
AN ABSTRACT OF THE THESIS OF

Kenny Barrese for the degree of Honors Baccalaureate of Science of Mathematics and
Honors Baccalaureate of Arts of Philosophy presented on June 4, 2008. Title: Decoding
Methods for Linear Codes.

Abstract approved:

 Mary Flahive

It is necessary to encode data when transmitting over a noisy channel in order for

errors to be detected and corrected. List decoding algorithms provide all code words

within a specified distance of a received word in order to be sufficiently robust for

cases when two or more code words are equidistant from a received word. This paper

details a probabilistic method to obtain multiple close code words, motivated by list

decoding methods, for linear codes over fields of two or three elements. It employs a

variation on the LLL-Algorithm for lattice reduction that allows the LLL-Algorithm to

determine small elements in a vector space. Although it fails to return all code words

within a specified distance of a received word, the method is sufficiently robust to

provide some information if a received word is equidistant to multiple code words.

Key Words: Coding Theory, List Decoding, Linear Codes, LLL-Algorithm

Corresponding e-mail address: barresek@gmail.com

©Copyright by Kenny Barrese

June 4, 2008

All Rights Reserved

Decoding Methods for Linear Codes

by

Kenny Barrese

A PROJECT

submitted to

Oregon State University

University Honors College

in partial fulfillment of
the requirements for the

degree of

Honors Baccalaureate of Science in Mathematics
Honors Baccalaureate of Arts in Philosophy

Presented June 4, 2008
Commencement June 2008

Honors Baccalaureate of Science in Mathematics and Honors Baccalaureate of Arts in
Philosophy project of Kenny Barrese presented on June 4, 2008.

APPROVED:

Mentor, representing Mathematics

Committee Member, representing Mathematics

Committee Member, representing Electrical Engineering and Computer Science

Chair, Department of Mathematics

Dean, University Honors College

I understand that my project will become part of the permanent collection of Oregon
State University, University Honors College. My signature below authorizes release of
my project to any reader upon request.

Kenny Barrese, Author

TABLE OF CONTENTS

 Page
 INTRODUCTION………….…………………………………………1

 LINEAR CODES……………………………………………………...4

 LIST DECODING…………………………………………………….8

 LLL-ALGORITHM…………………………………………………..10

 LIST DECODING LINEAR CODES………………………………...14

 FIRST EXAMPLE……………………………………………………19

 SECOND EXAMPLE………………………………………………...23

 CONCLUSION……………………………………………………….27

 APPENDICES………………………………………………………...30

 Appendix I………………………………………………….…31
 Appendix II…………………………………………………....32

Decoding Methods for Linear Codes

1. INTRODUCTION

When transmitting information, there is often the possibility that some of the data will

become corrupted, or changed, during the transmission. In light of this, it is often advan-

tageous to encode messages so that errors in transmission can be detected and, ideally,

corrected. Data so encoded includes additional information that is used to identify errors

and sometimes correct the messages. One common method for encoding data utilizes lin-

ear transformations, represented by matrices. Here we develop an alternative method for

reducing matrices in order to facilitate decoding linear codes. This reduction method em-

ploys the adaptation of the LLL-Algorithm given in [1]. The original LLL-Algorithm was

designed by Lenstra, Lenstra, and Lovatz [4]. Although the intent was to develop a true

method for list decoding general linear codes, this algorithm does not attain that level of

generality. This algorithm is limited to codes with an alphabet of eitherZ2 or Z3. Addi-

tionally, unlike list decoding, this algorithm does not provide a list of all code words within

a specified diameter. However, the algorithm presented here is sufficiently robust to handle

instances when the received word lies close to two distinct code words. This thesis as-

sumes the reader is familiar with the basics of Linear Algebra, as some general principles

of linear algebra will be used without proof or explanation. For background information,

we recommendFundamentals of Error-Correcting Codesby Huffman and Pless [3].

1.1. Codes.

Definition 1.1. A m-n CodeoverF is a subset ofFn with |C | = |Fm|, whereF denotes an

arbitrary, fixed finite field and|S| denotes the cardinality of set S.

As said above, in order for the code to detect errors, some extra information must be added.

This makes it necessary thatn > m. Let us denote the codeC ⊆ Fn. It is implied that the

message to be encoded comes fromFm, which is called themessage space.

2

In coding theory the terms “vector” and “word” are used interchangeably. Thus, the orig-

inal vector is termed themessage word, the encoded version of our message word is a

code word, and the vector we finally receive is thereceived word. By convention, let us

denote the message word bym, the code word byc, and the received word byr . Because

m< n, C is a proper subset ofFn. If we receive a wordr ∈ Fn, such thatr /∈ C , we know

there was an error in transmission.

1.2. Decoding.

Definition 1.2. TheHamming Distancebetween two words inC is the number of positions

at which they contain different entries.

Lemma 1.3. For fieldF and k∈ N the Hamming Distance is a metric onFk.

Proof. Because the Hamming Distance between two words is the number of entries in

which they differ, the Hamming Distance must be non-negative and, furthermore, can be

zero if and only if the two words are identical. Ifv1 differs fromv2 in j entries, thenv2 must

differ from v1 in j entries, thus the Hamming Distance is symmetric. Finally, ifv1 differs

from v2 in j entries, andv2 differs fromv3 in k entries, thenv1 cannot possibly differ from

v1 in more thanj + k entries, so the Hamming Distance satisfies the triangle inequality.

Thus, the Hamming Distance fulfills the three requirements of a metric.

�

BecauseC is a subset ofFn, the Hamming Distance is a metric onC . Let us denote the

Hamming Distance between two words,u,v∈ C , by d(u,v). For example, letF = Z2, n= 3,

u =< 1,0,1 > andv =< 1,0,0 >, then d(u,v) = 1 because u and v differ only in the third

position. Note that d(u,v) is the number of non-zero entries inu−v.

Definition 1.4. TheHamming Weightof a word is its Hamming Distance from the zero

vector.

3

Note that the weight of a word is the number of non-zero entries that it contains. Because

the Hamming Distance is a metric onFk, the Hamming Weight is a norm. The most wide

spread method of error correction isNearest Neighbor decoding. Nearest Neighbor de-

coding works on the principle that the codeword at minimal Hamming Distance from the

received word has the highest probability of being the true message word. For example,

if the received word is a code word, no error correcting needs to be considered. In cases

where two or more code words have the identical minimal Hamming Distance from the

received word Nearest Neighbor decoding fails to correct the error.

Another method of decoding received words with errors islist decoding. List decoding

produces a list of all code words within a fixed Hamming Distanced of a received word.

This paper examines my algorithm for decoding arbitrary Linear Codes over the fieldsZ2

andZ3, which attempts to replicate some of the advantages of list decoding.

4

2. LINEAR CODES

Definition 2.1. A m-n Linear Codeis an m-n Code whereC is an m-dimensional subspace

of Fn.

Elements of codes aren-tuples that we sometimes regard as row vectors and sometimes

as column vectors as necessary for matrix multiplication, determined by context.

Definition 2.2. Two m-n Linear Codes,C1 andC2, areequivalentif and only if there exists

an n-dimensional square matrixM such thatM has exactly one non-zero entry in every

row and column, andC1 ·M = C2, which indicates that when every element in the setC1 is

right multiplied byM the resulting set isC2.

Because there are many matrices which fit the requirements given for matrixM , there are

many codes that are equivalent to any given code. This definition provides little direct

information about the consequences of two codes being equivalent, as is often the case

with formal definitions. Since matrixM is square, we know that vectors inC1 andC2 all

have the same number of entries. Also, sinceM can be obtained by permuting the rows of a

diagonal matrix, the only operations that it can perform on elements inC1 are permutations

and scaling of entries in the vectors ofC1.

2.1. The Parity Check and Generator Matrices.

Definition 2.3. TheParity Check Matrixof an m-n Linear Code is a matrix which, when

right multiplied by a code word, yields the zero vector, but, when right multiplied by a

non-code word, or a vector inFn but not inC , yields a vector with at least one non-zero

entry.

For any Linear CodeC , we know thatC is the kernel of a linear transformation becauseC

is a subspace ofFn. Thus, a Parity Check Matrix must exist for any givenC . Because we

right multiply the Parity Check Matrix by elements ofFn, the Parity Check Matrix must

haven columns. We can determine the number of rows necessary by remembering that we

5

desire the Parity Check Matrix to have anm-dimensional kernel. In order for the nullity to

be at mostm the Parity Check Matrix must have no fewer than(n−m) rows; otherwise,

C would not have the same dimension as the kernel. Even if we construct a Parity Check

Matrix with more than(n−m) rows, only(n−m) can be linearly independent else the

nullity will be less thanm. We will assume that all Parity Check Matrices contain the

minimum necessary rows, thus it is assumed that the Parity Check Matrices with which we

deal are(n−m)×n matrices.

Definition 2.4. Thesyndromeof a received wordr is the product of left multiplyingr by

the Parity Check Matrix.

If the syndrome is zero, then the received word is indeed a code word, and a non-zero

syndrome indicates that an error has occurred.

Definition 2.5. A Generator Matrixof a m-n Linear Code is any matrix representation of a

linear transformation such thatG : Fm−→ C .

Because bothFm andC are vector spaces over the fieldF with m basis vectors, any matrix

which maps a basis ofFm onto a basis ofC will be a Generator Matrix. Note that our

message word is anm-tuple. Becausem ∈ Fm, and code words are inFn, the Generator

Matrix must be anm× n matrix. BecauseC andFm are both vector spaces overF and

have the same dimension, they must have the same number of elements. We want every

message word inFm to correspond to a single codeword inC , so we can think of the relation

between the message space and the code space as a function fromFm into C . Additionally,

code words must correspond to a unique message word if decoding is to be possible, so

the function must be one-to-one. SinceFm andC have the same number of elements, a

one-to-one function fromFm into C must be a bijection.

Definition 2.6. Two Generator Matrices areequivalentif they correspond to equivalent

m-n Linear Code. That is, they are functionsG1 : Fm−→ C1 andG2 : Fm−→ C2 such that

C1 is equivalent toC2.

6

Definition 2.7. When the Generator Matrix is written in the form:
[
Im | A

]
, whereIm

is the m×m identity matrix andA is an arbitrary m× (n−m) matrix, it is said to be in

Standard Form.

Theorem 2.8. Every Generator Matrix can be converted into an equivalent Generator

Matrix in standard form through elementary row operations and permuting columns.

Proof. Because codes are the image of a 1-1 function from the message space, the only

element in the kernel of the Generator Matrix must be the zero vector. This implies that the

rows of the Generator Matrix form a linearly independent set. Thus, when the Generator

Matrix is reduced through Gauss-Jordan reduction, every row will contain a leading one in

a pivot column, with zeroes above and below the 1 in that column. By permuting columns

to collect the pivot columns on the left of the Generator Matrix, the standard form is ob-

tained.

Performing an elementary row operation on a Generator Matrix produces an equivalent

matrix. Any finite sequence of elementary row operations can be encoded into an ele-

mentary matrixE by performing the operations in the same order onIm. If G2 is the

result of performing a sequence of elementary row operations collected inE on G1, then

G2 = EG1. For an arbitrary Generator MatrixG, G : Fm −→ C by ∀f ∈ Fm, G(f) = fG.

ThusG1 : Fm−→ C1 andG2 : Fm ·E−1 −→ C1. Here the notationFm ·E−1 again refers to

the set obtained by right multiplying every element inFm by the matrixE−1. The matrix

E must be invertible because its Gauss-Jordan reduced form isIm. SinceE is an invertible,

m-dimensional matrix,Fm ·E−1 = Fm. BothG1 andG2 mapFm to C1, thusG1 andG2 are

equivalent.

Permuting columns of a Generator MatrixG1 results in a Generator MatrixG2 for an

equivalent code. Because the dot product of the message wordm and thei-th column of

the Generator Matrix produces thei-th position in the code word, permuting columns ofG

7

results in a permutation of the entries of vectors inC . Thus the codes produced byG1 and

G2 are equivalent. Multiplying a column of a Generator Matrix by a non-zero element of

F will produce a Generator Matrix for an equivalent code by similar reasoning.

Because elementary row operations and interchanging columns preserve code equivalency,

given an arbitrary Generator Matrix for an m-n Linear Code, we can always obtain a Gen-

erator Matrix for an equivalent m-n Linear Code in Standard form.

�

8

3. LIST DECODING

Definition 3.1. Given an arbitrary received wordr ∈ Fn, an algorithm that determines if

r ∈ C is a method ofError Detection.

Definition 3.2. Given a received wordr which we know not to be a code word, an algorithm

that provides the codeword(s) most likely to yieldr due to an error in transmission is a

method ofError Correction.

Traditionally, decoding is performed according to the nearest neighbor principle. This

principle says that the code word at closest Hamming Distance to a given received word is

most likely to be the actual code word that was sent. Thus, if a code word is received, since

it is at distance zero from a code word, itself, it “corrects” to itself.

In order to be assured of correctingd errors when decoding using the nearest neighbor

principle, it is necessary that no vector inFn be within distanced of two elements ofC .

Thus the minimum Hamming Distance between two code words, or thedesigned diameter

must be at least 2d+1. This makes creating codes analogous to a sphere packing problem,

wherein we are attempting to fit the most spheres, each around to a code word, into the

limited space provided byFn. However, if we allow spheres to overlap just a little, we can

obtain a significant increase in the number of errors we can correct, while admitting only a

few vectors that lie within the overlapping spheres of two or more code words ([2], page 6).

List decoding is an attempt to correct for more errors by increasingd until 2d is larger

than the designed diameter, which is analogous to enlarging the spheres about the code

words to allow overlap. List decoding provides a unique code word when possible and still

can handle the worst-case scenario, when a received word lies within two spheres. List

decoding provides a list of all code words within a specified distance, usuallyd, of a given

received word. This is the closed ball of Hamming radiusd around the received wordr ,

Br (d). Because small increases ind will result in few overlaps between spheres, most often

9

this list will contain one element. Unlike nearest neighbor decoding however, list decoding

enables an algorithm to handle the unlikely worst case scenarios.

Decoding m-n Linear Codes makes use of some of the properties of the Parity Check Ma-

trix. Let S denote a Parity Check Matrix for the codeC . BecauseC is the kernel ofS,

if r ∈ C thenS· r = 0, otherwise the product will have at least one non-zero entry. It is

apparent thatS provides a simple method of error detection. However, a method of error

correction is desirable. To this end, we note that the syndrome contains further useful in-

formation. We can think of our received wordr as the sum of our code word,c, and an

error word,e:

r = c+e

Since multiplying by a matrix is a linear operation andc∈ C :

S· r = S·c+S·e= 0+S·e= S·e

Thus any vectore∈Fn such thatS·e= S·r allows us to generate a code word , byr−e= c.

As noted above, when using nearest neighbor decoding, the goal is to acquire the error word

with the lowest Hamming Weight possible. When using a list decoding method however,

it is desirable to find all error words with Hamming Weight less thand, in order to account

for the possibility of a received word being close to multiple code words.

10

4. LLL-A LGORITHM

The LLL-Algorithm was originally put forward by A. K. Lenstra, H. W. Lenstra Jr., and L.

Lovasz to factor polynomials with rational coefficients [4]. Although the LLL-Algorithm is

probabilistic in nature, it functions well in all but a few, rare, aberrant conditions. Because

it efficiently returns a basis for a given lattice which is both nearly orthogonal and mini-

mized with respect to the standard Euclidean norm, the LLL-Algorithm is implemented in

a wide variety of applications. Here orthogonal vectors refer to vectors where the standard

inner product, or dot product, of any distinct pair is zero. The lattice generated by a given

basis< b1,b2, . . . ,bk > is every element that can be expressed as an integral combination

of basis elements,a1b1 +a2b2 + . . .+akbk. A lattice contains only integral valued coordi-

nates when the basis vectors of a lattice contain only integral values.

One useful application of the LLL-Algorithm, developed in [1], is computing the minimum

distance, thedesigned diameter, between two code words in a linear code overZ2 or Z3.

Because linear codes are closed under addition, the difference between any two code words

will itself be a code word. Thus, finding the minimum distance of a linear code corresponds

to finding a code word with minimal Hamming Weight.

Because the LLL-Algorithm probabilistically produces shortest, or minimal, lattice ba-

sis with respect to the standard Euclidean norm, we must limit our consideration to linear

codes whereF is eitherZ2 or Z3. Both fields can be expressed in terms of{0,1,−1}, with

1=−1 in Z2, thus the Hamming Weight of vectorv =< v1,v2, . . . ,vn > is
n

∑
i=1

|vi |, which is

the number of non-zero entries in a vector, while the Euclidean norm is

√
n

∑
i=1

v2
i . Because

∀i, vi ∈ {0,1,−1}, |vi |= v2
i , the Hamming Weight ofv is the square of its Euclidean norm.

Therefore, vectors that are short in the Euclidean norm will also be short in the Hamming

norm.

11

Although [1] presents their adaptation of the LLL-Algorithm as a method for determining

the minimum distance of a linear code, it solves the equivalent problem of finding elements

in a vector space with minimal Hamming Weight, which is the purpose for which we desire

to implement their method. For a psuedo-code implementation of the LLL-Algorithm from

Algorithm 7.6.4 in [1], please refer to the first Appendix.

4.1. Computing Small Elements in a Vector Space.Although the convention is to per-

form LLL reduction upon the columns of a matrix, in [1] and here it is more intuitive to

think of performing the LLL reduction upon the rows, which is what we shall do.

The matrix upon which we will implement the LLL-Algorithm is as follows:

B =


N ·G Im

N ·qIn 0


whereG is anm×n matrix whose rows are a basis for our vector space over finite fieldF,

N is a large integer,q is the number of elements in our field,Im andIn are identity matrices

of the indicated dimension, and0 is then×m zero matrix. Thus matrixB is an(n+ m)

square matrix.

Now we shall explain why matrixB must be constructed as it is. Although we wish to

find the shortest basis for span(G) in order to determine the designed diameter of the cor-

responding m-n Linear Code, we cannot simply implement the LLL-Algorithm upon the

rows of G. This is because the LLL-Algorithm is designed to minimize the size of basis

elements of lattices inZn, whereas we are attempting to minimize the basis elements of

spaces overZ2 or Z3. In order to force the LLL-Algorithm to perform the reduction modq,

we placeqIn beneathG. When we think about the lattice points that this adds, we see they

are elements of the formv =< v1q,v2q, . . . ,vnq >. Returning to our problem, this allows

12

the algorithm to reduce any vectorg =< g1,g2, . . . ,gn >∈ span(G) to an equivalent vector

g′ =< g′1,g
′
2, . . . ,g

′
n > with each|g′i | ≤ (q/2) and integral by subtracting the projection of

g onto the dimensions spanned byaIn from g. Because we have subtracted off a multiple

of q, g′i ≡ gi modq, which mimics modular arithmetic.

The LLL-Algorithm requires the basis of a lattice as its input; thus, all the rows in our

input matrix must be linearly independent. Once we includeqIn beneathG, it is sufficient

to appendIm to the right ofG, with the zero matrix alongside the right ofIn, which makes

the rows a basis of an(m+ n)-dimensional lattice. However, the inclusion of the newm

columns creates the possibility that the LLL-Algorithm might output a basis with larger

than necessary values in the firstn columns in order to avoid creating a large value in the

lastm columns, because the algorithm minimizes the length of the entire row. This is un-

desirable because, ultimately, the basis forG will occur in the firstn columns, and the data

contained in the lastmcolumns will be extraneous. In order to prevent the LLL-Algorithm

from returning lattice points with unnecessarily large entries in the firstn columns, we scale

these columns by large integerN to force minimal entries in these rows. This completes

the rationale for the construction of matrixB, upon which we perform the LLL-Algorithm.

As mentioned above, once the algorithm terminates, we may discard the lastm columns.

We are left with an(m+n)×n matrix. This matrix will containm rows devoid of non-zero

entries. This occurs because every non-zero entry in the firstn columns ofB is a multiple

of N, which is large. MatrixB containsn columns that are scaled byN, corresponding to

n-dimensions of the span ofB. Thus the reduced basis must containn linearly independent

rows containing at least one non-zero element in the firstn columns, otherwise the reduced

basis would not span the same lattice as the rows of matrixB. For the remainingm rows

to contain a non-zero multiple ofN is unnecessary, because the dimensions represented

by the firstn columns can be spanned byn rows. In fact, them rows must not contain a

13

non-zero multiple ofN, because the Euclidean norm of a row containing a non-zero mul-

tiple of N is significantly larger than one that does not, and the LLL-Algorithm produces a

basis minimized with respect to the Euclidean norm. The rows corresponding to the zero

vector provide no solutions, so they are discarded. The remainingn rows are the vectors in

N · span(G) overZ that have minimal Euclidean norm, thus we rescale by 1/N in order to

obtain vectors in span(G) overZ2 or Z3 with minimal Hamming Weight.

14

5. LIST DECODING OFL INEAR CODES

As we have seen, when we consider Linear Codes, decoding a received wordr is equiv-

alent to finding a vectorF ∈ Fn such thatS·e= S· r , whereS is the Parity Check Matrix,

becauser −e∈ C . Let p = S· r denote the syndrome, then possible error vectors will be

solutions to the following augmented matrix:

[
S | p

]

BecauseShasn rows and onlyn−mcolumns, this is an underdetermined system, which

will provide multiple possible error vectors. However, the traditional method for solving

such linear systems, Gauss-Jordan elimination, will present the solution set in an undesir-

ably disorganized format, lacking useful algebraic structure, becausep is not the zero vec-

tor. Thus we employ an alternative algorithm to find the possible error vectors as elements

of a vector space, a more structured construction. Since our system of linear equations is

non-homogeneous, the solutions will not form a vector space, however, we can find solu-

tions to most of the rows as a vector space. Because we utilize the LLL-Algorithm, we must

constrainF to eitherZ2 or Z3. We begin with the Parity Check MatrixS in the following

format:

S=


s1,1 s1,2 . . . s1,n

s2,1 s2,2 . . . s2,n

...
...

...
...

sn−m,1 sn−m,2 . . . sn−m,n



5.1. Row Reduction. The first task is to perform row reduction on the augmented matrix.

Gauss-Jordan elimination proceeds from the leftmost column to the right, establishing pivot

ones in each row, then using them to induce zeroes in the remaining places of that column.

In contrast, this algorithm starts on the far right column. Use the three types of elementary

15

row operations on this column, which isp written as a column vector, to obtain a one as

the first entry of the column, with only zeroes beneath it, this is possible becausep is not

the zero vector. At this point, the new augmented matrix,S′ will be of the form:

S′ =


s′1,1 s′1,2 . . . s′1,n

s′2,1 s′2,2 . . . s′2,n
...

...
...

...

s′n−m,1 s′n−m,2 . . . s′n−m,n

1

0
...

0



Heres′i, j indicate the new entries of matrixS′ after the elementary row operations.

5.2. Forming a Homogeneous System.At this point it is useful to note that, ignoring the

first row, the matrixS′ corresponds to a homogeneous system of linear equations. This

allows us to ignore the first row and solve the remaining homogeneous system of linear

equations, which we shall denote byS′′. The solutions will form a subspace ofFn because

they are exactly the kernel ofS′′.

S′′ =


s′′2,1 s′′2,2 . . . s′′2,n

s′′3,1 s′′3,2 . . . s′′3,n
...

...
...

...

s′′n−m,1 s′′n−m,2 . . . s′′n−m,n

0

0
...

0



5.3. Gauss-Jordan Reduction.Use Gauss-Jordan reduction onS′′ to obtain the row-

reduced form. Permute columns to collect the pivot columns at the far left, forming a

(n−m−1)-dimensional Identity matrix on the left side of matrixS′′. Keep track of these

permutations in an elementary column operation matrixE obtained by performing the ex-

act same permutation on an-dimensional Identity matrix. We will denote the row-reduced

form of S′′ by T.

16

T =


1 0 . . . 0 t1,n−m t1,n−m+1 . . . t1,n

0 1 . . . 0 t2,n−m t2,n−m+1 . . . t2,n

...
...

...
...

...
...

...
...

0 0 . . . 1 tn−m−1,n−m tn−m−1,n−m+1 . . . tn−m−1,n

0

0
...

0



5.4. Determine a Basis.Now we can easily find a basis for the kernel ofT. The nullity of

T is m+1, which is to be expected because we haven columns and onlyn−m−1 rows, all

of which are linearly independent. Let us note the structure ofT, T =
[

In−m−1 : T′ 0
]
,

this implies that the firstn−m−1 entries of a solution to the system of equations repre-

sented byTx = 0will be dependent upon the lastm+1 entries. Construct a new matrixU by

taking the transpose of the part of matrixT denoted byT′ above, then appending anm+1-

dimensional Identity matrix to the right of this. The rows of matrixU =
[
T′T : Im+1

]
,

shown below, form a basis for the solution space.

U =


−t1,n−m −t2,n−m . . . −tn−m−1,n−m 1 0 . . . 0

−t1,n−m+1 −t2,n−m+1 . . . −tn−m−1,n−m+1 0 1 . . . 0
...

...
...

...
...

...
...

...

−t1,n −t2,n . . . −tn−m−1,n 0 0 . . . 1


Note thatU hasm+1 rows, corresponding to the nullity ofT.

The vector space spanned by the rows ofU is the kernel ofS′′, which implies that any

vector in span(U) will satisfy all the equations, except the first, in the system of linear

equations represented byS′. This means that any solution to the original system of linear

equations
[
S | p

]
, multiplied byE from step 3, to take into account necessary column

permutations, is an element of span(U). In fact, necessary and sufficient conditions for

v∈ Fn to be a solution toS are as follows:

(1) v∈ span(U)

17

(2) v·S1 = 1,

whereS1 denotes the first row of matrixS′. This must be the case, because condition (1)

is equivalent to being a solution for every row ofS′ except the first row and any vector

wherev ·S1 = 1 is a solution to the first row ofS′. Thus, vectors that meet both conditions

are in the intersection between the set containing the solution to the first row, and the set

containing the solutions all of the other rows simultaneously.

Additionally, any vector that meets the first condition can be easily made to meet the sec-

ond condition, provided thatv ·S1 6= 0. Suppose thatv ·S1 = k ∈ F such thatk 6= 0. In

this case,k−1v ·S1 = 1 because the dot product is a bilinear operator. We also know that

k−1v∈ span(U) because span(U) is a vector space andk−1v is a scalar multiple of an el-

ement we know to be in span(U). Thus, any vector that meets condition (1) and is not

orthogonal toS1 will be a solution to the system of linear equations. However, we search

not just for a solution to the system of linear equations, but a solution that also has a low

Hamming Weight. To that end we employ the LLL-Algorithm.

5.5. LLL-Algorithm. The LLL-Algorithm takes a set of linearly independent vectors as

an input, then outputs the shortest, under the standard Euclidean norm, nearly orthogonal

basis for the lattice for which the input elements form a basis. Using the LLL-Algorithm to

find vectors of low Hamming Weight requires that we restrictF to eitherZ2 or Z3. Since

these two fields only have 0, 1, and possibly -1 as elements, minimizing lattice points with

regard to the standard Euclidean norm, which is the purpose of the LLL-Algorithm, is

equivalent to minimizing the Hamming Weight of the corresponding vector. Applying the

LLL-Algorithm as modified in section 4.1 to the rows ofU yields good candidates for the

smallest vectors, with respect to the Hamming Weight, in span(U). We will then check the

second condition for these vectors, knowing that they must fulfill the first condition because

they are in span(U).

18

Finally, once vectors of low Hamming Weight which satisfy both conditions are obtained,

they must be right multiplied by the elementary matrixE that we obtained during step three,

Gauss-Jordan Reduction. This is done in order to correct any permutations that occurred

during the algorithm’s third step, wherein columns were permuted in order to collect the

identity matrix on the left side of matrixT. Afterward we have a list of short error vectors

from which possible code words can be obtained, by subtracting error vectors from the

received wordr

19

6. FIRST EXAMPLE

For this example:

F = Z3, S=


1 0 0 1 −1 −1 1

1 −1 0 1 1 1 0

1 1 −1 0 −1 −1 0

1 0 1 −1 1 1 0

 and p =


1

0

0

−1


6.1. Row Reduction. When we augmentS with p we get:


1 0 0 1 −1 −1 1

1 −1 0 1 1 1 0

1 1 −1 0 −1 −1 0

1 0 1 −1 1 1 0

1

0

0

−1


We add the first row to the fourth row in order to induce zeros in all positions of the

syndrome column except the first, thus obtaining:

S′ =


1 0 0 1 −1 −1 1

1 −1 0 1 1 1 0

1 1 −1 0 −1 −1 0

−1 0 1 0 0 0 1

1

0

0

0


6.2. Forming a Homogeneous System.Temporarily removing the first row to generate a

Homogeneous system of linear equations we obtain:

S′′ =


1 −1 0 1 1 1 0

1 1 −1 0 −1 −1 0

−1 0 1 0 0 0 1

0

0

0



20

6.3. Gauss-Jordan Elimination. Performing Guass-Jordan elimination upon matrixS′′

yields:

T =


1 0 0 1 0 0 0

0 1 0 0 −1 −1 1

0 0 1 1 0 0 −1

0

0

0


without requiring any permutation of columns, thusE = I7.

6.4. Determine a Basis.If matrix U begins with−T′T , whereT =
[

I : T′ 0
]
, fol-

lowed by a four-dimensional Identity matrix, each row of matrixU will be a unique solu-

tion to the system of linear equations given by matrixT. Thus we construct the matrixU

as follows:

U =


−1 0 −1 1 0 0 0

0 1 0 0 1 0 0

0 1 0 0 0 1 0

0 −1 1 0 0 0 1


6.5. LLL-Algorithm. Here we set large integerN = 10, remember thatq = 3. Thus

B =



−10 0 −10 10 0 0 0 1 0 0 0

0 10 0 0 10 0 0 0 1 0 0

0 10 0 0 0 10 0 0 0 1 0

0 −10 10 0 0 0 10 0 0 0 1

30 0 0 0 0 0 0 0 0 0 0

0 30 0 0 0 0 0 0 0 0 0

0 0 30 0 0 0 0 0 0 0 0

0 0 0 30 0 0 0 0 0 0 0

0 0 0 0 30 0 0 0 0 0 0

0 0 0 0 0 30 0 0 0 0 0

0 0 0 0 0 0 30 0 0 0 0



21

We use Maple’s LLL function to perform the LLL-Algorithm onB, this code is included

in the second Appendix, and obtain the following matrix:



0 0 0 0 0 0 0 −3 0 0 0

0 0 0 0 0 0 0 0 −3 0 0

0 0 0 0 0 0 0 0 0 −3 0

0 0 0 0 0 0 0 0 0 0 −3

−10 0 −10 10 0 0 0 1 0 0 0

0 10 0 0 10 0 0 0 1 0 0

0 10 0 0 0 10 0 0 0 1 0

0 0 10 0 10 0 10 0 1 0 1

0 10 10 0 0 −10 10 0 0 −1 1

−10 0 0 10 10 0 10 1 1 0 1

20 10 10 10 0 0 −10 1 0 0 −1


Discarding the last four columns, which are extraneous, and the first four rows, which do

not correspond to possible non-zero solutions, and factoring outN = 10 yields:



−1 0 −1 1 0 0 0

0 1 0 0 1 0 0

0 1 0 0 0 1 0

0 0 1 0 1 0 1

0 1 1 0 0 −1 1

−1 0 0 1 1 0 1

−1 1 1 1 0 0 −1


where rows two and three correspond to possible solutions with Hamming Weight 2, rows

one and four correspond to solutions of weight 3, rows five and six correspond to solutions

of weight 4, and row seven is a possible solution of weight 5. We check condition (2) when

our possible error vectore′ equals row two:

22

e′ ·S1 =< 0,1,0,0,1,0,0 > ·< 1,0,0,1,−1,−1,1 >=−1

Since the dot product is -1 and -1 = -1−1, we multiplye′ by -1 to obtain an error vector:

e=< 0,−1,0,0,−1,0,0 >

To finish with this vector, we would multiplyebyE in order to correct the column switching

from the third step, except in this caseE = I7. Because it has the same weight, we proceed

to check the possible error vector represented by the third row:

e′ ·S1 =< 0,1,0,0,0,1,0 > ·< 1,0,0,1,−1,−1,1 >=−1

Again, we must multiply the vector by -1 to obtain an error vector:

e=< 0,−1,0,0,0,−1,0 >

Our algorithm terminates and returns two vectors with minimum Hamming Weight,{<

0,−1,0,0,−1,0,0 >,< 0,−1,0,0,0,−1,0 >}.

23

7. SECOND EXAMPLE

Let us now consider an example of this algorithm over a finite field that is notZ2 or Z3.

We will start with the Parity Check Matrix and the syndrome and continue until it is time to

employ the LLL-Algorithm, which cannot be utilized in this example because minimizing

the Euclidean norm no longer minimizes the Hamming Distance. For this example:

F = Z11, S=


1 1 1 1 1 1 1

1 2 3 4 5 6 7

1 4 9 5 3 3 5

1 8 5 9 4 7 2

 and p =


2

6

3

10


7.1. Row Reduction. When we augmentS with p to obtainS′ we get:


1 1 1 1 1 1 1

1 2 3 4 5 6 7

1 4 9 5 3 3 5

1 8 5 9 4 7 2

2

6

3

10


We multiply the first row by 6, which happens to be 2−1, to obtain a 1 in the first row

position of the syndrome. Using this 1 as a pivot, we zero out the lower positions in the

syndrome to obtain:

S′ =


6 6 6 6 6 6 6

9 10 0 1 2 3 4

5 8 2 9 7 7 9

7 3 0 4 10 2 8

1

0

0

0


7.2. Forming a Homogeneous System.Temporarily removing the first row to generate a

Homogeneous system of linear equations we obtain:

24

S′′ =


9 10 0 1 2 3 4

5 8 2 9 7 7 9

7 3 0 4 10 2 8

0

0

0


7.3. Gauss-Jordan Elimination. Performing Gauss-Jordan reduction on matrixS′′ yields:

T =


1 0 0 7 4 9 9

0 1 0 7 10 10 0

0 0 1 3 6 10 4

0

0

0


Again, no column permutation is required to isolate the leading 1’s, soE = I7.

7.4. Determine a Basis.Constructing matrixU as before, we obtain:

U =


4 4 8 1 0 0 0

7 1 5 0 1 0 0

2 1 1 0 0 1 0

2 0 7 0 0 0 1


7.5. LLL-Algorithm Replacement. The rows of this matrix suggest three possible errors

with Hamming Weight 4, rows one, two, and three, and one with Hamming Weight 3, row

four. Having obtained matrixU we would apply the LLL-Algorithm to the rows ofU to

ascertain if errors with less weight existed, corresponding to rows in span(U) with fewer

non-zero entries, ifU were overZ2 or Z3. This is not possible because the Euclidean norm

is not equivalent to the Hamming norm when elements of absolute value greater than 1 are

included. However, there is an alternative method to consider. When we examineU we

notice thatU =
[
A I 4

]
, since the right side is an Identity matrix, adding a multiple

of one row to another will invariably introduce another non-zero entry to that row, which

is undesirable since we are attempting to minimize the Hamming Weight, or number of

non-zero entries, of our error vectors. Thus, when we perform elementary row operations

on the vectors, the addition of non-zero elements in the last four columns must be offset by

25

gains made in the first three columns. Therefore, we are looking for a linear combination

of two rows that yields new zeros in two or three of the first three columns. If we make the

first entry in each row 1, we obtain the following matrix:


1 1 2 3 0 0 0

1 8 7 0 8 0 0

1 6 6 0 0 1 0

1 0 9 0 0 0 1

 ,

which indicates that we cannot induce a zero the first and second or third entry simultane-

ously. In order to test all possibilities, we set the second entry in each of the first three rows

to one, to determine if any combination of rows will produce zeros the second two entries.

We obtain the matrix:


1 1 2 3 0 0 0

7 1 5 0 1 0 0

2 1 1 0 0 2 0

1 0 9 0 0 0 1

 ,

showing that there is no combination of two rows which will zero the second and third entry.

The fourth row has Hamming Weight 3, which can see is the best we can do. Let us examine

the possible error vectore′ obtained by the fourth row. In this case,e′ =< 1,0,9,0,0,0,1>.

We know thate′ = e if and only if e′ ·S1 = 1.

e′ ·S1 =< 1,0,9,0,0,0,1 > ·< 6,6,6,6,6,6,6 >

= (1+9+1)×6

= 0×6

= 0

26

Sincee′ · e = 0, we cannot obtain an error vector frome′. For another possible error

vector, we must accept a vector of weight 4, let us simply use the first row:

< 1,1,2,3,0,0,0 > ·S1 = 9

so, since 5 = 9−1, 5 ·< 1,1,2,3,0,0,0 > = < 5,5,10,4,0,0,0 > corresponds to a possible

error vector of weight 4. Since we performed no column switches,E = I7. Thus, this is the

vector we would subtract from our received word in order to obtain a code word that may

correspond to our received word. Note however, that since the sum of the elements in rows

two and three does not equal zero, they too will produce possible error vectors of weight 4.

27

8. CONCLUSION

8.1. Overview. In this paper we developed an algorithm for providing code words in a

linear codes overZ2 or Z3 that are likely to correspond to a given received word with error,

an algorithm which essentially produces multiple “best guess” possible error vectors with

minimal Hamming Weight. Although this algorithm does not produce a true list decoding

method, as it will not provide all possible code words within a specified distance of a given

received word, because it is designed to return multiple error vectors the algorithm does

not necessarily fail when the spheres around code words begin to overlap.

The method by which these error vectors are obtained involves an alternative reduction

method for underdetermined, non-Homogeneous systems of linear equations. This reduc-

tion method allows us to consider solutions to the equations in the system, other than the

first, as a subspace ofFn. This allows us to take advantage of the lattice-like structure of

the subspace in order to employ the LLL-Algorithm.

The LLL-Algorithm works recursively on a lattice basis in order to determine the ba-

sis with shortest possible basis vectors, with respect to the standard Euclidean norm. In

Z2 andZ3 these will be the vectors with lowest Hamming Weight, because a vector’s Ham-

ming Weight is the square of its Euclidean length as shown in [1]. Once short candidates

for solutions to the system of linear equations are obtained, a dot product is sufficient to

test whether they satisfy the first equation, and thus whether they are possible error vectors.

8.2. Further Consideration. Using the LLL-Algorithm limits F to eitherZ2 or Z3. It

would be desirable to invent some different lattice basis which will allow the LLL-Algorithm

to find vectors of low Hamming Weight over general finite fields. Lacking that, further

investigation of matrix reduction may develop a method to generate short error vectors di-

rectly from matrixU, which would eliminate the need to employ the LLL-Algorithm. A

method such as I envision would involve a rigorous generalization of the alternative to the

28

LLL-Algorithm employed in the second example.

When considering solutions to the underdetermined, non-homogeneous system of equa-

tions, solutions to the rows excepting the top row, the system represented byS′, form a

vector space, for which we can easily determine a basis. Because solutions to the first row

require a non-zero dot product with the first row, they are, in a sense, the vectors of the

subspace that are not orthogonal to the first row. It seems that there should be a method to

use this geometric structure to impose structure upon the solutions to the entire system of

linear equations. Unfortunately, my investigation into these questions is limited by time,

which grows all too short. Thus I must leave this enterprise as is, for the moment. The

process has been illuminating and thought provoking, but must come to an end here.

29

REFERENCES

[1] Betten, Anton; Braun, Michael; Fripertinger, Harald; Kerber, Adalbert; Kohnert, Axel; and Wasser-
mann, Alfred.Error-Correcting Linear Codes. New York: Springer. 2006.

[2] Guruswami, Venkateasan.Algorithmic Results in List Decoding. Boston: Now Publishers Inc. 2007.
[3] Huffman, W. Cary and Vera Pless.Fundamentals of Error-Correcting Codes 2nd ed. New York: Cam-

bridge University Press. 2003.
[4] Lenstra, A. K.; Lenstra, H. W.; and Lovasz, L. “Factoring Polynomials with Rational Coefficients.”

Mathematische Annalen 261. (1982). 515-534.

E-mail address: barresek@onid.orst.edu

30

Appendices

31

Appendix I

In the following algorithm we are reducing the basis (b(0),b(1), . . . ,b(m−1)). The Gram-

Schmidt orthogonal basis obtained from (b(0),b(1), . . . ,b(m−1)) is (b̂(0), b̂(1), . . . , b̂(m−1)).

The Gram-Schmidt coefficents areµk j, whereµk j = <b(k),b(j)>

<b̂(j),b̂(j)>
. In the sixth line,πk(b(k))

denotesb̂(k) and πk(b(k+1)) is b̂(k+1) + µk+1,kb̂(k). Thus the sixth line is comparing the

Euclidean length of thek-th basis vector projected upon the space perpendicular to the first

k basis vectors,(b(0),b(1), . . . ,b(k−1))⊥, with the Euclidean length of the next basis vector

projected upon the same space.

Let δ ∈ R with 1/4 < y < 1.(1)

Setk := 0.(2)

do(3)

1.for j = 0, . . . ,k−1(4)

replaceb(k) by b(k)−bµk jeb(j)(5)

2.if δ ‖ πk(b(k)) ‖2>‖ πk(b(k+1)) ‖2 then(6)

interchangeb(k+1) andb(k)(7)

update b̂(k+1), b̂(k) andµ(8)

setk := max(k−1,0)(9)

else(10)

setk := k+1(11)

until k = m−1(12)

32

Appendix II

The Maple code for the LLL-Algorithm performed on page 16:

> with(IntegerRelations):
> LLL([[-10,0,-10,10,0,0,0,1,0,0,0],

> [0,10,0,0,10,0,0,0,1,0,0],

> [0,10,0,0,0,10,0,0,0,1,0],

> [0,-10,10,0,0,0,10,0,0,0,1],

> [30,0,0,0,0,0,0,0,0,0,0],

> [0,30,0,0,0,0,0,0,0,0,0],

> [0,0,30,0,0,0,0,0,0,0,0],

> [0,0,0,30,0,0,0,0,0,0,0],

> [0,0,0,0,30,0,0,0,0,0,0],

> [0,0,0,0,0,30,0,0,0,0,0],

> [0,0,0,0,0,0,30,0,0,0,0]], ’integer’);

[[0, 0, 0, 0, 0, 0, 0,−3, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0,−3, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0,−3, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0,−3], [−10, 0,−10, 10, 0, 0, 0, 1, 0, 0, 0],
[0, 10, 0, 0, 10, 0, 0, 0, 1, 0, 0], [0, 10, 0, 0, 0, 10, 0, 0, 0, 1, 0],
[0, 0, 10, 0, 10, 0, 10, 0, 1, 0, 1], [0, 10, 10, 0, 0,−10, 10, 0, 0,−1, 1],
[20, 0, 0, 10, 10, 0, 10, 1, 1, 0, 1], [−10, 10, 10, 10, 0, 0,−10, 1, 0, 0,−1]]

	Decoding Methods for Linear Codes.pdf
	Coding
	Appendices
	Appendix 1
	Maple stuff

