∞



−

(

1 +
R1

0λ1

2

)

±

√

(

1 +
R1

0λ1

2

)2

+ (R1
0 − 1)



 . (3.26)

In the next section we will show that only the root I∗
5 is positive and the equilib-

rium E5 is conditionally feasible, whereas the root I∗
6 is always negative and thus

the equilibrium E6 is always infeasible.

We note that with appropriate definitions of parameters, the equilibrium E5 =
ED

3 , where ED
3 is as defined in (3.9).

(b) Species 2 survives in a partially infected state and species 1 dies out. The corre-
sponding infected one-host equilibrium are

E7,8 = (S7,8
1,∞ = 0, S7,8

2,∞ =
Γ2

β22

, I7,8
1,∞ = 0, I7,8

2,∞ =
I∗
7,8

β22

), (3.27)

where I∗
7,8 are roots of the quadratic polynomial

P78(x) = x2 + 2Γ2

(

1 +
R2

0λ2

2

)

x + Γ2

2

(

1 −R2

0

)

. (3.28)

with λ2 :=
α2 − r2

r2

, and R2
0 is the basic reproduction number for species 2 alone,

defined as

R2

0 :=
K22β22

Γ2

. (3.29)
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Solving for the roots, we have the infected component of species 2 in the one-host
equilibria E7,8, to be

I7,8
2,∞ = S7,8

2,∞



−

(

1 +
R2

0λ2

2

)

±

√

(

1 +
R2

0λ2

2

)2

+ (R2
0 − 1)



 , (3.30)

As for the previous case we will see in the next section that only the root I∗
7 is positive

and the equilibrium E7 is conditionally feasible, whereas the root I∗
8 is always negative

and thus the equilibrium E8 is always infeasible.

Similar to the case of the infected one host equilibria in which species one survives, we
note that with appropriate definitions of parameters, the equilibrium E7 = ED

3 , where
ED

3 is as defined in (3.9).

5. Infected Coexistence Equilibria As discussed in [9] the infected coexistence equi-
libria are intractable. It is possible to have multiple such equilibria present in the model
with mass action disease transmission. We will consider a special case in section 3.5
in which the infected coexistence equilibrium is given by an analytical formula making
analysis more amenable.

3.4 Local Stability Analysis of Equilibria for the Competition and

Disease Model

3.4.1 The Trivial Equilibrium

First we show that the trivial equilibrium E1 of model (3.3)-(3.6) is always unstable. The
Jacobian of this model evaluated at E1 is

J (E1) =









r1 0 a1 0
0 r2 0 a2

0 0 −Γ1 0
0 0 0 −Γ2









.

The eigenvalues of J (E1) are ri,−Γi for i = 1, 2. Thus, by assumption at least two of the
eigenvalues are always positive, and hence the equilibrium E1 is always unstable.

3.4.2 Disease Free Equilibria

In this section we address the stability of the disease free equilibria (DFE), E2, E3 and E4.
The stability of a DFE depends on the corresponding basic reproduction number, R0. The
basic reproduction number (BRN) is defined as the average number of secondary infections
that occur when an infected individual is introduced into a completely susceptible population.
If R0 > 1, then the disease may emerge in one of the populations, whereas if R0 < 1, then
the DFE is locally asymptotically stable [40]. In this case if the disease is introduced into
the populations of competing species it will eventually die out leaving the population in a
competition only state.
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The Coexistence DFE :
As a DFE, the coexistence equilibrium is biologically feasible when

ξ1

ξ2

> 0. (3.31)

Theorem 3.1 The basic reproduction number for model (3.3)-(3.6) with coexisting species
is

RC
0 =

R11 + R22

2
+

√

(R11 −R22)2 + 4R12R21

2
, (3.32)

where, for i, j = 1, 2,

Rij =
βij

Γj

S4

i,∞, (3.33)

with S4
i,∞ as defined in (3.20)-(3.21). The condition RC

0 < 1 leads to the inequality

R11 + R22 + R12R21 −R11R22 < 1. (3.34)

Proof. We will use the next generation matrix method [40] to determine the stability of the
coexistence DFE, E4. Let X = (S1, S2, I1, I2)

T . Then we can rewrite system (3.3)-(3.6) in
the form

dX

dt
= F(X) − V(X) (3.35)

where F(X) represents the vector function that includes the new infectious cases and V(X)
contains all other dynamics due to death and recovery. We compute the Jacobian of F and
V and evaluate these at the coexistence DFE, E4 = (S4

1,∞, S4
2,∞, 0, 0). Let F and V be the

matrices defined by

F =

[

∂Fi

∂xj

(E4)

]

; V =

[

∂Vi

∂xj

(E4)

]

, (3.36)

where 3 ≤ i, j ≤ 4 and xj is the jth component of the vector X defined in (3.35). Computing
these matrices we have

F =

[

β11S
4
1,∞ β12S

4
1,∞

β21S
4
2,∞ β22S

4
2,∞

]

, (3.37)

and V = diag(Γi). The BRN RC
0 for model (3.3)-(3.6) with coexisting species is given as

RC
0 = ρ(FV −1), (3.38)

where ρ(A) is the spectral radius of the matrix A. We have

FV −1 =









β11S
4
1,∞

Γ1

β12S
4
1,∞

Γ2

β21S
4
2,∞

Γ1

β22S
4
2,∞

Γ2









. (3.39)

Thus, using the definition (3.33) it is easily shown that the spectral radius of the matrix
FV −1 is given by the formula (3.32).
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Assuming RC
0 < 1 in (3.32) we can now easily derive

β11

Γ1

S4

1,∞ +
β22

Γ2

S4

2,∞ +
(β12β21

Γ1Γ2

−
β11β22

Γ1Γ2

)

S4

1,∞S4

2,∞ < 1, (3.40)

which is equivalent to the inequality (3.34).

Remark 3.1 The condition (3.34) is equivalent to the condition for stability of uninfected
coexistence that is obtained in [9], given as

(β11S
4

1,∞ − Γ1)(β22S
4

2,∞ − Γ2) − β12β21S
4

1,∞S4

2,∞ > 0. (3.41)

Theorem 3.2 The coexistence DFE, E4 is feasible and stable if and only if the conditions
ξ1 > 0, ξ2 > 0 and RC

0 < 1 are satisfied.

Proof. The Jacobian of the system (3.3)-(3.6) evaluated at the DFE E4 = (S4
1,∞, S4

2,∞, I4
1,∞ =

0, I4
2,∞ = 0) is the block triangular matrix

J (E4) =

[

A∗ B∗

0 F − V

]

, (3.42)

where the matrix A∗ is the Jacobian matrix of the system (3.10)-(3.11) evaluated at EC
4 =

(NC
1 , NC

2 ) = (S4
1,∞, S4

2,∞) (see section 3.2), and the matrices F and V are as defined in
(3.36). Since the Jacobian J (E4) is block triangular, its eigenvalues are the eigenvalues of
the matrices A∗ and F − V .

From Lemma 3.2, EC
4 = (NC

1 , NC
2 ) is globally asymptotically stable if and only if ξ1 > 0

and ξ2 > 0. Thus, the eigenvalues of the matrix A∗ are negative if and only if ξ1 > 0 and
ξ2 > 0. We note that the conditions ξ1 > 0 and ξ2 > 0 also guarantee feasibility of the DFE
E4.

From the next generation approach, the eigenvalues of the matrix F − V are negative if
and only if RC

0 = ρ(FV −1) < 1 [40].

The Disease Free One-Host Equilibrium :
When ξ1/ξ2 < 0 the coexistence DFE is infeasible. We have the following two cases.

1. ξ1 > 0 and ξ2 < 0.

In this case the one-host DFE E2 = (K11, 0, 0, 0) is feasible and stable if in addition
the condition

R1

0 =
K11β11

Γ1

< 1 (3.43)

is satisfied. The condition (3.43) implies that the basic reproduction number for species
1 alone is less than 1. This result follows from Lemma 3.2 for conditions on stability
of EC

2 and from Lemma 3.1 for conditions on stability of ED
2 .
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2. ξ1 < 0 and ξ2 > 0.

In this case the one-host DFE E3 = (0, K22, 0, 0) is feasible and stable if in addition
the condition

R2

0 =
K22β22

Γ2

< 1 (3.44)

is satisfied. As in case 1, this result follows from Lemma 3.2 for conditions on stability
of EC

3 and from Lemma 3.1 for conditions on stability of ED
2 .

3.4.3 Infected One-Host Equilibria

We define the parameters,

χ5,6 = −

(

1 +
R1

0λ1

2

)

±

√

(

1 +
R1

0λ1

2

)2

+ (R1
0 − 1). (3.45)

Using (3.45), we can rewrite equation (3.26) as

I5,6
1,∞ = S5,6

1,∞χ5,6. (3.46)

Lemma 3.3 The infected one-host equilibrium E5 is biologically feasible if and only if R1
0 >

1, whereas the equilibrium E6 is always infeasible.

Proof. Case 1: Let R1
0 > 1, then χ5 > 0, and χ6 < 0. Thus, E5 is feasible and E6 is

biologically infeasible.
Case 2: Let 0 < R1

0 ≤ 1. In this case we note that the first term of χ5,6 in (3.45) can be
rewritten as

−

(

1 +
R1

0λ1

2

)

= −

(

1 −
R1

0

2

)

−
α1R

1
0

2r1

< 0, (3.47)

as the rates α1, r1 are both positive. Thus, in this case as well χ6 < 0, and E6 is biologically
infeasible. If R1

0 = 1, then χ5 = 0, and the equilibrium E5 reduces to the disease free
one-host equilibrium E2, whereas, if 0 < R1

0 < 1 then χ5 < 0 and E5 is also biologically
infeasible.

Lemma 3.4 Let R1
0 > 1. If α1 > 0, then N5

1,∞ = S5
1,∞(1 + χ5) < K11. If α1 = 0 then

N5
1,∞ = K11.

Proof. The condition R1
0 > 1 guarantees the feasibility of the equilibrium E5. By assump-

tion α1 > 0, and hence λ1 > −1. We then have

λ1 + 1 < R1
0(1 + λ1) < R1

0

(

1 +
λ1

2

)2

−R1
0

λ2
1

4
(3.48)

=⇒

(

1 +
R1

0λ1

2

)2

+ (R1

0 − 1) <

(

R1

0 +
R1

0λ1

2

)2

(3.49)
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=⇒

√

(

1 +
R1

0λ1

2

)2

+ (R1
0 − 1) < R1

0 +
R1

0λ1

2
(3.50)

=⇒
Γ1

β11







(

−R1
0λ1

2

)

+

√

(

1 +
R1

0λ1

2

)2

+ (R1
0 − 1)







< K11, (3.51)

since from (3.25) R1
0 = (K11β11)/Γ1. From (3.22) and (3.26) we finally have

N5
1,∞ = S5

1,∞(1 + χ5) < K11. (3.52)

If α1 = 0 (as in Section 3.5), then λ1 = −1 and N5
1,∞ = K11. Hence, we can see that the

total population of the infected one-host equilibrium is less than (or equal to) the carrying
capacity for species 1 in the case that the disease related mortality α1 > 0 (α1 = 0).

Theorem 3.3 Assume α1 > 0. If R1
0 > 1 and K21 < N5

1,∞, then the infected one-host
equilibrium for species 1, E5, is feasible and stable.

Proof. From Lemma 3.4 we know that the condition R1
0 > 1 guarantees the feasibility of

E5.
The Jacobian for the (species 1) infected one-host equilibrium E5, with the order changed

to E5 = (S5
1,∞, I5

1,∞, S5
2,∞, I5

2,∞) for convenience, is

J (E5) =

[

P R
0 Q

]

, (3.53)

where

P =

[

a1

(

1 −
2N5

1,∞

θ11

)

− b1 − β11I
5
1,∞ a1

(

1 −
2N5

1,∞

θ11

)

− β11S
5
1,∞

β11I
5
1,∞ β11S

5
1,∞ − Γ1

]

,

R =





−a1N
5
1,∞

θ12

−a1N
5
1,∞

θ12

− β12S
5

1,∞

0 β12S
5
1,∞



 ,

Q =

[

a2

(

1 −
N5

1,∞

θ21

)

− b2 − β21I
5
1,∞ a2

(

1 −
N5

1,∞

θ21

)

β21I
5
1,∞ −Γ2

]

.

Since J (E5) is block triangular we need only consider the eigenvalues of P and Q. We
notice that the upper left block matrix, P , is the same as the Jacobian for species 1 alone
with the disease, i.e., the Jacobian of the system (3.7)-(3.8) evaluated at the equilibrium ED

3

(with the parameters and variables appropriately defined); see Section 3.1. From Lemma
3.1, the eigenvalues of P are negative if and only if R1

0 > 1.
We next consider the bottom right block matrix, Q, and use the trace determinant

theorem to arrive at conditions for stability. With some algebraic manipulations the trace
and determinant of the matrix Q can be written as

Tr[Q] = r2

(

1 −
N5

1,∞

K21

)

− (β21I
5

1,∞ + Γ2), (3.54)
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and

det[Q] = −r2

(

1 −
N5

1,∞

K21

)

(β21I
5

1,∞ + Γ2) + β21I
5

1,∞α2. (3.55)

If K21 < N5
1,∞, then

(

1 −
N5

1,∞

K21

)

< 0 and hence Tr(Q) < 0 and det(Q) > 0, as all the

parameters are positive. Thus, if R1
0 > 1 and K21 < N5

1,∞ then the infected one host
equilibrium E5 is stable.

Remark 3.2 The condition K21 < N5
1,∞ is not necessary for the stability of E5. Neces-

sary conditions for stability of E5 are obtained by the application of the Trace-determinant
theorem. From (3.55), det(Q) > 0 gives us the condition

r2

(

1 −
N5

1,∞

K21

)

(β21I
5

1,∞ + Γ2) − β21I
5

1,∞α2 < 0. (3.56)

By similar arguments we can prove

Theorem 3.4 Assume α2 > 0. If R2
0 > 1 and K12 < N7

2,∞ then the infected one-host
equilibrium E7 is biologically feasible and stable. The equilibrium E8 is always infeasible.

Proof. The proof is similar to the proof of Theorem 3.3

3.5 Analysis of the Infected Coexistence Equilibrium of the Com-

petition and Disease Model Under Additional Assumptions

In this section, we derive an analytical expression for the infected coexistence equilibrium of
the two species model (3.3)-(3.6) under additional assumptions. Consequently we perform a
full stability analysis. This allows us, under certain assumptions, to prove the conjecture of
[26] and [5] about the behavior of the infected coexistence equilibrium of population models
that are combined with mass action disease models. Based on numerical simulations, the
authors in [26, 5, 18, 9] conjecture that if all other equilibria are unstable then the infected
coexistence equilibrium is stable and, conversely, that if any of the other equilibria are stable
then the infected coexistence equilibrium is unstable.

Here we make the following additional assumptions on the model (3.3)-(3.6) described in
Section 3.

(A1) αi = 0, so that there is no increased death rate as a result of the disease. In addition,
we will assume

(A2) a = a1 = a2, b = b1 = b2, θ = θ11 = θ22, and β = βij all i, j. As before, let r := a − b
be the intrinsic growth rate for both the species. Also, K = K11 = K22 = rθ

a
, so the

carrying capacity is the same for both species.

In order to retain a difference between the species we will also require that

(A3) θ12 6= θ21.
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As before, we define Kij :=
rθij

a
. These simplifications are not only didactic but result in a

model that can represent actual ecological systems. For example, if two species are limited
by different resources then they may have very similar intra-specific competition but quite
different inter-specific competition while still being susceptible to a generalist pathogen or
parasite [8].

Now the possible equilibria, in the form Ei = (S1,∞, S2,∞, I1,∞, I2,∞), for the competing
two species SI model with mass action disease transmission, (3.3)-(3.6) under the additional
assumptions (A1), (A2) and (A3) are:

1. Trivial equilibrium:
E1 = (0, 0, 0, 0)

2. Disease Free One Host Equilibria:
E2 = (K, 0, 0, 0) and E3 = (0, K, 0, 0)

3. Disease Free Coexistence Equilibria:
E4 = (S4

1,∞, S4
2,∞, 0, 0) with

S4

1,∞ =
KK12

K12 + K(ξ1/ξ2)
, (3.57)

S4
2,∞ =

ξ1

ξ2

(

KK12

K12 + K(ξ1/ξ2)

)

=
ξ1

ξ2

S4
1,∞, (3.58)

where the parameters ξ1 and ξ2 defined in (3.14)-(3.15) reduce to

ξ1 = (
1

K
−

1

K21

), (3.59)

ξ2 = (
1

K
−

1

K12

). (3.60)

4. Infected One Host Equilibria:
E5 = (S5

1,∞, 0, I5
1,∞, 0) and E6 = (0, S6

2,∞, 0, I6
2,∞), where for i = 1, 2

S5

1,∞ = S6

2,∞ =
b

β
, (3.61)

I5

1,∞ =
rθ

a
−

b

β
= (R0 − 1)S5

1,∞, (3.62)

I6

2,∞ =
rθ

a
−

b

β
= (R0 − 1)S6

1,∞. (3.63)

and R0 = R1
0 = R2

0 =
Kβ

b
is the same for both species.

5. Infected Coexistence Equilibria:
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E7 = (S7
1,∞, S7

2,∞, I7
1,∞, I7

2,∞), with

S7

1,∞ =
b

β
(

1 + ξ1
ξ2

) , (3.64)

S7

2,∞ =
ξ1

ξ2

S7

1,∞, (3.65)

I7

1,∞ =

β

(

1 +
ξ1

ξ2

)

− b

(

1

K
+

ξ1

K12ξ2

)

β

(

1 +
ξ1

ξ2

) (

1

K
+

ξ1

K12ξ2

) , (3.66)

I7

2,∞ =
ξ1

ξ2

I7

1,∞. (3.67)

Lemma 3.5 The equilibrium value I7
i,∞ can be rewritten as

I7

i,∞ = (RC
0 − 1)S7

i,∞, (3.68)

for i = 1, 2. The basic reproduction number for the two species model under the additional
assumptions (A1), (A2) and (A3), can be derived from equation (3.32) to be

RC
0 =

β

b

(

S4

1,∞ + S4

2,∞

)

. (3.69)

Proof. From equations (3.64), (3.66) and (3.57), we have

I7

1,∞ = S7

1,∞

{

β

b

(

1 +
ξ1

ξ2

)

S4

1,∞ − 1

}

(3.70)

= S7
1,∞

{

β

b

(

S4
1,∞ + S4

2,∞

)

− 1

}

(3.71)

= S7

1,∞(RC
0 − 1). (3.72)

Similarly, we can show that I7
2,∞ = (RC

0 − 1)S7
2,∞.

Lemma 3.6 The total population size N7
i,∞ = S4

i,∞, for i = 1, 2.

Proof. From Lemma 3.5 and equations (3.69), (3.64), and (3.58), we have

N7

1,∞ = S7

1,∞ + I7

1,∞ = S7

1,∞RC
0 (3.73)

=
b

β(1 + ξ1
ξ2

)

β

b
S4

1,∞

(

1 +
ξ1

ξ2

)

= S4

1,∞ (3.74)

Similarly, we can show that N7
2,∞ = S4

2,∞.

18



3.5.1 Local Stability Analysis

We will now use the Jacobian of our simplified model to establish stability conditions for
all the equilibria. Specifically, we will show that when there is no additional death due to
disease and no recovery then the conjecture of [26] and of [5] holds. The Jacobian for this
system computed at an equilibrium Ee = (Se

1,∞, Se
2,∞, Ie

1,∞, Ie
2,∞) is

J (Ee) =

[

A(Ee) B(Ee)
C(Ee) D(Ee)

]

, (3.75)

where, the 2 × 2 matrices A, B, C, and D evaluated at an equilibrium Ee are defined as

A(Ee) =

[

A(Ee) − b − I(Ee) A12(Ee)
B21(Ee) B(Ee) − b − I(Ee)

]

, (3.76)

B(Ee) =

[

A(Ee) − βSe
1,∞ A12(Ee) − βSe

1,∞

B21(Ee) − βSe
2,∞ B(Ee) − βSe

2,∞

]

, (3.77)

C(Ee) =

[

I(Ee) 0
0 I(Ee)

]

, (3.78)

and

D(Ee) =

[

βSe
1,∞ − b βSe

1,∞

βSe
2,∞ βSe

2,∞ − b

]

. (3.79)

with the definitions

A(Ee) :=
−aN e

1,∞

θ
+ g1(N

e
1,∞, N e

2,∞), (3.80)

A12(Ee) :=
−aN e

1,∞

θ12

, (3.81)

B(Ee) :=
−aN e

2,∞

θ
+ g2(N

e
1,∞, N e

2,∞), (3.82)

B21(Ee) :=
−aN e

2,∞

θ21

. (3.83)

For i = 1, 2, we have Ni,∞ = Si,∞+Ii,∞. From (3.2a) and (3.2b) we have the disease incidence
function,

I(Ee) = β(Ie
1,∞ + Ie

2,∞), (3.84)

(I1 = I2), and for i = 1, 2, the birth functions gi as defined in (2.2a) and (2.2b) (with
θ = θ11 = θ22) evaluated at Ee are given as

g1(Ee) = a

(

1 −
N e

1,∞

θ
−

N e
2,∞

θ12

)

, (3.85a)

g2(Ee) = a

(

1 −
N e

2,∞

θ
−

N e
1,∞

θ21

)

. (3.85b)
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The Trivial and Disease Free One-Host Equilibria :
As before, E1 is always unstable for positive parameters. The disease free one-host

equilibria E2 = (K, 0, 0, 0) is stable if conditions

(C1) R0 = Kβ

b
< 1, and

(C2) ξ1 < 0,

hold. In the symmetric case, E3 = (0, 0, K, 0) is stable if condition (C1) holds and if the
condition

(C3) ξ2 < 0,

holds.

The Disease Free Coexistence Equilibrium :
The disease free coexistence equilibrium E4 = (S0

1,∞, S0
2,∞, 0, 0) is feasible when ξ1/ξ2 > 0.

The Jacobian (3.75) evaluated at E4 is of the form

J (E4) =

[

A(E4) B(E4)
0 D(E4)

]

, (3.86)

where the 2 × 2 matrices A, B, and D defined in (3.76), (3.77), and (3.79), respectively are
all evaluated at the equilibrium E4.

Lemma 3.7 Assume that ξ1/ξ2 > 0, so that the disease free coexistence equilibrium E4 is
feasible. In this case

det [A](E4) = r2S4

1,∞ξ1, (3.87)

Tr[A](E4) = −
rS4

1,∞

K

(

1 +
ξ1

ξ2

)

. (3.88)

Thus, Tr[A](E4) is always negative, whereas det [A](E4) > 0 if and only if ξ1 > 0 and (by
assumption) ξ2 > 0.

Proof. We prove this lemma in the appendix, as the algebra is tedious but straightforward.

Since the Jacobian J (E4) is block upper triangular, its eigenvalues are the same as
those of matrices A(E4) and D(E4). The matrix A(E4) is the Jacobian of the two species
model with pure competition, (3.10)-(3.11) evaluated at (NC

1 , NC
2 ) (see Section 3.2) under

the assumptions (A2) and (A3). From Lemma 3.7, the eigenvalues of A(E4) are negative if
and only if the conditions

(C4) ξ1 > 0, and

(C5) ξ2 > 0,
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hold. The matrix D(E4) on the other hand is related to the disease parameters and its
eigenvalues are λ1 = −b and λ2 = β(S4

1,∞ + S4
2,∞) − b. The eigenvalue λ1 is always negative

and λ2 is negative under the condition

(C6) RC
0 =

β(S4
1,∞ + S4

2,∞)

b
< 1

holds. So, the DFE E4 is feasible and stable if and only if the conditions (C4), (C5) and
(C6) hold.

We note that this result is a special case of Theorem 3.2 derived from Lemma 3.2 in
Section 3.2. The condition (C6) is the analogue of the inequality (3.34) for this special case.

The Infected One-Host Equilibrium The Jacobian, (3.75), evaluated at E5 is

J (E5) =
















a

(

1 −
2K

θ

)

− βK
−aK

θ12

a

(

1 −
2K

θ

)

− b
−aK

θ12

− b

0 a

(

1 −
K

θ21

)

− βK 0 a

(

1 −
K

θ21

)

βK − b 0 0 b
0 βK − b 0 −b

















.

The eigenvalues of this matrix are λ1 = −Kβ, λ2 = b(1−R0), λ3 = −r, and λ4 = rKξ1. We
can see that λ1 and λ3 are always negative. Thus, the stability (and feasibility) conditions
for E5 are

(C7) R0 =
Kβ

b
> 1,

which guarantees that λ2 < 0 and condition (C2) which guarantees that λ4 < 0. For the
symmetric case, E6 is feasible and stable if conditions (C7) and (C3) hold.

The Infected Coexistence Equilibrium :
Lastly, we consider the infected coexistence equilibrium E7. The characteristic polyno-

mial of J (E7) is given as

P7(x) = (x + η)(x + ǫ)(x2 + δ1x + δ2), (3.89)

where

η = b + β(I7

1,∞ + I7

2,∞), (3.90)

ǫ = b + β(I7

1,∞ + I7

2,∞) − β(S7

1,∞ + S7

2,∞), (3.91)

δ1 = −(A(E7) + B(E7)) + 2b, (3.92)

δ2 = −A12(E7)B21(E7) + A(E7)B(E7) − b(A(E7) + B(E7)) + b2, (3.93)
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where for i = 1, 2, N7
i,∞ = S7

i,∞ + I7
i,∞. The terms A, B, A12 and B21 as defined in (3.80)-

(3.83) are all evaluated at the infected coexistence equilibria E7. Then, the eigenvalues of
the Jacobian J (E7) are

λ7

1 = −η = −b − β(I7

1,∞ + I7

2,∞), (3.94)

λ7

2 = −ǫ = −b − β(I7

1,∞ + I7

2,∞) + β(S7

1,∞ + S7

2,∞), (3.95)

λ7

3,4 =
1

2

(

−δ1 ±
√

δ2
1 − 4δ2

)

. (3.96)

Lemma 3.8 The condition that λ7
2 < 0 is equivalent to RC

0 > 1

Proof. From (3.65), (3.67) and Lemma 3.5 we have

λ7
2 < 0

⇐⇒ −b − β(I7

1,∞ + I7

2,∞) + β(S7

1,∞ + S7

2,∞) < 0

⇐⇒ S7

1,∞ − I7

1,∞ + S7

2,∞ − I7

2,∞ <
b

β

⇐⇒ (1 +
ξ1

ξ2

)(S7
1,∞ − I7

1,∞) <
b

β

⇐⇒ (2 −RC
0 )(1 +

ξ1

ξ2

)
b

β(1 + ξ1
ξ2

)
<

b

β

⇐⇒ RC
0 > 1.

Thus, RC
0 > 1 is both a feasibility and stability condition for the infected coexistence equi-

librium E7.

Lemma 3.9 The eigenvalues λ7
3 and λ7

4 are roots of the polynomial equation

x2 − Tr[A](E4)x + det[A](E4) = 0. (3.97)

Proof. From Lemma 3.6, we have N7
i,∞ = S4

i,∞ = N4
i,∞ (as I4

i,∞ = 0 for the disease free
equilibrium E4), for i = 1, 2. Thus, from (3.92) and (3.93) and the definitions of the functions
A, B, A12, and B21 in (3.80)-(3.83), we have

δ1 = −(A(E4) + B(E4)) + 2b, (3.98)

δ2 = −A12(E4)B21(E4) + A(E4)B(E4) − b(A(E4) + B(E4)) + b2. (3.99)

From the definition of the matrix A in (3.76), we observe that

δ1 = −Tr[A](E4) (3.100)

δ2 = det[A](E4) (3.101)

From equation (3.96), it is clear that the eigenvalues λ7
3 and λ7

4 are roots of the polynomial
equation (3.97).
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Theorem 3.5 Assume that ξ1/ξ2 > 0 so that the infected coexistence equilibrium E7 is
feasible. Then E7 is stable if and only if ξ1 > 0, ξ2 > 0, and RC

0 > 1. In this case all the
other equilibria, i.e., E1, E2, E3, E4, E5 and E6 are either infeasible and/or unstable.

Proof. It is easy to see that λ7
1 given in (3.94) is negative for all I1,e + I2,e ≥ 0. Thus,

since the infected coexistence equilibrium E7 is feasible by assumption (ξ1/ξ2 > 0) we have
λ1 < 0. As a result of Lemma 3.8, the first condition for stability of E7 is

(C8) RC
0 > 1

Since I7
1,∞ = (RC

0 − 1)S7
1,∞, the condition (C8) is also a feasibility condition for E7.

From Lemma 3.7, Lemma 3.9, and the Trace-Determinant theorem [1], we see that the
eigenvalues λ3 and λ4 are negative if and only if the conditions (C4) and (C5) are satisfied.

When conditions (C4), (C5) and (C8) are satisfied, all the other equilibria, i.e., E1-E6

are either infeasible or unstable based on the linear stability analysis presented above for
each of these equilibria.

3.6 Bifurcations

Considering the parameters ξ1, and ξ2, defined in (3.59) and (3.60), respectively, as bifurca-
tion parameters we can make the following observations.

Remark 3.3 If ξ1 = 0 and/or ξ2 = 0 then RC
0 = Kβ

b
= R0.

Remark 3.4 If ξ1 = 0 and ξ2 > 0 then E4 = E2 and E7 = E5. Similarly, if ξ1 > 0 and
ξ2 = 0 then E4 = E3 and E7 = E6.

Remark 3.5 If both ξ1 = 0 and ξ2 = 0 then the sum of the state variables behaves as one
species with logistic growth. In this case, the equilibrium E4 is any solution (S1,∞, S2,∞, 0, 0)
on the line S1,∞ + S2,∞ = K. Similarly, E7 becomes any solution (S1,∞, S2,∞, I1,∞, I2,∞) on
the plane S1,∞ + S2,∞ = b

β
, I1,∞ + I2,∞ = b

β
(R0 − 1). Notice that in both cases, since there

is no additional death due to disease, N1,∞ + N2,∞ = K.

Corollary 3.1 Assume ξ1 = 0 and ξ2 > 0. Then,

1. If RC
0 = R0 < 1, the equilibrium E4 = E2 exists in a neutral state.

2. If RC
0 = R0 > 1, the equilibrium E7 = E5 exists in a neutral state.

Proof. In the first case, the eigenvalues for E4 are λ1 = −r, λ2,3 = 0, and λ4 = βK − b =
b(R0 − 1). We can see that if RC

0 = R0 < 1 then λ4 < 0 and E4 is neutral. In fact, E4

exchanges stability with E2 as it moves through the half plane ξ1 = 0, ξ2 > 0 when R0 < 1.
In the second case, the eigenvalues for E7 are λ1 = −r, λ2 = 0, λ3 = −Kβ, and

λ4 = b(1 − R0). We can see that if RC
0 = R0 > 1 then λ3 < 0, hence E7 is neutral. In

fact, E7 exchanges stability with E5 as it moves through the half plane ξ1 = 0, ξ2 > 0 when
R0 > 1.
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Corollary 3.2 Assume ξ1 > 0 and ξ2 = 0. Then,

1. If RC
0 = R0 < 1, the equilibrium E4 = E3 exists in a neutral state.

2. If RC
0 = R0 > 1, the equilibrium E7 = E6 exists in a neutral state.

Proof. The proof omitted as it is similar to the proof of Corollary 1.

Corollary 3.3 Assume ξ1 = 0 and ξ2 = 0. Then,

1. If RC
0 = R0 < 1, the equilibrium E4 exists in a neutral state.

2. If RC
0 = R0 > 1, the equilibrium E7 exists in a neutral state.

Proof. In the first case the eigenvalues of E4 are λ1 = −r, λ2 = 0, λ3 = −b, and λ4 =
b(R0 − 1). We can see if RC

0 = R0 < 1 then E4 is neutral. In fact, as E4 moves along the
line ξ1 = ξ2 from ξ1, ξ2 > 0 through ξ1, ξ2 = 0 into ξ1, ξ2 < 0, it progresses from stable to
neutral to stable.

In the second case the eigenvalues of E7 are λ1 = −r, λ2 = 0, λ3 = −βK, and λ4 =
b(1 − R0). We can see if RC

0 = R0 > 1 then E7 is neutral. Similarly to E4, as E7 moves
along the line ξ1 = ξ2 through ξ1, ξ2 = 0 it also progresses from stable to neutral to stable.

4 Models with Frequency Incidence Disease Transmis-

sion

In this section we consider two species models in which the transmission dynamics follows
the frequency incidence approach. In this approach the intra-species and inter-species trans-
mission rates in (2.3a) - (2.3b) are defined as

Λij(Nj) = βij, (4.1)

where for i = 1, 2, βij > 0 are constant terms. From (2.3a), (2.3b) and (4.1) we can write
the disease incidence functions as

I1(I1, I2) =

(

β11

I1

N1

+ β12

I2

N2

)

S1, (4.2)

I2(I1, I2) =

(

β22

I2

N2

+ β21

I1

N1

)

S2. (4.3)

In [31, 34, 21, 24] the authors consider two species models with frequency incidence
disease transmission. In the model considered in [31, 24], inter-specific competition is not
included, but intra-specific competition is so that each species reaches a carrying capacity
at equilibrium. Thus, the birth functions g1 and g2 model logistic growth. In [34] and
[21], both inter- and intra-specific competition between the species is modeled, so g1 and
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g2 are Lotka-Volterra competition terms. In [21] Lotka-Volterra competition dynamics are
also included in the death term so that both the death rates as well as the birth rates are
density-dependent. However, death due to disease is not accounted for. In [34], the authors
fully analyze a model similar to the one that we consider in this section. As opposed to our
model, they assume density-dependent death rates and density-independent birth rates.

In this section, we prove the existence, uniqueness and global stability of the infected
coexistence equilibrium under the assumption that coexistence of the species is feasible.
Thus, our work complements and extends the work done in [24, 34]. As would be expected,
the stability of the coexistence equilibrium depends on the basic reproduction number (BRN)
being greater than one.

As done in the mass action case, we model the birth functions for the two species by
equations (2.2a) and (2.2b). With these assumptions, the two-species competition model
with frequency incidence disease transmission is:

dS1

dt
= a1

(

1 −
N1

θ11

−
N2

θ12

)

N1 − b1S1 −

(

β11

I1

N1

+ β12

I2

N2

)

S1, (4.4a)

dS2

dt
= a2

(

1 −
N2

θ22

−
N1

θ21

)

N2 − b2S2 −

(

β22

I2

N2

+ β21

I1

N1

)

S2, (4.4b)

dI1

dt
=

(

β11

I1

N1

+ β12

I2

N2

)

S1 − Γ1I1, (4.4c)

dI2

dt
=

(

β22

I2

N2

+ β21

I1

N1

)

S2 − Γ2I2. (4.4d)

The model (4.4a)-(4.4d) makes ecological sense and is mathematically well-posed in the
domain D1 = {(S1, S2, I1, I2) ∈ R

4|S1, S2, I1, I2 ≥ 0, 0 ≤ Ni ≤ Kii}. The total population
size Ni = Si + Ii of species i satisfy the differential equations,

dN1

dt
= a1

(

1 −
N1

θ11

−
N2

θ12

)

N1 − b1N1 − α1I1, (4.5a)

dN2

dt
= a2

(

1 −
N2

θ22

−
N1

θ21

)

N2 − b2N2 − α2I2, (4.5b)

4.1 Single Species Logistic growth Model with Frequency inci-

dence Disease Transmission

We recall the analysis of the SI disease model for one species with frequency incidence,

dS

dt
= a

(

1 −
N

θ

)

N − bS − β
I

N
S, (4.6)

dI

dt
= β

I

N
S − ΓI, (4.7)

where the parameters retain the same meaning as in Section 2. In particular Γ = α+ b. The
model (4.6)-(4.7) is well-posed on the domain ΩF = {(S, I)T |S, I ≥ 0, 0 ≤ N ≤ K}. The
equilibria for model (4.6)-(4.7) are EF

1 = (0, 0), EF
2 = (K, 0), and

EF
3 =

(

SF
3 , (R0 − 1)S

)

, (4.8)
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where SF
3 = Γ

β
θ
[

1 + α−β

a
Γ

β

]

, and R0 := β

Γ
is the basic reproduction number for the model.

Thus, R0 > 1 is a feasibility condition for the equilibrium EF
3 .

We have the following lemma [34].

Lemma 4.1 For the model (4.6)-(4.7), the trivial equilibrium EF
1 is always unstable. If

R0 < 1 then the disease-free equilibrium EF
2 is asymptotically stable in the domain ΩD. If

R0 > 1 then the infected equilibrium EF
3 is asymptotically stable in the domain ΩF .

4.2 Analysis of Equilibria for Two Species Competition with Fre-

quency Incidence Disease Transmission

In this section, we analyze the disease free equilibrium and the infected coexistence for the
model (4.4a)-(4.5b).

4.2.1 Disease Free Equilibrium

We have the following result for the DFE of model (4.4a)-(4.5b)

Theorem 4.1 The basic reproduction number for model (4.4a)-(4.5b) with coexisting species
is

RC
0 =

R11 + R22

2
+

√

(R11 −R22)2 + 4R12R21

2
, (4.9)

where, for i, j = 1, 2

Rij =
βijS

4
i,∞

ΓjS
4
j,∞

, (4.10)

and where S4
j,∞, for j = 1, 2 are the susceptible equilibrial densities of the disease free equi-

librium E4 as defined in (3.20)-(3.21). The condition RC
0 < 1 leads to the inequality

β11

Γ1

+
β22

Γ2

+
(β12β21

Γ1Γ2

−
β11β22

Γ1Γ2

)

< 1. (4.11)

Proof. The proof is omitted as it is similar to the proof for Theorem 1.

Remark 4.1 Unlike the mass action case, R11 = R1
0 :=

β11

Γ1

and R22 = R2
0 :=

β22

Γ2

, so

that (4.11) can be rewritten in terms of the basic reproduction numbers of each species alone
combined with inter-specific terms as

R1

0 + R2

0 +

(

β12β21

Γ1Γ2

−R1

0R
2

0

)

< 1. (4.12)

In the next section, we first rewrite model (4.4a)-(4.5b) using the proportion of infected
individuals, and then analyze the stability of the infected coexistence equilibrium of this
modified model.
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4.2.2 Infected Coexistence Equilibrium

In this section we examine the infected coexistence (endemic) equilibrium of the system
(4.4a)-(4.5b), assuming that the feasibility conditions are met and both species are present.
Although the actual value of this equilibrium is algebraically intractable, we use methods
similar to [31] to analyze the stability of the endemic equilibrium.

Assuming that N1, N2 > 0, we will express the model (4.4c)-(4.5b) in terms of the
proportion of infected individuals. Let i1 = I1

N1

, i2 = I2
N2

. Since Nj = Sj + Ij , j = 1, 2
model (4.4c)-(4.5b) can be rewritten as

di1
dt

= (1 − i1)(β11i1 + β12i2 − α1i1) − a1i1

(

1 −
N1

θ11

−
N2

θ12

)

, (4.13a)

di2
dt

= (1 − i2)(β22i2 + β21i1 − α2i2) − a2i2

(

1 −
N2

θ22

−
N1

θ21

)

, (4.13b)

dN1

dt
= a1N1

(

1 −
N1

θ11

−
N2

θ12

)

− b1N1 − α1i1N1, (4.13c)

dN2

dt
= a2N2

(

1 −
N2

θ22

−
N1

θ21

)

− b2N2 − α2i2N2. (4.13d)

The model (4.13a)-(4.13d) makes ecological sense and is mathematically well-posed in the
domain D2 = {(i1, i2, N1, N2) ∈ R

4|0 ≤ i1, i2 ≤ 1, 0 < Ni ≤ Kii, i = 1, 2}. Unlike [31], in
which density-dependent death rates were considered, the equations (4.13a)-(4.13d) do not
decouple when rewritten in terms of proportions of infected individuals.

We follow the approach in [31] and prove the following results.

Theorem 4.2 For frequency incidence, a unique endemic equilibrium exists for the SI model
with competition, (4.13a)-(4.13d), if and only if (i) Rjj > 1 for either j = 1 or j = 2 or (ii)
Rjj ≤ 1 for both j = 1, 2 and (1 −R11)(1 −R22) < R12R21.

Proof. We note that conditions (i) and (ii) are equivalent to RC
0 > 1 for RC

0 defined in (4.9)
and (4.10) (see [31] for the proof of a similar result).

We begin by setting (4.13c) and (4.13d) equal to zero, i.e., where N ′
1 = 0 and N ′

2 = 0, so
that

N∗
1 (i1, i2) = S4

1,∞ + H1(i1, i2), (4.14a)

N∗
2 (i1, i2) = S4

2,∞ + H2(i1, i2), (4.14b)

for (i1, i2) ∈ D = [0, 1] × [0, 1], and S4
i,∞, i = 1, 2 are defined in (3.57)-(3.58). The functions

H1 and H2 are defined as

H1(i1, i2) =

(

α1i1K12

r1

−
α2i2K22

r2

) (

K22

K21

−
K12

K11

)−1

, (4.15a)

H2(i1, i2) =

(

α2i2K21

r2

−
α1i1K11

r1

) (

K11

K12

−
K21

K22

)−1

. (4.15b)
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We then substitute N∗
1 and N∗

2 into equations (4.13a), and (4.13b) resulting in the equa-
tions

di1
dt

= (1 − i1)(β11i1 + β12i2 − α1i1) − i1(b1 + α1i1), (4.16a)

di2
dt

= (1 − i2)(β22i2 + β21i1 − α2i2) − i2(b2 + α2i2). (4.16b)

Setting (4.16a) and (4.16b) equal to zero, we obtain the nullclines for i1 and i2 as

i2 = f1(i1) =
i1[b1 + α1i1 − (1 − i1)(β11 − α1)]

(1 − i1)β12

, (4.17a)

i1 = f2(i2) =
i2[b2 + α2i2 − (1 − i2)(β22 − α2)]

(1 − i2)β21

. (4.17b)

We note that the domain D = [0, 1]× [0, 1] is invariant for the sytem (4.16a) and (4.16b),
since if ik = 0 then dik/dt > 0 and if ik = 1 then dik/dt < 0, for k = 1, 2. The nullclines
always intersect at the origin in D. The function f1 has an asymptote at i1 = 1, and f2 has
an asymptote at i2 = 1 and

df1

di1
|i1=0 =

b1 + α1 − β11

β12

, (4.18)

and
df2

di2
|i2=0 =

b2 + α2 − β22

β21

. (4.19)

Also,
d2fk

di2k
|ik=0 =

2bk + 2αk

βkj

> 0, k = 1, 2, (4.20)

since all parameters are positive indicating that both f1(i1) and f2(i2) are concave up on
their respective axes.
Sufficiency part of proof: We break this part up into four cases:
Case (1): Assume that R11 > 1 and R22 > 1. Then, we can see from (4.10) that βii > Γi =
bi + αi, for i = 1, 2. Using this in equations (4.18) and (4.19), we find that

dfk

dik
|ik=0 < 0, (4.21)

which implies that there is one point of intersection in D (see Figure 1).
Case (2): Assume R11 < 1 and R22 > 1. Then df1

di1
|i1=0 > 0 and df2

di2
|i2=0 < 0, so that f1 and

f2 again intersect uniquely in D (see Figure 2).
Case (3): Assume R11 > 1 and R22 < 1. Changing roles in Case (2), we again have that f1

and f2 intersect uniquely in D.
Case (4): Lastly, we consider the case where R11 < 1 and R22 < 1, and (1−R11)(1−R22) <
R12R21. This implies that dfk

dik
|ik=0 > 0 for k = 1, 2. In order for the nullclines to cross in D,

we must also have
df1

di1
|i1=0 <

1

df2

di2
|i2=0

. (4.22)
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This is equivalent to (1 − R11)(1 − R22) < R12R21, which holds by assumption for Case 4
(see Figure 3).
Necessary part of proof: Assume that there exists a unique endemic equilibrium but
that conditions (i) and (ii) of Theorem 4.2 do not hold. So, Rjj < 1 for j = 1, 2 and
(1 − R11)(1 − R22) ≥ R12R21. This implies that dfk

dik
|ik=0 > 0 for k = 1, 2. However, the

condition df1

di1
|i1=0 < 1

df2
di2

|i2=0

no longer holds, hence the nullclines do not intersect in the

interior of D, which contradicts the assumption of existence of a unique endemic equilibrium
(see Figure 4).

Existence of a unique point of intersection (i1,∞, i2,∞) in D then gives us existence of
the infected coexistence equilibrium (i1,∞, i2,∞, N∗

1 (i1,∞, i2,∞), N∗
2 (i1,∞, i2,∞)) in D2 of model

(4.13a)-(4.13d), by substituting (i1,∞, i2,∞) into equations (4.14a) and (4.15b).
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Figure 1: Isoclines for the case where both R11,R22 > 1. Disease related parameters are
β11 = 2.7, β22 = 3.2, β12 = 1.1, and β21 = 1.1. The parameters related to population
dynamics are α1 = 1, α2 = .5, b1 = 1, and b2 = 2.

Theorem 4.3 Consider the proportions model (4.16a)-(4.16b). If RC
0 < 1 then the disease

free equilibrium (i1,∞ = 0, i2,∞ = 0) is asymptotically stable in the region D and if RC
0 > 1

then the infected coexistence (endemic) equilibrium is asymptotically stable in D+ = D \
{(0, 0)}.

Proof. Suppose RC
0 < 1. Then by Theorem 4.2 there is no infected coexistence equilibrium

in D. The only equilibrium for (4.16a)-(4.16b) is the origin in D, and is locally asymptotically
stable by [40]. The Poincare-Bendixson Trichotomy [1] states that a positive orbit of the
system that remains in a closed and bounded region of the plane with only a finite number
of equilibria will have an omega limit set that takes on only one of three forms, namely,
an equilibrium, a periodic orbit, or a finite number of equilibria. Since the solutions of our
system are indeed bounded and the only equilibrium in the region D = [0, 1] × [0, 1] for
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Figure 2: Isoclines for the case where R11 < 1 and R22 > 1. Disease related parameters
are β11 = 1.8, β22 = 3.2, β12 = 1.1, and β21 = 1.1. The parameters related to population
dynamics are α1 = 1, α2 = .5, b1 = 1, and b2 = 2.
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Figure 3: Isoclines for the case where R11,R22 < 1 but (1−R11)(1−R22) < R12R21. Disease
related parameters are β11 = 1.8, β22 = 2.3, β12 = 1.1, and β21 = 1.1. The parameters related
to population dynamics are α1 = 1, α2 = .5, b1 = 1, and b2 = 2.
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Figure 4: Isoclines for the case where neither condition (i) nor (ii) of Theorem 4.2 hold.
Disease related parameters are β11 = 1.5, β22 = 2, β12 = .2, and β21 = .2. The parameters
related to population dynamics are α1 = 1, α2 = .5, b1 = 1, and b2 = 2.

(4.16a)-(4.16b) is the origin which is stable, there are no periodic solutions in the region and
the origin is stable for (4.16a)-(4.16b).

Next suppose RC
0 > 1. Then by Theorem 4.2 there is a unique infected coexistence

equilibrium, (i1,∞, i2,∞), for (4.16a)-(4.16b). We first will show that no solution of (4.16a)-
(4.16b) in the invariant region D+ will approach the origin. The Jacobian for (4.16a) and
(4.16b) evaluated at the origin is

J (0, 0) =

[

β11 − (α1 + b1) β12

β21 β22 − (α2 + b2)

]

,

which has eigenvalues

λ1, λ2 =
1

2
[(β11 − Γ1) + (β22 − Γ2) ±

√

[(β11 − Γ1) − (β22 − Γ2)]2 + 4β21β12], (4.23)

where Γi = αi + bi. Since RC
0 > 1 then we know either one of β11 − Γ1 and β22 − Γ2 are

positive or both are negative and (β11 −Γ1)(β22 −Γ2) < β12β21, both cases for which λ1 > 0.
Now, if λ2 > 0 as well then the origin is a repellor. If, on the other hand, λ2 < 0 then the
eigenvector of λ2 is

[

x1

x2

]

=

[

1

β21

(λ2 − (β22 − Γ2))

1

]

. (4.24)

Since λ2 < 0 then we can see that x1 < 0 also and the stable manifold of the origin does not
lie in D+. Hence, none of the solutions in D+ approach the DFE (0, 0) in D.

Lastly, we need to consider the endemic equilibrium and show that no periodic solutions
exist inside D+. We can see by examining the phase plane of the proportions system (4.16a)
and (4.16b) and through computations that the region, A, enclosed by the nullclines of i1 and
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i2 but to the left of and below the endemic equilibrium is invariant. Along the i1 nullcline in
A, di2/dt > 0 and along the i2 nullcline in A, di1/dt > 0, which proves that the region A is
invariant. The region to the right of and above the endemic equilibrium, B, enclosed by the
nullclines is also invariant in the opposite direction. So, any solution trajectory that tries to
orbit around the endemic equilibrium will be ‘trapped’ in either region A or region B and will
approach the endemic equilibrium. Thus, no periodic solutions exist. Since the solutions
are bounded, we can use the Poincare-Bendixson Trichotomy to deduce that all solution
trajectories approach the infected coexistence equilibrium, and therefore it is asymptotically
stable in the region D+.

We note that the stability of the infected coexistence equilibrium of the proportions
model (4.16a)-(4.16b) need not guarantee stability of the infected coexistence of the model
(4.13a)-(4.13d).

5 Conclusion and Discussion

The effects of a shared disease on the outcome of competition between two species has been
investigated by several authors in the ecological and mathematical ecology communities.
Although many papers propose and analyze two species mathematical models of Lotka-
Volterra competition between the two species that share a common (generalist) pathogen,
some important cases are difficult to analyze. In particular, it has been difficult to find
existence and stability conditions of the infected coexistence equilibrium for these models.

In this paper, we consider a competition model with density independent death rates and
a shared disease that spreads by either mass action or frequency incidence transmission.

In the first set of results, we derive equilibrium values and stability conditions for a two
species Lotka-Volterra competition model with density independent death rates and mass
action disease incidence. All of the existence and stability conditions can be derived in
terms of competitive interactions represented by two parameters, ξ1 and ξ2, that measure
the relative importance of intra versus inter specific competition, and in terms of basic
reproduction numbers (BRNs) for species in isolation or for coexisting species. The infected
coexistence equilibrium, however, remains intractable. Hence, we simplify the model by
assuming that the two species are similar enough to have the same intra-specific competition
rates and to transmit the disease to each other at the same rates. We also assume that
the pathogen does not cause death in its hosts, similar to the common cold in humans, for
example. Under these constraints, we derive all the existence and stability conditions for the
equilibria of the mass action disease model. We prove that a conjecture made in [26, 5, 18, 9]
about the infected coexistence equilibrium, holds for our simplified model. In particular, we
show that the conditions under which infected coexistence is stable guarantee that all other
equilibria are unstable and vice versa.

Our results in the case of mass action disease transmission show that, if the death rate due
to disease is positive, then disease can reduce the total equilibrium density for each species
in isolation. This in turn affects competitive ability indirectly (apparent competition), and
is another indication that in the presence of disease, the competitive outcome can change.
However, it has thus far been impossible to analyze the stability of coexistence equilibria
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for the most general mass action model, and hence to find conditions under which disease
allows the coexistence of species that would not normally coexist. We hypothesize that
the main driving force behind the possible switch of competitive outcomes is death due to
disease. This force may be magnified by differing rates of transmission between and within
species. Accordingly, we simplify the mass action model so that there is negligible death
due to disease and no significant difference between transmission rates. Analysis of this
simplified model is tractable and we determine that the presence of disease does not change
the competitive outcome of the disease free case.

Next, we consider Lotka-Volterra competition between the two species with density-
independent death rates and frequency incidence disease transmission. We prove the ex-
istence, and uniqueness of the infected coexistence equilibrium under the assumption that
coexistence of the species is feasible. We show that the stability of the infected coexistence
equilibrium of a related proportions model depends on the value of the basic reproduction
number (BRN) being greater than one. However, the stability analysis of infected coexistence
of the full model is not obtained.

In conclusion, we have presented a thorough literature review of models of two interacting
species that are both affected by a pathogen. We have presented previously known results in
this area along with new results in a unified setting that simplifies the analysis, and stresses
the role of the basic reproduction number as well as the relative strengths of intra- versus
inter-specific competition for both species.
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