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Chapter 1

Introduction

1.1 Problem Statement

The problem of identifying the items in common between two or more sets
often arises in a variety of real-world situations. For example, when people
meet it is often useful to identify mutual friends. Digital approaches to
solving this problem have traditionally required both sets to be represented
on a single computer where the items in common can be identified. While
this solution works in many situations, privacy concerns are increasingly
making such data aggregation difficult. Consider the case where two parties
each possess a set which contain sensitive information. In this situation, it
is often undesirable to bring the sets together on a single computer as this
could allow one of the parties to learn too much information.

To address these privacy concerns a series of techniques broadly known as
Private Set Intersection (PSI) have been developed. These techniques assume
that it is desirable to learn the items in common (the intersection) while
hiding all other items. For simplicity let us consider the two-party case with
Alice and Bob where each holds a respective set X, Y . The requirements of
PSI state that Bob, and possibly Alice too, should learn the intersection of
these two sets X ∩ Y and nothing more.

Conceptually, PSI can be thought of as emulating a trusted third party that
receives both of the sets X, Y , privately informs Bob of the intersection X∩Y
and then forgets everything. The central difference between a trusted third
party and PSI is that Alice & Bob directly interact with each other without

1



any assistance. At the end of the protocol Bob learns the intersection and
Alice learns nothing.

Initially, it may seem impossible for Bob to identify the items in common
between the sets while learning nothing more. However, with the develop-
ment of modern cryptographic techniques, this functionality can be achieved
with strong mathematical proofs of correctness and privacy. More generally,
it has been shown that any function f(x1, ..., xn) can be jointly computed
between n parties, each with a private input xi, such that the parties learn
the result of the function and nothing more. This general setting is known
as secure multi-party computation (MPC) and PSI is a special case where
the intersection function is computed. While MPC implies the feasibility of
PSI, the concrete performance of these general-purpose techniques prevents
many practical applications. This thesis presents several purpose-built PSI
protocols that bridge this gap in performance.

One of two security notions is often considered by MPC protocols. The
simplest is semi-honest security where the participating parties honestly fol-
low the protocol instruction but try to infer additional information beyond
their specified output. This setting is often sufficient when the other party
somewhat trusted and their cost of getting caught cheating is high. A much
stronger notion is known as malicious security. In this setting, the corrupt
party is assumed to arbitrarily deviate from the protocol specification, possi-
bly with the goal of gaining additional information or influencing the output
of the other party. See Section 2.1 for additional details on these security
notions.

1.2 Applications

To further motivate PSI we now detail several of the most promising ap-
plications and why a solution without privacy is unacceptable. Several of
these applications bring specific requirements above and beyond the generic
problem of PSI which inform current and future research directions.

1.2.1 Voter Registration

United States citizens can register to vote in any state which they claim
residency. In the event that someone moves between states, it is possible for
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them to become registered to vote in both states. This individual should then
unregister themselves from the old state. However, for a variety of reasons,
this does not always happen. If for some reason this individual casts a vote
in both states, either on purpose or by accident, the outcome of the vote may
be incorrect.

To catch cases of such double voting, states would need to compare the lists
of registered voters. However, these lists contain highly sensitive information
and states are reluctant to share them. In particular, this information could
enable a wide range of undesirable political maneuvers aimed at providing
an unfair advantage to one side of an election.

An existing solution to this problem is the Electronic Registration Informa-
tion Center (ERIC)[Ham]. This organization acts as a trusted third party
that is used to identify incorrectly registered individuals. As a result, this
single organization holds a large amount of highly sensitive information and
represents a single point of failure should a data breach occur. An alternative
and more secure approach would be to remove this organization and perform
PSI directly between the states to identify incorrectly registered citizens.
Once these individuals are identified, an offline procedure could be initiated
to unregister them from one of the states. This general approach is also used
to update information such as the current address of a voter.

1.2.2 Contact Discovery

Another highly motivated application is known as contact discovery. In this
scenario, a new user has just registered on a social networking service. For
example, let us consider the messaging app known as WhatsApp which offers
a service similar to texting except that the messages are encrypted between
the sender and recipient. To increase the usability of this secure messaging
service, the user’s contacts are uploaded to the WhatsApp servers. Here the
intersection between the user’s contacts and all WhatsApp users is computed
and automatically added to the user’s app as WhatsApp contacts.

While this conveniently alleviates the user from having to manually add
their contacts, the service provider now learns significant and potentially
very private information about the social graph of their users. Perhaps most
troubling is that users who never sign up for the service still have significant
information about them held by the service provider, e.g. their name, phone
number, email, friends, and possibly much more. Recently the German courts
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agreed that this level of privacy loss is unacceptable and that WhatsApp must
obtain written permission from each of the contacts before their information
can be updated to their server[Pos17].

A perfect solution is to use PSI between the user and the service provider.
Here the user would be able to identify all of their contacts that also use the
service while preventing the service provider from learning information about
contacts that have not signed up for the service. To address this specific use
case Section 1.3.4 details a current research direction which promises to give
practical performance.

1.2.3 Threat Log Comparison

Our current computer networks are constantly under attack by malicious
parties that try to learn sensitive information or adversely affect the system.
To prevent such behavior network administrators utilize a variety of safe-
guards such as firewalls. Another technique is to log all the activity on the
network and attempt to identify anomalies and common attacks. However,
if the attack is distributed across several networks any one of them may not
be able to identify it or realize how pervasive of a threat it is. By aggregat-
ing the data together, these attacks can become easier to identify and stop.
However, simply sharing logs in the clear can itself be a security concern due
to a large amount of information contained within them.

As with the voter registration example, existing solutions utilize trusted third
parties. PSI or a closely related variant could replace the trusted third party.
In this case, two or more parties can come together to identify common
threats by computing the intersection of the attacks that all, or some, parties
have observed.

1.2.4 Ad-Revenue Conversion

One of the few applications of PSI currently being used is to compute the ad-
revenue conversion rate. This application is deployed by Google to compute
how effective their online advertising is at generating offline sales[IKN+17a].
For example, say Tesla has purchased ads on Google search. Google will,
therefore, hold a list of users who have viewed the ad while Tesla has a list of
people who purchased their cars. Tesla would like to learn how many users
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both saw the ad and purchased a car. Knowing this provides an important
metric for deciding how effective their advertising was.

Importantly, neither of these companies are willing to reveal their lists. In-
stead Google and Tesla engage in a PSI protocol that compute the size of
the intersection along with the total amount of money these users spent.
While not exactly PSI, the general approach their system takes is a natural
extension of many existing PSI solutions.

1.3 Contributions

This dissertation improves the state-of-the-art private set intersection tech-
niques as follows.

1. Strengthens semi-honest secure private set intersection protocols to be
secure in the malicious model.

2. Improves protocol performance through the application of more effi-
cient primitives.

3. Richer functionality that more accurately captures the requirements of
real-world applications.

Given the wide range of motivating application for PSI, achieving these con-
tributions represents a significant advance. Most notable is the development
of the two most efficient malicious secure PSI protocols which are based on
the Bloom filter and hash table data structures. Concurrently, the first two
practical PSI protocol, based on fully homomorphic encryption and private
information retrieval have also been proposed and are distinguished due to
them achieving sub-linear communication.

A overview of the contained protocols is as follows.

1.3.1 Malicious Secure Bloom Filter PSI

Dong, Chen & Wen [DCW13] introduced a PSI technique uses a data struc-
ture known as Bloom filter[ABPH07] and derives its security from the highly
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efficient oblivious transfer extension primitive[IKNP03, KOS15a]. This pro-
tocol was presented in the semi-honest setting along with an extension that
was claimed to be malicious secure. This turns out not to be true with sev-
eral attacks being identified in Chapter 3 and concurrently by [Lam16]. In
addition to identifying security flaws, Chapter 3 contains a malicious secure
solution based on a protocol technique known as cut-and-choose.

The PSI protocol works by first having the two parties construct a Bloom
filter for their respective sets. A Bloom filter is a long bit vector which is
initially set to all zeros. To insert an items x the bits indexed by random
functions h1(x), ..., hk(x) are set to one. The Bloom filter can then be used
to test if some y is contained in the data structure by checking if all of the
corresponding bits are also set to one. For sufficiently large parameters, this
procedure will produce the correct result with overwhelming probability.

Dong et al. [DCW13] adapted this procedure to ensure that the only infor-
mation revealed is a single bit denoting the result of the set membership test,

y
?
∈X. This is achieved by replacing the bit vector with a vector of random
κ-bit values {m1, ...,mn} chosen by Alice. Bob who receives output and holds
set Y is allowed to learn all messages mj such that j ∈ {hi(y) | y ∈ Y, i ∈ [k]}.
A randomized encoding is then defined as,

JyK :=
⊕
i∈[k]

mhi(y)

Importantly, via another procedure utilizing oblivious transfer, Bob only
learns these messages needed to compute JyK for all y ∈ Y while Alice is
oblivious to which these are. For a sufficiently large Bloom filter, it can be
ensured that for all y′ 6∈ Y there is an overwhelming probability that at least
one of the messages mj needed to compute Jy′K is unknown to Bob. Therefore
Jy′K is unknown to Bob and uniformly distributed from his view.

The PSI protocol is completed by having Alice compute all JxK for x ∈ X
and send these values to Bob who infers the intersection of X ∩ Y from the
intersection of {JxK | x ∈ X} ∩ {JyK | y ∈ Y }. As previously implied, for
all x ∈ (X\Y ) the encoding JxK is uniformly distributed in Bob’s view and
therefore any encoding of an x not in the intersection reveals no information
about the value of x ∈ (X\Y ), i.e. Encode(x)→ JxK is a one-way function.

In the semi-honest protocol presented by Dong et al.[DCW13] there is a
trivial attack where a malicious Bob can learn all the messages mj instead
of just the messages needed to compute {JyK | y ∈ Y }. In this case the
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argument that Encode(x) is one-way for Bob no longer holds. Dong et al.
proposed a countermeasure to this attack but unfortunately, it too was not
secure and very expensive to implement. After identifying the security bug,
Chapter 3 details an improved protocol and implementation using a highly
efficient technique to stop such attacks. The primary idea of this technique
is to make Bob approximately prove that many of the messages are unknown
to him. In particular, we check certain properties on roughly 1% of the
messages and from this infer that many messages in the remaining 99% are
unknown to Bob. Because so few messages are actually checked the overhead
of this technique is marginal compared to the semi-honest version of the
protocol. Chapter 3 details this protocol and demonstrates that it achieves
very good performance compared to the weaker semi-honest variant of Dong
et al.[DCW13]. The protocol was published at Eurocrypt 2017 and written by
Rindal & Rosulek under the title “Improved Private Set Intersection against
Malicious Adversaries”[RR17a].

1.3.2 Malicious Secure Dual Execution PSI

For set sizes larger than n = 100, 000 the Bloom filter approach above
starts to have impractical performance due to a large amount of commu-
nication. Even in the semi-honest setting, the Bloom filter technique re-
quires roughly 2κ2n = 32, 768n bits of communication to compute the in-
tersection. However, a different paradigm proposed by Pinkas, Schneider &
Zohnar [PSZ14] achieves semi-honest security and only requires 5κn = 640n
bits of communications. Chapter 4 strengthens the protocol of Pinkas et
al. [PSZ14, PSSZ15, PSZ18] to the malicious setting with a small added
overhead.

This approach utilizes a hash table in lieu of a Bloom filter and employs a
different construction to produce a randomized encoding of x. In particu-
lar, under a given encoding Bob, who learns the intersection, is allowed to
compute JyK for a single value y while Alice is free to compute JxK for any
x. This restriction differs from the Bloom filter approach where Bob could
learn many encodings. Given this, a protocol to test if a single y ∈ X is im-
mediate. Bob computes JyK and Alice sends {JxK | x ∈ X} to Bob who infers
the membership test y ∈ X from the test JyK ∈ {JxK | x ∈ X}. As before
Bob learning the randomizing encoding JyK does not reveal any information
besides the desired output due to all encoding besides JyK being uniformly
distributed in Bob’s view.
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The central difference between this approach and Bloom filter based protocol
is that Bob can only learn a single randomized encoding instead of many.
Given this limitation, one method of performing PSI between sets X and
Y is to repeat the test for each y ∈ Y . However, this would lead to an
overall complexity of O(n2) which is impractical for n > 10, 000. Pinkas
et al. [PSZ14] show how this approach can be augmented with a hash table
data structure to reduce the complexity to be linear in n. This is achieved by
constructing a vector of n bins where every x ∈ X (and y ∈ Y respectively)
is placed in the bin indexed by a random function h(x). In expectation,
each bin will have one item and with overwhelming probability, no bin will
have more than O(log n) items. To compute the intersection between X
and Y , it is then sufficient to compute the intersection between each pair of
bins. That is, for each x = y it holds that both will be placed in the bin
indexed by h(x) = h(y) and therefore be contained in the intersection of that
bin. By performing a quadratic cost intersection within each bin the overall
complexity is O(n log2 n)1. This can further be reduced by using n/ log n
bins which results in a complexity of O(n log n) due to the maximum bin size
increasing only by a small constant. Pinkas et al. [PSZ14] also show a more
efficient hashing technique that further reduces the complexity to O(n).

While this approach is highly efficient, it fails to achieve malicious security.
Several issues arise in proving the security of this protocol. The largest issue
is that for each bin, O(log n) membership tests are performed where Alice is
free to use different inputs to each. This turns out to break the simulation-
based proof of security due to it not corresponding to any honest input. The
protocol of Chapter 4 overcomes this attack using a technique known as dual
execution. At a very high-level this approach works by running the protocol
twice in opposite directions and combining the final step of each execution.
First, observe that Bob can only learn µ = O(log n) encodings {JxKB}, one
for each of the µ membership tests. By running the encoding/membership
protocol in both directions, Alice too can learn at most µ encodings JyKA. We
then define a common encoding JzK := JzKB + JzKA. Alice is now restricted
to knowing µ common encodings for this bin as desired. The protocol can
securely be completed by Alice sending the common encodings {JyK | y ∈ Y }
to Bob who the infers the intersection of X and Y .

With additional optimizations we demonstrate that our “dual execution”
protocol is only 3× slower than the semi-honest variant when comparing sets
of size n = 1, 000, 000, requiring a total of 12 seconds on a server. To date,

1For security reasons all bins must be padded with dummy items to their maximum
size of O(log n) items. Hence comparing a single pair of bins has O(log2 n) complexity.
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this represents the fastest malicious secure protocol and is 450 times faster
than the protocol of [DCKT10]. This protocol was authored by Rindal &
Rosulek under the title “Malicious-Secure Private Set Intersection via Dual
Execution” and was published at the 24rd ACM Conference on Computer
and Communications Security (CCS 2017).

1.3.3 Malicious Secure PSI with Differential Privacy

Chapter 5 improves on the efficiency of the dual execution PSI protocol by
allowing a bounded amount of information to be leaked. The mechanism uses
a technique known as differential privacy which allows a tightly characterized
and bounded amount of information to be leaked. In the dual execution PSI
protocol the items in each set are first mapped to m = O(n/ log n) bins using
a publicly known hash function h : {0, 1}∗ → {1, 2, ...,m}. A smaller PSI
protocol is then applied to the matching bins. Observe that learning the
number of items li in the ith bin reveals that the other party’s set S has
the property that |{s ∈ S | h(s) = i}| = li. In most settings, this amount
of leakage is considered unacceptable. The original dual execution protocol
avoids leaking this information by “padding” all bins with dummy items to
a publicly known upper bound on li. In practice, this results in each bin
containing three dummy items per real item.

Instead of padding to the maximum possible bin size, the protocol of Chap-
ter 5 reveals a randomized estimate between the true bin size li and its upper
bound. Revealing this noisy estimate allows a smooth trade-off between im-
proved performance and information leakage. This information allows the
protocol to utilizes up to three times fewer dummy items while still allowing
the analysis to tightly bound the amount of information that is revealed. In
practical terms, these improvements offer up to a 2× running time speedup.
This protocol was authored by Groce, Rindal & Rosulek under the title
“Cheaper Private Set Intersection via Differentially Private Leakage.”

1.3.4 Fully Homomorphic Encryption based PSI

One setting where the protocols above fail to achieve good performance com-
pared to an insecure solution is when Bob’s set is much smaller than Al-
ice’s. In this case, the communication complexity remains proportional to
the larger set. However, an insecure solution where the sets can be exchanged
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in the clear has communication complexity that scales with the smaller set.
Consider the contact discovery application where Bob just signed up for a so-
cial networking service and wishes to have his existing contacts automatically
populated in this app. To do this with the techniques above, the commu-
nication will be proportional to the larger set which could be upwards of
a hundred million entries. This would result in the cellphone downloading
gigabytes worth of data and the application would be impractical. To solve
this problem the communication complexity must be sublinear in the larger
set size.

Chapter 6 addresses this by building on a technique known as fully homomor-
phic encryption (FHE). This technique is extremely powerful in that it allows
arbitrary computation to be performed on encrypted data. A party can com-
pute the encryption of JxK := Enc(x) and distribute it to anyone. This other
party can then compute an arbitrary function f on the encryption JxK and
obtains an encryption of the result JzK := f(JxK).

Given fully homomorphic encryption it is clear that semi-honest PSI can
be performed with communication proportional to the smaller set Y . First
Bob computes JY K and sending this to Alice who computes the intersection
function JZK := JY K∩X. This, in turn, can be sent to Bob who decrypts the
result Z = X ∩ Y . Despite this feasibility result, it has long been believed
that such a computation would be incredibly slow and impractical.

Chapter 6 demonstrates that this is not the case. The primary hurdle to
be overcome is to design a function computing the intersection that has
constant multiplicative depth, e.g. 5. This means that the result Z must
be computed using 5 or fewer consecutive multiplications. The restriction
on the multiplicative depth is due to performance limitations of FHE. For
simplicity, let us consider the special case where we test whether y ∈ X, i.e.
|Y | = 1. First, consider the function:

z = f(y) =
∏
x∈X

(y − x)

In the event that y is in fact in X, then one of these terms must be equal to
zero which makes the result z equal to zero. In all other cases, z is non-zero.
Bob can then conclude that z = 0 ⇔ y ∈ X. However, the multiplicative
depth of this computation is log |X| when the product is computed using a
tree structure. This is far too large since we assume that the size of X is on
the order of 228 resulting in a depth of 28.
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We show how to further reduce the depth of the computation using a tech-
nique known as windowing. Observe that f(y) can be rewritten as a polyno-
mial

f(y) = cNy
N + ...+ c2y

2 + c1y + c0

where N = |X| and the coefficients ci are a function of X. Instead of sim-
ply sending JyK, Bob sends the encryptions of y raised to all the powers

of two, y20 , y21 , y22 , ..., y2log |X| . From these Alice can compute the required
power of y in depth log log |X| and complete the computation of z as a linear
combination of these terms. This technique combined with several others
optimizations allow the product to be computed in extremely small depth
for any conceivable set X.

This technique can be extended to work with sets using the hash table
technique of Pinkas et al. [PSZ14]. This in combination with the need
to send log |X| powers of y bring the overall communication complexity to
O(|Y | log |X|) while maintaining that the computation over fully homomor-
phic encryption can be done with practical performance. In particular, the
intersection between |Y | = 5000 and |X| = 224 can be done in a few seconds
with 12 MB of communication, roughly the size of an MP3 song. This proto-
col was authored by Chen, Laine & Rindal and published at the 24rd ACM
Conference on Computer and Communications Security (CCS 2017) under
the title “Fast Private Set Intersection from Homomorphic Encryption.”

1.3.5 PSI with values from FHE

While the PSI technique of the previous section gives good performance
and very low communications, many applications where such a protocol is
desirable would benefit from additional functionality where key-value pairs
are intersected. That is, each item is represented as a key and an associated
value. The intersection is performed on the keys and for each key in the
intersection, the associated value is revealed to Bob.

Consider the case of contact discovery where Bob signs up for WhatsApp. In
this scenario, Bob learns which of his contacts also use WhatsApp but then
must give this information over to WhatsApp, decreasing Bob’s privacy to a
large degree. A more privacy-preserving solution would be to use PSI with
values where the associated data is Bob’s public key and related meta-data.
Bob could then directly establish secure communication with his contacts
without using WhatsApp as a middleman.
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To efficiently achieve this end a variety of techniques are introduced in Chap-
ter 7. The main technique is to evaluate two polynomials using FHE. The
first function f is the same as before which on Bob’s ciphertext JyK evaluates
to zero if and only if y ∈ X. For all x ∈ X, let vx denote the corresponding
value which should be returned. In addition to evaluating f , Alice evalu-
ates a polynomial g with the property that for all x ∈ X, g(x) = vx. We
then have Alice return the pair of ciphertexts f(JyK), f(JyK)r+ g(JyK) where
Alice samples r as a uniformly random non-zero element of the field. This
pair has the property that for all y ∈ X, the pair evaluates to (0, vy). Oth-
erwise, the pair contains uniformly random elements in the field with the
first having a non-zero restriction. Using this technique combined with sev-
eral other optimizations achieves the first PSI protocol capable of returning
values while having sublinear communication. Moreover, this protocol also
outperforms the state of the art single server Private Information Retrieval
(PIR) protocol[ACLS17] while at the same time achieving stronger security
guarantees. This protocol was authored by Chen, Laine, Huang & Rindal and
published at the 25th ACM Conference on Computer and Communications
Security (CCS 2018) under the title “Labeled PSI from Fully Homomorphic
Encryption with Malicious Security.”

1.3.6 Malicious Secure FHE based PSI

The question of making the FHE based PSI protocol from Section 1.3.4
malicious secure is both challenging and very interesting. We begin with
an idea to get malicious security against Bob who receives output. Here the
challenge is that Bob may send malformed ciphertexts which leak information
about the sender’s set. We propose preventing this by adding another level
of encryption to the protocol.

The parties can first apply an oblivious pseudorandom function (OPRF) to
their inputs. Similar to the Bloom filter and dual execution protocols, Alice
samples a secret key k and Bob is allowed to learn the encodings fk(y) for
all y ∈ Y . Importantly, Bob does not learn the encoding key k and Alice
does not learn y. The existing PSI protocol can then be applied to the
sets {fk(y)} and {fk(x)}. Security against a malicious Bob follows from the
OPRF. In particular, even if Bob somehow learns Alice’s full set {fk(x)}
no more information than Y ∩ X can be inferred due to k being unknown.
Therefore no attack on the FHE protocol which takes {fk(x)} as input can
reveal additional information. Crucial to the practicality of this approach
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is that the OPRF protocol can be implemented with communication only
linear in the smaller set.

Malicious security against Alice is significantly more difficult to achieve. Typ-
ically malicious security requires the communication to at least be linear in
the size of the malicious party’s input. However, this is exactly what we
wish to avoid. We opt to take a more heuristic approach. The main attack
which we wish to prevent is Alice forcing Bob to output his full set simply
by returning ciphertexts which encrypt zero. Recall that zero encodes that
the item in question is in the intersection. The idea to prevent this attack
is to utilize the PSI with values approach from above to make Alice return
a special value vx for each x. Bob includes x = y ∈ Y in the intersection
if the special value for y is returned. Intuitively the goal of this is to force
Alice to know the x = y to be able to compute/return vy. We show that
by placing certain requirements on how the special values are computed, it
is extremely difficult to make Bob output an item not contained in the in-
tersection X ∩ Y . Although this approach does not prevent all attacks, it
does significantly restrict the most serious attacks while not imposing a sig-
nificant runtime overhead. This protocol was published in conjunction with
the previous section.

1.3.7 Two-Server PIR based PSI

Chapter 8 proposes another technique to efficiently solve PSI when |Y | �
|X|. This approach changes the security model so that Alice who receives
no output is split into two non-colluding servers. This means that the secu-
rity of this setting is conditioned on these servers not exchanging additional
information beyond what the protocol specifies. While this is a strong as-
sumption, it also enables extremely efficient PSI by employing a technique
known as two-server Private Information Retrieval (PIR).

PIR allows Bob to retrieve a block of memory stored on the servers in such
a way that the servers do not learn which block was retrieved. Conceptually,
the PSI protocol uses PIR to first reduce Alice’s set X, which is stored on
the two servers, to some smaller set X ′ such that |X ′| ≈ |Y |. Bob and one
of the server then run a traditional PSI protocol between themselves so that
Bob learns X ∩ Y = X ′ ∩ Y .

To enable Bob to first reduce the size of X we introduce a notion called
designated-output PIR where the party that learns the retrieved block need
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not be Bob. Instead, Bob specifies who should receive the block x which
is masked as x ⊕ r where r is a random value chosen by Bob. The servers
structure the set X as a “cuckoo hash table” such that for any x ∈ X, x will
be stored at the location indexed by h1(x) or h2(x).

For all y ∈ Y , Bob performs a PIR retrieval on the locations h1(y) and h2(y)
and designate one of the servers to receive the masked versions of these loca-
tions. Assuming y ∈ X, then one of these locations will equal y⊕r1 or y⊕r2.
As such, Bob and this server can run a mini-PSI using the masked values as
their sets. In the end, Bob learns whether y ∈ X. The primary overhead
of this protocol is the PIR which requires communications of O(log |X|) per
query. This results in a total communication of O(|Y | log |X|) which matches
the previous approach based on fully homomorphic encryption. One advan-
tage of this technique is that the computation the servers have to compute is
much simpler and therefore the running time is reduced by a large margin.
For example, an intersection between Bob with 1024 elements and Alice with
67 million elements takes 1.36 sec and uses only 4.28 MB of communication
which is more than 5× faster than the fully homomorphic encryption solu-
tion. This protocol was authored by Demmler, Rindal, Rosulek & Trieu and
was published at the Privacy Enhancing Technologies Symposium (PETS
2018) under the title “PIR-PSI: Scaling Private Contact discovery.”
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Chapter 2

Background Theory

2.0.1 Notation

We use [n] to denote the set {1, . . . , n}. Alice holds the set X and Bob Y ,
where X, Y ⊆ {0, 1}σ. A function f : N→ R is called negligible if for every
c ∈ N there exists a Nc ∈ N such that for all x > Nc, |f(x)| < x−c. When
describing the functionality of a protocol it is useful to distinguish the output
received by each party. We use the notation f = (f1, f2) to describe that the
functionality f on input x outputs f1(x) to party 1 and f2(x) to party 2.

We use κ to denote a computational security parameter and λ to denote the
statistical security parameter. These two parameters bound the probability
that the adversary can violate a security property. Informally speaking, the
running time of any adversary A with a non-negligible probability of break-
ing a security guarantee must require a running time of at least O(2κ). In
addition, each execution of the protocol is permitted to fail with probability
at most O(2−λ). In the case of failure the adversary A may be able to violate
any of the security properties.

2.1 Two-Party Security Models

Broadly speaking, PSI and multi-party computation in general can be divided
into two security settings, semi-honest and malicious. For simplicity, we will
only consider the two-party case where one of the parties is corrupt while
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Parameters: σ is the bit-length of the parties’ items. n is the size of the honest
parties’ sets. n′ > n is the allowed size of the maliciously corrupt party’s set.

• On input (Receive, sid, Y ) from Bob where Y ⊆ {0, 1}σ, ensure that
|Y | ≤ n if Bob is honest, and that |Y | ≤ n′ if Bob is corrupt. Give
output (Bob-input, sid) to Alice.

• Thereafter, on input (Send, sid, X) from Alice where X ⊆ {0, 1}σ, like-
wise ensure that |X| ≤ n if Alice is honest, and that |X| ≤ n′ if Alice is
corrupt. Give output (Ouput, sid, X ∩ Y ) to Bob.

Figure 2.1: Ideal functionality FPSI for private set intersection (with one-
sided output)

the other is honest. The weaker and less secure setting is known as the semi-
honest model where both of the participating parties faithfully follow the
prescribed protocol but the corrupt party tries to infer additional information
about the other party’s input. This setting is sometimes called honest but
curious. While this setting may seem overly weak, in many cases it can
be sufficient. For instance, PSI between Google and Tesla can likely be
semi-honest due to severe reputation loss if they are caught cheating. This
security model also protects against accidental leakage and ensures that a
passive eavesdropper cannot learn any information.

The malicious model realizes a much stronger notion of security where the
corrupt party is assumed to arbitrarily deviate from the protocol specifi-
cation. To prove security in this setting we must show a reduction of all
possible attacks to the case where the corrupt party behave honestly but can
arbitrarily choose their input. Such a reduction is called a simulator due to
it simulating honest behavior given malicious behavior. Intuitively this type
of proof states that all attacks are equivalent to choosing some input and
therefore the same attack could occur when a trusted third party computes
the function on their behalf.

In Figure 2.1 we give the ideal functionality that specifies the goal of private
set intersection. We point out several facts of interest. (1) The functionality
gives output only to Bob. (2) The functionality allows maliciously corrupt
parties to provide larger input sets than the honest parties. This reflects
that several of our protocols are unable to strictly enforce the size of an
adversary’s set to be the same as that of the honest party. We elaborate
when discussing the security of the protocols.
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2.1.1 Semi-honest Security

We use the standard notion of the static semi-honest model where one party
is corrupted by the adversary at the onset of the protocol. This party follows
the protocol specification exactly but will try to infer additional information
by inspecting the messages that it received from the other party along with
its own internal state, i.e. their input and random tape. These messages and
internal state are referred to as this party’s view.

Informally, a protocol π computing a deterministic functionality f = (f1, f2)
is semi-honest secure if the output is correct and the view of the corrupt
party i only reveals information that can be inferred from their prescribed
input xi and output fi(x1, x2). In particular, we must show an equivalence
between the real interaction where the protocol π is executed and an ideal
interaction where the parties send their input to a trusted third party and
receiver their output in response. In the real interaction, let the random
variable viewπ

i (x1, x2, 1
κ) denote the view of party i when the parties execute

π on inputs x1, x2 and security parameter κ. We say π is semi-honest secure
if for each party i there exist a PPT simulator Si in the ideal interaction such
that

{Si(1κ, xi, fi(x1, x2)))}x1,x2,κ ≈ {viewπ
i (x1, x2, 1

κ)}x1,x2,κ
where “≈” denotes computational indistinguishability. In the ideal interac-
tion, the simulator can be viewed as a middle man between the corrupt party
i and the trusted third party. The existence of Si implies that the messages
received by the corrupt party i can be generated only knowing the final re-
sult and as such does not leak any additional information. This setting also
requires the probability that the joint output of the parties is incorrect is
negligible in the security parameter.

2.1.2 Malicious Security

In the case of malicious corruptions, we define security of the PSI proto-
cols of Chapter 3 and 4 using the standard paradigm of 2PC. In particular,
our protocols are secure in the universal composability (UC) framework of
Canetti [Can01]. Security is defined using the real/ideal, simulation-based
paradigm that considers two interactions:

• In the real interaction, a malicious adversary A attacks an honest
party who is running the protocol π. The honest party’s inputs are cho-
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Parameters: ` is the length of the OT strings.

• On input (m0,m1) ∈ ({0, 1}`)2 from the sender and b ∈ {0, 1} from
the receiver, give output mb to the receiver.

Figure 2.2: Ideal functionality for 1-out-of-2 OT

sen by an environment Z; the honest party also sends its final protocol
output to Z. The environment also interacts arbitrarily with the ad-
versary. Our protocols are in a hybrid world, in which the protocol par-
ticipants have access to an ideal random-OT functionality (Figure 2.2).
We define real[1κ, π,Z,A] to be the (random variable) output of Z
in this interaction.

• In the ideal interaction, a malicious adversary S and an honest party
simply interact with the ideal functionality F (in our case, the ideal
PSI protocol of Figure 2.1). The honest party simply forwards its input
from the environment to F and its output from F to the environment.
We define ideal[1κ,F ,Z,S] to be the output of Z in this interaction.

We say that a protocol π UC-securely realizes functionality F if: for all
PPT adversaries A, there exists a PPT simulator S, such that for all PPT
environments Z:

real[1κ, π,Z,A] ≈ ideal[1κ,F ,Z,S]

where “≈” denotes computational indistinguishability.

2.1.3 Efficient Oblivious Transfer

Many of our protocols make use of 1-out-of-2 oblivious transfer (OT). The
ideal functionality is described in Figure 2.2. We often require a large number
of such OTs, secure against malicious adversaries. These can be obtained
efficiently via OT extension [Bea96]. The idea is to perform a fixed number
(e.g., 128) of “base OTs”, and from this correlated randomness derive a large
number of effective OTs using only symmetric-key primitives.

The most efficient OT extension protocols providing malicious security are
those of [ALSZ15, KOS15b, OOS17], which are based on the semi-honest
secure paradigm of [IKNP03].
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2.1.4 Leveled Fully Homomorphic Encryption

Fully homomorphic encryption schemes are encryption schemes that allow
arithmetic circuits to be evaluated directly on ciphertexts, ideally enabling
powerful applications such as outsourcing of computation on private data [RAD78,
Gen09, BV11, BV14, Bra12, FV12, BGV12, GSW13, CGGI16, CKKS17].
For improved performance, the encryption parameters are typically chosen
to support only circuits of a certain bounded depth (leveled fully homomor-
phic encryption), and we use this in our implementations. While FHE is still
far from being a generic solution to computation over encrypted data, it can
be possible to achieve good performance in specific scenarios, e.g. evaluat-
ing the AES circuit [GHS12a], computing edit distance on DNA sequences
[CKL15], and training logistic regression models [KSK+18].

Many of the techniques and algorithms presented in Chapter 6 and 7 are ag-
nostic to the exact fully homomorphic encryption scheme that is being used,
but for simplicity we restrict to RLWE-based cryptosystems using power-of-2
cyclotomic rings of integers [LPR10]. In particular, our implementations use
SEAL[KL16] for fully homomorphic encryption. In such cryptosystems the
plaintext space is Zt[x]/(xn + 1), and the ciphertext space is Zq[x]/(xn + 1),
where n is a power of 2 and t � q are integers. It is customary to de-
note R = Z[x]/(xn + 1), so that the plaintext and ciphertext spaces become
Rt = R/tR, and Rq = R/qR, respectively. We assume the fully homomorphic
encryption scheme to have plaintext and ciphertext spaces of this type, and
the notation (n, q, t) will always refer to these parameters. For example, the
Brakerski-Gentry-Vaikuntanathan (BGV) [BGV12] and the Fan-Vercauteren
(FV) [FV12] schemes have this structure.

A leveled fully homomorphic encryption scheme can be described by the
following set of randomized algorithms:

• FHE.Setup(1κ): Given a security parameter κ, outputs a set of encryp-
tion parameters parms.

• FHE.KeyGen(parms): Outputs a secret key sk and a public key pk.
Optionally outputs one or more evaluation keys evk.

• FHE.Encrypt(m, pk): Given message m ∈ Rt, outputs ciphertext c ∈
Rq.

• FHE.Decrypt(c, sk): Given ciphertext c ∈ Rq, outputs message m ∈ Rt.
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• FHE.Evaluate(C, (c1, . . . , ck), evk): Given an arithmetic circuit f with
k input wires, and inputs c1, . . . , ck with ci → FHE.Encrypt(mi, pk),
outputs a ciphertext c such that

Pr [FHE.Decrypt(c, sk) 6= f(m1, . . . ,mk)] = negl(κ) .

We also require that the size of the output of FHE.Evaluate is not more
than polynomial in κ independent of what f is (compactness) (see
e.g. [ABC+15]).

We say that a fully homomorphic encryption scheme is secure if it is IND-
CPA secure, and weakly circular secure, which means that the scheme re-
mains secure even when the adversary is given encryptions of the bits of the
secret key. A fully homomorphic encryption scheme achieves circuit privacy
if the distribution of the outputs of any fixed homomorphic evaluation is
indistinguishable from the distribution of fresh encryptions of the plaintext
outputs. In this way, one can effectively hide the circuit that was evaluated
on encrypted data. We refer the reader to [ABC+15, BGV12, DS16] for more
details.

The core parameters of the schemes employed are three integers: n, q, and t.1

We set the parameters to always achieve at least a 128-bit security level ac-
cording to the recommendations provided in [CCD+17]. In order to compare
different parameter choices, we need to provide some rough cost estimates
for basic operations in SEAL. The size of each ciphertext is 2n log q bits, and
the size of the underlying plaintext is n log t bits. In terms of computation,
a multiplication between two ciphertexts takes O(n log n(log q)2) bit opera-
tions, whereas a ciphertext-plaintext multiplication takes O(n log n log q) bit
operations (see e.g. [BEHZ16]),

2.2 Related Work

2.2.1 PSI Based on Diffie-Hellman.

Private set intersection has a long and rich history of development. Dating
back to 1986 Meadows [Mea86] proposed a semi-honest approach leveraging

1Another important parameter is the error width σ for which we use the SEAL default
value 3.19.
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the Diffie-Hellman key agreement protocol to generate randomized encodings
of x, y such that they can securely be compared for equality. This approach
was formalized by Huberman et al. [HFH99] and adapted to work with sets of
items X, Y . In particular, each party samples a secret key α, β respectively.
For y ∈ Y , Bob can then compute the randomized encoding JyK := yαβ by
first sampling a random exponent r and sending yrα to Alice who responds
with yrαβ. Bob can then take the rth root of this to obtain yαβ. Symmet-
rically, Alice can interactively compute the randomized encodings for the
elements in her set. The protocol is completed by having Alice send Bob all
of the encodings for her elements which allows Bob to infer X ∩ Y from the
intersection of the encodings. Later this paradigm was extended to the mali-
cious setting by De Cristofaro et al. [DCKT10]. While this approach achieves
linear computation and communication overhead, it requires additional ex-
ponentiations over a large field which limits its practical performance.

The main benefit of this Diffie-Hellman paradigm is its low communication
complexity. Indeed, protocols in this paradigm have by far the smallest
communication complexity when |X| ≈ |Y |. However, the Diffie-Hellman
paradigm requires expensive public-key operations for each item in the par-
ties’ sets, making them much slower than the OT-based approaches that
require only a constant number of public-key operations.

2.2.2 Unbalanced PSI Based on OPRF

As discussed in the previous section, many protocols for private set intersec-
tion are not well-suited when the two parties have input sets of very different
sizes. For example, [PSZ18, KKRT16] are the fastest PSI protocols for large
sets of similar size, but require communication at least O

(
λ(N + n)

)
where

N and n are the respective set sizes and λ is a statistical security parameter.
This cost makes these approaches prohibitive for contact discovery, where N
is very large.

In this setting Resende et al. [RA18] optimizes the communication overhead
of PSI. The central technique of their protocol is to apply an OPRF to the
receiver’s set to obtain a new set Y ′ = {OPRFk(Y ) : y ∈ Y }. Here the sender
holds the key k and can locally apply the OPRF to its set to obtain X ′ =
{OPRFk(x) : x ∈ X}. To reduce communication, the sender compresses
the set X ′ before forwarding it to the receiver. While this compression does
reduce the communication, it remains linear in the size of the larger set,
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and can introduce false positives. That is, with high compression rates the
receiver outputs an element in Y \X with non-negligible probability.

Another work following a similar framework as [RA18] is that of Kiss et
al. [KLS+17]. The main difference between these protocols is in the choice
of the OPRF and the compression technique. [RA18] uses a Diffie-Hellman
based OPRF, while [KLS+17] uses garbled circuits to obliviously evaluate the
AES function. This alteration significantly improves the computational work
required by Alice to apply the OPRF to its set at the expense of increased
communication and computation when the OPRF is applied to the receiver’s
set. The second difference is that [KLS+17] uses a more conservative com-
pression technique and parameters, which do not introduce a significant false
positive rate.

2.2.3 PSI Based on Bloom Filter

Dong, Chen & Wen [DCW13] present an approach for PSI based on rep-
resenting the parties sets as Bloom filters. Their technique builds on an
oblivious transfer protocol[IKNP03] and achieves practical efficiency for set
size less than a hundred thousand. The Dong et al. protocol was presented
in the semi-honest setting along with an extension that was claimed to have
security against malicious adversaries. However, Chapter 3 identifies several
bugs in their protocol and provides a provably secure solution. Similar secu-
rity issues were identified by Lambæk [Lam16] but they did not propose any
counter measures.

2.2.4 PSI Based on Hash Table

A more efficient approach was proposed by Pinkas, Schneider & Zohner (PSZ)
[PSZ14] which combines a hash table data structure and a randomized encod-
ing based on oblivious transfer. The encoding procedure is extremely efficient
and when combined with a hash table achieves linear overhead. The PSZ
approach for PSI has been improved in a series of works [PSSZ15, PSZ18,
OOS17, KKRT16], with the protocol of Kolesnikov et al. [KKRT16] currently
being the fastest PSI protocol against semi-honest adversaries. There have
been modifications of the protocol [OOS17] that provide security against a
restricted class of malicious adversaries (i.e., the protocol protects against a
malicious Alice only), but besides work presented here, there has been no
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success in leveraging this most promising PSI paradigm to provide security
in the full malicious security model.

2.2.5 PSI Based on MPC

Blanton & Aguiar[BA12] describes a relatively complete set of three-party
protocols for performing intersections, unions, set difference, etc. and the
corresponding SQL-like operations. These protocols could tolerate only a
single corrupt party. One compelling feature is that these operations are
composable in that the inputs and outputs are secret shared between the
parties. At the core of their technique is the use of a general-purpose se-
cure computation protocol and an oblivious sorting algorithm to merges the
two sets followed by a linear pass over the sorted data where a relation is
performed on adjacent items. This technique has the advantage of being
very general and flexible. However, the proposed sorting protocol has the
relatively high complexity O(n log2 n) and is not constant round.

Huang, Evans & Katz [HEK12] discuss using general-purpose two-party se-
cure computation (garbled circuits) to perform PSI. Their observation is that
when the sets are pre-sorted the complexity of the Blanton & Aguiar pro-
tocol can be reduced to O(n log n). However, this optimization prevents the
protocol from being composable. Later improvements were also suggested
in [PSZ14, PSSZ15]. At the time of [HEK12], such general-purpose PSI
protocols in the semi-honest setting were actually faster than other special-
purpose ones. Since then, the results in OT-based PSI have made special-
purpose PSI protocols significantly faster. However, we point out that using
general-purpose MPC makes it relatively straight-forward to achieve security
against malicious adversaries since there are many well-studied techniques for
general-purpose malicious 2PC.

2.2.6 PSI Based on Oblivious Polynomial Evaluation

Another line of work was begun by Kissner and Song[KS05] and improved on
by [MF06b]. Their approach is based on the observation that set intersection
and multi-set union has a correspondence to operations on polynomials. A
set S can be encoded as the polynomial Ŝ(x) =

∏
s∈S(x − s) ∈ F[x]. That

is, the polynomial Ŝ(x) has a root at all s ∈ S. Given two such polynomials,
Ŝ(x), T̂ (x), the polynomial encoding the intersection is Ŝ(x) + T̂ (x) with
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overwhelming probability given a sufficiently large field F. Multi-set union
can similarly be performed by multiplying the two polynomials together.
Unlike with normal union, if an item y is contained in S and T then Ŝ(x)T̂ (x)
will contain two roots at y which is often not the desired functionality. This
general idea can be transformed into a secure multi-party protocol using
oblivious polynomial evaluation[NP99] along with randomizing the resulting
polynomial. The original computational overhead was O(n2) which can be
reduced to the cost of polynomial interpolation O(n log n) using techniques
from [MF06b]. The communication complexity is linear. In addition, this
scheme assumes an ideal functionality to generate a shared Paillier key pair.
We are unaware of any efficient protocol to realize this functionality except
for [HMRT12] in the two-party setting.

This general approach is also composable. However, due to randomization
that is performed the degree of the polynomial after each operation doubles.
This limits the practical ability of the protocol to compose more than a few
operations. Moreover, it is not clear how this protocol can be extended to
support SQL-like queries where elements are key-value tuples.

Hazay and Nissim introduce a pair of protocols computing set intersection
and union which are also based on oblivious polynomial evaluation where the
roots of the polynomial encode a set. However, these protocols are restricted
to the two-party case and are not composable. The non-composability comes
from the fact that only one party constructs a polynomial Ŝ(x) encoding their
set S while the other party obliviously evaluates it on each element in their
set. The result of these evaluations is compared with zero2. These protocols
have linear overhead and can achieve security in the malicious setting.

2.2.7 PSI Based on an Untrusted Server

Kamara et al. [KMRS14] presented techniques for both semi-honest and ma-
licious secure PSI in a server-aided model. In this model, the two parties
who hold data enlist the help of an untrusted third party who carries out the
majority of the computation. Their protocols are extremely fast (roughly as
fast as the plaintext computation) and scale to billions of input items. In
our work, we primarily focus on on the more traditional (and demanding)
setting where the two parties do not enlist a third party. An exception to
this is made in Chapter 8

2The real protocol employs a slightly different comparison predicate for technical rea-
sons.
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2.2.8 PSI with Computation

Being able to compute functions on the intersection without revealing inter-
mediate results, or even the intersection, is often a desirable property. For
instance, [IKN+17b] built a PSI-SUM protocol, which returns a weighted
sum of all items in the intersection. This protocol is currently being used by
Google to compute ad revenue conversion rates.

Pinkas et al. [PSWW18] presented a PSI protocol designed to perform arbi-
trary computation on the intersection. While their protocol is highly efficient,
it has some limitations in the types of computations that can naturally be
performed. Namely, a significant overhead is introduced if the function be-
ing computed is sensitive to the order of the inputs. Despite this limitation,
several interesting applications were considered such as threshold-PSI, which
returns true or false based on whether the intersection size reaches a certain
threshold; [PSWW18, CGT12] consider PSI cardinality, which returns the
size of the intersection. [NDCD+13] considers a private friend-finding sce-
nario. Ciampi and Orlandi [CO18] also design a protocol that can compute
an arbitrary function on the intersection. One limitation all of these works
have is that the communication complexity is at least linear in both set sizes.

2.2.9 PIR by Keywords

Private Information Retrieval (PIR) allows a user to retrieve an entry in some
database held by one or more servers. A variant called PIR by keywords was
considered by Chor et al. in [CGN97], where the user query consists of a
keyword instead of the address of the entry in the database. Our Labeled
PSI protocol can be viewed as a multi-query (single-server) PIR by keywords:
we regard Bob’s set Y as a set of keywords, and the set of Alice’s labels as
the database.

In [FIPR05] Freedman et al. introduced a protocol for single-server PIR
by keywords based on additive homomorphic encryption. Meanwhile, using
leveled FHE, our communication per keyword is O(σ log |X| + `), whereas
[FIPR05] uses additive homomorphic encryption, and their communication is
linear in the size of the entire database, namely |X| ·`. Our Labeled PSI pro-
tocol also handles multiple keywords so it can be viewed as an improvement
upon their single keyword search protocol. Labeled PSI is also considered
in [JL10], where the authors constructed a solution based on Diffie-Hellman
type assumptions, with communication linear in the larger set.
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Angel et al. [AS16, ACLS17] used multi-query single-server PIR by keywords
as the core component of an anonymous communication protocol. In order to
reduce PIR by keywords to PIR, they pushed a Bloom filter representation
of the index-to-keyword map to each client. They also optimized for multi-
query by using power-of-two choices and cuckoo hashing techniques.

Olumofin and Goldberg [OG10] used information-theoretical PIR by key-
words to protect the privacy of client queries to a public database. Their
reduction from PIR by keywords to PIR relies on B+ trees, and perfect hash
functions.

2.2.10 Secure Hardware based PSI

Recently the Signal messaging service announced a solution for private con-
tact discovery based on Intel SGX, which they plan to deploy soon [Mar17].
The idea is for the client to send their input set directly into an SGX enclave
on the server, where it is privately compared to the server’s set. The enclave
can use remote attestation to prove the authenticity of the server software.

The security model for this approach is incomparable to ours and others, as
it relies on a trusted hardware assumption. Standard two-party PSI proto-
cols rely on standard cryptographic hardness assumptions. It is also worth
pointing out that commercial uses of Intel SGX currently require a license
and that there is ongoing research that focuses on applying side-channel
attacks like Spectre and Meltdown to extract confidential data from SGX
enclaves [Lar17].
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Chapter 3

PSI From Bloom Filters

Improved Private Set Intersection against Malicious Adversaries by Peter
Rindal & Mike Rosulek, in Eurocrypt[RR17a].

3.1 Introduction

There has been a great deal of recent progress in efficient PSI protocols that
are secure against semi-honest adversaries, who are assumed to follow the
protocol. The current state of the art has culminated in extremely fast PSI
protocols. The fastest one, due to Kolesnikov et al. [KKRT16], can securely
compute the intersection of two sets, each with 220 items, in less than 4
seconds.

Looking more closely, the most efficient semi-honest protocols are those that
are based on oblivious transfer (OT) extension. Oblivious transfer is
a fundamental cryptographic primitive (see Figure 2.2). While in general
OT requires expensive public-key computations, the idea of OT extension
[Bea96, IKNP03] allows the parties to efficiently realize any number of effec-
tive OTs by using only a small number (e.g., 128) of base OTs plus some much
more efficient symmetric-key computations. Using OT extension, oblivious
transfers become extremely inexpensive in practice. Pinkas et al. [PSZ14]
compared many paradigms for PSI and found the ones based on OTs are
much more efficient than those based on algebraic & public-key techniques.
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3.1.1 Chapter Contributions

In many settings, security against semi-honest adversaries is insufficient. Our
goal in this paper is to translate the recent success in semi-honest PSI to the
setting of malicious security. Following the discussion above, this means
focusing on PSI techniques based on oblivious transfers. Indeed, recent pro-
tocols for OT extension against malicious adversaries [ALSZ13, KOS15b] are
almost as efficient as (only a few percent more expensive than) OT extension
for semi-honest adversaries.

Our starting point is the protocol paradigm of Dong, Chen & Wen [DCW13]
(hereafter denoted DCW) that is based on OTs and Bloom filter encodings.
We describe their approach in more detail in Section 3.2. In their work they
describe one of the few malicious-secure PSI protocols based primarily on
OTs rather than algebraic public-key techniques. We present the following
improvements and additions to their protocol:

1. Most importantly, we show that their protocol has a subtle security
flaw, which allows a malicious Alice to induce inconsistent outputs for
the receiver. We present a fix for this flaw, using a very lightweight
cut-and-choose technique.A

2. We present a full simulation-based security proof for the Bloom-filter-
based PSI paradigm. In doing so, we identify a subtle but important
aspect about using Bloom filters in a protocol meant to provide se-
curity in the presence of malicious adversaries. Namely, the simula-
tor must be able to extract all items stored in an adversarially con-
structed Bloom filter. We argue that this capability is an inherently
non-standard model assumption, in the sense that it seems to require
the Bloom filter hash functions to be modeled as (non-programmable)
random oracles. Details are in Section 3.4.1.

3. We implement both the original DCW protocol and our improved ver-
sion. We find that the major bottleneck in the original DCW protocol
is not in the cryptographic operations, but actually in a polynomial
interpolation computation. The absence of polynomial interpolation in
our new protocol (along with our other improvements) decreases the
running time by a factor of over 8-75x.
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3.1.2 Bloom Filters

A Bloom filter (BF) is an N -bit array B associated with k random func-
tions h1, . . . , hk : {0, 1}∗ → [N ]. To store an item x in the Bloom filter, one
sets B[hi(x)] = 1 for all i. To check the presence of an item x in the Bloom
filter, one simply checks whether B[hi(x)] = 1 for all i. Any item stored
in the Bloom filter will therefore be detected when queried; however, false
positives are possible.

3.2 The DCW Protocol Paradigm

The PSI protocol of Dong, Chen, and Wen [DCW13] (hereafter DCW) is
based on representing the parties’ input sets as Bloom filters (BFs). We
describe the details of their protocol in this section.

If B and B′ are BFs for two sets S and S ′, using the same parameters
(including the same random functions), then it is true that B ∧B′ (bit-wise
AND) is a BF for S ∩ S ′. However, one cannot construct a PSI protocol
simply by computing a bit-wise AND of Bloom filters. The reason is that
B∧B′ leaks more about S and S ′ than their intersection S∩S ′. For example,
consider the case where S ∩ S ′ = ∅. Then the most natural Bloom filter for
S ∩ S ′ is an all-zeroes string, and yet B ∧ B′ may contain a few 1s with
noticeable probability. The location of these 1s depends on the items in S
and S ′, and hence cannot be simulated just by knowing that S ∩ S ′ = ∅.

DCW proposed a variant Bloom filter that they call a garbled Bloom filter
(GBF). In a GBF G meant to store m-bit strings, each G[i] is itself an m-bit
string rather than a single bit. Then an item x is stored in G by ensuring that
x =

⊕
iG[hi(x)]. That is, the positions indexed by hashing x should store

additive secret shares of x. All other positions in G are chosen uniformly.

The semi-honest PSI protocol of DCW uses GBFs in the following way.
The two parties agree on Bloom filter parameters. Alice prepares a GBF
G representing her input set. The receiver Bob prepares a standard BF B
representing his input set. For each position i in the Bloom filters, the parties
use oblivious transfer so that Bob can learn G[i] (a string) iff B[i] = 1. These
are exactly the positions of G that Bob needs to probe in order to determine
which of his inputs is stored in G. Hence Bob can learn the intersection.
DCW prove that this protocol is secure. That is, they show that Bob’s view
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{G[i] | B[i] = 1} can be simulated given only the intersection of Alice and
Bob’s sets.

DCW also describe a malicious-secure variant of their GBF-based protocol.
The main challenge is that nothing in the semi-honest protocol prevents
a malicious Bob from learning all of Alice’s GBF G. This would reveal
Alice’s entire input, which can only be simulated in the ideal world by Bob
sending the entire universe {0, 1}σ as input. Since in general the universe is
exponentially large, this behavior is unsimulatable and hence constitutes an
attack.

To prevent this, DCW propose to use 1-out-of-2 OTs in the following way.
Bob can choose to either pick up a position G[i] in Alice’s GBF (if Bob has
a 1 in B[i]) or else learn a value si (if Bob has a 0 in B[i]). The values si are
an N/2-out-of-N secret sharing of some secret s∗ which is used to encrypt all
of the G[i] values. Hence, Alice’s inputs to the ith OT are (si,Enc(s

∗, G[i])),
where Enc is a suitable encryption scheme. Intuitively, if Bob tries to obtain
too many positions of Alice’s GBF (more than half), then he cannot recover
the key s∗ used to decrypt them.

As long as N > 2k|Y | (where Y is Bob’s input set), an honest Bob is guaran-
teed to have at least half of his BF bits set to zero. Hence, he can reconstruct
s∗ from the si shares, decrypt the G[i] values, and probe these GBF positions
to learn the intersection. We describe the protocol formally in Figure 3.1.

3.2.1 Insecurity of the DCW Protocol

Unfortunately, the malicious-secure variant of DCW is not secure!1 We now
describe an a attack on their protocol, which was independently & concur-
rently discovered by Lambæk [Lam16]. A corrupt Alice will generate si values
that are not a valid N/2-out-of-N secret sharing. DCW do not specify Bob’s
behavior when obtaining invalid shares. However, we argue that no matter
what Bob’s behavior is (e.g., to abort in this case), Alice can violate the
security requirement.

As a concrete attack, let Alice honestly generate shares si of s∗, but then
change the value of s1 in any way. She otherwise runs the protocol as in-
structed. If the first bit of Bob’s Bloom filter is 1, then this deviation from

1We contacted the authors of [DCW13], who confirmed that our attack violates mali-
cious security.
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Parameters: X is Alice’s input, Y is Bob’s input. N is the required
Bloom filter size; We assume the parties have agreed on common BF
parameters.

1. Alice chooses a random key s∗ ∈ {0, 1}κ and generates an N/2-out-
of-N secret sharing (s1, . . . , sN).

2. Alice generates a GBF G encoding her inputs X. Bob generates a
standard BF B encoding his inputs Y .

3. For i ∈ [N ], the parties invoke an instance of 1-out-of-2 OT, where
Alice gives inputs (si, ci = Enc(s∗, G[i])) and Bob uses choice bit
B[i].

4. Bob reconstructs s∗ from the set of shares {si | B[i] = 0} he ob-
tained in the previous step. Then he uses s∗ to decrypt the ci-
phertexts {ci | B[i] = 1}, obtaining {G[i] | B[i] = 1}. Finally, he
outputs {y ∈ Y | y =

⊕
iG[hi(y)]}.

Figure 3.1: The malicious-secure protocol of DCW [DCW13].

the protocol is invisible to him, and Alice’s behavior is indistinguishable from
honest behavior. Otherwise, Bob will pick up s1 which is not a valid share.
If Bob aborts in this case, then his abort probability depends on whether his
first BF bit is 1. The effect of this attack on Bob’s output cannot be simulated
in the ideal PSI functionality, so it represents a violation of security.

Even if we modify Bob’s behavior to gracefully handle some limited number
of invalid shares, there must be some threshold of invalid shares above which
Bob (information theoretically) cannot recover the secret s∗. Whether or
not Bob recovers s∗ therefore depends on individual bits of his Bloom filter.
And whether we make Bob abort or do something else (like output ∅) in
the case of invalid shares, the result cannot be simulated in the ideal world.
Lambæk [Lam16] points out further attacks, in which Alice can cleverly craft
shares and encryptions of GBF values to cause her effective input to depend
on Bob’s inputs (hence violating input independence).
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3.3 Our Protocol

The spirit of DCW’s malicious protocol is to restrict the adversary from
setting too many 1s in its Bloom filter, thereby learning too many positions
in Alice’s GBF. In this section, we show how to achieve the spirit of the
DCW protocol using a lightweight cut-and-choose approach.

The high-level idea is to generate slightly more 1-out-of-2 OTs than the
number of BF bits needed. Bob is supposed to use a limited number of 1s for
his choice bits. To check this, Alice picks a small random fraction of the OTs
and asks Bob to prove that an appropriate number of them used choice bit 0.
If Alice uses random strings as her choice-bit-0 messages, then Bob can prove
his choice bit by simply reporting this string.2 If Bob cannot prove that he
used sufficiently many 0s as choice bits, then Alice aborts. Otherwise, Alice
has high certainty that the unopened OTs contain a limited number of choice
bits 1.

After this cut-and-choose, Bob can choose a permutation that reorders the
unopened OTs into his desired BF. In other words, if c1, . . . , cN are Bob’s
choice bits in the unopened OTs, Bob sends a random π such that cπ(1), . . . , cπ(N)

are the bits of his desired BF. Then Alice can send her GBF, masked by the
choice-bit-1 OT messages permuted in this way.

We discuss the required parameters for the cut-and-choose below. However,
we remark that the overhead is minimal. It increases the number of required
OTs by only 1–10%.

3.3.1 Additional Optimizations

Starting from the basic outline just described, we also include several impor-
tant optimizations. The complete protocol is described formally in Figure 3.2.

Random GBF In their treatment of the semi-honest DCW protocol, Pinkas
et al. [PSZ14] suggested an optimization that eliminates the need for Alice
to send her entire masked GBF. Suppose the parties use 1-out-of-2 OT of
random messages (i.e., Alice does not choose the OT messages; instead, they
are chosen randomly by the protocol / ideal functionality). In this case, the

2This committing property of an OT choice bit was pointed out by Rivest [Riv99].
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concrete cost of OT extension is greatly reduced (cf. [ALSZ13]). Rather than
generating a GBF of her inputs, Alice generates an array G where G[i] is the
random OT message in the ith OT corresponding to bit 1 (an honest Bob
learns G[i] iff the ith bit of his Bloom filter is 1).

Rather than arranging for
⊕

iG[hi(x)] = x, as in a garbled BF, the idea is to
let the G-values be random and have Alice directly send to Bob a summary
value Kx =

⊕
iG[hi(x)] for each of her elements x. For each item y in

Bob’s input set, he can likewise compute Ky since he learned the values of
G corresponding to 1s in his Bloom filter. Bob can check to see whether Ky

is in the list of strings sent by Alice. For items x not stored in Bob’s Bloom
filter, the value Kx is random from his point of view.

Pinkas et al. show that this optimization significantly reduces the cost, since
most OT extension protocols require less communication for OT of random
messages. In particular, Alice’s main communication now depends on the
number of items in her set rather than the size of the GBF encoding her
set. Although the optimization was suggested for the semi-honest variant of
DCW, we point out that it also applies to the malicious variant of DCW and
to our cut-and-choose protocol.

In the malicious-secure DCW protocol, the idea is to prevent Bob from seeing
GBF entries unless he has enough shares to recover the key s∗. To achieve
the same effect with a random-GBF, we let the choice-bit-1 OT messages be
random (choice-bit-0 messages still need to be chosen messages: secret shares
of s∗). These choice-bit-1 OT messages define a random GBF G for Alice.
Then instead of sending a summary value

⊕
iG[hi(x)] for each x, Alice sends

[
⊕

iG[hi(x)]] ⊕ F (s∗, x), where F is a pseudorandom function. If Bob does
not use choice-bit-0 enough, he does not learn s∗ and all of these messages
from Alice are pseudorandom.

In our protocol, we can let both OT messages be random, which significantly
reduces the concrete overhead. The choice-bit-0 messages are used when Bob
proves his choice bit in the cut-and-choose step. The choice-bit-1 messages
are used as a random GBF G, and Alice sends summary values just as in the
semi-honest variant.

We also point out that Pinkas et al. and DCW overlook a subtlety in how the
summary values and the GBF should be constructed. Pinkas et al. specify the
summary value as

⊕
iG[hi(x)] where hi are the BF hash functions. Suppose

that there is a collision involving two BF hash functions under the same x —
that is, hi(x) = hi′(x). Note that since the range of the BF hash functions is
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polynomial in size ([Nbf]), such a collision is indeed possible with noticeable
probability. When such a collision happens, the term G[hi(x)] = G[hi′(x)]
can cancel itself out from the XOR summation and the summary value will
not depend on this term. The DCW protocol also has an analogous issue.3 If
the G[hi(x)] term was the only term unknown to the Bob, then the collision
allows him to guess the summary value for an item x that he does not have.
We fix this by computing the summary value using an XOR expression that
eliminates the problem of colliding terms:⊕

j∈h∗(x)

G[j], where h∗(x)
def
= {hi(x) : i ∈ [k]}.

Note that in the event of a collision among BF hash functions, we get
|h∗(x)| < k.

Finally, for technical reasons, it turns out to be convenient in our protocol
to define the summary value of x to be H(x‖

⊕
j∈h∗(x) G[j]) where H is a

(non-programmable) random oracle.4

Hash only “on demand.” In OT-extension for random messages, the
parties compute the protocol outputs by taking a hash of certain values de-
rived from the base OTs. Apart from the base OTs (whose cost is constant),
these hashes account for essentially all the cryptographic operations in our
protocol. We therefore modify our implementation of OT extension so that
these hashes are not performed until the values are needed. In our protocol,
only a small number (e.g., 1%) of the choice-bit-0 OT messages are ever used
(for the cut-and-choose check), and only about half of the choice-bit-1 OT
messages are needed by the sender (only the positions that would be 1 in
a BF for the sender’s input). Hence, the reduction in cost for the receiver
is roughly 50%, and the reduction for the sender is roughly 75%. A similar
optimization was also suggested by Pinkas et al. [PSZ14], since the choice-bit
0 messages are not used at all in the semi-honest protocol.

Aggregating proofs-of-choice-bits Finally, we can reduce the commu-
nication cost of the cut-and-choose step. Recall that Bob must prove that

3Additionally, if one strictly follows the DCW pseudocode then correctness may be
violated in the event of a collision hi(x) = hi′(x). If hi(x) is the first “free” GBF location
then G[hi(x)] gets set to a value and then erroneously overwritten later.

4In practice H is instantiated with a SHA-family hash function. The xor expression
and x itself are each 128 bits, so both fit in a single SHA block.
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he used choice bit 0 in a sufficient number of OTs. For the ith OT, Bob can
simply send mi,0, the random output he received from the ith OT. To prove
he used choice bit 0 for an entire set I of indices, Bob can simply send the
single value

⊕
i∈I mi,0, rather than sending each term individually.

Optimization for programmable random oracles. The formal descrip-
tion of our protocol is one that is secure in the non-programmable random
oracle model. However, the protocol can be significantly optimized by assum-
ing a programmable random oracle. The observation is that Alice’s OT input
strings are always chosen randomly. Modern OT extension protocols natively
give OT of random strings and achieve OT of chosen strings by sending extra
correction data (cf. [ALSZ13]). If the application allows the OT extension
protocol itself to determine the sender’s strings, then this additional commu-
nication can be eliminated. In practice, this reduces communication cost for
OTs by a factor of 2.

We can model OT of random strings by modifying the ideal functionality
of Figure 2.2 to choose m0,m1 randomly itself. The OT extension protocol
of [OOS17] securely realizes this functionality in the presence of malicious
adversaries, in the programmable random oracle model. We point out that
even in the semi-honest model it is not known how to efficiently realize OT
of strings randomly chosen by the functionality, without assuming a pro-
grammable random oracle.

3.4 Security

3.4.1 BF extraction

The analysis in DCW argues for malicious security in a property-based man-
ner, but does not use a standard simulation-based notion of security. This
turns out to mask a non-trivial subtlety about how one can prove security
about Bloom-filter-based protocols.

One important role of a simulator is to extract a corrupt party’s input. Con-
sider the case of simulating the effect of a corrupt Bob. In the OT-hybrid
model the simulator sees Bob’s OT choice bits as well as the permutation π
that he sends in 5. Hence, the simulator can easily extract Bob’s “effective”
Bloom filter. However, the simulator actually needs to extract the receiver’s
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input set that corresponds to that Bloom filter, so that it can send the set
itself to the ideal functionality.

In short, the simulator must invert the Bloom filter. While invertible Bloom
filters do exist [GM11], they require storing a significant amount of data
beyond that of a standard Bloom filter. Yet this PSI protocol only allows
the simulator to extract the receiver’s OT choice bits, which corresponds to
a plain Bloom filter. Besides that, in our setting we must invert a Bloom
filter that may not have been honestly generated.

Our protocol achieves extraction by modeling the Bloom filter hash functions
as (non-programmable) random oracles. The simulator must observe the
adversary’s queries to the Bloom filter hash functions.5 Let Q be the set
of queries made by the adversary to any such hash function. This set has
polynomial size, so the simulator can probe the extracted Bloom filter to test
each q ∈ Q for membership. The simulator can take the appropriate subset
of Q as the adversary’s extracted input set. More details are given in the
security proof below.

Simulation/extraction of a corrupt Alice is also facilitated by observing her
oracle queries. Recall that the summary value of x is (supposed to be) H(x‖⊕

j∈h∗(x) mπ(j),1). Since H is a non-programmable random oracle, the simu-
lator can obtain candidate x values from her calls to H.

More details about malicious Bloom filter extraction are given in the security
proof in Section 8.4.

Necessity of random oracles. We show that random oracles are neces-
sary, when using plain Bloom filters for a PSI protocol.

Lemma 1. There is no PSI protocol that simultaneously satisfies the follow-
ing conditions:

• The protocol is UC secure against malicious adversaries in the standard
model.

• When Bob is corrupted in a semi-honest manner, the view of the sim-
ulator can be sampled given only on a Bloom filter representation of
Bob’s input.

5The simulator does not, however, require the ability to program the random oracle.
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• The parameters of the Bloom filter depend only on the number of items
in the parties’ sets, and in particular not on the bitlength of those items.

In our protocol, the simulator’s indeed gets to see the receiver’s OT choice
bits, which correspond to a plain Bloom filter encoding of their input set.
However, the simulator also gets to observe the receiver’s random oracle
queries, and hence the statement of the lemma does not apply.

The restriction about the Bloom filter parameters is natural. One important
benefit of Bloom filters is that they do not depend on the bit-length of the
items being stored.

Proof. Consider an environment that chooses a random set S ⊆ {0, 1}` of
size n, and gives it as input to both parties (` will be chosen later). An
adversary corrupts Bob but runs semi-honestly on input S as instructed.
The environment outputs 1 if the output of the protocol is S (note that it
does not matter if only one party receives output). In this real execution, the
environment outputs 1 with overwhelming probability due to the correctness
of the protocol.

We will show that if the protocol satisfies all three conditions in the lemma
statement, then the environment will output 0 with constant probability in
the ideal execution, and hence the protocol will be insecure.

Suppose the simulator for a corrupt Bob sees only a Bloom filter repre-
sentation of Bob’s inputs. Let N be the total length of the Bloom filter
representation (the Bloom filter array itself as well as the description of hash
functions). Set the length of the input items ` > 2N . Now the simulator’s
view can be sampled given only N bits of information about S, whereas S
contains randomly chosen items of length ` > 2N . The simulator must ex-
tract a value S ′ and send it on behalf of Bob to the ideal functionality. With
constant probability this S ′ will fail to include some item of S (it will likely
not include any of them). Then since the honest party gave input S, the
output of the functionality will be S ∩ S ′ 6= S, and the environment outputs
zero.

3.4.2 Cut-and-choose parameters

The protocol mentions various parameters:
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Not: the number of OTs

Nbf: the number of Bloom filter bits

k: the number of Bloom filter hash functions

α: the fraction of 1s among Bob’s choice bits

pchk: the fraction of OTs to check

Nmaxones: the maximum number of 1 choice bits allowed to pass the cut-and-
choose.

As before, we let κ denote the computational security parameter and λ denote
the statistical security parameter.

We require the parameters to be chosen subject to the following constraints:

• The cut-and-choose restricts Bob to few 1s. Let N1 denote the number
of OTs that remain after the cut and choose, in which Bob used choice
bit 1. In the security proof we argue that the difficulty of finding an
element stored in the Bloom filter after the fact is (N1/N)k (i.e., one
must find a value which all k random Bloom filter hash functions map
to a 1 in the BF).

Let B denote the “bad event” that no more than Nmaxones of the checked
OTs used choice bit one (so Bob can pass the cut-and-choose), and yet
(N1/Nbf)

k ≥ 2−κ. We require Pr[B] ≤ 2−λ.

As mentioned above, the spirit of the protocol is to restrict a corrupt
receiver from setting too many 1s in its (plain) Bloom filter. DCW
suggest to restrict the receiver to 50% 1s, but do not explore how the
fraction of 1s affects security (except to point out that 100% 1s is
problematic). Our analysis pinpoints precisely how the fraction of 1s
affects security.

• The cut-and-choose leaves enough OTs unopened for the Bloom filter.
That is, when choosing from among Not items, each with independent
pchk probability, the probability that less than Nbf remain unchosen is
at most 2−λ.

• The honest Bob has enough one choice bits after the cut and choose.
When inserting n items into the bloom filter, at most nk bits will be
set to one. We therefore require that no fewer than this remain after
the cut and choose.
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Our main technique is to apply the Chernoff bound to the probability that
Bob has too many 1s after the cut and choose. Let m1

h = αNot (resp. m0
h =

(1 − α)Not) be the number of 1s (resp. 0s) Bob is supposed to select in the
OT extension. Then in expectation, there should be m1

hpchk ones in the cut
and choose open set, where each OT message is opened with independent
probability pchk. Let φ denote the number of ones in the open set. Then
applying the Chernoff bound we obtain,

Pr[φ ≥ (1 + δ)m1
hpchk] ≤ e−

δ2

2+δ
m1
hpchk ≤ 2−λ

where the last step bounds this probability to be negligible in the statistical
security parameter λ. Solving for δ results in,

δ ≤
λ+

√
λ2 + 8λm1

hpchk
2m1

hpchk
.

Therefore an honest Bob should have no more than Nmaxones = (1 + δ)m1
hpchk

1s revealed in the cut and choose, except with negligible probability. To
ensure there are at least nk ones6 remaining to construct the bloom filter,
set m1

h = nk +Nmaxones. Similarly, there must be at least Nbf unopened OTs
which defines the total number of OTs to be Not = Nbf + (1 + δ∗)Notpchk
where δ∗ is analogous to δ except with respect to the total number of OTs
opened in the cut and choose.

A malicious Bob can instead select m1
a ≥ m1

h ones in the OT extension. In
addition to Bob possibly setting more 1s in the BF, such a strategy will
increase the probability of the cut and choose revealing more than Nmaxones

1s. A Chernoff bound can then be applied to the probability of seeing a δ′

factor fewer 1s than expected. Bounding this to be negligible in the statistical
security parameter λ, we obtain,

Pr[φ ≤ (1− δ′)pchkm1
a] ≤ e−

δ′2
2
pchkm

1
a ≤ 2−λ.

Solving for δ′ then yields δ′ ≤
√

2λ
pchkm1

a
. By setting Nmaxones equal to (1 −

δ′)pchkm
1
a we can solve for m1

a such that the intersection of these two dis-
tribution is negligible. Therefore the maximum number of 1s remaining is
N1 = (1− pchk)m1

a +
√

2λpchkm1
a.

For a given pchk, n, k, the above analysis allows us to bound the maximum

6nk ones is an upper bound on the number of ones required. A tighter analysis could
be obtained if collisions were accounted for.
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advantage a malicious Bob can have. In particularly, a honest Bob will
have at least nk 1s and enough 0s to construct the bloom filter while a
malicious Bob can set no more than N1/Nbf fraction of bits in the bloom
filter to 1. Modeling the bloom filter hash function as random functions, the
probability that all k index the boom filter one bits is (N1/Nbf)

k. Setting
this to be negligible in the computational security parameter κ we can solve
for Nbf given N1 and k. The overall cost is therefore Nbf

(1−pchk)
. By iterating

over values of k and pchk we obtain set of parameters shown in Figure 3.1.

3.4.3 Security Proof

Theorem 2. The protocol in Figure 3.2 is a UC-secure protocol for PSI in
the random-OT-hybrid model, when H and the Bloom filter hash functions
are non-programmable random oracles, and the other protocol parameters are
chosen as described above.

Proof. We first discuss the case of a corrupt receiver Bob, which is the more
difficult case since we must not only extract Bob’s input but simulate the
output. The simulator behaves as follows:

The simulator plays the role of an honest Alice and ideal func-
tionalities in steps 1 through 5, but also extracts all of Bob’s
choice bits b for the OTs. Let N1 be the number of OTs with
choice bit 1 that remain after the cut and choose. The simula-
tor artificially aborts if Bob succeeds at the cut and choose and
yet (N1/Nbf)

k ≥ 2−κ. From the choice of parameters, this event
happens with probability only 2−λ.

After receiving Bob’s permutation π in step 5, the simulator com-
putes Bob’s effective Bloom filter BF [i] = bπ(i). Let Q be the set
of queries made by Bob to any of the Bloom filter hash func-
tions (random oracles). The simulator computes Ỹ = {q ∈ Q |
∀i : BF [hi(q)] = 1} as Bob’s effective input, and sends Ỹ to
the ideal functionality. The simulator receives Z = X ∩ Ỹ as
output, as well as |X|. For z ∈ Z, the simulator generates
Kz = H(z ‖

⊕
j∈h∗(z) mπ(j),1). The simulator sends a random

permutation of Kz along with |X| − |Z| random strings to simu-
late Alice’s message in step 6.
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To show the soundness of this simulation, we proceed in the following se-
quence of hybrids:

1. The first hybrid is the real world interaction. Here, an honest Alice also
queries the random oracles on her actual inputs x ∈ X. For simplicity
later on, assume that Alice queries her random oracle as late as possible
(in step 6 only).

2. In the next hybrid, we artifically abort in the event that (N1/Nbf)
k ≥

2−κ. As described above, our choice of parameters ensures that this
abort happens with probability at most 2−λ, so the hybrids are indis-
tinguishable.

In this hybrid, we also observe Bob’s OT choice bits. Then in step 5 of
the protocol, we compute Q, BF , and Ỹ as in the simulator description
above.

3. We next consider a sequence of hybrids, one for each item x of Alice
such that x ∈ X \ Ỹ . In each hybrid, we replace the summary value
Kx = H(x ‖

⊕
j∈h∗(x) mπ(j),1) with a uniformly random value.

There are two cases for x ∈ X \ Ỹ :

• Bob queried some hi on x before step 5: If this happened but x
was not included in Ỹ , then x is not represented in Bob’s effective
Bloom filter BF . There must be an i such that Bob did not learn
mπ(hi(x)),1.

• Bob did not query any hi on x: Then the value of hi(x) is random
for all i. The probability that x is present in BF is the probabil-
ity that BF [hi(x)] = 1 for all i, which is (N1/Nbf)

k since Bob’s
effective Bloom filter has N1 ones. Recall that the interaction is
already conditioned on the event that (N1/Nbf)

k < 2−κ. Hence it
is with overwhelming probability that Bob did not learn mπ(hi(x)),1

for some i.

In either case, there is an i such that Bob did not learn mπ(hi(x)),1, so
that value is random from Bob’s view. Then the corresponding sum⊕

j∈h∗(x) mπ(j),1 is uniform in Bob’s view.7 It is only with negligible

probability that Bob makes the oracle queryKx = H(x ‖
⊕

j∈h∗(x) mπ(j),1).
Hence Kx is pseudorandom and the hybrids are indistinguishable.

7This is part of the proof that breaks down if we compute a summary value using⊕
imπ(hi(x)),1 instead of

⊕
j∈h∗(x)mπ(j),1. In the first expression, it may be that hi′(x) =

hi(x) for some i′ 6= i so that the randomizing term mπ(hi(x)),1 cancels out in the sum.
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In the final hybrid, the simulation does not need to know X, it only needs
to know X ∩ Ỹ . In particular, the values {Kx | x ∈ X \ Ỹ } are now being
simulated as random strings. The interaction therefore describes the behavior
of our simulator interacting with corrupt Bob.

Now consider a corrupt Alice. The simulation is as follows:

The simulator plays the role of an honest Bob and ideal function-
alities in steps 1 through 4. As such, the simulator knows Alice’s
OT messages mi,b for all i, b, and can compute the correct r∗ value
in step 4. The simulator sends a completely random permutation
π in step 5.

In step 6, the simulator obtains a set K as Alice’s protocol mes-
sage. Recall that each call made to random oracle H has the form
q‖s. The simulator computesQ = {q | ∃s : Alice queried H on q‖s}.
The simulator computes X̃ = {q ∈ Q | H(q ‖

⊕
j∈h∗(q) mπ(j),1) ∈

K} and sends X̃ to the ideal functionality as Alice’s effective
input. Recall Alice receives no output.

It is straight-forward to see that Bob’s protocol messages in steps 4 & 5 are
distributed independently of his input.

Recall that Bob outputs {y ∈ Y | H(y ‖
⊕

j∈h∗(y) m
∗
π(j)) ∈ K} in the last step

of the protocol. In the ideal world (interacting with our simulator), Bob’s
output from the functionality is X̃ ∩ Y = {y ∈ Y | y ∈ X̃}. We will show
that the two conditions are the same except with negligible probability. This
will complete the proof.

We consider two cases:

• If y ∈ X̃, then H(y ‖
⊕

j∈h∗(y) m
∗
π(j)) = H(y ‖

⊕
j∈h∗(y) mπ(j),1) ∈ K by

definition.

• If y 6∈ X̃, then Alice never queried the oracle H(y‖·) before fixing K,
hence H(y ‖

⊕
j∈h∗(y) m

∗
π(j)) is a fresh oracle query, distributed indepen-

dently of K. The output of this query appears in K with probability
|K|/2κ.
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Taking a union bound over y ∈ Y , we have that, except with probability
|K||Y |/2κ,

H(y ‖
⊕

j∈h∗(y)m
∗
π(j)) ∈ K ⇐⇒ y ∈ X̃

Hence Bob’s ideal and real outputs coincide.

Size of the adversary’s input set. When Alice is corrupt, the simulator
extracts a set X̃. Unless the adversary has found a collision under random
oracle H (which is negligibly likely), we have that |X̃| ≤ |K|. Thus the
protocol enforces a straightforward upper bound on the size of a corrupt
Alice’s input.

The same is not true for a corrupt Bob. The protocol enforces an upper bound
only on the size on Bob’s effective Bloom filter and a bound on the number
of 1s in that BF. We now translate these bounds to derive a bound on the
size of the set extracted by the simulator. Note that the ideal functionality
for PSI (Figure 2.1) explicitly allows corrupt parties to provide larger input
sets than honest parties.

First, observe that only queries made by the adversary before step 5 of the
protocol are relevant. Queries made by the adversary after do not affect the
simulator’s extraction. As in the proof, let Q be the set of queries made by
Bob before step 5. Bob is able to construct a BF with at most N1 ones, and
causing the simulator to extract items Ỹ ⊆ Q, only if:∣∣∣∣∣∣

⋃
y∈Ỹ ;i∈[k]

hi(y)

∣∣∣∣∣∣ ≤ N1.

Then by a union bound over all Bloom filters with N1 bits set to 1, and all
Ỹ ⊆ Q of size |Ỹ | = n′, we have:

Pr

[
simulator extracts
some set of size n′

]
≤
(
|Q|
n′

)(
Nbf

N1

)(
N1

Nbf

)kn′
.

The security proof already conditions on the event that (N1/Nbf)
k ≤ 2−κ, so

we get:

Pr

[
simulator extracts
some set of size n′

]
≤
(
|Q|
n′

)(
Nbf

N1

)
2−κn

′

≤
(
|Q|n′

) (
2Nbf
)

2−κn
′
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To make the probability less than 2−κ it therefore suffices to have n′ =
(κ+Nbf)/(κ− log |Q|).

In our instantiations, we always have Nbf ≤ 3κn, where n denotes the in-
tended size of the parties’ sets. Even in the pessimistic case that the adversary
makes |Q| = 2κ/2 queries to the Bloom filter hash functions, we have n′ ≈ 6n.
Hence, the adversary is highly unlikely to produce a Bloom filter containing
6 times the intended number of items. We emphasize that this is a very loose
bound, but show it just to demonstrate that the simulator indeed extracts
from the adversary a modestly sized effective input set.

3.4.4 Non-Programmable Random Oracles in the UC
Model

Our protocol makes significant use of a non-programmable random oracle.
In the standard UC framework [Can01], the random oracle must be treated
as local to each execution for technical reasons. The UC framework does not
deal with global objects like a single random oracle that is used by many
protocols/instances. Hence, as currently written, our proof implies security
when instantiated with a highly local random oracle.

Canetti, Jain, & Scafuro [CJS14] proposed a way to model global random
oracles in the UC framework (we refer to their model as UC-gRO). One of the
main challenges is that (in the plain UC model) the simulator can observe
the adversary’s oracle queries, but an adversary can ask the environment to
query the oracle on its behalf, hidden from the simulator. In the UC model,
every functionality and party in the UC model is associated with a session
id (sid) for the protocol instance in which it participates. The idea behind
UC-gRO is as follows:

• There is a functionality gRO that implements an ideal random oracle.
Furthermore, this functionality is global in the sense that all parties
and all functionalities can query it.

• Every oracle query in the system must be prefixed with some sid.

• There is no enforcement that oracle queries are made with the “correct”
sid. Rather, if a party queries gRO with a sid that does not match its
own, that query is marked as illegitimate by gRO.
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• A functionality can ask gRO for all of the illegitimate queries made
using that functionality’s sid.

Our protocol and proof can be modified in the following ways to provide
security in the UC-gRO model:

1. In the protocol, all queries to relevant random oracles (Bloom filter
functions hi and outer hash function H) are prefixed with the sid of
this instance.

2. The ideal PSI functionality is augmented in a standard way of UC-
gRO: When the adversary/simulator gives the functionality a special
command illegitimate, the functionality requests the list of illegiti-
mate queries from gRO and forwards them to the adversary/simulator.

3. In the proof, whenever the simulator is described as obtaining a list
of the adversary’s oracle queries, this is done by observing the adver-
sary’s queries and also obtaining the illegitimate queries via the new
mechanism.

With these modifications, our proof demonstrates security in the UC-gRO
model.

3.5 Performance Evaluation

We implemented our protocol in addition to the protocols of DCW [DCW13]
outlined in Section 3.2 and that of DKT [DCKT10]. All source code can be
found at https://github.com/osu-crypto/libPSI. In this section we report on
their performance and analyze potential trade offs.

3.5.1 Implementation & Test Platform

In the offline phase, our protocol consists of performing 128 base OTs using
the protocol of [NP01]. We extend these base OTs to Not OTs using an opti-
mized implementation of the Keller et al. [KOS15b] OT extension protocol.
Our implementation uses the programmable-random-oracle optimization for
OT of random strings, described in Section 8.12. In the multi-threaded case,
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the OT extension and Base OTs are performed in parallel. Subsequently, the
cut and choose seed is published which determines the set of OT messages
to be opened. Then one or more threads reports the choice bits used for the
corresponding OT and the XOR sum of the messages. Alice validates the
reported value and proceeds to the online phase.

The online phase begins with both parties inserting items into a plaintext
bloom filter using one or more threads. As described in section 3.4.1, the BF
hash functions should be modeled as (non-programmable) random oracles.
We use SHA1 as a random oracle but then expand it to a suitable length via
a fast PRG (AES in counter mode) to obtain:8

h1(x)‖h2(x)‖ · · · ‖hk(x) = PRG(SHA1(x)).

Hence we use just one (slow) call to SHA to compute all BF hash functions for
a single element, which significantly reduces the time for generating Bloom
filters. Upon the computing the plaintext bloom filter, the receiver selects
a random permutation mapping the random OT choice bits to the desired
bloom filter. The permutation is published and Alice responds with the
random garbled bloom filter masks which correspond to their inputs. Finally,
the receiver performs a plaintext intersection of the masks and outputs the
corresponding values.

We evaluated the prototype on a single server with simulated network latency
and bandwidth. The server has 2 36-cores Intel(R) Xeon(R) CPU E5-2699
v3 @ 2.30GHz and 256GB of RAM (e.i. 36 cores & 128 GB per party). We
executed our prototype in two network settings: a LAN configuration with
both parties in the same network with 0.2 ms round-trip latency, 1 Gbps; and
a WAN configuration with a simulated 95 ms round-trip latency, 60 Mbps.
All experiments we performed with a computational security parameter of
κ = 128 and statistical security parameter λ = 40. The times reported are an
average over 10 trials. The variance of the trials was between 0.1%−5.0% in
the LAN setting and 0.5%−10% in the WAN setting with a trend of smaller
variance as n becomes larger. The CPUs used in the trials had AES-NI
instruction set for fast AES computations.

8Note that if we model SHA1 as having its queries observable to the simulator, then
this property is inherited also when expanding the SHA1 output with a PRG.
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3.5.2 Parameters

We demonstrate the scalability of our implementation by evaluating a range
of set sizes n ∈ {28, 212, 216, 220} for strings of length σ = 128. In all of our
tests, we use system parameters specified in Figure 3.1. The parameters are
computed using the analysis specified in Section 3.4.2. Most importantly they
satisfy that except with probability negligible in the computation security
parameter κ, a receiver after step 5 of Figure 3.2 will not find an x not
previously queried which is contained in the garbled bloom filter.

The parameters are additionally optimized to reduce the overall cost of the
protocol. In particular, the total number of OTs Not = Nbf/(1 − pchk) is
minimized. This value is derived by iterating over all the region of 80 ≤ k ≤
100 hash functions and cut-and-choose probabilities 0.001 ≤ pchk ≤ 0.1. For
a given value of n, k, pchk, the maximum number of ones N1 which a possibly
malicious receiver can have after the cut and choose is defined as shown in
Section 3.4.2. This in turn determines the minimum value of Nbf such that
(Nbf/N1)−k ≤ 2−κ and therefore the overall cost Not. We note that for κ
other than 128, a different range for the number of hash functions should be
considered.

n pchk k Not Nbf α Nmaxones

28 0.099 94 99,372 88,627 0.274 3,182
212 0.053 94 1,187,141 1,121,959 0.344 22,958
216 0.024 91 16,992,857 16,579,297 0.360 150,181
220 0.010 90 260,252,093 257,635,123 0.366 962,092

Table 3.1: Optimal Bloom filter cut and choose parameters for set size n
to achieve statistical security λ = 40 and computational security κ = 128.
Not denotes the total number of OTs used. Nbf denotes the bit count of the
bloom filer. α is the faction of ones which should be generated. Nmaxones is
the maximum number of ones in the cut and choose to pass.

3.5.3 Comparison to Other Protocols

For comparison, we implemented two other protocol paradigms, which we
describe here:
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Setting Protocol
Set size n

28 212 216 220

TotalOnline TotalOnline TotalOnline TotalOnline

LAN

*DCW (Fig. 3.1) 3.0 (1.4) 58.5(27.8) 1, 134(532) -

*DCW + RGBF 2.9 (1.4) 58.4(27.6) 1, 145(542) -

DKT 1.7 22.6 358 3, 050
Ours (Fig 3.2) 0.2(0.003) 0.9(0.04) 9.7 (0.7) 127 (14)

WAN

*DCW (Fig. 3.1) 4.2 (1.8) 61.3(28.8) 1, 185(532) -

*DCW + RGBF 4.0 (1.6) 60.6(28.6) 1, 189(530) -

DKT 1.7 23.1 393 5, 721
Ours (Fig 3.2) 0.95(0.1) 4.6 (0.8) 56 (11) 935(175)

Table 3.2: Total time in seconds, with online time in parentheses, for PSI of
two sets of size n with elements of 128 bits. The LAN (resp. WAN) setting
has 0.2ms (resp. 95ms) round trip time latency. As noted in Section 3.5.3,
when the protocol is marked with an asterisk, we report an optimistic un-
derestimate of the running time. Missing times (-) took > 5 hours.

Threads Protocol
Set size n

28 212 216 220

4
DKT 0.79 6.75 98.1 1, 558
Ours (Fig 3.2) 0.17 0.63 4.3 66

16
DKT 0.36 2.56 31.0 461
Ours (Fig 3.2) 0.17 0.46 3.8 51

64
DKT 0.17 1.30 20.1 309
Ours (Fig 3.2) 0.17 0.30 2.3 37

Table 3.3: Total running time in seconds for the DKT and our protocol when
4, 16, and 64 threads per party are used. The evaluations were performed in
the LAN setting with a 0.2ms round trip time.
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set size n asymptotic
28 212 216 220 Offline Online

DCW (Fig. 3.1) 3.2 50.7 810 - 2nκ2 4nk2

DCW + RGBF 2.4 33.9 541 - 2nκ2 2nκ2 + nκ
DKT 0.05 0.8 14 213 0 6nφ+ 6φ+ nκ
Ours (Fig 3.2) 1.9 23 324 4,970 2nκ2 2nκ log2(2nκ) + nκ

Table 3.4: The empirical and asymptotic communication cost for sets of size
n reported in megabytes, and bits respectively. φ = 283 is the size of the
elliptic curve elements. Missing entries had prohibitively long running times
and are estimated to be greater than 8, 500MB.

DCW protocol. Our first point of comparison is to the protocol of Dong,
Chen, & Wen [DCW13], on which ours is based. The protocol is described
in Section 3.2. While their protocol has issues with its security, our goal here
is to illustrate that our protocol also has significantly better performance.

In [DCW13], the authors implement only their semi-honest protocol variant,
not the malicious one. An aspect of the malicious DCW protocol that is
easy to overlook is its reliance on an N/2-out-of-N secret sharing scheme.
When implementing the protocol, it becomes immediately clear that such a
secret-sharing scheme is a major computational bottleneck.

Recall that Alice generates shares from such a secret sharing scheme, and
the receiver reconstructs such shares. In this protocol, the required N is the
number of bits in the Bloom filter. As a concrete example, for PSI of sets of
size 220, the Bloom filter in the DCW protocol has roughly 228 bits. Using
Shamir secret sharing, Alice must evaluate a random polynomial of degree
∼ 227 on ∼ 228 points. Alice must interpolate such a polynomial on ∼ 227

points to recover the secret. Note that the polynomial will be over GF (2128),
since the protocol secret-shares an (AES) encryption key.

We chose not to develop a full implementation of the malicious DCW proto-
col. Rather, we fully implemented the [garbled] Bloom filter encoding steps
and the OTs. We then simulated the secret-sharing and reconstruction
steps in the following way. We calculated the number of field multiplications
that would be required to evaluate a polynomial of the suitable degree by
the Fast Fourier Transform (FFT) method, and simply had each party per-
form the appropriate number of field multiplications in GF (2128). The field
was instantiated using the NTL library with all available optimizations en-
abled. Our simulation significantly underestimates the cost of secret sharing
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in the DCW protocol, since: (1) it doesn’t account for the cost associated
with virtual memory accesses when computing on such a large polynomial;
and (2) evaluating/interpolating the polynomial via FFT reflects a best-case
scenario, when the points of evaluation are roots of unity. In the protocol,
the receiver Bob in particular does not have full control over which points of
the polynomial he will learn.

Despite this optimistic simulation of the secret-sharing step, its cost is sub-
stantial, accounting for 97% of the execution time. In particular, when com-
paring our protocol to the DCW protocol, the main difference in the online
phase is the secret sharing reconstruction which accounts for a 113× increase
in the online running time for n = 216.

We simulated two variants of the DCW malicious-secure protocol. One vari-
ant reflects the DCW protocol as written, using OTs of chosen messages. The
other variant includes the “random GBF” optimization inspired by [PSZ14]
and described in Section 3.3. In this variant, one of the two OT messages
is set randomly by the protocol itself, and not chosen by Alice. This re-
duces the online communication cost of the OTs by roughly half. However,
it surprisingly has a slight negative effect on total time. The reason is that
during the online phase Alice has more than enough time to construct and
send a plain GBF while Bob performs the more time intensive secret-share
reconstruction step. For n = 216, the garbled bloom filter takes less than
5% of the secret share reconstruction time to be sent. When using a ran-
domized GBF, Alice sends summary values to Bob, which he must compare
to his own summary values. Note that there is a summary value for each
item in a party’s set (e.g., 220), so these comparisons involve lookups in some
non-trivial data structure. This extra computational effort is part of the the
critical path since the Bob has to do it. In summary, the “random GBF” op-
timization does reduce the required communication, however it also increases
the critical path of the protocol due to the secret-share reconstruction hiding
the effects of this communication savings and the small additional overhead
of performing n lookups.

DH-based PSI protocols. Another paradigm for PSI uses public-key
techniques and is based on Diffie-Hellman-type assumptions in cyclic groups.
The most relevant protocol in this paradigm that achieves malicious secu-
rity is that of De Cristofaro, Kim, and Tsudik [DCKT10] which we refer to
as DKT. While protocols in this paradigm have extremely low communica-
tion complexity, they involve a large number of computationally expensive

50



public-key operations (exponentiations). Another potential advantage of the
DKT protocol over schemes based on Bloom filters is that the receiver can
be restricted to a set size of exactly n items. This is contrasted with our
protocol where the receiver can have a set size of n′ ≈ 6n.

We fully implemented the [DCKT10] PSI protocol both in the single and
multi threaded setting. In this protocol, the parties perform 5n exponentia-
tions and 2n related zero knowledge proofs of discrete log equality. Following
the suggestions in [DCKT10], we instantiate the zero knowledge proofs in the
RO model with the Fiat-Shamir transform applied to a sigma protocol. The
resulting PSI protocol has in total 12n exponentiations along with several
other less expensive group operations. The implementation is built on the
Miracl elliptic curve library using Curve 25519 achieving 128 bit compu-
tational security. The implementation also takes advantage of the Comb
method to perform a precomputation to increase the speed of exponentia-
tions (point multiplication). Additionally, all operations are performed in a
streaming manner allowing for the greatest amount of work to be performed
concurrently by the parties.

3.5.4 Results

The running time of our implementation is shown in Figure 3.2. We make the
distinction of reporting the running times for both the total time and online
phase when applicable. The offline phase contains all operations which are
independent of the input sets. For the bloom filter based protocols the offline
phase consists of performing the OT extension and the cut and choose. Out of
these operations, the most time-consuming is the OT extension. For instance,
with n = 220 we require 260 million OTs which requires 124 seconds; the cut
and choose takes only 3 seconds. For the smaller set size of n = 212, the OT
extension required 461ms and the cut and choose completed in 419ms. The
relative increase in the cut and choose running time is primarily due to the
need to open a larger portion of the OTs when n is smaller.

The online phase consists of the receiver first computing their bloom filter.
For set size n = 220, computing the bloom filter takes 6.4 seconds. The
permutation mapping the receiver’s OTs to the bloom filter then computed in
less than a second and sent. Upon receiving the permutation, Alice computes
their PSI summary values and sends them to the receiver. This process when
n = 220 takes roughly 6 seconds. The receiver then outputs the intersection
in less than a second.
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As expected, our optimized protocol achieves the fastest running times com-
pared to the other malicious secure constructions. When evaluating our
implementation with a set size of n = 28 on a single thread in the LAN
setting, we obtain an online running time of 3ms and an overall time of 0.2
seconds. The next fastest is that of DH-based DKT protocol which required
1.7 seconds, an 8.5× slowdown compared to our protocol. For the larger set
size of n = 212, our overall running time is 0.9 seconds with an online phase of
just 40ms. The DKT protocol is again the next fastest requiring 25× longer
resulting in a total running time of 22.6 seconds. The DCW protocol from
which ours is derived incurs more than a 60× overhead. For the largest set
size performed of n = 220, our protocol achieves an online phase of 14 seconds
and an overall time of 127 seconds. The DKT protocol overall running time
was more than 95 minutes, a 47× overhead compared to our running time.
The DCW protocol took prohibitively long to run but is expected to take
more than 100× longer than our optimized protocol.

When evaluating our protocol in the WAN setting with 95ms round trip
latency our protocol again achieves the fastest running times. For the small
set size of n = 28, the protocol takes an overall running time of 0.95 seconds
with the online phase taking 0.1 seconds. DKT was the next fastest protocol
requiring a total time of 1.7 seconds, an almost 2× slowdown. Both variants
of the DCW protocol experience a more significant slowdown of roughly
4×. When increasing the set size, our protocol experiences an even greater
relative speedup. For n = 216, our protocol takes 56 seconds, with 11 of
the seconds consisting of the online phase. Comparatively, DKT takes 393
seconds resulting in our protocol being more than 7× faster. The DCW
protocols are even slower requiring more than 19 minutes, a 20× slowdown.
This is primarily due to the need to perform the expensive secret-sharing
operations and send more data.

In addition to faster serial performance, our protocol also benefits from easily
being parallelized, unlike much of the DCW online phase. Figure Figure 3.3
shows the running times of our protocol and that of DKT when parallelized
using p threads per party in the LAN setting. With p = 4 we obtain a speedup
of 2.3× for set size n = 216 and 2× speedup for n = 220. However, the DKT
protocol benefits from being trivially parallelizable. As such, they enjoy a
nearly one-to-one speedup when more threads are used. This combined with
the extremely small communication overhead of the DKT protocol could
potentially allow their protocol to outperform ours when the network is quite
slow and the parties have many threads available.

In Figure 3.4 we report the empirical and asymptotic communication costs
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of the protocols. Out of the bloom filter based protocols, ours consumes
significantly less bandwidth. For n = 28, only 1.9MB communication was
required with most of that cost in the offline phase. Then computing the
intersection for n = 216, our protocol uses 324MB of communication, ap-
proximately 5KB per item. The largest amount of communication occurs
during the OT extension and involves the sending of a roughly 2nκ2-bit
matrix. The cut and choose contributes minimally to the communication
and consists of npchk choice bits and the xor of the corresponding OT mes-
sages. In the online phase, the sending of the permutation consisting of
Nbf log2(Not) ≈ 2nκ log(2nκ) bits that dominates the communication.
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Parameters: X is Alice’s input, Y is Bob’s input. Nbf is the required
Bloom filter size; k is the number of Bloom filter hash functions; Not

is the number of OTs to generate. H is modeled as a random oracle
with output length κ. The choice of these parameters, as well as others
α, pchk, Nmaxones, is described in Section 3.4.2.

1. [setup] The parties perform a secure coin-tossing subprotocol to
choose (seeds for) random Bloom filter hash functions h1, . . . , hk :
{0, 1}∗ → [Nbf].

2. [random OTs] Bob chooses a random string b = b1 . . . bNot with
an α fraction of 1s. Parties perform Not OTs of random messages
(of length κ), with Alice choosing random strings mi,0,mi,1 in the
ith instance. Bob uses choice bit bi and learns m∗i = mi,bi .

3. [cut-and-choose challenge] Alice chooses a set C ⊆ [Not] by
choosing each index with independent probability pchk. She sends
C to Bob. Bob aborts if |C| > Not −Nbf.

4. [cut-and-choose response] Bob computes the set R = {i ∈ C |
bi = 0} and sends R to Alice. To prove that he used choice bit 0 in
the OTs indexed by R, Bob computes r∗ =

⊕
i∈Rm

∗
i and sends it

to Alice. Alice aborts if |C| − |R| > Nmaxones or if r∗ 6=
⊕

i∈Rmi,0.

5. [permute unopened OTs] Bob generates a Bloom filter BF
containing his items Y . He chooses a random injective function
π : [Nbf] → ([Not] \ C) such that BF [i] = bπ(i), and sends π to
Alice.

6. [randomized GBF] For each item x in Alice’s input set, she com-
putes a summary value

Kx = H

x ∥∥∥∥ ⊕
i∈h∗(x)

mπ(i),1

 ,

where h∗(x)
def
= {hi(x) : i ∈ [k]}. She sends a random permutation

of K = {Kx | x ∈ X}.

7. [output] Bob outputs {y ∈ Y | H(y ‖
⊕

i∈h∗(y) m
∗
π(i)) ∈ K}.

Figure 3.2: Malicious-secure PSI protocol based on garbled Bloom filters.
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Chapter 4

PSI From Dual Execution

Malicious-Secure Private Set Intersection via Dual Execution by Peter Rindal
& Mike Rosulek, in CCS[RR17b].

4.1 Introduction

4.1.1 Chapter Contributions

From the previous discussion, we see that the fastest PSI paradigm for semi-
honest security is due to Pinkas, Schneider, Zohnar[PSZ14] has no fully
malicious-secure variant. We fill this gap by presenting a protocol based
on the PSZ paradigm that achieves malicious-secure private set intersection.

We start with the observation that in the PSZ paradigm the two parties
take the roles of Alice and Bob, and it is relatively straight-forward to secure
the protocol against a malicious Bob [OOS17]. Therefore our approach is to
run the protocol in both directions, so that each party must play the role of
receiver at different times in the protocol. This high-level idea is inspired by
the dual-execution technique of Mohassel & Franklin [MF06a]. In that work,
the parties perform two executions of Yao’s protocol in opposite directions,
taking advantage of the fact that Yao’s protocol is easily secured against a
malicious Bob. In that setting, the resulting dual-execution protocol achieves
malicious security but leaks one adversarially-chosen bit. In our setting,
however, we are able to carefully combine the two PSI executions in a way
that achieves the usual notion of full malicious security.
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Because our protocol is based on the fast PSZ paradigm, it relies exclusively
on cheap symmetric-key cryptography. We have implemented our protocol
and compare it to the previous state of the art. We find our protocol to be
12× faster than the previous fastest malicious-secure PSI protocol of [RR17a],
on large datasets. Our implementation can securely compute the intersection
of million-item sets in only 12.6 seconds on a single thread (2.9 seconds with
many threads).

Finally, as mentioned above, the previous fastest malicious PSI protocol
[RR17a] appears to rely inherently on the random-oracle model. We show
that our protocol can be instantiated in the standard model. Both our stan-
dard model and random-oracle optimized protocols are faster than [RR17a] in
the LAN setting, with our latter protocol being the fastest across all settings.

4.2 Overview of PSZ Paradigm

Pinkas, Schneider, and Zohner [PSZ14] (hereafter PSZ) introduced a paradigm
for PSI that is secure against semi-honest adversaries. There have since been
several improvements made to this general paradigm [PSSZ15, KKRT16,
OOS17]. In particular, the implementation of [KKRT16] is the fastest se-
cure PSI protocol to date. Adapting this paradigm to the malicious security
model is therefore a natural direction.

In this section, we describe the PSZ paradigm, and discuss what prevents it
from achieving malicious security.

4.2.1 High-Level Overview

The PSZ paradigm works as follows. First, for simplicity suppose Alice has
n items X = {x1, . . . , xn} while Bob has one item y. The goal of private set
inclusion is for Bob to learn whether y ∈ X, and nothing more. We abstract
the main step of the protocol as an oblivious encoding step, which is
similar in spirit to an oblivious pseudorandom function [FIPR05]. The parties
interact so that Alice learns a random mapping F , while Bob learns only
F (y). The details of this step are not relevant at the moment. Then Alice
sends F (X) = {F (x1), . . . , F (xn)} to Bob. Bob can check whether his value
F (y) is among these values and therefore learn whether y ∈ {x1, . . . , xn}.
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Since F is a random mapping, the other items in F (X) leak nothing about
the set X.

The protocol can be extended to a proper PSI protocol, where Bob has a
set of items Y = {y1, . . . , yn}. The parties simply perform n instances of
the private set inclusion protocol, one for each yi, with Alice using the same
input X each time. This leads to a PSI protocol with O(n2) communication.

To reduce the communication cost, the parties can agree on a hashing scheme
that assigns their items to bins. In PSZ, they propose to use a variant of
Cuckoo hashing. For the sake of example, suppose Bob uses cuckoo hashing
with two hash functions to assign his items to bins. In cuckoo hashing, Bob
will assign item y to the bin with index either h1(y) or h2(y), so that each bin
contains at most one item. Alice will assign each of her items x to both bins
h1(x) and h2(x), so that each of her bins may contain several items. Overall,
for each bin Alice has several items while Bob has (at most) one, so they can
perform the private set inclusion protocol for each bin. There are of course
many details to work out, but by using this main idea the communication
cost of protocol can be reduced to O(n).

4.2.2 Insecurity against Malicious Adversaries

The PSZ protocol and its followups are proven secure in the semi-honest
setting, but are not secure against malicious adversaries. There are several
features of the protocol that present challenges in the presence of malicious
adversaries:

• Even if the “oblivious encoding” subprotocol is made secure against
malicious adversaries, the set-inclusion subprotocol does not become
malicious-secure. The technical challenge relates to the problem of the
simulator extracting inputs from a malicious Alice. The simulator sees
only the random mapping F and the items {F (x1), . . . , F (xn)} sent by
Alice. For the simulator to extract Alice’s effective input, the mapping
F must be invertible. However, the oblivious encoding instantiations
generally do not result in an invertible F .

• In the PSZ protocol, Bob uses cuckoo hashing to assign his items to
bins. Each item y may be placed in two possible locations, and the final
placement of item y depends on all of Bob’s other items. A corrupt
Alice may exploit this in the protocol to learn information about Bob’s
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set. In particular, Alice is supposed to place each item x in both possible
locations h1(x) and h2(x). A corrupt Alice may place x only in h1(x).
Then if x turns out to be in the intersection, Alice learns that Bob
placed x in h1(x) but not h2(x). As just mentioned, whether Bob
places an item according to h1 or h2 depends on all of Bob’s items, so
it is information that cannot be simulated in the ideal world.

• In the O(n2) PSI protocol, Alice is supposed to run many instances
of the simple set-inclusion protocol with the same set X each time.
However, a malicious Alice may use different sets in different instances.
In doing so, she can influence the output of the protocol in ways that
cannot be simulated in the ideal world.

4.3 Oblivious Encoding

As discussed in the previous section, the PSZ paradigm uses an oblivious
encoding step. In Figure 4.1 we define an ideal functionality for this task.
Intuitively, the functionality chooses a random mapping F , allows the receiver
to learn F [c] for a single c, and allows the sender to learn F [c] for an unlimited
number of c’s. However, if the sender is corrupt, the functionality allows the
sender to choose the mapping F (so that it need not be random). This
reflects what our instantiations of this functionality are able to achieve.

We describe two instantiations of this functionality that are secure in the
presence of malicious adversaries.

In the programmable-random-oracle model. Orrù, Orsini & Scholl
[OOS17] describe an efficient 1-out-of-N oblivious transfer protocol, for ran-
dom OT secrets and N exponential in the security parameter. The protocol
is secure against malicious adversaries. In order to model an exponential
number of OT secrets, they give an ideal functionality which is identical
to ours except that the adversary is never allowed to choose the mapping.
Hence, their protocol also realizes our functionality as well (the simulator
simply chooses Fadv = ⊥ so that the functionality always chooses a random
mapping).

Their protocol is proven secure in the programmable random-oracle model.
Concretely, the cost of a single OT/oblivious encoding in their protocol is
roughly 3 times that of a single semi-honest 1-out-of-2 OT.
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Parameters: two parties denoted as Sender and Receiver. The input
domain {0, 1}σ and output domain {0, 1}` for a private F .

1. [Initialization] Create an initially empty associative array F :
{0, 1}σ → {0, 1}`.

2. [Receiver Encode] Wait for a command (Encode, sid, c) from
the Receiver, and record c. Then:

3. [Adversarial Map Choice] If the sender is corrupt, then send
(RecvInput, sid) to the adversary and wait for a response of the
form (Deliver, sid, Fadv). If the sender is honest, set Fadv = ⊥.
Then:

4. [Receiver Output] If Fadv = ⊥ then choose F [c] uniformly at
random; otherwise set F [c] := Fadv(c), interpreting Fadv as a circuit.
Give (Output, sid, F [c]) to the receiver. Then:

5. [Sender Encode] Stop responding to any requests by the receiver.
But for any number of commands (Encode, sid, c′) from the sender,
do the following:

• If F [c′] doesn’t exist and Fadv = ⊥, choose F [c′] uniformly at
random.

• If F [c′] doesn’t exist and Fadv 6= ⊥, set F [c′] := Fadv(c
′).

• Give (Output, sid, c′, F [c′]) to the sender.

Figure 4.1: The Oblivious Encoding ideal functionality Fencode

In the standard model. In the standard model, it is possible to use a
variant of the semi-honest oblivious encoding subprotocol from PSZ. The
protocol works as follows, where the receiver has input c:

• The sender chooses 2σ random κ-bit strings: m[1, 0],m[1, 1], . . . ,m[σ, 0],m[σ, 1].

• The parties perform σ instances of OT, where in the ith instance the
sender provides inputs m[i, 0],m[i, 1], the receiver provides input ci and
receives m[i, ci].

• The receiver computes output
⊕

i PRF(m[i, ci], c), where PRF is a se-
cure pseudorandom function with ` bits of output.
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• To obtain the encoding of any value c′, the receiver can compute⊕
i PRF(m[i, c′i], c

′).

For security against a corrupt receiver, the simulator can extract c from the
receiver’s OT inputs. We can then argue that all other oblivious encodings
look random to the receiver. Indeed, for every c′ 6= c, there is a position i in
which c′i 6= ci, so the corresponding encoding

⊕
i PRF(m[i, c′i], c

′) contains a
term PRF(m[i, c′i], c

′) that is random from the receiver’s point of view.

For security against a corrupt sender, the simulator can extract the m[i, b]
values from the sender’s OT inputs. It can then hard-code these values
into a circuit Fadv(c) =

⊕
i PRF(m[i, ci], c) and send this circuit to the ideal

functionality.

The cost of this protocol is σ instances of OT per oblivious encoding. Since
the protocol uses OTs with chosen secrets (not random secrets chosen by the
functionality), it can be instantiated in the standard model.1

4.4 A Warmup: Quadratic-Cost PSI

The main technical idea for achieving malicious security is to carefully apply
the dual execution paradigm of Mohassel & Franklin [MF06a] to the PSZ
paradigm for private set intersection. In this section we give a protocol which
contains the main ideas of our approach, but which has quadratic complexity.
In the next section we describe how to apply a hashing technique to reduce
the cost.

4.4.1 Dual Execution Protocol

The main idea behind our approach is as follows (a formal description is
given in Figure 4.2):

1. The parties perform an encoding step similar to PSZ, where Alice acts
as receiver. In more detail, the parties invoke Fencode once for each of

1Modern OT extension protocols can be optimized for OT of random secrets, but it is
not known how to make this special case less expensive while avoiding the programmable-
random-oracle model.
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Alice’s items. Alice learns JxjKBj , where xj is her jth item and J · KBj
is the encoding used in the jth instance of Fencode. Note that Bob
can obtain JvKBj for any v and any j, by appropriately querying the
functionality.

2. The parties do the same thing with the roles reversed. Bob learns JyiKAi ,
where yi is his ith item and J · KAi is the encoding. As above, Alice can
obtain any encoding of the form JvKAj .

At this point, let us define a common encoding:

JvKi,j
def
= JvKAi ⊕ JvKBj

The important property of this encoding is:

• If Alice knows JvKBj then she can compute the common encoding JvKi,j
for any i.

• If Alice does not know JvKBj , then it is actually random from her point
of view. It is therefore hard for her to predict common encoding JvKi,j
for any i.

A symmetric condition holds for Bob. Now the idea is for the parties to
compute all of the common encodings that they can deduce from these rules.
Then the intersection of these encodings will correspond to the intersection
of their sets. In other words (continuing the protocol overview):

3. Alice computes a set of encodings E = {JxjKi,j | i, j ∈ [n]}, and sends
it to Bob.

4. Bob likewise computes a set of encodings and checks which of them
appear in E. These encodings correspond to the intersection. More
formally, Bob outputs:

Z = {yi ∈ Y | ∃j ∈ [n] : JyiKi,j ∈ E}

We note that in this protocol, only Bob receives output. In fact, it turns
out to be problematic if Bob sends an analogous set of encodings to Alice.
In Section 4.5.7 we discuss in more detail the problems associated with both
parties receiving output.
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4.4.2 Security

The protocol achieves malicious security:

Theorem 3. The protocol in Figure 4.2 is a UC-secure protocol for PSI in
the Fencode-hybrid model.

We defer giving a formal proof for this protocol in favor of a single proof of
our final protocol in the next section. Instead, we sketch the high-level idea
of the simulation.

When Alice is corrupt, the simulator plays the role of Fencode and therefore
observes Alice’s inputs to the functionality during Step 2. Let xj denote
Alice’s jth input to Fencode, in which she learns JxjKBj . Let X̃ = {x1, . . . , xn}.
We can make the following observations:

• Suppose Bob has an item y 6∈ X̃. In the protocol, Alice will send a set
of encodings E, and Bob will search this set for encodings JyKi,j, for

certain i, j values. But by the definition of X̃, Alice does not know any
encoding of the form JyKBj , and so with high probability cannot guess
any encoding which will cause Bob to include y in the output. In other
words, we can argue that Alice’s effective input is a subset of X̃.

• Suppose for simplicity Bob’s input happens to be X̃. This turns out
to be the most interesting case for the proof. Bob will randomly per-
mute these items and obtain an encoding of each one. Let π be the
permutation such that Bob learns JxjKAπ(j). Now Bob will be looking in

the set E for common encodings of the form JxjKπ(j),∗. Note that from

the definition of X̃, Alice can only produce valid encodings of the form
JxjK∗,j. It follows that Bob will include a value xj in his output
if and only if Alice includes encoding JxjKπ(j),j ∈ E.

Since the distribution of π is random, the simulator can simulate the ef-
fect. More precisely, the simulator chooses a random π and sets X∗ = {xj |
JxjKπ(j),j ∈ E}. It is this X∗ that the simulator finally sends to the ideal
functionality. In the above, we were considering a special case where Bob’s
input happens to be X̃. However, this simulation approach works in general.

The simulation for a malicious Bob is simpler, and it relies on the fact that
common encodings look random, for values not in the intersection.
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Parameters: Fencode is the Oblivious Encoding functionality with input
domain {0, 1}σ output bit length λ+ 2 log n.

On Input (Send, sid, X) from Alice and (Receive, sid, Y ) from Bob,
where X, Y ⊆ {0, 1}σ and |X| = |Y | = n. Each party randomly per-
mutes their set.

1. [A Encoding] For i ∈ [n], Bob sends (Encode, (sid,A, i), yi)
to Fencode who sends (Output, (sid,A, i), JyiKAi ) to Bob and
(Output, (sid,A, i)) to Alice.

For j ∈ [n], Alice sends (Encode, (sid,A, i), xj) to Fencode and
receives (Output, (sid,A, i), JxjKAi ) in response.

2. [B Encoding] For i ∈ [n], Alice sends (Encode, (sid,B, i), xi)
to Fencode who sends (Output, (sid,B, i), JxiKBi ) to Alice and
(Output, (sid,B, i)) to Bob.

For j ∈ [n], Bob sends (Encode, (sid,B, i), yj) to Fencode and re-
ceives (Output, (sid,B, i), JyjKBi ) in response.

3. [Output] Alice sends the common encodings

E = {JxjKAi ⊕ JxjKBj | i, j ∈ [n]}

to Bob who outputs

{yi | ∃j : JyiKAi ⊕ JyiKBj ∈ E}

Figure 4.2: Malicious-secure n2 PSI protocol.

The protocol is correct as long as there are no spurious collisions among
common encodings. That is, we do not have any xj ∈ X and yi ∈ Y \X for
which JxjKi,j = JyiKi,j (which would cause Bob to erroneously place yi in the
intersection). The probability of this happening for a fixed xj, yi is 2−`, if
the encodings have length `. By a union bound, the total probability of such
an event is n22−`. We set ` = λ + 2 log n to ensure this error probability is
at most 2−λ.
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4.4.3 Encode-Commit Protocol

In addition to the approach described above, we present an alternative proto-
col based on Fencode and commitments that offers communication/computation
trade-offs. Fundamentally, the dual execution protocol above first restricts
Alice to her set by requiring her to encode it as {Jx1KB1 , ..., JxnKBn}. In some
sense this encoding operation can be viewed as Alice committing to her in-
puts. The property that we need from the B encoding are: 1) J∗KB must allow
the simulator to extract the set of candidate xj values; 2) provides a binding
proof to the value xj. Continuing to view J∗KB as a commitment, the dual
execution protocol instructs Alice to then decommit (prove she was bound to
xj) to these values by sending all JxjKBj encodings to Bob, but masked under
JxjKAi so that the commitment can only be “decommitted” if Bob knows one
of these encodings of xj.

Taking this idea to its conclusion, we can formulate a new protocol where Al-
ice simply commits to her inputs by sending Comm(x1; r1), ...,Comm(xn; rn)
to Bob in lieu of Figure 4.2 Step 2, where Comm is a standard (non-
interactive) commitment scheme. The final step of the protocol is for her
to send the decommitment rj masked under the encodings of xj

E =
{
JxjKAi ⊕ rj | i, j ∈ [n]

}
In the event that Bob knows JxjKAi , i.e. his input contains yi = xj, he will
be able to recover the decommitment value rj and decommit Comm(xj; rj),
thereby inferring that xj is in the intersection.

The security proof of this protocol follows the same structure as before. For
the more interesting case of a malicious Alice, we require an extractable com-
mitment scheme. The simulator is able to extract the set X̃ = {x1, ..., xn}
from the commitments Comm(x1; r1), ...,Comm(xn; rn) and sendsX∗ = {xj |
JxjKAπ(j) ⊕ rj ∈ E} to the functionality. The correctness of this simula-
tion strategy follows from the sketch in the previous section by viewing
Comm(xj; rj) as equivalent to the encoding J∗KBj and rj as equivalent to
JxjKBj .

The communication and computation complexity for both of these proto-
cols is O(n2). However, we will later show that the concrete communica-
tion/computation overheads of these two approaches result in interesting per-
formance trade-offs. Most notable is that the commitment based approach
requires less computation at the expense of additional communication, mak-
ing it more efficient in the LAN setting.
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4.5 Our Full Protocol

After constructing a quadratic-cost PSI protocol, the PSZ paradigm is for
the parties to use a hashing scheme to assign their items into bins, and then
perform the quadratic-cost PSI on each bin. We review this approach here,
and discuss challenges specific to the malicious setting.

4.5.1 Hashing

Cuckoo hashing and its drawbacks. The most efficient hashing scheme
in PSZ is Cuckoo hashing. In this approach, the parties agree on two (or
more) random functions h1 and h2. Alice uses Cuckoo hashing to map her
items into bins. As a result, each item x is placed in either bin B[h1(x)] or
B[h2(x)] such that each bin has at most one item. Bob conceptually places
each of his items y into both bins B[h1(y)] or B[h2(y)]. Then the parties
perform a PSI for the items in each bin. Since Alice has only one item per
bin, these PSIs are quite efficient.

Unfortunately, this general hashing approach does not immediately work in
the malicious security setting. Roughly speaking, the problem is that Bob
may place an item y into bin B[h1(y)] but not in B[h2(y)]. Suppose Alice
also has item y, then y will appear in the output if and only if Alice’s cuckoo
hashing has chosen to place it in B[h1(y)] and not B[h2(y)]. Because of the
nature of Cuckoo hashing, whether an item is placed according to h1 or h2

event depends in a subtle way on all other items in Alice’s set. As a result,
the effect of Bob’s misbehavior cannot be simulated in the ideal world.

Simple hashing. While Cuckoo hashing is problematic for malicious se-
curity, we can still use a simple hashing approach. The parties agree on a
random function h : {0, 1}∗ → [m] and assign item x to bin B[h(x)]. Then
parties can perform a PSI for each bin. Note that under this hashing scheme,
the hashed location of each item does not depend on other items in the set.
Each item has only one “correct” location.

Note that the load (number of items assigned) of any bin leaks some informa-
tion about a party’s input set. Therefore, all bins must be padded to some
maximum possible size. A standard balls-and-bins argument shows that the
maximum load among the m = O(n/ log n) bins is O(log n) with very high
probability.
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Phasing. In the standard-model variant of our protocol, the oblivious en-
coding step scales linearly with the length of the items being encoded. Our
random-oracle protocol also has a weak dependence on the representation
length of the items which is affected by the size of the sets. Hence, it is
desirable to reduce the length of these items as much as possible.

Pinkas et al. [PSSZ15] described how to use a hashing technique of Arbitman
et al. [ANS10a] called phasing (permutation-based hashing) to reduce the
length of items in each bin. The idea is as follows. Suppose we are considering
PSI on strings of length σ bits. Let h be a random function with output range
{0, 1}d, where the number of bins is 2d. To assign an item x to a bin, we
write x = xL‖xR, with |xL| = d. We assign this item to bin h(xR)⊕ xL, and
store it in that bin with xR as its representation. Arbitman et al. [ANS10a]
show that this method of assigning items to bins results in maximum load
O(log n) with high probability.

Note that the representations in each bin are σ − d bits long — shorter by
d bits. Importantly, shrinking these representations does not introduce any
collisions. This is because the mapping phase(xL‖xR) = (h(xR) ⊕ xL, xR) is
a Feistel function and therefore invertible. So distinct items will either be
mapped to distinct bins, or, in the case that they are mapped to the same bin,
they must be assigned different representations. Hence the PSI subprotocol
in each bin can be performed on the shorter representations.

The idea can be extended as follows, when the number m of bins is not a
power of two (here h is taken to be a function with range [m]):

phaseh,m(x) =
(
h(bx/mc) + x mod m, bx/mc

)
phase−1

h,m(b, z) = zm+ [h(z) + b mod m]

We show that phasing is a secure way to reduce the length of items, in the
presence of malicious adversaries.

4.5.2 Aggregating Masks Across Bins

Suppose we apply the simple hashing technique to our quadratic PSI proto-
col. The resulting protocol would work as follows.

1. First, the parties hash their n items into m = O(n/ log n) bins. With
high probability each bin has at most µ = O(log n) items. Bins are
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artificially padded with dummy items to a fixed size of µ items.

2. For each bin the parties perform the quadratic-cost PSI protocol from
Section 4.4. Each party acts as Fencode sender and receiver, and com-
putes common encodings of the items. For each bin, Alice sends all
µ2 = O(log2 n) encodings to Bob, who computes the intersection.

The total cost of this protocol is therefore mµ2 = O(n log n), a significant
improvement over the quadratic protocol.

We present an additional optimization which reduces the cost by a significant
constant factor. Our primary observation is that in order to hide the number
of items in each bin, the parties must pad the bins out to the maximum size
µ. However, this results in their bins containing mostly dummy items (in our
range of parameters, around 75% are dummy items).

When Alice sends her common encodings in the final step of the protocol,
she knows that the encodings for dummy items cannot contribute to the final
result. If she had a way to avoid sending these dummy encodings, it would
reduce the number of encodings sent by roughly a factor of 4.

Hence, we suggest an optimization in which Alice aggregates her encodings
across all the bins, and send only the non-dummy encodings to Bob, as a
unified collection. Similarly, Bob need not check Alice’s set of encodings for
one of his dummy encodings. So Bob computes common encodings only for
his actual input items.

To show the security of this change, we need only consider Bob’s view which
has been slightly altered. Suppose Alice chooses a random value d to be a
“universal” dummy item in each bin. Since this item is chosen randomly, it
is negligibly likely that Bob would have used it as input to any instance of
Fencode where he was the receiver. Hence, the common encodings of dummy
values look random from Bob’s perspective. Intuitively, the only common
encodings we removed from the protocol are ones that looked random from
Bob’s perspective (and hence, had no effect on his output, with overwhelming
probability).

Note that it is not secure to eliminate dummy encodings within a single
quadratic-PSI. This would leak how many items Alice assigned to that bin.
It is not secure to leak the number of items in each bin. (It is for this
reason that we still must perform exactly µ oblivious encoding steps per bin.)
However, it is safe to leak the fact that Alice has n items total. By aggregating
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encodings across all bins we are able to use this common knowledge. Bob
now sees a single collection of nµ encodings, but does not know which bins
they correspond to.

After making this change, Bob is comparing each of his nµ non-dummy
encodings to each of Alice’s nµ encodings. Without this optimization, he only
compares encodings within each bin. With more comparisons made among
the common encodings, the probability of spurious collisions increases. We
must therefore increase the length of these encodings. A similar argument to
the previous section shows that if the encodings have length λ + 2 log(nµ),
then the overall probability of a spurious collision is 2−λ.

4.5.3 Dual Execution Protocol Details & Security

The formal details of our dual execution protocol are given in Figure 4.3.
The protocol follows the high-level outline developed in this section. We use
the following notation:

• JxKAb,p denotes an encoding of value x, in an instance of Fencode where
Alice is sender, corresponding to position p in bin b. Each bin stores a
maximum of µ items, so there are µ positions.

• We write (b, x′) = phaseh,m(x) to denote the phasing operation (Sec-
tion 4.5.1), where to store item x we place representative x′ in bin
b.

Theorem 4. The protocol in Figure 4.3 is UC-secure in the Fencode-hybrid
model. The resulting protocol has cost O(Cn log n), where C ≈ κ is the cost
of one Fencode call on a σ − log n length bit string.

Proof. We start with the case of a corrupt Bob. The simulator must extract
Bob’s input, and simulate the messages in the protocol. We first describe
the simulator:

The simulator plays the role of the ideal Fencode functionality. The sim-
ulator does nothing in Step 2 and Step 3a (steps where Bob receives no
output). To extract Bob’s set, the simulator observes all of Bob’s Fencode

messages (Encode, (sid,A, b, p), y′b,p) in Step 3b. The simulator computes

Y = {phase−1
h,m(b, y′b,p) | b ∈ [m], p ∈ [µ]} and sends it to the ideal FPSI

functionality which responds with the intersection Z = X ∩ Y .
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Set Z∗ to be equal to Z along with arbitrary dummy items not in Y , so that
|Z∗| = n. For each z ∈ Z∗, compute (b, z′) = phasem,h(z) and insert z′ into a
random unused position bin BX [b]. For z ∈ Z∗ in random order, and j ∈ [µ],
compute (b, z′) = phasem,h(z) and send Jz′KAb,p ⊕ Jz′KBb,j to Bob, where these
encodings are obtained by playing the role of Fencode.

To show that this is a valid simulation, we consider a series of hybrids.

Hybrid 0 The first hybrid is the real interaction as specified in Figure 4.2
where Alice honestly uses her input X, and Fencode is implemented hon-
estly.

Observe Bob’s commands to Fencode of the form (Encode, (sid,A, b, p), y′b,p)

in Step 3b. Based on these, define the set Ỹ = {phase−1
h,m(b, y′b,p) | b ∈

[m], p ∈ [µ]}.

Hybrid 1 In this hybrid, we modify Alice to send dummy values to Fencode

in Step 2a. Then we further modify Alice to perform the hashing at
the last possible moment in Step 4. The simulation can obtain the ap-
propriate encodings directly from the simulated Fencode. The hybrid is
indistinguishable by the properties of Fencode.

Hybrid 2 In Step 4a, for each x ∈ X the simulated Alice sends com-
mon encodings of the form Jx′KAb,j ⊕ Jx′KBb,p, for some position p, where

(b, x′) = phaseh,m(x). Suppose x 6∈ Ỹ . By construction of Ỹ , Bob never
obtained an encoding of the form Jx′KAb,j. This encoding is therefore dis-
tributed independent of everything else in the simulation. In particular,
the common encodings corresponding to this x are distributed indepen-
dently of the choice of (b, x′) and hence the choice of x.

We therefore modify the hybrid in the following way. Before Alice adds
the items of X to her hash table in Step 4a, she replaces all items in
X \ Ỹ (i.e., all items not in X ∩ Ỹ ) with fixed dummy values not in Y .
By the above argument, the adversary’s view is identically distributed in
this modified hybrid.

The final hybrid works as follows. A simulator interacts with the adversary
and determines a set Ỹ , without using Alice’s actual input X. Then it
computes X ∩ Ỹ and simulates Alice’s message in Step 4a using only X ∩ Ỹ .
Hence, this hybrid corresponds to our final simulator, where we send Ỹ to
the ideal FPSI functionality and receive X ∩ Ỹ in response.

We now turn our attention to a corrupt Alice. In this case the simulator
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must simply extract Alice’s effective input (Alice receives no output from
FPSI). The simulator is defined as follows:

The simulator plays the role of the ideal Fencode functionality. The simulator
does nothing in Step 2 and Step 3b. In Step 3a, the simulator intercepts
Alice’s commands of the form (Encode, (sid,B, b, p), x′b,p). The simulator

computes a set of candidates X̃ = {phase−1
h,m(b, x′b,p) | b ∈ [m], p ∈ [µ]} and

for x ∈ X̃ let c(x) denote the number of times that phase−1
h,m(b, x′b,p) = x for

b ∈ [m], p ∈ [µ].

The simulator computes a hash table B as follows. For x ∈ X̃ and i ∈ c(x),
the simulator computes (b, x′) = phaseh,m(x) and places x′ in a random un-

used position in bin B[b]. Although |X̃| may be as large as mµ, by construc-
tion no bin will have more than µ items. For each such x, let p(x) denote
the set of positions of x in its bin.

Let E denote the set of values sent by Alice in Step 4a. The simulator
computes

X∗ =
{
x ∈ X̃ | ∃j ∈ [µ], p ∈ p(x) :

Jx′KAb,j ⊕ Jx′KBb,p ∈ E
∧ (b, x′) = phaseh,m(x)

} (4.1)

where the encodings are obtained by playing the role of Fencode. The simulator
sends X∗ to the FPSI functionality.

Hybrid 0 The first hybrid is the real interaction as specified in Figure 4.2
where Bob honestly uses his input X, and Fencode is implemented honestly.

Observe Alice’s commands to Fencode of the form (Encode, (sid,B, b, p), x′b,p)

in Step 3a. Based on these, define X̃ = {phase−1
h,m(b, x′b,p) | b ∈ [m], p ∈

[µ]}.

Hybrid 1 In this hybrid, we modify Bob to send the zero string to Fencode

in Step 2b. The simulation can obtain all required encodings directly
from the simulated Fencode. We also have Bob perform his hashing not
in Step 2b but at the last possible moment in Step 4b. The hybrid is
indistinguishable by the properties of Fencode.

Hybrid 2 The hybrid computes the output as specified in Step 4b. We then
modify it to immediately remove all from this output which is not in
X̃. The hybrids differ only in the event that simulated Bob computes
an output in Step 4b that includes an item y 6∈ X̃. This happens only
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if Jy′KAb,j ⊕ Jy′KBb,p ∈ E, where (b, y′) = phaseh,m(y) and Bob places y′ in

position p. Since y 6∈ X̃, however, the encoding Jy′KBb,p is distributed uni-
formly. The length of encodings is chosen so that the overall probability
of this event (across all choices of y 6∈ X̃) is at most 2−λ. Hence the
modification is indistinguishable.

Hybrid 3 We modify the hybrid in the following way. When building the
hash table in Step 4b, the simulated Bob uses X̃ instead of his actual
input Y . Each x ∈ X̃ is inserted c(x) times. Then he computes the
protocol output as specified in Step 4b; call it X∗. This is not what the
simulator gives as output — rather, it gives X∗ ∩ Y as output instead.

The hashing process is different only in the fact that items of Y \ X̃ are
excluded and replaced in the hash table with items of X̃ \ Y (i.e., items
in Y ∩ X̃ are treated exactly the same way). Note that the definition
of X̃ ensures that the hash table can hold all of these items without
overflowing. Also, this change is local to Step 4b, where the only thing
that happens is Bob computing his output. However, by the restriction
added in Hybrid 2 , items in Y \X̃ can never be included in X∗. Similarly,
by the step added in this hybrid, items in X̃ \ Y can never be included
in the simulator’s output. So this change has no effect on the adversary’s
view (which includes this final output).

The final hybrid works as follows. A simulator interacts with the adversary
and at some point computes a set X∗, without the use of Y . Then the simu-
lated Bob’s output is computed as X∗∩Y . Hence, this hybrid corresponds to
our final simulator, where we send X∗ to the ideal FPSI functionality, which
sends output X∗ ∩ Y to ideal Bob.

Set Size for Malicious Parties As the ideal PSI functionality in Fig-
ure 2.1 indicates, our protocol realized a slightly relaxed variant of traditional
PSI that does not strictly enforce the size of a corrupt party’s input set. The
functionality allows an honest party to provide an input set of size n, but a
corrupt party to provide a set of size n′ > n. We now analyze why this is
the case and what is the exact relationship between n and n′.

Let us first consider the case of a malicious Bob who learns the intersection.
The simulator extracts a set based on the commands Bob gave when acting
as Fencode receiver. Bob is given mµ = O(n) opportunities to act as Fencode

receiver, and therefore the simulator extracts a set of size at most n′ = mµ =
O(n). Concretely, when λ = 40, n = 220 and m = n/ log2 n, the optimal bin

71



size is µ = 68 and Bob’s maximum set size is n′ < 4n.

The situation for a malicious Alice is similar. As above, the simulator com-
putes a set X̃ based on commands Alice gives to Fencode when acting as
receiver. The size of X̃ is therefore at most mµ = O(n). The simulator
finally extracts Alice’s input as X∗, a subset of X̃. Hence her input has size
at most n′ = mµ.

However, the situation is likely slightly better than this strict upper bound.
Looking closer, Alice can only send a set E of nµ (not mµ) common encodings
in the final step of the protocol. Each item x ∈ X̃ is associated with µc(x)
common encodings, i.e. µ for each time she sends x in a Fencode command
as the receiver. So Alice is in the situation where if she wants more than n
items to be represented in the set E, then at least one item must have one of
its possible encodings excluded from E. This lowers the probability of that
item being included in the final extracted input X∗.

In general, suppose for each x ∈ X̃, Alice includes ki(x) encodings in her
set E that are associated with the ith time she acted as Fencode receiver
with x. Hence

∑
x∈X̃

∑
i∈[c(x)] ki(x) ≤ nµ. Inspecting the simulation, we

see that the probability a particular x ∈ X̃ survives to be included in X∗

is Pr[x ∈ X̃ ⇒ x ∈ X∗] = 1 −
∏
∈[c(x)](1 − ki(x))/µ or simply k1(x)/µ in

the case c(x) = 1 (it happens only if the simulator happens to place x in
a favorable position in the hash table). Hence, the expected size of X∗ is∑

x∈X̃
∑

i∈[c(x)] ki(x)/(µc(x)) ≤ n.

4.5.4 Encode-Commit Protocol

We now turn our attention to the encode-commit style PSI protocol described
in Section 4.4.3 and outline how the optimizations of Section 4.5.1, 4.5.2 can
be applied to it. Recall that the encode-commit protocol instructs Bob to
encode his items as Fencode receiver while Alice must send commitments of
her items. The final step of this protocol is for Alice to send decommitments
of her values encrypted under the corresponding Fencode encodings.

It is straight forward to see that the hashing to bins technique of Section 4.5.1
is compatible with the encode-commit style PSI. When the optimization of
aggregating masks across bins from Section 4.5.2 is applied, we observe that
the situation becomes more complicated. Let us assume that Alice now sends
the commitment to her value y together with the decommitment r encrypted
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under the encodings {Jy′KAb,p | p ∈ [µ]} where (b, y′) = phaseh,m(y). That is,
for a random order of y ∈ Y , Alice sends

Comm(y; r), {Jy′KAb,p ⊕ r | p ∈ [µ]}

to Bob. For each x ∈ X, Bob must trial decommit to all such Comm(y; r)
with the decommitment value (Jy′KAb,p(x)⊕ r)⊕ Jx′KAb(x),p(x). This would result

in Bob performing O(n2) trial decommitments, eliminating any performance
benefits of hashing. This overhead can be reduced by requiring Alice to send
additional information that allows Bob to quickly identify which decommit-
ment to try. Specifically, we will use the Fencode encodings to derive two
values, JvKtagb,p = PRF(JvKAb,p,tag) and JvKencb,p = PRF(JvKAb,p,enc). The im-

portant property here is that given the encoding JvKAb,p, both values can be
derived, but without the encoding the two values appear pseudo-random and
independent. We now have Alice send

Comm(y; r), {Jy′Ktagb,p || (Jy′Kencb,p ⊕ r) | p ∈ [µ]}

Bob can now construct a hash table mapping Jx′Ktagb,p to (Jx′Kencb,p , x). Upon
receiving a commitment and the associated tagged decommitments, Bob can
query each of Alice’s tags in the hash table. If a match is found, Bob will
add the associated x to the intersection if the associated Jx′Kencb,p value is
successfully used to decommits Comm(y; r).

4.5.5 Encode-Commit Protocol Details & Security

We give a formal description of the protocol in Figure 4.4. The protocol
requires a non-interactive commitment scheme. In Section 4.7 we discuss
the security properties required of the commitment scheme. At a high level,
we require an extractable commitment scheme with a standard (standalone)
hiding requirement. In particular, we do not require equivocability. In the
non-programmable random oracle, the standard scheme H(x‖r) satisfies our
required properties.

Theorem 5. The protocol in Figure 4.4 is UC-secure in the Fencode-hybrid
model, when the underlying commitment scheme satisfies Definition 6. The
resulting protocol has cost O(Cn log n), where C ≈ κ is the cost of one
(sender) Fencode call on a σ − log n length bit string.

Proof. Due to the similarity to the previous proof we defer giving hybrids
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and simply describe the simulators. We start with the case of a corrupt
Bob. The simulator must extract Bob’s input, and simulate the messages in
the protocol. The simulator is nearly the same as in the previous protocol:

The simulator plays the role of the ideal Fencode functionality. The simulator
does nothing in Step 2. To extract Bob’s set, the simulator observes all of
Bob’s Fencode messages (Encode, (sid,A, b, p), y′b,p) in Step 3. The simulator

computes Y = {phase−1
h,m(b, y′b,p) | b ∈ [m], p ∈ [µ]} and sends it to the ideal

FPSI functionality which responds with the intersection Z = X ∩ Y .

Set Z∗ to be equal to Z along with arbitrary dummy items not in Y , so that
|Z∗| = n. For each z ∈ Z∗, compute (b, z′) = phasem,h(z) and insert z′ into
bin BX [b] at a random unused position p ∈ [µ]. For z ∈ Z∗ in random order,
compute (b, z′) = phasem,h(z) and send Comm(z; rz), {Jz′Ktagb,p || Jz′Kencb,p ⊕ rz}
to Bob, where these encodings are obtained by playing the role of Fencode.

Importantly, the simulator extracts Bob’s input in step 3 and thus knows
the protocol output before step 4. It can therefore send appropriate com-
mitments and use dummy commitments for those that are guaranteed not
to be openable by Bob (those commitments whose decommitment values
are perfectly masked by random encodings). Security follows from standard
standalone hiding of the commitment scheme.

In the case of a corrupt Alice the simulator must simply extract Alice’s
effective input (Alice receives no output from FPSI). The simulator is defined
as follows:

The simulator plays the role of the ideal Fencode functionality and initializes
the commitment scheme in extraction mode (i.e., fixes the coin tossing in
step 1 to generate simulated parameters). The simulator does nothing in
Step 2 and Step 3. In Step 4, the simulator extracts Alice’s commitments of
the form Comm(x; rx) and inserts x′ in the bin BX [b] at a random unused
position p ∈ [µ], where (b, x′) = phasem,h(x). Let S denote the set of the µ
associated (tag || decommit) pairs. If there exists (T || D) ∈ S such that
T = Jx′Ktagb,p and Comm(x; rx) = Comm(x;D⊕ Jx′Kencb,p ), add x to the set X∗.
The simulator sends X∗ to the FPSI functionality.

We see here that the simulator extracts candidate inputs for Alice by ex-
tracting from her commitments. Thus the protocol requires an extractable
commitment scheme. This protocol also benefits from restricting Alice to a
set of size exactly n item, unlike the dual execution protocol which achieves
n items in exception and upper bounded by roughly n′ < 4n items.

74



Set size n 28 212 216 220 224

LAN
µ 24 25 26 28 29
m 64 1024 16384 262144 4194304

WAN
µ 40 43 45 47 49
m 25 409 6553 104857 1677721

Table 4.1: Dual Execution hashing parameters µ,m for statistical security
λ = 40.

4.5.6 Parameters

Let us now review the protocol as a whole and how to securely set the pa-
rameters. The parties first agree on hashing parameters that randomly map
their sets of n items into m bins with the use of phasing. The bins are
padded with dummy items to size µ = O(log n). The parties both act as
Fencode receiver to encode all mµ items in their bins, including dummy items.
Each bin position uses a unique Fencode session. For all non-dummy encod-
ings, both parties compute µ = O(log n) common encodings. If an item is in
the intersection, exactly one of these µ encodings will be the same for both
parties. Alice then sends Bob all of these common encodings in a random
order (not by bins). Bob is able to identify the matching encodings and infer
the intersection.

By applying a bins into balls analysis, it can be seen that for m bins and
n balls, the probability of there existing a bin with more than µ items is ≤
m
∑n

i=µ+1

(
n
i

) (
1
m

)i (
1− 1

m

)n−i
. Bounding this to be negligible in the security

parameter gives the required bin size for a given n,m. By setting m =
O(n/ log n) and minimizing the overall cost, we obtain the set of parameters
specified in Figure 4.1 with statistical security λ = 40. We found that m =
n/10 minimizes the communication for our choices of n at the expense of
increased computation when compared to m = n/4. As such, we choose
m = n/10 in the WAN setting where communication is the dominant cost and
m = n/4 in the LAN setting where computation has increased importance.

4.5.7 Discussion

Challenges of Two Party Output An obvious question is whether our
protocol be extended to support two party output. In the semi-honest case,
this is trivial, since the party who learns the intersection first can simply
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report it to the other. In the malicious setting, the parties cannot be trusted
to relay this information faithfully.

A natural idea to solve this problem is to have Bob send all of his encodings
to Alice, making the protocol completely symmetric. We briefly describe the
problem with this approach. Suppose Bob behaves honestly with input set
Y throughout most of the protocol. Let y0 ∈ Y be a distinguished element.
In the last step, he sends his common encodings to Alice, but replaces all the
encodings corresponding to y0 with random values.

Now Bob will learn X ∩Y , but his effect on Alice will be that she learns only
X ∩ (Y \ {y0}). More generally, a malicious Bob can always learn X ∩Y but
cause Alice to receive output X ∩ Y ′ for any Y ′ ⊆ Y of Bob’s choice.

4.6 Performance Evaluation

We have implemented several variants of out main protocol, and in this sec-
tion we report on its performance. We denote our dual execution random-
oracle protocol as DE-ROM and the encode-commit random-oracle proto-
col as EC-ROM. Only the dual execution protocol was implemented in the
standard model and denoted as SM. We do not implement the encode-
commit protocol in the standard model due to the communication overhead
of standard model commitments such as [FJNT16], see 4.6.1 Communication
Cost. All implementations are freely available at github.com/osu-crypto/
libPSI.

We give detailed comparisons to two leading malicious-secure PSI protocols:
our previous Bloom-filter-based protocol [RR17a] and the Diffie-Hellman-
based protocol of De Cristofaro, Kim & Tsudik [DCKT10]. We utilized the
implementation provided by [RR17a] of that protocol and [DCKT10]. All
implementations were compared on the same hardware.

Implementation Details & Optimizations. We implemented our pro-
tocol in C++ and both the standard-model and random-oracle instantiation
of Fencode, to understand the effect of the random-oracle assumption on per-
formance.

We implement Fencode by directly utilizing [OOS17] in the ROM model or
with several chosen message 1-out-of-2 OTs [KOS15b] in the standard model
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Setting Protocol
Set size n

28 212 216 220 224

asymptotic
Total Online Total Online Total Online Total Online Total Online

LAN

[KKRT16]∗ 0.19 0.19 0.21 0.21 0.4 0.4 3.8 3.8 59 59 4n (ro)
[DCKT10] 1.6 1.6 22.4 22.4 365 365 5630 5630 − − 6n (pk)
[RR17a] 0.21 0.002 0.8 0.03 9.6 0.7 148 16 − − 4κn (ro)
Ours (EC-ROM) 0.13 0.004 0.19 0.06 0.94 0.69 12.6 11.3 239 218

4n log n (ro)
Ours (DE-ROM) 0.13 0.006 0.23 0.08 1.3 1.0 18 16 296 261
Ours (SM, σ = 32) 0.15 0.018 0.48 0.19 3.5 1.8 56 31 − −

6σn (crh)
Ours (SM, σ = 64) 0.19 0.034 0.84 0.31 8.0 3.7 134 35 − −

WAN

[KKRT16]∗ 0.56 0.56 0.59 0.59 1.3 1.3 7.5 7.5 107 106 4n (ro)
[DCKT10] 1.7 1.7 23.2 23.2 367 367 5634 5634 − − 6n (pk)
[RR17a] 0.97 0.14 5.3 0.95 69 13 1080 216 − − 4κn (ro)
Ours (EC-ROM) 0.67 0.26 1.5 1.1 16 15 255 254 3208 3194

4n log n (ro)
Ours (DE-ROM) 0.90 0.33 1.2 0.63 6.3 5.6 106 105 2647 2626
Ours (SM, σ = 32) 1.3 0.11 8.0 0.56 78 5.4 1322 115 − −

6σn (crh)
Ours (SM, σ = 64) 1.9 0.14 16.8 0.74 226 82 3782 164 − −

Table 4.2: Single-threaded running time in seconds of our protocol compared
to semi-honest [KKRT16] and malicious [DCKT10, RR17a]. We report both the
total and online running time. DE-ROM, EC-ROM respectively denotes our dual
execution and encode-commit model protocols. SM denotes the standard model
dual execution variant on input bit length σ. Cells with − denote trials that
either ran out of memory or took longer than 24 hours. (pk) denotes public key
operations, (ro) denotes random oracle operations and (crh) denotes correlation
robust hash function operations. ∗ [KKRT16] is a Semi-Honest secure PSI protocol.
We show the [KKRT16] performance numbers here for comparison purposes.

as specified by Section 4.3. When we instantiate Fencode with [OOS17], we
use the BCH-(511, 76, 171) linear code. As such, the Fencode input domain
is {0, 1}76. To support PSI over arbitrary length strings in the random-
oracle model, we use the hash to smaller domain technique of [PSZ18] in
conjunction with phasing. The hashed elements are 128 bits. This enables
us to handle sets of size n such that 76 ≥ λ+ log n, e.g. n = 236 with λ = 40
bits of statistical security. For larger set sizes and/or security level, a larger
BCH code can be used with minimal additional overhead. In the standard
model, we perform PSI over strings of length 32 and 64 bits due to hash to
smaller domain requiring the random-oracle to extract.

We used SHA1 as the underlying hash function, and AES as the underlying
PRF/PRG (counter mode for a PRG) where needed. The random-oracle
instantiation requires the OT-extension hash function to be modeled as a
random-oracle. We optimize the Fencode instantiations by not hashing dummy
items.

The implementation of [DCKT10] uses the Miracl elliptic curve library using
Curve 25519 achieving 128 bit computational security. It is in the random-
oracle model and is optimized with the Fiat-Shamir sigma proofs. This imple-
mentation also takes advantage of the Comb method for fast exponentiation
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Threads Protocol
Set size n

28 212 216 220 224

4

[DCKT10] 0.61 6.9 95 1539 24948
[RR17a] 0.15 0.52 5.8 84 −
Ours (EC-ROM) 0.14 0.15 0.4 4.4 72
Ours (DE-ROM) 0.14 0.17 0.6 7.0 93
Ours (SM, σ = 32) 0.14 0.24 1.3 17 −
Ours (SM, σ = 64) 0.15 0.37 2.7 40 −

16

[DCKT10] 0.33 2.2 29 458 7265
[RR17a] 0.15 0.44 4.3 68 −
Ours (EC-ROM) 0.14 0.16 0.4 3.0 42
Ours (DE-ROM) 0.14 0.17 0.4 3.5 34
Ours (SM, σ = 32) 0.14 0.18 0.6 7.5 −
Ours (SM, σ = 64) 0.15 0.25 1.1 14.7 −

64

[DCKT10] 0.11 1.2 19 315 5021
[RR17a] 0.14 0.34 2.1 32 −
Ours (EC-ROM) 0.14 0.15 0.4 3.0 42
Ours (DE-ROM) 0.14 0.17 0.4 2.9 25
Ours (SM, σ = 32) 0.14 0.18 0.5 6.0 −
Ours (SM, σ = 64) 0.15 0.21 1.0 14 −

Table 4.3: Total running times in seconds of our protocol compared to [DCKT10,
RR17a] in the multi-threaded setting. Cells with − denote trials that ran out of
memory.

set size n asymptotic
28 212 216 220 224 Offline Online

[KKRT16]∗ 0.04 0.53 8 127 1956 2κ2 3n(β + κ)
[DCKT10] 0.05 0.8 14 213 2356 0 6nφ+ 6φ+ nβ
[RR17a] 1.9 23 324 4970 − 2κ2 + 2nκ2 2nκ log2(2nκ) + nβ

Ours (EC-ROM) 0.29 4.8 79 1322 22038 2κ2 3κn+ n(C +D log n+ log2 n)
Ours (DE-ROM) 0.25 3.5 61 1092 17875 2κ2 6κn+ βn log n
Ours (SM, σ = 32) 2.3 40 451 7708 −

2κ2 + 6σκn σn+ βn log n
Ours (SM, σ = 64) 5.3 92 1317 22183 −

Table 4.4: The empirical communication cost for both parties when configured
for the WAN setting, listed in megabytes. Asymptotic costs are in bits. φ = 283 is
the size of the elliptic curve elements. β ≈ λ+2 log n−1 bits is the size of the final
masks that each protocol sends. C ≈ 2κ bits is the communication of performing
one commitment and D ≈ κ is the size of a non-interactive decommitment.

(point multiplication) with the use of precomputed tables. The [DCKT10]
protocol requires two rounds of communication over which 5n exponentia-
tions and 2n zero knowledge proofs are performed. To increase performance
on large set sizes, all operations are performed in a streaming manner, where
data is sent as soon as it is ready.
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The [RR17a] implementation is also highly optimized including techniques
such as hashing OTs on demand and aggregating several steps in their cut
and choose. To ensure a fair comparison, we borrow many of their primitives
such as SHA1 and AES.

Experimental Setup. Benchmarks were performed on a server equipped
with 2 multi-core Intel Xeon processors and 256GB of RAM. The protocol
was executed with both parties running on the same server, communicating
through the loopback device. Using the Linux tc command we simulated two
network settings: a LAN setting with 10 Gbps and less than a millisecond
latency; and a WAN setting with 40 Mbps throughput and 80ms round-trip
latency.

All evaluations were performed with computational security parameter κ =
128 and statistical security λ = 40. We consider the sets of size n ∈
{28, 212, 216, 220, 224}. The times reported are the average of 10 trials. Where
appropriate, all implementations utilize the hardware accelerated AES-NI
instruction set.

4.6.1 Results & Discussion

Execution time, single-threaded. Figure 4.2 shows the running time of
our protocol compared with [DCKT10] and [RR17a] when performed with
a single thread per party. We report both the total running time and the
online time, which is defined as the portion of the running time that is input-
dependent (i.e., the portion of the protocol that cannot be pre-computed).

Our experiments show that our ROM protocols’ total running times are sig-
nificantly less than the prior works, requiring 12.6 seconds to perform a set
intersection for n = 220 elements in the LAN setting. A 11.7× improve-
ment in running time compared to [RR17a] and a 447× improvement over
[DCKT10]. Increasing the set size to n = 224, we find that our best protocol
takes 239 seconds, whereas [RR17a] runs out of memory, and [DCKT10] re-
quires over 24 hours. When considering the smallest set size of n = 28, our
protocol remains the fastest with a running time of 0.13 seconds compared
to 0.21 and 1.6 for [RR17a] and [DCKT10] respectively. Our standard model
dual execution protocol is also faster than prior works when evaluated in the
LAN setting, with a running time 2.6× faster than [RR17a] for σ = 32 and
1.1× faster for σ = 64.
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Our ROM protocol also scales very well in the WAN setting where bandwidth
and latency are constrained. For set size n = 28, all protocols require roughly
1 second with ours being slightly faster at 0.9 seconds. When increasing to
a set size of n = 220 the difference becomes much more significant. Our DE-
ROM protocol requires 106 seconds compared to 1080 for [RR17a], a 10×
improvement. Our standard model protocol also has a fast online phase in
the WAN setting due to the implementation moving a larger portion of the
work to the offline as compared to the ROM protocol.

Multi-threaded performance. Figure 4.3 shows the total running times
in the multi-threaded LAN setting. We see that our protocol parallelizes
well, due to the fact that items are hashed into bins which can be processed
more or less independently. By contrast [RR17a] uses a global Bloom filter
representation for all items, which is less amenable to parallelization. For
inputs of size n = 220 and 16 threads, our protocol is 23× faster than [RR17a]
and 153× that of [DCKT10]. Increasing the number of threads from 1 to 16
speeds up our protocol by a factor of 5×, but theirs by a factor of only 2×.

While the Diffie-Hellman-based protocol of [DCKT10] is easily the most
amenable to parallelization (16 threads speeding up the protocol by a fac-
tor of 12.3× for n = 220), its reliance on expensive public-key computations
leaves it still much slower than ours.

Communication cost. Figure 4.4 reports both the empirical and asymp-
totic communication overhead of the protocols. The most efficient protocol
with respect to communication overhead is [DCKT10]. The dominant term
in their communication is to have each party send 3n field elements. The
next most efficient is our DE-ROM protocol, requiring each party to send
O(n) encodings from Fencode. Concretely, for a set size of n = 220, our proto-
col requires 1.1 GB of communication, roughly 5× greater than [DCKT10].
However, on a modest connection of 40 Mbps, we find our protocol to re-
main the fastest even when [DCKT10] utilizes many threads. In addition,
our protocol requires almost 5× less communication than [RR17a] (4.9GB).

When comparing our two ROM protocols, it can be seen that the dual ex-
ecution technique requires less communication and is therefore faster in the
WAN setting. The main overhead of the encode-commit protocol is the
O(n log n) tag||decommitment values that must be sent. This is of particu-
lar concern in the standard model where commitments are typically several
times larger than their ROM counterparts. In contrast, the dual execution
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protocol sends O(n log n) encodings which can be less than half the size of a
ROM decommitment.

One aspect of the protocols that is not reflected in the tables is how the
communication cost is shared between the parties. In our DE-COM protocol,
a large portion of the communication is in the encoding steps, which are
entirely symmetric between the two parties. In [RR17a] the majority of the
communication is done by the receiver (in the OT extension phase). Although
the total communication cost of [RR17a] is roughly 5× that of our protocol,
the communication cost to the receiver is ∼ 10× ours.

Comparison with [RR17a]. We provide a more specific comparison to
the protocol of Rindal & Rosulek [RR17a]. Both protocols are secure against
malicious adversaries; both rely heavily on efficient oblivious transfers; nei-
ther protocol strictly enforces the size of a malicious party’s input set (so
both protocols realize the slightly relaxed PSI functionality of Figure 2.1).

We now focus on our random-oracle-optimized protocol, which uses the
random-oracle instantiation of Fencode. As has been shown, this protocol
is significantly faster than that of [RR17a]. We give a rough idea of why
this should be the case. In [RR17a], the bulk of the cost is that the parties
perform an OT for each bit of a Bloom filter. With n items, the size of
the required Bloom filter is ∼ kn, where k is the security parameter of the
Bloom filter. For technical reasons, k in [RR17a] must be the computational
security parameter of the protocol (e.g., 128 in the implementation). Overall,
roughly ∼ nk oblivious transfers are required.

The bulk of the cost in our protocol is performing the instances of Fencode.
In our random-oracle instantiation, we realize Fencode with the OT-extension
protocol of [OOS17]. Each instance of Fencode has cost roughly comparable
to a plain OT. Our protocol requires mµ = O(n) such instances. It is this
difference in the number of OT primitives that contributes the largest factor
to the difference in performance between these two protocols.

We also observe that our standard model protocol is faster than [RR17a]
in the LAN setting for σ = 32 and σ = 64. While it is true that [RR17a]
only weakly depends on σ, it is still informative that our protocol remains
competitive with the previous fastest protocol while eliminating the random-
oracle assumption. When considering the WAN setting, the communication
overhead of σmµ = O(σn) OTs limits our performance, resulting in σ = 32
being slightly slower than [RR17a].
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Comparison with OPE protocols. Our protocol is orders of magnitude
faster than blind-RSA based protocol of [DCKT10], due to [DCKT10] per-
forming O(n) exponentiations. Traditional OPE-based PSI also require O(n)
exponentiations and their running time would be similarly high. There are
very recent OPE protocols based on OT but they still require O(n) OTs
plus O(n/κ) relatively expensive interpolations of degree-O(k) polynomials,
totaling O(n log κ) operations. In contrast our protocol requires O(n) OTs
to be communicated and O(n log n) local OT computations.

Comparison with semi-honest PSI. An interesting point of comparison
is to the state-of-the-art semi-honest secure protocol of Kolesnikov et al.
[KKRT16] which follows the same PSZ paradigm. Figure 4.2 shows the
running time of our protocol compared to theirs. For sets sizes up to n = 212

our protocol is actually faster than [KKRT16] in the LAN setting which we
attribute to a more optimized implementation. Increasing the set size to
n = 220 we see that our protocol require 12.6 seconds compared to 3.8 by
[KKRT16], a 3.3× difference. For the largest set size of n = 224 we see
the difference increase further to a 4× overhead in the LAN setting. In the
WAN setting we see a greater difference of 25× which we attribute to the
log n factor more communication/computation that our protocol requires.

4.7 Commitment Properties

The encode-commit variant of our protocol requires a non-interactive com-
mitment scheme. The syntax is as follows:

• Setup(1κ): samples a random reference string crs.

• Comm(crs, x, r): generates a commitment to x with randomness r.
Note that in the main body, we omit the global argument crs.

• SimSetup(1κ): samples a reference string crs along with a trapdoor
τ .

• Extract(crs, τ, c): extracts the committed plaintext value from a
commitment c.

We require the scheme to satisfy the following security properties:
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Definition 6. A commitment scheme is secure if the following are true:

1. (Extraction:) Define the following game:

ExtractionGame(1κ,A):

(crs, τ)← SimSetup(1κ)
(c, x′, r′)← A(crs)
if c = Comm(crs, x′, r′) and x′ 6= Extract(crs, τ, c):

return 1
else: return 0

The scheme has straight-line extraction if for every PPT A, ExtractionGame(1κ,A)
outputs 1 with negligible probability.

2. (Hiding:) Define the following game:

HidingGame(1κ,A, b):
crs← Setup(1κ)
(x0, x1)← A(crs)
r ← {0, 1}κ
return Comm(crs, xb, r)

The scheme is hiding if, for all PPT A, the distributions
HidingGame(1κ,A, 0) and HidingGame(1κ,A, 1) are indistinguishable.

The definitions are each written in terms of a single commitment, but they
apply simultaneously to many commitments using a simple hybrid argument.

In the non-programmable random oracle model, the classical commitment
scheme Comm(x, r) = H(x‖r) satisfies these definitions. In the standard
model, one can use any UC-secure non-interactive commitment scheme, e.g.,
the efficient scheme of [FJNT16].
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4.8 Formal Encode-Commit Protocol
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Parameters: X is Alice’s input, Y is Bob’s input, where X,Y ⊆ {0, 1}σ. m
is the number of bins and µ is a bound on the number of items per bin. The
protocol uses instances of Fencode with input length σ − log n, and output
length λ+ 2 log(nµ), where λ is the security parameter.

1. [Parameters] Parties agree on a random hash function h : {0, 1}σ →
[m] using a coin tossing protocol.

2. [Hashing]

(a) For x ∈ X, Alice computes (b, x′) = phaseh,m(x) and adds x′ to
bin BX [b] at a random unused position p ∈ [µ].

(b) For y ∈ Y , Bob computes (b, y′) = phaseh,m(y) and adds y′ to bin
BY [b] at a random unused position p ∈ [µ].

Both parties fill unused bin positions with the zero string.

3. [Encoding] For bin index b ∈ [m] and position p ∈ [µ]:

(a) Let x′ be the value in bin BX [b] at position p. Al-
ice sends (Encode, (sid,B, b, p), x′) to the Fencode functionality
which responds with (Output, (sid,B, b, p), Jx′KBb,p). Bob receives
(Output, (sid,B, b, p)) from Fencode.

(b) Let y′ be the value in bin BY [b] at position p. Bob
sends (Encode, (sid,A, b, p), y′) to the Fencode functionality which
responds with (Output, (sid,A, b, p), Jy′KAb,p). Alice receives
(Output, (sid,A, b, p)) from Fencode.

4. [Output]

(a) [Alice’s Common Mask] For each x ∈ X, in random
order, let b, p be the bin index and position that x′ was
placed in during Step 2a to represent x. For j ∈ [µ],
Alice sends (Encode, (sid,A, b, j), x′) to Fencode and receives
(Output, (sid,A, b, j), Jx′KAb,j) in response. Alice sends

Jx′KAb,j ⊕ Jx′KBb,p

to Bob. Let E denote the nµ encodings that Alice sends.

(b) [Bob’s Common Mask] Similarly, for y ∈ Y , let b, p be the bin
index and position that y′ was placed in during Step 2b to represent
y. For j ∈ [µ], Bob sends (Encode, (sid,B, b, j), y′) to Fencode and
receives (Output, (sid,B, b, j), Jy′KBb,j) in response. Bob outputs{
y ∈ Y

∣∣∣ ∃j ∈ [µ] : Jy′KAb,p ⊕ Jy′KBb,j ∈ E, where (b, y′) = phaseh,m(y)
}

Figure 4.3: Our malicious-secure Dual Execution PSI protocol.85



Parameters: X is Alice’s input, Y is Bob’s input, where X,Y ⊆ {0, 1}σ. m
is the number of bins and µ is a bound on the number of items per bin. The
protocol uses instances of Fencode with input length σ − log n, and output
length λ+ 2 log(nµ), where λ is the security parameter.

1. [Parameters] Parties agree on a random hash function h : {0, 1}σ → [m]
and global parameters for the commitment scheme, using a coin tossing
protocol.

2. [Hashing]

(a) For x ∈ X, Alice computes (b, x′) = phaseh,m(x) and adds x′ to bin
BX [b] at a random unused position p ∈ [µ].

(b) For y ∈ Y , Bob computes (b, y′) = phaseh,m(y) and adds y′ to bin
BY [b] at a random unused position p ∈ [µ].

Both parties fill unused bin positions with the zero string.

3. [Encoding] For bin index b ∈ [m] and position p ∈ [µ]: Let y′ be the value
in bin BY [b] at position p. Bob sends (Encode, (sid,A, b, p), y′) to the
Fencode functionality which responds with (Output, (sid,A, b, p), Jy′KAb,p).
Alice receives (Output, (sid,A, b, p)) from Fencode. Bob computes

Jy′Ktagb,p = PRF(Jy′KAb,p,tag)

Jy′Kencb,p = PRF(Jy′KAb,p,enc)

and constructs a hash table H mapping Jy′Ktagb,p to (Jy′Kencb,p , y).

4. [Output] For each x ∈ X, in random order, let b, p be the bin in-
dex and position that x′ was placed in during Step 2a to represent x.
For j ∈ [µ], Alice sends (Encode, (sid,A, b, j), x′) to Fencode and receives
(Output, (sid,A, b, j), Jx′KAb,j) in response. For each response Alice com-

putes Jx′Ktagb,j = PRF(Jx′KAb,j ,tag) and Jx′Kencb,j = PRF(Jx′KAb,j ,enc).

For each x Alice sends the tuple

Comm(x; rx), {Jx′Ktagb,j || Jx′Kencb,j ⊕ rx | j ∈ [µ]}

to Bob who outputs the union of all y such that ∃j : Jx′Ktagb,j ∈ H.keys
and Comm(x, rx) = Comm(y; (Jx′Kencb,j ⊕ rx)⊕ Jy′Kenc∗ ) where (Jy′Kenc∗ , y) :=
H[Jx′Ktagb,j ].

Figure 4.4: Our Encode-Commit PSI protocol.
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Chapter 5

PSI with Differential Privacy

Cheaper Private Set Intersection via Differentially Private Leakage by Adam
Groce, Peter Rindal & Mike Rosulek

5.1 Introduction

Secure (two-party) computation allows two parties to evaluate a function on
private inputs, and learn only the output of the function. Standard security
definitions for secure computation provide extremely strong cryptographic
guarantees. In many situations it is reasonable to consider relaxing these
guarantees if such relaxation results in a significantly faster protocol.

In this work, we consider relaxing security by allowing the protocol to leak
some “extra” information. This raises the question, what extra information
is reasonable to leak without completely undermining the idea of secure com-
putation? A natural candidate is to leak only differentially private (DP) in-
formation about the private inputs. Differential privacy [DMNS06] captures
the idea that only aggregate information about a data-set is leaked, but not
information that is specific to any single individual in the data-set. Beimel
et al. [BNO08] were the first to suggest allowing differentially private leakage
in secure computation protocols, by replacing the standard indistinguisha-
bility notion (in the privacy requirement) with a corresponding differential
privacy statement. In this work, we will consider a slightly different security
definition that considers malicious adversaries.
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5.1.1 Chapter Contributions

We show a significant tradeoff between performance and differentially private
leakage in the setting of private set intersection (PSI). In PSI, two parties
have input sets X and Y , and wish to learn (only) their intersection X ∩ Y .
Differential privacy is an especially good match for this problem, since many
of its most notable applications involve sets of individuals. For example, the
application of private contact discovery in social networks involves a client
with a small set of email addresses (i.e., address book), and a server with a
large set of user email addresses, who compute the corresponding intersection.
Differential privacy in this setting would ensure that, e.g., the server doesn’t
learn information about any single person in the client’s address book.

Our starting point is the protocol of Rindal & Rosulek [RR17b], which is the
fastest malicious-secure PSI protocol to date. Like many PSI protocol, this
one works by first having the parties hash their items into bins (e.g., item x
is placed in bin h(x)), and a smaller PSI is performed in each bin.

In all such PSI protocols, dummy items must be added to fill each bin to
a maximum size. This is because the number of true items in each bin is
information that cannot be inferred from the intersection alone (i.e., it is
leakage from a security standpoint). Unfortunately, dummy items vastly
outnumber real items, and inflate the protocol’s cost (relative to what would
be needed for correctness alone).

The load of each bin can be thought of as a histogram of a party’s input set.
Instead of completely hiding this histogram (by padding with dummy items
to an upper bound), we can consider releasing it in a differentially-private
manner since histograms are one of the canonical statistics that work well
with DP. If the differentially private histogram is closer to the true histogram,
it will result in significantly less dummy items and a more efficient protocol.1

We explore two specific approaches:

(1) The standard way to release a histogram with differential privacy is to
add modest Laplacian noise to each value (i.e., load of each bin). However,
correctness in our setting is broken if the parties underestimate the load of
a bin. We introduce new methods for computing a “differentially-private
overestimate” of the true histogram, taking advantage of the known (balls in
bins) distribution of items.

1In this high-level overview we focus on the private histogram technique. However,
there is also another aspect of the baseline PSI protocol which can be improved with
differentially private leakage, which we discuss later.
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(2) Another mechanism is to identify a small set of threshold values and
always round up the true number of items in each bin to the closest threshold
value. One can think of the fully-secure protocol as rounding up all bin
loads to a maximum value B, and the simplest generalization would include
another intermediate threshold t (now parties treat each bin as having either t
or B items). This mechanism leads to even more efficient PSI, and provides
a guarantee known as distributional differential privacy (DDP) [BGKS13].
The DDP model requires there to be sufficient uncertainty in the sensitive
data, which may not be present in all PSI application scenarios. We fully
discuss the applicability of DDP leakage in PSI in Section 5.6.2.

We have incorporated our new techniques into the implementation of [RR17b]
and present a thorough analysis of our performance improvements. Allowing
differentially private leakage improves the performance of the protocol by
27% (for ε = 0.5) to 46% (for ε = 4). Allowing ε = .33 distributionally
DP leakage for Alice (and ε = 1 standard DP for the receiver) improves the
performance by 15%.

5.1.2 Related Work with Leakage

Trading leakage for performance in generic MPC The dual execution
paradigm, introduced by Mohassel & Franklin [MF06a] and extended in other
work [HKE12, KMRR15], relaxes the malicious security model by allowing
the adversary to learn an arbitrary bit about the honest party’s input. The
resulting protocol is only 2× the cost of a standard semi-honest protocol. The
dual execution paradigm can be used to securely evaluate any functionality,
but does not guarantee that the leakage satisfies any meaningful limitation
(other than being 1 bit). Our approach also relaxes security by allowing
some leakage, but in the specific case of PSI we ensure that the leakage is
differentially private.

Beimel et al. [BNO08] explored a model of MPC where the standard privacy
guarantee is replaced by the natural differentially private analog. This secu-
rity model is inherently tied to the semi-honest adversarial setting, and not
suitable for our malicious setting. We believe our security model more clearly
separates the different intuitive security goals of MPC and makes it explicit
which goals are ensured in a cryptographic or differentially private sense
(e.g., we enforce correctness in the standard sense but input independence
and privacy in a differentially private sense).
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Trading leakage for performance in special-purpose MPC Another
notable instance of trading leakage for performance is in the context of search-
able encryption, and more generally secure database search. The encrypted
database systems BlindSeer [PKV+14] and that of Cash et al. [CJJ+13] pro-
vide standard database (DBMS) functionality, while hiding the nature of
the query from the server with the exception of some leaked information.
Schoppmann et al. [SGB18] perform nearest neighbor queries on a private
database, while allowing differentially private leakage. As in our work, this
leakage is tailored to the protocol and specific functionality.

Oblivious RAM (ORAM) [Gol87, Ost90] refers to a protocol between a client
and server that allows the client to read/write its data held by the server,
but hiding the client’s access pattern from the server. Some relatively recent
work [WCM16, MG17, CCMS17] has explored relaxing the obliviousness re-
quirement of ORAM to allow the server to learn only differentially private
information about the access pattern. Similar to our work, the goal is to
compute a “plain” functionality with the standard notion of correctness —
i.e., without adding any noise. In this case, the functionality corresponds to
RAM read/write instructions; in our case the functionality is PSI.

In all works in this section, the security model is honest-but-curious.

Securely Computing Differentially-Private Functions There is a great
deal of work on using secure computation to evaluate a differentially-private
mechanism – e.g., [PNH17, KOV14, CGBL+17, RN10, BSMD10] – including
protocols for closely related functionalities like cardinality of set intersection
cardinality [NH12] and union [FMJS17]. In these works, the focus is to com-
pute a differentially-private functionality, under a standard security notion.
In other words, the parties learn only a differentially private answer, while
in our work the parties learn a non-differentially private function, plus some
additional (incidental) differentially private information.

5.2 Background

5.2.1 Differential Privacy

Differential privacy [DMNS06] is a condition meant to ensure that releases
from large databases do not violate the privacy of any of the individuals
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whose data that database contains. In particular, let X = (X1, X2, . . . , Xn)
be a database of information about n individuals, with Xi being the data
corresponding to the ith individual. A query is a (possibly randomized)
function f that takes a database as input. Differential privacy ensures that
the inclusion of individual i in the database does not allow an adversary to
infer anything about them.

The strength of the definition is controlled by a parameter ε. Intuitively, dif-
ferential privacy guarantees that whatever f(X) outputs, that output would
have been roughly equally likely even if any individual had instead changed
their data arbitrarily. If the observed output was roughly equally likely for
any value of the individual’s data, then the adversary cannot infer anything
having seen it. (This intuition has been formalized. See [KS08] for a rigorous
treatment.)

More formally, we say that two databases X and X ′ are neighboring if they
differ only in the addition or deletion of a single value. We can then define
differential privacy.

Definition 7. A query function f is ε-differential private if for any two
neighboring databases X and X ′ and for any set S of possible outputs, we
have

Pr[f(X) ∈ S]

Pr[f(X ′) ∈ S]
≤ eε. (5.1)

Differential privacy also benefits from composition. That is, if f is ε1-
differentially private and g is ε2-differentially private, the function h that
gives both their outputs (i.e., h(X) = (f(X), g(X))) is (ε1 + ε2)-differentially
private. This is useful for two reasons. First, it’s a useful tool for building
differentially private functions, since one can build them up from smaller
private components. Second, it means that the definition protects people’s
privacy even if many separate differentially private comptuations are done,
including queries called by different people.

Differential privacy is also preserved by any additional post-processing. That
is, if f is ε-differentially private, then so is g◦f for any g. This means anything
that can be computed from a private output (with additional access to the
database) is itself private. This, like composition, is useful both because
it’s an intuitively desirable property of a privacy definition and because it’s
useful in practice when designing private queries.

Differentially private queries have been created that approximate a wide va-
riety of naturally desirable output. In the most simple query algorithms, the
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output is simply equal to the desired (non-private) output plus some care-
fully calibrated noise. In particular, say that F is some function on databases
with output in Rn. We define the sensitivity F to be the maximum amount
of change F can see when one row of the database is changed.

Definition 8. The sensitivity of a function F with output in Rn is max ||F (X)−
F (X ′)||, where the maximum is taken over all neighboring databases X and
X ′ and the norm is an `1 norm.

Our techniques rely primarily on several uses of the Laplace mechanism.
This uses random noises generated according to a Laplace distribution, a
double-sided exponential distribution.

Definition 9. The Laplace distribution Lapc, is parameterized by a scaling
parameter c. We denote the probability density function at x with Lapc(x).
Precisely,

Lapc(x) =
1

2c
e−|x|/c. (5.2)

Any function can be made differentially private by adding Laplace noise
proportional to its sensitivity and 1/ε. (In some cases this is optimal, while
in others more elaborate techniques can give greater utility.)

Theorem 10. Let F be a function with sensitivity ∆F and output in Rn.
Let f be a randomized algorithm with output f(X) = F (X) +Lapn∆F/ε, where
Lapn∆F/ε denotes a vector of n independently chosen values from the Laplace
distribution with parameter c = ∆F/ε. Then f is ε-differentially private.

5.3 Security model

We introduce a model for secure computation (secure function evaluation) in
which the protocol allows differentially private leakage.

Other papers have defined and explored notions of MPC with differentially
private leakage (e.g., [BNO08, SGB18]). However, these works are in the
semi-honest model which is arguably much simpler. In that model it is
possible to simply insist that the adversary’s view is a differentially private
function of the honest parties’ inputs. It is also common to consider pro-
tocols that compute (differentially private) approximations of some natural
function.
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Parameters:

• Functions f1, f2 : ({0, 1}∗)2 → {0, 1}∗

• Class of leakage function pairs L

Behavior:
If no parties are corrupt:

1. Wait for inputs x1 from P1 and x2 from P2

2. Deliver output f1(x1, x2) to P1 and f2(x1, x2) to P2

If any party is corrupt, let Pc denote the corrupt party and Ph denote
the honest party. Then:

1. Wait for input xh from Ph and (leak, Lpre) from Pc, where L con-
tains some pair of the form (Lpre, ·).

2. Give Lpre(xh) to Pc

3. Wait for inputs xc and (leak, Lpost) from Pc, where (Lpre, Lpost) ∈
L.

4. Give Lpost(xh) and fc(x1, x2) to Pc

5. Wait for input (deliver, b) from Pc. If b = 0 deliver output ⊥ to
Ph; otherwise if b = 1 deliver output fh(x1, x2) to Ph.

Figure 5.1: Ideal functionality Fleak,f,L for securely evaluating function f =
(f1, f2) with leakage.

On the other hand, our work is in the malicious adversarial model and we are
interested in exactly computing a natural function, but allowing extra differ-
entially private leakage. We found it most natural to define security using
traditional simulation-based security, but weakening the ideal functionality
to provide additional, explicit leakage on the honest party’s inputs to the
adversary. As we will see, leakage in the malicious model also has the poten-
tial to affect the input independence requirement for secure computation (a
problem which is not present in the semi-honest model).

Figure 5.1 describes an ideal functionality for securely evaluating a function
while also giving some leakage. The adversary’s choice of leakage is con-
strained to some class L of allowable leakage functions (a parameter of the
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functionality). The functionality allows the corrupt party to obtain leakage
on the honest party’s input at two different times: both before and after
choosing its own input. Hence, both the privacy and input independence
guarantees of secure computation are degraded in a differentially-private way.
I.e., a corrupt party cannot make its choice of input significantly depend on
any individual record in the honest party’s set. However, in this model cor-
rectness is preserved in the standard sense.

Definition 11. A protocol π securely realizes f = (f1, f2) with L leakage
if π is a UC-secure protocol for Fleak,f,L (Figure 5.1).

The protocol realizes f with ε-DP leakage if it realizes f with L leakage,
where for every (Lpre, Lpost) ∈ L, the function x 7→ (Lpre(x), Lpost(x)) is
ε-differentially private. (Here we assume some “neighbor” relation for the
possible values of x).

An interesting special case of this model is one where L contains only pairs of
the form (Lpre,⊥) or of the form (⊥, Lpost), where ⊥ is overloaded to denote
the function ⊥(x) = ⊥ for all x. This special case corresponds to the setting
where the corrupt party receives only one phase of leakage. In particular, if
the Lpre leakage is ⊥, then input independence is guaranteed in the standard
way (i.e., not degraded in a differentially private manner).

5.4 PSI Protocol Framework

In this section we describe our PSI protocol framework (i.e., PSI with his-
togram leakage). The framework is based on the PSI protocol of Rindal &
Rosulek [RR17b], which is the fastest known PSI protocol achieving malicious
security.

5.4.1 Overview

We first review the Rindal-Rosulek protocol. At a high level, the protocol
works by having the parties first hash their items into bins (with a random
hash function). Within each bin, they perform a quadratic-cost PSI protocol
on the items assigned to that bin. However, the abstraction boundary is
broken slightly by an optimization that combines together some information
across all of the bins.
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Parameters: two parties denoted as Sender and Receiver. The input
domain {0, 1}σ and output domain {0, 1}` for a private F .

1. [Initialization] Create an initially empty associative array F :
{0, 1}σ → {0, 1}`.

2. [Receiver Encode] Wait for a command (Encode, sid, c) from
the Receiver, and record c. Then:

3. [Adversarial Map Choice] If the sender is corrupt, then send
(RecvInput, sid) to the adversary and wait for a response of the
form (Deliver, sid, Fadv). If the sender is honest, set Fadv = ⊥.
Then:

4. [Receiver Output] If Fadv = ⊥ then choose F [c] uniformly at
random; otherwise set F [c] := Fadv(c), interpreting Fadv as a circuit.
Give (Output, sid, F [c]) to the receiver. The n:

5. [Sender Encode] Stop responding to any requests by the receiver.
But for any number of commands (Encode, sid, c′) from the sender,
do the following:

• If F [c′] doesn’t exist and Fadv = ⊥, choose F [c′] uniformly at
random.

• If F [c′] doesn’t exist and Fadv 6= ⊥, set F [c′] := Fadv(c
′).

• Give (Output, sid, c′, F [c′]) to the sender.

Figure 5.2: The Oblivious Encoding ideal functionality Fencode [OOS17]

Quadratic PSI This step of the protocol uses an oblivious encoding func-
tionality, which can be thought of as an oblivious pseudorandom function
(OPRF) or a variant of random oblivious transfer over an exponentially large
number of values. The functionality chooses a random function which we de-
note as x 7→ JxK. A receiver can learn JxK for a single, chosen value x, while
the sender can compute JxK for any number of values x. Concretely, the
protocol uses the OT extension protocol of Orrù, Orsini & Scholl [OOS17],
which is secure in the random oracle model. It achieves a slight relaxation of
this functionality where a corrupt sender is allowed to choose the mapping
J·K. This variant functionality is described formally in Figure 5.2, and it is
sufficient for use in the PSI protocol.

If Alice has n items {x1, . . . , xn} and Bob has n items {y1, . . . , yn}, they can
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use this oblivious encoding functionality to perform PSI in the following way:

1. For each xj, the parties perform an instance of the oblivious encoding
with Alice acting as receiver, so that Alice learns JxjKBj . We use J·KBj to
refer to the encoding that is known to Bob.

2. Symmetrically, for each yi, the parties perform an oblivious encoding
instance in the other direction, with Bob learning JyiKAi .

3. The parties define n2 “common encodings” of the form:

JvK*i,j
def
= JvKAi ⊕ JvKBj

The idea of the common encodings is that Alice can predict the value of JvK*i,j
if and only if she used v as input to the encoding step involving J·KBj . Bob
can predict the value iff he used v as input to the encoding J·KAi .

The protocol continues with Alice sending the (randomly ordered) set of
encodings:

E = {JxjK*i,j | i, j ∈ [n]}

Bob can check this set for encodings that are known to him (i.e., all encodings
of the form JyiK*i,j). Bob computes the protocol output as:

Z = {yi | ∃j : JyiK*i,j ∈ E}

Suppose the encodings J·K have length λ+2 log2 n bits. Then the probability
of JxjK*i,j = JyiK*i,j for xj 6= yi is bounded by 2−λ. Conditioned on this event
not happening, the protocol is correct. We defer a discussion of this protocol’s
security for later.

Hashing and Dummy Items This basic protocol requires only 2n in-
stances of the oblivious encoding functionality (n in each direction), but
requires Alice to communicate n2 encodings.

A standard approach to reduce the complexity of a PSI protocol (dating back
at least to [FNP04]) is for parties to first choose2 a random hash function
h : {0, 1}∗ → [m] and use this function to assign their items into m bins.
Then the quadratic-cost protocol can be performed on the items within each
bin.

2For security reasons, h should be chosen by a secure coin-tossing protocol.
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As mentioned in Section 5.1.1, it is necessary to hide the number of items
per bin — in the ideal world, it is not possible to infer the number of items
that honest party has that satisfy h(x) = b for a chosen bin b. To obscure
this information, the parties add dummy items to each bin until each bin
has exactly the worst-case number of items (such a bound can be computed
using standard balls-in-bins analysis).

A typical choice of parameters is m = O(n/ log n) bins. In that case, both
the expected and worst case (with overwhelming probability) number of items
per bin is O(log n). Then the overall cost of the protocol is m · O(log2 n) =
O(n log n).

However, further optimization is still possible. Let µ be the (padded) size of
each bin. As currently described, Alice would send µ encodings for each of
her items, including her dummy items! However, it is public information that
overall Alice has only n items and hence only nµ encodings corresponding to
them. Only the distribution of these dummies within the bins is secret. So the
suggestion of [RR17b] is to let Alice gather all nµ non-dummy encodings from
all bins, shuffle them, and send them together. Now the encodings must be
somewhat longer (the probability of a spurious collision in these encodings
has increased), and Bob must lookup candidate encodings in a larger set,
rather than in small bin-specific sets. However, the gain in communication
makes this optimization an overall improvement to the protocol.

5.4.2 Our Generalization and Details

As mentioned in Section 5.1.1, our modification of the Rindal-Rosulek pro-
tocol is to release some differentially private information about the number
of items in each bin. We begin by defining the properties we require:

Definition 12. Let h : {0, 1}∗ → [m] be a hash function. For a set of items
X hashed into m bins by h, the load of bin i is:

Ldh(X, i) = #{x ∈ X | h(x) = i},

The load of all bins can be written as a vector:

Ldh(X) =
(
Ldh(X, 1), . . . , Ldh(X,m)

)
Definition 13. For two vectors u = (u1, . . . , um) and v = (v1, . . . , vm), write

u ≤ v if ui ≤ vi for all i ∈ [m]. Let L̃h be a randomized function. We call L̃
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a load overestimate if for all X

Pr[Ldh(X) ≤ L̃h(X)] is overwhelming,

where the probability is taken over the randomness of L̃ and the choice of h.

One can think of the function L̃h(X) = (µ, . . . , µ) to be the load-overestimate
used in [RR17b], where µ is an upper bound on bin size computed using balls-
in-bins analysis.

Our generalization of Rindal-Rosulek is parameterized by a load overestimate
L̃. Roughly speaking, after choosing the hash function h:

• Alice hashes her items X into bins, computes the load of each bin
(a1, . . . , an) = Ldh(X), and an overestimate (ã1, . . . , ãm) ← L̃h(X).
She adds dummy items to each bin until the load (including dummy
items) equals the overestimate.

• Likewise, Bob hashes his items Y into bins. He can compute an over-
estimate (̃b1, . . . , b̃m)← L̃h(Y ), however [RR17b] security proof / sim-
ulation breaks down in the case where Alice has more items in a bin
than Bob (we discuss this fact in Appendix 5.5). We must therefore

have Bob compute c̃i = max{ãi, b̃i} and add dummy items so that the
load in the bins is (c̃1, . . . , c̃m).3

• Within each bin i, the parties perform the standard quadratic PSI
between ãi and c̃i (≥ ãi) items.

In [RR17b], it is public information that Alice will have nµ total non-dummy
encodings, since each bin contains exactly µ items. In our case, Alice will
have

∑
aic̃i non-dummy encodings. She cannot simply send the non-dummy

encodings as in [RR17b] since the number of these items is indeed sensitive
to her true bin-load. To protect this information, we need a differentially-
private overestimate of this inner product:

Definition 14. We say that randomized function Ĩ is a inner-product
overestimate if for all vectors u = (u1, . . . , um) and v = (v1, . . . , vm),

Pr[〈u, v〉 ≤ Ĩ(u, v)] is overwhelming

3While it would be better for Bob to use b̃1, . . . , b̃m as the load-overestimate, our
experiments show that it only would improve performance by a few percent.
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In our generalization, Alice computes a differentially-private4 inner-product
overestimate ẽ = Ĩ((a1, . . . , am), (c̃1, . . . , c̃m)). She includes the non-dummy
encodings in a set E, adds random values until |E| = ẽ, and finally sends the
(permuted) contents of E to Bob.

The formal details of the protocol are given in Figure 5.3. Unsurprisingly,
the security proof is extremely similar to that of [RR17b]. For the sake of
completeness, we present the self-contained proof in Section 5.5.

Theorem 15. The protocol securely realizes the leaky PSI functionality Fleak,PSI,L,
for leakage L where every (Lpre, Lpost) ∈ L has the form:

Lpre(S) = L̃h(S)

Lpost(S) =

{
Ĩ(Ldh(S), (c̃1, . . . , c̃m)) if Bob corrupt

⊥ if Bob honest

(i.e., for some h, c̃1, . . . , c̃m).

Roughly speaking, the only differences from [RR17b] are that (1) the number
of items per bin is changed to be input-dependent; (2) the number of common
encodings sent by Alice is input-dependent. However, if the simulator is given
these values (e.g., as leakage from the functionality), then its simulation
proceeds just as in [RR17b].

Adversary’s set size. The protocol of Rindal & Rosulek does not strictly
enforce the number of items in the adversary’s set. Roughly speaking, instead
of using dummy items, an adversary can choose to use actual items in their
place. Hence, instead of being limited to using n items, the adversary might
use as many as

∑
i ãi items. This fact is reflected in the ideal functionality

(Figure 2.1), where an honest party provides a set of n items while a corrupt
party can provide a set of n′ > n items for some bound n′. The analysis of
the n′ bound in [RR17b] applies here: briefly, n′ = O(n) with a small hidden
constant factor.

4Specifically, for all second arguments, Ĩ should be a differentially private function of
its first input.
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5.5 Security Proof

In this section we prove the security of the (leaky) PSI protocol (Figure 5.3).
The proof is essentially the same as the one in [RR17b], and is presented
here with many aspects identical to [RR17b]. The modifications have to do
with the leakage handling in the simulator, which is highlighted below.

Proof. We start with the case of a corrupt Bob. The simulator must extract
Bob’s input, and simulate the messages in the protocol. We first describe
the simulator:

The simulator plays the role of the ideal Fencode functionality. The
simulator obtains leakage (ã1, . . . , ãm) ← Lpre(X) = L̃h(X) from
the functionality and simulates this as the message from Alice
in Step 2a. It receives (c̃1, . . . , c̃m) from corrupt Bob in Step 2b.
To extract Bob’s set, the simulator observes all of Bob’s Fencode

messages (Encode, (sid,A, d, p), yd,p) in Step 3b. The simulator
computes Y = {yd,p} and sends it to the ideal FPSI functionality
which responds with the intersection Z = X ∩ Y .

For each z ∈ Z, compute bin index d = h(z) and place z into
a random unused position p ∈ [ãd] in bin BX [z]. For j ∈ [c̃d],
add value JzKAd,p ⊕ JzKBd,j to a set E. Then obtain leakage ẽ ←
Lpost(X) = Ĩ(Ldh(X), (c̃1, . . . , c̃m)) from the functionality and
pad E with random values until it has size ẽ. The simulator
then sends E (randomly permuted) to the adversary.

To show that this is a valid simulation, we consider a series of hybrids.

Hybrid 0 The first hybrid is the real interaction where Alice honestly uses
her input X, and Fencode is implemented honestly.

Observe Bob’s commands to Fencode of the form (Encode, (sid,A, d, p), yd,p)
in Step 3b. Based on these, we can define (but not use) the set Ỹ = {yd,p}.

Hybrid 1 In this hybrid, we modify Alice to send dummy values to Fencode in
Step 2a (rather than her actual inputs). The hybrid is indistinguishable
by the properties of Fencode.

Hybrid 2 In Step 4a, for each x ∈ X the simulated Alice sends common
encodings of the form JxKAd,j⊕ JxKBd,p, for some position p, where d = h(x).

Suppose x 6∈ Ỹ . By construction of Ỹ , Bob never obtained an encoding
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of the form JxKAd,j. This encoding is therefore distributed independent of
everything else in the simulation. In particular, the common encoding of
the form JxKAd,j ⊕ JxKBd,p, which is added to the set E, is uniform.

We therefore modify the hybrid in the following way. In Step 4a, simu-
lated Alice generates encodings for the set E only for items in the inter-
section Z = X ∩ Ỹ , instead of X as before. She still pads the set E to
contain ẽ items, as before. By the above argument, the adversary’s view
is identically distributed in this modified hybrid.

We can see that the final hybrid uses the contents X only in the following
way: It uses the bin-load overestimate L̃h(X); it uses the result of X ∩ Ỹ
for some set Ỹ that it computes; it uses the inner-product overestimate
Ĩ(Ldh(X), (c̃1, . . . , c̃m)). Hence, this hybrid corresponds to our final simu-
lator, where we obtain leakage from the functionality, send Ỹ to the ideal
FPSI functionality and receive X ∩ Ỹ in response.

We now turn our attention to a corrupt Alice. In this case the simulator
must simply extract Alice’s effective input (Alice receives no output from
FPSI). The simulator is defined as follows:

The simulator plays the role of the ideal Fencode functionality. The
simulator obtains (ã1, . . . , ãm) from the adversary in Step 2a and

obtains leakage (̃b1, . . . , b̃m) ← Lpre(Y ) = L̃h(Y ) from the func-
tionality. It computes (c̃1, . . . , c̃m) as in the protocol and simu-
lates this as the message from Bob in Step 2b. In Step 3a, the sim-
ulator intercepts Alice’s commands of the form (Encode, (sid,B, d, p), xd,p).
The simulator computes a set of candidates X̃ = {xd,p} and for
x ∈ X̃ let c(x) denote the multiplicity of x in its bin; i.e., the
number of values p for which x = xh(x),p.

The simulator computes a hash table B as follows. For x ∈ X̃
the simulator places c(x) copies of x in bin B[h(x)]. Note that
we place

∑
x:h(x)=d c(x) items in bin index d. By construction∑

x:h(x)=d c(x) ≤ ãd ≤ c̃d, and hence simulated Bob has enough
space in bin d. Let the items in each bin be randomly permuted,
and for each x, let p(x) denote the set of positions of x in its bin.

Let E denote the set of values sent by Alice in Step 4a. The
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simulator computes

X∗ =
{
x ∈ X̃ | ∃j ∈ [c̃h(x)], p ∈ p(x) :

JxKAh(x),j ⊕ JxKBh(x),p ∈ E
} (5.3)

where the encodings are obtained by playing the role of Fencode.
The simulator sends X∗ to the FPSI functionality.

Hybrid 0 The first hybrid is the real interaction where Bob honestly uses
his input X, and Fencode is implemented honestly.

Observe Alice’s commands to Fencode of the form (Encode, (sid,B, d, p), xd,p)
in Step 3a. Based on these, define X̃ = {xd,p}.

Hybrid 1 In this hybrid, we modify Bob to send dummy inputs to Fencode

in Step 2b (rather than his actual items). The hybrid is indistinguishable
by the properties of Fencode.

Hybrid 2 Note that in this hybrid, Bob’s output is computed as specified
in Step 4c. We then modify the interaction so that Bob removes all
output items which are not in X̃. The hybrids differ only in the event
that simulated Bob computes an output in Step 4c that includes an item
y 6∈ X̃. This happens only if JyKAd,j ⊕ JyKBd,p ∈ E, where Bob places y in

position p of bin d = h(y). Since y 6∈ X̃, however, the encoding JyKBd,p
is distributed uniformly. The length of encodings is chosen so that the
overall probability of this event (across all choices of y 6∈ X̃) is at most
2−λ. Hence the modification is indistinguishable.

Hybrid 3 We modify the hybrid in the following way. When building the
hash table, the simulated Bob uses X̃ instead of his actual input Y . Each
x ∈ X̃ is inserted with multiplicity c(x). Then he computes the protocol
output as specified in Step 4c; call it X∗. This is not what the simulator
gives as output — rather, it gives X∗ ∩ Y as output instead.

The hashing process is different only in the fact that items of Y \ X̃ are
excluded and replaced in the hash table with items of X̃ \ Y (i.e., items
in Y ∩ X̃ are treated exactly the same way). Note that the definition
of X̃ ensures that the hash table can hold all of these items without
overflowing. Also, this change is local to Step 4c, where the only thing
that happens is Bob computing his output. However, by the restriction
added in Hybrid 2 , items in Y \X̃ can never be included in X∗. Similarly,
by the step added in this hybrid, items in X̃ \ Y can never be included
in the simulator’s output. So this change has no effect on the adversary’s
view (which includes this final output).
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The final hybrid works as follows. A simulator interacts with the adversary
and at some point computes a set X∗, without the use of Y . Then the simu-
lated Bob’s output is computed as X∗∩Y . Hence, this hybrid corresponds to
our final simulator, where we send X∗ to the ideal FPSI functionality, which
sends output X∗ ∩ Y to ideal Bob.

5.6 Choosing Appropriate Leakage

In this section we try to private load overestimates and inner-product over-
estimates that will allow for faster protocol execution. We begin with differ-
ential privacy. We then consider distributional differential privacy.

5.6.1 Differentially private leakage

Let h be the hash function that is chosen in the malicious protocol. Alice
and Bob both hash each element of their input using h and divide them into
m bins. In the protocol of Rindal and Rosulek, an upper bound is chosen
such that with overwhelming probability no bin will exceed that bound, and
bins are padded with dummy values up to that upper bound. (This is needed
because the true bin sizes leak information about the input.) As a result, in
practice most elements being compared are dummy items. Our goal here is
to find tighter bounds on the bin sizes so that fewer dummy items can be
used.

Let a and b be vectors of bin counts, with ai being the number of Alice’s input
items that hashed to bin i (and analogously with bi and Bob’s input). These
vectors a and b are essentially histograms, and we can release differentially
private estimates of histograms using known techniques. Histograms have
a sensitivity of 1, so by Theorem 10 we can add noise from Lap1/ε1 to each
entry and achieve ε1-differential privacy.

Now, we cannot simply set ãi = ai+Lap1/ε1 because the Laplace distribution
includes negative numbers and ãi would not be an overestimate. We could
instead set ãi = ai + Lap1/ε1 + z for some constant z chosen such that the
probability that Lap1/ε1 < −z is negligible. This trick has been used before,
for example by Kellaris et al. (in a different setting) [KKNO17].

Unfortunately, this overestimate mechanism gives only marginal efficiency
improvements. In practice, most bins are reported to have the worst-case
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maximum load (i.e., the same as in fully-secure [RR17b]) under this mecha-
nism. We refine this mechanism by taking into account not only the differen-
tially private estimate of bin size, but also the prior knowledge Alice and Bob
have. In particular, they know that the protocol uses an ideal hash function
that places each input into each bin with equal probability. As a result, for
each input there is an (independent) 1/m chance that that input ends up in
bin i, meaning that the size of each bin follows a binomial distribution. Let
Binomn,p(x) be the probability that a binomial distribution with n objects
and a success probability p for each object takes value x. For now we omit
subscripts, since they are always n and p = 1/m.

We want Alice and Bob to use the differentially private bin size estimates not
to replace their binomial distribution priors, but rather to update them. This
is a simple Bayes’ Theorem calculation. Let âi and b̂i be the differentially
private bin estimate (i.e., âi = ai + Lap1/ε1). Let Post(x|t) be the probability

that ai = x (or bi = x) given that âi = t (or b̂i = t). We can compute
Post(x|t) as follows:

Post(x|t) = Pr[ai = x|âi = t]

= Pr[âi=t|ai=x] Pr[ai=x]∑
y(Pr[âi=x|ai=y] Pr[ai=y])

=
Lap1/ε1 (t−x)Binom(x)∑
y(Lap1/ε1 (x−y)Binom(y))

This expression is hard to handle analytically, but it can easily be computed.
Experimental measurements of computational efficiency of PSI protocols gen-
erally have n in the range of 212 to 224, and the optimal value of m in this
range is generally between n/4 and n/10. In this range, Binom(y) becomes
negligible when y > 100, so the sum in the denominator of the above expres-
sion can be computed quite easily.5 As a result, it is not hard to compute,
for a given âi and a given potential value of ãi, what the probability is that
ai > ãi.

Given a desired failure probability of 2−λ, we choose ãi such that Pr[ai >
ãi] < 2−λ/m, meaning that a union bound implies that with all but 2−λ

probability we have ai ≤ ãi for all i. The same is done for b̃i. Note that
because ãi is computed from âi with no additional access to the private data,
the secure post-processing property of differential privacy guarantees that it
is also a private output (and therefore acceptable to leak).

5As we discuss later, the modifications we make actually make the optimal number of
bins smaller, but not by enough to make this computation difficult.

104



Histogram estimate âi Resulting bound ãi
-2 21
2 21
4 22
6 23
10 25
14 28
30 38

Table 5.1: Examples of inferred bounds given particular estimates of bin size.
For these calculations, n = 220, m = n/4, and ε = 1. Because the average
bin size is 4, the most common estimate is also 4, so most bins are roughly
size 22, compared to 31 in RR17.

An example of the results of this calculation is shown in Figure 5.1. We note
that the estimate does allow for a significantly smaller bound. Interestingly,
the properties of the Laplace distribution result in negative estimates for bin
size all being equivalent, with smaller values not resulting in lower bounds on
the size of the bin. (In contrast, very large estimates do result in very large
bounds, even higher than in the no-leakage protocol. However, estimates that
large are negligibly likely to occur.) The table shows only integer values, but
of course the âi estimate can be any real number. In practice we compute a
table with values at some chosen density and then the protocol rounds the
estimate up to the closest value where the bound has been precomputed.

We must also upper bound the number of masks that Alice and Bob must
share. The ideal minimal value here is I =

∑
i aib̃i, but this cannot be

released exactly. We instead again release a differentially private estimate
(this time with parameter ε2) and use it to compute an upper bound. This

estimate is computed and released by Alice, taking b̃i as a fixed constant.
So the sensitivity of d is ∆I = maxi{b̃i}. With this, Alice can release the
private estimate Î = I + Lap∆d/ε2 .

As before, Î could easily be too low. However, this time instead of doing
Bayesian inference we use the more simple technique discussed and ruled out
for the earlier bound. We simply set the upper bound Ĩ equal to Î+z, for an
appropriate constant z. As long as the noise from Lap∆I/ε2 is less than −z,

Ĩ is a valid upper bound. The cumulative density function at z of Lap∆I/ε2

(for negative z) is 0.5e‖zε2/∆I‖, so we simply choose z such that this value is
2−λ.

This allows a fully secure protocol with leakage that is ε-differentially private
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with ε = ε1 + ε2 (due to the composition theorem discussed earlier). The
total allowed privacy budget ε can be divided between the two stages so as
to maximize efficiency. It seems clear theoretically that one would want to
allocate the vast majority of the privacy budget to the ã and b̃ queries, letting
ε2 be quite small in comparison to ε1, but the precise values we use are chosen
through experimental optimization.

5.6.2 Distributional differential privacy

We feel it is worth considering the release of even more precise information
about the histogram of values. Say the receiver was to take the histogram
of hash values and announce for each bin whether or not it was larger than
the average bin size n/m. This would allow removing most of the dummies
in roughly half of the bins, but it is a deterministic query so can’t possibly
be differentially private (for any ε). For example, if Alice had sufficiently
specific side information about the receiver’s input to know that there were
at least n/m items in one bin, but the receiver said there were no more than
this, then Alice could rule out all other values that mapped to that bin.
But that would require knowing with significant probability several of the
receiver’s input values, and not just any values — specifically values that
mapped to the same bin under a random hash function chosen at runtime.
There are certainly settings where one party might already know most of the
other party’s input, but there are also settings where such side information
is implausible. Generally speaking, attacks that take advantage of this kind
of leakage seem unlikely.

If one is working in a use case where this sort of side information is unlikely,
then we can use more nuanced notions of privacy to give better efficiency. In
particular, we consider here distributional differential privacy (DDP), intro-
duced by Bassily et al. [BGKS13].6 Rather than considering the worst case
over all possible databases, DDP treats the database itself as a random vari-
able, modeling adversarial uncertainty. This means that a given proof that
a mechanism is DDP only holds for a particular set of possible adversarial
knowledge.

6DDP is a special case of coupled-worlds privacy. Coupled-worlds privacy has addi-
tional parameters and allows for more flexibility in choosing the most relevant privacy
definition for a particular use case. Here we use DDP because it is the most straightfor-
ward instantiation, the one we feel is most well-motivated here, and the one that is most
analogous to differential privacy.
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Definition 16. Say ∆ is a set of distributions for (X,Z), where X is the
database and Z is the adversary’s auxiliary information about the database.
A mechanism f has (ε, δ,∆)-distributional differential privacy if for all dis-
tributions D ∈ ∆, all i, all (xi, z) in the support of (X,Z), and all possible
sets of output Q,

Pr[f(X) ∈ Q | Xi = xi, Z = z]

≤ eε Pr[f(X−i) ∈ Q | Xi = xi, Z = z] + δ

and

Pr[f(X−i) ∈ Q | Xi = xi, Z = z]

≤ eε Pr[f(X) ∈ Q | Xi = xi, Z = z] + δ,

where Xi is the ith item of the database and X−i is the database with that
row removed.7

Inuitively, the definition guarantees to an individual that, given the adver-
sary’s present knowledge/uncertainty, the mechanism will output roughly the
same distribution of values whether or not that individual’s data is included
in the database. As a result, the inclusion of this data does not allow the ad-
versary is unable to learn anything (except a small amount parameterized by
ε) about the value. The definition is less stringent than differential privacy,
more narrowly tailored to require the minimal thing necessary to maintain
privacy. But this is not without cost. If the adversary knows more about the
database than ∆ allows, then there is no guarantee of privacy. (Fortunately,
if the adversary knows less there is no problem.) Additionally, DDP does
not have automatic composition in the way that differential privacy does,
so it cannot safely be combined with other private data releases without a
case-by-case analysis. The nuances of privacy definitions are quite subtle,
and we refer the reader to [BGKS13] for a more detailed discussion.

5.6.3 PSI with DDP leakage

We begin with the most favorable possible setting. We assume (for now) that
Alice knows nothing at all about the hashes of the receiver’s inputs.8 Note

7The original DDP definition uses a simulator Sim(X−i) in place of F (X−i). In all
cases here we will choose Sim = F , so we present a simplified definition.

8Formally, ∆ consists of all distributions on (X,Z) such that conditioned on any value
z in the support of Z, the distribution on X is such that with high probability of the
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that this does not mean that the receiver’s inputs are completely unknown,
just that they have sufficient uncertainty that their hashes under the random
hashing function appear random. Note also that this is an assumption we
can make regarding only Alice’s knowledge of Bob’s input, because the PSI
protocol itself gives output to Bob, which is auxiliary information about
Alice’s input that violates this assumption.

Our private mechanism is simple. We choose a given threshhold t and then
for each bin i release (with complete accuracy) whether Ldh(X, i) < t or
Ldh(X, i) ≥ t. This means that for all small bins, dummies can be added
only up to a size of t. Formally, the information that will be leaked in this
setting is q(X) = S, where S is the set of all indices of bins with load t or
greater.

We now wish to compute the privacy parameters ε and δ for this mechanism.
We first want to fix a given output S and consider the following ratio:

ρ =
Pr[q(X) = S | h(Xi) = j]

Pr[q(X−i) = S | h(Xi) = j]
(5.4)

We note first of all that the calculation will be the same for all choices of i
and j, so we assume without loss of generality that i = n and j = m. We also
leave the conditioning implicit, since from this point forward all probabilities
are conditioned on h(Xn) = m. We now want to examine the same ratio,
with the following simplified notation:

ρ =
Pr[q(X) = S]

Pr[q(X−n) = S]
(5.5)

We first consider the case where m ∈ S, i.e. the case where ρ ≥ 1. Let
S−m = S \ {m} and let Cm be a random variable equal to the size of bin m.
We can then rewrite the numerator.

Pr[q(X) = S] = Pr[q(X−n) = S] (5.6)

+ Pr[q(X−n) = S−m ∧ Cm = t− 1]

= Pr[q(X−n) = S]

+ Pr[q(X−n) = S−m | Cm = t− 1] Pr[Cm = t− 1]

We now define a random variable Hn,m equal to the set of indices of bins
of size t or greater when n balls are thrown into m bins. For example,

choice of h, each h(Xi) is a uniform, independent value.
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q(X−n) = Hn−1,m and once we condition on Cm = t − 1, we have q(X−n) =
Hn−t,m−1. (To see this, note that it’s clear when we condition on a particular
set of t − 1 values ending up in bin m, and the overall probability is the
average of the value when conditioned on each specific set.) We also note
that Pr[Cm = t− 1] = Binomn−1,1/m(t− 1). As a result, we have

Pr[q(X) = S] = Pr[Hn−1,m = S]

+ Pr[Hn−t,m−1 = S−m] · Binomn−1,1/m(t− 1).

Note that the denominator in Equation 5.5 can also be written this way,
with Pr[q(X−n) = S] = Pr[Hn−1,m = S]. Putting these two simplifications
together, we get

ρ = 1 + Binomn−1,1/m(t− 1)
Pr[Hn−t,m−1 = S−m]

Pr[Hn−1,m = S]
. (5.7)

We then note that all sets S of a given size are equally likely values of H
(for any choice of subscripts), so setting s = |S| we can rewrite the fraction
in the above equation as

Pr[Hn−t,m−1 = S−m]

Pr[Hn−1,m = S]
=

Pr[|Hn−t,m−1| = s− 1]/
(
m−1
s−1

)
Pr[|Hn−1,m| = s]/

(
m−1
s

) .

The binomial expressions then simplify:(
m−1
s

)(
m−1
s−1

) =
(m− 1)!/[s!(m− s− 1)!]

(m− 1)!/[(s− 1)!(m− s)!]

=
(s− 1)!(m− s)!
s!(m− s− 1)!

= (m− s)/s

That leaves us with the following expression for the ratio ρ:

ρ = 1 + Binomn−1,1/m(t− 1) · m− s
s
· Pr[|Hn−t,m−1| = s− 1]

Pr[|Hn−1,m| = s]

We must then also consider the case where m 6∈ S and ρ < 1. The analysis of
the denominator is unchanged, but the numerator must be handled separately
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in this case. Luckily it proceeds quite similarly. We have

Pr[q(X) = S] = Pr[q(X−n) = S]

− Pr[q(X−n) = S ∧ Cm = t− 1].

This is almost the same as in Equation 5.6, except that the addition has
changed to subtraction and in the second term we have S instead of S−m.
Doing the same manipulation gives us

ρ = 1− Binomn−1,1/m(t− 1)
Pr[Hn−t,m−1 = S]

Pr[Hn−1,m = S]
. (5.8)

As before we use the symmetry of Pr[Hn−t,m−1 = S] across all sets S of the
same size. Again using |S| = s we have

Pr[Hn−t,m−1 = S]

Pr[Hn−1,m = S]
=

Pr[|Hn−t,m−1| = s]/
(
m−1
s

)
Pr[|Hn−1| = s]/

(
m−1
s

) .

Unlike in the previous case, these binomial coefficients cancel and we are left
with

ρ = 1− Binomn−1,1/m(t− 1) · Pr[|Hn−t,m−1| = s]

Pr[|Hn−1,m| = s]
.

Estimating concrete parameters If we knew how to compute an exact
probability distribution for |Hn,m| we would now be finished. The distribution
of |Hn,m| approximates a normal distribution. The value of ρ is worst when s
is far from its expected value, so we could simply define an interval [α, β] and
compute the values of ρ with s = α and s = β and set ε = max | ln(ρ)|. That
would bound the ratio for all values in [α, β] and we could then compute the
probability that s 6∈ [α, β] and set δ to that value. By adjusting α and β we
could control a tradeoff between ε and δ.

Unfortunately we cannot find an efficiently computable closed-form expres-
sion for the distribution of |Hn,m|, and the normal approximation, while
pretty good, is unreliable for very precise estimates of the extreme tails
needed for δ calculations. So we instead resort to experimental estimation
of these values. We run a simulation of throwing n − t (resp. n − 1) balls
into m− 1 (resp. m) bins many times, each time noting the number of bins
ending up with at least t balls.

Concretely, computational limitations meant we could only run a large sim-
ulation for a single choice of parameters, and not for the largest values of n.
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We choose n = 216, m = n/10 = 6553, and t = 13 (meaning that each bucket
is said to be either in [0, 12] or [12,∞)). We were able to run a simulation
with 20 million data points. On average 1366 bins will be over the threshold,
and our data gave us confidence to say that by choosing [α, β] = [1257, 1473]
we achieve delta of approximately 1/500, 000. In principle ε should be worst
near the extreme tails, but we found that as we moved to the extreme tails
we hit a point where our data was too sparse to make accurate estimates
before we hit a point where ε was increasing. In the entire range where we
have sufficient data, variation in ε is minimal and the maximum value it takes
is 0.33. This is a lower value that we were using in the differentially private
protocol, so we should ideally accept a worse ε value in exchange for an even
better δ value, but our data is insufficient to quantify the tradeoff beyond
this point.

We note also that while simulations with larger n will take even more com-
putational power, it is clear that the privacy parameters will only improve,
as the distribution of |Hn,m| is still approximately normal but now with a
larger standard deviation and therefore a better ratio between adjacent val-
ues. We therefore consider the protocol with m = n/10 and t = 13 to be
(0.33, 5 × 10−5)-DDP in the n = 220 case as well. In reality, the parameters
are probably significantly better than this.

Because we saw no sign of increasing ε in the range of values we could esti-
mate, we believe these estimates are in fact much worse than what is really
achieved. A successful theoretical analysis of these parameters, rather than
relying on empirical estimation, would be a highly desirable result of future
work.

Relaxing the assumption on adversarial knowledge When the ad-
versary does in fact know some information about some of the values in the
input set, the DDP privacy of the mechanism is not completely compromised.
Knowing some values outside the bin in question is similar in nature to de-
creasing n by that amount. Knowing values in the same bin as Xi (and i
is arbitrary) is similar to reducing t by that amount. That means privacy
will degrade rapidly when the adversary knows (or has significant certainty
about) several values that would all hash to the same bin under the random
function h. The chances of this are low unless the adversary knows a large
amount about the input set. However, while we are confident of these gen-
eral statements, quantifying the privacy guarantees with a specific choice of
adversarily knowledge would (given the techniques discussed here) require
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n Protocol ε
LAN Setting WAN Setting

n/m
Total Online Comm.

n/m
Total Online Comm.

Time (ms) Time (ms) (MB) Time (ms) Time (ms) (MB)

212
This

4 14 216 73 2.2 14 1129 622 2.24
2 12 217 73 2.6 16 1196 685 2.54
1 12 216 73 3.0 16 1274 768 2.95

0.5 12 214 72 3.3 14 1319 825 3.28
RR17 (0) 4 254 93 4.4 10 1548 950 3.54

216
This

4 12 735 590 36.1 14 7114 6604 35.7
2 12 811 663 42.4 14 8192 7682 41.82
1 12 905 762 49.5 14 9425 8930 48.79

0.5 10 959 817 56.4 12 10620 10109 55.25
RR17 (0) 4 1318 1005 69.1 10 10651 9932 54.04

220
This

4 12 10018 9855 619.0 12 109900 109375 619.08
2 12 10735 10574 728.8 14 128206 127692 720.54
1 12 12995 12833 853.8 14 150451 149932 846.53

0.5 10 13560 13398 971.2 12 167438 166914 957.38
RR17 (0) 4 18478 16295 1302.1 10 191709 189792 1071.65

Table 5.2: The effect of different differential privacy parameters on our pro-
tocol performance, compared to the baseline RR17 protocol which has no
leakage.

re-running the simulation in a slightly more complex way. Finding a clear
and simple characterization of how privacy degrades as adversarily knowledge
increases remains an open question.

5.7 Experiments

To now explore the concrete tradeoff between differentially private leakage
and performance (computation and communication) in the Rindal-Rosulek
PSI protocol. We will see that our protocol offers a smooth trade-off, with
performance improving by as much as 50% for some leakage settings.

The baseline for comparison was the Rindal-Rosulek protocol as-is. We ob-
tained the implementation from the authors and modified it to support our
variations on reported bin sizes and number of encodings in the final message,
as outlined in Section 5.4. One can think of the unmodified Rindal-Rosulek
protocol as the special case of our generalization, with ε = 0 (i.e., no leakage
at all).

With ran all protocols on a single server similar to that used by [RR17b]
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with the difference that we only consider single-threaded performance. We
stress that the only difference in experiments is the bin size and number of
final-round encodings, resulting from our differentially private leakage. The
benchmark machine has 256GB of RAM and 36 physical cores at 2.6 GHz
where a single core is assigned to each party. Two network settings were
considered, 1) the LAN setting where latency is less than a millisecond and
throughput is 10Gbps of which about 1% was actually utilized. 2) the WAN
setting with a 80ms round trip latency and 40Mbps throughput.

Differential Privacy In Figure 5.2 we report the performance of our pro-
tocol for differential privacy parameters of ε ∈ {0.5, 1, 2, 4}. However, recall
that Alice produces two pieces of differentially-private leakage: the overesti-
mate of the bin loads, and the overestimate of the number of encodings (inner
product). Of the total ε privacy budget, some must be allocated to each of
these two mechanisms. We found it advantageous to allocate the lion’s share
of the privacy budget to the histogram mechanism (since there are a huge
number of common encodings, and differential privacy of the inner-product
overestimate only contributes an additive number of extra encodings). The
row in the table corresponding to privacy budget ε corresponds to 0.99ε-DP
load overestimate and 0.01ε-DP inner-product overestimate for Alice. The
receiver uses the entire privacy budget for the bin-load overestimate.

Compared to the fully-secure case of no leakage, our protocol can be up to
46% faster while providing a similar reduction in communication. Specif-
ically, for larger set sizes such as 220 and an ε = 4, our protocol requires
619MB of communication compared to 1302MB of [RR17b]. This almost
directly mirrors the reduction in average reported bin sizes, i.e. the effective
bins in our protocol with ε = 4 are approximately 43% smaller than that
of [RR17b]. For a more conservative ε = 1, we obverse that our protocol
achieves a middle ground between ε = 4 and [RR17b], requiring 846MB of
communication (an improvement of 35%). For the most conservative ε = 0.5,
we require only 971MB, which still represents an improvement of 26%.

The main parameters that effects performance, apart from ε, is the expected
bin size n/m. This parameter controls the relative number of dummy items
that occupy each bin. As this value increases, fewer dummy items are re-
quired, reducing the number of calls to the encoding functionality. However,
this inversely increases the number of common encoding that are sent at
the end of the protocol. As such, these trade-offs must be balanced. Our
protocol receives additional benefits from larger expected bin sizes due to
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differential privacy allowing fewer dummy items per bin. For instance, in the
LAN setting where communication has minimal impact, [RR17b] found that
n/m = 4 minimized total latency, while in our setting the best choice for
n/m was between 10 and 16. Despite this increase, the number of common
encodings sent in our protocols is decreased due to the differentially private
leakage.

We see a similar trend in the WAN setting where communication domi-
nates the computational overhead. Here the differentially private leakage
allows even larger bin sizes while not significantly increasing the number of
common encodings that are sent. This directly result in the difference in
communication overhead that is observed.

Distributional Differential Privacy We also explored allowing DDP
leakage, as explained in Section 5.6.3. In this setting, Alice can set a thresh-
old t, and for each bin announce whether it contains t or more items. Then
each bin is treated as if it has either t − 1 items or the worst-case number
of items (i.e., whatever the fully-secure protocol would do). Recall that this
mechanism can only be used by Alice, since the protocol’s output is side in-
formation about the private inputs that interferes with the privacy analysis.

Due to the difficulty in obtaining concrete quantitative bounds on the privacy
level, we consider only one privacy setting for the DDP case. Specifically, for
n ∈ {216, 220} items, and m = n/10 bins, we let the sender announce whether
each bin has less than t = 13 items. Following the analysis in Section 5.6.3, we
conservatively estimate that this mechanism provides (ε = 0.33, δ = 0.00005)-
DDP.

The performance of the DDP mechanism is reported in Figure 5.3. We ob-
serve that this result in decreased communication/running time in all cases
except when compared to our standard DP protocol with ε = 4. For in-
stance, with n = 220 and a ε = 0.33 our DDP protocol requires 830MB of
communication compared to 957MB of our DP protocol (with a larger ep-
silon) and 1072MB for [RR17b]. This further decrease in communication is
of particular note for the WAN setting where communication is the main
bottleneck. However, even in the LAN setting we observe a considerable
decrease in running time.
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n Protocol ε
LAN Setting WAN Setting

Total Online Total Online Comm.
Time (ms) Time (ms) Time (ms) Time (ms) (MB)

216
This

4 755 590 7808 7294 37.36
2 769 631 8107 7589 40.87
1 834 682 8774 8262 44.65

0.33 932 781 9305 8796 47.64
RR17 (0) 1318 1005 10651 9932 54.04

220
This

4 8088 7925 115103 114580 646.61
2 10074 9918 128277 127754 707.13
1 10256 10096 133911 132153 775.32

0.33 10428 10270 138327 137143 829.61
RR17 (0) 18478 16295 191709 189792 1071.65

Table 5.3: The effect of different distributional differential privacy parameters
on our protocol performance, compared to the baseline RR17 protocol which
has no leakage. All of our protocol executions have expected bin load of
n/m = 10 and threshold t = 13.

5.8 Future Work

Looking more closely at our protocol, the differentially private leakage is on a
random histogram — i.e., a random function applied to the private input
set. Indeed, the nature of this leakage motivates the choice of distributional
DP — rather than arguing that an attacker has limited information about
some of the private items, it is enough to say that the attacker’s auxiliary
information about the items is sufficient limited as to make most of the hashes
look random.

An interesting future direction is to extend differential privacy definitions
and mechanisms to give better accuracy in such a setting — i.e., where
we are trying to sanitize information that is already somewhat “random
information” about the private inputs.

The most challenging part of our analysis is obtaining good concrete bounds
for the DDP privacy analysis. We obtain estimates using intensive compu-
tations, but analytical bounds would be more convenient.

There is also an issue that the DDP mechanism can only be applied to one
party’s histogram. This stems from the fact that DDP does not automatically
compose with auxiliary information — yet, the PSI output itself will become
auxiliary information but is not known at the time that DDP parameters
are chosen. A better understanding of this composition problem would be
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helpful, since our DDP mechanism gives significantly better performance.
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Parameters: X is Alice’s input, Y is Bob’s input, where X,Y ⊆ {0, 1}σ. m is
the number of bins. The protocol uses instances of Fencode with input length
σ, and output length λ + 2 log(nµ), where λ is the security parameter and µ
is an upper bound on the number of items in a bin.
Finally, a load-overestimate function L̃ and an inner-product overestimate
function Ĩ.

1. [Parameters] Parties agree on a random hash function h : {0, 1}σ →
[m] using a coin tossing protocol.

2. [Hashing]

(a) For x ∈ X, Alice adds x to bin BX [h(x)]. She computes load
overestimate (ã1, . . . , ãm) ← L̃h(X) and announces this value to
Bob. She adds dummy items to the bins so that each bin i has
exactly ãi items (she aborts in the event that there are already
more than ãi items in bin i). The items in each bin BX [i] are
randomly permuted.

(b) For y ∈ Y , Bob adds y to bin BY [h(y)]. He computes an
overestimate (̃b1, . . . , b̃m) ← L̃h(X) and computes (c̃1, . . . , c̃m) =
(max{ã1, b̃1}, . . . ,max{ãm, b̃m}) and announces it to Alice. He
adds dummy items until each bin i contains exactly c̃i items.

3. [Encoding] For bin index d ∈ [m]:

(a) For p ∈ [ãd], let x be the pth item BX [d]. Al-
ice sends (Encode, (sid,B, d, p), x) to the Fencode functionality
which responds with (Output, (sid,B, d, p), JxKBd,p). Bob receives
(Output, (sid,B, d, p)) from Fencode.

(b) For p ∈ [c̃d], let y be the pth item BY [d]. Bob sends
(Encode, (sid,A, d, p), y) to the Fencode functionality which
responds with (Output, (sid,A, d, p), JyKAd,p). Alice receives
(Output, (sid,A, d, p)) from Fencode.

4. [Output]

(a) [Alice’s Common Mask] For each x ∈ X, in random order,
let d, p be the bin index and position that x was placed in dur-
ing Step 2a. For j ∈ [c̃d], Alice sends (Encode, (sid,A, d, j), x)
to Fencode and receives (Output, (sid,A, d, j), JxKAd,j) in response.

Alice adds JxKAd,j ⊕ JxKBd,p to a set E.

(b) Now E contains Ldh(X) · (c̃1, . . . , c̃m) items. Alice computes inner-
product overestimate ẽ ← Ĩ(Ldh(X), (c̃1, . . . , c̃m)) and adds ran-
domly chosen values to E until |E| = ẽ. She sends E (randomly
permuted) to Bob.

(c) [Bob’s Common Mask] Similarly, for y ∈ Y , let d, p be the bin
index and position that y was placed in during Step 2b. For j ∈
[ãd], Bob sends (Encode, (sid,B, d, j), y) to Fencode and receives
(Output, (sid,B, d, j), JyKBd,j) in response. Bob outputs{

y ∈ Y
∣∣∣ ∃j : JyKAd,p ⊕ JyKBd,j ∈ E

}
Figure 5.3: Our malicious-secure PSI protocol (with leakage).
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Chapter 6

PSI From Fully Homomorphic
Encryption

Fast Private Set Intersection from Homomorphic Encryption by Hao Chen,
Kim Laine & Peter Rindal, in CCS [CLR17]

6.1 Introduction

Over the last few years, PSI has become truly practical for a variety of
applications due to a long list of publications, e.g. [PSZ14, PSSZ15, PSZ18,
KKRT16, OOS17, RR16, Lam16, BFT16, DCW13]. The most efficient semi-
honest protocols have been proposed by Pinkas et al. [PSZ18] and Kolesnikov
et al. [KKRT16]. While these protocols are extremely fast, their communica-
tion complexity is linear in the sizes of both sets. When one set is significantly
smaller than the other, the communication overhead becomes considerable
compared to the non-private solution, which has communication linear in the
size of the smaller set.

6.1.1 Chapter Contributions

As our discussion has shown, all of the prior PSI protocols require both
parties to encode and send data over the network that is proportional to
their entire sets. However, the trivial insecure solution only requires the
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smaller set to be sent. We address this gap by constructing the first secure
and practical PSI protocol with low communication overhead based on a
leveled fully homomorphic encryption scheme.

Our basic protocol requires communication linear in the smaller set, achieving
optimal communication that is on par with the naive solution. We then
combine an array of optimizations to significantly reduce communication
size, computational cost, and the depth of the homomorphic circuit, while
only adding a logarithmic overhead to the communication. In summary, we

• Propose a basic PSI protocol based on fully homomorphic encryption;
• Combine various optimizations to vastly reduce the computational and

communication cost;
• Use fine-tuned fully homomorphic encryption parameters for the homo-

morphic computation to avoid the costly bootstrapping operation [Gen09,
GHS12b], and to achieve good performance;
• Develop a prototype implementation in C++ and demonstrate a 38–

115× reduction in communication over previous state-of-the-art proto-
cols.

In Section 6.1.2 we review the setups and tools we use to build the protocol:
the PSI setup and its definition of security, and preliminaries on (leveled) fully
homomorphic encryption. In Section 6.2 we propose our basic strawman PSI
protocol. Then, in Section 6.3, we apply optimizations to vastly improve
the strawman protocol and make it practical. The formal description of the
optimized protocol, along with a security proof, is presented in Section 6.4.
In Section 6.5 we provide a performance analysis of our implementation, and
compare our performance results to [PSZ18] and [KKRT16].

6.1.2 Notations

Throughout this chapter, we will use the notation:

• X, Y ⊆ {0, 1}σ are Alice’s and Bob’s sets, each of size Nx, Ny;
• m denotes the size of a hash table, and d denotes the number of items

to be inserted into a hash table;
• n, q and t denote the encryption parameters described in Section 2.1.4;
• h denotes the number of hash functions used for cuckoo hashing in Sec-

tion 6.3.2;
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• B denotes the bin size for the simple hashing scheme described in Sec-
tion 6.3.2;
• ` denotes the windowing parameter described in Section 6.3.3;
• α denotes the partitioning parameter described in Section 6.3.3.

6.1.3 Unbalanced Private Set Intersection

Our protocol is particularly powerful when Alice’s set is much larger than
Bob’s set. Hence we assume Nx � Ny throughout the paper, even though
the protocol works for arbitrary set sizes with no changes. More precisely,
we achieve a communication complexity of O(Ny logNx). Also, we require
only Alice to perform work linear in the larger set size Nx. Intuitively, Bob
encrypts and sends its set to Alice, who computes the intersection on homo-
morphically encrypted data by evaluating an appropriate comparison circuit.
The output is then compressed to much smaller size using homomorphic mul-
tiplication, and sent back to Bob for decryption. We note that Bob only
performs relatively light computation in the protocol, i.e. encryptions and
decryptions of data linear in its set size Ny. This is particularly useful when
Bob is limited in its computational power, e.g. when Bob is a mobile device.

Private contact discovery

One particularly interesting application for our PSI protocol is private contact
discovery which review in detail now. In this setting, a service provider, e.g.
WhatsApp, has a set of several million users. Each of these users holds their
own set of contacts, and wants to learn which of them also use the service.
The insecure solution to this problem is to have the user send the service
provider their set of contacts, who then performs the intersection on behalf
of the user. While this protects the privacy of the service provider, it leaks
the user’s private contacts to the service provider.

While PSI offers a natural solution to this problem, one potential issue with
applying existing protocols to this setting is that both the communication
and computation complexity for both parties is linear in the larger set. As a
result, a user who may have only a few hundred contacts has to receive and
process data linear in the number of users that the service has, resulting in a
suboptimal protocol for constrained hardware, such as cellphones. This prob-
lem was initially raised in an article by Moxie Marlinspike from Open Whis-
per Systems—the company that developed the popular secure messaging app
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Signal—when they were trying to deploy PSI for contact discovery [Mar14].
Our PSI protocol addresses this issue by allowing the constrained devices to
process and receive data that is linear in only their set size, and only log-
arithmic in the service provider’s set size. Moreover, the major part of the
computation can be performed by the service provider in a large data cen-
ter, where processing power is relatively inexpensive, whereas the user only
performs a light computation.

6.2 The Basic Protocol

We describe our basic protocol in Figure 6.1 as a strawman protocol. Bob
encrypts each of its items y, and sends them to Alice. For each y, Alice then
evaluates homomorphically the product of differences of y with all of Alice’s
items x, randomizes the product by multiplying it with a uniformly random
non-zero plaintext, and sends the result back to Bob. The result decrypts to
zero precisely when y is in Alice’s set, and to a uniformly random non-zero
plaintext otherwise, revealing no information about Alice’s set to Bob.

To be more precise, we assume from now on that the plaintext modulus t in
our FHE scheme is a prime number, large enough to encode σ-bit strings as
elements of Zt. We also temporarily restrict the plaintext space to its subring
of constant polynomials (this restriction will be removed in Section 6.3.1),
and assume plaintexts to be simply elements of Zt. Recall that the sizes of
the sets X and Y , and the (common) bit-length σ of the items, are public
information.

We have the following informal theorem with regards to the security and
correctness of the basic protocol.

Theorem 17 (informal). The protocol described in Figure 6.1 securely and
correctly computes the private set intersection of X and Y in the semi-honest
security model, provided that the fully homomorphic encryption scheme is
IND-CPA secure and achieves circuit privacy.

Proof sketch. Receiver’s security is straightforward: Bob sends an array of
ciphertexts, which looks pseudorandom to Alice since the fully homomorphic
encryption scheme is IND-CPA secure. For sender’s security, we note that
Bob’s view consists of an array of ciphertexts. It follows from circuit privacy
that Bob only learns the decryptions of these ciphertexts, and nothing more.
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Input: Receiver inputs set Y of size Ny; sender inputs set X of size Nx. Both
sets consist of bit strings of length σ. Nx, Ny, and σ are public.
Output: Receiver outputs X ∩ Y ; sender outputs ⊥.

1. Setup: Sender and receiver jointly agree on a fully homomorphic en-
cryption scheme. Receiver generates a public-secret key pair for the
scheme, and keeps the secret key to itself.

2. Set encryption: Receiver encrypts each element yi in its set Y using
the fully homomorphic encryption scheme, and sends the Ny ciphertexts
(c1, . . . , cNy) to sender.

3. Computing intersection: For each ci, sender

(a) samples a random non-zero plaintext element ri;

(b) homomorphically computes

di = ri
∏
x∈X

(ci − x) .

Sender return the ciphertexts (d1, . . . , dNy) to receiver.

4. Reply extraction: Receiver decrypts the ciphertexts (d1, . . . , dNy) and
outputs

X ∩ Y = {yi : FHE.Decrypt(di) = 0} .

Figure 6.1: Basic FHE based PSI protocol.

For a fixed index i, we have

FHE.Decrypt(di) = ri
∏
x∈X

(yi − x) ,

which is zero precisely when yi ∈ X (correctness), and otherwise a uniformly
random element in Zt \ {0}, because Zt is a field. Thus, Bob learns no
additional information beyond the intersection X ∩ Y .

This basic strawman protocol is extremely inefficient: it requires Alice to
performO(NxNy) homomorphic multiplications and additions, and the depth
of the circuit is high, pushing the FHE parameter sizes to be huge. In
addition, Alice and Bob need to communicate O(Ny) FHE ciphertexts, which
can be prohibitive even for state-of-the-art fully homomorphic encryption
schemes. It is therefore quite surprising that the protocol becomes very
efficient when combined with the enhancements described in the next section.
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6.3 Optimizations

6.3.1 Batching

Our first step to improve performance is through the use of batching, which
is a well-known and powerful technique in fully homomorphic encryption to
enable SIMD (Single Instruction, Multiple Data) operations on ciphertexts.
We give a brief explanation here, and refer the reader to [GHS12b, BGH13,
SV14, KL16, GBDL+16] for more details and example applications.

For suitable choices of the plaintext modulus t, there is a ring isomorphism
from the plaintext space Rt to Znt . As an example, a constant polynomial
a ∈ Rt corresponds to the vector (a, . . . , a) ∈ Znt . Moreover, this isomor-
phism translates polynomial additions and multiplications into coefficient-
wise additions and multiplications in each of the n fields Zt. To simplify the
exposition, we use the polynomial and vector notations for plaintexts inter-
changeably, omitting the conversions from one representation to the other.

We can apply batching to reduce both the computational and communica-
tion cost of the basic protocol as follows. Bob groups its items into vectors
of length n, encrypts them, and sends Ny/n ciphertexts to Alice. Upon
seeing each ciphertext ci, Alice samples a vector ri = (ri1, . . . , rin) ∈ (Z∗t )n
of uniformly random non-zero elements of Zt, homomorphically computes
di = ri

∏
x∈X(ci − x), and sends it back to Bob. Note that these modifica-

tions do not affect correctness or security, since the exact same proof can be
applied per each vector coefficient.

The batching technique allows Alice to operate on n items from Bob si-
multaneously, resulting in n-fold improvement in both the computation and
communication. Since in typical cases n has size several thousands, this
results in a significant improvement over the basic protocol.

6.3.2 Hashing

Even with the batching techniques of Section 6.3.1, Alice still needs to encode
each of its set elements into separate plaintexts, and individually compare
them to Bob’s items. Instead, it would be nice if Alice could also take
advantage of batching. We will achieve this through the use of hashing
techniques. Specifically, we use batching in conjunction with cuckoo hashing

123



and permutation-based hashing, which have been developed and explored in
detail in the context of PSI in e.g. [PSZ14, PSSZ15].

Before jumping into the technicalities of cuckoo hashing and permutation-
based hashing, we start with a high-level explanation of why hashing is bene-
ficial in our context. Suppose the two parties hash the items in their sets into
two hash tables using some agreed-upon deterministic hash function. Now
they only need to perform a PSI for each bin, since items in different bins
are necessarily different.

One important point is that all bins must be padded to a fixed size to main-
tain security. Observe that the bins prior to padding will have uneven loads,
and the load of a specific bin (the number of items mapped into the bin) can
reveal additional information beyond the intersection. To overcome this, we
need to pad each bin with dummy items up to a pre-determined maximum
size.

The simple hashing technique just described significantly reduces the com-
plexity of our protocol. It is well known that hashing d items into a hash
table of size m = d results in a maximum load of O(log d) with high proba-
bility. For example, in the case that both parties have d = Nx = Ny items,
the overall complexity of the basic protocol reduces to O(d log2 d), where
the log2 d factor comes from performing the basic PSI protocol on a single
bin. Next, we will reduce the complexity even further via better hashing
techniques.

Cuckoo hashing

Cuckoo hashing [PR01, DM03, FPSS03] is a way to build dense hash tables
by using h > 1 hash functions H1, ..., Hh. To insert an item x, we choose a
random index i from [h], and insert the tuple (x, i) at location Hi(x) in the
table. If this location was already occupied by a tuple (y, j), we replace (y, j)
with (x, i), choose a random j′ from [h] \ {j}, and recursively re-insert (y, j′)
into the table. For m ≈ d and fairly small h, cuckoo hashing succeeds with
very high probability, i.e. the recursive re-insertion process always succeeds
before a pre-determined upper bound on the recursion depth is reached. We
will discuss the success probability of cuckoo hashing in Section 6.3.2.

In order to apply cuckoo hashing to our PSI protocol, we must ensure that
bin-wise comparisons will always yield the correct intersection. This is done
by letting Bob perform cuckoo hashing with m & Ny bins. Alice must insert
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each of its items into a two-dimensional hash table using all h hash functions
H1, ..., Hh (simple hashing), because there is no way for it to know which
one of the hash functions Bob eventually ended up using for the items in the
intersection. To determine the maximum load on Alice’s side, we apply a
standard balls-into-bins argument. Concretely, when inserting d = hNx balls
into m bins, we have

Pr[at least one bin has load > B]

≤ m
d∑

i=B+1

(
d

i

)(
1

m

)i(
1− 1

m

)d−i
.

(6.1)

Our default assumption is that Alice (who performs simple hashing) has
a larger set, so that d > m logm. In this case B is upper-bounded by
d/m+O(

√
d logm/m) with high probability [RS98].

Permutation-based hashing

Independent of the exact hashing scheme, permutation-based hashing [ANS10b]
is an optimization to reduce the length of the items stored in the hash tables
by encoding a part of an item into the bin index. For simplicity, we assume
m is a power of two, and describe permutation-based hashing only in con-
nection with cuckoo hashing. To insert a bit string x into the hash table, we
first parse it as xL‖xR, where the length of xR is equal to log2m. The hash
functions H1, ..., Hh are used to construct location functions as

Loci(x) = Hi(xL)⊕ xR , 1 ≤ i ≤ h ,

which we will use in cuckoo hashing. Moreover, instead of inserting the
entire tuple (x, i) into the hash table as in regular cuckoo hashing, we only
insert (xL, i) at the location specified by Loci(x).

The correctness of the PSI protocol still holds after applying permutation-
based hashing. The reason is if (xL, i) = (yL, j) for two items x and y, then
i = j and xL = yL. If in addition these are found in the same location, then
Hi(xL) ⊕ xR = Hj(yL) ⊕ xR = Hj(yL) ⊕ yR, so xR = yR, and hence x =
y. The lengths of the strings stored in the hash table are thus reduced by
log2m−dlog2 he bits. The complete hashing routine is specified in Figure 6.2.
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Input: Receiver inputs set Y of size Ny; sender inputs set X of size Nx. Both
sets consist of bit strings of length σ. Nx, Ny, σ are public. Both parties
input integers h,m,B and a set of hash function H1, ...,Hh : {0, 1}σ−log2m →
{0, 1}log2m. The location functions Loci is defined with respect to Hi for
i ∈ [h].
Output: Receiver outputs a permutation-based cuckoo hash table with the
items in Y inserted, or ⊥. Sender outputs a permutation-based hash table
with the items in X inserted using simple hashing and all location functions,
or ⊥.

1. [Sender] Let Bx be an array of m bins, each with capacity B, and
value {(⊥,⊥)}B. For each x ∈ X and i ∈ [h], Alice samples j ← [B] s.t.
Bx[Loci(x)][j] = ⊥, and sets Bx[Loci(x)][j] := (xL, i). If the sampling
fails due to a bin being full, Alice outputs ⊥. Otherwise it outputs Bx.

2. [Receiver] Let By be an array of m bins, each with capacity 1, and
value (⊥,⊥). For each y ∈ Y , Bob

(a) sets w = y, and i← [B];

(b) defines and calls the function Insert(w, i) as follows: swap (w, i)
with the entry at By[Loci(w)]. If (w, i) 6= (⊥,⊥), recursively call
Insert(w, j), where j ← [h] \ {i}.

If for any y ∈ Y the recursive calls to Insert exceeds the system limit,
Bob halts and outputs ⊥. Otherwise it outputs By.

Figure 6.2: Hashing routine for the FHE based PSI protocol.

Hashing failures

In an unlikely event where cuckoo hashing fails, it could leak some infor-
mation of Bob’s set to Alice. To prevent this, we must ensure that with
overwhelming probability the cuckoo hashing algorithm will succeed. While
some asymptotic results exist for estimating the failure probability of cuckoo
hashing [FMM09, DGM+10], the hidden constants are difficult to determine
precisely. Instead, to obtain optimal parameters, we choose to determine the
failure probability using empirical methods. The general technique we use is
similar to that of [PSZ18], with two exceptions: first, we omit an auxiliary
data structure known as the stash due to its incompatibility with the fully
homomorphic encryption approach; second, we primarily focus on h = 3 in
our experiments (see below), whereas [PSZ18] focused on h = 2.

We start by fixing the cuckoo hash table consisting of m bins, and vary the
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Table size m
Insert size d

3 · 28 3 · 212 3 · 216 3 · 220 3 · 224 3 · 228

λ = 30 40 30 40 30 40 30 40 30 40 30 40

8192 8 9 17 20 68 74 536 556 6727 6798 100611 100890

16384 7 8 13 16 46 51 304 318 3492 3543 50807 51002

Table 6.1: Simple hashing bin size upper bound B for failure probability
2−λ, with λ ∈ {30, 40}, and h = 3; see equation (6.1).

number for items d < m to be inserted. For each (d,m) pair, we run the
cuckoo hashing algorithm 230 times. For d� m, we find that the algorithm
never fails in the experiments. To compute the required ratio ε = m/d to
achieve a statistical security level of λ ≥ 40 (i.e. cuckoo hashing fails with
probability at most 2−40), we begin by setting ε to a value slightly larger than
one, and gradually increase it until we can expect zero hashing failures. From
this we observe that λ increases linearly with the scaling factor ε when h ≥ 3.

Over the course of our experiments, we observed that cuckoo hashing with
no stash performs very poorly when h = 2, which was also observed and
discussed in detail in [PSZ18], which is why we shift our focus to h = 3.
Furthermore, the marginal gain of h = 4 is outweighed by the increased cost
of simple hashing. By applying linear regression to the empirical data for
λ ≥ 0, we observe that λ = 124.4ε−144.6 for m = 16384, and λ = 125ε−145
for m = 8192. To achieve a statistical security level of λ = 40, the maximum
number of items that can be cuckoo hashed into 8192 bins with h = 3 is
therefore 5535. For m = 16384, the corresponding maximum number of
items is 11041. The respective simple hashing parameter for the given hash
table size and different d = hNx values are given in Table 6.1.

Dummy values

In order to make Alice’s simple hash table evenly filled, we need to pad
each bin with dummy items after hashing. We let Alice and receiver fix two
different dummy values from Zt, as long as they do not occur as legitimate
values. For example, if legitimate values have at most σ bits, then we can
set Bob’s dummy value to 2σ, and Alice’s dummy value to 2σ+1 − 1.
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Hashing to a smaller representation

In many cases the total number of items Nx + Ny is much smaller than
the number 2σ of all possible strings of length σ. Since the performance of
our protocol will degrade with increasing string length, it is beneficial for
the parties to compress their strings with an agreed-upon hash function to a
fixed length σmax, and then execute the PSI protocol on these hashed strings.
Indeed, this is a well-known technique in the PSI community.

More precisely, when a total of Nx + Ny random strings are hashed to a
domain of size 2σmax , the probability of a collision is approximately (Nx +
Ny)2/2σmax+1. For a statistical security parameter λ, we require that Pr[collision occurs] ≤
2−λ. Therefore, the compressed strings should have length at least

σmax = 2 log2(Nx +Ny) + λ− 1.

Now we apply permutation-based cuckoo hashing to the compressed strings,
further reducing the string length to

σmax − log2m+ dlog2 he.

In addition, we need to reserve two more values in the plaintext space for the
dummy values discussed in Section 6.3.2. Thus, by choosing the encryption
parameter t so that

log2 t > σmax − log2m+ dlog2 he+ 1 (6.2)

we can accommodate arbitrarily long strings in our PSI protocol.

Combining with batching

It is straightforward to combine hashing techniques introduced in this section
with the batching technique in Section 6.3.1. After Bob hashes its items into
a table of size m, it parses the table into m/n vectors of length n. Bob
then encrypts each vector using batching, and proceeds as usual. Similarly,
Alice performs the same batching step for each of the B columns of its two-
dimensional hash table, resulting in Bm/n plaintext vectors. The rest of
the protocol remains unchanged, and we see that adding batching to the
hashing techniques provides an n-fold reduction in both computation and
communication.
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6.3.3 Reducing the Circuit Depth

With the optimizations discussed in Section 6.3.1 and Section 6.3.2, our pro-
tocol already achieves very low communication cost: typically just a few ho-
momorphically encrypted ciphertexts. Unfortunately, the depth of the arith-
metic circuit that needs to be homomorphically evaluated is still O(logNx),
which can be prohibitively high for currently known fully homomorphic en-
cryption schemes.

We use two tricks—windowing and partitioning—to critically reduce this
depth. For simplicity of exposition, we will discuss how these two tricks
work over the basic protocol, and briefly explain how to combine them with
previous optimizations.

Windowing

We use a standard windowing technique to lower the depth of the arithmetic
circuit that Alice needs to evaluate on Bob’s homomorphically encrypted
data, resulting in a valuable computation-communication trade-off.

Recall that in the basic protocol, for each item y ∈ Y , Bob sends one ci-
phertext c = FHE.Encrypt(y) to Alice, who samples a random element r in
Zt \ {0}, homomorphically evaluates r

∏
x∈X(c − x), and sends the result

back to Bob. If Bob sends encryptions of extra powers of y, Alice can use
these powers to evaluate the same computation with a much lower depth
circuit. More precisely, for a window size of ` bits, Bob computes and
sends c(i,j) = FHE.Encrypt(yi·2

`j
) to Alice for all 1 ≤ i ≤ 2` − 1, and all

0 ≤ j ≤ blog2(Nx)/`c. For example, when ` = 1, Bob sends encryptions of

y, y2, y4, . . . , y2blog2 Nxc
.

This technique results in a significant reduction in the circuit depth. To see
this, we write

r
∏
x∈X

(y − x) = ryNx + raNx−1y
Nx−1 + . . .+ ra0 . (6.3)

If Alice only has an encryption of y, it needs to compute at worst the product
ryNx , which requires a circuit of depth dlog2(Nx+1)e. Now if the encryptions
c(i,j) are already given to Alice, then we can separate Alice’s computation into
two steps. First, Alice computes an encryption of yi for all 0 ≤ i ≤ Nx. Alice
needs to compute at worst a product of blog2(Nx)/`c+ 1 terms, requiring a
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circuit of depth dlog2(blog2(Nx)/`c + 1)e. In an extreme case, if Bob gives
Alice encryptions of all powers of y up to yNx , the depth in this step becomes
zero. Then, Alice computes a dot product of encryptions of yi (0 ≤ i ≤ Nx)
with the vector of coefficients (r, raNx−1, . . . , ra0) in plaintext from its own
data. This second step has multiplicative depth one.

The cost of windowing is in increased communication. The communication
from Bob to Alice is increased by a factor of (2` − 1)(blog2(Nx)/`c+ 1), and
the communication back from Alice to Bob does not change.

It is easy to incorporate batching and hashing methods with windowing.
The only difference is that batching and hashing effectively reduce Alice’s
set size by nearly a factor of n. More precisely, the depth of the circuit
becomes dlog2(blog2(B)/`c + 1)e + 1, where B is as in Figure 6.2. Without
windowing, batching and hashing encode the entire set Y into one hash
table of size m & NY , producing m/n ciphertexts to be communicated to
Alice. With windowing this is expanded to (2` − 1)(blog2(B)/`c + 1) ·m/n
ciphertexts.

Finally, we note that security of windowing technique is guaranteed by the
IND-CPA security of the underlying fully homomorphic encryption scheme.

Partitioning

Another way to reduce circuit depth is to let Alice partition its set into α
subsets, and perform one PSI protocol execution per each subset. In the
basic protocol, this reduces sender’s circuit depth from dlog2(Nx + 1)e to
dlog2(Nx/α + 1)e, at the cost of increasing the return communication from
sender to receiver by a factor of α.

Partitioning can be naturally combined with windowing in a way that offers
an additional benefit of reducing the number of homomorphic operations.
Recall from Section 6.3.3 that Alice needs to compute encryptions of all
powers y, . . . , yNx for each of Bob’s items y. With partitioning, Alice only
needs to compute encryptions of y, . . . , yNx/α, which it can reuse for each
of the α partitions. Thus, with both partitioning and windowing, Alice’s
computational cost in the first step described in Section 6.3.3 reduces by a
factor of α, whereas the cost in the second step remains the same.

We may combine batching and hashing with partitioning in the following
way. Alice performs its part of the hashing routine (Figure 6.2) as usual,
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but splits the contents of its bins (each of size B) into α parts of equal
size, resulting in α tables each with bin size ≈ B/α. It then performs the
PSI protocol with the improvements described in Section 6.3.1, 6.3.2, and
6.3.3 using each of the α hash tables. Now sender’s circuit depth reduces to
dlog2(blog2(B/α)/`c+1)e+1, whereB is as in Figure 6.2. The communication
from Alice to Bob is α ciphertexts.

We would like to note that in order to preserve Alice’s security, it is essen-
tial that after using simple hashing to insert its items into the hash table,
Alice partitions the contents of the bins—including empty locations with
value (⊥,⊥)—in a uniformly random way. Since in the hashing routine
(Figure 6.2) Alice inserts its items in random locations within each bin, the
correct partitioning can be achieved by evenly splitting the contents of each
bin into α subsets using any deterministic partitioning method.

6.3.4 Reducing Reply Size via Modulus Switching

Finally, we employ modulus switching (see [BGV12]), which effectively re-
duces the size of the response ciphertexts. Modulus switching is a well-
known operation in lattice-based fully homomorphic encryption schemes. It
is a public operation, which transforms a ciphertext with encryption param-
eter q into a ciphertext encrypting the same plaintext, but with a smaller
parameter q′ < q. As long as q′ is not too small, correctness of the encryp-
tion scheme is preserved. Since FHE ciphertexts have size linear in log q,
modulus switching reduces ciphertext sizes by a factor of log q/ log q′. This
trick allows Alice to “compress” the return ciphertexts before sending them
to Bob. In practice, we are able to reduce the return ciphertexts to about
15–20% of their original size. We note that the security of the protocol is
trivially preserved as long as the smaller modulus q′ is determined at setup.

6.4 Full Protocol and Security Proof

6.4.1 Formal Description

We detail the full protocol in Figure 6.4, given a secure fully homomorphic
encryption scheme with circuit privacy. The ideal functionality of this pro-
tocol is given in Figure 6.3.

131



Parameters: Two parties denoted as Alice and receiver with sets of items of
bit-length σ. Receiver’s set is of size Ny; sender’s set is of size Nx. sid denotes
the session ID of the protocol instance.

Functionality: On input (Receive, sid, Y ) from Bob and (Send, sid, X) from
Alice, where X,Y ⊆ {0, 1}σ, |X| = Nx, |Y | = Ny. The functionality sends
(Output, sid, X ∩ Y ) to Bob, and nothing to Alice.

Figure 6.3: Ideal functionality FPSI for private set intersection with one-sided
output.

We prove security in the standard semi-honest simulation-based paradigm.
Loosely put, we say that the protocol ΠPSI of Figure 6.4 securely realizes the
functionality Fpsi, if it is correct, and there exist two simulators (PPT algo-
rithms) Simr, Sims with the following properties. The simulator Simr takes
Bob’s set and the intersection as input, and needs to generate a transcript
for the protocol execution that is indistinguishable from Bob’s view of the
real interaction. Sims is similarly defined, with the exception of not taking
the intersection as input. For a formal definition of simulation based security
in the semi-honest setting, we refer the reader to [Lin16].

Theorem 18. The protocol in Figure 6.4 is a secure protocol for Fpsi in the
semi-honest setting.

Proof. It is easy to see that the protocol correctly computes the intersection
conditioned on the hashing routine succeeding, which happens with over-
whelming probability 1− 2−λ.

We start with a corrupt receiver, and show the existence of Simr. For easy
of exposition, we will assume that the simulator/protocol is parameterized
by (h,m,B, n, q, t, α, `,H ′, {Hi}1≤i≤h), which are fixed and public, and that
hashing to a smaller representation (Section 6.3.2) is used. We will then
define Bob’s simulator Simr as follows. Simr computes the set Y ′ = H ′(Y ),
and uses a modified hashing routine to cuckoo-hash its elements into a table
of size m. The modification is that if an element y is in X ∩ Y , then a
0 is inserted, and otherwise a random non-zero element in Zt is inserted.
After hashing finishes, Simr inserts random non-zero elements from Zt into
the remaining empty slots. Next, Simr creates α − 1 more tables of the
same size, and fills them with random non-zero elements from Zt. It then
randomly permutes the values inserted in the matching bins among all α
tables. Finally, it batches each table into m/n FHE plaintext polynomials,
and homomorphically encrypts them into m/n ciphertexts. The resulting
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m/n·α ciphertexts will serve as a simulation of Bob’s view. Due to the circuit
privacy assumption on underlying fully homomorphic encryption scheme, this
view is indistinguishable from Bob’s view in the real execution of the protocol.

The case of a corrupt sender is straightforward. The simulator Sims can
generate new encryptions of zero in place of the encryptions in Step 5. By
the IND-CPA security of the fully homomorphic encryption scheme, this
result is indistinguishable from Alice’s view in the real protocol.

6.4.2 Discussion

Function privacy

While our protocol (Figure 6.4) assumes a fully homomorphic encryption
scheme with circuit privacy, in practice it is much more efficient to instanti-
ate it with leveled fully homomorphic encryption (recall Section 2.1.4), i.e.
choose encryption parameters large enough to avoid the costly bootstrapping
operation. This does not change the security properties of the protocol, as
the encryption parameters are selected purely based on public parameters
Nx, Ny and σ.

While circuit privacy can be achieved in fully homomorphic encryption us-
ing e.g. the techniques of [DS16], in practice the slightly weaker notion of
(statistical) function privacy [GHV10] suffices, and is easier to achieve in
the leveled setting using re-randomization and noise flooding, where Alice
re-randomizes the output ciphertexts by homomorphically adding to them
an encryption of zero with a very large noise [Gen09, DS16]. A standard
“smudging lemma” (see e.g. [AJLA+12]) implies that in order to achieve 2−λ

statistical distance between output ciphertexts of different executions, it suf-
fices to add encryptions of zero with noise λ+ log2 n+ log2 α bits larger than
an upper bound on the noise in the original outputs of the computation.
We used the heuristic results in [CS16] to bound the amount of noise in the
output ciphertexts before flooding.

133



Input: Receiver inputs set Y ⊂ {0, 1}σ of sizeNy; sender inputs setX ⊂ {0, 1}σ of sizeNx. Nx, Ny, σ
are public. κ and λ denote the computational and statistical security parameters, respectively.
Output: Bob outputs Y ∩X; Alice outputs ⊥.

1. [Perform hashing] Hashing parameters h,m,B are agreed upon such that simple hashing
hNx balls into m bins with max load B, and cuckoo hashing Ny balls into m bins succeed
with probability ≥ 1− 2−λ.

(a) [Hashing to shorter strings] Let σ′ = 2 log2(Nx +Ny)+λ−1. If σ > σ′, then both
parties hash their sets to a smaller representation. First, a random hash function H′ :

{0, 1}σ → {0, 1}σ′ is sampled. Let X′ = {H′(x) | x ∈ X} and Y ′ = {H′(y) | y ∈ Y }.
Perform the rest of the protocol with (X′, Y ′, σ′) replacing (X,Y, σ), and output the
corresponding items in X,Y as the intersection.

(b) [Hashing to bins] The parties perform Figure 6.2 with parameters h,m,B, and
randomly sampled hash functions H1, ..., Hh : {0, 1}σ−log2m → {0, 1}log2m as input.
Alice performs Step 1 of Figure 6.2 with set X to obtain Bx, and Bob performs Step 2
with Y to obtain By.

2. [Choose FHE parameters] The parties agree on parameters (n, q, t) for an IND-CPA
secure FHE scheme with circuit privacy. They choose t to be large enough so that log2 t >
σ − log2m+ dlog2 he+ 1.

3. [Choose circuit depth parameters] The parties agree on the windowing parameter ` ∈
[1, log2B] and partitioning parameter α ∈ [1, B] as to minimize the overall cost.

4. [Pre-process X]

(a) [Partitioning] Alice partitions its table By vertically (i.e. by columns) into α sub-
tables By,1,By,2, . . . ,By,α, each having B′ := B/α columns.

(b) [Computing coefficients] For each row v of each subtable, Alice replaces the row
v with coefficients of the polynomial

∏
s(x − vs), i.e. it replaces v by Sym(v) =

((−1)j
∑
S⊂[B′],|S|=j

∏
s∈S vs)0≤j≤B′ .

(c) [Batching] For each subtable obtained from the previous step, Alice interprets each
of its column as a vector of length m with elements in Zt. Then Alice batches each
vector into m/n plaintext polynomials. As a result, the r-th subtable is transformed

into m/n ·B′ polynomials S
(r)
i,j , 1 ≤ i ≤ m/n, 0 ≤ j ≤ B′.

5. [Encrypt Y ]

(a) [Batching] Bob interprets By as a vector of length m with elements in Zt. It batches
this vector into m/n plaintext polynomials Y 1, ..., Ym/n.

(b) [Windowing] For each batched plaintext polynomial Y computed during Step 5a,

Bob computes the component-wise i · 2j-th powers Y
i·2j

, for 1 ≤ i ≤ 2` − 1 and
0 ≤ j ≤ blog2(B′)/`c.

(c) [Encrypt] Bob uses FHE.Encrypt to encrypt each such power, obtaining m/n collec-
tions of ciphertexts {ci,j}. Bob sends these ciphertexts to Alice.

6. [Intersect]

(a) [Homomorphically compute encryptions of all powers] For each collection of
ciphertexts {ci,j}, Alice homomorphically computes a vector c = (c0, . . . , cB′ ), such

that ck is a homomorphic ciphertext encrypting Y
k
. In the end, Alice obtains m/n

vectors c1, . . . , cm/n.

(b) [Homomorphically evaluate the dot product] Alice homomorphically evaluates

ri,r =
B′∑
j=0

ci[B
′ − j] · S(r)

i,j , for all 1 ≤ i ≤ m/n, and 1 ≤ r ≤ α,

optionally performs modulus switching on the ciphertexts ri,r to reduce their sizes,
and sends them back to Bob.

7. [Decrypt and get result] For each 1 ≤ r ≤ α, Bob decrypts all ciphertexts it receives and
concatenates the resulting m/n vectors into one vector Rr of length m. Finally, Bob outputs

Y ∩X =
⋃

1≤r≤α
{y ∈ Y : Rr[Loc(y)] = 0} .

Figure 6.4: Full FHE based PSI protocol.
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Malicious behavior

When considering malicious behavior our protocol faces several challenges.
Most notable is Alice’s ability to compute an arbitrary function on Bob’s
homomorphically encrypted dataset. While Alice can not learn additional
information directly from the ciphertexts, it is able to maliciously influence
the correctness of the output, e.g. force the intersection/output to be Bob’s
full set, or more generally f(X) ⊆ X. Efficiently preventing such behavior
by Alice appears to be extremely challenging.

For the case of a malicious receiver we need only to consider potential leakage
which Bob can induce (sender has no output). First, Bob may provide a set
of size greater than Nx due to its ability to fill vacant slots in the cuckoo
hash table. Additionally, the argument that function privacy can easily be
achieved through noise flooding no longer holds due to Bob being possibly
providing ciphertexts with more noise than expected. As such, the noise
level of the response ciphertexts may depend on Alice’s set, and thereby leak
additional information. However, in general we believe that this protocol
provides reasonable protection against a malicious receiver for most practical
applications. We leave a more formal analysis of the malicious setting and
potential countermeasures to future work.

When receiver holds the larger set

So far we have made the assumption that Bob’s set size is much smaller than
Alice’s set size. Here we remark that our protocol can be slightly modified to
handle the opposite case, where Bob holds the larger set. The idea is that the
two parties can perform our protocol with their roles switched until the last
step. At this point, Bob (who has now been playing Alice’s role) holds an
encryption of a vector v. It samples a random plaintext vector r, and sends
back to Alice an encryption of v+r. Alice decrypts this value, and sends back
the plaintext vector v + r to Bob, who can compute the final result v. This
protocol is still secure in the semi-honest setting, and the communication
remains linear in the smaller set and logarithmic in the larger set.
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Name n q t DBC κ

SEAL16384-1 16384 2226 − 226 + 1 8519681 76 � 128 bits
SEAL16384-2 16384 2226 − 226 + 1 8519681 46 � 128 bits
SEAL16384-3 16384 2189 − 221 + 9 · 215 + 1 8519681 48 � 128 bits
SEAL8192-1 8192 2226 − 226 + 1 8519681 46 ≈ 120 bits
SEAL8192-2 8192 2189 − 221 + 9 · 215 + 1 8519681 48 > 128 bits

Table 6.2: Encryption parameter sets for SEAL v2.1. Security estimates are
based on [APS15, Alb17].

6.5 Implementation and Performance

6.5.1 Performance Results

We implemented our PSI protocol described in Figure 6.4. For fully ho-
momorphic encryption we used SEAL v2.1 [KL16], which implements the
Fan-Vercauteren scheme [FV12] in C++. The parameters for SEAL that
we used are given in Table 6.2, along with their computational security lev-
els κ, estimated based on the best currently known attacks [APS15, Alb17].
The column labeled “DBC” refers to the decomposition_bit_count param-
eter in SEAL. We note that these parameters are highly optimized for the
particular computations that we perform.

We give detailed computational performance results for our protocol in Ta-
ble 6.3 for both single and multi-threaded execution with 4, 16, and 64
threads. As Bob’s computation is typically relatively small compared to
Alice’s, we restrict to single-threaded execution on Bob’s side. Still, it is
worth pointing out that also Bob’s computation would benefit hugely from
multi-threading, when available. Communication costs for our experiments
are given in Table 6.4. We chose a statistical security level λ = 40, and a
string length σ = 32 bits.

The benchmark machine has two 18-core Intel Xeon CPU E5-2699 v3 @
2.3GHz and 256GB of RAM. We perform all tests using this single machine,
and simulate network latency and bandwidth using the Linux tc command.
Specifically, we consider a LAN setting, where the two parties are connected
via local host with 10Gbps throughput, and a 0.2ms round-trip time (RTT).
We also consider three WAN settings with 100Mbps, 10Mbps, and 1Mbps
bandwidth, each with an 80ms RTT. All times are reported as the average
of 10 trials.
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Parameters Optim. Running time (seconds)

Nx Ny FHE parameters α `
Sender pre-processing Sender online Receiver

T = 1 4 16 64 1 4 16 64 Enc. Dec.

224

11041
SEAL16384-2

256 1 72.2 18.0 6.2 3.0 42.2 14.4 7.1 5.6 0.3 10.3
128 2 70.9 19.1 6.3 3.1 38.9 15.6 9.8 9.1 0.5 5.1

SEAL16384-1 64 3 76.8 20.6 6.7 3.3 41.1 21.6 16.2 16.9 0.9 2.6

5535 SEAL8192-1
256 1 64.1 17.9 5.5 2.7 36.0 11.8 6.3 5.5 0.2 4.9
128 2 71.2 18.5 6.3 2.9 36.1 14.2 9.6 9.2 0.3 2.4
64 3 80.4 21.5 6.7 3.2 41.9 21.5 17.7 17.7 0.5 1.2

220

11041 SEAL16384-1
128 1 9.1 2.5 1.0 0.5 8.0 2.6 1.2 1.1 0.2 5.1
64 2 6.9 2.0 0.8 0.4 5.2 1.8 1.1 1.0 0.3 2.7
32 3 6.4 1.7 0.9 0.6 4.5 2.1 1.3 1.5 0.7 1.3

5535 SEAL8192-2
128 1 5.1 1.4 0.6 0.4 4.2 1.5 0.8 0.7 0.1 1.9
64 2 4.4 1.2 0.6 0.3 3.4 1.7 0.7 1.0 0.2 1.0
32 3 4.3 1.2 0.5 — 3.6 1.4 1.5 — 0.3 0.5

216

11041 SEAL16384-3
16 1 1.2 0.3 0.2 — 1.3 0.6 0.6 — 0.2 0.5
8 2 1.0 0.3 0.2 — 1.5 1.2 1.3 — 0.3 0.3
4 3 0.9 0.3 — — 1.9 1.7 — — 0.5 0.1

5535 SEAL8192-2
32 1 0.9 0.3 0.2 — 0.9 0.4 0.3 — 0.1 0.5
16 2 0.7 0.2 0.1 — 0.7 0.3 0.3 — 0.1 0.2
8 3 0.6 0.2 — — 0.7 0.5 — — 0.3 0.1

Table 6.3: Running time in seconds for our protocol with T ∈ {1, 4, 16, 64}
threads; λ = 40, σ = 32, h = 3. Since we implemented multi-threading by
dividing the α partitions evenly between threads, having T > α offers no
performance benefit. These cases are denoted by “—” in the table.

Pre-processing

The “Sender pre-processing” column in Table 6.3 measures the computational
cost for Alice to prepare its coefficients of the polynomial r

∏
x∈X(y − x),

as mentioned in Section 6.3.3. More precisely, Alice’s pre-processing work
includes hashing and batching of its data, computing the coefficients in the
right-hand side of (6.3), and sampling the random vectors. We also have Alice
perform number theoretic transforms (NTT) to its plaintext polynomials
to facilitate the underlying homomorphic multiplications in the second step
described in Section 6.3.3.

We remark that our pre-processing can be done entirely offline without in-
volving Bob. Specifically, given an upper bound on Bob’s set size, Alice can
locally choose parameters and perform the pre-processing. Upon learning
Bob’s actual set size, the parameters selected by Alice are communicated to
Bob. We note that in order to achieve simulation-based security, the selected
hash functions can only be used once. As such, each instance of the proto-
col must have an independent pre-processing phase, and in the event that a
single pre-processing phase is used between several instances, an adversary
with control of a party’s set could force a hashing failure to occur. However,
if such adversaries are not considered, then the pre-processing phase can be
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Parameters Optim. Comm. size (MB) Comm. time (seconds)
Nx Ny FHE parameters α ` R → S S → R 10 Gbps 100 Mbps 10 Mbps 1 Mbps

224

11041
SEAL16384-2

256 1 3.6 33.8 0.0 4.0 30.2 300.4
128 2 6.3 16.9 0.0 2.4 19.0 186.7

SEAL16384-1 64 3 12.7 8.4 0.0 2.2 17.4 169.4

5535 SEAL8192-1
256 1 3.2 16.9 0.0 2.0 16.3 161.5
128 2 4.1 8.4 0.0 1.3 10.3 101.0
64 3 6.8 4.2 0.0 1.1 9.1 88.1

220

11041 SEAL16384-1
128 1 1.8 16.9 0.0 1.8 15.3 149.9
64 2 3.6 8.4 0.0 1.3 9.9 98.0
32 3 7.2 4.2 0.0 1.2 9.4 92.6

5535 SEAL8192-2
128 1 1.1 8.4 0.0 1.0 7.8 77.0
64 2 1.9 4.2 0.0 0.6 5.1 49.3
32 3 3.4 2.2 0.0 0.6 4.7 45.0

216

11041 SEAL16384-3
16 1 2.3 2.1 0.0 0.5 3.6 35.5
8 2 3.0 1.1 0.0 0.4 3.4 33.0
4 3 6.0 0.5 0.0 0.6 5.4 52.9

5535 SEAL8192-2
32 1 0.8 2.1 0.0 0.3 2.4 22.9
16 2 1.5 1.1 0.0 0.3 2.2 20.7
8 3 3.0 0.5 0.0 0.4 3.0 28.6

Table 6.4: Communication cost in MB for our protocol; λ = 40, σ = 32,
h = 3. 10Gbps network assumes 0.2ms RTT, and the others use 80ms RTT.
R → S and S → R denote the communications from receiver to sender, and
from sender to receiver.

reused, resulting in significantly better performance.

PSI with longer items

When implementing our PSI protocol, we restrict the item length to be 32
bits. The reason is, although we can accommodate arbitrary size items in
principle as described in Section 6.3.2, doing so naively with our protocol
would require the encryption parameters to be substantially increased, which
has a large negative impact on performance. We leave the task of making
our protocol efficient for arbitrary size items to future work.

6.5.2 Comparison to Pinkas et al. [PSZ18]

Our primary point of comparison is the Pinkas et al. PSI protocol [PSZ18],
in which the authors consider both the case of symmetric set sizes, and the
setting where Bob’s set is significantly smaller than Alice’s. While our proto-
col can easily handle symmetric set sizes, our main advantage over [PSZ18] is
in the asymmetric setting, which we now focus on. To make comparing the
two protocols easier, we ran them on the same machine, and summarized the
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Parameters Protocol Comm. Total time (seconds)

Nx Ny Size (MB)
10 Gbps 100 Mbps 10 Mbps 1 Mbps

T = 1 4 1 4 1 4 1 4

224

11041
Us 23.2, †21.1 115.4 40.3 117.8 42.7 134.4 59.3 †290.8 †215.1

[PSZ18] 480.9 40.5 23.3 88.0 66.4 449.5 427.5 4084.8 4067.2
[KKRT16] 975.0 70.8 — 188.7 — 1269.1 — 12156.7 —

5535
Us 20.1, †12.5, ‡11.0 105.2 34.8 107.2 36.7 †120.3 †45.8 †211.1 ‡132.7

[PSZ18] 480.4 40.1 23.1 87.9 65.5 449.2 427.3 4080.6 4064.3
[KKRT16] 962.1 70.4 — 188.3 — 1263.5 — 12153.2 —

220

11041
Us 11.5 12.8 5.7 14.0 6.9 22.2 15.1 105.4 98.3

[PSZ18] 30.9 3.3 2.1 7.0 5.6 29.8 28.3 263.7 262.1
[KKRT16] 58.5 4.5 — 11.6 — 79.4 — 688.1 —

5535
Us 5.6 8.6 3.3 9.2 3.9 13.3 8.0 53.6 48.3

[PSZ18] 30.4 3.1 2.0 6.8 5.0 29.0 27.9 260.0 259.6
[KKRT16] 57.3 4.4 — 11.5 — 79.3 — 686.0 —

216

11041
Us 4.1, †4.4 3.0 †1.7 3.4 †2.1 6.4 †5.3 36.0 35.0

[PSZ18] 2.6 0.7 0.6 1.5 1.4 3.3 3.1 21.6 22.1
[KKRT16] 4.5 0.4 — 1.4 — 5.6 — 48.2 —

5535
Us 2.6 1.8 0.9 2.0 1.2 3.9 3.1 22.5 21.7

[PSZ18] 2.1 0.7 0.6 1.4 1.3 2.9 2.8 19.8 21.3
[KKRT16] 3.7 0.4 — 1.2 — 5.4 — 46.7 —

Table 6.5: Total communication cost in MB and running time in seconds com-
paring our protocol to [PSZ18] and to [KKRT16], with T ∈ {1, 4} threads;
λ = 40, σ = 32, h = 3. 10Gbps network assumes 0.2ms RTT, and others
use 80ms RTT. Only single-threaded results are shown for [KKRT16] due to
limitations of their implementation. The communication cost for [KKRT16]
is based on the equation provided in their paper; empirical communication
was observed to be ∼ 1.5 times larger.

total running times side by side in Table 6.5. We chose to evaluate perfor-
mance for the set sizes Ny ∈ {5535, 11041}, Nx ∈ {216, 220, 224} to maximize
the utilization of ciphertext batching, described in Section 6.3.1. The sizes
for Ny were determined in Section 6.3.2 to be the largest that can guarantee
a statistical security level of λ ≥ 40. If a direct comparison to the running
times reported in [PSZ18] is desired, the reader can feel free to round down
our set sizes Ny to match the sizes therein.

When comparing the two protocols, we find that our communication cost
scales much better when Alice’s set size is greater than 216. For instance,
when considering strings of 32 bits, with Ny ≤ 5535 and Nx = 220, our pro-
tocol sends 5.6MB, while the same Nx, Ny parameters applied to [PSZ18] re-
sult in 30.4MB of communication—a 5.4× improvement. Increasing Nx even
further to Nx = 224, our protocol requires just 11.0MB of communication,
whereas [PSZ18] requires over 480MB—a 43.7× improvement. Moreover,
continuing to increase Alice’s set size results in an even greater communica-
tion benefit.
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When computing the intersection of sets of size Ny ≤ 5535 and Nx = 220 in
a single-threaded LAN setting, our protocol requires 8.6 seconds. Evaluating
the protocol of [PSZ18] using the same parameters results in an execution
time of 3.1 seconds. While [PSZ18] is faster than our protocol in this par-
ticular setting, it also requires 5.4× more communication, and distributes
the computational cost equally between the parties. That is, each party
performs O(Nx + Ny) operations. In contrast, our protocol places very few
requirements on the computational power of Bob.

Since our protocol achieves a lower communication than [PSZ18] in the asym-
metric set sizes setting, we obtain much better performance as we decrease
the network bandwidth. To clearly demonstrate this, we consider several
other network environments that model the WAN setting. In particular,
we restrict the parties to a 100Mbps, 10Mbps, and 1Mbps networks with a
80ms round trip time. In these settings, our protocol outperforms [PSZ18]
with few exceptions. Namely, the single-threaded 100Mbps setting, with
Nx = 224, Ny ≤ 5535, our protocol requires 107.2 seconds, whereas [PSZ18]
requires 87.9 seconds. However, our protocol receives a much greater speedup
in the multi-threaded setting, reducing our running time to 36.7 seconds when
the sender uses 4 threads. On the other hand, [PSZ18] requires 65.5 seconds
for the same set sizes and with both parties using 4 threads—a nearly 1.8×
slowdown compared to our protocol. As we further decrease the bandwidth,
the difference becomes much more significant. In the 1Mbps single-threaded
setting, with Nx = 224, Ny ≤ 5535, our protocol requires 211.1 seconds com-
pared to [PSZ18] requiring 4080.6 seconds—a 19.3× improvement in running
time. When utilizing 4 threads, our running time decreases to 132.7 seconds,
while [PSZ18] requires 4064.3 seconds—a 30.6× improvement.

We also consider the running time of our protocol when more than 4 threads
are used by Alice. When allowing 16 threads in the LAN setting, our running
time decreases to 16.9 seconds for Nx = 224, Ny ≤ 5535. [PSZ18] on the other
hand experiences less speedup over 4 threads, requiring just over 20 seconds
for Nx = 224 when performed with 16 threads. This demonstrates that our
protocol can outperform [PSZ18] even in the LAN setting, when at least 16
threads are used by Alice.

An important property of our protocol is the relatively small amount of
work required by Bob. In many applications the computations power of
Bob is significantly less than Alice. This is most notable in the contact
discovery application where Bob is likely a cellphone while Alice can be run at
a large datacenter where computational power is inexpensive. For instance,
Table 6.3 with parameters SEAL8192-1, α = 64, ` = 3 shows that for a
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intersection between 5535 and 224 items, Bob need only perform 1.7 seconds
of computation while the server with 16 threads required 18 seconds with a
total of 11MB of communication, less than half the size of the average 2012
iOS application download size [Res12] and a tenth of the average 2015 daily
US smartphone mobile data usage [Eri16]. In contrast, [PSZ18] requires
480MB of communication—a 44× increase–and the computational load of
Bob is significantly higher requiring 50 million hash table queries and several
thousand oblivious transfers.

6.5.3 Comparison to Kolesnikov et al. [KKRT16]

We also compare our protocol to that of Kolesnikov et al. [KKRT16], which
optimizes the use of oblivious transfer. While their results do improve the
running time for symmetric sets of large items, we found that when applied
to our setting their improvement provides little benefit, and is outweighed by
other optimizations employed by [PSZ18]. In particular, [PSZ18] considers
a different oblivious transfer optimization which is more efficient on short
strings, and also optimizes cuckoo hashing for the setting of asymmetric set
sizes.

These design decisions result in [KKRT16] requiring 2× more communication
than [PSZ18], and 87× more than our protocol, when intersecting 5535 and
224 size sets with parameters SEAL8192-1, α = 64, ` = 3. When benchmark-
ing [KKRT16], we found that the communication is actually ∼ 1.5 larger
than their theoretical limit. The theoretical communication complexity of
[KKRT16] is

Nxsv + k(1.2Ny + s) ,

where s = 6 is the stash size in cuckoo hashing, k ≈ 444 is the width of the
pseudorandom code, v = λ+log2(NxNy) is the size of the OPRF output, and
1.2 is related to cuckoo hashing utilization. The communication complexity
of [PSZ18] also follows same equation, but with a smaller k due to more
optimized oblivious transfer sub-protocol. Our protocol on the other hand
requires

1.5CσNy log2Nx

bits of communication, where C is a small constant for ciphertext expan-
sion, σ = 32 is the string length, and 1.5 is related to the cuckoo hashing
utilization with no stash. For example, when Nx = 224 and Ny = 5535,
our protocol requires only 12.5MB of communication, whereas the empirical
communication of [KKRT16] in this setting is almost 115× larger.
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This increase in communication translates into increased running times com-
pared to [PSZ18] and our protocol in the WAN settings. For instance, when
intersecting 5535 and 224 items on a 10Mbps connection, our protocol is
more than 57× faster, while [PSZ18] is only 3× faster. The total running
times are summarized in Table 6.5 to make comparison to our protocol and
to [PSZ18] easy. Since the implementation of [KKRT16] does not support
multi-threading, we only present results for T = 1.

6.6 Conclusions

Although there has been huge progress in fully homomorphic encryption
schemes since the groundbreaking work of Craig Gentry in 2009, it is still
believed by many to be too expensive for practical use-cases. However, in
this paper we have constructed a practical private set intersection protocol
using the Fan-Vercauteren scheme, adopting and combining optimizations
from both fully homomorphic encryption and cutting-edge work on PSI. We
think our protocol is particularly interesting for the private contact discovery
use-case, where it achieves a very low communication overhead: about 12MB
to intersect a set of 5 thousand items with a set of 16 million items, which
is significantly lower than in the previous state-of-the-art protocols. We
regard our work as a first step to explore the possibilities of applying fully
homomorphic encryption to private set intersection, and look forward to
further discussions and optimizations.
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Chapter 7

Improved PSI from Fully
Homomorphic Encryption

Labeled PSI from Fully Homomorphic Encryption with Malicious Security by
Hao Chen, Kim Laine & Peter Rindal, in CCS.

7.1 Introduction

Unbalanced PSI Most of the work on PSI has been designed for the bal-
anced case, where the two sets are roughly of equal size, and the two parties
have similar computation and storage capabilities. These protocols typically
perform only marginally better when one of the sets is much smaller than
the other. In particular, their communication cost scales at least linearly
with the size of the larger set. In certain applications, however, Bob’s set
may be much smaller than Alice’s. Bob might be a mobile device with lim-
ited battery, computing power, and storage, whereas Alice could be a high-
end computing device. Moreover, the bandwidth between Bob and sender
might be limited. This motivates the study of unbalanced PSI, where one
set is much larger than the other. There have recently been several pro-
posals optimizing for unbalanced PSI [CLR17, PSWW18, RA18]. Among
these works [CLR17] achieves the smallest overall communication complex-
ity, namely O(|Y | log |X|), where X denotes Alice’s set and Y Bob’s set, and
|X| � |Y |. However, their results were limited to 32-bit items due to the
significant performance overhead of extending to longer items. In this work
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we improve their protocol in terms of functionality, performance, and the
security model.

Labeled PSI In certain applications, Alice holds a label `i for each item xi
in its set, and we wish to allow Bob to learn the labels corresponding to the
items in the intersection. In other words, Bob should learn {(xi, `i) : xi ∈ Y }
as a result of the protocol execution. When Bob’s set Y consists of a single
element, this is equivalent to the (single-server variant of) Private Informa-
tion Retrieval (PIR) by keywords problem, considered first by [CGN97]. For
ease of exposition, we will stick to the concept of Labeled PSI in the rest of
the paper, noting that it is equivalent to a batched single-server symmetric
PIR by keywords.

Labeled PSI has some immediate practical applications to private web ser-
vice queries. For example, querying stock prices, location specific informa-
tion, travel booking information, or web domain name information can re-
veal information to the service providers allowing them to conduct highly
targeted price discrimination [Odl03], or to obtain sensitive personal or busi-
ness information. Another example is a variant the private contact discovery
problem [Mar14], where a user wishes to retrieve a public key for every per-
son in her contact list who has registered to an instant messaging service for
peer-to-peer communication. In this regard, Labeled PSI can provide the
necessary functionality while guaranteeing query privacy.

7.1.1 Chapter Contributions

At a high level, our contributions can be summarized as follows:

• We use an OPRF preprocessing phase to achieve improved performance
and security over [CLR17] by eliminating the need for an FHE scheme
with circuit privacy.

• We build upon [CLR17] to support arbitrary length items by imple-
menting a modified version of the generalized SIMD encoding algorithm
of [HS14].

• We extend our protocol to achieve Labeled PSI with small communi-
cation complexity.
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• We apply Labeled PSI to provide improved security against a malicious
sender.

• We achieve full simulation-based security against a malicious receiver,
improving upon [CLR17] which achieves security in the semi-honest
model.

• We explain how to perform generic computation on the intersection
and on the associated labels.

First, we improve upon the protocol of [CLR17] by leveraging a pre-processing
phase, where the parties apply an Oblivious PRF (OPRF) to their input
items. This change has two effects:

(i) Alice no longer needs to perform an expensive noise flooding operation
on the result ciphertexts, as was necessary in [CLR17]. This allows the
implementation to utilize more efficient FHE parameters, which further
improves our performance and adds flexibility to the parametrization.

(ii) The pre-processing phase allow us to argue that our protocol is secure
against a malicious receiver. In particular, we show that after the pre-
processing phase the simulator can extract Bob’s set and successfully
simulate the rest of the protocol. We show that this pre-processing
can either be performed using exponentiation [JL10, RA18] or oblivi-
ous transfer [OOS17, KKRT16]. Crucially, the former allows Alice to
perform the pre-processing only once and reuse it over many protocol
executions, which significantly improves performance in an amortized
setting, e.g. in private contact discovery.

Second, all examples in [CLR17] were limited to performing comparisons of
32-bit items, whereas applications usually require longer items such as phone
numbers, names, or public keys. The obvious extension of their protocol to fit
larger items has suboptimal performance due to the significant performance
overhead from using larger FHE parameters. We overcome this limitation by
implementing a “lazy” version of the generalized SIMD encoding algorithm
used in the HElib library [HS14], which allows encrypting fewer but longer
items into a single ciphertext without requiring the FHE parameters to be
increased.

Our third contribution is the design and implementation of a protocol for
Labeled PSI. The challenge in this setting is how to allow Bob to learn a
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label `i for each item xi ∈ X ∩ Y , while still keeping the communication
sublinear in |X|. Although many existing PSI protocols [RA18, PSWW18]
can perform this functionality with a simple modification (encrypt the labels
under their respective OPRF value), all of them fall short on the requirement
that the communication be sublinear in the larger set. We propose a method
which is similar to the original [CLR17] protocol, except that Alice evaluates
an additional polynomial which interpolates the labels. When these labels
are appropriately masked, Bob will be able to recover the label for exactly
the items in the intersection.

Fourth, we discuss how a variant of Labeled PSI can be leveraged to achieve
a reasonable notion of security against a malicious sender. For example, the
protocol of [CLR17] suffers from an attack where Alice can force Bob to out-

put its full set Y . In our protocol Bob will output X ∩Y ∩ leakage(Ŷ ), where
leakage is specified by the malicious sender and is constrained in a reasonable
way, and Ŷ denotes a hashing of the set Y (see Section 7.6.2). The high-level
idea is to perform Labeled PSI where the label for an item z is H(z) for some
hash function H. We argue that the only efficient way for Alice to return
the expected label for a receiver’s item y ∈ Y is to have the set X contain
the item y. The exact assumption we make is that Alice can not homomor-
phically compute an encryption of H(y) given an encryption of y and some
pre-determined list of encryptions of powers of y, when H is a sufficiently
complex hash function. The validity of this assumption depends on the dif-
ficulty of using leveled FHE to evaluate a circuit of depth higher than the
pre-determined upper bound. Any efficient attack on this assumption would
likely represent a very significant advancement in the state-of-the-art.

Fifth, we demonstrate how the output of the PSI computation can be secret-
shared between the parties. This immediately allows for generic computation
on the intersection using any general purpose MPC protocol. The idea be-
hind this extension is for Alice to add an additional random value to all of
the returned ciphertexts. When Bob decrypts them the two parties will hold
an additive sharing of the comparison results. From such a sharing addi-
tional computation can be performed on the intersection. For example, the
cardinality of the intersection, or the sum of the labels can be computed.

7.1.2 Summary of Notations

• X is the sender’s set; Y is the receiver’s set. We assume |X| � |Y |.

• σ is the length of items in X and Y .
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• ` is the length of labels in Labeled PSI.

• n is the ring dimension in our FHE scheme (a power of 2); q is the
ciphertext modulus; t is the plaintext modulus [FV12, DGBL+15].

• d is the degree of the extension field in the SIMD encoding.

• m is the cuckoo hash table size.

• α is the number of partitions we use to split the sender’s set X in the
PSI protocol (following [CLR17]).

• [i, j] denotes the set {i, i + 1, ..., j}, and [j] is shorthand for the case
i = 1.

7.2 The CLR17 Protocol

We now review the protocol of [CLR17] in detail. Following the architecture
of [PSSZ15], their protocol instructs Bob to construct a cuckoo hash table
of its set Y . Specifically, Bob will use three hash functions h1, h2, h3, and a
vector BR[0], . . . , BR[m] of O(|Y |) bins. For each y ∈ Y , Bob will place y in
bin BR[hi(y)] for some i such that all bins contain at most one item. Alice
will perform a different hashing strategy. For all x ∈ X and all i ∈ {1, 2, 3},
Alice places x in bin BS[hi(x)]. Note that each bin on Alice’s side will contain
O(|X|/m) items. It then holds that the intersection of X ∩Y is equal to the
union of all bin-wise intersections. That is,

X ∩ Y =
⋃
j

BR[j] ∩BS[j] =
⋃
j

{yj} ∩BS[j]

where yj is the sole item in bin BR[j] (or a special sentinel value in the case
that BR[j] is empty). The protocol then specifies a method for computing
{y} ∩ BS[j] using FHE. Bob first sends an encryption of y, denoted as JyK,
to Alice who locally computes

JzK := r
∏

x∈BS [j]

(JyK− x)

When y ∈ BS[j], observe that one of the terms in the product is zero and
therefore JzK will be an encryption of zero. JzK is returned to Bob, who
concludes that y ∈ X if z = 0. In the case that y 6∈ BS[j], the product
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will be the product of differences. Alice randomizes this product using a
uniformly sampled element r ∈ F∗ for some finite base field F used to encode
the items. As a result, z = 0 if and only if y ∈ X. Otherwise z is uniformly
distributed and independent of the set X.

Building on this general protocol, [CLR17] proposed several optimizations
which make computing this circuit computationally efficient. First, recall
that Bob has a vector of m = O(|Y |) bins, each containing (at most) a single
element y1, ..., ym. Each yj must be intersected with BS[j]. FHE naturally
supports a technique which allows encrypting vectors and performing Sin-
gle Instruction Multiple Data (SIMD) operations on the encrypted vectors
([SV14]). In this way many of the items yj can be encrypted into a single
ciphertext and processed concurrently, which results in a significant perfor-
mance improvement.

Despite this, computing JzK := r
∏

x∈BS [j](JyK − x) directly was observed
to be inefficient due to the performance penalty of using FHE to evaluate
large degree polynomials on encrypted values. The multiplicative depth of
directly computing z is O(logB) for B ≈ |X|/m, and [CLR17] reduced it to
O(log logB) using a windowing technique. Namely, observe that z can be
viewed as a polynomial P (y) = aBx

B + ...+ a1x+ a0 where the ai are deter-
mined by r and BS[j]. Alice needs to compute encryptions of all the powers
of y between 1 and B. Given an encryption of only y, this can be done in
O(logB) depth using the square multiply algorithm. However, Bob can now
assist in the computation by sending additional powers of y. For example,
if Bob sends encryptions of y20 , y21 , y22 , ..., y2logB , Alice can use these terms
to compute all necessary powers of y in multiplicative depth O(log logB).
They also partitioned Alice’s bins into α subsets. Alice can then process
each of these subsets independently. This reduces multiplicative depth fur-
ther to O(log log B

α
). The downside of this approach is that for each y several

response ciphertexts z1, ..., zα must be sent back to Bob, increasing the reply
size by a factor of α. Finally, the authors pointed out that modulus switching
to a smaller modulus can significantly improve this back-communication as
no further computations on the ciphertexts is necessary.

7.3 PSI with Long Items

The [CLR17] protocol achieves good performance for 32-bit items and scales
well to very large sets on Alice’s side. However, it scales less well for longer
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items for the following reasons. Suppose the effective item length is σ bits.
Then they need to set the plaintext modulus in the FHE scheme to t ≈ 2σ.
Now let L denote the depth of the homomorphic evaluation at Alice’s side. In
[CLR17] the depth L depends double-logarithmically on |X|. Hence for our
purposes we assume L is a constant. Then, the BFV scheme requires log q &
L log t for correctness, but using the complexity estimates in Section 2.1.4
we see that the communication cost of [CLR17] grows linearly with σ; on
the other hand, the computational cost grows quadratically with σ, which is
undesirable.

Another side-effect of large σ comes from the security requirement: it drives
up the FHE parameters t and q, and in order to keep the security level on par,
the parameter n needs to increase as well. Now two cases can arise: if |Y | is
large compared to n then—since increasing n will increase the number of slots
in each ciphertext—we end up using fewer ciphertexts, and the performance
overhead is small; on the other hand, if |Y | is of similar size as the previous
n value then—after switching to new value of n—many slots could remain
unused, which means the communication cost went up for no benefit.

Regardless of the initial length of the items, it is customary to apply a hash
function of output length λ + log |X| + log |Y |, and perform the intersec-
tion protocol on these short hashes. Here λ denotes the statistical security
parameter. In practice, we set λ = 40, thus we require t to be roughly 80
bits. However, using such a large value for t has a huge impact on the per-
formance of the [CLR17] protocol. In this work, we resolve this issue by
using the general SIMD encoding method proposed in [SV14], which allows
coefficient-wise operations on vectors of flexible length and width. More pre-
cisely, for a tunable parameter d, we can operate on vectors of length n/d,
where each entry can take td different values (when d = 1, this is the SIMD
method used in [CLR17]).

More precisely, the plaintext space of BFV scheme equals Rt = Zt[x]/(xn+1).
Suppose t is a prime number, and xn + 1 (mod t) factors into a product of
irreducible polynomials {Fj(x)}, each of degree d. Moreover, suppose d is
the smallest positive integer such that td ≡ 1 (mod 2n). Then the SIMD
encoding can be explained as the following two isomorphisms

Rt
φ−→
∏
j

Zt[x]/(Fj(x))
ψ−→

n/d∏
i=1

Ftd

where Ftd is a fixed finite field of td elements. Now SIMD encoding corre-
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sponds to φ−1 ◦ ψ−1, and decoding is the isomorphism ψ ◦ φ.

7.3.1 Trade-Offs for SIMD with Wider Slots

Communication cost The concrete communication cost of our PSI pro-
tocol can be computed in the following way: the query consists of m/k ·
(log(|X|/m)) ciphertexts, where k = n/d is the number of slots supported in
a ciphertext, and m = O(|Y |). Each ciphertext has size 2n log q = 2nL log t
bits. Here log t ≈ σ/d, since every element in the finite field Ftd can represent
a d log t-bit item. The reply from Alice consists of m/k · α ciphertexts, each
with size roughly 2n log(tn) bits.1

We view |Y | (and m), |X|, n, and L as constants. Then the query size is a
constant multiple of log d + log |X| − log n, so increasing d will increase the
query size. However, in our setup we usually have log |X| � log n. Since
d < n always, the log |X| term dominates. The reply size is also slightly
worse for larger d, but its effect is small.

Computational cost Alice’s online computation consists of Θ(|X|/k) ho-
momorphic multiplications, each taking n log n(log q)2 bit operations. After
hiding all the constants, we see that the computational cost is Θ(1/d), so
increasing d has a direct positive effect on the online computing time.

Effect of choosing different n Using a larger value of d has another im-
plicit benefit: it allows choosing a smaller t for the same item bit-length,
hence one can choose a smaller q, which also opens the possibility of choos-
ing a smaller n. We can use the above heuristics to analyze the effect of
changing n.

The computational cost is |X|/d log n ·L2σ2 bit operations, and communica-
tion is

m(2d log n+ σ)α +m log(
|X|d
n

) · 2Lσ ,

1This is because we can perform the modulus switching trick to reduce the modulus to
q′ ≈ tn.
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so both the computation and communication depend only logarithmically
on the value of n. Therefore, its effect on performance is marginal when
the other parameters are held fixed. We conclude that under the same setup,
using wider slots (i.e. a larger value of d) to encode items result in larger com-
munication and smaller on-line computation. On the other hand, the effect
of the ring dimension n on overall performance is small if other parameters
are held fixed.

7.3.2 Lazy SIMD Encoding Algorithm

[SV14] suggested that an FFT algorithm can be utilized for fast SIMD en-
coding and decoding. The FFT algorithm is very efficient when d is small,
but for larger values of d there exist more efficient algorithms. For ex-
ample, the HElib library [HS14] performs the encoding in two steps. Let
Fj = Zt[x]/(Fj). They first map (Ftd)k to F1 × · · · × Fk through k field
isomorphisms. Then a tree-based CRT algorithm is used to invert the first
map φ: given fj(x) ∈ Zt[x]/(Fj), return f ∈ Zt[x]/(F ), such that fj = f
mod Fj.

We make the observation that the second map ψ can sometimes be omitted
in the encoding. Indeed, it is necessary if one wishes to homomorphically
permute items in the Ftd slots. Since our current application does not require
such permutations, we could skip this step and solely use ψ and its inverse
for decoding and encoding. This saves computation time as well as storage,
since evaluating ψ requires the information of the isomorphisms Fj → Ftd .

On the other hand, the FFT algorithm can perform ψ ◦ φ in one step, and
there are fast algorithms that work with the xn + 1 modulus. However, a
natural way to utilize FFT in this scenario seems to require working with
data of length n, using the 2n-th roots of unity in Ftd . The complexity of
such an algorithm is O(n log n) operations in Ftd .

To determine the optimal strategy, we performed a comparison by imple-
menting both the lazy encoding algorithm and the FFT algorithm using
FLINT [HJP13] and present the results in Figure 7.1. From the results we
can see that the lazy encoding algorithm has a speed advantage which grows
with the extension degree d.
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log n t d FFT time (ms) Lazy SIMD time (ms)

11 0x2E01 8 3.3 1.5
12 0x13FF 8 12 4
13 0x3401 16 32.6 9.2
14 0x2A01 64 512 23.5

Table 7.1: Comparison of SIMD encoding algorithms.

7.4 OPRF Pre-processing

We now demonstrate how a pre-processing phase can be performed to facili-
tate a more efficient online phase. The core idea is to first update the values
being intersected using an oblivious PRF, where only Alice knows the key.
This has the effect that several costly countermeasures employed by [CLR17]
to protect Alice’s set can be eliminated.

7.4.1 The CLR17 Approach

The [CLR17] protocol performs noise flooding to prove the security for Alice.
The need for this stems from the fact that noise growth in homomorphic
operations depends not only on the ciphertexts being operated on, but also on
the underlying plaintexts. Thus, their security proof cannot work if the result
ciphertexts are not re-randomized at the end, and if the underlying noise
distribution is not hidden by flooding the noise by an appropriate number of
bits.

There are at least two different problems with this approach. First, it requires
Alice to estimate a heuristic upper bound on the size of noise, and ensure
that there is enough noise room left to perform an appropriate amount of
noise flooding. This makes it impossible to run their protocol with small
FHE parameters, even for very small sets. Also, their protocol is fragile
against malicious attacks. For example, Bob can insert more noise into its
ciphertexts, causing Alice to noise-flood by fewer bits than it thinks. Now,
by examining the noise distribution after the PSI computation, Bob can
potentially obtain extra information about Alice’s set.
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7.4.2 Our Solution

We take a different approach to solving this problem, allowing us to get rid
of noise flooding altogether. Namely, we use an OPRF to hash the items
on both sides before engaging in the PSI protocol. This ensures that Alice’s
items X \Y are pseudo-random in Bob’s view, preventing Bob from learning
anything about the original items, even if it learns the hashed values in full.

Abstractly, we have Alice sample a key k and instruct it to locally compute
X ′ = {Fk(x) | x ∈ X}. Bob then interactively applies the OPRF to its set,
obtaining Y ′ = {Fk(y) | y ∈ Y }. From a security perspective it is now safe to
send X ′ to Bob, who can infer the intersection from X ′ ∩ Y ′. However, this
approach incurs a very high communication overhead, since X ′ can easily be
over a gigabyte. Several recent works [PSWW18, RA18] try to tackle this
problem by encoding X ′ in a compressed format, e.g. a Bloom filter or a
cuckoo filter. However, the communication remains linear in the set |X|, and
the compression can introduce false positives such as in the case of [RA18].

Our approach sidesteps this issue by applying an FHE-based PSI protocol to
the sets X ′ and Y ′. Overall, the communication complexity of our protocol
is O(|Y | log |X|), as opposed to O(|Y | + |X|) in the case of e.g. [PSWW18,
RA18]. As previously described, we do not need to worry about noise flood-
ing unlike [CLR17], since the OPRF already provides sufficient protection.
This allows our protocol to use FHE parameters that are highly optimized,
improving our performance and communication overhead.

More broadly, applying the OPRF to the sets also eliminates the need to
perform two other procedures which protect Alice’s set. First, recall that
Alice performs simple hashing where its |X| items are mapped to O(|Y |)
bins using three hash functions. In the original [CLR17] protocol all of these
bins must then be padded with dummy items to an upper bound. This
prevents some partial information from being leaked to Bob, e.g. m items
hash to bin i, which implies that |{x ∈ X | h(x) = i}| = m. However, in
the case that the OPRF is applied, the number of items in any given bin is
a function of X ′, and therefore can be made public.

Secondly, the polynomials that Alice evaluates using Bob’s set need not be
randomized. Recall that in [CLR17] Alice evaluates homomorphically a poly-
nomial of the form F (y) = r

∏
x∈X(y−x), where r ← F∗ is sampled uniformly

at random each time the protocol is executed. This additional randomization
was required to ensure that Bob does not learn the product of differences be-
tween y andX. It also has a significant impact on performance, as it increases
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the multiplicative depth by one. However, after the OPRF is applied, this
polynomial is formed with respect to X ′—not X—and therefore revealing
the product of differences is no longer a security risk, since X ′ can securely
be made public.

We consider two types of OPRFs which have different trade-offs. The first
is a Diffie-Hellman based OPRF described by [JL10, RA18], which allows
Alice to reuse OPRF values with many independent receivers, allowing for
the cost of applying the OPRF to Alice’s set to be amortized. Alternatively,
an oblivious transfer based OPRF [OOS17, KKRT16] case be used, which is
computationally more efficient, but can not be reused across several receivers.

7.4.3 DH-OPRF Pre-Processing

The Diffie-Hellman based OPRF protocol of [JL10] computes the function
Fα(x) = H ′(H(x)α), where H is a hash function modeled as a random oracle.
This style of OPRF has been used several times in the context of PSI, e.g.
in [Mea86, FIPR05, JL10, RA18]. In more detail, let G be a cyclic group
with order q, where the One-More-Gap-Diffie-Hellman (OMGDH) problem
is hard. H is a random oracle hash function with range Z∗q. Alice has a key
α ∈ Z∗q and Bob has an input x ∈ {0, 1}∗. Bob first samples β ← Z∗q and
sends H(x)β to Alice, who responds with (H(x)β)α. Bob can then output
H ′(H(x)α) = H ′(((H(x)β)α)1/β). The outer hash function H ′ is used to
map the group element to a sufficiently long bit string, and helps facilitate
extraction in the malicious setting.

In particular, by observing the queries made to H(xi), the simulator can col-
lect a list of pairs {(xi, H(xi))} which are known to Bob. From this set the
simulator can compute the set A = {(xi, H(xi)

α)}. For some subset of the
H(xi), Bob sends {H(xi)

βi} to the simulator, who sends back {H(xi)
βiα}.

For Bob to learn the OPRF value for xi, it must send H(xi)
α to the random

oracle H ′. At this time the simulator extracts xi if (xi, H(xi)
α) ∈ A. Al-

though this OPRF does not facilitate extracting all xi at the time the first
message is sent, extraction is performed before Bob learns the OPRF value,
which will be sufficient for our purposes.

In the context of our PSI protocol, this OPRF has the property that Alice
can use the same key with multiple receivers. This allows Alice, who has a
large and often relatively static set, to pre-process its set only once. This
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is particularly valuable since our protocol also allows for efficient insertions
and deletions of data from the pre-processed set.

7.4.4 OT-OPRF Pre-Processing

An alternative approach is to use recent advances in Oblivious Transfer (OT)
extension protocols [KKRT16, OOS17], which enable a functionality very
similar to a traditional OPRF. The relevant difference is that Bob can only
learn one OPRF output per key. This restriction mandates that the OPRF be
used in a different way. In particular, we follow the PSZ paradigm [PSZ14,
PSSZ15, PSZ18, KKRT16], where the OPRF is applied to the items after
cuckoo hashing. First the parties perform cuckoo hashing, which ensures
that Bob has at most one item per hash table bin. The parties then run
an OT-based OPRF protocol, where Alice assigns a unique key to each bin.
Bob updates the values in the cuckoo table with the OPRF outputs, while
Alice similarly updates the values in its simple hash table. Note that Alice
can learn an arbitrary number of OPRF outputs per key, which allows it to
update all the values in each bin.

Another restriction with this approach is that Alice must pad its simple
hash table with dummy items to ensure that Bob does not infer any partial
information. That is, since the OPRF is applied after hashing, the number
of items in any given bin is a function of X instead of the hashed set X ′. It
is therefore critical that the bins be padded to their maximum possible size,
as was done in [CLR17].

As with the Diffie-Hellman based OPRF, Bob’s input can be extracted. The
exact details how how these protocols extract is quite involved, and we defer
to [OOS17] for a detailed explanation.

7.5 Labeled PSI

We present two related approaches for enabling Labeled PSI. The first is
compatible with the [CLR17] protocol, while the latter is optimized to take
advantage of the OPRF pre-processing phase. This section will be presented
in terms of Bob with a singleton set {y} and obtaining the label `i if and
only if Alice has a pair (xi, `i) in its set for which y = xi. The approaches
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naturally extend to the general setting by using cuckoo hashing on Bob’s
side.

7.5.1 Compatible With CLR17

We employ an idea of interpolation polynomials, also used in [FIPR05], to
build our labeled PSI protocol. Recall that in the [CLR17] protocol the server
homomorphically evaluates the polynomial F (y) = r∗

∏
x∈X(x − y), where

r∗ is a random nonzero element in some finite field F, and the coefficients of
the polynomial F (y) are elementary symmetric polynomials in the x ∈ X.
It has the property that if y ∈ X, then F (y) = 0; otherwise F (y) is a
random element in F∗. In the Labeled PSI case, Alice’s input is a list of pairs
{(xi, `i)}Di=1, where for simplicity we assume xi and `i are elements of F. Our
goal is to construct a polynomial G, such that for any y ∈ F

G(y) =

{
`i if y = xi;

random element in F otherwise.

Note that there exists a polynomial H(x) of degree less than D = |Y |, such
that H(yi) = `i for all 1 ≤ i ≤ D. Then, we select r ∈ F randomly, and let

G(y) = H(y) + rF (y).

It is easy to verify that G has the desired property: if y = xi, then G(y) =
H(xi) = `i; if y /∈ X, then since F (y) 6= 0 and r is random, we know
that G(y) is a random element in F. At a high level, our protocol has Bob
encrypt and send each of its items y using the FHE scheme; Alice evaluates
the polynomials G and F homomorphically, and sends the results back. Bob
then decrypts and obtains (F (y), G(y)), which is either equal to (0, pi) if
y = xi, or uniformly random in F∗ × F.

Note that in the above discussion, we implicitly assumed that labels are of
the same size as the items. In case the labels are longer than the items,
we can break down each label in chunks, and have the server repeat its
computation several times. Finally, Bob can decrypt the parts of the label
and re-assemble. The security proof is not affected, because in the case of a
non-match, all the decrypted parts will be random strings.
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Communication complexity We utilize the optimizations in [CLR17],
with the modification that Alice homomorphically evaluates several polyno-
mials instead of one. Hence, the communication complexity for our Labeled
PSI is equal to O(|Y | log |X|σ + |Y |`), and the online computation com-
plexity is O(|X|`), where σ and ` denote the lengths of items and labels,
respectively. Note that by hashing the items beforehand, we can assume
σ = λ+ log |X|+ log |Y |, where λ is the statistical security parameter.

Computational complexity This Labeled PSI protocol introduces two
additional computational tasks on top of the PSI protocol of [CLR17]. In

the offline phase, Alice needs to interpolate a polynomial of degree B′ ≈ |X|
mα

.
The Newton interpolation algorithm has complexity O(B′2), and is fast for
small values of B′. The algorithm needs to be executed mα times, so the total

complexity is O( |X|
2

mα
) · `/σ. In the online phase, Alice needs to evaluate the

interpolated polynomials homomorphically, which has a cost of O( |X||Y |
m2 ·`/σ)

FHE operations. Compared to the complexity of the PSI protocol in [CLR17],
Alice’s computation of labeled PSI grows by a factor of `/σ, i.e. by the ratio
of the label length and the item length.

7.5.2 OPRF Optimized Labeled PSI

If the parties perform the OPRF pre-processing phase, this procedure can
be significantly improved. The core idea is to first encrypt all of the labels
using the associated OPRF values as the key. All of these encrypted labels
can then be sent to Bob, who uses the OPRF values for the items in its set
to decrypt the associated labels. We stress that this approach requires no
security guarantees from the homomorphic encryption scheme to ensure that
information is not leaked to Bob about labels for items not in the intersection.

To avoid linear communication when sending these encrypted labels, we have
Alice evaluate a polynomial which interpolates the encrypted labels, effec-
tively compressing the amount of data that needs to be communicated. In
more detail, Alice first computes (x′i, x

′′
i ) = OPRFk(xi) for all xi in its set X.

Here, x′i will be used as the OPRF value for computing the intersection as
before, while the second part x′′i will be used to one-time-pad2 encrypt the
label as `′i = `i + x′′i . Alice then computes a polynomial G with minimal
degree such that G(x′i) = `′.

2Note that x′′i can be extended to an arbitrary size `i using a PRG.
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One of the main advantages of this approach is that the degree of the online
computation is reduced due to G not requiring additional randomization.
Recall from above that the result of evaluating the symmetric polynomial F
has to be randomized by multiplying with a nonzero r. This increases the
degree of the computation by one, which can require larger FHE parameters.

Looking forward, our approach for improved security against a malicious
sender requires the use of Labeled PSI, but interestingly does not require the
evaluated symmetric polynomial F (y) to be sent back to Bob. As such, by not
requiring F in the computation of the labels, we gain an addition performance
improvement in the malicious setting by not computing or evaluating F .

7.5.3 Full Protocol

We present our full protocol for labeled PSI in Figure 7.2.

7.6 Malicious Security

We will now show that our protocol is secure against a malicious receiver,
while providing privacy against a malicious sender. Moreover, we will char-
acterize the set of attacks that Alice can perform.

7.6.1 Malicious Receiver

With the addition of the OPRF pre-processing phase, it is relatively straight-
forward to show that our protocol achieves full security in the presence of
a malicious receiver. First, Bob performs |Y | OPRF invocations and re-
ceives the corresponding values. From this, Bob homomorphically encrypts
its queries, and sends it to Alice. At this point the simulator extracts Bob’s
input Y , and forwards it to the ideal functionality, which responds with
X∗ = X ∩ Y . The simulator pads X∗ with random values not in Y to the
size of |X|, and then inserts X∗ into the simple hash table as would be done
for Y . Finally, the simulator completes the protocol. The correctness of
the simulator directly follows the proof of [JL10]. In particular, all OPRF
values apart from the |Y | which were extracted are uniformly distributed in
Bob’s view. As such, padding X∗ with uniformly distributed values induces
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Input: Receiver inputs set Y ⊂ {0, 1}∗ of size Ny; sender inputs set X ⊂ {0, 1}∗ of
size Nx. Nx, Ny are public. κ and λ denote the computational and statistical security
parameters, respectively.
Output: Bob outputs Y ∩X; Alice outputs ⊥.

1. [Sender’s OPRF] Alice samples a key k for the [JL10] OPRF F : {0, 1}∗ →
{0, 1}κ. Alice updates its set to be X ′ = {H(Fk(x)) : x ∈ X}. Here H is a
random oracle hash function with a range of σ = log2(NxNy) + λ bits which is
sampled using a coin flipping protocol.

2. [Hashing] The parameter m is agreed upon such that cuckoo hashing Ny balls
into m bins succeed with probability ≥ 1− 2−λ. Three random hash function
h1, h2, h3 : {0, 1}σ → [m] are agreed upon using coin flipping. Alice inserts all
x ∈ X ′ into the sets B[h1(x)],B[h2(x)],B[h3(x)].

3. [Choose FHE parameters] The parties agree on parameters (n, q, t, d) for
an IND-CPA secure FHE scheme. They choose t, d to be large enough so that
d log2 t ≥ σ.

4. [Choose circuit depth parameters] The parties agree on the split parameter
B < O(|Y |/m) and windowing parameter w ∈ {2, . . . , log2B} as to minimize
the overall cost.

5. [Pre-Process X]

(a) [Splitting] For each set B[i], Alice splits it into α subsets of size at most
B, denoted as B[i, 1], . . . ,B[i, α].

(b) [Computing Coefficients]

i. [Symmetric Polynomial] For each For each set B[i, j], Alice com-
putes the symmetric polynomial Si,j over Ftd such that Si,j(x) = 0
for x ∈ B[i, j].

ii. [Label Polynomial] If Alice has labels associated with its set, then
for each set B[i, j], Alice interpolates the polynomial Pi,j over Ftd
such that Pi,j(x) = ` for x ∈ B[i, j] where ` is the label associated
with x.

(c) [Batching]

View the polynomials Si,j as a matrix where i indexes the row. For
each set of n/d rows (non-overlapping and contiguous), consider them
as belonging to a single batch. For b-th batch and each j, take the k-
th coefficient of the n/d polynomials, and batch them into one FHE
plaintext polynomial Sb,j .

For Labeled PSI, perform the same batching on the label polynomials
Pi,j to form batched FHE plaintext polynomials P b,j .

Figure 7.1: Full Labeled PSI protocol (sender’s offline pre-processing).

the same distribution. Compared to [JL10], the primary difference in our
protocol is the use of FHE to compress the amount of communication.
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7. [Encrypt Y ]

(a) [Receiver’s OPRF] Bob performs the interactive OPRF protocol of
[JL10] using its set Y as private input. Alice uses the key k as its private
input. Bob learns Fk(y) for y ∈ Y and set Y ′ = {H(Fk(y)) : y ∈ Y }.

(b) [Cuckoo Hashing] Bob performs cuckoo hashing on the set Y ′ into a
table C with m bins using h1, h2, h3 has the hash functions.

(c) [Batching] Bob interprets C as a vector of length m with elements in
Ftd . For the bth set of n/d (non-overlapping and contiguous) in C, Bob
batches them into a FHE plaintext polynomial Y b.

(d) [Windowing] For each Y b, Bob computes the component-wise i ·wj-th
powers Y

i·2j
b , for 1 ≤ i ≤ w − 1 and 0 ≤ j ≤ blogw(B)c.

(e) [Encrypt] Bob uses FHE.Encrypt to encrypt each power Y
i·2j

and for-
wards the ciphertexts ci,j to Alice.

8. [Intersect] For the bth batch,

(a) [Homomorphically compute encryptions of all powers] Alice re-
ceives the collection of ciphertexts {ci,j} and homomorphically computes
a vector c = (c0, . . . , cα), such that ck is a homomorphic ciphertext en-

crypting Y
k

b .

(b) [Homomorphically evaluate the dot product] For each Sb,1, ..., Sb,α,
Alice homomorphically evaluates

zb,j =
∑

c · Sb,j

and optionally performs modulus switching on the ciphertexts zb,j to
reduce their sizes. All zb,j are sent back to Bob. If Labeled PSI is desired,
repeat the same operation for P and denote the returned ciphertexts qb,j .

9. [Decrypt and get result] For the b-th batch, Bob decrypts the ciphertexts
zb,1, ..., zb,α to obtain rb,1, ..., rb,α, which are interpreted as vectors of n/d ele-
ments in Ftd .

Let r∗1 , ..., r
∗
α be vectors of m elements in Ftd obtained by concatenating r∗j =

r∗1,j ||...||r∗md/n,j . For all y′ ∈ Y ′, output the corresponding y ∈ Y if

∃j : r∗j [i] = 0 ,

where i is the index of the bin that y′ occupies in C.
If Labeled PSI is desired, perform the same decryption and concatenation pro-
cess on the qb,j ciphertexts to obtain the m element vectors `∗1, ..., `

∗
α. For each

r∗j [i] = 0 above, output the label of the corresponding y to be `∗j [i].

Figure 7.2: Full Labeled PSI protocol continued (online phase).
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7.6.2 Malicious Sender

Achieving full simulation based security against a malicious sender is ex-
tremely challenging in our setting. Arguably, the most significant barrier is
that we require the communication complexity to be sublinear in the size of
Alice’s set. This makes traditional methods for extracting their set, e.g. ZK
proofs [JL10], not viable due the associated communication overhead being
linear.

The second biggest challenge is to enforce that Alice performed the correct
computation. In our protocol Alice can deviate from the prescribed protocol
in numerous way. For instance, it is well known [FIPR05, RR17a] that Alice
can incorrectly perform simple hashing, which allows Bob’s output distribu-
tion to depend on Bob’s full set. Moreover, in our protocol the situation is
even worse in that Alice obtains a homomorphically encrypted copy of Bob’s
set. Instead of using it to evaluate our PSI circuit, Alice has a large degree
of freedom to compute a different circuit, which may arbitrarily depend on
Bob’s set.

For example, it is trivial for Alice to force Bob to output their full set.
Recall that in [CLR17], and in our semi-honest protocol, when the returned
ciphertext contains a zero, Bob interprets this to mean their corresponding
item is in the intersection. A straightforward attack for Alice would then
be to simply encrypt and return a vector of zeros if it holds a public key, or
otherwise return an all zero ciphertext.3 Bob would then conclude that its
full set is the intersection.

Faced with these significant challenges, we choose to forgo simulation based
security when in the presence of a malicious sender. Instead, we show that (1)
our basic protocol achieves privacy against a malicious sender; (2) a simple
modification of our protocol can significantly restrict the class of attacks that
a malicious sender can perform.

Privacy

This notion of privacy against a malicious sender and full security against Bob
has previously been considered in the context of PSI by Hazay and Lindell

3The homomorphic encryption library used may or may not reject such a ciphertext as
invalid. If it does, Alice can still multiply any ciphertext obtained from Bob by a nonzero
plaintext mask that sets all but one vector slot value to zero, leading Bob to interpret all
but one item as matching.
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[HL10]. Informally, privacy guarantees that Alice learns nothing about that
receiver’s input. This is a relaxation of simulation based security in that, for
example, we do not achieve independence of inputs, nor guarantee output
correctness. For a formal description we refer the reader to [HL10, Definition
2.2].

Showing that our protocol achieves privacy is relatively straightforward since
Alice receives no output. Conceptually, we can divide our protocol into two
phases: the OPRF pre-processing phase, and the main intersection phase.
Privacy in the pre-processing phase naturally follows from the security of
OPRF. That is, Alice can not learn any partial information about Bob’s
inputs. Similarly, all messages that are received by Alice in the main phase
are homomorphically encrypted, and therefore guarantee that no information
is revealed.

Restricting Attacks

First we consider the setting where Alice does not reuse the result of the pre-
processing phase with multiple receivers. Here our technique for restricting
the types of attacks Alice can perform is inspired by Labeled PSI combined
with the fact that evaluating a high-depth circuit using leveled FHE which
supports much smaller depth is hard—if not impossible. In particular, for
Bob to conclude that an item y is in the intersection, we require that Alice
return an encryption of the label z = H(OPRFk(y)), where H is a sufficiently
complex hash function which we model as a random oracle, e.g. SHA256.
Intuitively, Alice has two options for computing z: (1) it must know some x =
y and locally compute z = H(OPRFk(y)); (2) it must use Bob’s encrypted
set of {OPRFk(y)}to homomorphically evaluate a circuit that computes H
using the given leveled FHE scheme under the fixed encryption parameters
that the two parties have agreed to use.

We heuristically argue that evaluating such a circuit is extremely difficult—if
not impossible—using leveled FHE, where the parameters are chosen to sup-
port a much smaller multiplicative depth. While there is no guarantee that a
high degree polynomial can not be evaluated, we experimentally find that for
our parameters the noise level always overflows when even a few extra mul-
tiplications are performed. In addition, hash functions such as SHA256 have
very high depth, and seem extremely difficult to evaluate using arithmetic
FHE schemes due to the switching between binary and modular arithmetic
(in SHA256). Moreover, the depth of H can be increased arbitrarily by re-
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peatedly applying the hash function, and the number of repetitions can be
decided after the encryption parameters have been selected.

Under the assumption that evaluating H is infeasible under the given (lev-
eled) FHE scheme, Alice must know an encryption of OPRFk(y) to be able
to compute an encryption of H(OPRFk(y)). As such, Alice is restricted to
choosing a set X ′ of polynomial size, possible larger than |X|, and using this
in the PSI protocol. We note that Alice is not committed to its set X, and
can use an arbitrary subset of it in each protocol invocation. However, this
does imply that for a receiver’s set Y with high entropy, e.g. a set of public
keys, Alice has no efficient way to influence the intersection to contain an
item in Y \X. Hence the intersection will be of size at most X ∩ Y .

On the other hand, Alice is still able to make the intersection indirectly
depend on the set Y \X. In particular, Alice can choose a low-depth circuit
leakage(·) and is able to influence the intersection to be

X ∩ Y ∩ leakage(Ŷ ) ,

where Ŷ is Bob’s cuckoo hash table containing the OPRFvalues for its set Y ,
and additionally certain powers of these values if windowing is used. This
leakage function models the fact that Alice can perform some malicious com-
putation with Bob’s encrypted hash table. This allows Alice to conditionally
remove items from the intersection based on items which are in Y \X. While
such an attack can be serious in some settings, this leakage is significantly
less than in [CLR17], where Alice can force the intersection to be Y .

Now we turn our attention to the setting where Alice reuses the pre-processing
phase with multiple receivers. Here the hashing parameters have to be fixed
and reused. In particular, the cuckoo hash function and the hash function
H used to hash to σ bit strings are picked by Alice. This deviates from the
specification in Figure 7.2 steps (1) and (2), where the parties jointly sam-
ple random hash functions. This has the implication that Alice can select
hash functions which conditionally fail based on Bob’s set Y . For example, if
y, y′ ∈ Y both hash to cuckoo position i under all three hash function, cuckoo
hashing will fail. This failure would be observable by Alice, and leak that
Bob’s set is a member of all the sets which fail to cuckoo hash under these
parameters—a single bit of information. While this particular attack may
happen with negligible probability, it is possible that a more sophisticated
selective failure attack could succeed with noticeable probability.

While such attacks can be serious, we argue that many applications can
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tolerate leaking a single bit. One countermeasure which can be employed
is to sample the hash functions from a public reference string. This could
significantly restrict the effectiveness of such selective failure attacks, as the
hash functions are then fixed.

7.7 Experiments

We implemented our protocols (unbalanced PSI for arbitrary length items,
and Labeled PSI) and benchmarked against previous methods. For unbal-
anced PSI with both long and short items our points of comparison are
[RA18, BBDC+11] and [CLR17] respectively. For labeled PSI, we com-
pare with multi-PIR by keyword from the multi-query SealPIR solution
of [ACLS17].

Our implementation is built from scratch on top of the homomorphic encryp-
tion library SEAL v2.3.0-4, which is based on the BFV scheme [FV12]. We
give a detailed report of the end-to-end and online running times along with
the communication overhead of our protocol in Figure 7.2, both in single
and multi-threaded settings. We restrict Bob to at most 4 threads to model
a low power device, while Alice utilizes up to 32 threads as denoted in the
table. Figure 7.3 shows a comparison with the unbalanced PSI protocols of
[RA18, BBDC+11, CLR17].

We benchmark the protocols on a 32-core Intel Xeon CPU with 256 GB of
RAM. We note that this machine is similar to that utilized by [CLR17], and
that the numbers reported for their protocol are obtained directly from their
paper. All protocols are ran in the LAN setting with a 10 Gbps throughput,
and sub-millisecond latency.

7.7.1 Unbalanced PSI

Figure 7.2 contains our main set of performance numbers and demonstrate a
wide flexibility in set sizes. For Alice, we consider set sizes of 220, 224 and 228,
while Bob’s set sizes range between 128 and 4096. We note that for each of
Bob’s set sizes, approximately 1.33 times more items could be added with no
difference in performance due to extra space in the cuckoo table. However,
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to give a fair comparison with other protocols without parameter restrictions
we round down to the nearest power of two.

We begin with our performance numbers for the smallest set sizes of |X| = 220

and |Y | = 128. For such a small intersection our protocol is extremely
efficient, requiring an online time of less than a second on a single thread, and
only 4.7 MB of communication. When Bob’s set is increased to 512 items we
observe only a minimal increase in running time and communication. Moving
to our largest receiver set size of 4096, we observe roughly a 4× increase in
online running time and communication. This sublinear linear growth in
overhead with respect to Bob’s set size is attributed to the ability to use
more efficient FHE parameters.

With respect to Alice’s offline running time, we observe that in almost all
cases with |X| = 220 the running time is roughly 40 seconds on a single
thread. The one exception is for |Y | = 256, which has double the running
time. This is attributed to the FHE parameters used that allowed an efficient
online time at the expense of increased computation during the offline phase.

Increasing Alice’s set size to |X| = 224 we observe a similar trend, where a
smallest set sizes for Bob all obtain the same performance. Indeed, for |Y | =
128, 256, 512 the same FHE parameters were utilized, which yield a single
thread online running time of 9.1 seconds, and 11.2 MB of communication.
The choice to use oversized parameters for the smaller set sizes stems from
the highly complex interplay between the parameters that can be optimized,
while also maintaining a computational security level of128 bits. We refer to
Section 7.3.1 for a more detailed explanation.

For a receiver’s set size of 4096 we observe an online running time of 22
seconds in the single thread setting, and 24.6 MB of communication. Alice’s
offline time required 807 seconds on a single thread, or 32 seconds on 32
threads. Interestingly, this offline running time is faster as Alice’s set size
increases. Among other things, this is the result of Alice’s database having
fewer items per bin as |Y | increases, which in turn decreases the degree of the
polynomials Alice needs to compute in pre-processing, resulting in improved
performance.

In addition, we consider the case of |X| = 228 which, as far as we are aware
of, is the largest PSI set size to have ever been considered in the two party
setting, and is only surpassed in a weaker model where an untrusted third
party assists in the computation [KMRS14]. For this case we consider a
receiver’s set size of 1024, and observe that the online phase can be performed

165



|X| |Y | Sender offline Online Comm.
T=1 4 8 32 T=1 4 8 32 R→ S R← S

228
2048 – – – 4,628 – – – 28.5 23.6 10.2
1024 – – – 4,628 – – – 12.1 16.4 10.2

224

4096 806 206 111 32 22.0 5.9 3.5 2.2 17.4 7.2
2048 747 483 58 18 12.6 3.4 2.0 1.4 16.4 8.1
1024 1430 418 155 51 17.7 5.2 2.9 1.1 6.1 5.1
512 1368 267 146 45 9.1 2.6 1.5 0.7 6.1 5.1
256 1368 267 146 45 9.1 2.6 1.5 0.7 6.1 5.1
128 1368 267 146 45 9.1 2.6 1.5 0.7 6.1 5.1

220

4096 43 6.1 3.3 1.2 4.2 1.3 1.3 1.2 8.4 7.2
2048 39 4.9 2.7 1.1 2.1 0.7 0.6 0.6 5.7 3.6
1024 40 5.1 2.9 1.1 2.0 0.7 0.5 0.5 4.9 2.5
512 36 5.5 2.6 0.5 1.0 0.4 0.3 0.3 2.9 2.5
256 87 18.4 9.5 3.3 2.4 0.8 0.6 0.3 4.2 1.0
128 46 6.7 3.8 1.2 0.9 0.4 0.3 0.2 1.7 3.0

Table 7.2: Performance metrics of our protocol in the LAN setting for vari-
ous set sizes. “Sender offline” reports the running time in seconds required to
initialize Alice’s set. This is non-interactive and can be reused with multiple
receivers. “Online” reports the end-to-end running time in seconds required
to perform the intersection, where the “Comm.” columns report the direc-
tional communication requirements in MB. T is the number of threads used
by Alice. Bob uses max{T, 4} threads.

in just 12 seconds when Alice and receiver respectively use 32 and 4 threads.
At the same time, the online phase utilizes only 35 MB of communication.
The primary impact of such a large set size is on Alice’s offline running
time. However, in cases where such a large set is used, it is highly likely
that the set is held by a powerful server and is relatively static, in which
case Alice can amortize the cost of the pre-processing across several protocol
executions. We also note that our protocol allows fast additions and deletions
from the pre-processed set by updating only small targeted locations when
necessary. Moreover, the current implementation of the offline phase is far
from optimal in that there exists more efficient algorithms for computing
coefficients of Alice’s polynomials, which is the primary bottleneck.

7.7.2 Comparison

We now move on to the comparison with the OPRF-based protocols of [RA18,
BBDC+11] and the FHE-based protocol of [CLR17]. First we recall the
protocol paradigm of [RA18, BBDC+11, JL10]. These protocol utilize the
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same Diffie-Hellman based OPRF as our protocol, where Alice holds the key
k and applies the OPRF to its set X to obtain X ′ = {Fk(x) : x ∈ X}. Bob
then interactively computes Y ′ = {Fk(y) : y ∈ Y }. Next Alice sends X ′ to
Bob, who infers the intersection from X ′ ∩ Y ′ [JL10].

The main limitation of this approach is that Bob requires communication
linear in the larger set X. The protocol above was first described in the
malicious setting by [JL10], and later optimized for the semi-honest setting
by [BBDC+11]. For modest size X this approach works reasonably well. For
instance, with |X| = 220 and a receiver’s set of 5535 items, the communication
of X ′ is 10 MB. However, increasing |X| further to 224 or 228 starts to become
less practical with 160 MB and 2.6 GB of communication, respectively.

One of the most compelling properties of this paradigm is that after the
communication of X ′, Bob can check the membership of a y in X using
O(κ) communication and computation—effectively a constant. Observing
this, [RA18, KLS+17] both suggest that X ′ be sent during an offline or pre-
processing phase, and then the online phase can have linear overhead in the
smaller set, which provides extremely good performance. Moreover, many
adaptive set intersections with X can be performed, where Bob is able to
use a different set each time. The online communication and running time
of this approach remains linear in Bob’s set size.

On top of this general paradigm, [RA18, KLS+17] suggest that the encoded
set X ′ can be compressed using techniques such as a cuckoo filter or a Bloom
filter. [RA18] showed that for certain parameters a cuckoo filter can reduce
the communication by roughly 3×, bringing the communication for |X| =
224 and 228 down to 48 and 806 MB, respectively. This approach has the
disadvantage that such a large amount of compression introduces a relatively
high false positive rate of 2−13.4×|Y |. That is, if Bob has 1024 items outside
the intersection, the probability that Bob will output a wrong item is 2−3.2,
which is extremely high for cryptographic protocols. In contrast, our protocol
and [CLR17] both provide a false positive rate of at least 2−40, and this rate
is independent of Bob’s set size.

In addition, the communication complexity of [RA18] remains linear in the
larger set size. In the example of |X| = 228 the communication of 804 MB
can be prohibitive for many applications. Moreover, for this online-offline
technique to work, Bob must store the compressed set long-term, which can
be prohibitive on mobile devices. In contrast to this paradigm, our FHE-
based protocol achieves communication complexity which is sub-linear in the
larger set size and requires no offline storage by Bob. When considering |X| =
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228 and |Y | = 1024, the total communication is 27 MB compared to 804 MB:
a 30× improvement in communication and a 226 times improvement in the
false positive rate. To achieve an equivalent false positive rate, e.g. in the
[BBDC+11] protocol, the communication increases to 2.6 GB—a difference
of 100×.

Finally, there is a difference in the security achieved with respect to the in-
formation revealed when X is updated. In the case of [RA18, BBDC+11,
KLS+17], Bob learns exactly how many items we inserted and removed
from X. Even worse, the deletion of an item from X can not be enforced,
since Bob can simply keep the corresponding OPRF value which they hold
in X ′. As such, deletions can not be enforced even in the semi-honest model.
In contrast, our protocol can easily add and remove items with near perfect
security, given that the returned polynomials are randomized as done in the
[CLR17] protocol. In particular, the issue with deleting an item from X does
not arise since only Alice holds X.

With respect to [CLR17], we compare quite favorably in many aspects. First
recall that [CLR17] is practically restricted to 32-bit items, while we can
support arbitrary length items. In particular, in [CLR17] the items being
compared within FHE are actually only 22-bits, but are extended to 32 bits
using a hashing technique known as phasing [PSSZ15]. Our protocol con-
trasts this by comparing 80-bit items within the FHE computation. When
using the “hash to smaller domain” techniques of [PSZ14], this is sufficiently
large to effectively support arbitrary length items, while achieving 40 bits of
statistical security.

Given this significant improvement, our protocol still achieves a similar com-
munication overhead, and often better online running times. For example,
when comparing |X| = 224 and |Y | = 5535, our protocol requires 25 MB of
communication and 22 seconds in the online phase on a single thread, while
[CLR17] requires 20 MB and 40 seconds. This is almost a 2× improvement
in running time and the ability to compare arbitrary length strings at the
expense of a slight increase in communication. Moreover, when Bob has
an even smaller set, our protocol is able to scale the FHE parameters even
smaller, which allows less communication. For example, when Bob has 512
or 1024 items, our protocol requires 9.1 and 17.7 seconds, respectively, and
just 11.2 MB of communication. On the other hand, due to the noise flooding
performed by [CLR17], they are unable to take advantage of more efficient
FHE parameters while also maintaining 128 bits of computational security.
As such, our protocol can be 2 to 4 times faster than [CLR17], and send
almost half the amount of data, while at the same time supporting arbitrary
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|X| |Y | Protocol
Sender Offline Comm. & Online Online
Offline Receiver Storage Time Comm.

228

2048
Ours* 4,628 0 28.5 34.05

[RA18]* 182 806 0.1 0.13
[BBDC+11]* 182 2,684 0.1 0.13

1024
Ours* 4,628 0 12.1 26.76

[RA18]* 182 806 0.16 0.07
[BBDC+11]* 182 2,684 0.16 0.07

224

11041

Ours 656 0 20.1 53.3
[CLR17] 71 0 44.70 23.20
[RA18] 342 48 0.71 0.67

[BBDC+11] 342 160 0.71 0.67

5535

Ours 806 0 22.01 25.09
[CLR17] 64 0 40.10 20.10
[RA18] 342 48 0.35 0.34

[BBDC+11] 342 160 0.35 0.34

220

11041

Ours 43 0 4.49 20.49
[CLR17] 6.4 0 6.40 11.50
[RA18] 22 3 0.71 0.67

[BBDC+11] 22 10 0.71 0.67

5535

Ours 43 0 4.23 16.13
[CLR17] 4.3 0 4.30 5.60
[RA18] 22 3 0.35 0.34

[BBDC+11] 22 10 0.35 0.34

Table 7.3: Our PSI protocol compared with [CLR17, RA18, BBDC+11] in
the LAN setting for various set sizes. All executions are with a single thread
with the exception (*) of |X| = 228, which is performed with 32 threads by
Alice, and 4 threads by Bob. Communication/storage is in MB and running
time is in seconds. The “Sender offline” column is running time required by
Alice to initialize their database. It can be reused and is non-interactive.

length items.

7.7.3 Labeled PSI

We compare the performance of our Labeled PSI technique in the anonymous
communication protocol Pung [AS16, ACLS17]. The Pung protocol allows
a set of clients to privately send and retrieve messages through a server,
without the server learning any information (including metadata) about the
conversations. In each epoch of the protocol, a client wishes to privately
retrieve several messages from the server from other clients using some secret
keywords they share. This was achieved using a single-server PIR based on
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—X— —Y— ` (Bytes) Method Server online Client encrypt Comm.

220 256 288
[ACLS17] 20.5s 4.92 s 120 MB

Ours 4.6s 0.77s 17.6 MB

Table 7.4: Performance of Labeled PSI applied to the Pung anonymous com-
munication protocol.

additive homomorphic encryption. In order for a client to obtain the index of
messages sent to her, the server sends a Bloom filter containing the keyword-
to-index mapping to each client. Pung also optimized for the multi-query
using hashing techniques. In one setting, the client retrieves 256 messages
in each epoch. Each message has 288 bytes, and a total number of 1 million
messages is stored at the server. We used Labeled PSI to implement the
retrieval process, and compared our performance to [ACLS17] in Figure 7.4.
From the results, we see that Labeled PSI can achieve a 4.4× reduction in
server’s online computation time, and 6.8× reduction in communication.
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Chapter 8

PSI From Private Information
Retrieval

PIR-PSI: Scaling Private Contact discovery by Daniel Demmler, Ni Triue,
Peter Rindal & Mike Rosulek, in PETS[DRRT18].

8.1 Introduction

With the widespread use of smartphones in the last decade, social networks
and their connected instant messaging services are on the rise. Services
like Facebook Messenger or WhatsApp connect more than a billion users
worldwide.1

Contact discovery happens when a client initially joins a social network
and intends to find out which of its existing contacts are also on this network.
Even after this initial client join, it is also run periodically (e.g., daily) in
order to capture a client’s contacts that join the network later on. A trivial
approach for contact discovery is to send the client’s entire address book to
the service provider, who replies with the intersection of the client’s contacts
and the provider’s customers. This obviously leaks sensitive client data to
the service provider. In fact, a German court has recently ruled that such
trivial contact discovery in the WhatsApp messaging service violates that
country’s privacy regulations [Pos17]. Specifically, a user cannot send her

1https://blog.whatsapp.com/10000631/Connecting-One-Billion-Users-Every-Day
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contact list to the WhatsApp servers for contact discovery, without written
consent of all of her contacts.

A slightly better approach (often called “näıve hashing”) has the client hash
its contact list before sending it to the server. However, this solution is
insecure, since it is prone to offline brute force attacks if the input domain is
small (e.g., telephone numbers). Nonetheless, näıve hashing is used internally
by Facebook and was previously used for contact discovery by the Signal
messaging app. The significance of a truly private contact discovery was
highlighted by the creators of Signal [Mar14].

8.1.1 State of the Art & Challenges

Contact discovery is fundamentally about identifying the intersection of two
sets. There is a vast amount of literature on the problem of private set
intersection (PSI), in which parties compute the intersection of their sets
without revealing anything else about the sets (except possibly their size).
A complete survey is beyond the scope of this work, but we refer the reader
to Pinkas et al. [PSZ18], who give a comprehensive comparison among the
major protocol paradigms for PSI.

In contact discovery, the two parties have sets of vastly different sizes.
The server may have 10s or 100s of millions of users in its input set, while a
typical client has less than 1000.2 However, most research on PSI is optimized
for the case where two parties have sets of similar size. As a result, many
PSI protocols have communication and computation costs that scale with the
size of the larger set. For contact discovery, it is imperative that the client’s
effort (especially communication cost) scales sublinearly with the server’s
set size. Concretely, in a setting where the client is a mobile device, we
aim for communication of at most a few megabytes. A small handful of
works [CLR17, KLS+17, RA18] focus on PSI for asymmetric set sizes. We
give a comprehensive comparison of these works to ours in Section 2.2 and
Section 8.7.

Even after solving the problems related to the client’s effort, the computa-
tional cost to the server can also be prohibitive. For example, the server
might have to perform expensive exponentiations for each item in its set.
Unfortunately no known techniques allow the server to have computational

2A 2014 survey by Pew Research found that the average number of Facebook friends
is 338 [Smi14].

172



cost sublinear in the size of its (large) input set. The best we can reasonably
hope for (which we achieve) is for the server’s computation to consist almost
entirely of fast symmetric-key operations which have hardware support in
modern processors.

If contact discovery were a one-time step only for new users of a service,
then the difference between a few seconds in performance would not be a
significant concern. Yet, existing users must also perform contact discovery
to maintain an up-to-date view. Consider a service with 100 million users,
each of which performs maintenance contact discovery once a week. This is
only possible if the marginal cost of a contact discovery instance costs less
than 6 milliseconds for the service provider (one week is roughly 600 million
milliseconds)! To be truly realistic and practical, private contact discovery
should be as fast as possible.

8.1.2 Chapter Contributions

We propose a new approach for private contact discovery that is practical
for realistic set sizes. We refer to our paradigm as PIR-PSI, as it combines
ideas from private information retrieval (PIR) and standard 2-party PSI.

Techniques: Importantly, we split the service provider’s role into two to
four non-colluding servers. With 2 servers, each one holds a copy of the
user database. When a third server is used, 2 of the servers can hold secret
shares of the user database rather than hold it in the clear. With 4 servers,
all servers can hold secret shares. By using a computational PIR scheme,
a single-server solution is possible. Most of our presentation focuses on our
main contribution, the simpler 2-server version, but in Section 8.8 we discuss
the other variants in detail. Note that multiple non-colluding servers is the
traditional setting for PIR, and is what allows our approach to have sublinear
cost (in the large server set size) for the client while still hiding its input set.

Roughly speaking, we combine highly efficient state-of-the-art techniques
from 2-server PIR and 2-party private set intersection. The servers store
their sets in a Cuckoo table so that a client with n items needs to probe only
O(n) positions of the server’s database to compute the intersection. Using
the state-of-the-art PIR scheme of Boyle, Gilboa & Ishai [BGI15, BGI16],
each such query requires O(κ logN) bits of communication, where N is the
size of the server’s data. In standard PIR, the client learns the positions of
the server’s data in the clear. To protect the servers’ privacy, we modify the
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PIR scheme so that one of the servers learns the PIR output, but blinded
by masks known to the client. This server and the client can then perform
a standard 2-party PSI on masked values. For this we use the efficient PSI
scheme of [KKRT16].

Within this general paradigm, we identify several protocol-level and systems-
level optimizations that improve performance over a näıve implementation
by several orders of magnitude. For example, the fact that the client probes
randomly distributed positions in the server’s database (a consequence of
Cuckoo hashing with random hash functions) leads to an optimization that
reduces cost by approximately 500×.

As a contribution of independent interest, we performed an extensive series
of experiments (almost a trillion hashing instances) to develop a predictive
formula for computing ideal parameters for Cuckoo hashing. This allows our
protocol to use very tight hashing parameters, which can also yield simi-
lar improvements in all other cuckoo hashing based PSI protocols. A more
detailed description can be found in Section 8.3.2.

Performance: Let n be the size of the client’s set, let N the size of the
server’s set (n� N), and let κ be the computational security parameter. The
total communication for contact discovery is O

(
κn log(N log n/κn)

)
. The

computational cost for the client is O
(
n log(N log n/κn)

)
AES evaluations,

O(n) hash evaluations, and κ exponentiations. The exponentiations can be
done once-and-for all in an initialization phase and re-used for subsequent
contact discovery events between the same parties.

Each server performs O
(
(N log n)/κ

)
AES evaluations, O(n) hash evalua-

tions, and κ (initialization-time) exponentiations. While this is indeed a
large number of AES calls, hardware acceleration (i.e., AES-NI instructions
and SIMD vectorization) can easily allow processing of a billion items per
second per thread on typical server hardware. Furthermore, the server’s com-
putational effort in PIR-PSI is highly parallelizable, and we explore the effect
of parallelization on our protocol.

Privacy/security for the client: If a corrupt server does not collude with
the other server, then it learns nothing about the client’s input set except its
size. In the case where the two servers collude, even if they are malicious (i.e.,
deviating arbitrarily from the protocol) they learn no more than the client’s
hashed input set. In other words, the failure mode for PIR-PSI is to
reveal no more than the näıve-hashing approach. Since näıve-hashing
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is the status quo for contact discovery in practice, PIR-PSI is a strict privacy
improvement.

Furthermore, the non-collusion guarantee is forward-secure. Compromising
both servers leaks nothing about contact-discovery interactions that hap-
pened previously (when at most one server was compromised).

In PIR-PSI, malicious servers can use a different input set for each client in-
stance (e.g., pretend that Alice is in their database when performing contact
discovery with Bob, but not with Carol). That is, the servers’ effective data
set is not anchored to some public root of trust (e.g., a signature or hash of
the “correct” data set).

Privacy/security for the server: A semi-honest client (i.e., one that
follows the protocol) learns no more than the intersection of its set with the
servers’ set, except its size. A malicious client can learn different information,
but still no more than O(n) bits of information about the servers’ set (n is the
purported set size of the client). We can characterize precisely what kinds of
information a malicious client can learn.

Other features: PIR-PSI requires the servers to store their data-set in a
fairly standard Cuckoo hashing table. Hence, the storage overhead is con-
stant and updates take constant time.

PIR-PSI can be easily extended so that the client privately learns associated
data for each item in the intersection. In the case of a secure messaging app,
the server may hold a mapping of email addresses to public keys. A client
may wish to obtain the public keys of any users in its own address book.

As mentioned previously, PIR-PSI can be extended to a 3-server or 4-server
variant where some of the servers hold only secret shares of DB, with security
holding if no two servers collude (cf. Section 8.8.2). This setting may be
a better fit for practical deployments of contact discovery, since a service
provider can recruit the help of other independent organizations, neither of
which need to know the provider’s user database. Holding the user database
in secret-shared form reduces the amount of data that the service provider
retains about its users3 and gives stronger defense against data exfiltration.

3https://www.reuters.com/article/us-usa-cyber-signal/

signal-messaging-app-turns-over-minimal-data-in-first-subpoena-idUSKCN1241JM
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8.2 Preliminaries

Table 8.1: PIR-PSI parameters and symbols used.
Parameter Symbol

symmetric security paramter [bits] κ
statistical security paramter [bits] λ
client set size [elements] n
server set size [elements] N
element length [bits] ρ
cuckoo table size (Section 8.3.2) m
DPF bins (Section 8.3.4) β
DPF bin size [elements] (Section 8.3.4) µ
PIR block size (Section 8.3.5) b
scaling factor (Section 8.5.3) c

8.2.1 Private Information Retrieval

Private Information Retrieval (PIR) was introduced in the 1990s by Chor et
al. [CKGS98]. It enables a client to query information from one or multi-
ple servers in a privacy preserving way, such that the servers are unable to
infer which information the client requested. In contrast to the query, the
servers’ database can be public and may not need to be protected. When
first thinking about PIR, a trivial solution is to have a server send the whole
database to the client, who then locally performs his query. However, this
is extremely inefficient for large databases. There exists a long list of works
that improve PIR communication complexity [CMS99, GR05, GKL10, TP11,
HOG11, DGH12, MBC13, HHG13, DC14, DHS14, AMBFK16, LG15, Hen16,
BGI15, BGI16]. Most of these protocols demand multiple non-colluding
servers. In this work, we are interested in 2-server PIR schemes.

8.2.2 Distributed Point Functions

Gilboa and Ishai [GI14] proposed the notion of a distributed point function
(DPF). For our purposes, a DPF with domain size N consists of the following
algorithms:

176



DPF.Gen: a randomized algorithm that takes index i ∈ [N ] as input
and outputs two (short) keys k1, k2.

DPF.Expand: takes a short key k as input and outputs a long expanded
key K ∈ {0, 1}N .4

The correctness property of a DPF is that, if (k1, k2) ← DPF.Gen(i) then
DPF.Expand(k1)⊕DPF.Expand(k2) is a string with all zeros except for a 1 in
the ith bit.

A DPF’s security property is that the marginal distribution of k1 alone (resp.
k2 alone) leaks no information about i. More formally, the distribution of k1

induced by (k1, k2)← DPF.Gen(i) is computationally indistinguishable from
that induced by (k1, k2)← DPF.Gen(i′), for all i, i′ ∈ [N ].

PIR from DPF: Distributed point functions can be used for 2-party PIR
in a natural way. Suppose the servers hold a database DB of N strings.
The client wishes to read item DB[i] without revealing i. Using a DPF with
domain size N , the client can compute (k1, k2)← DPF.Gen(i), and send one
kb to each server. Server 1 can expand k1 as K1 = DPF.Expand(k1) and
compute the inner product:

K1 ·DB
def
=
⊕N

j=1K1[j]DB[j]

Server 2 computes an analogous inner product. The client can then recon-
struct as:

(K1 ·DB)⊕ (K2 ·DB) = (K1 ⊕K2) ·DB = DB[i]

since K1 ⊕K2 is zero everywhere except in position i.

BGI construction: Boyle, Gilboa & Ishai [BGI15, BGI16] describe an effi-
cient DPF construction in which the size of the (unexpanded) keys is roughly
κ(logN − log κ) bits, where κ is the computational security parameter.

Their construction works by considering a full binary tree with N leaves. To
expand the key, the DPF.Expand algorithm performs a PRF evaluation for
each node in this tree. The (unexpanded) keys contain a PRF block for each
level of the tree.

4The original DPF definition also requires efficient random access to this long expanded
key. Our usage of DPF does not require this feature.
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As described, this gives unexpanded keys that contain κ bits for each level
of a tree of height logN . To achieve κ(logN − log κ) bits total, BGI suggest
the following “early termination optimization”: Treat the expanded key as
a string of N/κ characters over the alphabet {0, 1}κ. This leads to a tree
of height log(N/κ) = logN − log κ. An extra κ-bit value is required to
deal with the longer characters at the leaves, but overall the total size of
the unexpanded keys is roughly κ(logN − log κ) bits. In practice, we use
hardware-accelerated AES-NI as the underlying PRF, with κ = 128.

8.3 Our Construction: PIR-PSI

We make use of the previously described techniques to achieve a practical
solution for privacy-preserving contact discovery, called PIR-PSI. We as-
sume that the service provider’s large user database is held on 2 separate
servers. To perform private contact discovery, a client interacts with both
servers simultaneously. The protocol’s best security properties hold when
these two servers do not collude. Variants of our construction for 3 and 4
servers are described in Section 8.8.2, in which some of the servers hold only
secret shares of the user database.

We develop the protocol step-by-step in the following sections. The full
protocol can be found in Figure 8.1.

8.3.1 Warmup: PIR-PEQ

At the center of our construction is a technique for combining a private
equality test (PEQ – a special case of PSI when the parties have one item
each) [PSZ14] with a PIR query. Suppose a client holds private input i, x
and wants to learn whether DB[i] = x, where the database DB is the private
input of the servers.

First recall the PIR scheme from Section 8.2.1 based on DPFs. This PIR
scheme has linear reconstruction in the following sense: the client’s output
DB[i] is equal to the XOR of the responses from the two servers.

Suppose a PIR scheme with linear reconstruction is modified as follows: the
client sends an additional mask r to server #1. Server #1 computes its PIR
response v1 and instead of sending it to the client, sends v1⊕ r to server #2.
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Then server #2 computes its PIR response v2 and can reconstruct the masked
result v2 ⊕ (v1 ⊕ r) = DB[i] ⊕ r. We refer to this modification of PIR as
designated-output PIR, as the client designates server #2 to learn the
(masked) output.

The client can now perform a standard 2-party secure computation with
server #2. In particular, they can perform a PEQ with input x⊕ r from the
client and DB[i]⊕ r from the server. As long as the PEQ is secure, and the
two servers do not collude, then the servers learn nothing about the client’s
input. If the two servers collude, they can learn i but not x.

This warm-up problem is not yet sufficient for computing private set intersec-
tion between a set X and DB, since the client may not know which location
in DB to test against. Next we will address this by structuring the database
as a Cuckoo hash table.

8.3.2 Cuckoo hashing

Cuckoo hashing has seen extensive use in Private Set Intersection protocols
[PSZ14, PSSZ15, KKRT16, PSZ18, OOS17] and in related areas such as
privacy preserving genomics [CCL+17]. This hashing technique uses an array
of m bins and k hash functions h1, . . . , hk : {0, 1}∗ → [m]. The guarantee is
that an item x will be stored in a hash table at one of the locations indexed
by h1(x), ..., hk(x). Furthermore, only a single item will be assigned to each
bin. Typically k is quite small (we use k = 3). When inserting x into the
hash table, a random index i ∈ [k] is selected and x is inserted at location
hi(x). If an item y currently occupies that location, it is evicted and y is
re-inserted using the same technique. This process is repeated until all items
are inserted or some upper bound on the number of trials have been reached.
In that latter case, the procedure can either abort or place the item in a
special location called the stash. We choose cuckoo hashing parameters such
that this happens with sufficiently low probability (see Section 8.5.2); i.e., no
stash is required.

In our setting the server encodes its set DB into a Cuckoo hash table. That
way, the client (who has the much smaller set X) must probe only k|X| po-
sitions of the Cuckoo table to compute the intersection. Using the PIR-PEQ
technique just described makes the communication linear in |X| but only
logarithmic in |DB|.
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8.3.3 Hiding the cuckoo locations

There is a subtle issue if one applies the PIR-PEQ idea näıvely. When the
client learns that y ∈ (DB ∩ X), he/she will in fact learn whether y is
placed in position h1(y) or h2(y) or h3(y) of the Cuckoo table. But this leaks
more than the intersection DB ∩X, in the sense that it cannot be simulated
given just the intersection! The placement of y in the Cuckoo table depends
indirectly on all the items in DB.5 Note that this is not a problem for other
PSI protocols, since there the party who processes their input with Cuckoo
hashing is the one who receives output from the PEQs. For contact discovery,
we require these to be different parties.

To overcome this leakage, we design an efficient oblivious shuffling procedure
that obscures the cuckoo location of an item. First, let us start with a simple
case with two hash functions h1, h2, where the client holds a single item x.
This generalizes in a natural way to k = 3 hash functions. Full details are
provided in Section 8.10.

The client will generate and send two PIR queries, for positions h1(x) and
h2(x) of DB. The client also sends two masks r1 and r2 to server #1 which
serve as masks for the designated-output PIR. Server #1 randomly chooses
whether to swap these two masks. That is, it chooses a random permutation
σ : {1, 2} → {1, 2} and masks the first PIR query with rσ(1) and the second
with rσ(2). Server #2 then reconstructs the designated PIR output, obtaining
DB[h1(x)]⊕ rσ(1), DB[h2(x)]⊕ rσ(2). The client now knows that if x ∈ DB,
then server #2 must hold either x⊕ r1 or x⊕ r2.

Now instead of performing a private equality test, the client and server #2
can perform a standard 2-party PSI with inputs {x⊕ r1, x⊕ r2} from the
client and the designated PIR values {DB[h1(x)]⊕ rσ(1), DB[h2(x)]⊕ rσ(2)}
from server #2. This technique perfectly hides whether x was found at h1(x)
or h2(x). While it is possible to perform a separate 2-item PSI for each
PIR query, it is actually more efficient (when using the 2-party PSI protocol
of [KKRT16]) to combine all of the PIR queries into a single PSI with 2n
elements each.

5For instance, say the client holds set X and (somehow) knows the server has set
DB = X ∪ {z} for some unknown z. It happens that for many x ∈ X and i ∈ [k], hi(x)
equals some location `. Then with good probability some x ∈ X will occupy location `.
However, after testing location ` the client learns no x ∈ X occupies this location. Then
the client has learned some information about z (namely, that hi(z) = ` is likely for some
i ∈ [k]), even though z is not in the intersection.
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Because of the random masks, this approach may introduce a false positive,
where DB[j] 6= x but DB[j]⊕r = x⊕r′ (for some masks r and r′), leading to
a PSI match. In our implementation we only consider items of length 128, so
the false positive probability taken over all client items is only 2−128+log2((2n)2),
by a standard union bound.

8.3.4 Optimization: Binning queries

The client probes the servers’ database in positions that are determined by
the Cuckoo hash functions. Under the reasonable assumptions that (1) the
client’s input items are chosen independently of the Cuckoo hash functions
and (2) the cuckoo hash functions are random functions, the client probes
DB in uniformly distributed positions.

Knowing that the client’s queries are randomly distributed in the database,
we can take advantage of the fact that the queries are “well-spread-out” in
some sense. Consider dividing the server database (N entries) into β bins of
equal size. The client will query the database in nk random positions, so the
distribution of these queries into the β bins can be modeled as a standard
balls and bins problem. We can choose a number β of bins and a maximum
load µ so that Pr[there exists a bin with ≥ µ balls] is below some threshold
(say, 2−40 in practice). With such parameters, the protocol can be optimized
as follows.

The parties agree to divide DB into β regions of equal size. The client
computes the positions of DB that he/she wishes to query, and collects
them according to their region. The client adds dummy PIR queries until
there are exactly µ queries to each region. The dummy items are necessary
because revealing the number of (non-dummy) queries to each region would
leak information about the client’s input to the server. For each region, the
server treats the relevant N/β items as a sub-database, and the client makes
exactly µ PIR queries to that sub-database.

This change leads to the client making more PIR queries than before (be-
cause of the dummy queries), but each query is made to a much smaller
PIR instance. Looking at specific parameters shows that binning can give
significant performance improvements.

It is well-known that with β = O
(
nk/ log(nk)

)
bins, the maximum number

of balls in any bin is µ = O
(
log(nk)

)
with very high probability. The total

number of PIR queries (including dummy ones) is βµ = Θ(nk). That is,
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the binning optimization with these parameters increases the number of PIR
queries by a constant factor. At the same time, the PIR database instances
are all smaller by a large factor of β = O

(
nk/ log(nk)

)
. The main bottleneck

in PIR-PSI is the computational cost of the server in answering PIR queries,
which scales linearly with the size of the PIR database. Reducing the size
of all effective PIR databases by a factor of β has a significant impact on
performance. In general, tuning the constant factors in β (and corresponding
µ) gives a wide trade-off between communication and computation.

8.3.5 Optimization: Larger PIR Blocks

So far we have assumed a one-to-one correspondence between the entries in
the server’s cuckoo table and the server’s database for purposes of PIR. That
is, we invoke PIR with an v-item database corresponding to a region of the
cuckoo table with v entries.

Suppose instead that we use PIR for an v/2-item database, where each item
in the PIR database consists of a block of 2 cuckoo table entries. The client
generates each PIR query for a single item, but now the PIR query returns
a block of 2 cuckoo table entries. The server will feed both entries into the
2-party PSI, so that these extra neighboring items are not leaked to the
client.

This change affects the various costs in the following ways: (1) It reduces the
number of cryptographic operations needed for the server to answer each PIR
query by half; (2) It does not affect the computational cost of the final inner
product between the expanded DPF key and PIR database entries, since this
is over the same amount of data; (3) It reduces the communication cost of
each PIR query by a small amount (κ bits); (4) It doubles all costs of the
2-party PSI, since the server’s PSI input size is doubled.

Of course, this approach can be generalized to use a PIR blocks of size
b, so that a PIR database of size v/b is used for v cuckoo table entries.
This presents a trade-off between communication and computation, discussed
further in in Section 8.5.
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8.3.6 Asymptotic Performance

With these optimizations the computational complexity for the client is the
generation of βµ = O(n) PIR queries of size O(log(N/κβ)). As such they
perform O(n log(N/κβ)) = O(n log(N log n/κn)) calls to a PRF and send
O(κn log(N/(κn log n))) bits. The servers must expand each of these queries
to a length of O(N/β) bits which requires O(Nµ/κ) = O(N log n/κ) calls to
a PRF.

8.4 Security

8.4.1 Semi-Honest Security

The most basic and preferred setting for PIR-PSI is when at most one of
the parties is passively corrupt (a.k.a. semi-honest). This means that the
corrupt party does not deviate from the protocol. Note that restricting to a
single corrupt party means that we assume non-collusion between the two
PIR servers.

Theorem 19. The Fpir−psi protocol (Figure 8.1) is a realization of Fn,Npsi

secure against a semi-honest adversary that corrupts at most one party in
the Fnk,βµpsi hybrid model.

Proof. In the semi-honest non-colluding setting it is sufficient to show that
the transcript of each party can be simulated given their input and output.
That is, we consider three cases where each one of the parties is individually
corrupt.

Corrupt Client: Consider a corrupt client with input X and output Z =
X ∩ DB. We show a simulator that can simulate the view of the client
given just X and Z. First observe that the simulator playing the role of
both servers knows the permutation π = π2 ◦ π1 and the vector of masks r.
As such, response v can be computed as follows. For x ∈ Z the simulator
randomly samples one of k masks ri1 , . . . , rik ∈ r which the client will use
to mask x and add x ⊕ rij to v. Pad v with random values not contained

in union u to size βµ and forward v to the ideal Fnk,βµpsi . Conditioned on
no spurious collisions between v and u in the real interaction (which happen
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with negligible probability, following the discussion in Section 8.3.3) this ideal
interaction perfectly simulates the real interaction.

One additional piece of information learned by the client is that cuckoo hash-
ing on the set DB with hash function h1, ..., hk succeeded. However, by the
choice of cuckoo parameter, this happens with overwhelming probability and
therefore the simulator can ignore the case of cuckoo hashing failure.

Corrupt server: Each server’s view consists of:

• PIR queries (DPF keys) from the client; since a single DPF key leaks
nothing about the client’s query index, these can be simulated as
dummy DPF keys.

• Messages in the oblivious masking step, which are uniformly distributed
as discussed in Section 8.3.3 and Appendix 8.10.

• In the case of server #2, masked PIR responses from server #1, which
are uniformly distributed since they are masked by the ~r values.

8.4.2 Colluding Servers

If the two servers collude, they will learn both DPF keys for every PIR query,
and hence learn the locations of all client’s queries into the cuckoo table.
These locations indeed leak information about the client’s set, although the
exact utility of this leakage is hard to characterize. The servers still learn
nothing from the PSI subprotocol by colluding since only one of the servers
is involved.

It is worth providing some context for private contact discovery. The state-
of-the-art for contact discovery is a näıve (insecure) hashing protocol, where
both parties simply hash each item of their set, the client sends its hashed set
to the server, who then computes the intersection. This protocol is insecure
because the server can perform a dictionary attack on the client’s inputs.

However, any PSI protocol (including ours) can be used in the following way.
First, the parties hash all their items, and then use the hashed values as
inputs to the PSI. As long as the hash function does not introduce collisions,
pre-hashing the inputs preserves the correctness of the PSI protocol.
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A side effect of pre-hashing inputs is that the parties never use their “true”
inputs to the PSI protocol. Therefore, the PSI protocol cannot leak more
than the hashed inputs — identical to what the status quo näıve hashing
protocol leaks. Again, this observation is true for any PSI protocol. In the
specific case of PIR-PSI, if parties pre-hash their inputs, then even if the two
servers collude (even if they are malicious), the overall protocol can never
leak more about the client’s inputs than näıve hashing. Relative to existing
solutions implemented in current applications, that use näıve hashing, there
is no extra security risk for the client to use PIR-PSI.

8.4.3 Malicious Client

Service providers may be concerned about malicious behavior (i.e., protocol
deviation) by clients during contact discovery. Since servers get no output
from PIR-PSI, there is no concern over a malicious client inducing inconsis-
tent output for the servers. The only concern is therefore what unauthorized
information a malicious client can learn about DB.

Overall the only information the client receives in PIR-PSI is from the PSI
subprotocol. We first observe that the PSI subprotocol we use ([KKRT16])
is naturally secure against a malicious client, when it is instantiated with an
appropriate OT extension protocol. This fact has been observed in [Lam16,
OOS17]. Hence, in the presence of a malicious client we can treat the PSI
subprotocol as an ideal PSI functionality. The malicious client can provide
at most nk inputs to the PSI protocol — the functionality of PSI implies
that the client therefore learns no more than nk bits of information about
DB. This leakage is comparable to what an honest client would learn by
having an input set of nk items.

Modifications for more precise leakage characterization: In DPF-
based PIR schemes clients can make malformed PIR queries to the server,
by sending k1, k2 so that DPF.Expand(k1) ⊕ DPF.Expand(k2) has more than
one bit set to 1. The result of such a query will be the XOR of several DB
positions.

However, Boyle et al. [BGI16] describe a method by which the servers can
ensure that the client’s PIR queries (DPF shares) are well-formed. The
technique increases the cost to the servers by a factor of roughly 3× (but
adds no cost to the client).

185



The client may also send malformed values in the oblivious masking phase.
But since the servers use those values independently of DB, a simulator (who
sees the client’s oblivious masking messages to both servers) can simulate
what masks will be applied to the PIR queries. Overall, if the servers ensure
validity of the client’s PIR values, we know that server #1’s input to PSI
will consist of a collection of nk individual positions from DB, each masked
with values that can be simulated.

8.5 Implementation

We implemented a prototype of our Fpir−psi protocol described in Figure 8.1.
Our implementation uses AES as the underlying PRF (for the distributed
point function of [BGI16], and relies on the PSI implementation of [KKRT16]
and the oblivious transfer from [Rin17]. Upon publication, our implementa-
tion will be made publicly available.

8.5.1 System-level Optimizations

We highlight here system-level optimizations that contribute to the high
performance of our implementation. We analyze their impact on performance
in Section 8.12.

Optimized DPF full-domain evaluation: Recall that the DPF construc-
tion of [BGI16] can be thought of as a large binary tree of PRF evaluations.
Expanding the short DPF key corresponds to computing this entire tree in
order to learn the values at the leaves. The process of computing the values
of all the leaves is called “full-domain evaluation” in [BGI16].

DPF full-domain evaluation is the major computational overhead for the
servers in our protocol. To limit its impact our implementation takes full
advantage of instruction vectorization (SIMD). Most modern processors are
capable of performing the same instruction on multiple (e.g., 8) pieces of
data. However, to fully utilize this feature, special care has to be taken to
ensure that the data being operated on is in cache and contiguous.

To meet these requirements, our implementation first evaluates the top 3
levels of the DPF binary tree, resulting in 8 remaining independent subtrees.
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We then perform SIMD vectorization to traverse all 8 subtrees simultane-
ously. Combining this technique with others, such as the removal of if

statements in favor of array indexing, our final implementation is roughly
20× faster then a straight-forward (but not careless) sequential implemen-
tation and can perform full-domain DPF evaluation at a rate of 2.6 billion
bits/s on a single core.

Single-pass processing: With the high raw throughput of DPF evalua-
tion, it may not be surprising that it was no longer the main performance
bottleneck. Instead, performing many passes over the dataset (once for each
PIR query) became the primary bottleneck by an order of magnitude. To
address this issue we further modify the workflow to evaluate all DPFs (PIR
queries) for a single bin in parallel using vectorization.

That is, for all µ DPF evaluations in a given bin, we evaluate the binary
trees in parallel, and traverse the leaves in parallel. The values at the leaves
are used to take an inner product with the database items, and the parallel
traversal ensures that a given database item only needs to be loaded from
main memory (or disk) once. This improves (up to 5×) the performance of
the PIR protocol on large datasets, compared to the straightforward approach
of performing multiple sequential passes of the dataset.

Parallelization: Beyond the optimizations listed above, we observe that
our protocol simply is very amenable to parallelization. In particular, our
algorithm can be parallelized both within the DPF evaluation using different
subtrees and by distributing the PIR protocols for different bins between
several cores/machines. In the setting where thousands of these protocols are
being executed a day on a fixed dataset, distributing bin evaluations between
different machines can be extremely attractive due to the fact that several
protocol instances can be batched together to gain even greater benefits of
vectorization and data locality. The degree of parallelism that our protocol
allows can be contrasted with more traditional PSI protocols which require
several global operations, such as a single large shuffle of the server’s encoded
set (as in [PSZ14, PSSZ15, KKRT16, PSZ18, OOS17]).

8.5.2 Cuckoo Hashing Parameters

To achieve optimal performance it is crucial to minimize the size of the
cuckoo table and the number of hash functions. The table size affects how
much work the servers have to perform and the number of hash functions k
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affects the number of client queries. As such we wish to minimize both
parameters while ensuring cuckoo hashing failures are unlikely as this leaks
a single bit about DB. Several works [FMM09, DGM+10] have analyzed
cuckoo hashing from an asymptotic perspective and show that the failure
probability decreases exponentially with increasing table size. However, the
exact relationship between the number of hash functions, stash size, table
size and security parameter is unclear from such an analysis.

We solve this problem by providing an accurate relationship between these
parameters through extensive experimental analysis of failure probabilities.
That is, we ran Cuckoo-hashing instances totalling nearly 1 trillion items
hashed, over two weeks for a variety of parameters. As a result our bounds are
significantly more accurate and general than previous experiments [PSZ18,
CLR17]. We analyzed the resulting distribution to derive highly predictive
equations for the failure probability. We find that k = 2 and k ≥ 3 behave
significantly different and therefore derive separate equations for each.

Our extrapolations are graphed in Figure 8.2 & 8.3, and the specifics of the
formulas are given in Section 8.11.

8.5.3 Parameter Selection for Cuckoo Hashing & Bin-
ning

Traditional use of cuckoo hashing instructs the parties to sample new hash
functions for each protocol invocation. In our setting however it can make
sense to instruct the servers, which hold a somewhat static dataset, to per-
form cuckoo hashing once and for all. Updates to the dataset can then
be handled by periodically rebuilding the cuckoo table once it has reached
capacity. This leaves the question of what the cuckoo hashing success prob-
ability should be. It is standard practice to set statistical failure events like
this to happen with probability 2−40. However, since the servers perform
cuckoo hashing only occasionally (and since hashing failure applies only to
initialization, not future queries), we choose to use more efficient parameters
with a security level of λ = 20 bits, i.e., Pr[Cuckoo failure] = 2−20. We em-
phasize that once the items are successfully placed into the hash table, all
future lookups (e.g., contact discovery instances) are error-free, unlike, say,
in a Bloom filter.

We also must choose the number of hash functions to use.6 Through exper-

6Although the oblivious shuffling procedure of Section 8.3.3 can be extended in a natural
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imental testing we find that overall the protocol performs best with k = 3
hash functions. The parameters used can be computed by solving for e ≈ 1.4
in Equation 8.2 given that λ = 20.

To see why this configuration was chosen we must also consider another
important parameter, the number of bins β. Due to binning being performed
for each protocol invocation by the client, we must ensure that it succeeds
with very high probability and therefore we use the standard of λ = 40
to choose binning parameters. An asymptotic analysis shows that the best
configuration is to use β = O(n/ log n) bins, each of size µ = O(log n).
However, this hides the exact constants which give optimal performance.
Upon further investigation we find that the choice of these parameters result
in a communication/computation trade-off.

For the free variable c, we set the number of bins to be β = cn/ log2 n and
solve for the required bin size µ. As can be seen in Figure 8.4, the use of
k = 3 and scaling factor c = 4 result the best running time at the expense
of a relatively high communication of 11 MiB. However, at the other end of
the spectrum is k = 2 and c = 1/16 results in the smallest communication of
2.4 MiB. The reason k = 2 achieves smaller communication for any fixed c is
that the client sends k = 2 PIR queries per item instead of three. However,
k = 2 requires that the cuckoo table is three times larger than for k = 3 and
therefore the computation is slower.

Varying c affects the number of bins β. Having fewer bins reduces the commu-
nication due to the bins being larger and thereby having better real/dummy
query ratio. However, larger bins also increases the overall work, since the
work is proportional to the bin size µ times N . We aim to minimize both
the communication and running time. We therefore decided on choosing
k = 3 and c = 1/4 as our default configuration, the circled data-point in
Figure 8.4. However, we note that in specific settings it may be desirable to
adjust c further.

The PIR block size b also results in a computation/communication trade-off.
Having a large block size gives shorter PIR keys and therefore less work to ex-
pand the DPF. However, this also results the server having a larger input set
to the subsequent PSI which makes that phase require more communication
and computation. Due to the complicated nature of how all these param-
eters interact with each other, we empirically optimized the parameters to
find that a block size between 1 and 32 gives the best trade-off.

way to include a stash, we use a stash-free variant of Cuckoo hashing.
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8.6 Performance

In this section we analyze the performance of PIR-PSI. We ran all experi-
ments on a single benchmark machine which has 2x 18-core Intel Xeon E5-
2699 2.30 GHz CPU and 256 GB RAM. Specifically, we ran all parties on the
same machine, communicating via localhost network, and simulated a net-
work connection using the Linux tc command: a LAN setting with 0.02 ms
round-trip latency, 10 Gbps network bandwidth; a WAN setting with a sim-
ulated 80 ms round-trip latency, 100 Mbps network bandwidth. We process
elements of size ρ = 128 bits.

Our protocol can be separated into two phases: the server’s init phase when
database is stored in the Cuckoo table, and the contact discovery phase where
client and server perform the private intersection.

8.6.1 PIR-PSI performance Results

In our contact discovery phase, the client and server first perform the pre-
processing of PSI between n and 3n items which is independent of parties’
inputs. We refer this step as preprocessing phase which specifically includes
base OTs, and O(n) PRFs. The online phase consists of protocol steps that
depend on the parties’ inputs. To understand the scalability of our proto-
col, we evaluate it on the range of server set size N ∈ {220, 224, 226, 228} and
client set size n ∈ {1, 4, 28, 210}. The small values of n ∈ {1, 4} simulate the
performance of incremental updates to a client’s set. Table 8.6.1 presents
the communication cost and total contact discovery time with online time
for both single- and multi-threaded execution with T ∈ {1, 4, 16} threads.

As discussed in Section 8.5.3, there are a communication and computation
trade-off on choosing the different value c and b which effects the number of
bins and how many items are selected per PIR query. The interplay between
these two variable is somewhat complex and offer a variety of communication
computation trade-offs. For smaller n ∈ {1, 4}, we set b = 32 to drastically
reduce the cost of the PIR computation at the cost of larger PSI. For larger
n, we consider parameters which optimize running time and communication
separately, and show both in Table 8.6.1.

Our experiments show that our PIR-PSI is highly scalable. For the database
size N = 228 and client set size n = 210, we obtain an overall running time of
33.02 s and only 4.93 MiB bits of communications for the contact discovery
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Param. Comm. Running time [seconds]
N n c b [MiB] T = 1 T = 4 T = 16

228

210 4 16 28.3 4.07 1.60 0.81
0.25 1 4.93 33.02 13.22 5.54

28 3 16 7.10 3.61 1.30 0.65
1 1 2.20 14.81 6.92 3.40

4 1 32 0.06 1.93 – –
1 1 32 0.03 1.21 – –

226

210 2 8 12.7 1.61 0.72 0.41
0.25 1 4.28 7.22 3.65 1.36

28 6 16 10.3 0.98 0.51 0.26
0.25 4 1.36 4.36 1.90 0.97

4 1 32 0.06 0.56 – –
1 1 32 0.03 0.48 – –

224

210 1 8 8.61 0.67 0.36 0.22
0.25 1 3.85 2.28 0.94 0.50

28 4 8 4.81 0.49 0.22 0.18
1 1 1.68 1.26 0.57 0.36

4 1 32 0.05 0.19 – –
1 1 32 0.03 0.16 – –

220

210 0.5 4 2.10 0.22 0.10 0.06
0.25 1 2.98 0.32 0.21 0.16

28 2 4 1.95 0.20 0.09 0.06
0.25 4 1.13 0.24 0.18 0.15

4 1 32 0.05 0.14 – –
1 1 32 0.03 0.13 – –

Table 8.2: PIR-PSI protocol’s total contact discovery communication cost
and running time using T threads, and β = cn/ log2 n bins and PIR block
size of b. LAN: 10 Gbps, 0.02 ms latency.

phase using a single thread. Alternatively, running time can be reduced to
just 4 s for the cost of 28 MiB communication. Increasing the number of
threads from 1 to 16, our protocol shows a factor of 5× improvement, due
to the fact that it parallelizes well. When considering the smallest server
set size of N = 220 with 16 threads, our protocol requires only 1.1 MiB of
communication and 0.24 s of contact discovery time.

We point out that the computational workload for the client is small and
consists only of DPF key generation, sampling random values and the clas-
sical PSI protocol in the size of the client set. This corresponds to 10%
of the overall running time (e.g., 0.3 s of the total 3.6 s for N = 228 and
n = 28). Despite our experiments being run on a somewhat powerful server,
the overwhelming bottleneck for performance is the computational cost for
the server. Hence, our reported performance is representative of a scenario
in which the client is a weaker device (e.g., a mobile device).
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Detailed numbers on the performance impact of the optimizations from Sec-
tion 8.5.1 are provided in Section 8.12.

8.6.2 Updating the Client and Server Sets

In addition to performing PIR-PSI on sets of size n and N , the contact
discovery application requires periodically adding items to these sets. In
case the client adds a single item x to their set X, only the new item x needs
to be compared with the servers’ set. Our protocol can naturally handle this
case by simply having the client use X ′ = {x} as their input to the protocol.
However, a shortcoming of this approach is that we cannot use binning and
the PIR query spans the whole cuckoo table.

For a database of size N = 224, our protocol requires only 0.16 s and 0.19 s
to update 1 and 4 items, respectively. When increasing the size to N = 228,
we need 1.9 s to update one item. Our update queries are cheap in terms
of communication, roughly 30–50 kiB. We remark that update queries can
be parallelized well due to the fact that DPF.Gen and DPF.Expand can each
be processed in a divide and conquer manner. Also, several update queries
from different users can be batched together to offer very high throughput.
However, our current implementation only supports parallelization at the
level of bins/regions, and not for a single DPF query.

The case when a new item is added to the servers’ set can easily be handled
by performing a traditional PSI between one of the servers and the client,
where the server only inputs their new item. One could also consider batching
several server updates together, and then performing a larger PSI or applying
our protocol to the batched server set.

8.7 Comparison with Prior Work

In this section we give a thorough qualitative & quantitative comparison
between our protocol and those of CLR [CLR17], KLSAP [KLS+17], and
RA [RA18]. We obtained the implementations of CLR & KLSAP from the re-
spective authors, but the implementation of RA is not publicly available. Be-
cause of that, we performed a comparison on inputs of size N ∈ {216, 220, 224}
and n ∈ {5535, 11041} to match the parameters used in [RA18, Table 1&2].
While the experiments of RA were performed on an Intel Haswell i7-4770K
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Protocol
Parameters Communication Running time [seconds] Client Server Init.

N n Size [MiB]
LAN (10 Gbps) WAN (100 Mbps) Storage [seconds]
T = 1 T = 4 T = 1 T = 4 [MiB] T = 1 T = 4

CLR
[CLR17]

224 11041 21.1 38.6 19.7 41.0 22.1

0.00

76.8 20.6
5535 12.5 34.0 16.3 36.0 18.2 71.2 18.5

220 11041 11.5 3.7 3.2 4.9 4.4 9.1 2.5
5535 5.6 3.5 1.9 4.1 2.5 5.1 1.4

216 11041 4.1/4.4 1.8 1.4 2.2 1.8 1.2 0.3
5535 2.6 0.9 0.6 1.1 0.9 0.9 0.3

KLSAP
[KLS+17]

224 11041 2049 (43.3) 90.4 – 265.1 – 1941
8.32 –

5535 1070 (21.7) 52.3 – 128.3 – 1016

220 11041 1968 (43.3) 82.1 – 259.9 – 1860
0.58 –

5535 989 (21.7) 44.8 – 124.7 – 935

216 11041 1963 (43.3) 81.8 – 259.6 – 1855
0.04 –

5535 984 (21.7) 44.0 – 121.4 – 930

RA
[RA18]

224 11041 171.67 (0.67)* 1.08* – 18.39* – 171.00*
333.62 –

5535 168.34 (0.34)* 0.75* – 17.61* – 168.00*

220 11041 11.36 (0.67)* 0.67* – 3.41* – 10.69*
20.78 –

5535 10.84 (0.34)* 0.34* – 2.89* – 10.50*

216 11041 1.34 (0.67)* 0.66* – 1.33* – 0.67*
1.30 –

5535 1.00 (0.34)* 0.33* – 0.85* – 0.66*

Ours

224 11041 32.46 2.18 1.65 5.63 5.13

0.00

2.690 –
5535 21.45 1.34 1.11 3.72 2.77

220 11041 22.86 0.37 0.31 3.70 3.59
0.089 –

5535 11.67 0.29 0.24 2.50 2.29

216 11041 12.83 0.28 0.29 2.55 2.55
0.004 –

5535 7.66 0.21 0.20 1.85 1.85

Table 8.3: Comparison of PIR-PSI to CLR, KLSAP, and RA with T ∈ {1, 4}
threads. LAN: 10 Gbps, 0.02 ms latency. WAN: 100 Mbps, 80 ms latency.
Best results marked in bold. Online communication reported in parenthe-
sizes. Cells with ”-” denote the setting is not supported. Cells with ”*”
indicate that the numbers are scaled for a fair comparison of error probabil-
ity. CLR and RA use 32 bit items, while PIR-PSI and KLSAP process 128
bit items.

quadcore CPU with 3.4 GHz and 16 GB RAM, we ran the KLSAP and CLR
protocols on our own hardware, described in the previous section. We remark
that RA’s benchmark machine has 3.4 GHz, which is 1.48× faster than our
machine. The number of cores and RAM available on our hardware does not
influence the results of the single-threaded benchmarks (T = 1). Results of
the comparison are summarized in Table 8.3.
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8.7.1 CLR protocol

The high level idea of the protocol of Chen, Laine & Rindal (CLR) [CLR17]
is to have the client encrypt each element in their dataset under a homo-
morphic encryption scheme, and send the result to the server. The server
homomorphically evaluates the intersection circuit on encrypted data, and
sends back the result for the receiver to decrypt.

The CLR protocol has communication complexity O(ρn log(N)), where the
items are ρ bits long. Ours has communication complexityO(κn log(N/(κn log n))),
with no dependence on ρ since the underlying PSI protocol [KKRT16] has
no such dependence. For small items (e.g., ρ = 32 as reflected in Table 8.3),
CLR uses less communication than our protocol, e.g., 20 MiB as opposed
to 37 MiB. However, their protocol scales very poorly for string length of
128 bits as it would require significantly less efficient FHE parameters. Fur-
thermore, CLR can not take advantage of the fact that most contact lists
have significantly fewer than 5535 entries. That is, the cost for n = 1 and
n = 5535 is roughly equivalent, because of the way FHE optimizations like
batching are used. The main computational bottleneck in CLR is the server
performing O(n) homomorphic evaluations on large circuits of size O(N/n).
The comparable bottleneck in our protocol is performing DPF.Expand and
computing the large inner products. Since these operations take advantage
of hardware-accelerated AES, PIR-PSI is significantly faster than CLR, e.g.,
20× for N = 224.

The server’s initialization in CLR involves hashing the N items into an ap-
propriate data structure (as in PIR-PSI), but also involves pre-computing
the many coefficients of polynomials. Hence our initialization phase is much
faster than CLR, e.g., 40× for N = 224.

The CLR protocol does not provide a full analysis of security against mali-
cious clients. Like our protocol, the leakage allowed with a malicious client
is likely to be minimal.

8.7.2 KLSAP protocol

In the KLSAP [KLS+17] protocol, the server sends a Bloom filter of size
O(λN) to the client in an offline phase. During later contact discovery phases,
the client refers to this Bloom filter.
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The size of this Bloom filter is considerable: nearly 2 GiB for N = 224 server
items. This data, which must be stored by the client, may be prohibitively
large for mobile client applications. By contrast, our protocol (and CLR)
requires no long-term storage by the client.

In the contact discovery phase, KLSAP runs Yao’s protocol to obliviously
evaluate an AES circuit for each of the client’s items. Not even counting the
boom filter, this requires slightly more communication than our approach
(1.5×). Additionally, it requires more computation by the (weak) client:
evaluating many AES garbled circuits (thousands of AES calls per item) vs.
running many instances DPF.Gen (logN AES calls per item) followed by a
specialized PSI protocol (constant number of hash/AES per item). Even
though the server in our protocol must perform O(N) computation during
contact discovery, our considerable optimizations result in a much faster dis-
covery phase (40× for N = 224).

When the server makes changes to its set in KLSAP, it must either re-key
its AES function (which results in re-sending the huge Bloom filter), or send
incremental updates to the Bloom filter (which breaks forward secrecy, as
a client can query its items in both the old and new versions of the Bloom
filter).

KLSAP is easily adapted to secure against a malicious client. This stems
from the fact that the contact discovery phase uses Yao’s protocol with the
client acting as garbled circuit evaluator. Hence it is naturally secure against
a malicious client (provided that one uses malicious-secure OTs).

Subtleties about hashing errors: The way that KLSAP uses a Bloom
filter also leads to qualitative differences in the error probabilities compared
to PIR-PSI. In KLSAP the server publishes a Bloom filter for all clients, who
later query it for membership. The false-positive rate (FPR) of the Bloom
filter is the probability that a single item not in the server’s set is mistakenly
classified as being in the intersection. Importantly, the FPR for this global
Bloom filter is per client item. In KLSAP this FPR is set to 2−30, which
means after processing a combined 1 million client items the probability of
some client receiving a false positive may be as high as 2−10!

By contrast, the PIR-PSI server places its items in a Cuckoo table once-and-
for all (with hashing error probability 2−20). As long as this one-time event
is successful, all subsequent probes to this data structure are error-free (we
store the entire item in the Cuckoo table, not just a short fingerprint as in
[RA18]). If the hashing is unsuccessful, the server simply tries again with
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different hash functions. All of our other failure events (e.g., probability of a
bad event within our 2-party PSI protocol) are calibrated for error probability
2−40 per contact discovery instance, not per item! To have a comparable
guarantee, the Bloom filter FPR of KLSAP would have to be scaled by a
factor of log2(n).

8.7.3 RA protocol

The RA [RA18] protocol uses a similar approach to KLSAP, in that it uses
a relatively large representation of the server’s set, which is sent in an offline
phase and stored by the client. The downsides of this architecture discussed
above for KLSAP also apply to RA (client storage, more client computation,
false-positive rate issues, forward secrecy).

RA’s implementation uses a Cuckoo filter that stores for each item a 16-
bit fingerprint. This choice leads to a relatively high false-positive rate of
2−13.4. To achieve the failure events with error probability 2−40 per contact
discovery instance (in line with our protocol), the Cuckoo filter FPR of RA
would be 2−(40+log2(n)). Therefore, their protocol would have to be modified
to use 56-bit and 57-bit fingerprints for n = 5535 and n = 11041, respectively.
This change increases the communication cost, transmission time, and offline
storage requirements 3.44−3.5×, relative to the numbers reported in [RA18,
Table 1]. In Table 8.3 we report the scaled communication costs, the scaled
online running time, and the scaled client’s storage, but refrain from trying
to scale the server’s initialization times. As can be seen our protocol running
time is 1.2 − 3.2× faster than RA for sufficiently large N . We also have a
100× more efficient server initialization phase and achieve communication
complexity of O(n logN) as compared to O(N) of RA. This difference can
easily be seen by how the communication of RA significantly increases for
larger N .

In RA, the persistent client storage is not a Bloom filter but a more compact
Cuckoo filter. This reduces the client storage, but it still remains linear in
N . For N = 228 the storage requirement is 2.57 GiB to achieve an error
probability of 2−40 per contact discovery instance.

The RA protocol does not provide any analysis of security against malicious
clients.
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8.8 Other Extensions

Although this work mainly focuses on the setting of pure contact discovery
with two servers, our protocol can be easily modified for other settings.

8.8.1 PSI with associated data (PSI+AD)

refers to a scenario where the client has a set A of keys and the server has
a set B of key-value pairs, and the client wishes to learn {(k, v) | (k, v) ∈
B and k ∈ A}. In the context of an encrypted messaging service, the keys
may be phone numbers or email addresses, and the values may be the user’s
public key within the service.

PIR-PSI can be modified to support associated data, in a natural way. The
server’s Cuckoo hash table simply holds key-value pairs, and the 2-party PSI
protocol is replaced by a 2-party PSI+AD protocol. The client will then learn
masked values for each item in the intersection, which it can unmask. The
PSI protocol of [KKRT16] that we use is easily modified to allow associated
data.

8.8.2 3- and 4-Server Variant

We described PIR-PSI in the context of two non-colluding servers, who store
identical copies of the service provider’s user database. Since both servers
hold copies of this sensitive database, they are presumably both operated by
the service provider, so the promise of non-collusion may be questionable.
Using a folklore observation from the PIR literature, we can allow servers
to hold only secret shares of the user database, at the cost of adding more
servers.

Consider the case of 3 servers. The service provider can recruit two inde-
pendent entities to assist with private contact discovery, without entrusting
them with the sensitive user database. The main idea is to let servers #2
and #3 hold additive secret shares of the database and jointly simulate the
effect of a single server that holds the database in the clear.

Recall the 2-party DPF-PIR scheme of [BGI16], that we use. The client
sends DPF shares k1, k2 to the servers, who expand the keys to K1, K2 and
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performs an inner product with the database. The client XORs the two
responses to obtain result (K1 ·DB)⊕ (K2 ·DB) = (K1⊕K2) ·DB = DB[i].

In our 3-server case, we have server #1 holding DB, and servers #2 & #3
holding DB2, DB3 respectively, where DB = DB2 ⊕ DB3. We simply let
the client send DPF share k1 to server #1, and send k2 to both of the other
servers. All servers expand their DPF share and perform an inner product
with their database/share. The client will receive K1 ·DB from server #1,
K2 · DB2 from server #2, and K2 · DB3 from server #3. The XOR of all
responses is indeed

(K1 ·DB)⊕ (K2 ·DB2)⊕ (K2 ·DB3)

= (K1 ·DB)⊕K2 · (DB2 ⊕DB3)

= K1 ·DB ⊕K2 ·DB = (K1 ⊕K2) ·DB = DB[i]

Now the entire PIR-PSI protocol can be implemented with this 3-server PIR
protocol as its basis. The computational cost of each server is identical to the
2-server PIR-PSI, and is performed in parallel by the independent servers.
Hence, the total time is minimally effected. The client’s total communication
is unaffected since server #2 can forward K2 to server #3. The protocol
security is the same, except that the non-collusion properties hold now only
if server #1 doesn’t collude with any of the other servers. If servers #2 &
#3 collude, then they clearly learn DB, but as far as the client’s privacy is
concerned, the situation simply collapses to 2-server PIR-PSI.

Similarly, server #1 can also be replaced by a pair of servers, each with secret
shares (and this sharing of DB can be independent of the other sharing of
DB). This results in a 4-server architecture with security for the client as
long as neither of servers #1 & #2 collude with one of the servers #3 & #4,
and where no single server holds DB in the clear.

8.8.3 2-Server with OPRF Variant

An alternative to the 3-server variant above is to leverage a pre-processing
phase. Similar to [RA18], the idea is to have server #1 apply an oblivious
PRF to their items instead of a hash function, which will ensure that the
database is pseudorandom in the view of server #2, who does not know the
PRF key. In particular, let server #1 sample a key k for the oblivious PRF F
used in [RA18] and update the database as DB′i := Fk(DBi), which is then
sent to server #2. When a client wishes to compute the intersection of its
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set X with DB, they first perform an oblivious PRF protocol with server #1
to learn X ′ = {Fk(x) | x ∈ X}. Note that this protocol ensures that the
client does not learn k. The client can now engage in our standard two-server
PIR-PSI protocol to compute Z ′ = X ′∩DB′ and thereby infer Z = X∩DB.

The advantage of this approach is that server #2 does not learn any in-
formation about the plaintext database DB since the PRF was applied to
each record. Moreover, this holds even if server #2 colludes with one of the
clients. The added performance cost of this variant has two components.
First, server #1 must update their database by applying the PRF to it. As
shown by [RA18], a single CPU core can process roughly 50,000 records per
seconds, which is sufficiently fast given that this is a one-time cost. The sec-
ond overhead is performing the oblivious PRF protocol with the clients. This
requires three exponentiations per item in X, which represents an acceptable
overhead given that |X| is small.

8.8.4 Single Server Variant

We also note that our PIR-PSI architecture has the potential to be ex-
tended to the single-server setting. Several PIR protocols [AS16, ACLS17,
AMBFK16] based on fully homomorphic encryption have been shown to offer
good performance while at the same time removing the two-server require-
ment. With some modifications to our architecture, we observe that such
PIR protocols can be used. The main challenge to overcome is how to mask
and shuffle the results of the PIR before being forwarded to the PSI proto-
col. Instead of simply returning the resulting PIR values of [AS16, ACLS17,
AMBFK16], the server can return a secret share of it. These shares can
then be obliviously shuffled and forwarded to a PSI protocol as done by our
PIR-PSI architecture. We leave the optimization and exact specification of
such a single-server PIR-PSI protocol to future work, but note its feasibility.

8.9 Deployment

We now turn our attention to practical questions surrounding the real-world
deployment of our multi-server PIR-PSI protocol. As briefly discussed in
the previous section, the requirement that a single organization has two
non-colluding servers may be hard to realize. However, we argue that the
3-server or 2-server with an OPRF variants make deployment significantly
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simpler. Effectively, these variants reduce the problem to finding one or two
external semi-honest parties that will not collude with the service provider
(server #1). A natural solution to this problem is to leverage existing cloud
providers such as Amazon Web Services and/or Microsoft Azure. Given that
these companies have a very large incentive to maintain their reputation, they
would have a large interest to not collude. Alternatively, other well regarded
privacy conscious organization such as the Electronic Frontier Foundation
could serve as the second server.

8.10 Hiding Cuckoo Locations

We previously described a simple approach to hide the Cuckoo location for
a single item of the client. At first glance, it seems trivial to generalize
this approach to many items for the client – simply repeat the procedure
above once for each client item. However, it requires server #2 to know
that two PIR queries correspond to the same logical client item (e.g., two
queries correspond to h1(x) and h2(x) for the same x, so their masks can be
randomly swapped). This turns out to be incompatible with another of our
optimizations (see Section 8.3.4) that lets the servers learn some information
about the location of the PIR queries. It is safe to leak this information
about the collective set of client queries (e.g., a certain number of the client’s
queries are made to this region in DB) but not about specific queries (e.g.,
client has an x where h1(x) is in this region and h2(x) is in that region).

We therefore generalize this oblivious masking technique as the following
functionality:

• The client holds a permutation π that maps its logical inputs to the
indices of those PIR queries. That is, for each item xj of the client,
the π(2j + 1)’th PIR query is for DB[h1(xj)] and the π(2j + 2)’th PIR
query is for DB[h2(xj)].

• The client also holds a vector ~r of masks

• Server #1 chooses a random permutation σ with the property that
{σ(2j + 1), σ(2j + 2)} = {2j + 1, 2j + 2} for all j. That is, σ consists
of swaps of adjacent items only.

• Servers #1 & #2 have vectors of PIR responses ~v1, ~v2, respectively.
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• The goal is for server #2 to learn:

~v1 ⊕ ~v2 ⊕ π(σ(~r))
def
= ~v1 ⊕ ~v2 ⊕ (rπ(σ(1)), . . . , rπ(σ(2n)))

We claim that this results in masks r2j+1, r2j+2 being “routed” to the two
PIR queries corresponding to logical item xj. Indeed, since ~v1 ⊕ ~v2 comprise
the unmasked PIR outputs, the definition of π implies that

~v1 ⊕ ~v2 = π
(
DB[h1(x1)], DB[h2(x1)], . . . ,

DB[h1(xn)], DB[h2(xn)]
)

Hence, server #2’s output is the following vector permuted by π:(
DB[h1(x1)], DB[h2(x1)], . . .

)
⊕ (rσ(1), rσ(2), . . .)

By the construction of σ, we see that masks r2j+1 and r2j+2 are indeed paired
up with DB[h1(xj)] and DB[h2(xj)], as desired.

Hence, the client can compute the 2n values of the form xj⊕r2j+1, xj⊕r2j+2,
and use these as input to a conventional 2-party PSI protocol. Server #2
can use its output from this oblivious masking as its input to the PSI. From
the output of this PSI subprotocol, the client can deduce the intersection.

To actually achieve this oblivious masking functionality, we do the following:
The client picks three random mask vectors ~r, ~s,~t of length m and generates
a 2-out-of-2 secret sharing of π as π = π2 ◦ π1. The client sends ~t and π2 to
server #2 and ~r, ~s, π1 and ~t⊕π(~s) to server #1. Server #1 sends π1

(
σ(~r)⊕~s

)
and [~t⊕ π(~s)⊕ ~v1] to server #2, who can then compute ~v:

~v = ~v2 ⊕ π2

(
π1

(
σ(~r)⊕ ~s

))
⊕ ~t⊕ [~t⊕ π(~s)⊕ ~v1]

= ~v2 ⊕ π
(
σ(~r)

)
⊕ π(~s) ⊕ ~t⊕ ~t⊕ π(~s)⊕ ~v1

= ~v1 ⊕ ~v2 ⊕ π
(
σ(~r)

)
In order to be compatible with further optimizations, we must show that the
servers learn nothing about the client’s permutation π, which captures which
PIR queries correspond to the same logical client input.

Server #1 receives ~r, ~s, π1, and ~t⊕ π(~s). These values are randomly selected
by the client, so server #1 learns nothing about π from this oblivious masking
process.
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Server #2 receives ~t and π2 from the client, and π1(σ(~r) ⊕ ~s) as well as
~t ⊕ π(~s) ⊕ ~v1 from server #1. Since the values ~t, π2, ~r, ~s are each uniformly
distributed, the entire view of server #2 is random. Hence, server #2 likewise
learns nothing about π from the oblivious masking process.

Saving bandwidth: We can save bandwidth in the oblivious masking pro-
cedure by observing that many of the client’s messages are random, and can
instead be chosen pseudorandomly.

Recall that ~r, ~s, π1,~t⊕π(~s) are sent to server #1 and ~t, π2 to server #2. The
client can send a small seed w to server #1 and use this seed to pseudoran-
domly choose (~r, ~s, π1) = PRG(w). Similarly, the client can send a seed to
server #2 and use it pseudorandomly define ~t.

Now that π1 is fixed, the client can solve for appropriate π2 such that π2◦π1 =
π. The client must send other values explicitly: ~t⊕π(~s) to server #1 and π2

to server #2.

8.11 Cuckoo Hashing Failure Probability For-

mula

Let e > 1 be the expansion factor denoting that N items are inserted into
a cuckoo table of size eN . Figure 8.2 shows the security parameter (i.e., λ,
such that the probability of hashing failure is 2−λ) of Cuckoo hashing with
k = 2 hash functions. As N becomes larger, λ scales linearly with log2N
and with the stash size s, which matches the results of [DGM+10]. For e ≥ 8
and k = 2, we interpolate the relationship as the linear equation

λ =
(
1 + 0.65s

)(
3.3 log2(e) + log2(N)− 0.8

)
(8.1)

For smaller values of e, we observe that λ quickly converges to 1 at e = 2. We
approximate this behavior by subtracting

(
5 log2(N) + 14

)
e−2.5 from Equa-

tion 8.1. We note that these exact interpolated parameters are specific to
our implementation which uses a specific eviction policy (linear walk) and re-
insert bounds (100). Moreover, we only consider the case of λ ≥ 1. However,
we observed similar parameters for other variations.

We also consider the case k = 3, shown in Figure 8.3 and find that it scales
significantly better that k = 2. For instance, at e = 2 we find λ ≈ 100 for
interesting set sizes while the same value of e applied to k = 2 results in
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λ ≈ 1. As before we find that λ grows linearly with the expansion factor e.
Unlike in the case of k = 2, we observe that increasing N has a slight negative
effect on λ. Namely, doubling N roughly decreases λ by 2. However, the slope
at which λ increases for k = 3 is much larger than k = 2 and therefore this
dependence on logN has little impact on λ. We summarize these findings
for k = 3 as the linear equation

λ = aNe+ bN (8.2)

where aN ≈ 123.5 and bN ≈ −130 − log2N . Here we use an approximation
to hide an effect that happens for small N ≤ 512. In this regime we find that
the security level quickly falls. In particular, the slope aN and intercept bN
go to zero roughly following the normal distribution CDF. By individually
interpolating these variable we obtain accurate predictions of λ for N ≥ 4.
Our interpolations show that aN = 123.5 · CDFnormal(x = N,µ = 6.3, σ =
2.3) and bN = −130 ·CDFnormal(x = N,µ = 6.45, σ = 2.18)− log2N .

For k = 3 we do not consider a stash due to our experiments showing it
having a much smaller impact as compared to k = 2. Additionally, we do
not compute exact parameters for k > 3 due to the diminishing returns.
In particular, k = 4 follows the same regime as k = 3 but only marginally
improves the failure probability.

8.12 Effect of the Optimizations

In this section, we discuss the effect of our optimizations on the performance.
By far the most important optimization employed is the use of binning. Ob-
serve in Table 8.12 that the running time with all optimizations enabled is
1.0 s while the removal of binning results in a running time of 1906 s. This can
be explained by the overall reduction of asymptotic complexity to O(N log n)
with binning as opposed to O(Nn) without binning.

Another important optimization is the use of PIR blocks which consist of
more than cuckoo table item. This blocking technique allows for a better
balance between the cost of the PIR compared to the cost of the subsequent
PSI. Increasing the block size logarithmically decreases the cost of the PIR
while linearly increasing the cost of the PSI. Since the PIR computation is
so much larger than the PSI (assuming n� N) setting the block size to be
greater than 1 gave significant performance improvements. In practice we
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N n All Opt. No No No No
Enabled Batching Blocking Vectorization Binning

224 212 1.0 2.1 3.7 40.1 1906

Table 8.4: Online running time in seconds of the protocol with all opti-
mizations enabled compared with the various optimizations of Section 8.5.1
individually disabled.

found that setting b to be within 1 and 32 gave the best results. Table 8.12
shows that setting b to optimize running time gives a 3.7× improvement.

We also consider the effect that our highly optimized DPF implementation
has on the overall running time. Vectorization refers to an implementation of
the DPF with the full-domain optimization implemented similar as described
by the [BGI16, Figure 4]. We then improve on their basic construction to
take full advantage of CPU vectorization and fixed-key AES. The result is a
40× difference in overall running-time.

The final optimization is to improve memory locality of our implementation
by carefully accessing the cuckoo table. Instead of computing each PIR
query individually, which would require loading the large cuckoo table from
memory many times, our batching optimization runs all DPF evaluations for
a given database location at the same time. This significantly reduces the
amount of data that has to be fetched from main memory. For a dataset of
size N = 224 we observe that this optimization yields 2.1× improvement, and
an even bigger 5× improvement when applied to a larger dataset of N = 228

along with using T = 16 threads.
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Parameters: X is the client’s set, DB is the set held by server #1 and #2,
where X,DB ⊆ {0, 1}ρ. n = |X|, N = |DB|, k is the number of cuckoo hash
functions. The protocol uses an instance of Fpsi with input length ρ. λ, κ are the
statistical and computational security parameter.

1. [Cuckoo Hashing] The servers agree on k random hash function
h1, ..., hk : {0, 1}ρ → [m] and cuckoo table size m = |H| such that inserting
N items into cuckoo hash table H succeeds with probability ≥ 1− 2−λ.

The servers compute a cuckoo hash table H such that for all y ∈ DB,
H[hi(y)] = y for some i ∈ k.

2. [Query] Upon the client receiving their set X,

(a) Send n = |X| to the servers. All parties agree on the number of
bins β = O(n/ log n), and their size µ = O(log n) (see Section 8.5.3).
Define the region DBi as all locations j ∈ [m] of H such that (i −
1)mβ < j ≤ imβ .

(b) For x ∈ X,h ∈ {h1, ..., hk}, let h(x) index the j’th location in bin i.
The client adds (x, j) to bin B[i].

(c) For bin B[i],

i. Pad B[i] to size µ with the pair (⊥, 0).

ii. For (x, j) ∈ B[i] in a random order, the client constructs the
keys k1, k2 = DPF.Gen(j). Send ks to server #s.

iii. Server #s expands their key Ks = DPF.Expand(ks) and compute
vs[`] = DBi ·Ks where ks is the `’th DPF key received.

3. [Shuffle] Observe that, (v1 ⊕ v2)[`] = H[j`] where j` is the `’th PIR loca-
tion.

(a) The client samples a permutation π of βµ items such that for the
i’th x ∈ X, and j ∈ [k] it holds that the π

(
(i− 1)k + j

)
’th DPF key

corresponded to the query of item x at location hj(x).

(b) The client samples w1, w2 ← {0, 1}κ and sends w1 to server #1, and
w2 to server #2. Define shared terms t = prg(w2), (r||s||π1) =
prg(w1) where r, s, t are random vectors of the same size as vi and
π1 is a random permutation of βµ items. The client sends π2 to
server #2 such that π2 ◦ π1 = π and sends e = t⊕ π(s) to server #1.

(c) Server #1 samples a random permutation σ of βµ items such that
for all i ∈ [βµ/k] it holds that σ(j) ∈ Si where j ∈ Si = (i − 1)k +
{1, ..., k}. Server #1 sends p1 = π1

(
σ(r) ⊕ s

)
and p2 = e ⊕ v1 to

server #2.

(d) Server #2 computes v = v2 ⊕ π2(p1)⊕ t⊕ p2.

4. [PSI] The client then computes the masked versions of the xi ∈ X as
x′i = {xi ⊕ rπ

(
(i−1)k+1

), ..., xi ⊕ rπ(ik)} and computes u as the union of all

these sets. The client and server #2 respectively send u, v to Fnk,βµpsi such
that the client receives z = u ∩ v. The client outputs {xi : x′i ∩ z 6= ∅}.

Figure 8.1: Our PIR-PSI protocol Fpir−psi.
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Figure 8.2: Empirical and interpolated (dashed/dotted lines) cuckoo success
probability for k = 2 hash functions. Series are for different set sizes N
and labels as log2N . 28p and 24p are extrapolated bounds for set sizes
N = 224, 228 respectively.
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Figure 8.3: Empirical and interpolated (dashed/dotted lines) cuckoo success
probability for k = 3 hash functions. Series are for different set sizes N and
labels as log2N .
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Palamidessi, and Moti Yung, editors, ICALP 2005, volume
3580 of LNCS, pages 803–815. Springer, Heidelberg, July 2005.

[GSW13] Craig Gentry, Amit Sahai, and Brent Waters. Homomorphic
encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In CRYPTO (1), pages
75–92, 2013.

[Ham] Shane Hamlin. Electronic registration information center.
http://www.ericstates.org/.

[HEK12] Yan Huang, David Evans, and Jonathan Katz. Private set in-
tersection: Are garbled circuits better than custom protocols?
In NDSS 2012. The Internet Society, February 2012.

[Hen16] Ryan Henry. Polynomial batch codes for efficient IT-PIR.
Cryptology ePrint Archive, Report 2016/598, 2016. http:

//eprint.iacr.org/2016/598.

[HFH99] Bernardo A. Huberman, Matt Franklin, and Tad Hogg. En-
hancing privacy and trust in electronic communities. In In Proc.
of the 1st ACM Conference on Electronic Commerce, pages 78–
86. ACM Press, 1999.

216

http://www.ericstates.org/
http://eprint.iacr.org/2016/598
http://eprint.iacr.org/2016/598


[HHG13] Ryan Henry, Yizhou Huang, and Ian Goldberg. One (block) size
fits all: PIR and SPIR with variable-length records via multi-
block queries. In NDSS 2013. The Internet Society, February
2013.

[HJP13] W. Hart, F. Johansson, and S. Pancratz. FLINT: Fast Library
for Number Theory, 2013. Version 2.4.0, http://flintlib.

org.

[HKE12] Yan Huang, Jonathan Katz, and David Evans. Quid-Pro-Quo-
tocols: Strengthening semi-honest protocols with dual execu-
tion. In 2012 IEEE Symposium on Security and Privacy, pages
272–284. IEEE Computer Society Press, May 2012.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient protocols for set in-
tersection and pattern matching with security against malicious
and covert adversaries. Journal of Cryptology, 23(3):422–456,
July 2010.

[HMRT12] Carmit Hazay, Gert Læssøe Mikkelsen, Tal Rabin, and Tomas
Toft. Efficient RSA key generation and threshold Paillier in the
two-party setting. In Orr Dunkelman, editor, CT-RSA 2012,
volume 7178 of LNCS, pages 313–331. Springer, Heidelberg,
February / March 2012.

[HOG11] Ryan Henry, Femi G. Olumofin, and Ian Goldberg. Practical
PIR for electronic commerce. In Yan Chen, George Danezis,
and Vitaly Shmatikov, editors, ACM CCS 11, pages 677–690.
ACM Press, October 2011.

[HS14] Shai Halevi and Victor Shoup. Algorithms in helib. In Inter-
national cryptology conference, pages 554–571. Springer, 2014.

[IKN+17a] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit
Saxena, Karn Seth, David Shanahan, and Moti Yung. Pri-
vate intersection-sum protocol with applications to attributing
aggregate ad conversions. Cryptology ePrint Archive, Report
2017/738, 2017. https://eprint.iacr.org/2017/738.

[IKN+17b] Mihaela Ion, Ben Kreuter, Erhan Nergiz, Sarvar Patel, Shobhit
Saxena, Karn Seth, David Shanahan, and Moti Yung. Pri-
vate intersection-sum protocol with applications to attributing
aggregate ad conversions. Cryptology ePrint Archive, Report
2017/738, 2017. http://eprint.iacr.org/2017/738.

217

http://flintlib.org
http://flintlib.org
https://eprint.iacr.org/2017/738
http://eprint.iacr.org/2017/738


[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Ex-
tending oblivious transfers efficiently. In Dan Boneh, edi-
tor, CRYPTO 2003, volume 2729 of LNCS, pages 145–161.
Springer, Heidelberg, August 2003.

[JL10] Stanis law Jarecki and Xiaomin Liu. Fast secure computation
of set intersection. In International Conference on Security and
Cryptography for Networks, pages 418–435. Springer, 2010.

[KKNO17] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam
O’Neill. Accessing data while preserving privacy. CoRR,
abs/1706.01552, 2017.

[KKRT16] Vladimir Kolesnikov, Ranjit Kumaresan, Mike Rosulek, and
Ni Trieu. Efficient batched oblivious PRF with applications to
private set intersection. In Edgar R. Weippl, Stefan Katzen-
beisser, Christopher Kruegel, Andrew C. Myers, and Shai
Halevi, editors, ACM CCS 16, pages 818–829. ACM Press, Oc-
tober 2016.

[KL16] Rachel Player Kim Laine, Hao Chen. Simple encrypted arith-
metic library - SEAL (v2.1). Technical report, September 2016.
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