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 The process of motor learning involves acquiring a new motor skill 

(Schmidt & Lee, 1988) and creating mental representations of the actions 

involved (Jeannerod, 1997). Knowing and understanding the conditions that 

optimize motor learning has been the subject of much research (e.g., Lee, 

Swinnen, & Serrien, 1994; Toussaint & Blandin, 2010). Such research can lead to 

an improved understanding of the mental representations that underlie motor 

learning (Berlucchi & Aglioti, 2010; Schack & Mechsner, 2006). Functional 

neuroimaging evidence suggests these representations are not general visual 

representations, but rather are specific to actions (Calvo-Merino, Grèzes, Glaser, 

Passingham, & Haggard, 2006). Researchers have examined how motor learning 

affects mental action representations (e.g., Frank, Land, & Schack, 2013), and 

how these representations in turn affect performance (e.g., Land, Volchenkov, 

Bläsing, & Schack, 2013). Besides advancing theoretical knowledge, studying the 

conditions that optimize motor learning and mental action representations can be 

used to improve rehabilitation of conditions such as stroke (Krakauer, 2006) and 

to improve coaching in sports (Schack, Essig, Frank, & Koester, 2014). By 

manipulating the conditions of motor learning, we can indirectly measure aspects 

of mental action representations (e.g., Toussaint & Blandin, 2010). 

 The recent rise in popularity of virtual reality (VR) (Reisinger, 2015) has 

sparked research interest in its potential to improve motor learning (e.g., Ribeiro-

Papa et al., 2016). By emphasizing salient or relevant aspects of motor learning, 

VR systems can be useful for rehabilitation (Holden & Todorov, 2002; Krakauer, 

2006). Indeed, research has found that VR systems can make effective treatments 



   

 

for stroke recovery (Henderson, Korner-Bitensky, & Levin, 2007), and for gait 

training in patients with Parkinson’s disease (Mirelman et al., 2011). In addition, 

VR can be effective for motor training in general (Holden & Todorov, 2002), and 

also for specific applications, such as dance training (Eaves, Breslin, & Van 

Schaik, 2011). However, such research often confounds the various potentially 

beneficial aspects of VR. For example, VR offers the chance to interact 

realistically with a virtual environment (e.g., Mirelman et al., 2011). It can also 

offer augmented feedback, giving users additional information to help them 

correct mistakes (e.g., Eaves et al., 2011). We are interested in precisely which 

aspects of VR systems, among these and others, actually cause improvements in 

motor learning. 

 Previous research has covered many different conditions to optimize 

motor learning, including practice schedule (Lee et al., 1994), imagery (Toussaint 

& Blandin, 2010), context (Guadagnoli & Lee, 2004), and feedback (Eaves et al., 

2011). We are interested in presentation format: what is the best way to present 

movements in order to promote motor learning? While research has considered 

the effects of presentation format on other tasks, such as navigation (Ruddle, 

Payne, & Jones, 1999; Shelton & McNamara, 2004; Waller, Hunt, & Knapp, 

1998), its effects on motor learning have not been well established. In particular, 

we are interested in investigating the effect of perspective, or the orientation from 

which the instructor is presented. We are also interested in the effect of 

immersion, or moving in and feeling surrounded by the same real or virtual 

environment in which the instructor is presented.  



   

 

 Considerable research has studied the effects of perspective on motor 

tasks. Someone observing or imitating an action or body position must mentally 

transform the visual image of the model into their own perspective (Jackson, 

Meltzoff, & Decety, 2006). This task comes quickly in first person perspective (or 

“first person”), i.e. the model or instructor facing away from them (Steggemann, 

Engbert, & Weigelt, 2011). By contrast, it requires an additional spatial 

transformation in third person perspective (or “third person”), i.e. the model or 

instructor facing toward them (Jackson et al., 2006; Parsons, 1987). This extra 

perspective transformation increases latency (Steggemann et al., 2011), which we 

expect would be detrimental to learning. Further, first and third person 

perspectives seem to be processed differently by the brain. Observation of actions 

in first person activates different neural circuits than observation of actions in 

third person (David et al., 2006; Jackson et al., 2006). Imagery of actions from 

different perspectives evokes different mental representations (Stevens, 2005) and 

leads to different motor learning outcomes (White & Hardy, 1995) as well. The 

substantial degree of overlap between observation, imagery, and imitation of 

actions in the brain (Grafton & Hamilton, 2007; Grezes & Decety, 2001) suggests 

that such differences in observation and imagery may correspond to differences in 

imitation. Indeed, perspective of presentation does affect performance on simple 

imitation tasks (Vogt, Taylor, & Hopkins, 2003) and motor learning on tasks 

involving matching an exact position (U. Yang & Kim, 2002). 

 In spite of this research, the exact effects of perspective on motor learning 

are not known for several reasons. Although they overlap, the processes of 



   

 

observation, imagery, and imitation of a movement involve different neural 

circuits (Macuga & Frey, 2012), and thus conditions may affect each of these 

processes differently. Similarly, although motor performance and motor learning 

overlap, they are different, and in fact, conditions leading to better performance 

can lead to worse learning (Magill & Hall, 1990) when they require less cognitive 

effort (Lee et al., 1994). Additionally, motor learning results do not necessarily 

generalize across different task characteristics (Guadagnoli & Lee, 2004), and 

thus results for simple position-matching tasks may not generalize to learning 

more complex movements. Consequently, we are interested in the effect of 

perspective on motor learning of complex movements. By filling this gap in 

knowledge, we hope to inform best practices for motor instruction and to 

ascertain the perspective of the mental action representation used for motor 

learning. 

 The rising popularity of immersive virtual reality systems (Reisinger, 

2015) has sparked interest in the effects of immersion (e.g., Gokeler et al., 2014; 

Lorenz et al., 2015). Immersive displays offer two potential advantages over 

nonimmersive ones. First, they display a virtual environment in stereoscopic 3D, 

the same way the real environment is normally seen. This leads the wearer to feel 

a sense of presence in the virtual environment (Slater, Lotto, Arnold, & Sánchez-

Vives, 2009). Second, they are interactive, meaning that the viewpoint moves 

with the wearer’s movements in the real environment. Early research found that 

immersive VR was ineffective for transfer of motor learning specifically (Kozak, 

Hancock, Arthur, & Chrysler, 1993) and was not associated with better task 



   

 

performance in general (Nash, Edwards, Thompson, & Barfield, 2000). However, 

this may have been specific to the tasks involved or the poor quality of early VR 

technology. Subsequent research showed immersive VR to be at least as effective 

as real-world training for a simple motor learning task (Rose et al., 2000). 

Furthermore, immersive VR was shown to be more effective than video 

instruction for motor learning of a complex action (Bailenson et al., 2008). 

However, this improvement was likely not due to the immersion itself. Rather, the 

authors attribute this benefit to the ability to see a stereoscopic virtual 

representation of oneself. VR systems used for training and rehabilitation stand to 

benefit from knowing whether these newly popular immersive displays are worth 

the expense. In addition, separating the effects of immersion from other factors 

can allow us to evaluate mental action representations. Do these representations 

include the immersive environment in which learning took place? Do they include 

the possibly interactive viewpoint from which learning took place? Existing 

research lacks the experimental control necessary to answer these questions. 

Motor learning is a complex process, and as such the best conditions for it 

are not necessarily universal. Motor learning may depend on such factors as who 

is doing the learning and the characteristics of the motor task itself (Guadagnoli & 

Lee, 2004). Considerable research gives reason to believe that motor learning and 

its related processes and mental representations change with expertise. Motor 

experts have been shown to use different neural circuits than novices in the 

observation (Calvo-Merino, Glaser, Grèzes, Passingham, & Haggard, 2005; 

Calvo-Merino et al., 2006; Cross, Kraemer, Hamilton, Kelley, & Grafton, 2009; 



   

 

Kirsch & Cross, 2015), imagery (Cross, Hamilton, & Grafton, 2006; Wei & Luo, 

2010), and imitation (Vogt et al., 2007) of actions within their motor repertoire as 

compared to unfamiliar actions. Furthermore, motor expertise adapts mental 

action representations for better planning and comprehension of actions (J. Yang, 

2015). As people gain motor expertise, their mental action representations change 

(Frank et al., 2013), becoming more hierarchically organized (Land et al., 2013; 

Schack & Mechsner, 2006). Additionally, certain practice conditions affect motor 

learning differently for motor experts than novices (Guadagnoli & Lee, 2004). 

Whether perspective and immersion are among these remains unknown. By filling 

this gap in knowledge, we hope to inform training applications aimed at expert 

audiences and suggest how the perspective and immersion of mental action 

representations change with motor expertise. 

The present study investigates the effects of perspective and immersion on 

motor learning of complex actions. Based on the literature reviewed, we 

hypothesize that first person and immersive formats lead to improved motor 

learning over third person and nonimmersive formats, and that these effects are 

mediated by motor expertise, with experts learning better but being less affected 

by format than novices. We measure accuracy of line dances taught to 

experienced and novice dancers in first person, third person, immersive, and 

nonimmersive formats. We predict best learning in first person and immersive 

formats, better learning in experienced dancers than in novices, and smaller 

effects of format on experienced dancers than on novices. 

Method 



   

 

Participants 

Informed consent was obtained from participants, who were 28 

experienced dancers and 28 novices, 38 female and 18 male, aged 18 to 28, with a 

mean age of 20.5. Of the experienced dancers, 20 were female and 8 were male, 

and the mean age was 20.2. Of the novices, 18 were female and 10 were male, 

and the mean age was 20.7. Data from three additional participants was excluded 

because we discovered after their participation that they did not meet the selection 

criteria listed below.  

Experienced dancers had taken a dance class for credit or had at least 20 

hours of dance experience, as dance classes for credit involve approximately 20 

hours of dance experience. Experienced dancers were recruited by in-class 

announcements in dance classes at Oregon State University that had at least one 

dance class as a prerequisite. They were offered extra credit in their dance classes 

for participating. Novices had never taken a dance class for credit and had less 

than 20 hours of lifetime dance experience. Novices were recruited from 

psychology classes at Oregon State University using the SONA online signup 

system, and were offered extra credit in their psychology classes for participating. 

All participants had normal or corrected-to-normal vision and were fluent in 

English. The experimental protocol was approved by the local Institutional 

Review Board (Study #7030). 

Design 

 This experiment followed a 2 × 2 × 4 × 2 mixed factorial design. The first 

experimental factor was the perspective of instruction, with two levels: first 



   

 

person and third person. The second experimental factor was the immersion of 

instruction, with two levels: nonimmersive and immersive. The combinations of 

these two factors, shown in Figure 1, constituted four formats, Format A (first 

person, immersive), B (third person, immersive), C (first person, nonimmersive), 

and D (third person, nonimmersive). Participants completed a different dance in 

each of the four formats, necessitating a third experimental factor, the dance itself, 

with four dances: Dance W, X, Y, and Z. The formats were paired with different 

dances in order to diminish practice effects between conditions. The fourth quasi-

experimental factor was the participant variable, dance experience, with two 

levels: experienced and novice. 

 A balanced Latin square design was employed for counterbalancing to 

control for potential format order effects. Four format orderings were used, with 

the property that every format appeared in every ordinal position exactly once, 

and followed each other format exactly once. The same balanced Latin square 

design was employed to counterbalance the effects of dance order. The four 

format orderings were paired with the four dance orderings, for 16 possible 

stimulus orderings, so that each dance was paired with every condition an equal 

number of times. Of the 16 stimulus orderings, 12 were completed by two 

participants from each group, and the remaining four were completed by one 

participant from each group. Condition orderings were fully counterbalanced, 

with every condition ordering being completed by seven participants from each 

group. Dance orderings were partially counterbalanced, with three of the dance 



   

 

orderings being completed by eight participants from each group, and the 

remaining one completed by four participants from each group. 

Materials 

 The present study took place in the Cognition and Action in Real and 

Virtual Environments Laboratory, or CARVE Lab, at Oregon State University. 

The lab contained a 4.3 m by 5.7 m tracking space, in which participants learned 

and performed the line dances. During immersive conditions, participants wore a 

Sensics zSight stereoscopic head-mounted display (HMD), with dual 1280 x1024 

SXGA OLED displays, one per eye. The graphics were updated at 60 Hz. The 

HMD, shown in Figure 2, provided an immersive, 60 degree diagonal field of 

view with 100% binocular overlap that displayed a virtual model of the lab, 

created with 3D modeling tools (Autodesk Maya) and a virtual reality 

development platform (Vizard) and rendered by a computer with an Intel Xeon 

quad-core E5-2603 0 processor clocked at 1.80 GHz and an nVidia GeForce GTX 

660 Ti graphics card. An infrared video tracking system (Worldviz PPT-E), 

shown in Figure 2, and a three-axis orientation sensor (Inertial Labs OS3D) 

mounted on the HMD updated the participant’s position and orientation, allowing 

the user to move around the virtual lab model in real time as they physically 

moved around the actual tracking space. During nonimmersive conditions, 

participants wore a mockup of the head-mounted display, a modified bicycle 

helmet with mock cords trailing out the back, shown in Figure 3. The mockup 

served to minimize non-experimentally manipulated differences between 

nonimmersive and immersive conditions, such as the tethering, weight, and head-



   

 

mounting aspects of wearing an HMD. This also served the purpose of rendering 

video coders blind to condition. While wearing the mockup, participants watched 

the dances on an ASUS VE278Q, 27-inch, widescreen, 1920 x 1080 computer 

monitor, shown in Figure 1. The monitor was placed 4.25 m from the position 

where the participants started the dances at a height of 0.95 m, providing a 9 

degree diagonal field of view. During all conditions, participants wore a modified 

eye mask that prevented them looking at their feet and made the HMD seem more 

immersive by blocking the participant’s view of the actual lab. While performing 

the dances, participants were recorded on a Canon Vixia HF200 1080p video 

camera. The camera was placed on a tripod 1.2 m to the right of the computer 

monitor, at a height of 1.1 m. 

 The virtual lab model, shown in Figure 4, was a 3D model of the actual 

lab with similar dimensions and features. The instructor was a female virtual 

avatar approximately 1.8 meters tall, as shown in Figure 4. The experimental 

script took as input a stimulus file, specific to each participant ID, which defined 

the format and dance orderings. In all conditions, the instructor began at the front 

of the virtual lab model. The instructor was shifted in front of the participant, not 

superimposed over the participant, for better external validity and so that the 

perspectives varied only in the orientation of the instructor. In first person 

formats, the instructor faced forward, such that the instructor and participant were 

facing in the same direction, and performed the movements from that reference 

point. In third person formats, the instructor faced toward the participant, such 

that the instructor and participant were facing in opposite directions, and 



   

 

performed the same movements from that reference point. In all formats, 

participants were asked to perform the same movements on the same feet as the 

instructor. 

 I choreographed the dances and animated them from motion capture data. 

I performed the dances while wearing four infrared video trackers (Worldviz 

PPT-E), one on each foot and two on my head, and a three-axis orientation sensor 

(Inertial Labs OS3D). A virtual reality development platform (Vizard) recorded 

the data from these sensors and used its inverse kinematics engine to animate a 

virtual avatar approximating my movements. I choreographed the dances to be as 

similar as possible in difficulty, to minimize main effects of the dances 

themselves, but as different as possible in combinations of moves, to minimize 

carryover effects. However, some moves were necessarily repeated between 

dances. Additionally, I choreographed the dances to be easy enough that novices 

would not experience a floor effect, but difficult enough that experienced dancers 

would not experience a ceiling effect. Every dance was performed to an audio 

track of a voice reciting eight-counts along with a metronome at 90 beats per 

minute. Each dance lasted 20 counts, with one step per count and no syncopation. 

Step sheets of each dance can be found in Tables 1 – 4. 

Procedure 

 Participants were run one at a time. When each participant arrived, the 

experimenter briefly explained the experiment, then asked them to read and sign 

an informed consent form. The experimenter showed and explained the 

equipment. First, the experimenter had the participant try on the face mask and 



   

 

explained that its purpose was to prevent participants from looking at their feet. 

Next, the experimenter helped the participant put on the HMD, and the participant 

completed a brief pre-training to familiarize themselves with the HMD. The 

experimenter asked the participant to turn and face the side wall in order to 

demonstrate that their view of the lab model updated as they moved around the 

actual lab. The experimenter then asked the participant to walk a few steps to the 

side and turn their upper body to face the instructor, in order to demonstrate that 

they would need to turn their upper body similarly while learning the dances. The 

experimenter then removed the HMD, showed the participant the mockup, and 

explained that its purpose was to minimize unintended differences between 

wearing the HMD and watching the monitor. Then, the participant tried on the 

mockup to ensure it would fit during the experiment. 

 After explaining the equipment, the experimenter explained how the 

participant would proceed through the experiment. They explained that the 

participant would learn four different line dances, and explained each of the 

formats in which they would learn the dances. They explained that regardless of 

format, the participant should perform the same movements on the same feet as 

the instructor. The experimenter then demonstrated stepping with the right foot 

and turning to the right while facing both away from and toward the participant, 

and checked for comprehension by seeing that the participant copied these 

movements correctly. 

 The experimenter then explained the phases of each dance. They 

explained that during the initial trial, the participant would stand and watch the 



   

 

dance one time through, imagining following along in their head. They explained 

that in the practice trials, the participant would follow along with instructor’s 

movements in time, performing the dance. They explained that during the delay 

phase, the participant would sit and mentally rehearse the dance in their head for 

two minutes, without moving. Finally, they explained that for the testing trial, the 

participant would perform the dance from memory to the best of their ability.  

 The experimenter then explained how each trial would proceed. A voice 

would count them in, then the dance would start. After 20 counts, or two eight-

counts and four more counts, the dance would end, and they could return to the 

start position to await the next trial. The experimenter then explained briefly how 

accuracy would be scored. They told the participant to pay attention to the timing, 

direction, and size of the movements. The experimenter then demonstrated each 

of these concepts on a simple example move not present in the dance, stepping in 

place. The experimenter explained that the instructor would not be making any 

upper body movements, and that the participant should focus on lower body 

movements and turn their upper body as much as needed in order to see the 

instructor. 

 The experimenter then explained that the dances were designed to be 

difficult to learn, and that mistakes were okay and expected. The experimenter 

asked participants to do their best, and told them to continue dancing as well as 

they could if they made a mistake. After answering any questions, the 

experimenter then began the experiment. 



   

 

 Each dance proceeded as follows. The experimenter placed the HMD or 

mockup on the participant, ensuring that it was placed correctly and securely. The 

experimenter then explained that for the initial trial, the participant should stand 

and watch the dance one time through, imagining following along in their head 

without actually moving. The experimenter answered any questions, and then the 

virtual instructor performed the dance one time through. The experimenter then 

explained that during the following several trials, the participant should follow 

along with the instructor’s movement in time, trying to match the instructor’s 

steps. The experimenter reiterated that the participant should perform the same 

movement on the same feet as the instructor, then answered any questions. For 

each practice trial, the experimenter made sure the participant was in the start 

position, and then the dance started. While the participant performed the dance, 

the experimenter followed behind them, to manage the cable as well as for safety 

purposes. Another experimenter recorded video of the participant from the neck 

down. After all six practice trials, the HMD/mockup and mask were removed, and 

the experimenter told the participant to take a seat and mentally rehearse the 

dance in their head for a delay of two minutes prior to completing the testing trial, 

then started a timer. When the timer expired, the experimenter instructed the 

participant to perform the dance from memory to the best of their ability. During 

the testing trial, the participant could hear the counts of music as with previous 

trials, but could not see the virtual instructor, as they were not wearing the HMD, 

and the computer monitor was blacked out. The experimenter recorded video of 

the participant from the neck down for the testing trial. The participant then took a 



   

 

short break and proceeded to the next dance, for which the same observe, practice, 

test sequence was repeated. When all four dances were complete, the participant 

completed a questionnaire to determine information regarding demographics and 

previous dance experience. 

Video Coding 

We took great care to find a valid, reliable scheme for coding the accuracy 

of the line dances. Previous research has evaluated dance in various ways. The 

more subjective among them typically involve an expert panel of judges assigning 

a score for the entire dance on a Likert scale (e.g., Chatfield, 2009; Radell, 

Adame, & Cole, 2004). Although this approach may be valid, it gives only a small 

range of possible scores, and may measure aesthetic factors of the dance unrelated 

to the accuracy of the movement. More objective measures typically involve 

comparing each move in the dance against a model version, either automatically, 

using skeleton tracking (Alexiadis et al., 2011) or by hand, with trained video 

coders (Loke, Larssen, & Robertson, 2005; Warburton, Wilson, Lynch, & 

Cuykendall, 2013). These methods have excellent reliability and sensitivity, but 

operate on the assumption that participants are attempting the same move at the 

same time as the model. If a participant did the entire dance correctly, except two 

counts behind the instructor, they would receive the same score as if they did 

nothing at all. To better suit our purposes, I developed novel measures informed 

by the existing ones. To better ensure the validity of these novel measures, I 

interviewed four country line dance experts: two instructors, an instructor/judge, 

and a competitor/judge. I asked these experts about what kinds of mistakes they 



   

 

would look for in judging line dances, and what kinds of mistakes were most 

important for accuracy, as well as generally how they would approach the 

problem of judging line dance accuracy (L. Bryan, personal communication, 

October 18, 2015; C. Dark, personal communication, October 14, 2015; H. 

Skredsvig, personal communication, October 18, 2015; R. Buchholz, personal 

communication, October 18, 2015).  

From this advice, I generated two different accuracy measures: an overall 

score, and a categorized score. The overall score consisted of deciding how many 

moves (out of ten) were performed acceptably for each dance, according to the 

coder’s subjective judgment of acceptability. The categorized score consisted of 

giving scores out of two points for each of the 10 moves in each of four 

categories: order, weight, direction, and timing. I designed these two measures to 

try to optimize both objectivity and simplicity. The categorized score was quite 

objective, but also quite complex. The overall score was more subjective, but 

simpler. 

In addition to myself, two other volunteers coded the videos for accuracy: 

one naïve coder with choreographed dance experience, and one naïve coder 

without choreographed dance experience. Both volunteer coders were naïve as to 

the purposes of the experiment.  Though I was privy to the experimental 

hypotheses, I was blind to condition. I trained the other coders individually. First, 

I taught the coders each of the line dances so that they could perform the dances 

themselves. I also instructed coders to follow along to videos of the correct dances 

before they coded them. I also provided coders with a step sheet of each dance 



   

 

detailing every move, as shown in Tables 1 – 4. I walked the coders through the 

step-by-step coding protocol, then demonstrated how to apply the protocol to 

several example videos from pilot participants. Coders then coded three pilot 

participants on their own, checking that that their answers matched mine. After I 

was confident that the coders understood the coding scheme, each one coded the 

same random subsample of 21 participants, and we performed an interrater 

reliability test on this subsample. We chose to use Krippendorff’s alpha, because 

it is a statistically normalized scale, can handle an arbitrary number of coders, and 

can handle ratio scale data (Hayes & Krippendorff, 2007). We found overall 

scores to be sufficiently reliable for tentative conclusions, at α = .7805. However, 

we found overall scores on the last practice trial and testing trial to be sufficiently 

reliable for solid conclusions, at α = .8804 and α = .8334, respectively. We also 

found total categorized scores to be sufficiently reliable for solid conclusions, at α 

= 0.8232. We therefore only used the last practice and testing trials in the testing 

of our hypotheses in order to be able to draw solid conclusions. After testing 

reliability, the naïve coder without choreographed dance experience proceeded to 

code the remaining participants. Beyond checking reliability, we did not include 

the results from the other two coders in our analysis. 

For each of the two sets of participants (the reliability set and the 

remainder), coders proceeded in the following order. First, we coded the overall 

scores of all six practice trials and the testing trial on Dance W for all participants. 

Then, we did the same for Dance X, then Dance Y, then Dance Z. Next, we coded 

the categorized score of the testing trial on Dance W for all participants. Then, we 



   

 

did the same for Dance X, then Dance Y, then Dance Z. Thus, every trial had an 

overall score, and the testing trials additionally had a categorized score. The 

categorized score was coded last so that coders’ more subjective opinions would 

not be a mere recall of earlier objective judgments. 

For the overall score, coders watched the video closely, pausing and 

rewinding as necessary, and counted how many moves were performed 

acceptably. A move was defined as taking two counts of music, so each dance 

contained exactly ten moves. Coders were instructed to make a subjective 

judgment of acceptability, but base it only on weight, direction, and timing of the 

move performed as compared to the correct move. Coders were instructed to 

watch the video again to make sure they got the same number if they were not 

sure.  

For the categorized score, coders broke down each dance into scores in 

four categories for each of the ten moves in the dance. We defined a move to be 

the two steps belonging to a pair of counts in the dance. We chose two steps as the 

smallest unit of a dance for two reasons. First, a single step is too difficult to 

identify. For example, if a participant steps forward, are they performing the first 

step of a walk-walk, or the first step of a step-kick? Considering two steps at a 

time is sufficient to differentiate these two moves, a necessary step in determining 

the accuracy. Second, four steps almost always contain two discrete moves. For 

example, a pivot-turn toe-tap takes four counts, and a participant might perform 

the pivot-turn perfectly and miss the toe-tap entirely. Considering two steps at a 



   

 

time allows coders to separate these two scores, for a more valid measure of 

accuracy. 

From speaking with expert line dance judges and instructors, I identified 

four distinct categories of mistakes: order, weight, direction, and timing. An error 

of order involves forgetting a move or performing a move at the wrong time in the 

dance. An error of weight involves putting weight on the wrong foot for a step. 

An error of direction involves facing the wrong direction or moving the foot the 

wrong direction relative to the body for a step. An error of timing involves 

stepping off beat or not stepping on beat. For each pair of counts, coders gave a 

score out of two points in each of the four categories. In each category, two points 

meant perfect accuracy, one point meant one mistake, and zero points meant two 

or more mistakes or a “nothing move.” Coders scored the categories in three 

separate sections. First, they determined which moves the participant was 

performing on which counts in order to determine the order score. Then, they 

determined the weight and direction scores according to the move the participant 

performed (not necessarily the intended move). Finally, they scored the timing 

according to the move the participant performed. 

Before scoring the order category, the coder had to decide which moves 

the participant was performed on each pair of counts. The coder first indicated, 

for each pair of counts, any move from that dance that was recognizable as 

starting in those two counts. This could be multiple moves. For example, if a 

dance contained a move and that move’s mirror image, and a participant 

performed the mirror image in place of the original, it could be recognized as 



   

 

either move. If no move from the present dance was recognizable, the coder 

indicated a “nothing move.” 

By necessity, coders made a subjective judgment of whether a move was 

recognizable. A move was operationally defined to be recognizable if a verbal 

description of the participant’s movements matched a verbal description of the 

move with direction removed. The removal of direction was meant to capture the 

possibility of performing a mirror image of the move. In deciding recognizability, 

coders were instructed to ignore timing (other than assigning the move to a 

particular pair of counts). Coders were allowed to mute the video at this time in 

order to facilitate ignoring timing. 

Once the coder had indicated all possible moves for the whole dance, they 

resolved discrepancies according to the following rules, in order. 1) If the correct 

move for a pair of counts was indicated as possible, choose that one. 2) A move 

can be performed at most once. If a move was possibly performed more than 

once, choose the time it was performed best. 3) Exactly one move must be 

assigned to each pair of counts. If more than one possible move was indicated for 

a pair of counts, choose the one that was closest to what the participant did. If no 

possible move was indicated, consider it a nothing move. 4) If, after these rules 

have been applied, there is still ambiguity, make a subjective judgment of what 

the participant intended to do. 

Once the coder resolved any discrepancies, they derived the order score 

out of two points. If the recognized move was the intended move, the coder 

assigned two points (even if the recognized move was performed incorrectly, 



   

 

because that would be reflected in other categories). If the recognized move was a 

different move from the same dance, the coder assigned one point. If there was no 

move recognized from this dance, the coder assigned zero points to all categories 

for that pair of counts. 

Next, the coder assigned weight and direction scores to each pair of counts 

according the recognized move (not necessarily the intended move). Coders were 

provided with step sheets, shown in Tables 1 – 4, that identified which foot should 

have weight, which direction the free foot should move, and which direction the 

participant should face for both steps of every move. Coders compared the 

participant’s actual steps with the step sheet and counted the mistakes for each 

move. Finally, the coder assigned timing scores to each pair of counts according 

to the recognized move. Coders counted each time a participant did not step on 

beat or stepped off beat as one mistake. This resulted in a score out of 20 points 

for each category, for a total score out of 80 points. The sums were computed 

automatically, and not shown to coders, so that they would not be influenced by 

the total scores. 

 Results 

 We hypothesized that both experienced and novice dancers would learn 

better in first person than in third person and better in immersive than 

nonimmersive formats, but that experienced dancers would learn better and be 

less affected by both formats than novices. We tested each of these hypotheses 

with three separate 2 × 2 × 2 (Perspective [first person, third person] × Immersion 

[immersive, nonimmersive] × Experience [experienced, novice]) analyses of 



   

 

variance (ANOVAs). We performed one such ANOVA for each of the following 

measures coded by a naïve coder: last practice trial overall score (out of 10), 

testing trial overall score (out of 10), and testing trial total categorized score (out 

of 80). Thus, we analyzed one measure of performance (last practice trial) and 

two measures of learning (testing trial overall and total categorized scores). We 

also ran ANOVAs on each category of the categorized score, and found that all 

four category scores yielded results consistent with the total categorized score. No 

significant effects of dance order or condition order were found. 

 We hypothesized that first person perspective formats would improve 

performance and learning over third person perspective formats. We found a 

significant effect of perspective on all measures, with first person perspective 

formats resulting in better performance and learning than third person perspective 

formats. As seen in Figure 5, first person perspective formats (M = 7.839, SD = 

1.325) were more accurate than third person perspective formats (M = 6.393, SD 

= 2.499) on the last practice trial, F(1, 54) = 24.28, p < .001, ηp
2 = .310. As seen 

in Figure 6, first person perspective formats (M = 6.027, SD = 2.291) were more 

accurate than third person perspective formats (M = 4.580, SD = 2.425) on the 

testing trial overall score, F(1, 54) = 29.25, p < .001, ηp
2 = .351, and first person 

perspective formats (M = 56.554, SD = 14.384) were more accurate than third 

person perspective formats (M = 47.804, SD = 15.962) on the testing trial 

categorized score, F(1, 54) = 26.18, p < .001, ηp
2 = .326, as seen in Figure 7. 

 We hypothesized that immersive formats would improve performance and 

learning over nonimmersive formats. We found no significant main effect of 



   

 

immersion on performance. However, we found significant main effects of 

immersion for one of the two measures, with immersive formats less accurate 

than nonimmersive formats. As seen in Figure 5, immersive formats (M = 7.080, 

SD = 1.909) were not significantly more or less accurate than nonimmersive 

formats (M = 7.152, SD = 1.839) on the last practice trial, F(1, 54) = 0.10, p 

= .758, ηp
2 = .002. As seen in Figure 6, immersive formats (M = 5.080, SD = 

2.272) not significantly more or less accurate than nonimmersive formats (M = 

5.527, SD = 2.383) on the testing trial overall score, F(1, 54) = 3.23, p = .078, ηp
2 

= .056. Immersive formats (M = 50.250, SD = 15.150) were significantly less 

accurate than nonimmersive formats (M = 54.107, SD = 14.574) on the testing 

trial categorized score, F(1, 54) = 6.95, p = .011, ηp
2 = .114, as seen in Figure 7. 

 We hypothesized that experienced dancers would learn and perform better 

than novices. We found a significant main effect of experience on all measures, 

with experienced dancers performing better than novices. Experienced dancers (M 

= 7.759, SD = 1.534) were more accurate than novices (M = 6.473, SD = 1.558) 

on the last practice trial, F(1, 54) = 9.68, p = .003, ηp
2 = .152. Experienced 

dancers (M = 6.348, SD = 2.151) were more accurate than novices (M = 4.259, SD 

= 1.555) on the testing trial overall score, F(1, 54) = 17.348, p < .001, ηp
2 = .243, 

and experienced dancers (M = 59.768, SD = 12.871) were also more accurate than 

novices (M = 44.589, SD = 10.142) on the testing trial categorized score, F(1, 54) 

= 24.02, p < .001, ηp
2 = .308. We hypothesized that experienced dancers would be 

less affected by immersion and perspective than novices. However, we found no 



   

 

significant interactions between any combination of perspective, immersion, and 

experience on any measure of performance or learning. 

 In addition to testing our hypotheses with these three ANOVAs, we 

plotted how mean accuracy, as measured by the overall score, changed with 

successive trials for each condition, as seen in Figure 8. We then fit each of these 

to a power curve, and found these to fit the data very closely. Practice curves for 

first person were shifted up from those for third person, but immersive and 

nonimmersive curves were nearly indistinguishable. Best-fit equations and 

goodness of fit values can be seen in Table 5. 

Discussion  

Perspective  

In line with our predictions, we found strong evidence that learning a line 

dance from a first person perspective, versus a third person perspective, improves 

the accuracy of both performance and learning. This supports the idea that motor 

learning of complex actions recruits a first person mental action representation, 

under the assumption that motor learning is best when presentation format 

matches the mental action representation used for learning. The effect sizes were 

considerable, making first person perspective the suggested format for training 

and rehabilitative applications. This result is consistent with prior findings that a 

first person perspective improves performance of simple motor tasks over a third 

person perspective (Vogt et al., 2003), suggesting that the advantage first person 

perspective presentation likely generalizes across tasks. It is also consistent with 

the prior finding that motor imagery evokes a motor representation in the first but 



   

 

not the third person perspective (Stevens, 2005). This consistency suggests that 

the mental action representations used in observation, imagery, and imitation 

(Grafton & Hamilton, 2007; Grezes & Decety, 2001; Macuga & Frey, 2012) 

overlap with learning as well. The additional spatial transformation required by 

the third person (Zacks, Mires, Tversky, & Hazeltine, 2000) decreased not only 

performance, but also learning. Although this is inconsistent with the finding that 

motor learning is best when conditions maximize the cognitive effort required 

(Lee et al., 1994), this effect has been shown not to generalize across all task 

variables (Guadagnoli & Lee, 2004). Our results indicate that the benefit of 

increased cognitive effort on motor learning do not generalize across different 

perspectives, likely because of the different mental representation evoked 

(Stevens, 2005).  

 Although the benefit of first person perspective for motor performance and 

learning was large and robust across measures and across the other variables in 

the present study, a few caveats should be mentioned that could limit 

interpretation of these results. First, it is worth noting that when instructors face 

their students, they could alternatively perform a horizontal mirror image of the 

movements so that they move in the same direction that the student should. By 

contrast, the present study required participants to perform the same movements 

as the instructor from the instructor’s perspective, which requires an additional 

spatial transformation. Consequently, these results should not be interpreted as 

discouraging horizontal mirroring by instructors. We deliberately designed the 

stimuli this way, for better experimental control and because the theoretical 



   

 

implications for mental action representation depended on it. Second, although 

every participant demonstrated understanding before the trials that they were 

supposed to perform the same movements as the instructor from the instructor’s 

perspective, a small number of participants (fewer than 10) mirrored the instructor 

until the experimenter corrected them after two or three trials, and a smaller 

number of those (fewer than five) continued mirroring anyway. Thus, the 

decreased accuracy of third person for this small minority of participants may 

have been due to some lack of comprehension rather than because of the different 

mental representation used. However, the benefit of first person held for the order 

category of the categorized score. As this category was not affected by mirroring, 

we are confident that these individuals did not significantly bias results. 

 Based on these results, we recommend future work investigating 

variations on the parameters of perspective. Dance instructors often use a 

variation of third person perspective in which the instructor mirrors movements 

horizontally, as mentioned above. Previous research has also studied a first person 

“ghost” perspective, in which a model of the instructor’s avatar is superimposed 

over participants’ own avatar (U. Yang & Kim, 2002). Comparing these 

variations to first person perspective as used in the present study could inform 

best practices for instructors and coaches. 

Immersion 

  In contrast with our initial predictions, immersive formats were no 

different for performance and no different or slightly worse for learning than 

nonimmersive formats. This contradicts the idea that immersive virtual reality is 



   

 

beneficial for motor learning. These results necessitate explanation. First, the 

testing trial overall score showed no effect of immersion, while the testing trial 

total categorized score showed a significant effect. Given that the former was near 

significance, we argue that this inconsistency owes to the greater sensitivity of the 

latter. Possible overall scores ranged from 0 – 10 points, but the possible 

categorized scores ranged from 0 – 80 points, making the categorized scores more 

sensitive to small variations. This helps to explain why the effect of immersion on 

learning was only observed for one of the two testing measures. Second, we did 

not find an effect of immersion on performance. This difference likely owes to the 

additional transfer from learning in the virtual environment to testing in the real 

environment. In nonimmersive conditions, participants practiced and tested in the 

same (real) environment. By contrast, in immersive conditions, participants were 

required to transfer the movements from the virtual environment to the real one 

for testing. To limit the effects of this difference, the virtual lab model was 

designed to match the real lab as closely as possible. Still, this difference explains 

the moderate benefit of nonimmersive format for testing. Additionally, it suggests 

augmented reality as a preferable alternative to immersive VR, as it circumvents 

the need for this additional transfer.  

The fact that we found no benefit of immersion for performance or 

learning is surprising. The growing popularity of immersive displays (Reisinger, 

2015) would suggest that the interactivity and sense of presence they offer are 

worth the expense. Indeed, prior research has found immersive VR to be effective 

for motor learning and rehabilitation (e.g., Bailenson et al., 2008; Gokeler et al., 



   

 

2014; Rose et al., 2000). However, such research conflated immersion with 

several other potentially beneficial aspects of VR. For example, VR can provide 

the benefit of additional visual feedback by showing an individual their own 

avatar (Bailenson et al., 2008) and how it compares to a model (U. Yang & Kim, 

2002). Visual feedback does not require immersion to be beneficial for motor 

learning (Eaves et al., 2011), suggesting that the benefits of immersive VR may 

be due to feedback and other factors. We isolated the effects of immersion, and 

found that immersive displays do not confer a motor learning advantage. Our 

results indicate that motor training applications do not stand to gain from 

investing in immersive displays. This is surprising, as the qualities offered by 

immersive displays seem beneficial at their face. However, our results suggest 

these qualities are irrelevant to the action representations they evoke. 

 Several possible limitations on the external validity of the present study 

provide recommendations for future work. First, the (virtual) environment in 

which the instructor taught the dances closely matched the (real) environment in 

which participants learned the dances for nonimmersive conditions. This is not 

generally true when learning movements from a video. Immersion could be 

beneficial when it affords the chance to learn a movement in an environment 

similar (identical) to that of the instructor. We recommend future work 

investigating the effects of immersion on motor learning when the virtual 

environment does not match the real one. Second, the dances involved in the 

present study involved minimal turning, each facing only two walls. Immersion 

might be more beneficial for learning movements involving more turns, which 



   

 

require keeping track of which direction the instructor is facing. Finally, the head-

mounted display itself may have been perceived as somewhat cumbersome. 

Immersion may become more beneficial for motor learning as future 

developments enable more lightweight, wireless VR technology. Based on these 

factors, we limit our interpretation thus: immersive VR, in its current state, does 

not improve motor learning for dances involving minimal turning.  

Experience 

 In line with our predictions, experienced dancers learned and performed 

better than novices. This supports the idea that mental action representations are 

stronger in motor experts than novices. However, in contrast with our predictions, 

perspective and immersion had the same effects on experienced dancers as 

novices. Mental action representations do not seem to be more flexible in motor 

experts than novices. All differences between experienced dancers and novices 

were large in magnitude and robust across measures and conditions, suggesting 

that the samples were appropriately selected. We can conclude that the 

perspective and immersion of motor instruction do not need to be tailored to 

varying levels of motor experience. We can additionally conclude that whatever 

differences exist between the mental action representations of motor experts and 

novices, perspective and immersion do not seem to be among them.  

 Although we made every effort to control for extraneous variables, the 

possibility remains that experience was confounded with other factors. First, by 

necessity, experienced dancers were compensated differently than novices. 

Whereas we offered experienced dancers extra credit in their dance classes, we 



   

 

offered novices extra credit in their psychology classes. Because these dance 

classes were offered for fewer credits than the psychology classes, experienced 

dancers may have been less extrinsically motivated to participate, and more 

intrinsically motivated to do their best on the task. Still, we took care to make sure 

that all participants were given extra credit for participation, to minimize this 

difference as much as possible. Second, also by necessity, experienced dancers 

were recruited differently than novices. Whereas experienced dancers were 

recruited via in-class announcements, novices were recruited via an online sign-

up system. Signing up thus required more effort from experienced dancers, who 

as a result may have been more motivated to participate. However, all participants 

were likely motivated to do well by the mere fact that dancing badly in front of 

two observers is embarrassing, as we think our participants would confirm.  

Based on these results, we recommend future work investigating how 

experience and other individual differences affect other conditions related to 

motor learning. We noticed a small number of participants improving between the 

final practice trial and the testing trial, suggesting a unique strategy or ability 

during mental rehearsal. This suggests that a comparison of motor learning across 

mental imagery ability might yield interesting results. We also noticed some 

participants wanting a chance to practice without the instructor before the testing 

trial. This begs the question of how individual differences such as expertise 

interact with effects of practice schedule and mental vs. physical practice. 

Practice Curves 



   

 

 In line with theoretical models of motor learning, mean accuracy increased 

with successive trials in high accordance with the power law of practice 

(Anderson, 1981). This suggests that our stimuli and coding methods were 

appropriate for their intention of measuring motor learning. Consistent with 

results from the last practice trial, practice curves for first person conditions were 

shifted pronouncedly up from those for third person conditions, but curves for 

immersive and nonimmersive conditions were nearly identical. This consistency 

suggests that results from the last trial apply to performance in general on this 

task. As such, we can conclude that first person is better than third person and 

immersive formats are no better than nonimmersive formats for motor learning.  

 Several factors limit the confidence of these conclusions. First, reliability 

was heterogeneous across trials, with earlier trials less reliable than later ones. As 

such, the practice curves may make a less accurate model for earlier trials than for 

later trials. However, they were made using results from a naïve coder, so this 

effect should not lead to confirmation bias. Second, due to time constraints, we 

did not code a categorized score for the practice trials. This measure might have 

had the sensitivity to pick up smaller differences in performance that the overall 

score could not distinguish. However, the results from the total categorized score 

were largely consistent with the overall score. As such, we have reason to expect 

that any effects on performance not detected by the overall score would be small. 

To be certain, though, we recommend future work using our more sensitive 

measure on practice trials. 

General Discussion 



   

 

The present study examined the roles of perspective and immersion on 

motor performance and learning using four video-coded line dances. We 

developed a novel video coding scheme that was simple enough to be carried out 

by a trained novice, objective enough to be reliable, efficient enough to be carried 

out on hundreds of videos, and sensitive enough to detect even small differences 

in accuracy. We verified that the choreographed dances were similar enough in 

complexity to eliminate any confounding dance-specific effects, while also 

different enough in content to prevent any carryover effects. We also managed to 

make them difficult enough to prevent ceiling effect in experienced dancers, but 

not so difficult as to create a floor effect (or undue embarrassment) in novices. 

After checking and eliminating these potential variables as confounds, we were 

able to assess how different instructional formats influence motor performance 

and learning for novice as well as experienced dancers. 

 Several factors mediate the benefits of this methodology. First, we have 

only shown this coding scheme to be reliable for this particular set of data. It may 

not be suitable for different dances or types of movement. Further, it may not be 

suitable for different ranges of performance. It tops out when performance is 

essentially accurate, even if technique or musicality are lacking. On the other end, 

it sees poor reliability when accuracy is so low as to make it difficult to discern 

one move from another. Second, the coding scheme is time-intensive. The 

categorized score and overall score together demand about six to ten minutes to 

code about 20 seconds of dancing. Third, it is difficult. The overall score 

inherently involves binning accuracy of moves at a subjective threshold deemed 



   

 

acceptable. If different coders have different thresholds, they can give widely 

different overall scores. Despite these limitations, we found this methodology 

effective for the present study and recommend its use for future work. 

The benefits of this research are several. First, prior research on the mental 

representation of action has primarily used brain imaging methods (e.g., Buccino 

et al., 2004; Chaminade, Meltzoff, & Decety, 2005) or behavioral measures of 

how individuals mentally organize actions into a hierarchy (Frank et al., 2013; 

Schack & Mechsner, 2006). The present study provides a novel behavioral 

measure of mental action representation format. Second, the use of line dances 

provides a high degree of external validity to the study of motor learning. 

Findings about learning of line dances have the potential to generalize to 

observation, imagery, and imitation of complex movements. 
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Tables 

Counts Move Description 

Weight 

1st 

Count 
Weight 

Change 

Facing 

1st 

Count 

Facing 

2nd 

Count 

Feet 

Movement 

1st Count 

Feet 

Movement 

2nd Count 

First "1, 

2" 1 
Toe Tap 

Right Left Change Front Front Forward 
Together 

(Back) 

First "3, 

4" 2 Toe Tap Left Right Change Front Front Forward 
Together 

(Back) 

First "5, 

6" 3 
Box Step 

Forward Right Change Front Front Forward Forward 

First "7, 

8" 4 
Box Step 

Back Right Change Front Front Back Back 

Second 

"1, 2" 5 
Rock Step 

Back Right Change Front Front Back In Place 

Second 

"3, 4" 6 
Pivot Turn to 

the Left Right Change Front Left 
In Place OR 

Right In Place 

Second 

"5, 6" 7 
Rock Step 

Forward Right Change Left Left Forward In Place 

Second 

"7, 8" 8 Walk Back Right Change Left Left Back Back 

Third 

"1, 2" 9 
Rock Step 

Back Right Change Left Left Back In Place 

Third 

"3, 4" 10 

Step Kick 

OR Walk 

Walk Right 

No 

Change 

OR 

Change Left Left Forward Forward 

 

Table 1. Step sheet for Dance W. Coders scored order, weight, and direction 

according to the step sheet. 

  



   

 

 

Counts Move Description 

Weight 

1st 

Count 
Weight 

Change 

Facing 

1st 

Count 

Facing 

2nd 

Count 

Feet 

Movement 

1st Count 

Feet 

Movement 

2nd Count 

First "1, 

2" 1 
Step Touch 

Right Right 
No 

Change Front Front Right 
Together 

(Right) 

First "3, 

4" 2 
Step Touch 

Left Left 
No 

Change Front Front Left 
Together 

(Left) 

First "5, 

6" 3 
Grapevine 

Right Right Change Front Front Right 
Right 

Behind 

First "7, 

8" 4 
Step Touch 

Right Right 
No 

Change Front Front Right 
Together 

(Right) 

Second 

"1, 2" 5 
Step Turn 

Scuff Left 
No 

Change 
Front 

OR Left Left 

Left OR 

(Forward IF 

Facing Left) Forward 

Second 

"3, 4" 6 
Rock Step 

Forward Right Change Left 
Left OR 

Front In Place In Place 

Second 

"5, 6" 7 
Step Touch 

Right Right 
No 

Change Front Front Right 
Together 

(Right) 

Second 

"7, 8" 8 
Toe Tap 

Left Right 
No 

Change Front Front Left 
Together 

(Right) 

Third 

"1, 2" 9 
Grapevine 

Left Left Change Front Front Left Left Behind 

Third 

"3, 4" 10 
Step Turn 

Scuff Left 
No 

Change 
Front 

OR Left Left 

Left OR 

(Forward IF 

Facing Left) Forward 

  

Table 2. Step sheet for Dance X. Coders scored order, weight, and direction 

according to the step sheet. 

  



   

 

 

Counts Move Description 

Weight 

1st 

Count 
Weight 

Change 

Facing 

1st 

Count 

Facing 

2nd 

Count 

Feet 

Movement 

1st Count 

Feet 

Movement 

2nd Count 

First "1, 

2" 1 
Step Touch 

Right Right 
No 

Change Front Front Right 
Together 

(Right) 

First "3, 

4" 2 Toe Tap Left Right Change Front Front Left 
Together 

(Right) 

First "5, 

6" 3 
Step Touch 

Right Right 
No 

Change Front Front Right 
Together 

(Right) 

First "7, 

8" 4 Toe Tap Left Right Change Front Front Left 
Together 

(Right) 

Second 

"1, 2" 5 
Pivot Turn to 

the Left Right Change Front Left 
In Place OR 

Right In Place 

Second 

"3, 4" 6 

Toe Tap 

Forward 

Back Left 
No 

Change Left Left Forward Back 

Second 

"5, 6" 7 
Walk 

Forward Right Change Left Left Forward Forward 

Second 

"7, 8" 8 

Toe Tap 

Forward 

Back Left 
No 

Change Left Left Forward Back 

Third 

"1, 2" 9 
Rock Step 

Forward Right Change Left 
Left OR 

Front Forward In Place 

Third 

"3, 4" 10 
Step Touch 

Right Right 

No 

Change 

OR 

Change Front Front Right 
Together 

(Right) 

 

Table 3. Step sheet for Dance Y. Coders scored order, weight, and direction 

according to the step sheet. 

  



   

 

 

Counts Move Description 

Weight 

1st 

Count 
Weight 

Change 

Facing 

1st 

Count 

Facing 

2nd 

Count 

Feet 

Movement 

1st Count 

Feet 

Movement 

2nd Count 

First "1, 

2" 1 
Step Kick 

Forward Right 
No 

Change Front Front Forward Forward 

First "3, 

4" 2 

Step Kick 

Back OR Step 

Step Back Left 

No 

Change 

OR 

Change Front Front Back Back 

First 

"5*, 6" 3 
Rock Step 

Forward Right Change Front Front Forward In Place 

First "7, 

8" 4 
Rock Step 

Back Right Change Front Front Back In Place 

Second 

"1, 2" 5 
Grapevine 

Right Right Change Front Front Right 
Right 

Behind 

Second 

"3, 4" 6 
Step Touch 

Right Right 
No 

Change Front Front Right 
Together 

(Right) 

Second 

"5, 6" 7 Toe Tap Left Right Change Front Front Left 
Together 

(Right) 

Second 

"7, 8" 8 
Pivot Turn to 

the Left Right Change Front Left 
In Place OR 

Right In Place 

Third 

"1, 2" 9 Walk Forward Right Change Left Left Forward Forward 

Third 

"3, 4" 10 Step Kick Right 
No 

Change Left Left Forward Forward 

 

Table 4. Step sheet for Dance Z. Coders scored order, weight, and direction 

according to the step sheet. 

  



   

 

 Equation Goodness of fit 

Immersive First 𝑦 = 5.8392𝑥0.1778  R2 = 0.9723 

Nonimmersive First 𝑦 = 6.3648𝑥0.1393  R2 = 0.9119 

Immersive Third 𝑦 = 3.4976𝑥0.3448  R2 = 0.9928 

Nonimmersive Third 𝑦 = 3.7375𝑥0.3374  R2 = 0.9634 

 

Table 5. Power-fit mean practice curve equations and goodness of fit values for 

each condition. Mean accuracy closely followed the power law of practice. 

Conditions are collapsed across experience. 

  



   

 

Figures 

 
 

Figure 1. Confusion matrix of instruction formats used for the experimental 

design. Perspective (first person versus third person) was crossed with immersion 

(immersive versus nonimmersive) to make four formats. In first person, the 

instructor faced forward; in third person, the instructor faced toward the 

participant; in immersive formats, the instructor was presented on an HMD; in 

nonimmersive formats, the instructor was presented on a computer monitor.  



   

 

 

Figure 2. The Sensics zSight HMD worn by participants for immersive 

conditions, along with the infrared trackers mounted on the HMD. These gave its 

position and orientation, allowing the wearer to move around the virtual lab 

model as they moved around the actual tracking space. A researcher followed 

behind the participant, managing the cable and ensuring safety. 

  



   

 

 

Figure 3. The mockup HMD worn by participants for nonimmersive conditions. 

This controlled for the non-experimentally manipulated differences between the 

immersive and nonimmersive conditions, including the additional weight on the 

head and the social presence of a researcher holding the cable, as well as 

rendering video coders blind to condition. 

 

  



   

 

 

Figure 4. The virtual instructor avatar in the lab model, shown here in first 

person. The lab model was designed to match the real lab as closely as possible.  



   

 

 

Figure 5. Mean overall scores on the last practice trial for each condition. First 

person led to significantly better accuracy than third person, and immersion did 

not lead to significant differences in accuracy. Conditions are collapsed across 

experience, and error bars represent standard error. 

  



   

 

 

Figure 6. Mean overall scores on the testing trial for each condition. First person 

led to significantly better accuracy than third person, and immersion did not lead 

to significant differences in accuracy. Conditions are collapsed across experience, 

and error bars represent standard error. 

  



   

 

 

Figure 7. Mean total categorized scores on the testing trial for each condition. 

First person led to significantly better accuracy than third person, and 

nonimmersive formats led to significantly better accuracy than immersive 

formats. Conditions are collapsed across experience, and error bars represent 

standard error. 

  



   

 

 

Figure 8. Best-fit mean practice curves for each condition. Mean accuracy 

increased with successive trials according to the power law of practice. 

Conditions are collapsed across experience, and error bars represent standard 

error. 

  



   

 

  



   

 

 


