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Abstract:

We study the stability properties of, and the phase error present in, several higher order (in
space) staggered finite difference schemes for Maxwell’s equations coupled with a Debye or
Lorentz polarization model. We present a novel expansion of the symbol of finite difference
approximations, of arbitrary (even) order, of the first order spatial derivative operator. This
alternative representation allows the derivation of a concise formula for the numerical dis-
persion relation for all (even) order schemes applied to each model, including the limiting
(infinite order) case. We further derive a closed-form analytical stability condition for these
schemes as a function of the order of the method. Using representative numerical values
for the physical parameters, we validate the stability criterion while quantifying numerical
dissipation. Lastly, we demonstrate the effect that the spatial discretization order, and the
corresponding stability constraint, has on the dispersion error.

Keywords: Maxwell’s Equations, Debye, Lorentz, higher order FDTD, dissipation, disper-
sion, phase error.

1 Introduction

The computational simulation of electromagnetic interrogation problems, for the determina-
tion of the dielectric properties of complex dispersive materials (such as biological tissue),
requires the use of highly efficient forward simulations of the propagation of transient elec-
tromagnetic waves in these media. These simulations have very important applications in
diverse areas including noninvasive detection of cancerous tumors, and the investigation
of the effect of precursors on the human body [11, 1, 2, 18]. Thus, a lot of research has
concentrated on the development of accurate, consistent and stable discrete forward solvers.

The electric and magnetic fields inside a material are governed by the macroscopic
Maxwell’s equations along with constitutive laws that account for the response of the ma-
terial to the electromagnetic field. Numerical approximation algorithms of time-dependent
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wave equations and Maxwell’s equations introduce error into the amplitude and speed of
the propagating waves. These errors include numerical dissipation, the dampening of some
frequency modes, and numerical dispersion, the frequency dependence of the phase velocity
of numerical wave modes in the computational grid. Dielectric materials have actual physical
dispersion. The complex electric permittivity of a dielectric medium is frequency dependent
(has dielectric dispersion). Thus, an appropriate discretization method should have a numer-
ical dispersion that matches the model dispersion as closely as possible. Dielectric materials
also have physical dissipation, or attenuation, which must also be correctly computed by a
numerical method.

The Lax-Richtmyer theorem [37] states that the convergence of consistent difference
schemes to initial value problems represented by PDE’s is equivalent to stability. Hence
analysis of stability criteria for conditionally stable schemes is important. The stability and
dispersion properties for the finite difference time domain (FDTD) methods, also called Yee
schemes, applied to Maxwell’s equations in free space are well known (see [40]). There are
several FDTD extensions that have been developed to model electromagnetic pulse propa-
gation in dispersive media. One way to model a dispersive medium is to add to Maxwell’s
equations a set of ordinary differential equations (ODEs) that relate the electric displace-
ment D to the electric field E [23], or a set of ODEs that model the dynamic evolution of
the macroscopic polarization vector P driven by the electric field [26, 25]. This technique is
known as the auxiliary differential equation (ADE) method. FDTD schemes are constructed
for this augmented system by discretizing Maxwell’s equations as usual (Yee scheme) and
in addition time discretizing the auxiliary ODEs using a second order in time method, so
that the fully discretized augmented Maxwell system is second order accurate in space and
time. Dielectric dispersion can be expressed in the time domain as a convolution integral
involving the electric field and a causal susceptibility function. The recursive convolution
(RC) method [28, 29, 27] uses a recursive technique to update the convolution representation
of the constitutive law along with the FDTD time update of Maxwell’s equations. There
are other methods such as the Z-transform [39, 38] and the TLM method [9] that have also
been used to model pulse propagation in dispersive media. The discrete versions of many of
these modeling approaches have been compared and analyzed for their numerical errors and
stability properties [31, 48, 36, 10, 16, 47].

In this paper we consider Maxwell’s equations in Debye or Lorentz dispersive media using
the ADE approach which results in a system of ODEs appended to Maxwell’s equations. The
constitutive law in the medium involves a (linear) ODE that describes the dynamic evolution
of the polarization driven by the electric field. We consider high order (in space) staggered
FDTD like methods for the numerical discretization of the augmented Maxwell system for
Debye and Lorentz dispersive media. These methods have 2M order accuracy in space and
second order accuracy in time. We denote such methods as (2, 2M) order finite difference
methods, where M ∈ N is arbitrary.

In [32], the author presents an argument in favor of using (2, 4) order finite difference
schemes for wave propagation in relaxing dielectrics (Debye media). The author shows that
there is a stiff problem in the time direction due to exponential decay in the skin-depth,
and with the existence of disparate wave speeds in well defined spatio-temporal regions.
In addition, the problem is asymptotically singularly perturbed since it changes type from
hyperbolic to parabolic. The (2, 4) schemes, as opposed to the (2, 2) (Yee) scheme, do not
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suffer from a phase error degradation as the Courant number is decreased. Due to the
time stiffness it is desirable to use a small time step by reducing the Courant number or by
increasing the spatial cell size, which can be done with the (2, 4) schemes.

Higher order finite difference methods for the wave equation and for Maxwell’s equations
in free space have been studied by many authors; see [42, 43, 44, 24, 13, 4] and the references
therein. The extensions of higher order staggered finite difference methods to Maxwell’s
equations in dispersive media have been considered in [46, 45, 34, 33, 35]. In particular
[46, 45] developed a (4,4) method for Maxwell’s equations in a cold plasma, while [34, 33, 35]
considered various 2, 4 and 6th order methods for Debye, Drude and Lorentz media.

Our focus in this paper is the derivation of closed form analytical stability criteria for the
staggered (2, 2M) FDTD methods, for arbitrary M . In addition we also derive numerical
dispersion relations for these schemes. We obtain information about the expected accu-
racy of the method from the construction of the numerical dispersion relation which relates
the numerical wave number to the frequency for waves propagating in the finite difference
grid. We then compare the numerical dispersion relation with the dispersion relation for the
corresponding continuous model.

The outline of the paper is as follows. In Section 2 we describe the ADE formulations
for Debye and Lorentz type dispersive media in three dimensions, and in Section 3 we
consider the one dimensional models. The key result required to perform the stability and
dispersion analyzes for arbitrary M is the equivalence of the symbol of the 2M order finite
difference approximation of the first order derivative operator ∂/∂z with the truncation of
an appropriate series expansion of the symbol of ∂/∂z. This result is proved in Section 4. A
similar result has been proved for 2M order finite difference approximations of the Laplace
operator in [4], which also enabled the authors to derive closed form stability conditions and
dispersion relations for (2, 2M) schemes applied to the one-dimensional wave equation.

The (2, 2M) order schemes for Debye and Lorentz media are presented in Section 5. In
conjunction with the key result obtained in Section 4, von Neumann analysis is used to obtain
stability conditions in Section 6. In [31], the author derived partial stability conditions and
numerical dispersion relations for the (2, 2) schemes for Debye and Lorentz dispersive media.
These results were valid for certain representative media for each type of dispersive model.
In [10], the stability analysis was extended and stability conditions for the (2, 2) schemes
for general Debye and Lorentz dispersive media were derived using von Neumann analysis.
We use the ideas and results from [10] and [31] and extend the stability analysis to (2, 2M)
order staggered finite difference methods. In Section 7 we extend the numerical dispersion
analysis in [31] to (2, 2M) schemes. Numerical dispersion relations were not considered in
[10]. Stability conditions for the (2, 4) methods for Debye and Lorentz media were derived in
[34] using the Routh-Hurwitz criteria and numerical dispersion relations were also considered
for the cases M = 2, 4, 6. The numerical dispersion analysis was extended to arbitrary (even)
order methods in [35], however the representations used led to cumbersome algebra, and the
extension to the limiting (infinite order) case is not obvious.

The stability and dispersion analyzes performed in this report are for one dimensional
models. However, from these results the extension to two and three dimensions, though
tedious, can be easily performed. We present conclusions in Section 8.
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2 Model formulation

We consider Maxwell’s equations which govern the electric field E and the magnetic field H

in a domain Ω from time 0 to T given as

∂D

∂t
+ Jc,s −

1

µ0
∇×B = 0 in (0, T ) × Ω, (2.1a)

∂B

∂t
+ ∇×E = 0 in (0, T ) × Ω, (2.1b)

∇ · D = 0 = ∇ · B in (0, T ) × Ω, (2.1c)

E × n = 0 in (0, T ) × ∂Ω, (2.1d)

E(0,x) = 0 = H(0,x) in Ω. (2.1e)

The fields D,B are the electric and magnetic flux densities respectively. All the fields in
(2.1) are functions of position x = (x, y, z) and time t. We have Jc,s = Jc + Js, where Jc is
a conduction current density and Js is the source current density. We will assume Jc = 0

in this paper, as we are interested in dielectrics with no free charges. Perfect conducting
boundary conditions (2.1d) are added to system to terminate the computational domain.

Constitutive relations which relate the electric and magnetic flux densities D,B to the
electric and magnetic fields E,H are added to these equations to make the system fully
determined and to describe the response of a material to the electromagnetic fields. In
free space, these constitutive relations are D = ǫ0E, and B = µ0H, where ǫ0 and µ0 are
the permittivity and the permeability of free space, respectively, and are constant [22]. In
general there are different possible forms for these constitutive relationships. In a frequency
domain formulation of Maxwell’s equations, these are usually converted to linear relationships
between the dependent and independent quantities with frequency dependent coefficient
parameters. We will consider the case of a dispersive dielectric medium in which magnetic
effects are negligible. Thus, within the dielectric medium we have constitutive relations that
relate the flux densities D,B to the electric and magnetic fields, respectively, as

D = ǫ0E + P, (2.2a)

B = µ0H. (2.2b)

In (2.2a), the quantity P is called the macroscopic electric polarization. (A discussion
of the relationship between the macroscopic polarization and the microscopic material prop-
erties leading to distributions of relaxation times and other dielectric parameters in the
constitutive laws can be found in [7].) Electric polarization may be defined as the electric
field induced disturbance of the charge distribution in a region. This polarization may have
an instantaneous component as well as delayed effects; the latter will usually have associated
time constants called relaxation times which are denoted by τ . We define the instantaneous
component of the polarization to be related to the electric field by means of the free space
permittivity, ǫ0, and a susceptibility χ. The remainder of the electric polarization, called the
relaxation polarization, is denoted as PR. Therefore, we have

P = PI + PR = ǫ0χE + PR, (2.3)
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and hence the constitutive law (2.2a) becomes

D = ǫ0ǫrE + PR, (2.4)

where ǫr = (1 + χ) is the relative permittivity of the dielectric medium. We will hence-
forth denote PR by P, as the instantaneous polarization will be absorbed into the dielectric
constant ǫr.

To describe the behavior of the media’s macroscopic electric polarization P (= PR), we
employ a general integral equation model in which the polarization explicitly depends on
the past history of the electric field. This model is sufficiently general to include micro-
scopic polarization mechanisms such as dipole or orientational polarization (Debye), as well
as ionic and electronic polarization (Lorentz), and other frequency dependent polarization
mechanisms [3]. The resulting constitutive law can be given in terms of a polarization or
displacement susceptibility kernel g as

P(t,x) =

∫ t

0

g(t− s,x)E(s,x)ds, (2.5)

For more complex dielectric materials, a simple Debye or Lorentz polarization model is
often not adequate to characterize the dispersive behavior of the material. One can then
turn to combinations of Debye, Lorentz, or even more general nth order mechanisms [6] as
well as Cole-Cole type (fractional order derivative) models [15]. Additionally, materials may
be represented by a distribution of the associated time constants or even a distribution of
polarization mechanisms (see [8, 7]).

In this paper we concentrate our analysis on single pole Debye and Lorentz polarization
models.

2.1 Orientational Polarization: The Debye Model

In the case of a dispersive medium governed by a Debye model for orientational or dipolar
polarization, the susceptibility kernel in (2.5) is given to be

g(t) = e−t/τ ǫ0(ǫs − ǫ∞)

τ
. (2.6)

Such a Debye model can be represented in (macroscopic) differential form [26] as

Debye Model 1:

τ
∂P

∂t
+ P = ǫ0(ǫs − ǫ∞)E, (2.7a)

D = ǫ0ǫ∞E + P, (2.7b)

with a first order evolution equation for the polarization vector P driven by the electric field.
Alternatively, rewriting (2.7b) as P = D − ǫ0ǫ∞E, the Debye model can be represented by
a first order differential equation for the electric field E, in terms of the electric flux density
D [23], given as

Debye Model 2: ǫ0ǫ∞τ
∂E

∂t
+ ǫ0ǫsE = τ

∂D

∂t
+ D. (2.8)

In equations (2.6), (2.7a) and (2.8), the parameter ǫs is the static relative permittivity.
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The difference between these permittivities is commonly written ǫd := ǫs − ǫ∞. The pres-
ence of instantaneous polarization is accounted for by the coefficient ǫr = ǫ∞, the infinite
frequency permittivity, in the electric flux equation (2.4). The electric polarization, less the
part included in the instantaneous polarization, is seen to be a decaying exponential with
relaxation parameter τ , which is driven by the electric field. This model was first proposed
by Debye [17] to model the behavior of materials that possess permanent dipole moments.
The magnitude of the polarization term P represents the degree of alignment of these in-
dividual moments and is based on a uniformity assumption at the molecular level (see [7]).
The choice of coefficients in (2.7a) gives a physical interpretation to ǫs and ǫ∞ as the relative
permittivities of the medium in the limit of the static field and very high frequencies, respec-
tively [6]. In the static case, we have Pt = 0, so that P = ǫ0(ǫs − ǫ∞)E and D = ǫ0ǫsE. For
very high frequencies, τPt dominates P so that P ≈ 0 and D = ǫ0ǫ∞E (thus the notation
of ∞).

Biological cells and tissues display very high values of the dielectric constants at low
frequencies, and these values decrease in almost distinct steps as the excitation frequency is
increased. The Debye model is most often used to model electromagnetic wave interactions
with water-based substances, such as biological materials. In particular, biological tissue is
well represented by multi-pole Debye models, by accounting for permanent dipole moments
in the water. The Debye model has other physical characteristics which make it attractive
from an analytical point of view (for details, see [48]). Additionally, very efficient numerical
methods exist for the Debye model, thus it is very common for linear combinations of Debye
models to be used to approximate more complex polarization mechanisms.

2.2 Electronic Polarization: The Lorentz Model

For the Lorentz model for electronic polarization the susceptibility kernel in (2.5) is given to
be

g(t) = e−tν/2 sin(ν0t)
ǫ0ω

2
p

ν0
. (2.9)

In (2.9), the plasma frequency ωp is defined as ωp = ω0
√

ǫd where again ǫd = ǫs − ǫ∞ with
ǫs and ǫ∞ as defined for the Debye model. The parameter ω0 is the resonance frequency of
the material while the parameter ν is a damping coefficient. In (2.9), the parameter ν0 is
defined as

ν0 =

√

ω2
0 −

ν2

4
.

The Lorentz model is formulated by modeling the atomic structure of the material as
a damped vibrating system representing a deformable electron cloud at the atomic level
[6]. Applying classical Newtonian laws of motion, we find that the displacement of the
outermost shell of the atom satisfies a second-order ordinary differential equation [48] and
thus, a Lorentz model can be represented in (macroscopic) differential form [6] as
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Lorentz Model 1:

∂2P

∂t2
+ ν

∂P

∂t
+ ω2

0P = ǫ0ω
2
pE, (2.10a)

D = ǫ0ǫ∞E + P, (2.10b)

with a second order evolution equation for the polarization vector P driven by the electric
field. Alternatively, rewriting (2.10b) as P = D − ǫ0ǫ∞E, the Lorentz model can be repre-
sented by a second order differential equation for the electric field E, in terms of the electric
flux density D [23], given as

Lorentz Model 2: ǫ0ǫ∞
∂2E

∂t2
+ ǫ0ǫ∞ν

∂E

∂t
+ ǫ0ǫsω

2
0E =

∂2D

∂t2
+ ν

∂D

∂t
+ ω2

0D. (2.11)

Another alternative to representing a Lorentz material is to rewrite (2.10a) as a system
of first order equations [25] by defining ∂P

∂t
= J along with the constitutive law (2.10b) as

Lorentz Model 3:

∂P

∂t
= J, (2.12a)

∂J

∂t
+ νJ + ω2

0P = ǫ0ω
2
pE, (2.12b)

D = ǫ0ǫ∞E + P. (2.12c)

3 Reduction to One Dimension

We consider the one dimensional case in which the electric field is assumed to be polarized
to have oscillations in the x-z plane such that it oscillates in the x direction and propagates
in the z direction.

For any field vector V(t,x), we can write

V(t,x) = êdV (t, z), (3.1)

where êd is a unit vector in the d direction, and V (t, z) is a scalar function of t and z. If
V = E,D,P,J, or Js, then d = x as all these field quantities oscillate in the x direction.
If V = H, or B, then d = y as the magnetic field and flux oscillate in the y direction. All
the fields propagate in the z direction. Thus, we are only concerned with the scalar values
E(t, z), H(t, z), D(t, z), B(t, z), P (t, z), J(t, z), and Js(t, z).

In this case Maxwell’s equations (2.1) in the interior of the domain Ω become

∂B

∂t
=

∂E

∂z
, (3.2a)

∂D

∂t
+ Js =

1

µ0

∂B

∂z
. (3.2b)

Using the constitutive law (2.7b) (also (2.10b)) in 1D, i.e.,

D = ǫ0ǫ∞E + P. (3.3)
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we can rewrite Ampére’s law (3.2b) as

ǫ0ǫ∞
∂E

∂t
+

∂P

∂t
+ Js =

1

µ0

∂B

∂z
(3.4)

4 2M Order Spatial Approximations

In this section we describe the construction of higher order spatial approximations to Maxwell’s
equations in 1D described in Section 2. This entails the construction of higher order spa-
tial approximations to the first order derivative operator ∂/∂z. The construction presented
in this section uses the notation from [14, 4] and is similar to an analogous construction
performed for the Laplace operator in [4].

4.1 Staggered ℓ2 Normed Spaces

Following the notation in [14, p. 36], we introduce the following staggered ℓ2 normed spaces
that will aid in obtaining the basic properties of the high order approximations. We define
the primary grid of R with space step size h to be

Gp = {ℓh | ℓ ∈ Z}, (4.1)

and the dual grid of R with space step size h to be

Gd =

{(

ℓ +
1

2

)

h | ℓ ∈ Z

}

. (4.2)

For any function v, we denote vℓ = v(ℓh) and vℓ+ 1

2
= v((ℓ + 1

2
)h). We define staggered ℓ2

normed spaces on Gp and Gd, respectively, as

V0 = {(vℓ), ℓ ∈ Z| h
∑

ℓ∈Z

|vℓ|2 ≤ ∞},

V 1

2
= {
(

vℓ+ 1

2

)

, ℓ ∈ Z| h
∑

ℓ∈Z

|vℓ+ 1

2
|2 ≤ ∞},

with scalar products (·, ·)0 and (·, ·) 1

2
derived from the norms ||v||20 = h

∑

|vℓ|2 and ||v||21
2

=

h
∑

|vℓ+ 1

2
|2.

Next, we define the discrete operators

D(2)
p,h : V0 → V 1

2
defined by

(

D(2)
p,hu
)

ℓ+ 1

2

=
uℓ+p − uℓ−p+1

(2p − 1)h
,

D̃(2)
p,h : V 1

2
→ V0 defined by

(

D̃(2)
p,hu
)

ℓ
=

uℓ+p− 1

2
− ul−p+ 1

2

(2p − 1)h
.

These are second-order discrete approximations of the operator ∂/∂z computed with stepsize
(2p − 1)h.
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Remark 4.1 If we denote D∗ to be the adjoint of the discrete operator D for the ℓ2 scalar

product, we can note that D̃(2)
p,h = −

(

D(2)
p,h

)∗

, (c.f. [14, p. 37]).

If u ∈ C2m+3(R), with m an integer, and m ≥ 1, we have [14, p. 53]

(

D̃(2)
1,hu
)

ℓ
=

∂uℓ

∂z
+

m
∑

i=1

h2i

(2i + 1)!22i

∂2i+1uℓ

∂z2i+1
+ O

(

h2m+2
)

, (4.3)

using the Taylor expansion of D̃(2)
1,h at z = ℓh. Similarly, using the Taylor expansion of D(2)

1,h

at z = ℓh we have

(

D(2)
1,hu
)

ℓ+ 1

2

=
∂uℓ+ 1

2

∂z
+

m
∑

i=1

h2i

(2i + 1)!22i

∂2i+1uℓ+ 1

2

∂z2i+1
+ O

(

h2m+2
)

. (4.4)

4.2 Two Different Ways of Constructing Finite Difference Ap-

proximations

Following the work done in [4], we construct finite difference approximations of order 2M
of the first order operator ∂/∂z, where M ∈ N is arbitrary. These approximations will be
denoted as

D(2M)
1,h : V0 → V 1

2
,

D̃(2M)
1,h : V 1

2
→ V0.

The operators D(2M)
1,h and D̃(2M)

1,h can be considered from two different points of view, namely

(V1) As linear combinations of second order approximations to ∂/∂z computed with different
space steps, and

(V2) As a result of the truncation of an appropriate series expansion of the symbol of the
operator ∂/∂z.

In [4], these two viewpoints were adopted for construction of finite difference approximations
to the Laplace operator.

4.2.1 Linear Combinations of Second Order Approximations to ∂/∂z

In the case of (V1), if we consider the linear combinations

D(2M)
1,h =

M
∑

p=1

λ2M
2p−1D

(2)
p,h, (4.5)

D̃(2M)
1,h =

M
∑

p=1

λ2M
2p−1D̃

(2)
p,h, (4.6)
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then by replacing h/2 by (2p−1)h/2 in (4.3) and by inserting the different Taylor expansions
obtained from (4.3) into (4.6) with m = M − 1 we obtain ([14, p. 53])

(

D̃(2M)
1,h u

)

ℓ
=

M
∑

p=1

λ2M
2p−1

M−1
∑

i=0

[

(

(2p − 1)h

2

)2i
1

(2i + 1)!

∂2i+1uℓ

∂z2i+1
+ O(h2M)

]

=

M−1
∑

i=0

[

h2i

22i(2i + 1)!

∂2i+1uℓ

∂z2i+1

M
∑

p=1

λ2M
2p−1(2p − 1)2i

]

+ O(h2M). (4.7)

Requiring
(

D̃(2M)
1,h u

)

ℓ
to approximate ∂uℓ/∂z with error O(h2M ) leads to the following system

of equations in the λ’s

λ2M
1 +λ2M

3 +λ2M
5 + . . . +λ2M

2M−1 = 1
λ2M

1 +32λ2M
3 +52λ2M

5 + . . . +(2M − 1)2λ2M
2M−1 = 0

λ2M
1 +34λ2M

3 +54λ2M
5 + . . . +(2M − 1)4λ2M

2M−1 = 0
...

...
...

...
...

...
λ2M

1 +32M−2λ2M
3 +52M−2λ2M

5 + . . . +(2M − 1)2M−2λ2M
2M−1 = 0

. (4.8)

Following the approach in [4] we can derive explicit formulas for the λ’s. First we rewrite
system (4.8) in matrix form as















10 30 50 . . . (2M − 1)0

12 32 52 . . . (2M − 1)2

14 34 54 . . . (2M − 1)4

...
12M−2 32M−2 52M−2 . . . (2M − 1)2M−2





























λ2M
1

λ2M
3

λ2M
5
...

λ2M
2M−1















=















1
0
0
...
0















. (4.9)

Next we define ∀n ∈ Z, the double factorial as

n!! =











n · (n − 2) · (n − 4) . . . 5 · 3 · 1 n > 0, odd

n · (n − 2) · (n − 4) . . . 6 · 4 · 2 n > 0, even

1, n = −1, 0.

(4.10)

Theorem 4.1 For any M ∈ N, the coefficients λ2M
2p−1 of system (4.9) are given by the explicit

formula

λ2M
2p−1 =

2(−1)p−1[(2M − 1)!!]2

(2M + 2p − 2)!!(2M − 2p)!!(2p − 1)
, (4.11)

where 1 ≤ p ≤ M .

Proof. The proof here is the analogue of the proof of Theorem 1.1 in [4] for our
case. Let us denote the matrix of system (4.9) as W2M . We define the vector λ2M =
(

λ2M
1 , λ2M

3 , λ2M
5 , . . . , λ2M

2M−1

)T
. Multiplying the linear system of equations in (4.9) by any

vector u = (u1, u2, . . . , uM)T ∈ R
M , we get the equation

uT W2Mλ2M = u1. (4.12)
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Next, we define the even polynomial of degree 2M − 2 associated to the vector u as

Pu(x) = u1 + u2(2x − 1)2 + u3(2x − 1)4 + . . . + uM(2x − 1)2M−2, (4.13)

from which we obtain the equation

uT W2M = (Pu(1), Pu(2), Pu(3), . . . , Pu(M)) , (4.14)

which permits rewriting equation (4.12) as

M
∑

j=1

Pu(j)λ
2M
2j−1 = Pu

(

1

2

)

. (4.15)

Satisfying equation (4.12) ∀u ∈ R
M is equivalent to having equation (4.15) hold for any

polynomial P ∈ P[R] which is even and of degree 2M − 2.
We now consider the polynomials

Qp(x) =
∏

1≤r≤M,r 6=p

(

1 − (2x − 1)2

(2r − 1)2

)

(4.16)

which, for each integer 1 ≤ p ≤ M are even and of degree 2M − 2. We note that Qp(x)
vanishes at x = 1, 2, 3 . . . , M except at x = p. Using P = Qp in (4.15) we have

Qp(p)λ2M
2p−1 = Qp

(

1

2

)

= 1,

which implies that

λ2M
2p−1 =

1

Qp(p)
=

∏

1≤r≤M,r 6=p

(

1 − (2p − 1)2

(2r − 1)2

)−1

. (4.17)

We require the following identities (given without proof)

∏

1≤r≤M,r 6=p

(

1 +
(2p − 1)

(2r − 1)

)−1

=
2p(p − 1)!(2M − 1)!!

(2M + 2p − 2)!!
, (4.18)

and
∏

1≤r≤M,r 6=p

(

1 − (2p − 1)

(2r − 1)

)−1

=
(−1)p−1(2M − 1)!!

2p−1(2M − 2p)!!(2p − 1)(p − 1)!
, (4.19)

where p ∈ Z, 1 ≤ p ≤ M . From equations (4.17), (4.18) and (4.19) we can easily obtain the
explicit formula (4.11).

Remark 4.2 The result in (4.11) has been obtained, using other techniques, by other authors
in the past, see [19, 21, 20]. In [4], the authors prove several additional properties of the
corresponding coefficients for higher order approximations of the Laplace operator. Similar
properties for the coefficients λ2M

2p−1 can be proved. Some of these properties have been proved
in [21, 20].
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4.2.2 Series Expansion of the Symbol of the Operator ∂/∂z

With respect to the second point of view, (V2), we can interpret the operators D(2M)
1,h and

D̃(2M)
1,h via their symbols (c.f., [4]). We define the symbol of a differential operator, as well

as its finite difference approximation, via its application to harmonic plane waves. Thus, if
v(z) = eikz then ∂v/∂z = ikv(z), and

F (∂/∂z) = ik, (4.20)

where F (∂/∂z) denotes the symbol of the differential operator ∂/∂z. In a similar fashion,

we can show that the symbol of the finite difference operator D̃(2M)
1,h can be written as

F
(

D̃(2M)
1,h

)

=
2i

h

M
∑

j=1

λ2M
2j−1

2j − 1
sin(kh(2j − 1)/2). (4.21)

We now introduce the following alternative formulation to the symbol of the operator
D̃(2M)

1,h .

Theorem 4.2 The symbol of the operator D̃(2M)
1,h can be rewritten in the form

F
(

D̃(2M)
1,h

)

=
2i

h

M
∑

p=1

γ2p−1 sin2p−1(kh/2), (4.22)

where the coefficients γ2p−1 are strictly positive, independent of M , and are given by the
explicit formula

γ2p−1 =
[(2p − 3)!!]2

(2p − 1)!
. (4.23)

Proof. We again follow an analogous proof in [4] for approximations of the Laplace operator.

Let us define K := kh/2. Since D̃(2M)
1,h is of order 2M the difference in the symbols of ∂/∂z

and the symbol of D̃(2M)
1,h must be of O

(

K2M+1
)

for small K. Thus, we have

F
(

∂

∂z

)

= ik =
2iK

h
=

2i

h

(

M
∑

p=1

γ2p−1 sin2p−1 K

)

+ O
(

K2M+1
)

. (4.24)

This implies that the γ2p−1 are the first M coefficients of a series expansion of K in terms of
sin K. Set x = sin K for |K| < π/2. Then, K = sin−1 x, x ∈ (−1, 1) with

sin−1 x =

M
∑

p=1

γ2p−1x
2p−1 + O

(

x2M+2
)

. (4.25)

Requiring that equation (4.25) be true ∀M ∈ N implies that if a solution exists for {γ2p−1}M
p=1,

then it is unique. We note that the function Y (x) = sin−1 x obeys the differential equation

(1 − x2)Y ′′ − xY ′ = 0, x ∈ (−1, 1) (4.26)
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with the conditions
Y (0) = 0, Y ′(0) = 1. (4.27)

Substituting, formally, the series expansion Y (x) =
∑∞

p=1 γ2p−1x
2p−1 into (4.26) we obtain

the following equation

(6γ3 − γ1) +

∞
∑

p=2

β2p−1x
2p−1 = 0, (4.28)

where
β2p−1 = (2p + 1)(2p)γ2p+1 − (2p − 1)2γ2p−1. (4.29)

This implies that

γ3 =
1

6
γ1, (4.30)

and

γ2p+1 =
(2p − 1)2

(2p)(2p + 1)
γ2p−1, (4.31)

which gives us the formula

γ2p−1 =
[(2p − 3)!!]2

(2p − 1)!
γ1. (4.32)

From the conditions (4.27) we see that γ1 = 1, so that we finally obtain the formula (4.23).

Remark 4.3 We note that the relation (4.31) gives

lim
p→∞

γ2p+1

γ2p−1
= 1. (4.33)

This justifies the term by term differentiation of the series expansion of Y on (−1, 1) in the
proof of Theorem 4.2.

Remark 4.4 To our knowledge the result obtained in Theorem 4.2 is new and has not been
proved elsewhere. It is this result that is key to obtaining closed form analytical stability and
dispersion formulae for the (2, 2M) finite difference methods that we consider in Section 5.
The stability and dispersion analysis, based on Theorem 4.2, will be performed in Section 6,
and Section 7, respectively.

Remark 4.5 We note that the coefficients γ2p−1, defined in (4.23), are the coefficients in
the Taylor expansion of the function sin−1 x around zero.

Lemma 4.1 The series
∑∞

p=1 γ2p−1 is convergent and its sum is π/2.

Proof. From the proof of Theorem 4.2 we have

∞
∑

p=1

γ2p−1x
2p−1 = sin−1 x, ∀x ∈ (−1, 1). (4.34)
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Consider M ∈ N. From the positivity of the γ2p−1 coefficients, we have

M
∑

p=1

γ2p−1x
2p−1 < sin−1 x. (4.35)

Letting x → 1 in both sides of the inequality (4.35) we obtain

M
∑

p=1

γ2p−1 ≤
π

2
. (4.36)

Next, allowing M → ∞ in the inequality

M
∑

p=1

γ2p−1x
2p−1 <

M
∑

p=1

γ2p−1, (4.37)

gives the the inequality

sin−1 x =

∞
∑

p=1

γ2p−1x
2p−1 ≤

∞
∑

p=1

γ2p−1, (4.38)

∀x ∈ (−1, 1). Now letting x → 1 in (4.38) we obtain

π

2
≤

∞
∑

p=1

γ2p−1. (4.39)

Thus, the series
∑∞

p=1 γ2p−1 is bounded above and below by
π

2
. This proves the convergence

of the series to
π

2
.

In Tables 1 and 2 we provide the coefficients λ2M
2p−1 and γ2p−1, respectively, from the two

different approaches for representing the 2M order finite difference approximation to the
operator ∂/∂z for various values of M and p.

Finally, we show by direct comparison that the two different representations of the symbol
of the discrete operator D̃(2M)

1,h , given in equations (4.21) and (4.22), with the coefficients

λ2M
2p−1, and γ2p−1 as defined in (4.11), and (4.23), respectively, are equivalent for all M .

Theorem 4.3 ∀M ∈ N, M finite we have

F
(

D̃(2M)
1,h

)

=
2i

h

M
∑

j=1

λ2M
2j−1

2j − 1
sin ((2j − 1)θ) =

2i

h

M
∑

p=1

γ2p−1 sin2p−1 (θ), (4.40)

where θ = kh/2.

Proof. We have for integers 1 ≤ j ≤ M , the identity

sin ((2j − 1)θ) = (−1)j−1T2j−1 (sin (θ)) , (4.41)
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Table 1: Coefficients λ2M
2p−1 for approximations from 2nd order to 8th order

2M λ2M
1 λ2M

3 λ2M
5 λ2M

7

2 1

4 9
8

−1
8

6 75
64

−25
128

3
128

8 1225
1024

−245
1024

49
1024

−5
1024

Table 2: The first four coefficients γ2p−1

γ1 γ3 γ5 γ7

1 1
6

3
40

5
112

where T2j−1 are the Chebyshev polynomials of degree 2j − 1. Using properties of these
polynomials we can rewrite the right hand side of (4.41) as

sin ((2j − 1)θ) =

j
∑

p=1

αj
p sin2p−1 (θ), (4.42)

where for 1 ≤ p ≤ j, the coefficients αj
p in equation (4.42) are given as

αj
p = (−1)2j−p−1

(

2j − 1

j + p − 1

)(

(j + p − 1)!

(j − p)!

)

22p−2

(2p − 1)!
. (4.43)

Substituting (4.42) into the representation (4.21) of the symbol of the operator D̃(2M)
1,h we

have

F
(

D̃(2M)
1,h

)

=
2i

h

M
∑

j=1

λ2M
2j−1

2j − 1
sin ((2j − 1)θ) (4.44)

=
2i

h

M
∑

j=1

λ2M
2j−1

2j − 1

j
∑

p=1

αj
p sin2p−1 (θ). (4.45)

Rearranging terms in equation (4.45) we have

F
(

D̃(2M)
1,h

)

=
2i

h

M
∑

p=1

(

M
∑

j=p

λ2M
2j−1

2j − 1
αj

p

)

sin2p−1 (θ). (4.46)
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Using the formulae (4.11) and (4.43), the coefficients in the expansion (4.46) can be written
out as

M
∑

j=p

λ2M
2j−1

2j − 1
αj

p =

M
∑

j=p

(−1)3j−p−2(j + p − 2)![(2M − 1)!!]222p−1

(2p − 1)!(j − p)!(2j − 1)(2M − 2j)!!(2M + 2j − 2)!!
. (4.47)

Changing the summation index to k = j − p in (4.47), and simplifying terms using the
property of the double factorial, (2n)!! = 2nn!, we get

M
∑

j=p

λ2M
2j−1

2j − 1
αj

p =
[(2M − 1)!!]222p

22M(2p − 1)!

M−p
∑

k=0

(−1)k(2p + k − 2)!

k!(2k + 2p − 1)(M − p − k)!(M + k + p − 1)!
. (4.48)

We note the following useful result

M−p
∑

k=0

(−1)k(2p + k − 2)!

k!(2k + 2p − 1)(M − p − k)!(M + k + p − 1)!
=

[

Γ(p − 1
2
)
]2

4
[

Γ(M + 1
2
)
]2 (4.49)

which can be shown using representations of the Gamma function in terms of hypergeometric
functions, or verified via computer algebra software such as MAPLE. We also employ the
following identities for n ∈ Z

Γ(n + 1) = nΓ(n), (4.50)

Γ

(

n +
1

2

)

=
(2n − 1)!!

√
π

2n
. (4.51)

Substituting in (4.49) and applying as necessary (4.50) and (4.51), the summation in (4.48)
reduces as follows

M
∑

j=p

λ2M
2j−1

2j − 1
αj

p =
[(2M − 1)!!]222p

22M(2p − 1)!

[

Γ(p − 1
2
)
]2

4
[

Γ(M + 1
2
)
]2

=
[(2p − 3)!!]2

(2p − 1)!

= γ2p−1, as given in (4.23).

(4.52)

Thus, using (4.52) in (4.46) we finally get the result (4.40).

5 High Order Numerical Methods for Dispersive Me-

dia

In this section we study a family of finite difference schemes for Maxwell’s equations in Debye
and Lorentz dispersive media in 1D. These schemes are based on the discrete higher order
(2M, M ∈ N) approximations to the first order operator that were constructed in Section 4.
For the time discretization we employ the standard leap-frog scheme which is second order
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accurate in time. We will denote the resulting schemes as (2, 2M) schemes. When M = 2,
the corresponding (2, 2) schemes are extensions of the famous Yee scheme or FDTD scheme
for Maxwell’s equations to dispersive media.

Let us denote the time step by ∆t > 0 and the spatial mesh step size by h = ∆z > 0.
The nodes of the primary spatial mesh will be denoted by zj = j∆z, j ∈ Z, while the nodes
of the dual spatial mesh will be denoted by zj+ 1

2
= (j + 1

2
)∆z, j ∈ Z. The nodes of the

primary temporal mesh will be denoted by tn = n∆t, n ∈ N, while the nodes of the dual
temporal mesh will be denoted by tn+ 1

2 = (n + 1
2
)∆t, n ∈ N. The discrete solution will be

computed at these spatial and temporal nodes (either both primary or both dual) in the
space-time mesh. For any field variable V (t, z), we denote the approximation of V (tn, zj) by

V n
j on the primary space-time mesh, and the approximation of V (tn+ 1

2 , zj+ 1

2
) by V

n+ 1

2

j+ 1

2

on

the dual space-time mesh.
With the above notation, the (2, 2M) discretized equations for Maxwell’s equations (3.2a)

and (3.2b), respectively, in 1D (with Js = 0) are

B
n+ 1

2

j+ 1

2

− B
n− 1

2

j+ 1

2

∆t
=

M
∑

p=1

λ2M
2p−1

2p − 1

(

En
j+p − En

j−p+1

∆z

)

, (5.1a)

Dn+1
j − Dn

j

∆t
=

1

µ0

M
∑

p=1

λ2M
2p−1

2p − 1







B
n+ 1

2

j+p− 1

2

− B
n+ 1

2

j−p+ 1

2

∆z






, (5.1b)

where, λ2M
2p−1 is defined in (4.11). Alternatively, discretizing (3.2a) with (3.4) we have the

discrete system

B
n+ 1

2

j+ 1

2

− B
n− 1

2

j+ 1

2

∆t
=

M
∑

p=1

λ2M
2p−1

2p − 1

(

En
j+p − En

j−p+1

∆z

)

, (5.2a)

ǫ0ǫ∞
En+1

j − En
j

∆t
=

1

µ0

M
∑

p=1

λ2M
2p−1

2p − 1







B
n+ 1

2

j+p− 1

2

− B
n+ 1

2

j−p+ 1

2

∆z






−

P n+1
j − P n

j

∆t
. (5.2b)

In (5.1b) (respectively, (5.2b)), the electric flux density D (respectively, the polarization P )
will be determined by the polarization model.

5.1 (2, 2M) Numerical Methods for Debye Media

For a Debye media we add the discretized (in time) version of the polarization model to
the discretized system of Maxwell’s equations. The system given by (5.2a) and (5.2b) is
closed by the second order time discretization of (2.7a) for the polarization P , in terms of
the electric field E, in the form

τ
P n+1

j − P n
j

∆t
+

P n+1
j + P n

j

2
= ǫ0ǫd

En+1
j + En

j

2
. (5.3)
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Alternatively, we can construct (2, 2M) schemes for Debye media by adding the dis-
cretized in time version of (2.8) given as

ǫ0ǫ∞τ
En+1

j − En
j

∆t
+ ǫ0ǫs

En+1
j + En

j

2
= τ

Dn+1
j − Dn

j

∆t
+

Dn+1
j + Dn

j

2
, (5.4)

to the system defined in (5.1a) and (5.1b). As shown in [31], for the (2, 2) case, both these
approaches yield equivalent stability and dispersion results. Thus in the following we will
analyze only (5.2a) and (5.2b) with (5.3), although the methods could be applied to either
formulation.

5.2 (2, 2M) Numerical Methods for Lorentz Media

For Lorentz media we obtain two types of discretized (2, 2M) methods, based on the dis-
cretization of either the second order differential equation for the macroscopic polarization P
in (2.10a) (or equivalently the second order differential equation for E in (2.11)), or based on
the discretization of the system of first order equations for the variables P and J , in (2.12a)
and (2.12b), respectively.

5.2.1 (2, 2M) JHT Schemes for Lorentz Media

One set of (2, 2M) schemes for Lorentz media is constructed by adding the second order in
time discretization of the second order differential equation for the macroscopic polarization
P in (2.10a) given as

P n+1
j − 2P n

j + P n−1
j

∆t2
+ ν

(

P n+1
j − P n−1

j

2∆t

)

+ ω2
0

(

P n+1
j + P n

j

2

)

= ǫ0ω
2
p

En+1
j + En

j

2
, (5.5)

to the discretized Maxwell equations in (5.2a) and (5.2b).
Equivalently, (2, 2M) schemes for Lorentz media can be constructed by adding the time

discretized version of the second order differential equation for E in (2.11)) given as

ǫ0ǫ∞
En+1

j − 2En
j + En−1

j

∆t2
+ νǫ0ǫ∞

(

En+1
j − En−1

j

2∆t

)

+ ǫ0ǫsω
2
0

(

En+1
j + En

j

2

)

=
Dn+1

j − 2Dn
j + Dn−1

j

∆t2
+ ν

(

Dn+1
j − Dn−1

j

2∆t

)

+ ω2
0

(

Dn+1
j + Dn

j

2

)

,

(5.6)

to the discretized Maxwell equations in (5.1a) and (5.1b).
As in the Debye case both of these approaches yield equivalent (with respect to stability

and dispersion errors) (2, 2M) schemes. We will denote either of these two approaches as
(2, 2M) JHT schemes after a similar (2, 2) scheme considered in [23].

5.2.2 (2, 2M) KF Schemes for Lorentz Media

A second set of (2, 2M) schemes for Lorentz media is constructed by adding the second order
in time discretization of the system of first order equations for the variables P and J , in
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(2.12a) and (2.12b), respectively, given as

P n+1
j − P n

j

∆t
=

Jn+1
j + Jn

j

2
, (5.7)

Jn+1
j − Jn

j

∆t
= −ν

Jn+1
j + Jn

j

2
+ ω2

pǫ0

En+1
j + En

j

2
− ω2

0

P n+1
j + P n

j

2
, (5.8)

to the discretized system of Maxwell’s equations in (5.2a) and (5.2b). We will denote such
schemes as (2, 2M) KF schemes after a similar (2, 2) scheme considered in [25].

6 Stability Analysis

To determine stability conditions we use von Neumann analysis which allows us to local-
ize roots of certain classes of polynomials [10]. We follow the approach in [10] in which
the author derives stability conditions for the (2, 2) (Yee) schemes applied to Debye and
Lorentz dispersive media. This analysis is based on properties of Schur and von Neumann
polynomials.

Stability conditions for the general (2, 2M) schemes are made possible by the results
presented in Section 4, in which finite difference approximations of the first order derivative
operator are obtained as a result of the truncation of an appropriate series expansion of the
symbol of this operator.

In performing the von Neumann analysis for the (2, 2M) schemes we show that the re-
sulting amplification matrices retain the same structure as in the (2, 2) schemes in [10], albeit
with a modified definition of the parameter q in [10]. We also show that these polynomials
also have the same structure as those derived for the (2, 2) schemes in [31]. This affords a
complete stability analysis for the general case, as results from [10] can be used directly for
the modified parameter q as we show below.

We refer the reader to [10] for a description of von-Neumann analysis and for the ma-
jor theorems regarding properties of Schur and von Neumann polynomials that aid in the
construction of stability criteria for the various finite difference schemes.

6.1 Stability Analysis for Debye Media

We consider the (2, 2M) scheme for discretizing Maxwell’s equations coupled with the Debye
polarization model presented in the form of equations (5.1a), (5.1b) and (5.4). We rewrite

these equations using the (modified) variables c∞B
n− 1

2

j+ 1

2

, En
j , and

1

ǫ0ǫ∞
Dn

j to obtain the
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modified system

(2, 2M)-Debye:

c∞B
n+ 1

2

j+ 1

2

= c∞B
n− 1

2

j+ 1

2

+ η∞

M
∑

p=1

λ2M
2p−1

2p − 1

(

En
j+p − En

j−p+1

)

, (6.1a)

En+1
j =

(

2 − hτηs

2 + hτηs

)

En
j +

(

2 + hτ

2 + hτηs

)

1

ǫ0ǫ∞
Dn+1

j −
(

2 − hτ

2 + hτηs

)

1

ǫ0ǫ∞
Dn

j , (6.1b)

1

ǫ0ǫ∞
Dn+1

j =
1

ǫ0ǫ∞
Dn

j + η∞c∞

M
∑

p=1

λ2M
2p−1

2p − 1

(

B
n+ 1

2

j+p− 1

2

− B
n+ 1

2

j−p+ 1

2

)

. (6.1c)

In equations (6.1a)-(6.1c), the parameters c∞, η∞, hτ and ηs are defined as

c2
∞ := 1/(ǫ0µ0ǫ∞) = c2

0/ǫ∞, (6.2)

η∞ := (c∞∆t)/∆z, (6.3)

hτ := ∆t/τ, (6.4)

ηs := ǫs/ǫ∞, (6.5)

where c0 is the speed of light in vacuum, and c∞ is the speed of light in the Debye medium.
The parameter η∞ is the Courant (stability) number. We assume here that ǫs > ǫ∞ and
τ > 0.

All the models that we deal with are linear. Thus, we can analyze the models in the
frequency domain. We look for plane wave solutions of (6.1a)-(6.1c) as numerically evaluated
at the discrete space-time point (tn, zj), or (tn+1/2, zj+1/2). We assume a spatial dependence
of the form

B
n+ 1

2

j+ 1

2

= B̂n+ 1

2 (k)e
ikz

j+ 1
2 , (6.6a)

En
j = Ên(k)eikzj , (6.6b)

Dn
j = D̂n(k)eikzj , (6.6c)

in all the field quantities, with k defined to be the wavenumber. (Equivalently, we can apply
the discrete Fourier transform in space to the discrete equations (6.1a), (6.1b), and (6.1c)).
Substituting the forms (6.6) into the higher order schemes (6.1a), (6.1b), and (6.1c), and
canceling out common terms we obtain the following system












c∞B̂n+ 1

2

Ên+1

1

ǫ0ǫ∞
D̂n+1













=











1 −σ 0
(

2 + hτ

2 + hτηs

)

σ∗

(

2(1 − q) − hτ (ηs + q)

2 + hτηs

) (

2hτ

2 + hτηs

)

σ∗ −q 1























c∞B̂n− 1

2

Ên

1

ǫ0ǫ∞
D̂n













(6.7)
where the parameter σ is defined as

σ := −2iη∞

M
∑

p=1

γ2p−1 sin2p−1

(

k∆z

2

)

, (6.8)
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and σ∗ = −σ is the complex conjugate of σ. The parameter q is defined to be

q := |σ|2 = σσ∗ = 4η2
∞

(

M
∑

p=1

γ2p−1 sin2p−1

(

k∆z

2

)

)2

. (6.9)

Here, we are using the equivalence between the two different representations of the symbol
of the discrete (spatial) operator D̃(2M)

1,h of order 2M , given in Theorem 4.2. This is reflected
in the presence of the term σ, as defined in (6.8), in the amplification matrix given in (6.7).

The characteristic polynomial retains the same form as in [31], except for the inclusion
of the parameter q (instead of p2 in [31]), and is given by:

P(2,2M)−D(X) =X3 +

(

qǫ∞(2 + hτ ) − (6ǫ∞ + hτ ǫs)

2ǫ∞ + hτǫs

)

X2

+

(

qǫ∞(hτ − 2) + (6ǫ∞ − hτ ǫs)

2ǫ∞ + hτǫs

)

X −
(

2ǫ∞ − hτǫs

2ǫ∞ + hτ ǫs

)

.

(6.10)

We note that the characteristic polynomial (6.10) is the same as that derived in [10] (though
here written in the form of those derived in [31]), except for the definition of the parameter
q (defined in (6.9)). In [10], stability analysis was performed for the (2, 2) schemes only,
and thus q was defined as q = 4η2

∞ sin2
(

kh
2

)

(M = 1 in equation (6.9)). The representation

(4.22) for the symbol of D̃(2M)
1,h allows us to retain the same compact form of the (2, 2)

characteristic polynomial for the general (2, 2M) schemes by using the modified definition
(6.9) of the parameter q.

Now, using the results of the von-Neumann stability analysis performed in [10], we can
generalize the stability analysis to the (2, 2M) schemes. Assuming, for most practical appli-
cations, that ǫs > ǫ∞, a necessary and sufficient stability condition for the (2, 2M) scheme
in (6.1a)-(6.1c) is that q ∈ (0, 4), for all wavenumbers, k, i.e.,

4η2
∞

(

M
∑

p=1

γ2p−1 sin2p−1

(

k∆z

2

)

)2

< 4, ∀k, (6.11)

which implies that

η∞

(

M
∑

p=1

γ2p−1

)

< 1 ⇐⇒ η∞

(

M
∑

p=1

[(2p − 3)!!]2

(2p − 1)!

)

< 1. (6.12)
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For different values of M we obtain the following stability conditions

M = 1, η∞ < 1 ⇐⇒ ∆t <
∆z

c∞
, (6.13a)

M = 2, η∞

(

1 +
1

6

)

< 1 ⇐⇒ ∆t <
6∆z

7c∞
, (6.13b)

M = 3, η∞

(

1 +
1

6
+

3

40

)

< 1 ⇐⇒ ∆t <
120∆z

149c∞
, (6.13c)

...

M = M, η∞

(

M
∑

p=1

γ2p−1

)

< 1 ⇐⇒ ∆t <
∆z

(

∑M
p=1

[(2p − 3)!!]2

(2p − 1)!

)

c∞

. (6.13d)

In the limiting case (as M → ∞), we may evaluate the infinite series using Lemma 4.1.
Therefore,

M = ∞, η∞

(π

2

)

< 1 ⇐⇒ ∆t <
2∆z

π c∞
. (6.14)

The positivity of the coefficients γ2p−1 gives that the constraint on ∆t in (6.14) is a lower
bound on all constraints for any M . Therefore this constraint guarantees stability for all
orders.

6.1.1 Dissipation Error for (2, 2M) Schemes for Debye Media

While the stability criteria (6.13) give conditions for which the finite difference method of
various orders are stable, they does not give any insight into the amount of error, specifically,
dissipation error that may be exhibited by a particular order of method. We follow the
procedures in [31, 5] to produce plots of the dissipation error for the schemes (6.1a)-(6.1c).
To generate these plots we have assumed the following values of the physical parameters, as
considered in [6] (note that these are appropriate constants for modeling water)

ǫ∞ = 1, ǫs = 78.2, τ = 8.1 × 10−12 sec. (6.15)

In the left plot of Figure 1 we graph the absolute value of the largest root of (6.10), as
a function of k∆z, using hτ = 0.1 for the finite difference schemes (6.1a)-(6.1c) of orders
M = 2, 4, 6, 8 and the limiting (M = ∞) case with η∞ set to the maximum stable value for
each order, given in (6.13) for finite M , and in (6.14) for M = ∞. In the right plot we fix
η∞ to the maximum stable value for the limiting (M = ∞) case (i.e., each method uses the
same value of η∞ and that value is the largest for which all methods are guaranteed stable).

We can interpret k∆z as the wave number if ∆z is fixed, or as the inverse of the number of
points per wavelength (Nppw) if k is fixed. Using the latter interpretation, it is reasonable to
assume that in most practical implementations k∆z ≤ 1 for most wavenumbers of interest
in the problem. We note that while the left plot suggests that the infinite order method
has the least dissipation (maximum complex time eigenvalue closest to 1), this is mostly
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Figure 1: (Left) max|ζ | versus k∆z using hτ = 0.1 for the schemes (6.1a)-(6.1c) of orders
M = 2, 4, 6, 8 and the limiting (M = ∞) case with η∞ set to the maximum stable value for
the order, given in (6.13) for finite M , and in (6.14) for M = ∞. (Right) η∞ fixed at the
maximum stable value for the limiting (M = ∞) case, given in (6.14).

a consequence of the severe restriction on η∞. It is clear in the right plot that, with all
material and discretization parameters held fixed at equivalent values for all orders of the
finite difference method, the second order method exhibits the least dissipation over a broad
range of wave numbers.

For each of the curves in both plots of Figure 1, the maximum dissipation error (defined
here to be 1 minus the minimum value of the curve) is unacceptably high with a value
(1 − max|ζ |) between 0.1 and 0.2. The dissipation error of the numerical schemes can be
reduced by decreasing hτ . Note that we are assuming the time step ∆t is determined by
the choice of hτ and the (fixed and known) physical parameter τ . The left and right plots
of Figure 2 depict max|ζ | using hτ = 0.01 (note the difference in axes). We see that the
maximum dissipation error decreases by an order of magnitude (to 0.02). We also note that,
as seen in the right plot, the methods of different orders are virtually indistinguishable at
this discretization level.

A similar result is observed in the plots of Figure 3 using hτ = 0.001 where the maximum
dissipation error again decreases by an order of magnitude (to 0.002). It is interesting to
note that the minimizer of the curves moves to the left by an order of magnitude as hτ is
likewise decreased, the minimum of the curve is approximately 1 − 2hτ , and for larger wave
numbers the curves converge slowly to 1 − hτ .

6.2 Stability Analysis for Lorentz Media

6.2.1 (2, 2M) KF schemes

We consider the (2, 2M) scheme for discretizing Maxwell’s equations coupled with the Lorentz
polarization model presented in the form of equations (5.2a), (5.2b) along with equations
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Figure 2: Left and right plots are similar to corresponding plots of Figure 1 except here
hτ = 0.01. Note the change in axes from those of Figure 1.
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Figure 3: Left and right plot are similar to corresponding plots of Figure 1 except here
hτ = 0.001. Note the change in axes from those of Figure 1.

(5.7) and (5.8). We rewrite the scheme using the (modified) variables c∞B
n− 1

2

j+ 1

2

, En
j ,

1

ǫ0ǫ∞
P n

j ,
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and
∆t

ǫ0ǫ∞
Jn

j to get the modified system

(2, 2M)-KF:

c∞B
n+ 1

2

j+ 1

2

= c∞B
n− 1

2

j+ 1

2

+ η∞

M
∑

p=1

λ2M
2p−1

2p − 1

(

En
j+p − En

j−p+1

)

, (6.16a)

En+1
j = En

j + η∞c∞

M
∑

p=1

λ2M
2p−1

2p − 1

(

B
n+ 1

2

j+p− 1

2

− B
n+ 1

2

j−p+ 1

2

)

− 1

ǫ0ǫ∞
(P n+1

j − P n
j ), (6.16b)

P n+1
j = P n

j +
∆t

2

(

Jn+1
j + Jn

j

)

, (6.16c)

Jn+1
j = Jn

j − ν∆t

2

(

Jn+1
j − Jn

j

)

+
ω2

p∆tǫ0

2

(

En+1
j − En

j

)

− ω2
0∆t

2

(

P n+1
j + P n

j

)

. (6.16d)

As done for Debye media, we look for plane wave solutions of (6.16a)-(6.16d) as numer-
ically evaluated at the discrete space-time points (tn, xj) or (tn+1/2, zj+1/2). We assume a
spatial dependence of the form

B
n+ 1

2

j+ 1

2

= B̂n+ 1

2 (k)e
ikz

j+ 1
2 , (6.17a)

En
j = Ên(k)eikzj , (6.17b)

P n
j = P̂ n(k)eikzj , (6.17c)

Jn
j = Ĵn(k)eikzj . (6.17d)

where k is the wavenumber. The amplification matrix for this method is given by

























1 −σ 0 0
(

1 − π2h2
0(ηs − 1)

θ+

)

σ∗ (1 − q) − (2 − q)(ηs − 1)π2h2
0

θ+

2π2h2
0

θ+

−1

θ+

π2h2
0(ηs − 1)

θ+
σ∗ (2 − q)(ηs − 1)π2h2

0

θ+
1 − 2π2h2

0

θ+

1

θ+

2π2h2
0(ηs − 1)

θ+
σ∗ 2(2 − q)(ηs − 1)π2h2

0

θ+

−4π2h2
0

θ+

2 − θ+

θ+

























, (6.18)

where the parameters h0 and θ+ are defined as

h0 := ∆t/T = (w0∆t)/(2π), (6.19)

θ+ := 1 + hτ/2 + π2h2
0ηs, (6.20)

and the parameters σ and q are as given in (6.8) and (6.9), respectively. The parameters ηs

and hτ are defined in (6.5) and (6.4), respectively.
As in case of a Debye material, the characteristic polynomial retains the same structure

as in [31] except for the inclusion of the parameter q.

P(2,2m)−KF−L(X) = X4 + X3

(

θ3q + θ′3
θ0

)

+ X2

(

θ2q + θ′2
θ0

)

+ X

(

θ1q + θ′1
θ0

)

+
θ′0
θ0

, (6.21)
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where, the coefficients in (6.21) are defined as

θ3 = 2 + hτ + 2π2h2
0, (6.22)

θ′3 = −8 − 2hτ , (6.23)

θ2 = 4π2h2
0 − 4, (6.24)

θ′2 = −4π2h2
0ηs + 12, (6.25)

θ1 = 2 + 2π2h2
0 − hτ , (6.26)

θ′1 = −8 + 2hτ , (6.27)

θ′0 = 2 − hτ + 2π2h2
0ηs, (6.28)

θ0 = 2 + hτ + 2π2h2
0ηs. (6.29)

Again, assuming that ǫs > ǫ∞, i.e., ηs > 1, and ν > 0, and applying the results of the
von-Neumann analysis conducted in [10] gives us the stability condition: q ∈ (0, 4) for all
wavenumbers, k, i.e.,

4η2
∞

(

M
∑

p=1

γ2p−1 sin2p−1

(

kh

2

)

)2

< 4, ∀k, (6.30)

which implies that

η∞

(

M
∑

p=1

γ2p−1

)

< 1 ⇐⇒ η∞

(

M
∑

p=1

[(2p − 3)!!]2

(2p − 1)!

)

< 1. (6.31)

Thus, for different values of M we obtain the following stability conditions

M = 1, η∞ < 1 ⇐⇒ ∆t <
∆z

c∞
, (6.32a)

M = 2, η∞

(

1 +
1

6

)

< 1 ⇐⇒ ∆t <
6∆z

7c∞
, (6.32b)

M = 3, η∞

(

1 +
1

6
+

3

40

)

<⇐⇒ ∆t <
120∆z

149c∞
, (6.32c)

...

M = M, η∞

(

M
∑

p=1

γ2p−1

)

<⇐⇒ ∆t <
∆z

(

∑M
p=1

[(2p − 3)!!]2

(2p − 1)!

)

c∞

, (6.32d)

M = ∞, η∞

(π

2

)

< 1 ⇐⇒ ∆t <
2∆z

π c∞
. (6.32e)

Again, the positivity of the coefficients γ2p−1 gives that the constraint in (6.32e) guarantees
stability for all orders M .
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6.2.2 Dissipation Error for (2, 2M) KF Schemes for Lorentz Media

In the left plot of Figure 4 we graph the absolute value of the largest root of (6.21), as a
function of k∆z, using h0 = 0.1 for the (2, 2M) KF schemes of orders M = 2, 4, 6, 8, given
in equations (6.16a)-(6.16d), and the limiting (M = ∞) case with η∞ set to the maximum
stable value for each order, as given in (6.32). In the right plot we fix η∞ to the maximum
stable value for the limiting (order = ∞) case (i.e., each method uses the same value of
η∞ and that value is the largest for which all methods are guaranteed stable). As in the
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Figure 4: (Left) max|ζ | versus k∆z using h0 = 0.1 for the (2, 2M) KF schemes of orders
M = 2, 4, 6, 8, given in equations (6.16a)-(6.16d), and the limiting (M = ∞) case with η∞
set to the maximum stable value for the order, as given in (6.32). (Right) is with η∞ fixed
at the maximum stable value for the limiting (M = ∞) case.

Debye case, the left plot suggests that the infinite order method has the least dissipation for
small values of k∆z, however this is mostly a consequence of the severe restriction on η∞.
The right plot demonstrates that for all material and discretization parameters held fixed
at equivalent values for all orders of the (2, 2M) KF schemes, the second order method has
the least dissipation for small k∆z, albeit only by a small amount. Refining the temporal
discretization, as in the Debye analysis, we see that the methods of various orders conform,
as depicted in Figures 5 and 6. It is interesting to note that the maximum dissipation error
(defined here to be 1 minus the minimum value of the curve) for the (2, 2M) KF schemes
(and the assumed parameter values) is approximately 0.2h0, and the minimizer of the curves
moves to the left by an order of magnitude as h0 is likewise decreased. However, unlike in
the Debye case, the dissipation error goes to zero as k∆z increases, rather than converging to
half of the maximum dissipation error. This is a promising result in the case of broad-band
signals.

6.2.3 (2, 2M) JHT schemes

Finally, we consider the (2, 2M) schemes for discretizing Maxwell’s equations coupled with
the Lorentz polarization model presented in equations (5.2a), (5.2b) along with equation
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Figure 5: Left and right plots are similar to corresponding plots in Figure 4 except here
h0 = 0.01. Note the change in axes from the Figure 4.
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Figure 6: Left and right plots are similar to corresponding plots in Figure 4 except here
h0 = 0.01. Note the change in axes from the Figure 4.

(5.6). Using the (modified) variables c∞B
n− 1

2

j+ 1

2

, En
j , En−1

j , and
1

ǫ0ǫ∞
Dn

j we rewrite this system
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as

(2, 2M)-JHT:

c∞B
n+ 1

2

j+ 1

2

= c∞B
n− 1

2

j+ 1

2

+ η∞

M
∑

p=1

λ2M
2p−1

2p − 1

(

En
j+p − En

j−p+1

)

, (6.33a)

1

ǫ0ǫ∞
Dn+1

j =
1

ǫ0ǫ∞
Dn

j + η∞c∞

M
∑

p=1

λ2M
2p−1

2p − 1

(

B
n+ 1

2

j+p− 1

2

− B
n+ 1

2

j−p+ 1

2

)

, (6.33b)

φ+

2
En+1

j = 2En
j − φ−

2
En−1

j +
1

ǫ0ǫ∞
(Dn+1

j − 2Dn
j + Dn−1

j ),

+
hτ

2

1

ǫ0ǫ∞
(Dn+1

j − Dn−1
j ) + 2π2h2

0

1

ǫ0ǫ∞
(Dn+1

j + Dn−1
j ),

(6.33c)

where the parameters φ+ and φ− are defined as

φ− := 2 − hτ + 4π2h2
0ηs, (6.34)

φ+ := 2 + hτ + 4π2h2
0ηs, (6.35)

with the parameters ηs and hτ defined in (6.5) and (6.4), respectively, and the parameter h0

as defined in (6.19).
We look for plane wave solutions of (6.33a)-(6.33c) as numerically evaluated at the dis-

crete space-time points (tn, xj) or (tn+1/2, zj+1/2)

B
n+ 1

2

j+ 1

2

= B̂n+ 1

2 (k)e
ikz

j+ 1
2 , (6.36)

En
j = Ên(k)eikzj , (6.37)

Dn
j = D̂n(k)eikzj . (6.38)

The amplification matrix for this method is given by

















1 −σ 0 0

σ∗hτ

φ+

2 − q(1 + hτ/2 + 2π2h2
0)

φ+

−φ−

φ+

4π2h2
0

φ+

0 1 0 0

σ∗ −q 0 1

















, (6.39)

where σ and q are as defined in (6.8) and (6.9), respectively.
The characteristic polynomial for the JHT scheme for the Lorentz model becomes

P(2,2m)−JHT−L(X) = X4 +X3

(

φ3q + φ′
3

φ+

)

+X2

(

φ2q + φ′
2

φ+

)

+X

(

φ1q + φ′
1

φ+

)

+
φ−

φ+
, (6.40)
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where, the coefficients are given to be:

φ3 := 2 + hτ + 4π2h2
0, (6.41)

φ′
3 := −8 − 2hτ − 8π2h2

0ηs, (6.42)

φ2 := −4, (6.43)

φ′
2 := 8π2h2

0ηs + 12, (6.44)

φ1 := 2 + 4π2h2
0 − hτ , (6.45)

φ′
1 := −8 − 2hτ − 8π2h2

0ηs. (6.46)

Again, we are able to retain the same structure for the characteristic polynomial as in
[31] except for the inclusion of the parameter q, and it is equivalent to the characteristic
polynomial in [10].

Again, assuming that ǫs > ǫ∞, i.e., ηs > 1, and ν > 0, and applying the results of the
von-Neumann analysis conducted in [10] gives us the following stability condition: q ∈ (0, 2),
for all wavenumbers, k i.e.,

4η2
∞

(

M
∑

p=1

γ2p−1 sin2p−1

(

kh

2

)

)2

< 2, ∀k, (6.47)

which implies that

η∞

(

M
∑

p=1

γ2p−1

)

<
1√
2
⇐⇒ η∞

(

M
∑

p=1

[(2p − 3)!!]2

(2p − 1)!

)

<
1√
2
. (6.48)

Thus, for different values of M we obtain the following stability conditions

M = 1, η∞ <
1√
2
⇐⇒ ∆t <

∆z√
2c∞

, (6.49a)

M = 2, η∞

(

1 +
1

6

)

<
1√
2
⇐⇒ ∆t <

6∆z

7
√

2c∞
, (6.49b)

M = 3, η∞

(

1 +
1

6
+

3

40

)

<
1√
2
⇐⇒ ∆t <

120∆z

149
√

2c∞
, (6.49c)

... (6.49d)

M = M, η∞

(

M
∑

p=1

γ2p−1

)

<
1√
2
⇐⇒ ∆t <

∆z
(

∑M
p=1

[(2p − 3)!!]2

(2p − 1)!

)√
2c∞

, (6.49e)

M = ∞, η∞

(π

2

)

<
1√
2
⇐⇒ ∆t <

√
2∆z

π c∞
. (6.49f)

Again, the positivity of the coefficients γ2p−1 gives that the constraint in (6.49f) guarantees
stability for all orders M .
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6.2.4 Dissipation Error for (2, 2M) JHT Schemes for Lorentz Media

As before, in the left plot of Figure 7 we graph the absolute value of the largest root of (6.40),
as a function of k∆z, using h0 = 0.1 for the (2, 2M) JHT schemes of orders M = 2, 4, 6, 8,
given in equations (6.33a)-(6.33c), and the limiting (M = ∞) case with η∞ set to the
maximum stable value for each order, as given in (6.49). Again, in the right plot we fix η∞
to the maximum stable value for the limiting (M = ∞) case. While numerically different,
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Figure 7: (Left) max|ζ | versus k∆z using h0 = 0.1 for the (2, 2M) JHT schemes of orders
M = 2, 4, 6, 8, given in equations (6.33a)-(6.33c), and the limiting (M = ∞) case with η∞
set to the maximum stable value for the order, as given in (6.49). (Right) η∞ fixed at the
maximum stable value for the limiting (M = ∞) case.

the dissipation plots for the (2, 2M) JHT schemes with h0 = 0.1 are qualitatively the same
as those for the KF scheme. Figures 8 and 9 contain plots using h0 = 0.01 and h0 = 0.001,
respectively (again, note the change in axes). Although the stability condition for (2, 2M)
JHT schemes are more restrictive, there is no distinct advantage over the (corresponding)
(2, 2M) KF schemes with respect to dissipation error resulting from enforcing this constraint.
The magnitude of the dissipation errors, while slightly less for fixed values of k∆z, seem to be
comparable to those of the (corresponding) (2, 2M) KF schemes. As in the Debye analysis,
the effect of the order of the method is negligible when considering small discretization
parameters (whether h0 or k∆z) and holding the value of η∞ fixed.

7 Dispersion Analysis

A time dependent scalar linear partial differential equation (PDE) with constant coefficients
on an unbounded space domain admits plane wave solutions of the form ei(kz−ωt), where k is
the wave number and ω the frequency. The PDE imposes a relation of the form ω = ω(k),
which is called a dispersion relation. The PDE itself is called dispersive if the speed of prop-
agation of waves depends on the wave number k (or on ω). Finite difference approximations
on uniform meshes to the PDEs also admit plane wave solutions. Regardless of whether the
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Figure 8: Left and right plot are similar to Figure 7 except here h0 = 0.01. Note the change
in axes from that of Figure 7.
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Figure 9: Left and right plot are similar to Figure 7 except here h0 = 0.01. Note the change
in axes from that of Figure 7.

PDE is dispersive, any finite difference approximation will exhibit spurious dispersion [41].
The dispersion relation of the numerical method is called a numerical dispersion relation as
it is an artifact of the numerical scheme.

As mentioned in the introduction, the models for Debye and Lorentz media have actual
physical dispersion which needs to be modeled correctly. In this section we construct the
numerical dispersion relations for the (2, 2M) schemes considered in Section 5 for Debye and
Lorentz dispersive media. We plot the phase error for all these different methods by using
representative values for all the parameters of each model. We follow the approach in [31] in
which dispersion analysis was conducted for the (2, 2) (or Yee) finite difference scheme for
Debye and Lorentz media.

32



7.1 Debye Media

A plane wave solution of the continuous Debye model 1, given in equations (2.7a) and (2.7b)
which are appended to the Maxwell system (3.2a) and (3.2b), gives us the following (exact)
dispersion relation

kD
EX(ω) =

ω

c

√

ǫD
r (ω). (7.1)

where

ǫD
r (ω) :=

ǫsλ − iωǫ∞
λ − iω

, (7.2)

is the relative complex permittivity of the Debye medium, λ = 1/τ and ω is the angular
frequency.

We consider the (2, 2M)th order finite difference schemes for Debye media given in (6.1a),
(6.1b) and (6.1c) and similarly consider plane wave solutions of this discrete system. We
define the quantity

KD
FD(ω) :=

2

∆z

M
∑

p=1

γ2p−1 sin2p−1

(

kD
FD(ω)∆z

2

)

, (7.3)

where kD
FD is the numerical wave number. We solve for kD

FD from the numerical dispersion
relation for this scheme which can be computed by assuming a plane wave solution of the
form ei(kD

FD
z−ωt) for all the discrete variables in the (2, 2M) Debye finite difference methods

(6.1a), (6.1b) and (6.1c) and is given as

KD
FD(ω) =

ω∆

c

√

ǫD
r,FD, (7.4)

where

ǫD
r,FD :=

ǫs,∆λ∆ − iω∆ǫ∞,∆

λ∆ − iω∆
. (7.5)

This notation corresponds to the following discrete representations of the continuous model
parameters:

ǫs,∆ := ǫs, (7.6a)

ǫ∞,∆ := ǫ∞, (7.6b)

λ∆ := λ cos(ω∆t/2), (7.6c)

and a representation of the frequency by

ω∆ := ω
sin (ω∆t)/2

(ω∆t)/2
. (7.7)

We define the phase error Φ as

Φ =

∣

∣

∣

∣

kEX − kFD

kEX

∣

∣

∣

∣

. (7.8)
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We wish to examine the phase error as a function of ω∆t in the range [0, π]. We note that
ω∆t = 2π/Nppp, where Nppp is the number of points per period, and is related to the number
of points per wavelength (Nppw) via

Nppw = η∞Nppp. (7.9)

Thus, for η∞ ≤ 1, the number of points per wavelength is always less than or equal to the
number of points per period. Note that the number of points per wavelength in the range
[π/4, π] is 8 to 2 points per period. We are more interested in the range [0, π/4] which
involves more than 8 points per period.

To generate the plots below we have used the following values for the medium parameters
as :

ǫ∞ = 1, (7.10)

ǫs = 78.2, (7.11)

τ = 8.1 × 10−12 sec. (7.12)

In the plots of Figure 10 we depict graphs of the phase error φ defined in (7.8), versus
ω∆t, for the (2, 2M)th order finite difference methods applied to the Debye model, as given
in equations (6.1a)-(6.1c), for orders 2, 4, 6, 8 and the limiting (M = ∞) case. The temporal
refinement factor, hτ = ∆t/τ , is fixed at 0.1. The left plot uses values of η∞ set to the
maximum stable value for the order, as given in (6.13), while the right plot fixes η∞ at the
maximum stable value for the limiting (M = ∞) case as given in (6.14) (i.e., the maximum
stable value for all orders).

In both plots it appears as though the infinite order method has the least dispersion error
over a vast majority of the domain. However, looking at the intermediate orders, it is clear
that at some value of ω∆t each higher order method begins to have more dispersion than the
next lower order method for increasing values of ω∆t. Generally speaking, the higher order
methods reward large Nppp more than lower order methods do, but penalize low Nppp. The
right plot demonstrates that fixing the value of η∞ to be constant across orders of methods
tends to exaggerate this behavior.

Figures 11 and 12 depict similar plots as in Figure 10, except with hτ = 0.01 and 0.001,
respectively. Comparing the left plots, there does not appear to be much improvement in
any of the higher order methods with respect to dispersion error. Only the second order
method seems to benefit. In fact, the plots suggest that the second order method is vastly
superior the the higher order methods. Contrast this with the stability plots in Figures 2
and 3 which showed orders of magnitude decreases in error for all orders with corresponding
decreases in discretization parameters. However, note that decreasing hτ changes ∆t, thus
to compare Φ at consistent values of ω∆t we should be looking at different intervals in these
plots. It is more straight-forward to compare various hτ values on a plot of Φ versus only
ω, as shown in Figures 13-15 below. There we can clearly see orders of magnitude decreases
in Φ as hτ is decreased. In fact, now it is apparent that for the frequencies of interest (i.e.,
those near ωτ = 1), the higher order methods exhibit a gradual improvement over the second
order method.

Comparing left plots of Figures 10-12 with the right plots, the effect of using a small ∆t
is that the error associated with choosing an η∞ much smaller than the maximum stable

34



0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Debye dispersion for FD with hτ=0.1

ω ∆ t

Φ

 

 

order=2, η=1

order=4, η=0.857

order=6, η=0.805

order=8, η=0.777

order=∞, η=0.636

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Debye dispersion for FD with hτ=0.1

ω ∆ t

Φ

 

 

order=2, η=0.636

order=4, η=0.636

order=6, η=0.636

order=8, η=0.636

order=∞, η=0.636

Figure 10: (Left) Phase error φ versus ω∆t using hτ = 0.1 for the finite difference schemes
for the Debye model, given in (6.1a)-(6.1c), of orders 2, 4, 6, 8 and the limiting (M = ∞)
case with η∞ set to the maximum stable value for the order, as given in (6.13). (Right) The
parameter η∞ is fixed at the maximum stable value for the limiting (M = ∞) case, as given
in (6.14).

value gets magnified. In fact, it appears as though the error for the second order method
using η∞ = 0.636 is larger with a smaller ∆t! However, again, ∆t is changing from one plot
to another, so the correct interpretation is that using a small ∆t penalizes large Nppp more
so than using a larger ∆t would. Looking at the left plots versus the right plots of Figures
14-15 there is almost no difference.

Lastly, we observe that decreasing the discretization parameter ∆t results in a converging
of the methods of various orders, with the notable exception of the second order method.
While Figure 12 seemed to suggest that the second order method was vastly superior for fine
discretizations, Figure 15 contradicts that assumption utterly.

7.2 Lorentz Media

The dispersion relation for the continuous Lorentz model is given by

kL
EX(ω) =

ω

c

√

ǫL
r (ω). (7.13)

where the relative complex permittivity for Lorentz media is given to be

ǫL
r (ω) :=

ω2ǫ∞ − ǫsω
2
0 + iλωǫ∞

ω2 − ω2
0 + iλω

. (7.14)
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Figure 11: Left and right plots are similar to corresponding plots in Figure 10 except here
hτ = 0.01.
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Figure 12: Left and right plots are similar to corresponding plots in Figure 10 except here
hτ = 0.001.

7.2.1 (2, 2M) KF Schemes

We consider the (2, 2M) KF schemes for Lorentz media presented in equations (6.16a)-
(6.16d). We define the quantity

KL
KF,M(ω) :=

2

∆z

M
∑

p=1

γ2p−1 sin2p−1

(

kL
KF,M(ω)∆z

2

)

, (7.15)
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Figure 13: Plot on left is a log plot of the phase error φ versus ω using hτ = 0.1 for the
FD scheme for the Debye model of orders 2, 4, 6, 8 and the limiting (order = ∞) case with η
set to the maximum stable value for the order. Vertical line distinguishes region of ωτ < 1
from ωτ > 1. Plot on right is with η fixed at the maximum stable value for the limiting
(order = ∞) case.
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Figure 14: Left and right plot are similar to previous figure except here using hτ = 0.01.

where kL
KF,M is the numerical wave number. We solve for kL

KF,M from the dispersion relation
for this scheme which can be computed as

KL
KF(ω) =

ω∆

c

√

ǫL
r,KF, (7.16)
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Figure 15: Left and right plot are similar to previous figure except here using hτ = 0.001.

where the discrete relative complex permittivity for the (2, 2M) KF schemes is

ǫL
r,KF :=

ω2
∆ǫ∞,∆ − ǫs,∆ω̃2

0,∆ + iλ∆ω∆ǫ∞,∆

ω2
∆ − ω̃2

0,∆ + iλ∆ω∆

, (7.17)

with the discrete representations of the continuous model parameters as defined in (7.6) and
(7.7), as well as

ω̃0,∆ := ω0 cos(ω∆t/2). (7.18)

7.2.2 (2, 2M) JHT schemes

We consider the (2, 2M) JHT schemes for Lorentz media presented in equations (6.33a)-
(6.33c) We define the quantity

KL
JHT,M(ω) :=

2

∆z

M
∑

p=1

γ2p−1 sin2p−1

(

kL
JHT,M(ω)∆z

2

)

, (7.19)

where kL
JHT,M is the numerical wave number. We solve for kL

JHT,M from the dispersion relation
for this scheme which is given as

KL
JHT,M(ω) =

ω∆

c

√

ǫL
r,JHT, (7.20)

where the discrete relative complex permittivity for the JHT scheme is

ǫL
r,JHT :=

ω2
∆ǫ∞,∆ − ǫs,∆ω2

0,∆ + iλ∆ω∆ǫ∞,∆

ω2
∆ − ω2

0,∆ + iλ∆ω∆
, (7.21)

with the discrete representations of the continuous model parameters as defined in (7.6) and
(7.7) as well as

ω0,∆ := ω0

√

cos(ω∆t). (7.22)
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7.2.3 Phase Error of KF and JHT schemes

In this section, we analyze plots of the phase error Φ for the (2, 2M)th order KF and the
JHT finite difference schemes applied to Lorentz media. The phase error is defined here as

Φ :=

∣

∣

∣

∣

kEX − kFD

kEX

∣

∣

∣

∣

. (7.23)

where now kEX is given by (7.13) and kFD is either kL
KF,M or kL

JHT,M . The phase error is
plotted against values of ω∆t in the range [0, π].

To generate the plots below we have used the Lorentz model material parameters chosen
by Brillouin [12], which are as follows:

ǫ∞ = 1, (7.24)

ǫs = 2.25, (7.25)

τ = 1.786 × 10−16 sec, (7.26)

ω0 = 4 × 1016 rad/sec. (7.27)

In the plots of Figure 16 we depict graphs of the phase error Φ defined in (7.23), versus
ω∆t, for the (2, 2M)th order KF finite difference methods applied to the Lorentz model,
given in equations (6.16a)-(6.16d), for orders 2, 4, 6, 8 and the limiting (M = ∞) case. The
temporal refinement factor, h0 = ∆t/ω0, is fixed at 0.1. The left plot uses values of η∞ set
to the maximum stable value for the order, while the right plot fixes η∞ at the maximum
stable value for the limiting (M = ∞) case (i.e., the maximum stable value for all orders).
These bounds for η∞ are given in (6.32).

The qualitative behavior of the curves is much different here than for the Debye model
depicted in Figure 10, however, the basic result is the same. That is the infinite order method
has the least dispersion for the vast majority of refinement values of interest, and in general
at some value of ω∆t each higher order method begins to have more dispersion than the next
lower order method for increasing values of ω∆t. For the right plot of Figure 16 the behavior
of the curves for high ω∆t is instead dominated by the restriction of η∞. In particular, the
second order method has very large dispersion for ω∆t > 1.5. This result does not change
as the temporal refinement, h0 is decreased, as was the case for the Debye model (see the
right plot in Figure 17 where h0 = 0.01 and compare to Figure 12 for the Debye model).

The left plot in Figure 17 also was generated with h0 = 0.01 and demonstrates that the
dispersion for large ω∆t did not improve for the higher order methods. In fact, decreasing
h0 even further has no effect: the left and right plots of Figure 18 generated with h0 = 0.001
are interesting in that there is almost no change from the previous case. Only the resonance
peaks (e.g., corresponding to ω∆t = 1 in Figure 16) are now too close to zero and too small
to be seen. In particular, the left plot of Figure 18 suggests that the second order method
with η∞ = 1 is far superior to all other orders of methods for the (2, 2M) KF schemes applied
to the Lorentz polarization model.

In the plots of Figure 19 we depict graphs of the phase error Φ defined in (7.23), versus
ω∆t, for the (2, 2M)th order JHT finite difference methods applied to the Lorentz model,
given in equations (6.33a)-(6.33c), for orders 2, 4, 6, 8 and the limiting (M = ∞) case. Again,
the temporal refinement factor, h0 = ∆t/ω0, is fixed at 0.1.
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Figure 16: (Left) Phase error φ versus ω∆t using h0 = 0.1 for the (2, 2M) KF scheme for
the Lorentz model, given in equations (6.16a)-(6.16d), of orders 2, 4, 6, 8 and the limiting
(M = ∞) case with η∞ set to the maximum stable value for the order. Plot on right is with
η∞ fixed at the maximum stable value for the limiting (M = ∞) case, where the bounds for
η∞ are given in (6.32).

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lorentz dispersion for KF with h
0
=0.01

ω ∆ t

Φ

 

 

order=2, η=1

order=4, η=0.857

order=6, η=0.805

order=8, η=0.777

order=∞, η=0.636

0 0.5 1 1.5 2 2.5 3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lorentz dispersion for KF with h
0
=0.01

ω ∆ t

Φ

 

 

order=2, η=0.636

order=4, η=0.636

order=6, η=0.636

order=8, η=0.636

order=∞, η=0.636

Figure 17: Left and right plots are similar to corresponding plots in Figure 16 except here
h0 = 0.01. Note the change in axes from that of Figure 16.

The qualitative behavior of the curves here is very similar to those of the corresponding
(2, 2M) KF schemes depicted in Figure 16, with the notable exception of the dispersion for
large ω∆t. For the (2, 2M) JHT schemes, both the left and right plots exhibit the large
dispersion errors for the lower order methods for ω∆t > 1.5. This was noticed in [31] for the
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Figure 18: Left and right plots are similar to corresponding plots in Figure 16 except here
h0 = 0.001. Note the change in axes from that of Figure 16.

(2, 2) JHT scheme, and cited as a reason to prefer the (2, 2) KF scheme. Note that this is a
direct result of the stability constraint on the (2, 2M) JHT schemes in that η∞ < 1 even for
the second order method. Interestingly, there is no value of ω∆t at which each higher order
method begins to have more dispersion than the next lower order method for increasing
values of ω∆t, as was the case for the Debye model and the KF scheme for Lorentz.

The dispersion curves in the right plots of Figures 20 and 21 have the same qualitative
structure as those corresponding to the KF scheme, however here the left plots have similar
properties due to the constraints on η∞.

It would appear from comparing all of the dispersion curves for KF and JHT schemes that
the second order KF scheme is preferable for all temporal refinements h0 ≤ 0.01. However,
again we note that decreasing hτ changes ∆t, thus to compare consistent quantities we should
compare various hτ values on a plot of Φ versus only ω, as shown in Figures 22-27 below.
There we can clearly see orders of magnitude decreases in Φ for the frequencies of interest
(i.e., those near ω/ω0 = 1) as hτ is decreased. Further, there is significantly less difference
between the high frequency dispersion in the JHT scheme versus the KF scheme even for
the second order method, than the ω∆t plots suggested. For instance, comparing the second
order method in the left plot of Figure 24 or that of Figure 27 near ω = 8× 108 Hz, there is
less than an order of magnitude difference. (Arguably, the stability restriction still favors the
KF scheme in terms of computational runtime.) Lastly, now it is apparent that each of the
higher order methods exhibits a significant improvement over the second order method (for
some frequencies, at least an order of magnitude), however, there is little accuracy gained
by orders greater than 4 except for the very highest frequencies and for large values of h0.
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Figure 19: (Left) Phase error φ versus ω∆t using h0 = 0.1 for the JHT scheme for the Lorentz
model, given in equations (6.33a)-(6.33c), of orders 2, 4, 6, 8 and the limiting (M = ∞) case.
The parameter η∞ is set to the maximum stable value for the order, as given in (6.49).
(Right) The parameter η∞ fixed at the maximum stable value for the limiting (M = ∞)
case, as given in (6.49).
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Figure 20: Left and right plots are similar to corresponding plots in Figure 19except here
h0 = 0.01. Note the change in axes from that of Figure 19.

8 Conclusions

We have studied staggered finite difference schemes of arbitrary (even) order in space and
second order in time for dispersive materials (Debye and Lorentz) and compared them from
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Figure 21: Left and right plots are similar to corresponding plots in Figure 19except here
h0 = 0.001. Note the change in axes from that of Figure 19.
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Figure 22: Plot on left is a log plot of the phase error φ versus ω using h0 = 0.1 for the KF
scheme for the Lorentz model of orders 2, 4, 6, 8 and the limiting (order = ∞) case with η
set to the maximum stable value for the order. Vertical line distinguishes region of ω/ω0 < 1
from ω/ω0 > 1. Plot on right is with η fixed at the maximum stable value for the limiting
(order = ∞) case.

the point of view of stability and dispersion. This study was inspired by the work in [31] for
second order methods.

For each scheme we have given a necessary and sufficient stability condition which is
explicitly dependent on the material parameters and the order of the method. Additionally,
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Figure 23: Left and right plot are similar to previous figure except here using h0 = 0.01.
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Figure 24: Left and right plot are similar to previous figure except here using h0 = 0.001.

we have found a bound for stability for all orders by computing the limiting (infinite order)
case. Further, we have derived a concise representation of the numerical dispersion relation
for each scheme of arbitrary order, which allows an efficient method for predicting the nu-
merical characteristics of a simulation of electromagnetic wave propagation in a dispersive
material.

From the stability analysis in the paper, we can conclude that the numerical dissipation
in the schemes presented here for Debye and Lorentz media are strongly dependent on the
temporal resolution (the quantity hτ = ∆t/τ when τ is the smallest time scale, or for Lorentz
media, the quantity h0 = ∆t/T0 may be the dominant quantity if T0 = 2π/ω0 is smaller than
τ). We see that hτ or h0 has to be sufficiently small in order to accurately model the
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Figure 25: Plot on left is a log plot of the phase error φ versus ω using h0 = 0.1 for the JHT
scheme for the Lorentz model of orders 2, 4, 6, 8 and the limiting (order = ∞) case with η
set to the maximum stable value for the order. Vertical line distinguishes region of ω/ω0 < 1
from ω/ω0 > 1. Plot on right is with η fixed at the maximum stable value for the limiting
(order = ∞) case.
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Figure 26: Left and right plot are similar to previous figure except here using h0 = 0.01.

propagation of pulses at large distances inside the dispersive dielectric medium. For higher
orders, the stability restriction has the effect of allowing larger wavenumbers to exhibit the
same dissipation error as would a smaller wavenumber at a lower order.

From the dispersion analysis we see that the discrete representations of the continuous
model parameters are the same regardless of order of the method, only the representation of
the wave number changes. Numerical experiments show that the dispersion error for fourth
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Figure 27: Left and right plot are similar to previous figure except here using h0 = 0.001.

order methods is slightly less than that of second order methods, but no significant gain is
achieved by increasing to higher order.

Other higher order simulation methods for dispersive materials may also be analyzed us-
ing the approaches described in the current work, including those for the Drude polarization
model, the stable-JHT scheme described in [30], those corresponding to collisionless cold
plasma [45], and others which are mentioned in [10]. Additionally, any number of multiple
poles may be considered in a straight-forward manner, see for example, the fourth and sixth
order methods for multi-pole Debye and Lorentz in [35]. The specific stability results from
[10] for two and three dimensions, may be extended as well in a similar fashion to the analysis
presented here by using a representation of the numerical schemes in a manner as described
in [14] for the wave equation.
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