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An Analysis of Control Area
Synchronization on the Convergence of

Distributed State Estimators
Blaise Clarke, Student, Oregon State University

Abstract

This honors undergraduate thesis examines the process of simulating power system state estimation,
the use of the alternating direction method of multipliers in the problem of distributed power system state
estimation, and provides a rudimentary asynchronous implementation of the above for a linearized DC
power system. The asynchronous implementation is applied to a model of the IEEE 57 bus test system;
convergence to a set of centralized state estimates and to the true state of the system is examined and
compared to the results of a control synchronous implementation of the ADMM algorithm whose iterations
were restricted by the weighting factors of the asynchronous method. We find that the state estimation
from the asynchronous ADMM algorithm satisfactorily converges to estimates done by a centralized state
estimator as well as the real states of the system; we conclude with future work that can follow from these
conclusions.

Index Terms

Power systems, Asynchronous distributed state estimation, Alternating Direction of Multipliers Method.

I. POWER SYSTEM STATE ESTIMATION

A. Power Systems

FAST and accurate state estimation is a critical part of the creation and maintaining of electrical power
systems. As the population of a region grows, the demand for power increases - though this increase

in consumption can be partially alleviated with the introduction and regulation of new power generators
to the power grid, there are still limits on the current infrastructure of transmission lines, substations, and
other power system elements that allows for less leeway on the mismatch of power being generated and
the demands of the areas being serviced. These tighter tolerances require an increased precision in the
measurement of the electrical state of the system - with higher amounts of generation and load, small
systemic or localized errors that were previously acceptable in smaller systems may compound and cause
a larger system to fail. Furthermore, as smaller, distributed sources of electrical generation such as wind or
wave energy are integrated into applicable areas, the local grid grows increasingly complex to measure and
balance by hand; additionally, operators who manually equalize generation with load are still influenced
by measurements that may be missing or corrupted by noise. [1]

B. Why use state estimators?

The most direct way an engineer can determine how to modify power generation for a given area is to
directly measure the voltage and current phasors of every element in the system that are generally achieved
through very accurate and synchronized phasor measurements of all bus voltages and branch currents in
the system; however, this approach is very vulnerable to measurement errors or telemetery failures of the
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meters themselves. Additionally, it is not guaranteed that every meter will be able to make a measurement,
accurate or not, at any possible time an engineer controlling the power grid may require - an operator must
make a guess whether or not the measurement being acquired by the meter is still relevant to the system
at the time the request was made. [2] These issues mean that a brute-force method of direct measurements
is in practice difficult to implement and does not scale well. Instead, the system can be broken up into a
set of interconnected subcircuits or network of elements, each of which can be characterized by a single
input or output voltage phasor. As there is a shared input and/or output for all of the elements and the
network infrastructure is fixed in place barring maintenance or repair, an engineer can simply use Kirchoff’s
junction and loop rules to determine the desired voltage and current phasors of a single component of the
subcircuit; that is, even if the entire system is not locally observable, it can be broken into electrical
subsystems that in themselves are individually observable. As the engineer wants to control the power
being delivered to a specific component in order to avoid damage through too much power dissipation or
to avoid the loss of service due to too little power being supplied to an area. As these direct readings can
be estimated using the given input or output voltage phasor, the phasors thus act as state estimators for
the entire subcircuit, avoiding many of the scaling issues that direct measurements run into, as well as
reducing the points of entry that an unauthorized person could use to access the state of a power system.
For this simulation, we will generalize each power system into a set of interconnected buses each of which
is describable by a single voltage phasor; the voltage phasors of the buses will act as the true state of the
system, and the estimates of the voltages for each bus/state from the various algorithms put forth in this
thesis will act as state estimates for the entire electrical power system. [3] Using state estimators rather
than directly measuring the voltage across or current through every element within a power system in the
region can also reduce the effects of measurement error inherent to the meters being used by implementing
models focused on minimizing the mean squared error of state estimates from test readings (weighted least
squares methods), minimizing the variance (minimum variance methods), or maximizing the chance that
the estimate is within a given tolerance of the actual reading (maximum likelihood methods). All of these
algorithms use redundant neighboring measurements in order to improve their specific metrics, as well as
provide estimates on the error generated by each meter in the area, filter out small errors due to model
mismatches and measurement inaccuracies, and detect major, unexpected errors that may be caused by a
bad data attack. Additionally, it is substantially easier to base a decision on a single voltage phasor for a
large electrical system rather than using an algorithm that compensates for every single constraint of the
subsystem or by implementing several algorithms that only have local control of parts of the subsystem,
making those algorithms locally optimize changes to generation, and then forcing the partial results from
each algorithm to be compatible with the aggregate results. From this, it is easy to see that not only do
state estimators allow us to simplify the description of a power control system, they also simplify decision
making for that same power system, as well as reducing the effort needed to view the state of a system at
any given moment. [2]

C. Linearized DC modeling

For this thesis, we will be examining a linearized DC model of power systems as a proof of concept
for the use of an asynchronous alternating direction method of multipliers algorithm for state estimation.
By using the linearized DC model, we greatly simplify the system and can look at the state of a given
bus as a magnitude rather than a phasor; additionally, we force our measurements to be time-invariant
and not subject to time skew present in AC models. [4] This second advantage is key to our simulations,
as we are relying on a number of successive iterations to converge to a final estimate of the system; the
addition of time-varying elements to our state estimation calculations would add a time factor that is not
necessarily synchronized to the iteration delays and would force a more intricate method of modeling
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that is inappropriate for this level of analysis. Finally, I frankly do not have enough experience with non-
linear optimization or the power systems knowledge to accurately improve the model to include non-linear
modeling or AC analysis of a system; the main focus of this thesis is to act as a starting point for someone
more knowledgeable than myself for further investigation of the subject.

II. APPROACHES USED FOR STATE ESTIMATION

A. Centralized State Estimation

The simplest method of estimating the state of a power system is to designate a controller node that
is responsible for gathering all the data from its surrounding buses and meters, collating the information,
and giving an overall estimate of the voltage phasor that acts as a state estimator. The main benefit for
this method of power system state estimation over other approaches is that it only requires the vector
of current state measurements z and the Jacobian matrix of the system H by using the Newton-Raphson
solution method [5] - H is composed of the partial derivatives with respect to the magnitude and phase
of the voltage phasor of the in-phase and out of phase components of real power injection (generation)
at each bus, the in-phase and out of phase power flow on the branches connected to each bus, and the
partial derivatives of the magnetic effect of the above flows. The composition of this matrix is outlined
in the Acquisition of Parameters from the Power System subsection of the below section. However, the
linearization of the system greatly simplifies the process of generating the partial derivatives and makes
H relatively sparse, and the steady state estimation being done means that the Jacobian only needs to be
calculated once, with no iterative updates as the system changes.

For small systems, this approach is adequate. However, the typical implementation of centralized voltage
estimation for power control systems only scale well to a certain extent - as more elements are added to the
power system undergoing state estimation, there is a greater delay between a change in the measurement
from an outlying area solely due to the longer distance that communications take to get to the centralized
state estimation processor. Another major drawback to this method is the processing power required in
the controller node; as the system grows, the processing power needed to give a state estimate with the
same approximate accuracy and frequency as a smaller system grows at a O[n2] pace, where n is the
number of buses in the system being modeled. [5] Once the size of the system grows past an example
such as the IEEE 300-bus ”East Coast” model, the cost of implementing a full-scale centralized state
estimator of incredibly high precision becomes prohibitive for worst case modeling. [6] Though this is
unlikely to impact someone who is testing different algorithms on these models, it is definitely a concern
for real life applications of a centralized state estimator. Additionally, though consistency of measurements
taken by centralized state estimation algorithms reduce the impact of noise and randomized error, it is still
vulnerable to a concerted ”bad-data” attack wherein an attacker deliberately injects incorrect measurements
into a system over a period of time in order to force the system into emergency or recovery states, either of
which would require extended periods of brownouts or blackouts in order for the power system to return
to a stable mode of operation. [7]

B. Decentralized (Synchronous) State Estimation

In order to avoid some of the issues inherent to centralized state estimation in very large power systems,
investigation into a decentralized method of power system state estimation has become increasingly relevant
over the last decade. [8] The simplest forms of decentralized state estimation involve breaking a large system
up into several control areas, each with their own localized measurements and processing node. Each of
these control areas operate under an algorithm analogous to a centralized state estimator for their one
region. Once a state estimate for the entire control area is found, the areas communicate with one another
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in order to iterate to a state estimate of the entire system. This methodology has several advantages over
the simpler centralized state estimation described above.
• Since each control area is relatively small, a decentralized approach does not have as much of a

scaling issue as a centralized approach; as a network grows larger, the number of control areas for the
network can grow in addition to the size of each area. The cost of communication between control
areas does increase in this situation, but only at the rate of O[n× log(n)], where n is the number of
control areas of the system being simulated. [9]

• If a single control area has enough independence to make changes to its own power generation, the
local response to a sudden change in the demand of electrical power can be substantially faster than
in a centralized approach. Instead of waiting for a decision to be made on the entire network as a
whole based on a centralized state estimation, a control area can find that its local state estimates
require immediate action and correct the problem quickly. [10]

• There is some protection against bad data attacks with a decentralized state estimator. For the worst
case examples of a bad data attack not being detected and negated by the estimator for the area, the
organization of the power systems network into distinct control areas means there is a much higher
chance that damage to the generators and other infrastructure elements will be limited to only the
control areas where the bad data attack was based as well as system elements shared by that control
area with its neighbors. [7]

Despite its many benefits over the centralized state estimator, decentralized state estimation still has multiple
drawbacks. For one, because the leaders of each control area must share their localized state estimations
with one another and iterate together to a system-wide state estimate, any non-localized estimates will be
slower than in the centralized estimate in any case but the most trivial; the only time a decentralized state
estimate would be created faster than its equivalent centralized estimate is if only a handful of iterations
are used, which only occurs in the simplest of test cases. Additionally, since the local estimates created by
each control area are communicated over the same branches that measurements are taken from, any issues
with noise or disruption between buses shared by multiple areas or on branches that connect two areas
are amplified as they impact the convergence to the centralized estimate; however, if a robust estimation
system is being used, the impact of noise and disruption will be minimized as part of the algorithm. Finally,
the decentralized power system state estimation is still vulnerable to chronic bad data attacks if they are
focused in a single control area and not intense enough to outright pull the control area into a state of
failure - if a control area is consistently put into a recovery state, it will still communicate bad data and
request more assistance from its neighbors, spreading the effects of the attack. [11] Though the method of
iterating to a overall state estimation of the power system mitigates the effects of bad data being injected
to any number of control areas over a short period of time, it still cannot distinguish between chronic
attacks and actual, denoised measurements from its meters.

C. The Alternating Direction Method of Multipliers

There are many algorithms that can accomplish a decentralized state estimate for power systems -
however, one family of algorithms that has been studied heavily in recent years is the alternating direction
method of multipliers (ADMM). In essence, ADMM algorithms integrate the good convergence rates of
the method of multipliers algorithms and the decomposability of dual ascent methods. ADMM algorithms
solve the general family of functions that minimize f(x) + g(z) subject to the constraints Ax + Bz = c,
where x ∈ <n, z ∈ <m, A ∈ <p×n, B ∈ <p×m, and c ∈ <p. The structure of this minimization problem
is similar to the general case of minimizing f(x) with the constraint Ax = C, where vectors x and c
and matrix A are defined above; the main difference is the separation of the vector of variables x into
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two separable vectors of variables x and z respectively. [12] This allows the user to update each vector of
variables independently of one another, allowing for the minimization of the first vector using a static value
for the second vector, the minimization of the second vector with the first fixed at another static value,
and the updating of a dual vector of variables that forces the two minimization results to a compromise
value between the two - this acts as the starting point for the next iteration of the ADMM algorithm. In
essence, it is an abstracted version of the dual ascent method of minimization. Typically, the minimization
steps are performed using an augmentented Lagrangian submethod; however, instead of jointly minimizing
x and z together, each variable is updated sequentially in an alternating pattern (x then z, or z then x),
which brings about the name of alternating directions of multipliers.

It can be shown that for the general form of the alternating direction method of multipliers, convergence
will eventually result given that the functions f(x) and g(z) are closed, convex functions and that the
Lagrangian L of the system has a saddle point (there exists some point (x∗, y∗, z∗) such that L(x∗, y∗, z) ≤
L(x∗, y∗, z∗) ≤ L(x, y, z∗)). [13] From the first of these assumptions, the implication that subproblems
formed by the decomposition of the problem into x-update and z-update steps are both solvable can be
seen; that is, there exists some x and z that result in the global minimization the augmented Lagrangian of
the system as both functions f(x) and g(z) are closed and convex. From this assertion, we can see that the
exists a finite saddle point L(x∗, y∗, z∗) on the Lagrangian because such a minimization exists. This means
that x∗, z∗ exists as a solution to the original problem of minimizing f(x) + g(z), given Ax + Bz = c,
which leads to the conclusions that Ax∗ + By∗ = c is valid for x∗ < ∞, y∗ < ∞. An explicit derivation
of the general proof of convergence can be found at [14], and specific proofs of convergence for ADMM
in power systems can be found in [7], along with most papers using this family of algorithms for power
systems.

D. Synchronous vs. Asynchronous ADMM

The majority of implementations using a variant of the alternating direction method of multipliers
algorithm apply them in synchronous applications for a variety of reasons. For one, it is easy to visualize
a system as a large collection of segmented subsystems working in lock-step on partially optimizing the
system using variables local to them; it follows a basic iterative process of decompose, optimize, share
results, and re-optimize that can be monitored to see each area converges to results consistent with the
rest of the system at every iteration. Furthermore, it is substantially easier to find proof of convergence or
proof on the rate of convergence as a heuristic of a given application of a synchronous ADMM algorithm
by using well-defined iterations, something substantially more difficult if an asynchronous schema is being
used. If not all subsystems of the system are updating variables at the same time, it is difficult to say when
one updating iteration ends and the next begins. From this, based on the type of asynchrony being used,
it can be tougher to simulate asynchronous ADMM implementations. The simplest form of asynchronous
implementations to simulate is one based around different subsystems only being active a portion of the
time; when inactive, the next iterative state is identical to its previous iteration. This methodology can be
split into two different subtypes, probability based methods versus event driven ones.

Event driven ADMM implementations consist of update occurring during iterations only when specific
event conditions are met within the subsystem, such as a control area receiving a certain number of updates
from its neighbors, a given number of iterations passing since the control area last updated or received
an update, or if a controller detects interference under a given threshold in the channel the control area
communicates its updates over. [15] Initially, the simulation for this thesis used an event-driven approach
that caused an update to be sent out when a control area detects that it has received an update from
a majority of its neighbors or if it had been 20 iterations since the last update was received from any
neighbor. However, this method ran into issues where state updates were very densely packed together
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with several iterations between them with no updates from any control area. This made it clear that after a
short period of time it devolved into a slowed, semi-synchronized ADMM implementation due to the second
condition on updates. When this was removed in order to avoid the gradual synchronization of updates,
the algorithm stalled after a handful of iterations with active updates without coming close to converging;
when the condition was made more strict, the algorithm became even more strongly synchronous early
in the iterative process. Additionally, it is nearly impossible to compare the time to convergence of a
properly built event driven asynchronous ADMM algorithm with a synchronous implementation; there is
no consistent context for iteration values in a truly event driven system. In order to avoid this gradual
synchronization, inability to compare to synchronous systems, and other issues, I switched to a probability
based algorithm for the final thesis work.

Probability based methods are centered around the control areas of a system having a given probability
per iteration of being active. [16] In this case, an active control area updates its local state estimation vector
and sends out the updated estimate to its neighbors; if it is not active, the power systems state estimate is the
same of the last estimation made when the control area was last active. In theory, the activation probability
of each control area should be based around the slowest updating meters within the control area - the less
often the slowest meter can give updates to the organizer of the control area, the less often that control
area should be able to update and thus the lower the probability that it should be active per iteration. This
is consistent with how more realistic synchronous alternating direction method of multiplier algorithms are
built; updates only occur when a new reading from each meter has been taken in by the control area, which
is bottlenecked by the slowest updating local meter. [17] Due to this, it is relatively simple to see that a
probability based implementation of the asynchronous ADMM algorithm will devolve to a synchronous
implementation by setting the probability that each control area will be active per iteration to 100% -
with a control synchronous implementation for comparison, we can see that the devolved asynchronous
state estimation matches the synchronous estimation at every iteration. Additionally, we can make a mock
synchronous system by setting each weighting value to the largest of the set of the asynchronous algorithm
that allows us to directly compare how many iterations a synchronous implementation still bottlenecked by
the weakest control area would take to converge; the alternative would be to see how few updates it takes
for a synchronous implementation of the alternating direction method of multipliers to converge, running
a version of the asynchronous implementation that only allows each control area to that limited number
of times, and looking at the mean squared error of the output of the limited asynchronous algorithm. [15]

III. APPLICATION OF THE ADMM TO POWER SYSTEM STATE ESTIMATION

A. Acquisition of Parameters from the Power System

Before any sort of implementation of the ADMM algorithm can be used, several parameters related to the
power system being simulated must be acquired. For this thesis, we began with data in the IEEE Common
Format for Load Flow Data, made available at [18]. From this data, we directly get information on the
base MVA rating of the system as well as data structures filled with information on the buses, branches,
generators, and generator costs. From those structures, we pull information about the number of branches,
buses, and meters for the segmentation of the system into control areas for the distributed algorithms. From
the bus matrix, we isolate the transformer and line charge information in order to transform them into their
equivalent transmission line equivalents of susceptances and conductances.
• For transformers, if a transformer with turn ratio α and serial impedance Z t is on the branch connecting

buses m and n with nominal voltages V m and V n respectively, the current Im from m to n at bus
m is changed as follows: α-1Im = α-1(V m

α -V n)(Z t)-1. Since both susceptance and conductance terms
correspond to (Z t)-1(V m -V n), they are proportional on Im and must be changed accordingly. Similar
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corrections for the current running from bus n to m must be made as well; use the above adjustments
with the two buses transposed. [1]

• Line charge information is treated as shunt capacitance in the system matrix. For every branch with
line charge susceptance, the buses on each end of the branch have their susceptance increase by half
of that of the line charge parameter. So, parsing through the entries of the branch data structure that
correspond to line charge information, every time a given bus appears in either the front bus or tail
bus columns, take the corresponding susceptance entry, divide it by two, and add it to the susceptance
of the bus in the system matrix. [1]

Once the effects of transformers and line charge have been applied to susceptance and conductance elements
of the matrix, the DC model of the system can be built. The admittance of the linearized DC system is
simply the combination of the susceptances and conductances entered previously; the conductance matrix is
the real portions of the admittance, while the susceptance matrix is the imaginary portion of the admittance.
The DC system can be built directly using the susceptance matrix; the diagonal elements of the DC system
matrix are the sum of the of the non-diagonal entries in the relevant row of the susceptance, while the
non-diagonal elements of the DC system matrix are the opposite of the susceptance element values. [1]
Because we are using the first node as a reference node, we can strip the first row and column from the
system matrix for the creation of other power system parameters for meter and state estimates. Using the
branch-to-phase incidence matrix and the matrix of susceptances, we can build the DC Jacobian matrix.
Because we are only using a DC linearized model, we only need to consider meters for the real power
flows and real power injections on each bus; from the overall DC Jacobian matrix, take the elements that
correspond to the above and concatenate them using the set of lines (l) and buses (b) of the system to
create the H matrix. The rows of H correspond to the states of the system being estimated; the first set
of l elements in each row of H relate to the positive real power flow elements of the system; the next set
of l elements relate to the negative real power flow; and the last group of b elements correspond to the
real power injections on each bus. This results in a Jacobian matrix of |S| × |2l + b|, where S is the set
of states of the system.

B. Centralized State Estimation of Power Systems

These system parameters are sufficient to perform linearized DC state estimation for our purposes. For
the most basic centralized power system state estimation, we only need the overall Jacobian matrix H
matrix formed in the above steps, and the vector of measurements from the system z as mentioned above
in section 2. The latter is created from measurements taken directly from the system. In order to perform
a centralized state estimate of a power system, do the following -
• Set a signal-to-noise ratio and a standard deviation for noise for the system. In this implementation,

a SNR of 6000 and standard deviation of 0.001 were used.
• Calculate the mean signal energy of the system by using the nominal state of the system derived from

the original system data.
• Calculate the noise of the system by taking the square root of average signal energy divided by the

SNR.
• The true state of the system is calculated by adding variance based on the standard deviation set

previously to the nominal state of the system.
• z is the noised vector of measurements from the system - calculate it by taking the true state of the

system and adding noise that matches the previously set signal-to-noise ratio.
The centralized state estimation vector xc is calculated as xc = (HTH)−1(HT)z. [17] If we were not doing
steady state estimation of the power system, z would need to be recalculated and H would be updated
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every iteration; if the power system under voltage phasor estimation was non-linear rather than linearized,
H would be substantially less sparse.

C. Decentralized State Estimation of Power Systems

When converting from centralized to decentralized state estimation, we need to separate the power
system into several control areas that collaboratively perform the state estimation. Due to this, decentralized
state estimators return a set of vectors xk rather than a single state vector x. Thus, in order to perform
decentralized power system state estimation, extra information on the decomposition of system must be
gathered before the algorithm begins. The most obvious of this is the number of control areas that the
power system is being split into; for this thesis, this will be represented by k. From this, we can determine
which subset of states from the entire system are associated with control area k, Sk, as well as the meters
associated with the control area, Mk. Another caveat of the decentralized state estimation algorithms is
that neighboring control areas can share line meters (and thus have access to measurements of bus meters
and states on the exterior fringe of neighboring control areas), so the set of system measurements local
to a given control area are not necessarily only available to that area and elements of the state vectors
xk are not necessarily unique. This is actually beneficial rather than a drawback - without these shared
measurements, the control areas would only be locally optimizing the isolated regions that they have access
to, and would not be guaranteed to converge to the centralized state estimation of the system as we desire.
In essence, the algorithm would be solving k independent problems of the form

min
xk∈Xk

fk(xk; zk,Hk)

where fk is a convex function of xk, generally chosen to be the maximum-likelihood estimate of xk
assuming Gaussian noise in the system (which is the assumption in this simulation); X k is a convex set
that captures prior information of the system such as operational limits or non-injection buses; zk is the set
of local measurements accessible to the control area; and Hk is the submatrix of the Jacobian relevant to
the local elements in control area k. [7] Instead, the shared bus voltage and current measurements inherent
in interconnected control areas of a power system makes the above set of direct minimizations into a single
joint optimization problem of the form

min
xk∈Xk

Kmax∑
k=1

fk(xk)

such that xk[l] = xl[k], ∀l ∈ N k, ∀k

where xk[l] and xl[k] are a state estimate shared by control areas k and l respectively and N k is the set
of meters in the group associated with control area k that are also visible to a control area l, k 6= l.

The above optimization problem can be solved using an implementation of alternating direction method
of multipliers algorithm, regardless of the synchronocity or lack thereof of the implementation. In doing
so, the joint optimization devolves into a trio of simpler optimization problems to be performed every
iteration. These three problems update the vectors xk, sk, and pk based on minimizations listed in [21].
As mentioned before, the ADMM algorithm uses an augmented Lagrangian function L(xk,sk,pk) from its
basic roots in the direction of multipliers method; the Lagrangian for this simulation is set to L(xk,sk,pk)

=
Kmax∑
k=1

(fk(xk) +
∑
i∈N k

(pTk (xk[i]−sk) + c
2 (xk[i]−sk)2)), where xk[i] is element i in xk. [12]

• In the first step of each updating iteration, the state vectors xk for each control area are updated by
choosing those state vectors that minimize the augmented Lagrangian function given a fixed value for
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sk and pk; typically, these fixed values are taken from the vectors generated by the previous iteration
of the algorithm.

• Updating the shared meter states sk - Fix xk using the values found in the previous step and fix pk
using the values found in the previous iteration, then minimize the augmented Lagrangian to find the
new values of sk.

• Updating the dual variable pk - find the change to all xk this iteration using a gradient ascent method
on L(xk,sk,pk) using the difference between the newly calculated xk and sk vectors, weighted by a
Lagrangian step size set by the user.

In a synchronous implementation of the alternating direction method of multipliers algorithm, all three of
these steps would execute for each control area every iteration. This is not the case in the asynchronous
implementation. Instead, the first step only executes for control areas found to be active during the current
iteration; if they are inactive, the ”new” xk for that iteration is set to the values of the previous iteration.
After that, if a control area k is found to be active or receives an updated xl (where k 6= l), the second
and third steps execute; if there is no new information accessible by the control area, there is no reason to
update its estimates of its shared state sk, and thus there will be no change to the dual variable pk. [19]

Our original plan for the implementation of the asynchronous ADMM algorithm in this thesis was
to take the method that has its convergence proved in Wei’s paper [9] and altering it to fit the area of
power system state estimation by using elements from Kekatos and Giannakis [7]. However, in the process
of matching the convergence results of the asynchronous ADMM to its equivalents in the synchronous
implementation of the same system, we found that it would be easier to base the asynchronous method
around the Kekatos’s implementation and adding elements from Wei in order to make the synchronous
algorithm lose its synchronocity. This does mean that the current implementation does not have explicit
proof of O(1/k) convergence as we had hoped for initially; however, since the purpose of this paper
was to examine the effects of adding asynchronous elements on the convergence of the state estimates,
it makes more sense to start with a synchronous algorithm with known convergence rates and seeing the
impact of making it asynchronous on its rate of convergence. Looking at the methodology used in both
papers, it can be seen that they both share many elements that make both implementations relevant to the
problem of power system state estimation - both solve the global optimization problems outlined in the
above subsection Decentralized State Estimation of Power Systems, both rely on converging to the saddle
point of an augmented Lagrangian function to get to a state estimate for the system, and the process to
reach that above saddle point is generally the same (updating the vector of states, updating the message
vector, updating the dual variable vector). Unfortunately, Wei’s algorithm relies on an explicit formation
of the H and D matrices that is not present in Kekatos’s algorithm. However, due to the nature of the
power system being modeled by this implementation, the diagonality of H required by Wei is fulfilled by
the creation of the set of Dk matrices in Kekatos; the effects of D used by Wei - that each row of the
constraints have only unique elements xi and zi - are duplicated by the uniqueness of each element of
sk in Kekatos as well as the uniqueness of each bus (for xi) and branch (for zi) in a power system; and
the method of activating control areas in our implementation of asynchronous variants of the algorithm
proposed by Kekatos in effect implements the random variables outlined by Wei. Still, there are enough
differences between Wei’s definitions and what was implemented in this algorithm that it is not correct to
say that it is an implementation of Wei’s asynchronous ADMM algorithm in the realm of power systems
- at best it can be said to be a hybridized method of Kekatos and Wei. The pseudocode for this process as
well as the necessary steps in converting the data extracted from the system model into structures suitable
for an asynchronous implementation of the alternating direction method of multipliers follows.
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D. ADMM Pseudocode

Required information:
• Kmax - the number of control areas k in the system being simulated.
• b - the number of buses in the system being simulated.
• S - the set of states of the entire power system
• Mk - the set of meters (bus and line flow) associated with control area k.
• Sk - the set of states associated with Mk.
• Matrix H - the known Jacobian of the linearized power system being simulated.
• z - the vector of measurements for the system.

Parameters for the algorithm:
• c - step size constant for the augmented Lagrangian function
• itrmax - the maximum number of iterations for the algorithm to perform
• wk - Natural numbers assigned to each control area to determine activation probability; the lower the

value of a given wk, the higher the chance that control area k is active every iteration
Algorithm

1) N k
i - compose the set of control areas that share access to state i with control area k.

• Initialize all elements of N k
i to ∅

• For control areas k=1,2,...Kmax,
◦ For system states i=1,2,...|S|, if i∈ Sk:
∗ For control areas j=1,2,...Kmax, j6=k; if i∈ S j, append control area j to N k

i

2) Hk - using Mk, Sk and H, decompose the Jacobian into submatrices for each control area.
• For control areas k=1,2,...Kmax, Hk = H(Mk,Sk)

3) Dk - using Sk and N k
i , form the diagonal matrix showing how many control areas have access to

each state in Sk

• Initialize Dk to a |Sk| × |Sk| matrix of zeros
• For control areas k and all states i∈Sk, Dk(i,i) =

∣∣N k
i
∣∣

4) zk - usingMk, decompose the vector of measurements into vectors of local measurements accessible
by control area k.
• For control areas k=1,2,...Kmax, zk = z(Mk)

5) Let xitrk , sitrk , and pitrk be vectors representing the values of vectors xk, sk, and pk during iteration
itr. Initialize x0k, s0k, and p0

k to |S| length vectors of zeros.

For itr = 1,2... itrmax,

6) Initialize K, the set of control areas receiving updated states for this iteration, to ∅
7) Randomly pick an integer α in the uniform discrete distribution U[1,n] where n is the least common

multiple of all wk
8) For each control area k=1,2,..Kmax, if (α mod wk)=0,

a) Update the values of xk from the previous iteration
• Let ptempk be a |Sk| length temporary vector of the elements in pitr−1k corresponding to the

states in Sk
• ptempk = pitr−1k (Sk)
• Let temporary state vector xtempk = (HT

k Hk+cDk)−1(HT
k zk+cDkptempk )

• Initialize xitrk to a |S| length vector of zeros
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• xitrk (Sk) = xtempk

b) Updated control areas share xitrk with control areas that share states with the updated control area
c) Determine the set of control areas that received state vectors this iteration

• For all states i ∈ Sk and all control areas j ∈ N k
i ,

◦ If j /∈ K, append control area j to K
9) For all control areas where (α mod wk) 6= 0, xitrk = xitr−1k

10) For all control areas k ∈ K, update sk and pk
a) Update the value of sk from the previous iteration

• Initialize sitrk to a |S| length vector of zeros
• For all i ∈ Sk such that N k

i 6= ∅, sitrk (i)= 1∣∣∣N k
i
∣∣∣
∑
j∈N k

i

xitrj (i)

b) Update the value of pk from the previous iteration
• Initialize pitrk to a |S| length vector of zeros
• For all i ∈ Sk such that N k

i 6= ∅, pitrk (i)= pitr−1k (i)+sitrk (i)− xitr−1
k (i)+sitr−1

k (i)

2

11) For all control areas k /∈ K, sitrk = sitr−1k and pitrk = pitr−1k

End for loop

12) Return the set of vectors of xitrmax
k , k=1,2,..Kmax
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IV. SIMULATION SETUP

A. Initial work

(a) Diagram of the 14-bus IEEE test system.
(b) The one-line diagram of the IEEE 57 bus
”Midwest” test system

To begin with the investigation of asynchronous alternating direction method of multipliers for power
systems, I began with the 14 bus, 4 control area IEEE system available from University of Washington’s
Power Systems Test Case Archive. [20] To begin with, I started with a previously built synchronous
implementation of the alternating direction method of multipliers as outlined in Kekatos and attempted
to modify it so it updated asynchronously rather than synchronously. As mentioned in the Synchronous
vs. Asynchronous ADMM section above, the first attempt at the implementation of the algorithm was
event-driven as described in [6] rather than the probability based model outlined in the pseudocode above.
When I discovered the event-driven implementation’s issues of devolving into a synchronous ADMM
implementation, I adjusted the secondary updating parameter of number of updateless iterations, but had
no luck in creating a reliable algorithm for the 14-bus system, much less the 57-bus system used in the
final simulations. Instead, I turned to a prototype of the probability method outlined above that used the
weighting constants wk = [2 2 3 4]. Once I found a prototype that seemed to converge in the 14-bus case,
I decided to shift the algorithm to a 57-bus system. Though the 57 bus system is still relatively small
compared to any real life power system, it was still reasonably large enough to show that the ADMM
algorithm would work on infrastructure not identical to the 14-bus case, and would give us insight on how
its performance scaled with larger power systems.

B. IEEE 57 bus system

For this thesis, we used the IEEE 57 bus ”Midwest” power system available at [20]. Using the process
outlined in section IV, substantial hints from the associated file for the 14-bus system, and the power
systems state estimation chapter [1] that Professor Kim gave me, I set up a file from the IEEE data file
format for the 57 bus test system that created its Jacobian matrix, formed real state measurements that
we will be treating as a perfect reference, made noised state measurements that the algorithm will be
acting upon, and decomposed the set of buses that are controlled by each control area as recommended
in [22]. wk was directly set to [8 4 5 1 3 2 2], giving us the range of [1,120] for α. Iterations for the
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asynchronous ADMM algorithm were capped at 5000; the algorithm was going to automatically terminate
after convergence criterion for the system was met for all control areas within an iteration, but that was
removed during the change from the event-driven implementation to the probability-based implementation.
The signal to noise ratio for the power system was set to 6000, and the standard deviation of the noise
was set to 0.001; using this, the set of true states of the buses of the system was created using the meter
state measurements inherent in the data file with added variance, and the noised set of measurements z
were created from those true states using the noise calculated from the SNR and the standard deviation
set previously.

V. RESULTS

(a) The mean squared error of the asynchronous
ADMM algorithm with the centralized state estima-
tion as reference.

(b) The mean squared error of the asynchronous
ADMM algorithm with the real states of the power
system as reference.

(a) Mean squared error of the above after iteration
500.

(b) Mean squared error of the above after iteration
500.
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A. Results from asynchronous ADMM simulations from centralized state estimator

The above figures show the mean squared error of each bus in control area k from the centralized
state estimate, MSEk. This was calculated as MSEk(itr) =

√ ∑
j∈Sk

(xc(j)− xitrk (j))2, where xc(j) is the

centralized estimate of state j and xitrk (j) is the estimate of state j from control area k in the asynchronous
ADMM algorithm at iteration itr. After the values of MSEk have been calculated for the simulation,
plot MSEk for k=1,2,...Kmax. For these simulations, the resolution of the graph was set to 10 iterations
in order to reduce the computational time needed for a single run of the simulations to complete; with
a computationally stronger computer system, a simulation with higher resolution results could be made.
Additionally, due to the high amount of error in the first iterations from setting the initial conditions x0k
to a |S| length vector of zeros, a trimmed version of the plot for MSE values after iteration 500 are also
provided.

B. Results from asynchronous ADMM simulations from denoised state measurements

The above figures show the mean squared error of each bus in control area k from the centralized
state estimate, MSEk. This was calculated as MSEk(itr) =

√ ∑
j∈Sk

(xr(j)− xitrk (j))2, where xr(j) is the

real state of the system, generated from system information, j and xitrk (j) is the estimate of state j from
control area k in the asynchronous ADMM algorithm at iteration itr. After the values of MSEk have been
calculated for the simulation, plot MSEk for k=1,2,...Kmax. Like the above, the resolution of the graph
was set so that the results of only every tenth iteration were saved and used in error calculations. Similar
to the centralized state estimator, from the large amount of error in the first iterations from setting the
initial conditions x0k to a |S| length vector of zeros we have provided a trimmed version of the plot for
MSE values after iteration 500.

C. Results from Equivalent Synchronous ADMM simulations

For comparison, we recreated the synchronous alternating direction of multipliers implementation for
power systems that we initially tested the 57 bus test system with; in this case, we set wk to [1 1 1 1
1 1 1]. However, this synchronous ADMM was not a equivalent match to the asynchronous algorithm;
rather than being bottlenecked by the probability that the slowest updating state within the control area, it
was assumed that each control area would update at every iteration. In order to fix this mismatch between
models, we added a mock penalty factor that dilated the axis of iterations by the average activation chance
over all control areas k in the asynchronous model. That is, with asynchronous wk set to [8 4 5 1 3 2
2], we found a weighting factor of (

1
8+

1
4+

1
5+1+ 1

3+
1
2+

1
2

7 )−1 = 840
349 that was used to scale the iterations

of the synchronous model. The scaled iterative axis was then stripped to 5000 iterations, same as the
asynchronous model, with another graph trimmed to exclude the first 500 iterations in order to emphasize
the final values of the simulations.
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(a) The mean squared error of the synchronous
ADMM algorithm with the centralized state estima-
tion as reference.

(b) The mean squared error of the synchronous
ADMM algorithm with the real states of the power
system as reference.

(a) Mean squared error of the above after iteration
500.

(b) Mean squared error of the above after iteration
500.

VI. CONCLUSIONS AND REMARKS

With the above graphs, we can see that the asynchronous alternating direction method of multipliers for
power systems state estimation eventually converges to a centralized state estimate of the same system,
similar to the synchronous implementation. One thing to note in the above graphs is the large spike in
mean squared error in the asynchronous algorithm starting around iteration 1500. This was likely caused
control area 6 (the teal line) being inactive for many iterations while its neighbors have sent it new state
estimates; in this situation, the previously comatose control area updated its estimates in one large batch
and overshot the actual value of the system estimator there considerably. However, it is comforting to note
that this jump in error disappears within a few hundred iterations and that its corrections occurs faster than
it took for the mean squared error of the control area to initially drop from the peak of the spike to the
values at its base. Additionally, barring these spikes in error, the trend for MSE values is downward for
the large majority of the algorithm, including the last thousands of iterations. This implies that the current
implementation of the asynchronous alternating method of multipliers algorithm will eventually converge
to a desired level of accuracy of the centralized state estimate and actual state of the linearized, DC system.
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Another point of interest in the above graphs is the fact that the asynchronous implementation of the
ADMM algorithm converges slightly faster than the equivalent scaled synchronous model. This makes some
sense, as when we descale the synchronous model to see how many iterations actually occurred during
the simulation, we see that only around 2000 true iterations of the synchronous model were equivalent to
the 5000 of the asynchronous simulation. Even removing the spike of error that is present during iteration
2000 of the asynchronous model, we can see that the error at that iteration is much greater than that of
the error of the same model at iteration 5000. However, we can also see that the error at iteration 2000
for the asynchronous implementation is also greater than the error at iteration 2000 for the synchronous
implementation. This implies that, per iteration, the asynchronous model on average converges slower
than the synchronous model; the overall asynchronous model only converges faster because many more
asynchronous iterations occur in the same amount of real life time than synchronous updates, as expected.

Additionally, an interesting thing to note is that the synchronous algorithm does not have the large spikes
in error that the asynchronous result has. This is likely a side-effect of forcing every control area to update
in lock-step; as postulated in the first paragraph of this section, it could be that the spike in error only
occurs if neighboring control areas update lopsidedly where one side is inactive for several of its neighbor
update cycles. In this case, we could introduce an element of the event-driven asynchronous algorithm and
force a control area to update if it has received a certain number of updates from its neighbors without
updating itself; however, this hybrid method is outside the scope of this thesis at this point. Another possible
explanation is that the synchronous algorithm is still vulnerable to these spikes in error but few enough
simulations of the algorithm were made and the vulnerability was not exposed. This was the case for
the asynchronous ADMM implementation for some time; only occasionally would the simulation return a
result where the mean squared error of a control area increased over multiple iterations. However, if this is
the case that heavily implies that there is an undiscovered error in my model of the IEEE 57 bus system.
In any case, future study should be invested to see if this quirk is an issue inherent to the pure probability
based implementation of the asynchronous alternating direction method of multipliers for power systems
state estimation, but that is also outside of the scope of this thesis.

VII. AREAS FOR FUTURE WORK

As mentioned previously, the code used in this implementation of the asynchronous ADMM is a method
that implements aspects of Wei’s asynchronous methodology and Kekatos’s implementation of robust power
system state estimation, but falls short of applying his algorithm to the problem. Thus, an immediate
direction for future work would be to directly implement Wei’s pseudocode for asynchronous ADMM into
a power systems state estimation setting and comparing any differences between the direct implementation
and this hybridized method, with great detail spent on how to implement the matrices H and D [9] that were
not explicitly present in framework of Kekatos. If it turns out that this new implementation integrates the H
and D matrices into the power systems framework as we hypothesized above, this current implementation
of asynchronous ADMM on power system state estimation can be mathematically proven to converge
to the centralized state estimate; if not, then an asynchronous implementation proven to converge at the
O(1/k) will still have been created and is thus usable as a base for other future work.

Additionally, this thesis only scratches the surface of power system state estimation using an asyn-
chronous implementation of the alternating direction method of multipliers. The next step of inquiry would
to be examining how to mitigate the spikes of error in each control area’s state estimate as seen in figures
3 through 6. A good start would be to see if the hybrid asynchronous implementation would remove this
vulnerability, as well as seeing if the related synchronous implementation is indeed vulnerable to it as
well. Additionally, this thesis only looked at the implementation of the algorithm on a linearized, DC
power system; for this algorithm to be used effectively in the real world, the effects of nonlinearities of
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the power system would have to be integrated into the algorithm, substantially changing the composition
of the Jacobian matrix H, amongst other elements of the decomposition of the system into control areas
as well as the initial creation of the system as a whole. Additionally, requiring the power system state
estimation to be done in an AC setting means that the asynchronous implementation of the alternating
direction method of multipliers has to converge to a given of accuracy in a specific amount of time or
iterations instead of the unbounded eventual convergence we saw above; this is even an issue with the
synchronous implementation of ADMM, and is the reason why we wished to see if the asynchronous
algorithm would converge faster. Some of these problems are mentioned in [23], but no pseudocode was
written nor convergence results were established. In any case, there is still plenty of investigation to be
done before asynchronous implementations of the alternating direction methods of multipliers as a field
can be accepted or discarded as a possible improvement on power systems state estimation.
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