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Figure 1: The ATRIAS bipedal robot
 

1 Introduction 

The control of a dynamic bipedal robot requires extensive state feedback, including 

feedback on the position and velocity of the robot. If the position and velocity of any 

one link on the robot is known, then position sensors placed throughout the robot 

may be used to determine the position and velocity of every link on the robot. While 

this works for many robots – including robots where one or more links have fixed 

positions – this does not work for freestanding robots. ATRIAS, a dynamic bypedal 

robot, has no link of a known position and therefore requires another source of posi

tion information for control. An Inertial Measurement Unit provides this additional 

information. 

Modern strapdown Inertial Measurement Units contain 3 gyroscopic sensors and 

3 accelerometers, giving their angular velocity and translational acceleration at each 

moment in time. Assuming that the IMU is a perfect sensor and we have perfect 

knowledge of its initial state, these sensor readings may be integrated to obtain the 

IMU’s current orientation and position at any moment in time. In practice, how

ever, obtaining a precise measurement of the IMU’s initial state (a process known as 

1
 



“alignment”) and accurately integrating the IMU readings is difficult. As a result,
 

IMU-based orientation and position data tends to “drift”, or accumulate error over 

time. [1] 

Work has been done on combining IMU gyroscope readings with readings from 

other sensors to correct IMU drift. Techniques based on complementarity filters 

[4] and Kalman filters [2] [6] have been developed to correct orientation errors and 

remove IMU drift. However, we will argue that using the dynamics for correction is 

not advisable for the ATRIAS robot. 

2 Background 

2.1 Robot Orientation Sensing 

There are several methods for sensing a bipedal robot’s orientation. The goals of the 

ATRIAS project guided the decision on how to sense the robot’s orientation. ATRIAS 

is designed to operate on rough, non-level terrain, and is therefore unable to use the 

ground’s slope to determine its orientation. Simultaneous Localization and Mapping 

(SLAM) methods based on visual, LIDAR, or other environmental sensing can be 

used to track the robot’s orientation, but are complicated to implement and rely 

on relatively unobscured sensing of the environment [9]. In practice, environmental 

conditions such as dense smoke or water can obscure cameras and LIDAR sensors, 

rendering SLAM unreliable. Compared to the other orientation estimation options, 

an IMU is a relatively simple and highly reliable orientation sensor that is not affected 

by environmental conditions and was therefore selected as the orientation sensor of 

choice for ATRIAS. 

2
 



Figure 2: The KVH 1750 IMU used in the ATRIAS robot
 

2.2 Inertial Measurement Units 

Different IMUs return different sets of measurements. Most IMUs contain both ac

celerometers (which measure translational motion) and gyroscopic sensors (which 

measure rotational motion). Basic accelerometers provide translational acceleration 

measurements, while integrating accelerometers contain electromechanical integra

tion mechanisms in order to directly provide velocity measurements. In addition, any 

accelerometer whose sense axis is not orthogonal to gravitational acceleration will de

tect a gravity-induced acceleration. Gyroscopic sensors may provide angular velocity 

signals or (in the case of mechanical gyroscopes) directly provide orientation. Fur

ther, mechanical gyroscopes may provide a stable platform for the accelerometers, 

allowing them to measure world-relative accelerations rather than vehicle-relative 

accelerations. [1] The RHex robot uses MEMS gyroscopes and distributed MEMS 

accelerometers to directly provide translational acceleration, angular velocity, and 

angular acceleration. [3] The KVH 1750 IMU in ATRIAS contains MEMS accelerom

eters and fiber optic gyroscopes. Each millisecond, the KVH IMU reports sensed 

translational accelerations (in a reference frame fixed to the IMU) as well as accumu

lated delta angle readings (integrated outputs from angular rate gyroscopes located 

in the same reference frame as the accelerometers). 
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2.3 Error Sources 

There is a large amount of material on error sources in IMU measurements and 

measurements obtained by integrating IMU outputs. For our purposes, the most 

significant error sources are biases – errors in the form of constant offsets between 

the sensor readings and the true acceleration and angular velocity. Gyroscope biases 

cause the orientation estimation error to grow over time. In addition, gravitational 

acceleration must be removed from accelerometer measurements before being inte

grated into the robot’s velocity, and orientation error causes an error in the gravity 

correction that leads to a growing acceleration error. This error is then compounded 

when acceleration is integrated once or twice to obtain velocity or position, respec

tively. [1] The error buildup present due to the integration of biased sensor readings 

means that error management and the correct implementation of IMU integration is 

very important for obtaining accurate state estimation in ATRIAS. 

2.4 Error Correction Literature 

Much of the literature on robotic IMU drift correction has focused on using gravita

tional accelerations sensed by the accelerometers to correct the orientation estimate. 

A simple example is the complementary filter, which combines the low-frequency sta

bility of acceleration-derived orientation estimates with the accurate high-frequency 

transient estimates derived from gyroscope data to obtain a responsive and stable 

orientation estimate. [4] Similar research has been done on using Kalman filters to 

combine the accelerometer and gyroscope readings in a similar fashion. Although 

more complex, the Kalman filter approach has the advantage of being extensible; 

it can be modified to use a model of a robot’s dynamics to improve the estimation 

accuracy. [6] However, both approaches make the assumption that the detected grav

ity vector averages to the world’s gravity vector in the presence of orientation error, 

which may not be true for robotic systems in which orientation is controlled as part 
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of a closed-loop control system. 

2.5 Quaternions 

A recurring topic in the IMU integration literature is quaternions. The quaternions 

may be seen as a 4-dimensional extension of the complex numbers. Any quaternion 

q may be represented as the sum of four parts: 

q = a + b · i + c · j + d · k 

where a, b, c, d ∈ R, i2 = j2 = k2 = ijk = −1, and i, j, k are distinct. These 

definitions give rise to a noncommutative ring structure – quaternions are associative 

but quaternion multiplication is not commutative. This associativity combined with 

the definitions of i, j, and k define quaternion multiplication. Additionally, the 

conjugate of q is defined by: 

q̄ = a − b · i − c · j − d · k 

[5] The unit quaternion sphere is homomorphic to SO(3) (the three dimensional 

rotation group), and unit quaternions may be used to represent the orientation of a 

rigid body. [8] 

3 Methods 

3.1 Filtering vs Direct Integration 

The most important decision in the IMU integration implementation is whether or 

not a filtering method should be used to correct drift in the orientation estimate. 

While using a filter has the obvious advantage of eliminating drift, there are several 
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roadblocks to their implementation on ATRIAS.
 

Complementary filters as well as many Kalman filters for fusing gyroscope and 

accelerometer data are designed under the assumption that orientation estimation 

error does not affect the IMU’s translational acceleration [4][2]. In ATRIAS, these 

translational accelerations are a function of the control inputs, which are themselves 

a function of the estimated orientation. As a result, the stability and convergence 

of the filter depends not only on the filter’s design and implementation, but on the 

robot’s dynamics and the controller as well. Therefore an otherwise stable orienta

tion estimation filter can fail (provide divergent estimates) as a result of a change 

made to ATRIAS’s feedback control software. In the presence of modeling error, 

model-based methods such as full-body nonlinear Kalman filters suffer from the same 

controller-dependent stability issue. As the IMU is ATRIAS’s only method for sens

ing orientation, diagnosing an instability in an orientation estimation filter would 

be difficult, so using a non-model-based orientation filter risks significantly delaying 

controller development. 

In addition, ATRIAS is a hybrid system; the dynamics and number of degrees 

of freedom of the robot vary as the feet make and break contact with the ground. 

Further, this contact is difficult to detect and may not be stable; slipping feet leads to 

unpredictable contact dynamics. This makes it difficult to apply model-based filtering 

methods to ATRIAS. 

Last, the IMU integration software needed to be implemented and tested while 

ATRIAS was mounted to its planarizing boom. However, the boom significantly alters 

ATRIAS’s dynamics (reducing the number of degrees of freedom), so any model-based 

filter would need to be implemented for both the ATRIAS-on-boom model and the 

freestanding ATRIAS model. 

For these reasons, it was decided that no bias correction filter would be used; 

instead, effort was put into making the IMU alignment and integration routines highly 
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Figure 3: ATRIAS mounted to its planarizing boom 

accurate so that alignment error and drift would be negligible. 

3.2 Coordinate Systems 

As shown in Figure 4, there are three coordinate systems used in the IMU integration 

system. 

The first is the “world” coordinate system. The world coordinate system is defined 

relative to the Earth’s surface near ATRIAS. Its x coordinate points East, its y 

coordinate points North, and its z coordinate points upwards. 

The second is the “ATRIAS” coordinate system, which is fixed to ATRIAS’s 

torso. Its x vector points forward, its y vector points to ATRIAS’s left, and its z 

vector points upwards. 

The last is the “IMU” coordinate system, which is defined by the axes of the KVH 

1750 sensors. Its x vector points 45◦ forwards from the downwards direction and its 

y vector points 45◦ backwards off the downwards direction. Its z vector points to 

ATRIAS’s left, coinciding with the y vector of the ATRIAS coordinate system. 
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Figure 4: Coordinate systems relevant to IMU orientation integration 

3.3 Rotation Quaternions 

As mentioned previously, the unit quaternion sphere is homomorphic to SO(3). Al

though the literature contains two opposing homomorphisms between unit quater

nions and rotations, we will use a mapping defined as follows: Given a unit quaternion 

q = a+b · i+c ·j +d ·k and vector v = (x, y, z) ∈ R3 = x · i+y ·j +z ·k, the rotation of 

'v by q is v = qvq̄. This mapping is 2-1; each rotation corresponds with exactly two 

unit quaternions (which are negatives of each other). Further, because this mapping 

is a group homomorphism between the unit quaternions (as a multiplicative group) 

and SO(3), quaternion multiplication corresponds to the composition of rotations. In 

other words, rotating a vector by q1 then by q2 is equivalent to rotating the vector by 

q2q1. Last, the conjugate of a unit quaternion represents the inverse rotation of that 

quaternion. [8] 

Quaternions were chosen as the orientation representation for several reasons. Un

like any 3-coordinate representation, quaternions are free from “gimbal lock” (i.e. they 

do not have any singularities as a representation of SO(3), unlike Euler angles). How
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ever, they only have one constraint, that rotation quaternions are unit quaternions 

(whereas rotation matrices have 6 constraints, 3 of which are normality constraints 

and 3 of which are orthogonality constraints). [8] Any orientation representation with 

more than 3 coordinates will suffer from numerical drift due to roundoff errors, but 

with quaternions it is clear that a simple normalization suffices to restore constraint 

satisfaction. Last, as we will shortly see, it is very easy to convert IMU readings into 

rotation quaternions. 

Each millisecond, the KVH 1750 IMU on ATRIAS provides a “delta angles” out

put. This output is the integral of the sensed angular velocity over the previous 

millisecond. Making the approximation that the change in angular velocity over the 

integration timestep is small, it has been shown that the direction and magnitude of 

this delta angles output are equal to the angle-axis representation of the IMU’s rota

tion over this timestep. Given this, we can derive the incremental rotation quaternion 

from the IMU readings. Letting da refer to the vector of delta angles returned by the 

IMU (expressed as a quaternion), the corresponding rotation quaternion is: 

    
 d  d d

dr = cos + sin · (1)
2 2  d 

[7] 

3.4 Alignment 

At startup, the IMU integration software needs to determine the robot’s orienta

tion, a process known as alignment. The alignment routine for ATRIAS is based on 

gyrocompass alignment routines for gimballed inertial navigation systems. [1] The 

alignment consists of a period of data gathering (accumulation of accelerometer read

ings) followed by a computation which determines the robot’s orientation as well as 

the Earth rotation correction vector. During the data gathering step, the accelerom
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eter readings are integrated to obtain a vector that points opposite of the direction
 

of gravitational acceleration in the IMU’s local reference frame. ATRIAS is kept sta

tionary during alignment and faces a known heading. The computation then consists 

of a few steps: 

1. Use the sensed gravity vector to “level” the orientation estimate 

2. Rotate the orientation estimate to match the known alignment heading 

3. Compute the Earth’s angular velocity vector using the known alignment latitude 

In describing the alignment calculations, I’ll let agm refer to the measured acceleration 

from the data gathering step and q refer to the current orientation quaternion esti

mate. The alignment routine is designed to correct an initial, incorrect, estimate of 

ATRIAS’s orientation. 

To “level” the orientation estimate, we first rotate the accumulated acceleration 

vector into world coordinates then normalize it: 

ĝ = qagmq̄

ĝ
aug = 

ĝ

If the initial orientation was correct, aug = (0, 0, 1). Any deviation in this represents 

an error in the orientation estimate. To correct this, we need to rotate aug onto (0, 0, 1). 

We rotate about an axis orthogonal to both aug and (0, 0, 1): 

aa = aug × (0, 0, 1) 

Note that the choice of order in the cross product means that the correction rotation 

should be a positive rotation about axis aa. 
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Since aug = (0, 0, 1) = 1: 

aa = sin(θ) 

where θ is the necessary rotation angle for the correction. 

Assuming the robot is aligned while upright, θ should lie in [0, π/2). We can check 

this by verifying the following condition: 

aug · (0, 0, 1) > 0 

We may then compute θ using 

θ = arcsin( aa ) 

and normalize aa, giving us the angle-axis representation of the rotation quaternion 

for the correction. We then use Equation 1 to convert rotation vector θ · aa into a 

rotation quaternion r. The final leveling computation is then: 

q̂ = rq 

To rotate the orientation estimate to match the known alignment heading without 

invalidating the leveling step of aligment, we need to rotate the orientation estimate 

about the world Z vector. To compute this rotation, we rotate the IMU’s Z axis, 

which points towards ATRIAS’s left side, into the world frame: 

p = qkq̄

then use trigonometry to determine the necessary rotation to correct the orientation
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estimate:
 

θ = atan2(py, −px) − h 

where h is the known heading at alignment. 

Again, we use Equation 1 to convert rotation vector θk into a rotation quaternion 

r then apply the update using: 

q̂ = rq 

The last step in the alignment process is to compute the effect of the Earth’s 

rotation so it may be cancelled out during integration. The Earth’s rotation vector 

can be computed solely using the Earth’s latitude and rotation rate. Letting l refer 

to the current latitude of ATRIAS and ωe to the Earth’s rotation speed, the Earth’s 

angular velocity is:
 ⎤
⎡
 ⎢⎢⎢⎢⎣
 

0
 

cos(l)
 

⎥⎥⎥⎥⎦
 
a = ωeωe ·
 

sin(l) 

3.5 Integration 

While ATRIAS is operating, after the alignment process is complete, we need to 

consistently update the orientation quaternion (q). To do this, we use the following 

sequence of steps: 

1. Rotate the IMU’s delta angles values (d) into the world reference frame: 

d̂ = q · d · q̄

2. Remove the Earth’s rotation from the world-relative delta angles value: 

d̂ := d̂− ωe · Δt 
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ˆ3. Compute the quaternion representing the rotation delta d using Equation 1, 

call this quaternion dr 

4. Use quaternion	 multiplication to concatenate this rotation with all previous 

rotations, yielding the new orientation quaternion: 

q := dr · q 

3.6 Conversion 

Using q = a + b · i + c · j + d · k, we can convert q into its equivalent rotation matrix 

using the formula: 

⎤⎡ ⎢⎢⎢⎢⎣
 

a2 + b2 − c2 − d2 2(−ad + bc) 2(ac + bd) 

2(ad + bc) a2 − b2 + c2 − d2 2(cd − ab) 

2(bd − ac) 2(ab + cd) a2 − b2 − c2 + d2 

⎥⎥⎥⎥⎦
 

[8]. This rotation matrix may then be used to compute more convenient representa

tions of ATRIAS’s orientation, such as Euler angles. 

4 Results 

In order to evaluate the accuracy of the IMU-based orientation tracking for ATRIAS, 

two experiments were run. Both experiments were conducted while ATRIAS was 

connected to its planarizing boom, which provides orientation measurements. For 

modularity and evaluation purposes, the IMU orientation was expressed using the 

same coordinate system as ATRIAS’s boom so that the values from the two measure

ment systems are directly comparable. 

For the first test, ATRIAS’s walking controller was fed position and velocity signals 
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from the boom while the IMU was simultaneously used to derive the same values. 

The position data from this experiment is visible in Figure 5, and the velocity data is 

visible in Figure 6. Note that no yaw data is available from the boom as that encoder 

was disconnected during the tests. Also, at the end of the test ATRIAS trips and 

falls on an obstacle. Due to a poor electrical connection, this fall shut down the IMU 

and the IMU integration software held the last known values from the IMU after the 

fall. 

In general, the boom and IMU-derived values are very similar, but there are a 

couple of interesting features. Most importantly, there is no visible drift in the IMU’s 

measurements over the 5-minute test duration. However, a noticeable sinusoidal 

variation may be seen in the relative values of the pitch and roll measurements; the 

boom and IMU values have a difference that varies as ATRIAS moves around the 

room. This variation may be caused by IMU alignment error or by an error in the 

boom’s construction, installation, or calibration. Due to the small magnitude of the 

variation, it was deemed insignificant for control purposes and ATRIAS’s controller 

was reconfigured to use IMU-derived orientation data for a second test. 

For the second test, ATRIAS walked for over 6 minutes using the same controller 

as for the boom-based tests. The position data from this experiment is visible in 

Figure 7, and the velocity data is visible in Figure 8. Again, no boom-derived yaw 

data is available during this test. 

Again, the IMU data stayed near to the boom data and no significant drift was 

observed in the IMU measurements. Further, no noticeable degredation in controller 

performance or stability was observed, further indicating that drift during the exper

iment was negligible. 

Figures 9 and 10 give zoomed-in views of the IMU and boom data for several 

consecutive steps during this experiment. These figures demonstrate that the boom 

and IMU-derived orientation data closely match each other on shorter timescales. 
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Figure 5: Orientation values from ATRIAS’s boom and IMU while walking using 
boom data, demonstrating accuracy over a period of time. 
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Figure 6: Orientation velocities from ATRIAS’s boom and IMU while walking using 
boom data, again demonstrating accuracy over a period of time. 
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Figure 7: Orientation values from ATRIAS’s boom and IMU while walking using 
IMU data, proving that the IMU orientation data is usable for walking. 
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Figure 8: Orientation velocities from ATRIAS’s boom and IMU while walking using 
IMU data 
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Figure 9: A closer view of the Orientation values from ATRIAS’s boom and IMU 
while walking using IMU data. The IMU data closely represents the motion of the 
ATRIAS robot, though there is an offset between the boom data and the IMU data. 
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Figure 10: A closer view of the Orientation velocities from ATRIAS’s boom and IMU 
while walking using IMU data. The velocity signals do not have the same offset as the 
position signals, and are a much more responsive measurement of ATRIAS’s motions 
than the boom encoder readings. 
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The last relevant experimental results is a long-duration standing test in 3D (i.e.
 

with ATRIAS freestanding rather than mounted on the boom). ATRIAS “stood” 

(dynamically stood in place while continuously switching between its left and right 

foot) for over 49 consecutive minutes before falling. Therefore, it is known that the 

IMU drift rate is sufficiently low for ATRIAS to remain stable for at least 49 minutes, 

which was considered an acceptably low drift rate. 

5 Conclusions 

The IMU implementation for ATRIAS gave reliable orientation sensing. In all cases, 

the integration performed acceptably and allowed the goals of the ATRIAS project 

to be achieved. 

Looking forward, there are a few ideas that would be worth trying. As described 

in Section 3, several methods for drift elimination were excluded because they would 

have an uncertain effect on controller stability or because they could not be fully tested 

while ATRIAS was mounted to its boom. However, we now have walking controllers 

that are known to be stable if accurate IMU data is available, and filtering strategies 

for eliminating drift may be evaluated using the current controllers. Additionally, 

the standing controllers give us the ability to test the filter designs while ATRIAS is 

off the boom. Investigating filter design may allow for ATRIAS (or another similar 

robot) to operate for longer without re-aligning, operate on a less accurate (faster) 

alignment, or utilize a lower-cost IMU with larger biases. 
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