AN ABSTRACT OF THE THESIS OF

Kenny Barrese for the degree of Honors Baccalaureate of Science of Mathematics and
Honors Baccalaureate of Arts of Philosophy presented on June 4, 2008. Title: Decoding
Methods for Linear Codes.

Abstract approved:

Mary Flahive

It is necessary to encode data when transmitting over a noisy channel in order for
errors to be detected and corrected. List decoding algorithms provide all code words
within a specified distance of a received word in order to be sufficiently robust for
cases when two or more code words are equidistant from a received word. This paper
details a probabilistic method to obtain multiple close code words, motivated by list
decoding methods, for linear codes over fields of two or three elements. It employs a
variation on the LLL-Algorithm for lattice reduction that allows the LLL-Algorithm to
determine small elements in a vector space. Although it fails to return all code words
within a specified distance of a received word, the method is sufficiently robust to

provide some information if a received word is equidistant to multiple code words.

Key Words: Coding Theory, List Decoding, Linear Codes, LLL-Algorithm

Corresponding e-mail address: barresek@gmail.com

©Copyright by Kenny Barrese
June 4, 2008

All Rights Reserved

Decoding Methods for Linear Codes

by

Kenny Barrese

A PROJECT
submitted to
Oregon State University

University Honors College

in partial fulfillment of
the requirements for the
degree of

Honors Baccalaureate of Science in Mathematics
Honors Baccalaureate of Arts in Philosophy

Presented June 4, 2008
Commencement June 2008

Honors Baccalaureate of Science in Mathematics and Honors Baccalaureate of Arts in
Philosophy project of Kenny Barrese presented on June 4, 2008.

APPROVED:

Mentor, representing Mathematics

Committee Member, representing Mathematics

Committee Member, representing Electrical Engineering and Computer Science

Chair, Department of Mathematics

Dean, University Honors College

| understand that my project will become part of the permanent collection of Oregon
State University, University Honors College. My signature below authorizes release of
my project to any reader upon request.

Kenny Barrese, Author

TABLE OF CONTENTS

INTRODUCTION.o e e 1
LINEAR CODES.......oiiiiiiiii e
LIST DECODING.... ...ttt e 20228
LLL-ALGORITHM.....o o010
LIST DECODING LINEARCODES..........ccceviiiieeenn 14
FIRST EXAMPLE.......o 219
SECOND EXAMPLE. ... e 23
CONCLUSION. .. ettt e e e e 27
APPENDICES........co 00030

APPENAIX Lo 31
ApPPendiX H...... e 000 32

Decoding Methods for Linear Codes

1. INTRODUCTION

When transmitting information, there is often the possibility that some of the data will
become corrupted, or changed, during the transmission. In light of this, it is often advan-
tageous to encode messages so that errors in transmission can be detected and, ideally,
corrected. Data so encoded includes additional information that is used to identify errors
and sometimes correct the messages. One common method for encoding data utilizes lin-
ear transformations, represented by matrices. Here we develop an alternative method for
reducing matrices in order to facilitate decoding linear codes. This reduction method em-
ploys the adaptation of the LLL-Algorithm given in [1]. The original LLL-Algorithm was
designed by Lenstra, Lenstra, and Lovatz [4]. Although the intent was to develop a true
method for list decoding general linear codes, this algorithm does not attain that level of
generality. This algorithm is limited to codes with an alphabet of eifheor Z3. Addi-
tionally, unlike list decoding, this algorithm does not provide a list of all code words within
a specified diameter. However, the algorithm presented here is sufficiently robust to handle
instances when the received word lies close to two distinct code words. This thesis as-
sumes the reader is familiar with the basics of Linear Algebra, as some general principles
of linear algebra will be used without proof or explanation. For background information,

we recommendrundamentals of Error-Correcting Codey Huffman and Pless [3].
1.1. Codes.

Definition 1.1. A m-n CodeoverF is a subset of" with |C| = |F™|, whereF denotes an

arbitrary, fixed finite field andS denotes the cardinality of set S.

As said above, in order for the code to detect errors, some extra information must be added.
This makes it necessary that- m. Let us denote the codé C F". It is implied that the

message to be encoded comes fiifip which is called thenessage space

2
In coding theory the terms “vector” and “word” are used interchangeably. Thus, the orig-
inal vector is termed thenessage wordthe encoded version of our message word is a
code word and the vector we finally receive is tineceived word By convention, let us
denote the message word by the code word by, and the received word by Because

m< n, Cis a proper subset d". If we receive a word € F", such that ¢ C, we know

there was an error in transmission.
1.2. Decoding.

Definition 1.2. TheHamming Distancéetween two words i@ is the number of positions

at which they contain different entries.

Lemma 1.3. For field F and ke N the Hamming Distance is a metric @H.

Proof. Because the Hamming Distance between two words is the number of entries in
which they differ, the Hamming Distance must be non-negative and, furthermore, can be
zero if and only if the two words are identical W differs fromv, in j entries, therv, must

differ from vy in j entries, thus the Hamming Distance is symmetric. Finally; ifliffers

from vz in j entries, ands, differs fromvs in k entries, therv; cannot possibly differ from

vy in more thanj + k entries, so the Hamming Distance satisfies the triangle inequality.
Thus, the Hamming Distance fulfills the three requirements of a metric.

O

BecauseC is a subset of", the Hamming Distance is a metric @h Let us denote the
Hamming Distance between two wordsy € C, by d(u,Vv). For example, lef = Z,, n= 3,
u=<1,0,1>andv=<10,0>, then d(,v) = 1 because u and v differ only in the third

position. Note that d(, V) is the number of non-zero entriesun- v.

Definition 1.4. The Hamming Weightof a word is its Hamming Distance from the zero

vector.

3

Note that the weight of a word is the number of non-zero entries that it contains. Because
the Hamming Distance is a metric @, the Hamming Weight is a norm. The most wide
spread method of error correction Nearest Neighbor decodingNearest Neighbor de-
coding works on the principle that the codeword at minimal Hamming Distance from the
received word has the highest probability of being the true message word. For example,
if the received word is a code word, no error correcting needs to be considered. In cases
where two or more code words have the identical minimal Hamming Distance from the

received word Nearest Neighbor decoding fails to correct the error.

Another method of decoding received words with erroriisisdecoding List decoding
produces a list of all code words within a fixed Hamming Distatha# a received word.
This paper examines my algorithm for decoding arbitrary Linear Codes over theZiglds

andZs, which attempts to replicate some of the advantages of list decoding.

2. LINEAR CODES

Definition 2.1. Am-n Linear Codes an m-n Code wher€ is an m-dimensional subspace

of F".

Elements of codes aretuples that we sometimes regard as row vectors and sometimes

as column vectors as necessary for matrix multiplication, determined by context.

Definition 2.2. Two m-n Linear Codeg;1 and (», are equivalentf and only if there exists
an n-dimensional square matrM such thatM has exactly one non-zero entry in every
row and column, and - M = (&, which indicates that when every element in the(gas

right multiplied byM the resulting set ig>.

Because there are many matrices which fit the requirements given for ivgtthere are

many codes that are equivalent to any given code. This definition provides little direct
information about the consequences of two codes being equivalent, as is often the case
with formal definitions. Since matrikl is square, we know that vectors (3 and (, all

have the same number of entries. Also, siktean be obtained by permuting the rows of a
diagonal matrix, the only operations that it can perform on elements &me permutations

and scaling of entries in the vectors©f.

2.1. The Parity Check and Generator Matrices.

Definition 2.3. TheParity Check Matrixof an m-n Linear Code is a matrix which, when
right multiplied by a code word, yields the zero vector, but, when right multiplied by a
non-code word, or a vector ifi" but not inC, yields a vector with at least one non-zero

entry.

For any Linear Code’, we know thatC is the kernel of a linear transformation becagse
is a subspace df". Thus, a Parity Check Matrix must exist for any giv€nBecause we
right multiply the Parity Check Matrix by elements Bf, the Parity Check Matrix must

haven columns. We can determine the number of rows necessary by remembering that we

5
desire the Parity Check Matrix to have mrdimensional kernel. In order for the nullity to

be at mosim the Parity Check Matrix must have no fewer than— m) rows; otherwise,

C would not have the same dimension as the kernel. Even if we construct a Parity Check
Matrix with more than(n— m) rows, only (n—m) can be linearly independent else the
nullity will be less thanm. We will assume that all Parity Check Matrices contain the
minimum necessary rows, thus it is assumed that the Parity Check Matrices with which we

deal aregln—m) x n matrices.

Definition 2.4. Thesyndromeof a received word is the product of left multiplying by

the Parity Check Matrix.

If the syndrome is zero, then the received word is indeed a code word, and a non-zero

syndrome indicates that an error has occurred.

Definition 2.5. A Generator Matribof a m-n Linear Code is any matrix representation of a

linear transformation such tha : F™ — .

Because botfi™ and C are vector spaces over the fi#dvith m basis vectors, any matrix
which maps a basis df™ onto a basis o will be a Generator Matrix. Note that our
message word is am-tuple. Becausen € F™, and code words are ifi", the Generator

Matrix must be arm x n matrix. Because” andF™ are both vector spaces ovérand

have the same dimension, they must have the same number of elements. We want every
message word iR™ to correspond to a single codeworddnso we can think of the relation
between the message space and the code space as a functidfnoim C. Additionally,

code words must correspond to a unique message word if decoding is to be possible, so
the function must be one-to-one. SinE® and C have the same number of elements, a

one-to-one function fron™ into ¢ must be a bijection.

Definition 2.6. Two Generator Matrices arequivalentif they correspond to equivalent
m-n Linear Code. That is, they are functid@s : F™ — ¢; and G, : F™ — (& such that

(1 is equivalent ta’.

6

Definition 2.7. When the Generator Matrix is written in the forr{nzm | A} , wherel
is the mx m identity matrix andA is an arbitrary mx (n—m) matrix, it is said to be in

Standard Form

Theorem 2.8. Every Generator Matrix can be converted into an equivalent Generator

Matrix in standard form through elementary row operations and permuting columns.

Proof. Because codes are the image of a 1-1 function from the message space, the only
element in the kernel of the Generator Matrix must be the zero vector. This implies that the
rows of the Generator Matrix form a linearly independent set. Thus, when the Generator
Matrix is reduced through Gauss-Jordan reduction, every row will contain a leading one in
a pivot column, with zeroes above and below the 1 in that column. By permuting columns
to collect the pivot columns on the left of the Generator Matrix, the standard form is ob-

tained.

Performing an elementary row operation on a Generator Matrix produces an equivalent
matrix. Any finite sequence of elementary row operations can be encoded into an ele-
mentary matrixe by performing the operations in the same orderlgn If G is the

result of performing a sequence of elementary row operations collecedmG;, then

G2 = EG;. For an arbitrary Generator Matri®, G : F™ — C by Vf € F™, G(f) = fG.
ThusG; : F™ — ¢ andG, : F™.E~1 — (3. Here the notatioff™ - E~1 again refers to

the set obtained by right multiplying every elemenffi by the matrixE~1. The matrix

E must be invertible because its Gauss-Jordan reduced fdg &nceE is an invertible,
m-dimensional matrixf™- E~1 = F™, Both G andG, mapF™ to (1, thusG; andG, are

equivalent.

Permuting columns of a Generator MatBg results in a Generator Matri&, for an
equivalent code. Because the dot product of the messagemwartl thei-th column of

the Generator Matrix produces théh position in the code word, permuting columnga®f

7

results in a permutation of the entries of vectorg’inThus the codes produced B4 and
G» are equivalent. Multiplying a column of a Generator Matrix by a non-zero element of

IF will produce a Generator Matrix for an equivalent code by similar reasoning.

Because elementary row operations and interchanging columns preserve code equivalency,
given an arbitrary Generator Matrix for an m-n Linear Code, we can always obtain a Gen-

erator Matrix for an equivalent m-n Linear Code in Standard form.

3. LIST DECODING

Definition 3.1. Given an arbitrary received word € F", an algorithm that determines if

r € Cis a method oError Detection

Definition 3.2. Given a received wordwhich we know not to be a code word, an algorithm
that provides the codeword(s) most likely to yieldue to an error in transmission is a

method oError Correction

Traditionally, decoding is performed according to the nearest neighbor principle. This
principle says that the code word at closest Hamming Distance to a given received word is
most likely to be the actual code word that was sent. Thus, if a code word is received, since

it is at distance zero from a code word, itself, it “corrects” to itself.

In order to be assured of correctinigerrors when decoding using the nearest neighbor
principle, it is necessary that no vectorlifi be within distancel of two elements ofC.

Thus the minimum Hamming Distance between two code words, atebigned diameter

must be at leastd®+ 1. This makes creating codes analogous to a sphere packing problem,
wherein we are attempting to fit the most spheres, each around to a code word, into the
limited space provided b§". However, if we allow spheres to overlap just a little, we can
obtain a significant increase in the number of errors we can correct, while admitting only a

few vectors that lie within the overlapping spheres of two or more code words ([2], page 6).

List decoding is an attempt to correct for more errors by increagingtil 2d is larger

than the designed diameter, which is analogous to enlarging the spheres about the code
words to allow overlap. List decoding provides a unique code word when possible and still
can handle the worst-case scenario, when a received word lies within two spheres. List
decoding provides a list of all code words within a specified distance, usijalya given
received word. This is the closed ball of Hamming radiusround the received wond

By (d). Because small increasesdmvill result in few overlaps between spheres, most often

9

this list will contain one element. Unlike nearest neighbor decoding however, list decoding

enables an algorithm to handle the unlikely worst case scenarios.

Decoding m-n Linear Codes makes use of some of the properties of the Parity Check Ma-
trix. Let S denote a Parity Check Matrix for the code BecauseC is the kernel ofS,

if r € C thenS-r = 0, otherwise the product will have at least one non-zero entry. It is
apparent tha$ provides a simple method of error detection. However, a method of error
correction is desirable. To this end, we note that the syndrome contains further useful in-
formation. We can think of our received wordas the sum of our code word, and an

error word,e:

r=c+e

Since multiplying by a matrix is a linear operation and C:

Sr=Sc¢c+S-e=0+S-e=S-e

Thus any vectoe € F" such thaS-e= S-r allows us to generate a code word ,rbye=c.

As noted above, when using nearest neighbor decoding, the goal is to acquire the error word
with the lowest Hamming Weight possible. When using a list decoding method however,
it is desirable to find all error words with Hamming Weight less tbaim order to account

for the possibility of a received word being close to multiple code words.

10

4, LLL-ALGORITHM

The LLL-Algorithm was originally put forward by A. K. Lenstra, H. W. Lenstra Jr., and L.
Lovasz to factor polynomials with rational coefficients [4]. Although the LLL-Algorithm is
probabilistic in nature, it functions well in all but a few, rare, aberrant conditions. Because
it efficiently returns a basis for a given lattice which is both nearly orthogonal and mini-
mized with respect to the standard Euclidean norm, the LLL-Algorithm is implemented in
a wide variety of applications. Here orthogonal vectors refer to vectors where the standard
inner product, or dot product, of any distinct pair is zero. The lattice generated by a given
basis< b1,by,...,bx > is every element that can be expressed as an integral combination
of basis elements;b; + axbo + ... + akby. A lattice contains only integral valued coordi-

nates when the basis vectors of a lattice contain only integral values.

One useful application of the LLL-Algorithm, developed in [1], is computing the minimum
distance, thelesigned diametebetween two code words in a linear code o¥eror Zs.
Because linear codes are closed under addition, the difference between any two code words
will itself be a code word. Thus, finding the minimum distance of a linear code corresponds

to finding a code word with minimal Hamming Weight.

Because the LLL-Algorithm probabilistically produces shortest, or minimal, lattice ba-
sis with respect to the standard Euclidean norm, we must limit our consideration to linear
codes wherd is eitherZ, or Z3. Both fields can be expressed in termg0f1, —1}, with

n

1= —1inZ>, thus the Hamming Weight of vectar=< vi,Vvo,..., vy > IS Zl|vi|, which is
i=

n
the number of non-zero entries in a vector, while the Euclidean noWZ\Evﬁ. Because

i=
Vi,vi € {0,1, -1}, |vi| = viz, the Hamming Weight o¥ is the square of its Euclidean norm.
Therefore, vectors that are short in the Euclidean norm will also be short in the Hamming

norm.

11

Although [1] presents their adaptation of the LLL-Algorithm as a method for determining
the minimum distance of a linear code, it solves the equivalent problem of finding elements
in a vector space with minimal Hamming Weight, which is the purpose for which we desire
to implement their method. For a psuedo-code implementation of the LLL-Algorithm from

Algorithm 7.6.4 in [1], please refer to the first Appendix.

4.1. Computing Small Elements in a Vector Space Although the convention is to per-
form LLL reduction upon the columns of a matrix, in [1] and here it is more intuitive to

think of performing the LLL reduction upon the rows, which is what we shall do.

The matrix upon which we will implement the LLL-Algorithm is as follows:

N-G I'm

N-gln 0

whereG is anm x n matrix whose rows are a basis for our vector space over finitelfield
N is a large integen is the number of elements in our fielgi andl, are identity matrices
of the indicated dimension, ar@ilis then x m zero matrix. Thus matriB is an(n+m)

square matrix.

Now we shall explain why matri8 must be constructed as it is. Although we wish to
find the shortest basis for sp&j(in order to determine the designed diameter of the cor-
responding m-n Linear Code, we cannot simply implement the LLL-Algorithm upon the
rows of G. This is because the LLL-Algorithm is designed to minimize the size of basis
elements of lattices iZ", whereas we are attempting to minimize the basis elements of
spaces over, or Z3. In order to force the LLL-Algorithm to perform the reduction mqpd

we placegl, beneaths. When we think about the lattice points that this adds, we see they

are elements of the form=< v1q,v2q,...,Vvhq >. Returning to our problem, this allows

12

the algorithm to reduce any vectge=< 91,02, ...,0, >€ Span() to an equivalent vector
g =<0;,0,...,0, > with each|g{| < (q/2) and integral by subtracting the projection of
g onto the dimensions spanned &ly, from g. Because we have subtracted off a multiple

of g, g/ =g modq, which mimics modular arithmetic.

The LLL-Algorithm requires the basis of a lattice as its input; thus, all the rows in our
input matrix must be linearly independent. Once we inclgidegbeneaths, it is sufficient

to append n, to the right ofG, with the zero matrix alongside the right lgf, which makes

the rows a basis of afm+ n)-dimensional lattice. However, the inclusion of the new
columns creates the possibility that the LLL-Algorithm might output a basis with larger
than necessary values in the firstolumns in order to avoid creating a large value in the
lastm columns, because the algorithm minimizes the length of the entire row. This is un-
desirable because, ultimately, the basis@awill occur in the firstn columns, and the data
contained in the lagh columns will be extraneous. In order to prevent the LLL-Algorithm
from returning lattice points with unnecessarily large entries in theficetumns, we scale
these columns by large integlrto force minimal entries in these rows. This completes

the rationale for the construction of matBx upon which we perform the LLL-Algorithm.

As mentioned above, once the algorithm terminates, we may discard tha ¢taétmns.

We are left with arifm+n) x n matrix. This matrix will contairmrows devoid of non-zero
entries. This occurs because every non-zero entry in thenfastlumns ofB is a multiple

of N, which is large. MatrixB containsn columns that are scaled Iy, corresponding to
n-dimensions of the span &. Thus the reduced basis must contalmearly independent
rows containing at least one non-zero element in therficelumns, otherwise the reduced
basis would not span the same lattice as the rows of mBtrikor the remainingn rows

to contain a non-zero multiple df is unnecessary, because the dimensions represented

by the firstn columns can be spanned hyows. In fact, them rows must not contain a

13

non-zero multiple oN, because the Euclidean norm of a row containing a non-zero mul-
tiple of N is significantly larger than one that does not, and the LLL-Algorithm produces a
basis minimized with respect to the Euclidean norm. The rows corresponding to the zero
vector provide no solutions, so they are discarded. The remaiiogs are the vectors in

N - sparfG) overZ that have minimal Euclidean norm, thus we rescale byifi/order to

obtain vectors in spaf) overZ, or Z3 with minimal Hamming Weight.

14

5. LIST DECODING OFLINEAR CODES

As we have seen, when we consider Linear Codes, decoding a received \w@aquiv-
alent to finding a vectoF € F" such thatS-e = S-r, whereS s the Parity Check Matrix,
because —ec C. Letp = S-r denote the syndrome, then possible error vectors will be

solutions to the following augmented matrix:

s 1P

Because hasn rows and onlyn —mcolumns, this is an underdetermined system, which
will provide multiple possible error vectors. However, the traditional method for solving
such linear systems, Gauss-Jordan elimination, will present the solution set in an undesir-
ably disorganized format, lacking useful algebraic structure, beqaisseot the zero vec-
tor. Thus we employ an alternative algorithm to find the possible error vectors as elements
of a vector space, a more structured construction. Since our system of linear equations is
non-homogeneous, the solutions will not form a vector space, however, we can find solu-
tions to most of the rows as a vector space. Because we utilize the LLL-Algorithm, we must

constrainF to eitherZ, or Z3. We begin with the Parity Check Matr&in the following

format:
S1.1 S1,2 cen S1.n
S_ 52.,1 s22 ce S2n
[Sh-m1 Sh-m2 ... Sn-mpn]

5.1. Row Reduction. The first task is to perform row reduction on the augmented matrix.
Gauss-Jordan elimination proceeds from the leftmost column to the right, establishing pivot
ones in each row, then using them to induce zeroes in the remaining places of that column.

In contrast, this algorithm starts on the far right column. Use the three types of elementary

15
row operations on this column, which pswritten as a column vector, to obtain a one as
the first entry of the column, with only zeroes beneath it, this is possible bepasset

the zero vector. At this point, the new augmented ma8ixyill be of the form:

8, s, . s, |l
s-| % e 0

L %—m,l %—m,Z %fm,n 0
Heres|'7j indicate the new entries of matri after the elementary row operations.

5.2. Forming a Homogeneous SystemAt this point it is useful to note that, ignoring the

first row, the matrixS' corresponds to a homogeneous system of linear equations. This
allows us to ignore the first row and solve the remaining homogeneous system of linear
equations, which we shall denote 8Y. The solutions will form a subspace Bf because

they are exactly the kernel &'.

$1 S22 - 5 |0
g — %{,1 SI3I,2 SIE’»/,n 0

_q‘/lfm,l #fm,z gwl—m,n 0

5.3. Gauss-Jordan Reduction.Use Gauss-Jordan reduction 8 to obtain the row-
reduced form. Permute columns to collect the pivot columns at the far left, forming a
(n—m—1)-dimensional Identity matrix on the left side of mat@&. Keep track of these
permutations in an elementary column operation ma&robtained by performing the ex-

act same permutation omadimensional Identity matrix. We will denote the row-reduced

form of S" by T.

16

l O e O t]_?nfm t]_’nfm_kl e t]_’n O
T . O 1 e O t27n7m t2’n7m+l e tz’n O
| 00 ..1 tnfmfl,nfm tnfmfl,nferl tnfmfl,n 0]

5.4. Determine a Basis.Now we can easily find a basis for the kernellofThe nullity of
T ism+ 1, which is to be expected because we hagelumns and onlyy—m— 1 rows, all
of which are linearly independent. Let us note the structufg,df= | |,_y_1 : T’ ‘ 0 }
this implies that the firsh — m— 1 entries of a solution to the system of equations repre-
sented by x = O will be dependent upon the lasit+ 1 entries. Construct a new mattikby
taking the transpose of the part of matfixdenoted byl’ above, then appending am+ 1-
dimensional Identity matrix to the right of this. The rows of matdx= [T’T S P

shown below, form a basis for the solution space.

—tl,nfm —t2.,nfm cee —tnfmfl,nfm 10 0
U— —tin-m+1 —ton-mi1 -0 —thmein-myz O 1 0
—t17n _t27n e —tnfmfl’n 0 O e 1_

Note thatU hasm+ 1 rows, corresponding to the nullity of.

The vector space spanned by the rowdJds the kernel ofS”, which implies that any
vector in sparlf) will satisfy all the equations, except the first, in the system of linear
equations represented B This means that any solution to the original system of linear
equations[s | p}, multiplied by E from step 3, to take into account necessary column
permutations, is an element of spdh(In fact, necessary and sufficient conditions for

v € F" to be a solution t&® are as follows:

(2) v € span{)

17

(2) v-§ =1,

whereS; denotes the first row of matri®. This must be the case, because condition (1)

is equivalent to being a solution for every row 8fexcept the first row and any vector
wherev-S; = 1 is a solution to the first row d8. Thus, vectors that meet both conditions

are in the intersection between the set containing the solution to the first row, and the set

containing the solutions all of the other rows simultaneously.

Additionally, any vector that meets the first condition can be easily made to meet the sec-
ond condition, provided that-S$; # 0. Suppose that- S = k € F such thatk # 0. In

this casek lv- S; = 1 because the dot product is a bilinear operator. We also know that
kv € spar(U) because spabj is a vector space arid v is a scalar multiple of an el-
ement we know to be in spdn). Thus, any vector that meets condition (1) and is not
orthogonal toS; will be a solution to the system of linear equations. However, we search
not just for a solution to the system of linear equations, but a solution that also has a low

Hamming Weight. To that end we employ the LLL-Algorithm.

5.5. LLL-Algorithm. The LLL-Algorithm takes a set of linearly independent vectors as

an input, then outputs the shortest, under the standard Euclidean norm, nearly orthogonal
basis for the lattice for which the input elements form a basis. Using the LLL-Algorithm to
find vectors of low Hamming Weight requires that we restfidb eitherZ, or Z3. Since

these two fields only have 0, 1, and possibly -1 as elements, minimizing lattice points with
regard to the standard Euclidean norm, which is the purpose of the LLL-Algorithm, is
equivalent to minimizing the Hamming Weight of the corresponding vector. Applying the
LLL-Algorithm as modified in section 4.1 to the rows UOfyields good candidates for the
smallest vectors, with respect to the Hamming Weight, in dgan{/e will then check the
second condition for these vectors, knowing that they must fulfill the first condition because

they are in spay).

18

Finally, once vectors of low Hamming Weight which satisfy both conditions are obtained,
they must be right multiplied by the elementary makithat we obtained during step three,
Gauss-Jordan Reduction. This is done in order to correct any permutations that occurred
during the algorithm'’s third step, wherein columns were permuted in order to collect the
identity matrix on the left side of matriX. Afterward we have a list of short error vectors
from which possible code words can be obtained, by subtracting error vectors from the

received word

19

6. FIRST EXAMPLE

For this example:

1 0 0 1 -1 -11 1
F— 7, S 1 -1 0 1 1 1 0 and o 0
11 -1 0 -1 -1 0 0
1 0 1 -1 1 1 0 —1]
6.1. Row Reduction. When we augmer with p we get:

(1 0 0 1 -1 -1 1| 1]
1 -1 0 1 1 1 0O
11 -1 0 -1 -1 0|0

i 1 0 1 -1 1 1 0]-1 |

We add the first row to the fourth row in order to induce zeros in all positions of the

syndrome column except the first, thus obtaining:

1 0 0 1 -1 -1 1/1]

1 -1 0 1 1 1 00
g_

1 1 -10 -1 -1 00

|10 100 0 10|

6.2. Forming a Homogeneous SystemTemporarily removing the first row to generate a

Homogeneous system of linear equations we obtain:

1 -1 0 1 1 1 oo
=] 1 1 -1 0 -1 -1 0]0
-1 0 1 0 0 0 10

20
6.3. Gauss-Jordan Elimination. Performing Guass-Jordan elimination upon magix

yields:

1001 0 O O
T={0100-1 -1 1
0011 0 0 -1

without requiring any permutation of columns, tHes= | .

0
0
0

6.4. Determine a Basis.If matrix U begins with—T'T, whereT = [| - T/

0] fol-
lowed by a four-dimensional Identity matrix, each row of matdixvill be a unique solu-
tion to the system of linear equations given by mafrixThus we construct the matrl

as follows:

-1 0 -1 100
0O 1 0 010
0O 1 0 001
0O -1 1 00O

2o o O,

6.5. LLL-Algorithm. Here we set large integ&f = 10, remember thaj = 3. Thus

(10 0 -10 10 0 0 0 100 O
0O 10 0 0 10 0 0 010D
0O 10 0 0 0 10 0 00 1 p
0O -10 10 0 0 0 10 0 0 0O |
30, 0 0 0 0 0 0O0O0O0
B=|0 3 0 0 0 0 0000#
O 0 30 0 0 0 0000
O 0 0 3 0 0 0000
O 0 0 03 0 0000
O 0 0 0 03 0000
0 0 0 0 0 0300000

21
We use Maple’s LLL function to perform the LLL-Algorithm dB, this code is included

in the second Appendix, and obtain the following matrix:

(0 0 0 00 0 0 -3 0 0 O
O 0 0 00 0O O 0-320 0
O 0 0 00 0 0 0 0-3 0
O 0 0 00 0O O O 0 0-3
10 0 -1010 0 0 0 1 0 0 O
0O 10 0 010 0 0 0 1 0 d
0 10 0 0 0 10 0 0 0 1 d
0O 0 10 0 10 0 10 0 1 0 1
0 10 10 0 0 -10 10 0 0 -1 1
100 0 1010 0 10 1 1 0O 1
20 10 10 10 0 0 -10 1 0 0 -1

Discarding the last four columns, which are extraneous, and the first four rows, which do

not correspond to possible non-zero solutions, and factorinileutlO yields:

-—1 0 -110 O O-
01 0 01 O O
01 0 00 1 O
0 01 01 0 1
0 1.1 00-1 1

-10 0 11 0 1

-11 1 10 0 -1

where rows two and three correspond to possible solutions with Hamming Weight 2, rows
one and four correspond to solutions of weight 3, rows five and six correspond to solutions
of weight 4, and row seven is a possible solution of weight 5. We check condition (2) when

our possible error vect@ equals row two:

22

€-$=<0,1,00,100>-<1,0,01-1,-1,1>=-1
Since the dot product is -1 and -1 == we multiply € by -1 to obtain an error vector:
e=<0,-1,0,0,—1,0,0>

To finish with this vector, we would multiplgby E in order to correct the column switching
from the third step, except in this calBe= | 7. Because it has the same weight, we proceed

to check the possible error vector represented by the third row:

€-5=<0,1,00,0,1,0>-<1,0,0,1,-1,-1,1>= -1
Again, we must multiply the vector by -1 to obtain an error vector:
e=<0,-1,0,0,0,—1,0>

Our algorithm terminates and returns two vectors with minimum Hamming Wefght,

0,-1,0,0,—1,0,0 >,< 0,—1,0,0,0,—1,0 >}.

23

7. SECOND EXAMPLE

Let us now consider an example of this algorithm over a finite field that iZpatr Z3.
We will start with the Parity Check Matrix and the syndrome and continue until it is time to
employ the LLL-Algorithm, which cannot be utilized in this example because minimizing

the Euclidean norm no longer minimizes the Hamming Distance. For this example:

F = Za1, S= and p=

L
o I U S
g © W K
© g b~ P
A W gk
N~ W o .

L) (O] =~ =
w

7.1. Row Reduction. When we augmer with p to obtainS we get:

(111111 12]
12345676
149533653
185947210

We multiply the first row by 6, which happens to bel2to obtain a 1 in the first row
position of the syndrome. Using this 1 as a pivot, we zero out the lower positions in the

syndrome to obtain:

6 6 6 6 6 6 61
9 10 01 2 3 40
5 8 29 7 7 90
7 3 0 4 10 2 80

7.2. Forming a Homogeneous SystemTemporarily removing the first row to generate a

Homogeneous system of linear equations we obtain:

24

9 10 01 2 3 40
S'=|5 8 29 7 7 90
7 3 04 10 2 80

7.3. Gauss-Jordan Elimination. Performing Gauss-Jordan reduction on ma#fiyields:

1007 4 9 90
T=]10107 10 10 QO
0013 6 10 40

Again, no column permutation is required to isolate the leading 1'E, sd 7.

7.4. Determine a Basis. Constructing matrixJ as before, we obtain:

I

4 8100
7 5010
2 1 001
2 07 00O

L= (@) (@) QO

7.5. LLL-Algorithm Replacement. The rows of this matrix suggest three possible errors
with Hamming Weight 4, rows one, two, and three, and one with Hamming Weight 3, row
four. Having obtained matrikx) we would apply the LLL-Algorithm to the rows dfl to
ascertain if errors with less weight existed, corresponding to rows in Gpavith fewer
non-zero entries, i) were overZ, or Z3. This is not possible because the Euclidean norm

is not equivalent to the Hamming norm when elements of absolute value greater than 1 are
included. However, there is an alternative method to consider. When we exianwiee
notice thatU = [A |4], since the right side is an Identity matrix, adding a multiple

of one row to another will invariably introduce another non-zero entry to that row, which
is undesirable since we are attempting to minimize the Hamming Weight, or number of
non-zero entries, of our error vectors. Thus, when we perform elementary row operations

on the vectors, the addition of non-zero elements in the last four columns must be offset by

25

gains made in the first three columns. Therefore, we are looking for a linear combination
of two rows that yields new zeros in two or three of the first three columns. If we make the

first entry in each row 1, we obtain the following matrix:

112300
187080 (
166001
109000 1

which indicates that we cannot induce a zero the first and second or third entry simultane-

ously. In order to test all possibilities, we set the second entry in each of the first three rows
to one, to determine if any combination of rows will produce zeros the second two entries.

We obtain the matrix:

300
010
00 2
109000

showing that there is no combination of two rows which will zero the second and third entry.

112
7 15
2 11

= (@) (@) O

The fourth row has Hamming Weight 3, which can see is the best we can do. Let us examine
the possible error vectef obtained by the fourth row. In this cagé=< 1,0,9,0,0,0,1 >.
We know thate’ = eif and only if€ - § = 1.

e(Sl:< 1,0,9,0,0,0,1> - <6,6,6,6,6,6,6 >
=(149+1)x6
=0x6

=0

26
Since€ -e = 0, we cannot obtain an error vector frogh For another possible error

vector, we must accept a vector of weight 4, let us simply use the first row:

<1,1,2,3,0,0,0>-S, =9

so, since5=9%,5.<1,1,2,3,0,0,0> = < 5,5,10,4,0,0,0 > corresponds to a possible
error vector of weight 4. Since we performed no column switckes 7. Thus, this is the
vector we would subtract from our received word in order to obtain a code word that may
correspond to our received word. Note however, that since the sum of the elements in rows

two and three does not equal zero, they too will produce possible error vectors of weight 4.

27

8. CONCLUSION

8.1. Overview. In this paper we developed an algorithm for providing code words in a
linear codes over., or Z3 that are likely to correspond to a given received word with error,
an algorithm which essentially produces multiple “best guess” possible error vectors with
minimal Hamming Weight. Although this algorithm does not produce a true list decoding
method, as it will not provide all possible code words within a specified distance of a given
received word, because it is designed to return multiple error vectors the algorithm does

not necessarily fail when the spheres around code words begin to overlap.

The method by which these error vectors are obtained involves an alternative reduction
method for underdetermined, non-Homogeneous systems of linear equations. This reduc-
tion method allows us to consider solutions to the equations in the system, other than the
first, as a subspace &f. This allows us to take advantage of the lattice-like structure of

the subspace in order to employ the LLL-Algorithm.

The LLL-Algorithm works recursively on a lattice basis in order to determine the ba-
sis with shortest possible basis vectors, with respect to the standard Euclidean norm. In
7, andZs3 these will be the vectors with lowest Hamming Weight, because a vector’s Ham-
ming Weight is the square of its Euclidean length as shown in [1]. Once short candidates
for solutions to the system of linear equations are obtained, a dot product is sufficient to

test whether they satisfy the first equation, and thus whether they are possible error vectors.

8.2. Further Consideration. Using the LLL-Algorithm limitsF to eitherZ, or Zs. It

would be desirable to invent some different lattice basis which will allow the LLL-Algorithm
to find vectors of low Hamming Weight over general finite fields. Lacking that, further
investigation of matrix reduction may develop a method to generate short error vectors di-
rectly from matrixU, which would eliminate the need to employ the LLL-Algorithm. A

method such as | envision would involve a rigorous generalization of the alternative to the

28

LLL-Algorithm employed in the second example.

When considering solutions to the underdetermined, non-homogeneous system of equa-
tions, solutions to the rows excepting the top row, the system represent&d foym a

vector space, for which we can easily determine a basis. Because solutions to the first row
require a non-zero dot product with the first row, they are, in a sense, the vectors of the
subspace that are not orthogonal to the first row. It seems that there should be a method to
use this geometric structure to impose structure upon the solutions to the entire system of
linear equations. Unfortunately, my investigation into these questions is limited by time,
which grows all too short. Thus | must leave this enterprise as is, for the moment. The

process has been illuminating and thought provoking, but must come to an end here.

29

REFERENCES

[1] Betten, Anton; Braun, Michael; Fripertinger, Harald; Kerber, Adalbert; Kohnert, Axel; and Wasser-
mann, Alfred.Error-Correcting Linear CodesNew York: Springer. 2006.

[2] Guruswami, VenkateasaAlgorithmic Results in List Decodin@oston: Now Publishers Inc. 2007.

[3] Huffman, W. Cary and Vera Plessundamentals of Error-Correcting Codes 2nd étkw York: Cam-
bridge University Press. 2003.

[4] Lenstra, A. K.; Lenstra, H. W.; and Lovasz, LFdctoring Polynomials with Rational Coefficierits
Mathematische Annalen 261. (1982). 515-534.

E-mail addressbarresekGonid.orst.edu

Appendices

30

31
Appendix |
In the following algorithm we are reducing the badi€’{, b, b(™-1). The Gram-
Schmidt orthogonal basis obtained from%, b,bMY) is B@ bW, ... pMm-1)).
%. In the sixth line,m(b®)
denotesb® and i (b*+1)) is b*+D + b 4 bM). Thus the sixth line is comparing the

The Gram-Schmidt coefficents augj, wherepj =

Euclidean length of thi-th basis vector projected upon the space perpendicular to the first
k basis vectors;b® b® ... bk-1))L with the Euclidean length of the next basis vector

projected upon the same space.

Q) Letde Rwith1/4<y< 1.

2) Setk:= 0.

(3) do

(4) 1for j=0,....k—1

() replaceb® by b — [y ;b0
(6) 2.if & | Ti(b™) [[2>[| Tie(b*H V) |1* then
(7 interchangeb®+Y andb®
(8) update bV, b andp

9 setk := maxk—1,0)

(10) else

(11) setk:=k+1

(12) until k=m—1

32

Appendix Il
The Maple code for the LLL-Algorithm performed on page 16:

> with(IntegerRelations):
> LLL([[-10,0,-10,10,0,0,0,1,0,0,0],

(0,10,0,0,10,0,0,0,1,0,07,
(0,10,0,0,0,10,0,0,0,1,07,
(0,-10,10,0,0,0,10,0,0,0,17,
(30,0,0,0,0,0,0,0,0,0,0
> 1[0,30,0,0,0,0,0,0,0,0,0
(
(
[
(
(

4

4

]

]
0,0,30,0,0,0,0,0,0,0,07,
0,0,0,30,0,0,0,0,0,0,07,
0,0,0,0,30,0,0,0,0,0,0]
0,0,0,0,0,30,0,0,0,0,0]

]

0,0,0,0,0,0,30,0,0,0,0]], "integer’);

4

[0,0,0,0,0,0,0,-3,0,0,0],[0,0,0,0,0,0,0,0,—3,0,0],[0,0,0,0,0,0, 0, 0,0, —3, 0],
[0,0,0,0,0,0,0,0,0,0,—3], [-10,0, —10, 10,0, 0, 0, 1, 0, 0, 0],

0,10, 0,0,10,0,0,0,1,0,0], 0,10,0,0,0,10,0,0,0, 1, 0],

0,0, 10,0,10,0, 10,0, 1,0, 1], [0, 10, 10, 0, 0, —10, 10,0, 0, —1, 1],

20,0,0,10,10,0, 10, 1, 1, 0, 1], [10, 10, 10, 10, 0, 0, —10, 1, 0, 0, —1]]

	Decoding Methods for Linear Codes.pdf
	Coding
	Appendices
	Appendix 1
	Maple stuff

