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 The Cornell Laboratory of Ornithology coordinates the eBird Project in which 

volunteer bird watchers participate in a checklist program. Each time they go bird 

watching, they fill out a checklist of the number of birds of each species that they saw 

and upload it to a web site. This information has been used to fit models of the spatial 

distribution of each species of bird on a daily basis. One model pools data from many 

years; it provides a summary of the typical timing of bird migration each year. A second 

model describes the locations of the birds for each year separately. One important 

problem is to visualize, for each year, whether the birds are “ahead” or “behind” their 

typical migration timing. To do this, an algorithm was developed for “warping” the 

spatio-temporal distribution of the birds for a single year so that it matched the average 

spatio-temporal distribution. The algorithm only solves the problem approximately. The 

goal of this thesis was to understand the computation complexity of this time warping 

problem and to relate it to other known algorithms. Our analysis suggests, but does not 

prove, that the spatio-temporal time warping problem is computationally intractable (NP-

Hard).  
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1 Introduction 

1.1 Background Motivation 
An important part of conservation management is to understand the animals in the area of 

concern.  Of the animals to observe in North America, some of the easiest species to detect are 

birds.  Many birds migrate annually, making them easily detectable during that time.  

Observations of these annual migration patterns could produce insight into how human 

populations negatively affect neighboring animal populations.   

The eBird project is a community of volunteer bird observers reporting their sightings to the 

eBird website.  This provides some sparse data to work with, but much more is needed to track 

the annual migrations of birds in North America.  Using the ebird data, the STEM modelling 

project, headed by Dr. Daniel Fink of Cornell Lab of Ornithology, interpolates these sightings to 

provide approximations of bird migrations in locations across the United States where no 

observations were made.   

To observe these bird species over time, we can look at each species’ annual migration.  For each 

bird species, we can compare the annual migration data of one year with the data  averaged over 

several years to see when and where the birds fall behind or advance ahead of their normal annual 

migration schedule.  The map of the US can be divided up into cells. For each cell, the birds will 

start being observed at some point and cease being observed at some later point.  For each cell in 

the map, they may appear sooner or later than in previous years.  This restriction prevents us from 

using previously-developed time warping algorithms and forces us to create our own problem 

definition: the problem of Column Time Warping with Neighborhood Distortion Cost.   

1.2 Thesis Scope 
The scope of this thesis is to evaluate the tractability of the Column Dynamic Time Warping with 

Neighborhood Distortion Cost problem.  Evaluating the tractability of the problem determines 

whether the problem is difficult enough to necessitate the use of heuristics (approximation 

algorithms).  If the problem is found to be intractable (NP-HARD), then heuristics will be 

necessary to solve the problem within a reasonable amount of time.  Alternatively, if the problem 

is found to be tractable (PTIME), then an exact algorithm will work.   

1.3 Thesis Organization 
To analyze the problem, the second section of this thesis formalizes the Column Dynamic Time 

Warping with Neighborhood Distortion Cost problem in detail.  The third section gives evidence 

of the problem not being in P.  The fourth section discusses the implications of this work in 

relation to the theoretical computer science field.  The appendix shows an attempt at a PLANAR 

3-SAT reduction for proving the problem to be NP-HARD.   
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2 Column Time Warping with Neighborhood Distortion Cost    

2.1 Formulation from Bird Migration 
Bird migrations for each species of concern are described in eBird using a series of observations 

with the following information: latitude, longitude, time, and bird count.  To see where and when 

birds are behind or ahead of their normal migration schedule, we compare two different annual 

migration years with an alignment.  To align a bird species’ annual migration of one year, A, to 

another year, B, is to match every observation in A to an observation in B.  A match between two 

observations represents the relationship that the birds observed in the observation in B are 

roughly the same birds as observed in the observation in A.  These two observations happened at 

approximately the same stage of the birds’ annual migration at different years.  This is considered 

an alignment problem, and the terms “matching” and “alignment” are used interchangeably.  The 

amount of precision of latitude and longitude makes it difficult to match two observations from 

different years because it is too specific for our sparse data.  The odds of two observations at the 

same latitude, longitude pair is small.   

To reduce the precision of observations, we produce a discretized representation of the annual 

migrations into a three dimensional array.  The geographical map of interest is divided into a 

matrix of cells, taking place of latitude and longitude.  The time component is represented as an 

integer day.  Then, each cell has the percent chance of an observer spotting a bird of the species 

of interest.   

The percentages are calculated as follows.  First, a STEM model is created using the checklists 

(forms to fill out) recorded from bird observations.  The STEM model takes as input latitude, 

longitude, and date, then outputs the percent chance that an observer at that time and location 

would observe a bird of a specified species.  The date component discretizes time, leaving 

latitude and longitude for discretizing into cells of the geographic matrix.  Second, a large set of 

points called the spatial random dataset (SRD) that was defined was spread across the geographic 

map for sampling of the STEM model.  Each cell on a given day holds its respective percent 

chance of an observer within a cell seeing the specified bird species is calculated as the average 

of the STEM values of the SRD points within that cell.   

The three dimensional representation of each species’ annual bird migration appears similar to 

other alignment problems.  Star Alignment, Tree Alignment, and Multiple Alignment could not 

be reduced to the Column Time Warp with Neighborhood Distortion Cost problem (Elias 2003).  

Three Dimensional Time Warping is a very similar problem (Mardziel 2004).  The main principle 

that makes this problem different from other well documented alignment problems is that in any 

given cell, birds tend to enter at the same time each year.  The importance of this alignment 

problem is to notice, in any given cell, the variations of these arrival times.  This means that any 

observation within a cell can only be “matched” or aligned with other observations within the 

same cell.  This allows for the alignment of birds within a cell at a specified time to birds from a 

previous year within the same cell to be interpreted as the birds being ahead of or behind their 

regular migration schedule.  For example, within one cell, if day 144 of the year 2010 is aligned 

with day 146 of the year 2009, then the interpretation is in the year 2010 the birds within that cell 

on day 144 were two days ahead of the migration schedule of 2009.  It is important to note that in 

this context the terms “align”, “match”, and “map” have the same meaning.   
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2.2 Definition 
The problem of Column Time Warping with Neighborhood Distortion Cost concerns the 

alignment of two inputs (annual migration data), A and B, such that the alignment cost from 

elements of A to elements of B is minimized.   

2.2.1 Input 

A and B are two dimensional matrices of sequences with matching dimensions and lengths, 

    and  .  All sequences of A and B have a length of  .  These sequences have elements with 

real value numbers (the species observation probability).  To access a single sequence, we use the 

notation A(row,column), where row is in  , column is in  .  To access a specific element, we use the 

notation A(row,column)[index], where index is within  .  All elements of the sequences have real 

values.  Mathematically, 

 
               

            , and likewise for B.    

The dimensions N and M are for the latitude index and longitude index space.  The L sequence 

length is the time component, holding the number of days considered for the annual migration.  

For example, A(3,4)[20] = 5 10
-4

 means that on day 20 of the considered migration period, the 

bird observation probability in cell c (3,4) is         

 

2.2.2 Output 

The output of this problem is an alignment function f.  The function, similar to the input, is a two-

dimensional matrix of sequences, matching the dimensions of inputs A and B.  The sequences 

have elements of integer value.  The notation for accessing of each sequence and element is the 

same as the inputs A and B.  Mathematically,  

 
               

            . 

This function f represents the alignment of A onto B.  The alignment of each pair of sequences 

A(x,y) and B(x,y) is represented with f(x,y).   

Each element in f(x,y) represents the matching of its corresponding element in A(x,y) to an element 

in B(x,y).  For example, f(3,4)[5] = 6 means A(3,4)[5] is aligned to B(3,4)[6].  According to Time 

Warping, the alignment of one element cannot reach further than its neighbors in the sequence, 

because warping is compression and expansion, without flipping (Gusfield 2007).  In other 

words, during spring migration, the birds must continue flying North; they are not allowed to 

reverse direction. The Warping Restriction is, mathematically,  

   |      |                        . 

As a running example, we will use the following example:  
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Sequence A 

A[0] 
 

A[1] 
 

A[2] 
 

A[3] 
 

A[4] 
 

A[5] 

5 
 

6 
 

5 
 

5 
 

12 
 

5 

↓ ↙ 
 

↙ 
 

↙ 
 

↙ 
 

↓ ↓ 

5 
 

5 
 

6 
 

10 
 

5 
 

5 

B[0] 
 

B[1] 
 

B[2] 
 

B[3] 
 

B[4] 
 

B[5] 

Sequence B 
 

1 Example Sequence Alignment 

2.2.3 Cost Functions 

To rank the optimality of alignments, they are compared according to the negative sum of three 

cost functions associated with this problem.  The first two are the matching cost and skipping cost 

associated with aligning two sequences, and the third is a neighborhood distortion cost.  These 

costs are closely related to the costs of a paper by Keysers and Unger (2003).  To calculate the 

total cost of an alignment, we sum the cost each element incurs according to these three cost 

functions.  This is done by inspecting each element.   

2.2.3.1 Matching Cost 

The alignment of element A(x,y) to element B(x,y) incurs the cost  

  (             )  |             |. 

It is the absolute value of the elements’ difference.  When the elements have the same value, no 

cost is incurred.  However, when they differ, this difference is counted towards the cost.  This 

makes the optimal alignment lean towards matching elements of similar value.   

For example, in the Example Sequence Alignment above, aligning A[2] with B[1] has no 

matching cost because they are both the same value.  Matching A[4] to B[3] incurs a cost of 2.   

2.2.3.2 Skipping cost 

The skipping cost considers an alignment between two sequences represented with f(x,y).  The 

skipping cost is  

  (      )  ∑ |                       |   ‖ ‖   . 

Note that with the Warping Restriction 

   |      |                        

the difference  

                        

within the skipping cost will always be nonnegative.   

This function penalizes deviations from the identity mapping function, fi(x)=x.  These deviations 

are sensed according to sequential neighbors.  Using the Example Sequence Alignment on page 4, 

A[2] aligning to B[1] incurs no cost, because its sequential neighbors A[0] and A[2] both align to 
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the left also.  A[0] incurs a cost of 1, because it differs with its neighbor A[1]’s alignment arrow 

by 1.  The same applies to A[4].   

2.2.3.3 Neighbor Distortion Cost 

During migration, we do expect that the behavior of birds in spatially-neighboring cells should be 

similar. Hence, we do not expect that birds in one cell will be 5 days ahead of schedule, while 

birds in a neighboring cell will be 6 days behind. To constrain the matching, we introduce a 

neighbor distortion cost. This cost is also concerned with the alignment function, f.  It takes the 

absolute difference of each element of f and its eight neighboring sequences.  These differences 

are summed together for the total neighborhood distortion cost.  Mathematically, with an element 

          and any of its nonsequential neighbors                     {      }  {      } 

{     }, their distortion cost is  

  (           (     )   )  |           (    )   |    

Note that the cost between two neighboring elements will be counted once, not twice.   

Ideally, each element of f would have the same alignment value as each of its eight nonsequential 

neighbors (t1 = t2).  The differences between these neighbors are distortion from the ideal.  This 

cost penalizes alignment functions for distortion between neighboring sequences.   

For example, consider the Neighborhood Distortion Cost Example on page 6.  The element of 5 is 

compared to 4 of its 8 neighbors.  This is how the cost is calculated when summing the inspected 

distortion cost each element, one at a time.  Note that to prevent double-counting, the distortion 

costs that 5 incurs with its other neighbors 8,2,3, and 8 will be added during the inspection of 

each of those neighbors.    
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2 
 

3 
 

8 
 

15 

       
8 

 
5 → 6 

 
16 

 
↙ ↓ ↘ 

   
6 

 
4 

 
5 

 
18 

       
11 

 
10 

 
12 

 
14 

       
 

Calculation of 
Neighborhood Distortion 

Cost of 5: 
 

1+0+1+1=3 
2 Neighborhood Distortion Cost Example 

2.2.4 Problem Statement 

Now that the input, output, and cost functions have been described, we can now have a formal 

problem statement.   

2.2.4.1 Instance 

The problem starts out with a pair of three dimensional arrays, A and B, holding real values.   

2.2.4.2 Solution 

The answer to our problem is a mapping function, f, that maps each element of A to an element of 

B.  It takes the form  

                  

That is, for each sequence Axy, f assigns every element in Axy an element in Bxy while following 

the warping constraint.     

2.2.4.3 Measure  

The cost of the assignments is the sum of the matching costs of every element of A to the 

elements in B, the skipping costs between these assignments and the sum of the neighbor 

distortion costs between these assignments.  Mathematically, the cost is  

 

 (x,y) M (x,y,z) (x 1,y 1,z),(x,y 1,z),
(i, j,z) N M z

(x 1,y 1,z),(x 1,y,z)

(A [z],B [f [z]])

(A,B, f) (f ) (f [z], f [z])

m xy xy xy

s xy n xy ij
N N M L

c

c c c
       

   
  

 
 

   
 
 

     

where cm is the matching cost function, cs is the skipping cost function, and cn is the neighborhood 

distortion cost function.     
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2.2.4.4 Goal  

Find f, the assignments for each element of A, to minimize the total cost.   

2.3 Within NP 
Given the problem definition, it can be shown that the Column Time Warp with Neighborhood 

Distortion Cost problem is in NP.  An NP problem requires the solution be verifiable in 

polynomial time.  The question of whether a mapping function f satisfies, for a give c’,   

            

is evaluated in polynomial time because the cost function iterates over the output once.  This 

means that the Column Time Warp with Neighborhood Distortion Cost problem is in NP.   

3 Counter Example Against P 
Here we introduce an instance of the alignment problem that we claim cannot be optimized in P 

time.  We align the elements of A onto the elements of B.  To simplify the problem for 

illustration, a two dimensional version of the Column Time Warping with Neighborhood 

Distortion Cost problem will be presented.  Instead of a two dimensional matrix of sequences, a 

one dimensional array of sequences will be used.  The matching and skipping cost functions will 

remain unchanged because they are costs of aligning sequences.  The neighborhood distortion 

cost will change to only include two nonsequential neighbors instead of eight.  The difficulty of 

reducing the neighborhood distortion cost is present in both problem versions.   

For the sake of the example, we use a different index system.  We will use sequences of length 

ten.  The indices will range from -4 to 5.  This will help distinguish the globally optimal 

alignment (negative) from the locally optimal alignment (positive).   

First we consider the construction of a problem instance, the half mine that discourages P 

algorithms.  The half mine will be mirrored on its right side to create a full mine.  Putting full 

mines next to each other will create a minefield problem instance.  In the minefield problem 

instance, whenever an algorithm wants to inspect one element or sequence at a time, it will 

approach a full mine from the outside and continue inwards.  This approach of starting from the 

outside and inspecting inwards and the symmetry of the full mine allows us to inspect the half 

mine knowing that every approach will start from the outside (the left) and continue inwards (to 

the right).   

3.1 Half Mine 

3.1.1 Construction of A 

We construct each column of A as a sequence of zeroes with value 100 at index 0.  This sequence 

has the appearance of 0,0,0,0,100,0,0,0,0,0.  Remember, we are using a different index system for 

this example, so 0 is close to the middle.  This sequence is repeated 10 times.   

3.1.2 Construction of B 

We construct each column of B as a sequence of zeroes with some values specified in the sparse 

format {index:value}.  For example, {-3:100, 1:25, 2:100} evaluates to 0,100,0,0,0,25,100,0,0,0.   



8 

 

The matrix B contains the following sequences: 

{-2:100,0:100} 

{-3:100,1:100} 

{-3:100,1:25,2:100} 

{-3:100,1:25,2:50,3:100} 

{-3:100,1:25,2:50,3:75,4:100}.   

The last sequence is repeated 5 times, but can be repeated more times to create a more drastic 

difference in alignment costs with different approaches.  These constructions are visualized with 

the following graphs.   

 

3 Half-Mine: A Matrix Construction 
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4 Half-Mine: B Matrix Construction 

3.1.3 Optimal Alignment 

The optimal alignment of A onto B is aligning the line within A (all Ax[0] ) to the lower line 

segments in B.  The matching costs have been set such that matching line segments is necessary, 

and the neighbor distortion costs are a secondary concern during alignment.  However, since 

matching the line segments in A to one of the two lines in B is necessary for any local minimum 

in the alignment cost, the neighborhood distortion costs will determine which minimum 

alignment cost is optimal.  To keep the neighborhood distortion costs minimal, aligning the A line 

to the lower B line will have each Ac[0] aligned to Bc[-3] (   {   }      ) except for 

A0[0] aligning with B0[-2] (        ). 
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5 Half-Mine: Optimal Alignment 

3.1.4 Ordering of Examples  

The half mine is an array of sequences and can be seen as having two dimensions.  Each Ac[i] 

element is aligned, according to its corresponding fc[i], to a Bc[i] element.  The first dimension, i, 

is along the sequence, and the second dimension, c, is along the array.  During some P time 

algorithms, each element in A will be visited to determine the best B element to match it to and 

record that in f.  Some P time algorithms will take the approach to visiting each element by only 

travelling along one dimension at a time (besides divide and conquer).  These dimensions and the 

different approaches within each dimension lead to the order of the examples.   

The P time algorithm can approach the problem iterating over each sequence first, and the array 

second.  This can be seen as assigning f0[5], then f0[4], etc. then f1[5], f1[4], etc.  This is called 

smoothing, as it helps to smooth out the alignments to reduce the neighborhood distortion cost.  

During its visit to each sequence, we consider three different methods for creating the best 

alignment for that sequence.  The first is to look at each element of the sequence, one at a time, 

and decide the best alignment for it; this is the Individual Smoothing method.  The second is a 

slight modification of Dynamic Time Warping (Gusfield 2007), which we call the Column 

Smoothing method.  Here a whole sequence alignment is done at once and the visiting order 

becomes f0, f1, etc.  The last is the Multiple Smoothing method, were the alignment of the 

sequence considers all the possible alignments of the neighboring sequences in a lookahead.   

In the second approach, a P time algorithm approaches the problem along the array dimension, 

visiting the first element of every sequence in order, then the second, etc.  The f values are 

assigned in the order f0[0], f1[0], etc.  This is very similar to Individual Smoothing.  This 

approach is not considered in this paper.   
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Before the process of smoothing, some P time algorithms can try greedily creating the best 

alignment for each sequence, but not the problem as a whole in consideration of neighborhood 

distortion cost. Then it can begin smoothing to lower the neighborhood distortion cost through 

Smoothing.  This method is Column DTW (Dynamic Time Warp).  In cases where Column DTW 

is not used before Smoothing, then 0-Assignment will be used beforehand.  0-Assignment is 

           
     

The following table shows the order of the examples.  The distinction between starting with a 0-

Alignment and Column Time Warp is made between the first two examples.  The distinction 

shows that starting with Column DTW is best, so 0-Assignment with Column Smoothing is not 

shown.   

 0-Assignment Column DTW 

Individual Smoothing 1 2 

Column Smoothing X 3 

Multiple Smoothing 4 4 

Divide and conquer is a popular P time algorithm technique, but we will show an example of that 

technique not working for this problem.   

3.1.5 0-Alignment to Individual Smoothing 

This algorithm starts with a 0-Assignment for  .  Then it attempts to smooth out the 

neighborhood distortion costs.  To do this, it visits every element of every sequence.  During the 

visit to an element, it reconsider our assignment    with the options of moving our alignment 

either upwards or downwards (    ) while still constrained by the neighbors according to the 

Warping Restriction (   ‖  ‖               ).  Only a change of one is considered, because 

it is the smallest nonzero number.  Larger ranges of considered values are used in Column 

Smoothing.  We reassign    with the lowest cost value according to the cost function         .  

The pseudocode follows this paragraph.  Please note that this pseudocode is meant for this 

reduced 2D problem version and can easily be modified to 3D with the inclusion of an N loop 

inside the C loop.   
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Smoothing(A,B,f){ 

 /* repeat smoothing until no further  

   cost reductions can be made*/ 

 while(fPrev != f){ 
  /* analyze each column, in order */ 

  for(c=0; c<C; c++){ 
   /* analyze each element of the sequence */ 

   for(i=0; i<I; i++){ 
    possible_alignments =  

{fm[l]-1, fm[l],fm[l]+1}  
  ∩ {N |(f(m-1) < N) ˄ (N < f(m+1))} 

    foreach p in possible_alignments{   
     /* make new possible alignment*/ 

fTry = f 
     fTryc[l] = p 
     /* store alignment cost*/ 

     p_cost = c(A,B,fTry) 
     add (p_cost,fTry) to possible_costs 

} 

   } 

   fm[l] = fTry of lowest p_cost in possible_costs 
   fPrev = f 

  } 

 } 

} 
 

6 Individual Smoothing Pseudocode  

Smoothing from left to right, the horizontal line in A catches the front of our ramp in B.  On the 

significant line in A, the first match considered is for A0[0].  The matches considered are to B0[-

1], B0[0], and B0[1].  Note that B0[-2] would have been the optimal alignment, but it was not a 

match being considered, because it was out of range.      

Now A0[0] has 0 displacement cost as it aligns with B0[0], beginning a cost decline into a 

suboptimal local minimum.   On the next significant alignment, A1[0] considers B1[-1], B1[0], and 

B1[1] for matches.  It has to choose B1[1] to reduce significant matching costs.  As we progress 

across, each Ac[0] chooses Bc[1] to reduce significant matching costs as they are drawn along the 

matching cost gradient.   
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7 Half-Mine: 0-Assignment and Individual Smoothing After One Iteration 

On the next iteration, A0[0] and A1[0] both maintain their alignments to avoid significant 

matching costs.  A2[0], currently matched with B2[1], now considers and aligns with B2[2] to 

reduce significant matching costs.  As we progress, each Ac[0] matches with Bc[2], furthering the 

A line alignment along the B gradient.   

Upon further iterations, A3[0] matches with B3[3], and all line points after and including A4[0] 

align with their respective Bc[4].  The neighborhood distortion cost during the ramp up on A0[0] 

to A4[0] is greater than the neighborhood distortion cost of the optimal alignment.  This is not the 

optimal alignment, and once the local minimum cost is reached, further iterations of smoothing 

bring no changes to the alignment.   

 

8 Half-Mine: 0-Assignment to Individual Smoothing Results 
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3.1.6 Column DTW to Individual Smoothing 

Now we consider individually time warping each Ac onto Bc, and then smoothing out the 

alignments afterwards.  This is very similar to the previous problem.  This approach first applies 

DTW to each sequence individually before smoothing.  The pseudocode follows this paragraph.  

Please note the pseudocode is meant for this 2D example and can easily be modified for the 3D 

version with the inclusion of another loop along with the m for loop.   

ColumnDTWwithIndividualSmoothing(A,B){ 

 /* greedily align each sequence */ 

 for(c=0; c<C; c++){ 

  fc = DTW(Ac,Bc) 
 } 

  

 /* Apply Smoothing */ 

f = smoothing(A,B,f) 

  

 return f 

} 
 

9 Column DTW To Individual Smoothing Pseudocode 

 

For this problem, Dynamic Time Warping is done differently.  In traditional time warping, both 

elements in A and B can be skipped.  In the Column Time Warping with Neighborhood 

Distortion Cost problem, only elements of B can be skipped, and the matching cost of every A 

element is calculated.   In the example, sequence A is {5,6,5,5,12,5} and sequence B is 

{5,5,6,10,5,5}.  The pseudocode following this paragraph is used.   
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/* Aligning two sequences X and Y */ 

DTW(X,Y){ 

  

 DTW = malloc(|X|,|Y|,{arrow,cost}) 

  

 //init border  

 DTW[0][0].cost = 0 

 /* cannot align any A element with nothing 

for n:1 to N 

  DTW[n][0] = infinity  

 /* the cumulative skip cost of skipping to B[m]*/ 

for m:1 to M  

  DTW[0][m].cost = m   

  

 for n:1 to N{  

  for m:1 to M{  

   DTW[n][m] = min{  

     

   // skipping Y[m-1] 

   (left, 1                   //skip cost 

  + DTW[n][m-1].cost  //previous cost  

  ), 

  

   // aligning X[n] to Y[m] 

   (diag, DTW[n-1][m-1].cost  //previous cost 

  + cm(X[n],Y[m])      //matching cost 
  ), 

 

   // aligning X[n-1] and X[n] to Y[m]  

   (up,   1        //skip cost 

  + DTW[n-1][m]       //previous cost 

  + cm(X[n],BX[m])     //matching cost 
  ) 

   } 

 

} } 

  

 /* retrace for alignment */ 

answer = {} 

 while(n != 1 && m != 1){ 

  thisArrow = DTW[n][m].arrow 

  answer.addToFront(thisArrow)  

  if(thisArrow == up){ 

   n = n-1 

  } 

  if(thisArrow == diag){ 

   n = n-1 

   m = m-1 

  } 

  if(thisArrow == left){ 

   m = m-1 

 } } 

 return answer 

}  

10 Column DTW Pseudocode 
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0 ← 1 ← 2 ← 3 ← 4 ← 5 ← 6

↑ ↖ ↖ ↖ ↖ ↖ ↖

∞ 0 ← 1 ← 2 ← 3 ← 4 ← 5

↑ ↑ ↖ ↖

∞ 2 1 1 ← 2 ← 3 ← 4

↑ ↑ ↖ ↑ ↖ ↖ ↖

∞ 3 2 2 ← 3 2 ← 3

↑ ↑ ↖ ↑ ↖ ↖ ↑ ↖

∞ 4 3 3 ← 4 3 2

↑ ↑ ↖ ↑ ↖ ↖

∞ 12 11 9 5 ← 6 ← 7

↑ ↑ ↖ ↑ ↑ ↑ ↖ ↖

∞ 13 12 11 11 5 ← 6

Se
q

u
e

n
ce

 A

5

6

5

5

12

5

Sequence B 

5 5 6 10 5 5

 

11 Example Column Dynamic Time Warp 

The Column DTW applied to the half mine will result in aligning each Ac[0] to the closest line 

segment in B.  The output alignment is the following: A0[0] to B0[0], A1[0] to B1[1], A2[0] to 

B2[2], A3[0] to B3[-3], A4[0] to B4[-3], and all other A[0] to B[-3].   

When smoothing, no Ac[0] can change its alignment to one above or one below because that 

could incur significant matching costs.  This results in a local minimum of the alignment cost, but 

it is suboptimal.   

 

12 Half-Mine: Column DTW to Individual Smoothing Results 
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3.1.7 Column DTW to Column Smoothing  

Another approach to stop aligning error from Column DTW to Smoothing is to, during 

smoothing, consider new alignments for all the elements of a sequence.  This reconsideration of 

aligning all elements in a sequence is effectively a DTW with modifications to account for the 

neighborhood distortion cost.  This is described with the following pseudocode.  Column 

Smoothing is done with DTW with minor edits to bring the skipping and neighborhood distortion 

costs into consideration.  The function cnall calculates the neighborhood distortion cost for one 

element.  Note that this is for the 2D version of the problem, but minor edits will give the full 3D 

algorithm.   

ColumnDTWtoColumnSmoothing(A,B){ 

 for(c=0; c<C; c++){ 

  fc = DTW(Ac, Bc) 
 } 

  

 /* Column Smoothing */ 

while(fPrev != f){ 

  for(c=0; c<C; c++){ 

   fc = contextDTW(A,B,f,c) 
  } 

  fPrev = f 

 } 

 return f 

} 
 

13 Column DTW to Column Smoothing Pseudocode 
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/* Align AX with BX with consideration to the current alignment f */ 
contextDTW(A,B,f,X){ 

 N = |A| ;  M = |AN| 
 DTW = malloc(N+1,M+1,{arrow,cost}) 

 /* init border */ 

 DTW[0][0].cost = 0 

for n:1 to N /* cannot align A elements with nothing */ 

  DTW[n][0].cost = infinity  

for m:1 to M /* skip cost of aligning A[1] to B[m]*/ 

  DTW[0][m].cost = m   

 /* fill in the DTW table */ 

 for n:1 to N{  

  for m:1 to M{  

   DTW[n][m] = min{  

     

   // skipping Y[m-1] 

   (left, 1 + DTW[n][m-1].cost ), 

  

   // aligning AX[n] to BX[m] 
   (diag,     DTW[n-1][m-1].cost  

+ cm(AX[n],BX[m])  
+ cnall(n,m,f,X)), 
  

   // aligning AX[n-1] and AX[n] to BX[m] 
   (up,   1 + DTW[n-1][m]    

+ cm(AX[n],BX[m])  
+ cnall(n,m,f,X))    

} } } 

 /* retrace for alignment */ 

answer = {} 

 while(n != 1 && m != 1){ 

  thisArrow = DTW[n][m].arrow 

  answer.addToFront(thisArrow)  

  if(thisArrow == up){ 

   n = n-1 

  } 

  if(thisArrow == diag){ 

   n = n-1 

   m = m-1 

  } 

  if(thisArrow == left){ 

   m = m-1 

 } } 

 return answer 

} 

/* calculate the neighborhood distortion cost */ 

Cnall(n,m,f,X){ 
 sum = 0 

 for d: -1 to 1{ 

  if (d != 0) && (d + X >= 0) && (d + X < f.sequence_length){ 

   sum += cn(m-n, f(d+X)[n]) 
 } } 

 return sum  

}  

14 Context DTW Pseudocode 
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The case for Column DTW to Column Smoothing will require the construction of a different 

problem instance.  Consider a problem of aligning A and a new B.  B will be constructed with the 

following sequences:  

{-4:100},{-3:100, 2:100}, {-3:100, 3:100}, {-3:100, 2:100}, {-4:100}.   

 

15 Half-Mine: Column DTW to Column Smoothing Results  

With DTW, A0[0] and A4[0] align to B0[-4] and B4[-4], respectively.  A1[0] and A3[0] will align 

with B1[2] and B3[2], respectively.  A2[0] will align with B2[3].  These alignments occur because 

they are the closest to A[0].  During the smoothing phase, we look at the elements in turn.  A0[0] 

is stuck with its current alignment, because there are no other line segments to align with.  A1[0] 

considers moving to B1[-3] only because that is the only other match with a line segment.  

However, since its neighbors A1[0] and A3[0] have alignment displacements of -4 and 2 (both 

have absolute values beyond 1 and have different polarity), the neighborhood distortion cost will 

remain constant regardless of a switch.  |2-A1[0]|+|-4 – A1[0]| = 6 for both f1[0] = 1 and -3.  

Therefore, A1[0] won’t change.  Next up for consideration is A2[0].  Currently f2[0] =2, and has 

neighbors f1[0]=1 and f3[0]= 1.  The only other spot A2[0] can consider moving to is -3, but that 

will increase the neighborhood distortion cost, so the move is not made.  The considerations have 

crossed the symmetry found in this alignment problem, so the smoothing process is continued 

with the remaining sequences and no realignments are made.  The optimal alignment is to align 

with -4 for A0[0] and A4[0], and -3 for A1[0], A2[0], and A3[0].   

3.1.8 Multiple Smoothing  

One approach to stop the smoothing error is to use a lookahead during consideration of realigning 

each element.  Considering the half mine problem, a lookahead of 3 would ensure that Column 

DTW to Multiple Smoothing would obtain the optimal alignment.  However, the necessary 

lookahead is proportional to the problem size.  Scaling the half mine to twice the dimensions 

would require twice the lookahead, so the necessary lookahead is O(n).  The lookahead space 

would then become exponential and no longer leads to a P time algorithm.  Following this 
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paragraph is the Column DTW to Multiple Smoothing pseudocode.  The Multiple Smoothing is 

done with the function contextRDTW (context recursive dynamic time warp).  It takes as input A, 

B, the current alignment, the column it is to work on, and the amount of lookahead space left.  

The All Alignments function produces every possible alignment between two sequences 

according to their lengths.  Minor changes can make it suitable for 3D problems.   

ColumnDTWtoMultipleSmoothing(A,B,lookahead){ 

 for(c=0; c<C; c++){ 

  fc = DTW(Ac, Bc) 

 } 

  

 while(fPrev != f){ 

  for(c=0; c<C; c++){ 

   fc = contextRDTW(A,B,f,c,lookahead) 

  } 

  fPrev = f 

 } 

}  

16 Column DTW to Multiple Smoothing Pseudocode 

contextRDTW(A,B,f,c,lookahead){ 

 if(lookahead == 0){ 

  return contextDTW(A,B,f,c) 

 } 

  

 every_possible_alignment = allAlignmnts(||Ac||,||Bc||) 
 minCost = infinity 

 fMin = null 

for fNew in every_possible_alignment{ 

  possible_next_f = contextRDTW(A,B,fnew,c+1,lookahead-1) 

  if( c(A,B,possible_next_f) < minCost){ 

   fMin = possible_next_f 

   minCost = c(A,B,possible_next_f) 

}  

 } 

 return fMin 

} 

 

17 Recursive Context DTW  
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allAlignments(N,M){ 

 answers = {} 

  

 //catch the 2X2 case  

 if(N==2) && (M==2){ 

  return {left:up, diag, up:left} 

 } 

  

 //catch the wall  

 if(N == 1){ 

  for(m=1; m<M; m++){ 

   answer = left:answer 

  } 

  return answer 

 } 

  

 //catch other wall 

 if(M == 1){ 

  for(n=1; n<N; n++){ 

   answer = up:answer 

  } 

  return answer 

 } 

  

 //first align left  

 foreach fNew in allAlignments(N,M-1){ 

  add left:fNew to answer 

 } 

  

 //first align diag  

 foreach fNew in allAlignments(N-1,M-1){ 

  add diag:fNew to answer 

 } 

  

 //first align up  

 foreach fNew in allAlignments(N-1,M){ 

  add up:fNew to answer 

 } 

  

 return answer 

} 

 

18 All Alignments Pseudocode 

3.1.9 Divide and Conquer 

The divide and conquer method is a common technique for dividing up an algorithm into smaller 

pieces and then combining them together to form an answer for the complete problem.  With 

divide and conquer, splitting the problem up such that the sequences are divided won’t work, as 

each sequence has the Warping Restriction.  This restriction keeps elements in a subsequence of 
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A from aligning with B subsequences reserved for other A subsequences.  This can keep the 

algorithm from finding the optimal alignment as this restricted alignment could be optimal.   

Dividing the set of sequences by dividing the array into smaller groups of sequences and then 

combining them together would be more feasible.  However, consider dividing the problem into 

sequence pairs, aligning those pairs, and combining them together.  With this approach applied to 

our half mine with an extra blank sequence pair at the left (we call these A-1 and B-1) and take 

away one A and B sequence from the right (still resulting in 10 sequences in A to align with 10 

sequences in B).  Pairing off gives the pairs A-1 and A0, A1 and A2, A3 and A4, and the remaining, 

identical pairs on the right.  Using this approach, we would get the same alignment as the Column 

DTW to Individual Smoothing approach, which is suboptimal.   

 

19 Half-Mine: Divide And Conquer Results 

3.2 Minefield ensures no optimizations 
Now we consider the creation of a ‘mine’ that undermines the mechanics of approaches to the 

problem to consistently produce suboptimal results.  A mine is created with mirroring a half mine 

on the right side to create a full mine.  A trivial number of mines can then be laid to the right, 

with two blank sequences in A and B separating these mines.  This collection of mines can be 

referred to a minefield.   
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20 Minefield 

3.2.1 Forcing Smoothing from Outside Mines Inwards  

With one mine, doing a Column DTW to Column Smoothing with starting the smoothing from 

the inside (along the optimal alignment) could smooth the suboptimal alignments to the optimal 

with Column Smoothing  However, with a trivial number of mines in a minefield, the inside of 

any mine cannot be determined before run time.  This forces the smoothing process to start from 

outside the mines and move inward.   

3.2.2 Unknowable Optimal Side  

Looking at the single mine, one approach could be to align all elements of every sequence to 

Bc[0], and then smooth outward.  This would cause the smoothing to align Ac[0] to the optimal 

alignment.  In a minefield, with mines all centered on the same Ac[0], but with some mines 

flipped over the Ac[0] axis, some mines will have their optimal alignment on the top.  Therefore, 

this technique cannot work for minefields.   

4 Conclusion 
This thesis has shown evidence of the Column Time Warp with Neighborhood Distortion Cost 

problem not residing within the set of P problems.  This is not a proof, but it does suggest that if 

there is a polynomial-time algorithm, it will need to be based on principles other than iterative 

greedy scans or column wise divide-and-conquer.  Only a full proof can definitively say which 

problem hardness class holds this problem.  The question of whether or not all problems of NP 

are problems of P is still an open question in the computational community, so no full proof of 

this kind has ever been produced (Fortnow 2009).  More work needs to be done to prove the 

Column Time Warp with Neighborhood Distortion Cost problem’s relation to the class of P 

problems.   
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6 Appendix: Planar 3-SAT Reduction Attempt  
A popular proof of NP-COMPLETENESS is a reduction from 3-SAT (Garey 1979).  This 

appendix shows an attempt at a reduction, but lacks an inversion gate to make the 3-SAT 

reduction possible.  The reduction is from the Column Time Warp with Neighborhood Distortion 

Cost problem as defined in Error! Reference source not found. Error! Reference source not 

found. on page Error! Bookmark not defined..   

The reduction here will follow closely with the reduction shown in the paper by Keysers and 

Unger (Keysers 2003).  The construction of a Planar 3-SAT problem instance within a Column 

Time Warping with Neighborhood Distortion Cost problem takes the approach of a bipartite 

graph, with one independent set for the variables, and the other set for the clauses.  There is an 

edge between a variable node and an edge node if the variable is used within the clause.  The 

edges are instantiated with wires to hold either a 1 state or a 0 state.  These wires run between 

variable gates and clause gates.  The only restriction on the placement of the independent sets is 

they cannot occupy the same sequences, leaving the two dimensions of the matrix to lay out the 

Planar 3-SAT.  The wires and gates will be constructed with parts in the input A, and 

corresponding parts in input B.  The state of each wire and gate is represented by the alignment of 

its part A in input A onto its part B in input B.   

To describe each of the wires and gates, only two dimensions are shown at a time in the figures.  

The figures show a series of sequences along one dimension.  Each wire and gate will incur a 

minimal alignment cost as part of its operation, so an account is made of the minimal alignment 

cost.  An indicator of no satisfiability is when no alignment exists under the minimal alignment 

cost account.  However, inspecting the alignment of each sequence (in polynomial time) is still 

necessary.  There can be improper alignments under the minimal alignment cost account.   

Wires 
The wires are to transfer a signal, either a true or false value.  This two state component depicts 

its signal according to the alignment of its part A onto its part B.  The wire’s part A and part B are 

depicted below.  Unless specified, each element has a value of zero.  Each sequence along the 

wire holds either a true state or a false state.  The true state is when the 1 million valued element 

in part A aligns with the upper 1 million valued element in part B.  False is when part A aligns 

downward.  To reduce the matching cost, part A must align every sequences 1M element to one 

of the 1M elements in B, creating the bistability.  To propagate this signal through the whole 

wire, each sequence in the wire must align the same as its neighbor.  This is accomplished 

through the neighborhood distortion cost.  Any difference in alignment between neighbors incurs 

a distortion cost, forcing the neighbors to have the same alignment, propagating the signal.  While 

1M is used for illustration, the real cost would be a function of the problem size.  It would rather 

have a function value of 100*N
6
.  The distance between the 1M elements in part B would also 

need to be a function of the problem size; 100*N
2
 would work.   
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While the wire is constructed, an account of the minimal alignment cost is taken.  Both minimal 

alignments have the same cost, so for each sequence a constant amount is added to the minimal 

alignment cost account.   

 

1 3-SAT Wire A Part 

 

2 3-SAT Wire B Part 

The wires are needed to carry the true/false value from the variable component to each of the 

clauses according to the bipartite graph.  To carry the truth value to different clauses, the wire 

must fork.  To accomplish this, the wire forks in a T shape.  With the figures for parts A and B 

making the top of the T, another wire would stem out perpendicularly (see figure on next page).  

It travels along a different dimension of the matrix.   
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3 3-SAT Wire Fork 

Each of the black boxes is a sequence used for the wire.  The two dimensions of the T are the two dimensions of 

the matrix.   

NOR Gates  
NOR gates are used to construct the clause gates.  Any digital logic can be designed with NOR 

gates.  The output wire of a clause gate can be set to only allow for holding a true value by 

eliminating the series of 1M values that make false values possible in part B.  This forces the 

clause gate to find a satisfactory assignment for its variables, or it will incur large distortion costs 

to signal the clause unsatisfied.   

OR Gate 

An OR gate gives a value of true when either of its inputs are true.  Its construction can be 

thought of as a crimping the wire’s part B, as depicted below.  OR gates have the same part A as 

wires.  The inputs are the wires at the side of the OR gate, and the output wire is perpendicular 

(not seen in figure).  As with every other sequence in the wire, the middle sequence’s part A has 

to align its 1M element either upwards or downwards for a true or false value, respectively.   
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4 3-SAT OR Gate Part B 

There are four input signal combinations that can be represented as three: both positive, both 

negative, and conflicting.  When both inputs are positive, the OR gate sequence aligns upwards to 

reduce neighborhood distortion cost.  When both inputs are negative, the OR gate sequence aligns 

downwards to reduce alignment distortion cost.  When the inputs conflict (one positive, one 

negative) the OR gate sequence will have equal distortion cost for either alignment, but to reduce 

skipping costs will align upwards.   

The output of the OR sequence is another wire branching out perpendicular to the inputs (see 

figure below).  The output wire is susceptible to distortion costs between the input wires, but that 

won’t change the output wire’s true/false value from matching the OR gate.  When both inputs 

are the same, the output will match the inputs.  When the inputs conflict, the output will have 

equal distortion cost from them for both its true and false alignments.  However, the OR gate will 

be the tie breaker, making the output wire match its own value.   

 

 

5 3-SAT OR Gate 

Each of the black boxes and the OR represent a sequence used in the OR gate.  The two dimensions of the figure 

are the two dimensions of the matrix that holds the sequences.  The two inputs and OR sequence are depicted in 

the previous figure.  The output runs perpendicularly to the inputs.   

As with the wires, the OR gate incurs a minimal alignment cost.  The highest alignment cost is 

when the inputs oppose each other and the output is one.  This amount is added to the minimal 

alignment cost account, once each OR gate.   

Inverter 

This is the missing component of the Planar 3-SAT reduction.  The nature of the distortion cost 

lends itself towards making the values more uniform, helping the wires propagate values and the 

OR gate function, but threatens the creation of an inverter.   

The variable gates depend on the Inverter.  If both the variable and inverted variable are used in 

the clauses, then an inverter connects the variable wires and inverts the signal for the inverted 

variable wires.   
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