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1 Introduction

We consider the problem of computing shortest paths in a graph whose edge-costs are

not constant, but depend on the time at which a traveler arrives at an endpoint. This

is used to model many real-world situations in which edge-costs are not fixed. For

example, in road networks, the cost of traversing a given segment of road depends on

the time of day: travel times may be longer during rush hour. Similarly, in routing

networks, certain connections may experience more delay during peak downloading

times. For a given starting point s, a given starting time t and arbitrary edge-cost

functions, one can modify Dijkstra’s algorithm to account for the variable edge-costs

by storing, in addition to a vertex’s priority, the time at which one can arrive at

that vertex (for details, see the algorithms of Orda and Rom [15] and Ding, Yu, and

Qin [7]).

However, if we wish to compute the cost of traveling from one vertex to another as

a function of all possible departure times from the start vertex, the problem quickly

becomes much more difficult. Foschini, Hershberger, and Suri showed that, even

for linear edge-cost functions, the number of times that a shortest path between two

vertices can change, over the possible departure times, is in the worst case nΘ(logn) [11].

A function representing the minimum cost of a shortest path between two vertices as

a function of departure time is similarly bounded.

Foschini, Hershberger, and Suri further observe that this bound should be poly-

nomial for bounded treewidth graphs [11] (we define bounded treewidth graphs in Sec-
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tion 2). In this thesis, we give a constructive proof of this observation and an efficient

algorithm for calculating the list of shortest paths between two vertices in bounded

treewidth graphs. More specifically, we show that, given a graph of treewidth w with

linear edge-cost functions, the number of different shortest paths (over all possible

departure times) between two vertices is bounded above by nO(log2 w) (Theorem 3).

Given this bound, it is possible to bound the complexity of manipulating edge-cost

functions algorithmically. We provide an efficient method for calculating the list of

shortest paths between two vertices in graphs of bounded treewidth (Theorem 9). To

do so, we use an algorithm for reducing the size of a graph (Theorem 6) by way of

parallel reductions and star-mesh transformations (defined in Section 2.3).

1.1 Related work

We briefly note a couple of papers dealing with time-dependent shortest paths that are

not mentioned above. Work related to star-mesh transformations will be mentioned

in Section 2.3, after defining these transformations formally.

Cooke and Halsey [5] first introduced the idea of time-dependent shortest paths.

They were concerned with finding the shortest path between any two vertices at a

given time where the edges have discrete timesteps, instead of the continuous range

of times that we allow in this thesis.

Dean [6] provides a survey of work completed in this field. In the paper he notes

that finding shortest paths at a specific time is much easier than finding shortest
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paths at all times – a fact later given a strict bound by Foschini, Hershberger, and

Suri [11].
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2 Preliminaries

2.1 Treewidth

The following definitions are from Robertson and Seymour [17].

A tree decomposition of a graph G = (V,E) is a pair T,X where T = (VT , ET ) is

a tree and X = (Xt : t ∈ VT ) is a family of subsets of V where the following hold:

• The union of all elements of X is V .

• For every edge e ∈ E there exists t ∈ VT where e has both ends in Xt.

• If t, t′, t′′ ∈ VT are in a path of T in that order, then all vertices in the intersection

of Xt and Xt′′ are also in Xt′ .

Elements of X are called bags. The width of a tree decomposition is the maximum

cardinality of bags in X minus one. The treewidth of a graph is the minimum width

over all tree decompositions. For instance, the treewidth of any tree graph is 1.

2.2 Time-dependent shortest paths

Consider a graph G = (V,E) whose edges are undirected but arbitrarily oriented.

For each edge uv ∈ E, a trip along uv departing from u at time t will arrive at v at

time Auv(t), where Auv : R+ ∪ {∞} → R+ ∪ {∞}. We call Auv the arrival function

of uv. Likewise, Avu is the arrival function for travel along uv departing from v and

arriving at u. If an edge is only traversable in one direction, the arrival function in
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the other direction is ∞.

For all uv and t, we require the following two constraints to ensure that the arrival

function behaves reasonably.

• Auv(t) ≥ t. That is, the traversal of an edge cannot be completed before it has

begun.

• d
dt

(Auv(t)) ≥ 0. This means that a later departure time cannot result in an

earlier arrival time. Edges under this constraint are called First-In First-Out,

or FIFO, because of the property that two traversals of an edge will complete

in the order that they were initiated. This is the case for many applications of

the time-dependent shortest paths problem.

With these constraints, the set of arrival functions forms a semiring with the two

operators relevant to this thesis, min and ◦ (functional composition). Without the

requirement that d
dt

(Auv(t)) ≥ 0, ◦ does not left distribute over min.

The arrival function of a path P = {e1, e2, . . . , e|P |}, denoted AP , is the compo-

sition of the arrival functions of all edges in that path. For two vertices s and s′

and a given time t, A(s,s′)(t) is the minimum value of AP (t) over all s-to-s′ paths P ;

the corresponding arrival function, A(s,s′), for any two vertices s and s′ is likewise

defined. The arrival function between a vertex and itself is the identity function. In

applications, we often want to find the arrival function for two distinguished vertices,

called terminals. We give the special name end-to-end arrival function to A(s,d)(t) for

terminals s and d.
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When we are discussing correlated arrival functions in multiple graphs, we clarify

with a superscript which graph the arrival function we are considering is in. for

example, AH
P is the arrival function for a path P in a graph H and AH

(s,s′) is the

arrival function for vertices s and s′ in a graph H.

2.3 Graph transformations

In our algorithm for calculating end-to-end arrival functions we use parallel reduc-

tions and star-mesh transformations. Graph operations such as these have a wide

range of uses, such as network analysis (for example, Chari, Feo, and Provan use

such operations for approximating network reliability [4]) and determining equivalent

resistances in a circuit [13].

2.3.1 Wye-delta-wye transformations

One set of graph transformations that has received significant research attention is

the set of wye-delta-wye reductions, which include the series-parallel reductions along

with two additional reductions, the Y-∆ and ∆-Y reductions. The series-parallel

reductions are so-called because any series-parallel graph can be reduced (transformed

by a sequence of these reductions to a single vertex) by repeated application of these

steps. Series-parallel graphs are exactly the graphs with treewidth 2 (see, for example,

Brandstädt, Le, and Spinrad [2]). The addition of the Y-∆ and ∆-Y reductions

expand the set of all reducible graphs to include all planar graphs [9].
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Series-parallel reductions

• R0: Delete a self-loop.

• R1 (Pendant Reduction): Delete a degree-one vertex and its incident edge.

• R2 (Series Reduction): Given a degree-two vertex u adjacent to vertices v and

w, delete u and replace the edges uv and uw with a single edge vw.

• R3 (Parallel Reduction): Given a cycle of length two, delete one of the edges in

the cycle.

Y-∆ and ∆-Y transformations A wye, Y, is a vertex of degree 3 and a delta, ∆,

is a cycle of length 31.

• Y-∆: Delete a wye u with adjacent vertices v, w, and x and replace edges uv,

uw, and ux with edges vw, vx, and wx.

• ∆-Y: Delete a delta consisting of edges vw, vx, and wx and add a vertex u and

edges uv, uw, and ux.

Note that whereas the series-parallel reductions each reduce the number of edges

in a graph by one, the Y-∆ and ∆-Y transformations keep the number of edges

constant. Also note that Y-∆ and ∆-Y are reverse operations of each other.

1In most cases, these transformations are applied to planar graphs, in which case ∆s are usually
restricted to be faces.

7



We call two graphs wye-delta-wye equivalent if it is possible through repeated

application of the wye-delta-wye transformations to create one graph given the other.

Naturally, this relationship is symmetric.

It is often of interest to indicate a set of terminal vertices that should remain at

the end of a series of reductions: the terminals should not be deleted as part of an

R1, R2, or Y-∆ transformation. Some authors (such as Feo and Provan [10]) add the

following transformation when considering terminals:

• FP-assignment: If a degree-one terminal is adjacent to a non-terminal vertex,

perform an R1 transformation on the terminal and add the adjacent vertex to

the set of terminals.

2.3.2 Related work: wye-delta-wye reducibility

Epifanov [9] was the first to prove that all planar graphs are wye-delta-wye reducible.

Feo and Provan [10] give a simple algorithm for reducing two-terminal planar graphs

using O(n2) transformations. Chang and Erickson [3] prove that the number of

transformations must be Ω(n3/2). Both these papers conjecture that there exists

an algorithm for wye-delta-wye reduction of planar graphs using Θ(n3/2) transfor-

mations. Gitler and Sagols [12] give a O(n4) algorithm for reducing three-terminal

planar graphs; Archdeacon, Colbourn, Gitler, and Provan [1] show that the existence

of such an algorithm implies that one-terminal crossing-number-one graphs are also

reducible.
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There is no known characterization of wye-delta-wye reducible graphs, but since it

is a minor-closed family, the Robertson-Seymour theorem guarantees the existence of

a finite number of forbidden minors [19], each of which can be recognized in polynomial

time [18]. Yu [20] gives a proof that there are more than 68 billion such forbidden

minors, so while the recognizing wye-delta-wye reducible graph is in P, an algorithm

relying on detecting forbidden minors would be impractical. Seven known forbidden

minors are the Petersen Family of graphs. These graphs include the Petersen Graph

and its 6 wye-delta-wye equivalent graphs (including K6 and K3,3,1). Since these

are the 7 forbidden minors for linklessly-embeddable graphs [16], all wye-delta-wye

reducible graphs are linklessly-embeddable.

Some graphs are not reducible to a single vertex but are reducible to a smaller

irreducible graph. For example, it is easy to show that the Heawood graph reduces

to K7 and the Möbius-Kantor graph reduces to K2,2,2,2. Other graphs, however,

cannot have any of the wye-delta-wye transformations to them because they have

both minimum degree and girth 4; for example, the four-dimensional hypercube graph

Q4.

2.3.3 Star-mesh transformations

A natural generalization of the serial reduction and the Y-∆ transformation is to

increase the size of the deleted vertex and of the resulting clique. This general class of

transformations are called star-mesh transformations. We call such a transformation
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Figure 1: A 4-star-mesh transformation.

for a deleted vertex of degree-k a k-star-mesh transformation. Note that the size of

the resulting clique (the “mesh”) is k as well.

One might consider an inverse transformation where the edges of a clique are

deleted and a star is added adjacent to all vertices previously in the clique. This is a

natural generalization of the ∆-Y transformation. However, a k-star-mesh transfor-

mation for k > 3 will increase the number of edges in the graph. This means that the

equivalent k-mesh-star transformation will reduce the number of edges in the graph.

If edges in the graph are assigned weights, and we are expecting some property of

the graph to be maintained after the transformation, we will assign the new edges

weights based on some set of equations; a reduction in the number of edges can result

in there being fewer variables than equations, leading to an unsolvable system.

Any graph can be trivially reduced by way of star-mesh transformations of arbi-

trary size. One can simply choose a vertex and star-mesh transform it. The resulting

graph has strictly fewer vertices, and therefore this process can be continued until

only one vertex is remaining. However, this can result in a very dense graph; one of

our goals is to maintain sparsity.
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3 Polynomial bounds on arrival functions

We consider time-dependent shortest paths in graphs with continuous linear piecewise

edge arrival functions. In a linear piecewise function f : R → R, a breakpoint is a

value t where ∃α : ∀ε with 0 < ε < α, f ′(t − ε) 6= f ′(t + ε). In simpler terms, a

breakpoint is a point at which one “piece” of the function ends and another begins.

When manipulating such a graph we calculate new arrival functions (for paths

and pairs of vertices) as minima and compositions of other arrival functions. When

storing and performing computations on linear piecewise functions, the complexity of

operations depends on the number of breakpoints. The number of breakpoints that

can result in an end-to-end arrival function gives a lower bound on the complexity of

computing TDSP over all times in graphs with linear piecewise edge arrival functions.

A breakpoint in a function f is a primitive breakpoint if f is an edge arrival

function in the original graph. In contrast, a minimization breakpoint of a function

min{f, g} for linear piecewise functions f and g occurs at a value t where ∃α with 0 <

α : ∀ε with 0 < ε < α, f(t − ε) < g(t − ε) and f(t + ε) > g(t + ε) (or vice-versa).

One could say that such a breakpoint is “created” by the minimization operation, as

there may have been no breakpoint at t in f or g. An image is a breakpoint in a

composition g ◦ f of two linear piecewise functions occurs at a value t if either f(t)

is a breakpoint of g or t is a breakpoint of f . We differentiate primitive images and

minimization images by whether the corresponding breakpoint in f or g is a primitive

breakpoint or a minimization breakpoint, respectively.
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Let bG be the maximum number of breakpoints in any end-to-end arrival function

of a graph G (AG
(s,d) for any vertices s, d ∈ G). We will use the notation bGw when G

has treewidth w. Similarly, we let b(n) be the maximum number of breakpoints in

any end-to-end arrival function for any graph with up to n vertices, and bw(n) for any

graph with up to n vertices and treewidth at most w. Finally, if s and d are vertices

in G, then bG(s,d) is the number of breakpoints in the s-to-d arrival function.

Foschini, Hershberger, and Suri [11] prove that b(n) = KnΘ(logn), where K is the

total number of linear pieces among all the edge arrival functions in the initial graph;

that is K is at most the number of primitive breakpoints plus the number of edges.

In this thesis, we prove that bw(n) = KnO(log2 w). In our proof we use the following

two results of Foschini, Hershberger, and Suri; we have reworded their statements to

be consistent with our notation.

Theorem 1 (Lemma 4.2, Foschini, Hershberger, and Suri [11]). The number of break-

points in an end-to-end arrival function in a graph with piecewise linear edge arrival

functions is at most K times the number of breakpoints in the same function if the

graph had linear edge functions. That is, bG(s,d) ≤ K ·bG′

(s,d) where G has K linear pieces

among all the edge arrival functions and G′ has linear edge arrival functions, for any

terminal vertices s, d.

Theorem 2 (Theorem 4.4, Foschini, Hershberger, and Suri [11]). For any graph with

n nodes and linear edge arrival time functions, the number of breakpoints is at most

nO(logn). That is, b(n) = nO(logn).
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We use these results to prove the following stronger bound for graphs of bounded

treewidth by induction over a given tree decomposition. We use Theorem 2 in the

base case of the induction and use Lemma 1 in the inductive step.

Theorem 3. The maximum number of breakpoints in an end-to-end arrival function

for a graph G of treewidth w with n vertices and piecewise linear edge arrival functions

with at most K pieces in the entire graph is at most KnO(log2 w). That is, bw(n) =

KnO(log2 w).

Proof. Consider a graph of treewidth w with n0 ≤ 2w + 2 vertices. From Theorem 2

we know that

bw(n0) = (2w + 2)O(log(2w+2)) = wO(log(w)). (1)

It is well known that for any graph of treewidth w where n > 2w+ 2, there exists

a separator S of size at most w + 1 that divides the graph into two subsets V1, V2,

each of which contains at most 2n
3

vertices. Let V ′ = S ∪{s, d} where s and d are the

terminal vertices. Note that |V ′| ≤ w + 3.

We construct a graph G′ on the vertex set V ′ with one or two edges between every

pair of vertices with assigned edge arrival functions derived from arrival functions in

induced subgraphs of G. First, consider the induced graph G[V1∪S], that is, vertices

on one side of and including S. For every u, v ∈ S ∪ ({s, d} ∩ V1), add an edge uv to

G′ with arrival function A
G[V1∪S]
(u,v) (and A

G[V1∪S]
(v,u) for the reverse direction). Note that

it is possible that v is not reachable from u in G[V1 ∪ S]; in this case, A
G[V1∪S]
(u,v) =∞.

This edge then represents the time necessary to travel between u and v in G only
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using edges on one side of S. Second, add additional edges from the induced graph

G[V2∪S] in the same way. Let E ′ be the resulting set of edges. Note that for u, v ∈ S

there are parallel edges between u and v in E ′, but if, for example, s /∈ S, then edges

incident to s will not have parallel counterparts. In this way, edges in E ′ correspond

to paths in G between vertices in V ′ that only contain edges on one side or other of

the separator.

Claim 4. AG′

(s,d) = AG
(s,d). In particular, these functions have the same number of

breakpoints.

Proof of Claim 4. Consider an arbitrary departure time t. Let Pt (respectively P ′
t)

be the shortest path to d departing from s at time t in graph G (respectively G′).

We argue that the time to traverse Pt equals the time to traverse P ′
t , that is, that

AG
Pt

(t) = AG′

P ′
t
(t), proving the claim.

The path Pt corresponds to a path of equal length in G′. This is clear because

any shortest path will either not go through S, in which case an edge corresponding

to it will be in G′ by construction, or will go through some vertices v1, . . . , vk ∈ S,

in which case Pt = AG
(s,d)(t) = AG

(vk,d)(t) ◦ . . . ◦ AG
(s,v1)(t). All of the latter paths have

edges corresponding to them in G′ by construction.

The path P ′
t corresponds to a path of equal length in G. Consider the case

where P ′
t does not go through S. Then the edge sd ∈ E ′ has arrival time function

AG′

sd (t) = AG
(s,d) by construction. If P ′

t does go through some vertices v1, . . . , vk ∈ S,

then there is some walk that is the concatenation of shortest paths between s and v1,
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vi and vi+1, and vk and d in G, again by the construction of G′. To show that this

walk in G is indeed a path, consider intermediate paths from va to vb and vc to vd.

If these paths share any vertex vj, then because all edges e in G have the property

that Ae(t) ≥ t we could replace these paths (and all paths between them in the walk)

with the paths from va to vj and vj to vd to get a walk that is shorter than or equal

to our original walk. If it is equal in length, we can let P ′
t correspond to this new

walk instead, as it is the same length and visits vertex vj at least one fewer time than

before. Then we can repeat this process until no vertex is visited more than once.

If it is shorter, however, we arrive at a contradiction because we said that P ′
t was

the shortest path between s and d in G′, and this shortcut from va to vd would by

construction of G′ imply that there is a shorter path in G′ that bypasses vb and vc,

which leads to the conclusion that there is no such shared vertex vj.

Therefore, a path Q′
t of the same length as Pt exists in G′ between s and d and a

path Qt of the same length as P ′
t exists in G between s and d. Since Pt and P ′

t are

the shortest paths between s and d in their respective graphs, Pt is no longer than

Qt and P ′
t is no longer than Q′

t. Therefore, all of these paths have the same length.

This completes the proof of Claim 4.

Each edge of E ′ represents a trip between vertices of V ′ in G that visits at most

2n/3 vertices; therefore, each edge of E ′ has an arrival function with at most bw(2n/3)

breakpoints. Since there are O(w2) edges in E ′, G′ has a total of O(w2 · bw(2n/3))

breakpoints (and linear segments). If E ′ had linear edge arrival functions, then by
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Equation (1), there would be wO(logw) breakpoints in end-to-end arrival functions of

G′. By Lemma 1, the number of breakpoints in end-to-end arrival functions of G′ is

therefore wO(logw) ·O(w2)bw(2n/3). Since the arrival functions in G and G′ are equal

(Claim 4), the number of breakpoints in G is described by the following recurrence:

bw(n) = wO(logw)bw(2n/3)

Solving this recurrence with the base case given in Equation (1), we get that

bw(n) = nO(log2 w), assuming that G has linear edge arrival functions. Invoking

Lemma 1 completes the proof of Theorem 3.
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4 TDSP in graphs of bounded treewidth

In this section we describe a method for reducing a graph of bounded treewidth

to a single edge between two terminal vertices, using series-parallel reductions as

well as star-mesh transformations, while maintaining the end-to-end arrival function

between these two vertices. First, in Lemma 5, we will give a method for reassigning

the edge arrival functions of a graph during each of the relevant transformations that

will preserve arrival functions between the remaining vertices of the graph. Second,

in Theorem 6 we will show that graphs of bounded treewidth and two terminals

can be efficiently reduced using only these transformations, with a bound on the

degree of the deleted vertex that only exceeds the treewidth of the graph by a one.

Finally, we will show that this result, together with Theorem 3, implies that end-

to-end arrival functions can be efficiently computed in graphs of bounded treewidth.

This is Theorem 9, the main result of the thesis.

In the following discussion we will differentiate parallel edges with a subscript.

That is, if there are k edges between vertices u and v, then we will denote the edges

as (uv)1, (uv)2, . . . , (uv)k.

4.1 Maintaining arrival functions

We start by show that we can correctly maintain arrival functions under star-mesh

transformations. For obvious reasons, we don’t allow the terminal vertices (s and

d) to be deleted in such transformation. Self-loop deletions and pendant reductions
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(not involving terminals) clearly do not affect end-to-end arrival functions, given our

realistic constraints on arrival functions. For the parallel reduction, in which parallel

edges (uv)1 and (uv)2 are replaced with a single edge uv, we set

Auv(t) = min{A(uv)1(t), A(uv)2(t)} and Avu(t) = min{A(vu)1(t), A(vu)2(t)}. (2)

In the star-mesh transformation (and, as a special case, the series reduction), a vertex

c, with neighbors v1, v2, . . . , vd, is deleted and edges vivj for all i < j are added. For

each edge vivj in the resulting graph, we set

Avivj(t) = Acvj ◦ Avic(t) and Avjvi(t) = Acvi ◦ Avjc(t). (3)

Theorem 5. Parallel reductions and star-mesh transformations, with edge relabeling

using Equations (2) and (3), preserve end-to-end arrival functions.

Proof. Since composition of functions is associative, any path arrival function can be

written as compositions of the arrival functions of segments of that path. This means

that for any fixed t, A(s,d)(t) = A(u,d) ◦A(s,u)(t) for any vertex u on the s-to-d path P

for which AP (t) = A(s,d)(t).

Consider the parallel reduction of (uv)1, (uv)2 to uv. We argue that A(u,v)(t) is

preserved by the assignment of Equation (2) for all departure times t; since A(u,v)(t) is

not changed for any fixed t, the value of A(s,s′)(t) is also preserved. Let P(u,v)(t) be the

shortest u-to-v path departing from u at time t. There are two cases: neither (uv)1
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nor (uv)2 is in P(u,v)(t) or one of (uv)1 and (uv)2 (w.l.o.g., say (uv)1) is in P(u,v)(t).

In the first case, we can safely ignore the parallel reduction because the added edge

(uv) will not have an arrival function with value less than the removed edges. The

second case, A(uv)1(t) is the minimum arrival time at v, departing from u at time t;

by Equation (2), Auv(t) = A(uv)1(t) as required.

The case of star-mesh transformations follows a similar line of reasoning. Let

P(s,d)(t) be the shortest s-to-d path departing s at time d. There are two cases:

c /∈ P(s,d)(t) and c ∈ P(s,d)(t). In the first case, the star-mesh transformation does not

impact A(s,d)(t) because the added edges will not have arrival functions with values less

than alternate routes. In the second case, let uc and cv be the edges incident to c in

P(s,d)(t). Then A(s,d)(t) = A(v,d)◦Acv◦Auc◦A(s,u)(t) by the associativity of composition.

By Equation (3), A(v,d)◦Acv◦Auc◦A(s,u)(t) = A(v,d)◦Auv◦A(s,u)(t), as desired. Further,

any other path visiting a pair of vertices, say x and y incident to c will have no less

an arrival time; that is, A(s,d)(t) ≥ A(y,d) ◦ A(x,y) ◦ A(s,x)(t) ≥ A(y,d) ◦ Axy ◦ A(s,x)(t)

where the second inequality follows from Equation (3).

4.2 Efficiently reducing graphs of bounded treewidth

Using these transformations we can find A(s,d)(t) for any graph by repeatedly applying

star-mesh transformations and parallel reductions until the graph is the single edge

sd. At this point, by Lemma 5, A(s,d) = Asd. Unfortunately there are two significant

drawbacks to this method. The first problem is that a star-mesh transformation on a
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vertex of degree d creates
(
d
2

)
new edges, requiring O(d2) composition operations. In

general graphs this can be as bad as O(n2) new edges. The entire reduction, which

does |V | − 2 star-mesh transformations, will take O(n3) composition operations to

complete. The second problem is that the edge arrival functions can themselves gain

too many linear segments, no longer supporting efficient calculations, as evidenced

by Theorem 2.

For graphs of bounded treewidth, the second problem is solved by the polynomial

bound on the number of breakpoints in end-to-end arrival functions provided by

Theorem 3. We improve on the limitations suggested by the first problem by showing

that graphs of bounded treewidth with 2 terminals can by reduced with a linear

number of star-mesh transformations on stars of size dependent only on the treewidth.

This generalizes El-Mallah and Colbourn’s [8] result that all graphs of treewidth 3

without terminals can be wye-delta reduced (i.e. star-mesh reduced with stars of

degree at most 3). Formally, we show:

Theorem 6. A two-terminal graph G with n vertices and treewidth at most w can

be reduced using O(w2n) parallel reductions and O(n) star-mesh transformations of

degree at most w + 1.

To simplify the presentation of our proofs, we use nice tree decompositions. A nice

tree decomposition (T,X) of a graph is a tree decomposition such that (in addition

to properties we do not require for this thesis) for any adjacent bags Xi and Xj in X

either Xi = Xj, Xi = Xj ∪ {v}, or Xj = Xi ∪ {v}. Tree decompositions can be made
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nice in linear time [14]; for a graph with n vertices there is a nice tree decomposition

with O(n) bags. Given a nice tree decomposition T of a treewidth w graph G, we

make the following assumptions at each step of the reduction process:

A1 There are no parallel edges in G. If such edges exist we can simply parallel reduce

them. For every star-mesh transformation of degree k, at most
(
k
2

)
parallel edges

are introduced. Therefore, if we perform ` star-mesh transformations of degree

at most w + 1, at most O(w2`) parallel reductions will be required.

A2 For all leaf bags Xi ∈ T with parent Xj, Xi ) Xj. If this is not the case, then

Xi ⊆ Xj which means that we can safely remove Xi from T while maintaining

the nice tree decomposition property of T .

A3 There is more than one bag in T . If there is only one, there are w+1 or fewer ver-

tices remaining, each of which has maximum degree w. We can simply star-mesh

transform each of the non-terminal vertices (performing parallel reductions as

applicable) until only terminals remain, at which point the reduction is complete.

Note that, due to A1, the degree of a vertex is the same as the number of vertices

it is adjacent to (that is, we can ignore parallel edges). Therefore, we will refer to

these values interchangeably when operating under these assumptions.

At a high level, we reduce the graph by repeated elimination of leaf bags of T that

do not contain terminals until we are left with a path of bags, and then transform

that path until we are left with a single bag that we can reduce as described in A3.
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Theorem 7. Given a nice tree decomposition T of width w of a graph with two

terminals and where the above assumptions hold, either T is a path or there is a

leaf-bag Xi with parent Xj such that Xi \Xj is not a terminal.

Proof. Assume that T is not a path. Since T is a tree, there must then be three

or more leaf bags. By A2, a leaf bag Xi is a strict superset of its parent Xj. This

means that Xi \Xj is non-empty. Specifically, it is a single vertex that only appears

in Xi. Because there are two terminals, only two of these vertices that are exclusive

to a single leaf bag can be terminals. However, since there are at least three leaf

bags, at least one leaf bag must contain a vertex exclusive to that bag that is not a

terminal.

Theorem 8. Given a nice tree decomposition T of width w of a graph G with two

terminals and where the above assumptions hold, there is a non-terminal vertex v that

can be removed by way of a (w + 1)-star-mesh transformation without increasing the

treewidth of G.

Proof. If there exists a leaf-bag Xi in G with parent Xj such that Xi \ Xj is not a

terminal, let v = Xi \ Xj. Because T is a valid tree decomposition, v can only be

adjacent to the other vertices in Xi, of which there are at most w. Therefore, v can be

removed by way of a w-star-mesh transformation. Since the elements of Xi were the

only vertices affected by this transformation, any added edges have both endpoints

inside Xi, leaving the validity of the tree decomposition T unaffected.

If no such leaf-bag exists, by Lemma 7, T is a path, which we root arbitrarily at an
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endpoint of the path: label the bags in order X1, X2, . . . , X|T | where X|T | is the root

bag. Due to A2, we know that X1 6⊆ X2. Additionally, since the tree decomposition

is nice, X1 and X2 differ by a single vertex x. If x is not a terminal we would be able

to remove x by way of a star-mesh transformation as described above. Therefore, we

assume that x is terminal s, without loss of generality.

Let j be the lowest index with j > 1 such thatXj ⊃ Xj+1. If there is no such index,

let j = |T |, that is, let Xj be the root bag of the path. Clearly, then, X2 ⊆ . . . ⊆ Xj.

If Xj is not the root bag, then we can choose v to be the vertex in Xj \ Xj+1.

In this case, v may be adjacent to Xj ∪ {s}, as it may be present in any bag with

index less than j, but cannot be adjacent to any other vertex, as v 6∈ Xj+1 and T

is a valid tree decomposition. Therefore, the number of adjacencies that v has is

|Xj ∪ {s} \ {v}| ≤ w + 1.

If Xj is the root bag, we can choose v to be any non-terminal vertex in Xj. Because

Xj has size at most w+ 1 and includes every vertex in the graph besides s, there are

at most w + 2 vertices in the graph, out of which w + 1 are not v. Therefore, v can

only be adjacent to at most w + 1 other vertices.

The chosen vertex v is clearly degree w+ 1, which implies that it can be removed

using a (w+1)-star-mesh transformation. It remains to show that the resulting graph

still has treewidth w.

If Xj was the root bag before the deletion, we have shown that the graph had at

most w+ 2 vertices. With one of those vertices deleted, there are now w+ 1 vertices.
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Since these will all fit into a single bag in a tree decomposition of width w, clearly

the graph still has treewidth w. If Xj was not the root bag, then a similar argument

applies. The subgraph Xj ∪ {s}, which is the portion of G affected by the star-mesh

transformation, had at most w+ 2 vertices. With one of these vertices deleted, there

are now w+1 vertices. In addition, with the removal of v there is now only one vertex,

s, that this subgraph does not share with Xj+1. Therefore, we can combine this entire

subgraph into a single bag with parent Xj+1, maintaining a nice tree decomposition

with width w.

Theorem 6 follows from Lemma 8 and the assumptions. We perform (w+ 1)-star-

mesh transformations on the graph as described in Lemma 8 until the graph has only

two terminals remaining. There will be exactly n− 2 of these transformations, as we

can remove every vertex except for the terminals. Between these transformations, we

reduce every set of parallel edges in G as described by A1. Because there are n − 2

vertices that are star-mesh transformed, each of which has degree at most w+ 1, the

number of parallel reductions will be at most (n− 2)
(
w+1

2

)
, which is O(w2n).

A simple algorithm for solving time-dependent shortest paths in graphs of bounded

treewidth immediately follows. Simply reduce the graph as described above, main-

taining the end-to-end arrival function between the terminals as in Lemma 5. Then

the final edge, with its endpoints as the two terminals, will have the desired arrival

function.

Theorem 9. End-to-end arrival functions in a graph G with treewidth w can be
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computed in w2nO(log2 w) time.

Proof. By Theorem 6, we can reduce G using O(w2n) parallel reductions and O(n)

star-mesh transformations of maximum degree w + 1.

For each parallel reduction we compute the minimum of two piecewise linear

functions, which can be done in time linear in the number of breakpoints of the

functions. One can simply iterate through the linear pieces of each function, noting

when the functions intersect.

Similarly, for each k-star-mesh transformation we compute 2
(
k
2

)
∈ O(k2) compo-

sitions of piecewise linear functions, one for each direction of each new edge, each of

which can also be done time linear in the number of breakpoints of the functions. To

compute the composition of functions g ◦ f , one computes the image in g of break-

points of f , which is guaranteed to be sorted because the functions are monotone,

and merges the image with a list of breakpoints of g. Then, for each interval in the

merged list of breakpoints one calculates the value of the composition of the two

relevant segments of the original functions using simple algebra. Since k ≤ w+ 1, the

number of compositions of performed is O(w2).

By Theorem 3, we know that each end-to-end arrival function in G has nO(log2 w)

breakpoints, which means that every edge at any stage of the reduction is similarly

bounded. Therefore, the process will take O(w2n) · nO(log2 w) time for the parallel

reductions and O(n) · O(w2) · nO(log2 w) time for the star-mesh transformations, for a

total of w2nO(log2 w) time.
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5 Future work

In this thesis we showed that extending the wye-delta-wye transformations by adding

star-mesh transformations of bounded degree greater than three allows for the efficient

reduction of graphs of bounded treewidth. A natural question is if other classes

of graphs can be efficiently reduced with similar extensions. In our algorithm for

Theorem 6, we never use the ∆-Y transformation. Does using higher-degree star-

mesh transformations in conjunction with the ∆-Y transformation yield a reduction

algorithm for an interesting set of graphs?

The bound given by Foschini, Hershberger, and Suri [11] for general graphs is

tight: that is, there exists a graph for which an end-to-end arrival function has

nΘ(logn) breakpoints, and there are no graphs where any end-to-end arrival function is

asymptotically worse than this. Their lower bound proof method extends to graphs

of bounded treewidth. They construct a layered graph for which the layers have a

size dependent on n. These layers have the property of being valid bags for a tree

decomposition of the graph, so we can instead restrict the layers to have maximum

size w+1 for some constant width w to get a bound of nΩ(logw). However, Theorem 3

gives an upper bound of nO(log2 w). It remains open what a tight bound would be for

bounded-treewidth graphs.
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