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Cryptographic obfuscation is a powerful tool that makes programs “unintelligible” yet still runnable.

It essentially gives programs the ability to keep secrets. The practical applications of obfuscation

range from keeping secrets in banking applications to preventing software theft to providing se-

cure messaging applications. The cryptographic applications of obfuscation are also vast – a tool

that hides secrets in programs essentially enables all other cryptographic constructions. Despite

(or perhaps due to) its power, obfuscation is currently wildly inefficient and on shaky theoretical

ground. Its shaky theoretical ground in particular has resulted in a lack of engineering effort at

making it more efficient. In this work, we focus largely on efficiency.

We explore the concrete efficiency of multilinear maps, which are the basis of many crypto-

graphic obfuscation constructions. Multilinear maps are mathematical objects that allow obliv-

ious addition and multiplication of encrypted values. Using multilinear maps, we give the first

ever implementations of obfuscation and multi-input functional encryption (MIFE: a variant of

obfuscation) for branching programs. Along the way, we create the 5Gen framework for imple-

mentations of multilinear map-based applications. We apply the 5Gen framework to experiment

with obfuscating point functions and MIFE of order-revealing encryption.

We also explore efficiency in the context of obfuscators and MIFE for circuits. Circuits are

more efficient than branching programs for many functions. We give the first MIFE construction



for circuits and prove its security in an ideal model. Our scheme is efficient. To compare, we

implement all known circuit obfuscation schemes using the 5Gen framework, and experiment

with obfuscating a PRF. This results in the most complex PRF obfuscated to date – with 12 bits

of security.

Finally, recently Bishop et al. showed an obfuscation scheme for the specific functionality of

wildcard pattern-matching [BKM+18]. This is a simple type of string matching where strings

must match a pattern exactly except where there are wildcards. This obfuscation scheme simply

relies on the generic group model, with no multilinear maps. Inspired by their work, and the

deep connection of functional encryption to obfuscation, we give a function-private, public-key

functional encryption scheme for the same wildcard pattern-matching functionality. Our scheme

is the first such scheme and we prove its security in a generic model.
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1 Overview

1.1 Introduction

An obfuscator is a program that takes another program P as input, and produces another program

O(P ) that has the same input/output behavior as P , except that its source code is indecipher-

able. Obfuscation gives software the power to keep secrets, whether simply some secret keys

for communication or the entire program itself. If obfuscation truly exists, then we learn some-

thing about the nature of the universe, namely that it is non-reductionist from a computational

perspective: that is, there is some high-level entity (an obfuscated program) that cannot be com-

putationally understood from only parts (its obfuscated code) even though it is fully complete

(runnable). See Figure 1.1 for a visual overview of program obfuscation.

There are many heuristic obfuscators, which attempt to hide secrets in the source code in

various ways. These methods can be as simple as removing formatting, renaming variables,

and injecting dead code (like a JavaScript “uglifier”) or as complex as whitebox cryptography

which uses cryptographically inspired techniques [Arx17, Thi17, Jav17]. Unfortunately, even the

most clever whitebox constructions have been broken. This is exemplified by the latest whitebox

competition held at the CHES 2017 conference, where participants competed in creating and

breaking heuristic obfuscators. All submissions were broken (including our own!) [GPRW18].

This leads us to search for a more solid foundation for obfuscation.

readable

code

P

O
obfuscator

???

O(P )

Figure 1.1: Program obfuscators (notated O)
make the code of a program unreadable, but pre-
serve the functionality of the program. In this
example, P is a program, then for any input
x, the outputs y1 = P (x) and y2 = Obf(P )(x)
should be equal. However, the code of P is read-
able, while the code of O(P ) is not.
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Cryptographic obfuscation. Cryptographic program obfuscators give programs the same

power as heuristic obfuscators – the ability to keep secrets – but with security that is defined

mathematically. Cryptographic obfuscators come with a proof: an adversary who breaks the

security definition has to either solve a hard math problem or spend an exponential amount of

time using brute force – trying every possible combination. In the actual practice of obfuscation

research so far, the underlying mathematical assumptions of obfuscators are not very far removed

from “assume that breaking our scheme is hard.” Simplifying and standardizing the assumptions

has thus been a major thrust of the community, with some success [LV16, Lin17, LT17].

The area of cryptographic program obfuscation started with a bang in 2001 when Barak et al.

showed that for an intuitive definition of obfuscation, there existed un-obfuscatable programs,

which implies that obfuscation is impossible in general [BGI+01]. That definition can be sum-

marized as “the adversary should not learn anything more about the program than they would

given black-box access to it.” This kind of security is known as virtual black-box (VBB) security.

What we mean by “black-box” is that the program is only seen through its inputs and outputs

so nothing at all can be learned from its source code. What Barak et al. showed is a program

that does something with its own code cannot be obfuscated by a VBB obfuscator, since a VBB

obfuscator essentially turns all source code into a black-box. It turns out that this is not such

a limitation in practice, since most programs do no such thing, and many VBB and VBB-like

obfuscators have appeared in the literature. But it does give pause, and causes us to wonder

whether VBB is truly the most natural security definition for obfuscation, and indicates that

there will probably never be a VBB obfuscator from natural assumptions.

In the same work, Barak et al. gave an alternative definition of obfuscation called indistin-

guishability obfuscation (IO). What an IO obfuscator guarantees is that it is hard to distinguish

the obfuscations of two programs with the same input-output behavior. Intuitively, IO obfusca-

tors scramble the source code of a program in a random way that does not affect the outputs.

The difference between IO and VBB is one of scale VBB asks that nothing at all be learnable

from the source code, but IO simply asks that two obfuscations of programs with the same input
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Encode(x)

x
1

ya.

x
i

+ y
i

→ x+ y
i

b.

y
j

×x
i

→ x× y
i+ j

c.

−→ZeroTest
( )

x
z


1 if x = 0

0 otherwise
d.

Figure 1.2: Multilinear maps pro-
vide the power to (a.) encode val-
ues as level 1 ciphertexts, (b.) add
encodings at the same level without
decrypting them, (c.) multiply en-
codings at different levels without de-
crypting them, and to (d.) determine
whether the value in an encoding at
the zero-testing level is zero.

and output are indistinguishable, even if their original source code was different. In addition,

there have been no impossibility results for IO. Despite the apparent weakness of IO, there are

many surprising applications for it. IO can be used to create public key encryption, signature

schemes, non-interactive zero knowledge proofs, oblivious transfer, multiparty non-interactive key

exchange, and many other cryptographic primitives [SW14, BZ14]. Its usefulness as a building-

block comes from the power it gives to swap two programs with each other.

In parallel with the first obfuscation definitions, Boneh and Silverberg [BS02] first proposed

the concept of multilinear maps (mmaps). Multilinear maps provide the ability to add and

multiply ciphertexts without opening them (see Figure 1.2), much like fully-homomorphic en-

cryption [Gen09, vDGHV10, BGV12], but with the additional power of a public decryption key

that tests whether ciphertexts are zero or not. It was already clear that multilinear maps were

extremely powerful: Boneh and Silverberg showed many mmap applications including n-party

non-interactive key exchange and efficient broadcast encryption [BS02]. However, it was not until

2013 that the obfuscation floodgates opened.

Shortly after Garg, Gentry, and Halevi proposed the first plausible multilinear map [GGH13a],

Garg, Gentry, Halevi, Raykova, Sahai, and Waters gave the first candidate obfuscation scheme

[GGH+13b]. Neither scheme came with a proof, but subsequent works improved the GGH+13

obfuscator’s efficiency and proved its VBB security in an ideal model where the multilinear

map is used as a black-box (eg. [BR14, AGIS14]). More multilinear maps appeared [CLT13,
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CLT15, GGH15], as well as attacks on both multilinear map candidates and obfuscation schemes

[HJ16, CGH+15, MSZ16].

All of the proposed multilinear maps use noise as a way to make encodings hard to open

[GGH13a, CLT13, GGH15]. Unfortunately, this noise grows exponentially with every multipli-

cation. If the noise grows too much, it can overflow, making the encoding useless. So, in order

to preserve fidelity, the mmap encodings must be large enough to contain all the noise from

however many multiplications are needed. This means that obfuscation schemes — all of which

use multilinear maps — must be careful to not require multiplications that go too deep. This

is a serious limitation: the goal is to obtain obfuscation for all functions, not just those with a

small number of multiplications!

The unfortunate fact of noise led to bootstrapping methods (eg. [GGH+13b, App14]). The idea

of bootstrapping is this: in order to obfuscate a large program, obfuscate a small “core” program

and then use other, cheaper, tools to extend to an obfuscation of the whole thing. Here is a

bootstrapping metaphor from outside cryptography: consider how orange juice is transported.

Water is everywhere, and the orange juice does not depend on having particular water. In

addition, it is expensive to transport all that water. It is cheaper to take the water out, then

ship the remaining “core” concentrated orange juice. Then, to drink it, add the water back in.

Obfuscation bootstrapping works the same way: obfuscate some “core” secret (the concentrated

orange juice), and then use that core obfuscation to extend obfuscation to the whole program

using cheaper crypto tools (adding water back in).

There have been many bootstrapping theorems in the literature. The most promising are those

requiring the fewest multiplications. In fact, a major thrust of research has been to try to push

the depth of multiplications down to 1, which would give us obfuscation from solid mathematical

assumptions instead of multilinear maps. Until recently, the state-of-the-art required at least

depth-2 multiplications, which still require multilinear maps [LT17]. Very recently, the depth of

multiplications has been reduced down to 1, but by using non-standard primitives [LM18, Agr18,

AJKS18, GJ18]. However, these works have yet to undergo sustained scrutiny. In general,
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these low-depth bootstrapping theorems generally build obfuscation out of another primitive –

functional encryption (FE) [AJ15, BV15].1

Functional encryption schemes have special functional keys that decrypt ciphertexts to some

specific function of their plaintext [BSW11, O’N10]. Except for revealing the output of function,

they keep the plaintext secret. For instance, FE can make keys that reveal whether a ciphertext

matches a certain pattern. Multi-input functional encryption (MIFE) works the same way, except

that function keys can contain functions that take more than one input [GGG+14]. An example of

MIFE is order-revealing encryption, where a function key reveals whether one ciphertext encodes

a plaintext that is greater or less-than another. MIFE directly produces obfuscation [GGG+14].

However, FE produces obfuscation through a complex reduction, where the number of arguments

is carefully increased one by one, resulting in MIFE [AJ15, BV15].

Another fruitful area is obfuscation for restricted classes of functions, instead of general

circuits. Restricting the type of function allows us to create more efficient constructions from

more realistic assumptions. For example, there is a line of work on special-purpose obfuscation for

pattern-matching functions, with a progression from schemes based on multilinear maps [BR13],

to the learning-with-errors assumption [BVWW16, WZ17] to recently simply using generic groups

[BKM+18]. This property is true in functional encryption as well. While functional encryption

for all circuits is generally hard, requiring IO or multilinear maps, functional encryption schemes

for restricted classes of functions are quite well known. Depending on how the functionality

is restricted, special-purpose FE can result in protocols such as predicate encryption, attribute-

based encryption, or identity-based encryption. In fact, the recent very-low-degree bootstrapping

works for general obfuscation rely on special-purpose FE protocols such as FE for constant-degree

polynomials [LM18]. We see special-purpose obfuscation and special-purpose FE as one of the

most promising directions for this area of research.

We now see the complex geography of the obfuscation landscape: VBB, IO, FE, MIFE and

multilinear maps. There are many paths between the landmarks, and many tangled badlands to

avoid. The frontier we explore is improving their actual performance.
1In fact, as with most cryptography, functional encryption can also be built out of IO [GGH+13b].
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1.2 Contributions

In this work, we explore the practical side of obfuscation. Previous works have sought to

strengthen the theoretical foundation of obfuscation (and FE, and MIFE), but there has been

little work on optimizing and building usable constructions with it. In fact, before our work,

building a usable obfuscation construction would have been a daunting challenge: without our

years of work on multilinear map implementations, circuit formats and compilers, or matrix

branching program formats and compilers, an implementation project would have to solve many

difficult and subtle problems before even arriving at obfuscation. We emphasize that none of

these tools existed before our work. One of our main contributions is therefore the infrastructure

to conduct experiments in this area. On top of this tool-set, we conduct our research into the

practical efficiency of obfuscation and functional encryption. Each of the following chapters delve

a little deeper into this world.

1.2.1 Contributions of Chapter 3: 5Gen

Despite the remarkable power of mmaps (introduced in Section 1.2), few published works study

the efficiency of the resulting applications, primarily due to the rapid pace of development in the

field and the high resource requirements needed to carrying out experiments. In Chapter 3 we

develop a generic framework called 5Gen2 (available at https://github.com/5GenCrypto) that

lets us experiment with applications of current and future mmaps. We focus on two applications

in particular: multi-input functional encryption (MIFE) and program obfuscation, both of which

can be instantiated with some of the existing mmap candidates (see Section 3.3). Our framework

is built as a multi-layer software stack where different layers can be implemented with any of the

current candidates or replaced altogether as new constructions emerge.

The top layer of our framework is a system to compile a high-level program written in the

Cryptol language [Cry] into a matrix branching program (MBP, defined in Section 3.2.1), as
2The name 5Gen comes from the fact that multilinear maps can be considered the “fifth generation” of cryp-

tography, where the prior four are: symmetric key, public key, bilinear maps, and fully homomorphic encryption.

https://github.com/5GenCrypto
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needed for the most efficient MIFE and obfuscation constructions. We introduce several novel

optimizations for obtaining efficient MBPs and show that our optimizations reduce both the

dimension and the total number of matrices needed. The next layer implements several variants of

MIFE and obfuscation using a provided MBP. This lets us experiment with several constructions

and to compare their performance. The lowest layer is the multilinear map library, libmmap.

We demonstrate our framework by experimenting with two leading candidate mmaps: GGH-

Lite [GGH13a, LSS14, ACLL15] and CLT [CLT13, CLT15]. Our experiments show that for the

same level of security, the CLT mmap performs considerably better than GGHLite, as explained

in Section 3.6. 5Gen makes it possible to quickly plug in new mmaps as new proposals emerge,

and easily measure their performance in applications like obfuscation and MIFE.

One important application of 2-input MIFE is order-revealing encryption (ORE) [GGG+14,

BLR+15]. Here the function f(x, y) (associated with the decryption key) outputs 1 if x < y

and 0 otherwise. Thus, the key skf applied to ciphertexts c1 and c2 reveals the relative order

of the corresponding plaintexts. ORE is useful for responding to range queries on an encrypted

database. For large domains, the only known constructions for secure ORE are based on mmaps.

We conduct experiments on ORE using real-world security parameters where mmaps give the

best known secure construction.

We also experiment with 3-input MIFE. Here, we choose a DNF formula f that operates

on triples of inputs, which is useful in the context of privacy-preserving fraud detection where

a partially trusted gateway needs to flag suspicious transactions without learning anything else

about the transactions (see Section 3.4.3). Again, the best known construction for such a scheme

uses mmaps.

We use our framework to evaluate the implementation of these schemes using existing mmaps

for which they are currently believed to be secure. These systems are too inefficient to be used in

practice. Nevertheless, our experiments provide a data point for the current cost of using them.

Moreover, our framework makes it possible to easily plug in better or more secure mmaps as they

become available.
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We experiment with several obfuscators built on the obfuscator described by Barak et al.

[BGK+14], including those inspired by Sahai and Zhandry [SZ14] and Ananth et al. [AGIS14].

These improvements allow for obfuscation of a point function with increased security at less

than half the total obfuscation size reported by Apon et al. [AHKM14]. We also implemented

the Zimmerman [Zim15] obfuscator, but we ultimately found that it was too inefficient for the

functions that we consider in our experiments (see Chapter 4 for a closer examination of the

Zimmerman obfuscator).

Summarizing, in Chapter 3, we make the following contributions:

1. An optimizing compiler from programs written in the Cryptol language to MBPs, which

are used in many mmap applications including MIFE and obfuscation. Our compiler uses

optimizations such as dimension reduction, matrix pre-multiplication, and condensing the

input representation, and solves a constraint-satisfaction problem needed to obtain the

most efficient MBP. See Section 3.2 for details.

2. A library providing a clean API to various underlying mmap implementations. This allows

researchers to experiment with different mmaps, as well as to easily plug future mmaps

into our framework. See Section 3.3 for more details.

3. A general MIFE construction based on the scheme of Boneh et al. [BLR+15] using real-

world security parameters. We contribute optimized implementations of two-input MIFE

and three-input MIFE, as well as performance results that characterize our constructions.

See Section 3.4 for details and Section 3.6 for evaluation results.

4. Obfuscation constructions [BGK+14, SZ14, AGIS14, Zim15] using real-world security pa-

rameters. We experiment with obfuscating point functions and evaluate their performance.

See Section 3.5 for details and Section 3.6 for evaluation results.

This chapter is based on 5Gen: A Framework for Prototyping Applications Using Mul-

tilinear Maps and Matrix Branching Programs with co-authors Kevin Lewi, Alex J. Mal-

ozemoff, Daniel Apon, Adam Foltzer, Daniel Wagner, David W. Archer, Dan Boneh, Jonathan
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Katz, and Mariana Raykova. It was presented at ACM CCS 2016.

1.2.2 Contributions of Chapter 4: 5Gen-C

The 5Gen framework provides implementations of MIFE and program obfuscation based on

matrix branching programs, which are a way to represent functions as sequences of matrix multi-

plications. For simple functions, this approach is sufficient. However, the mapping from general

functions to matrix branching programs is exponential, and thus this approach quickly becomes

infeasible as complexity grows. Due to this blow-up, in Chapter 3 we were limited to obfuscating

an 80-bit point function.

However, matrix branching programs are not the only way to obtain program obfuscation.

Both Zimmerman [Zim15] and Applebaum and Brakerski [AB15] showed how to build obfusca-

tors that operate directly on the circuit representation of a function. This has several advantages

over the branching program approach, not least of which is that one no longer needs to “com-

pile” the function into a branching program. It is worth noting that when we implemented the

Zimmerman construction in Chapter 3, we found the branching program approach superior for

simple functions such as point functions. This is because the simple structure of these functions

is better tailored to the branching program representation. However, for more complex functions,

the circuit representation and corresponding circuit obfuscators are more efficient. Thus, extend-

ing the 5Gen framework with circuit obfuscators — and also developing MIFE for circuits —

substantially enhances the framework, provides a basis for comparison, and pushes cryptographic

program obfuscation further towards practicality.

In Chapter 4, we explore in detail MIFE and program obfuscation for circuits. We implement

and evaluate existing constructions as well as develop new schemes in the context of PRF obfus-

cation. Our implementation extends the 5Gen framework, which previously included only MIFE

and program obfuscation for branching programs. This enhances the functionality of 5Gen and

makes our constructions available for use and experimentation.
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Towards this goal, we introduce a new MIFE construction that works directly on arithmetic

circuits. Using Goldwasser et al.’s transformation from MIFE to IO [GGG+14], this gives us

an obfuscation scheme which avoids the extra n multilinearity overhead inherent in prior circuit

obfuscators [Zim15, AB15], where n is the number of inputs. To fully compare our new approach

with existing constructions, we implement all known circuit obfuscation approaches, including

the optimization of Applebaum and Brakerski’s scheme [AB15] for low-depth PRFs by Lin [Lin16]

and our own adaptation of this optimization to Zimmerman’s scheme [Zim15].

Since our constructions work over arithmetic circuits, we develop a compiler for constructing

circuits from high-level program descriptions. This compiler includes optimizations to reduce the

multiplicative degree of the resulting circuits — a metric not targeted by any existing circuit

compilers — which has a huge impact on which functions are obfuscatable using existing mmaps.

Finally, given our implementation and compiler suite, we experiment with obfuscating a

PRF. Obfuscating a PRF would allow us to bootstrap our obfuscator to general functions. In

particular, we look at obfuscating both AES and the Goldreich-Goldwasser-Micali (GGM) PRF.

While we are still far from obfuscating the complete AES algorithm, we are able to demonstrate

some surprising results, such as the obfuscation of the GGM PRF with a 64-bit key and 12

input/output bits with 80 bits of security for the underlying mmap.

Summarizing, in Chapter 4, we make the following contributions:

1. An instantiation of multi-input functional encryption (MIFE) for circuits (cf. Section 4.3).

Prior MIFE constructions [BLR+15, LMA+16] required that the function be compiled as a

branching program, which becomes infeasible for complex functions, whereas our approach

works directly on the arithmetic circuit representation of a function. Additionally, using

the Goldwasser et al. [GGG+14] transformation from MIFE to obfuscation, this gives us a

new obfuscator which performs better than all existing obfuscators.

2. A new circuit compiler which provides optimizations for generating low degree arithmetic

circuits starting from a high-level specification of the functionality (cf. Section 4.4). This

tool is of independent interest, as it produces function representations which can be used
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in the context of multi-party secure computation or fully homomorphic encryption.

3. Implementations of our new MIFE construction, an obfuscator based on our MIFE con-

struction, and all existing circuit-based obfuscators from the literature (cf. Section 4.5).

As part of this, we introduce three new components to the 5Gen framework introduced in

Chapter 3 (1) libacirc, a language and library for building and computing over arithmetic

circuits; (2) mio, an implementation of circuit-based multi-input functional encryption and

program obfuscation; and (3) cxs, a toolkit for compiling and (x) synthesizing arithmetic

circuits optimized for minimizing circuit degree. See Figure 4.2 for the enhanced 5Gen

architecture.

4. A thorough exploration of the performance of the various obfuscators, with a focus on

obfuscating a PRF (cf. Section 4.6).

This chapter is based on 5Gen-C: Multi-input Functional Encryption and Program Ob-

fuscation for Arithmetic Circuits with co-authors Alex J. Malozemoff and Mariana Raykova.

It was presented at ACM CCS 2017.

1.2.3 Contributions of Chapter 5: Function-Private Wildcard Encryp-

tion

As we state above, functional encryption is a powerful type of encryption where decryption reveals

a function of the plaintext [BSW11, O’N10]. Functional encryption evolved as an abstraction of

predicate encryption (introduced in [KSW08]) where secret keys are associated with predicates.

Secret keys in predicate encryption schemes will only decrypt messages whose attribute matches

the predicate. More formally, if x ∈ {0, 1}m is an attribute and y ∈ {0, 1}∗ a message, then
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predicate encryption schemes are functional encryption schemes for the function

fp(x, y) =


y if p(x) = 1

⊥ otherwise

where p : {0, 1}m → {0, 1} is a predicate. The question naturally arises whether it is also

possible to hide the predicate. Brakerski and Segev answer in the affirmative for the secret key

setting [BS15], but the public-key setting offers unique challenges.

The notion of function-privacy in the public-key setting for predicate encryption first appeared

for identity-based encryption (IBE) [BRS13a]. IBE is a predicate encryption scheme where the

predicate determines whether the identity (encoded in the ciphertext) is a member of a set of

authorized identities (encoded in the secret key). In this context function privacy means the

holder of a secret key should not be able to learn any information about the set of identities in

the key, except for the fact that decryption succeeded or failed on particular ciphertexts. The

actual definition of function privacy is subtle. The adversary should not be able to distinguish

two secret keys for different sets of identities. However, since the scheme has a public key, the

adversary can create ciphertexts specifically designed to distinguish one secret key from another.

Then, if the adversary has some a priori knowledge about the set of identities, it can exhaustively

search in order to learn the identities that are associated with a particular key.

In order to avoid brute-force attacks, the sets of identities themselves must be drawn from

a distribution with a certain amount of entropy. This means that the adversary should not

be able determine which set it has a secret key for, even when it gets a polynomial number of

guesses using the public key. Concretely, this means the probability that a particular set is drawn

should be at least negligible in the security parameter, which results in a generic lower bound

of min-entropy of ω(log λ) on the function distribution for all function-private schemes. The

min-entropy requirement first given by Boneh, Raghunathan, and Segev for IBE was higher – at

least linear in the security parameter λ [BRS13a, BRS13b] – while subsequent works improved

it to the minimum ω(log λ) for various types of special-purpose FE [AAB+15, ITZ16, PM18].
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There are a number of public-key function-private functional encryption schemes in the lit-

erature. Agrawal et al. gave new simulation-based security definitions (circumventing impossi-

bility results) as well as constructions for function-private inner-product functional encryption

[AAB+13]. Iovino et al. show general function-private constructions from a weakened version of

iO. Special-purpose function-private protocols for functionalities such as subspace membership

encryption [BRS13b, PM18], inner-product encryption [BJK15, AAB+15, KKS17], or hidden-

vector encryption [BM18] exist as well.

Special purpose obfuscation constructions also have similar min-entropy constraints. In the

obfuscation context, one party wishes to hide a function while still allowing it to be used by

another party. This means that the evaluator should not be able to guess the functionality,

even though they can query it on arbitrary inputs of their choosing, just as in the public-key

function-hiding functional encryption setting.

Bishop, Kowalczyk, Malkin, Pastro, Raykova, Shi very recently showed a special purpose

obfuscation scheme for the class of wildcard pattern-matching functions [BKM+18]. A wildcard

pattern matches an input string if each bit of the string either matches the pattern exactly or

the value at the ith position of the pattern is a wildcard (which we notate as “?”). In the rest

of this work, we refer to the matching function as Match : {0, 1, ?}n × {0, 1}n → {0, 1}. In the

BKMPRS obfuscator, both the bit-pattern and the location of the wildcards are hidden to the

evaluator, who only learns whether their input matched or not. While it is possible to define

distributions of wildcard patterns, Bishop et al. showed distributional virtual black-box security

for a single distribution: the distribution of wildcard patterns with at most 3/4n wildcards where

n is the length of the input. Recently, Bartusek and Ma extended the analysis to support up to

n− ω(log n) wildcards and gave an improved security bound [BM18].

The functionality of obfuscation is very close to function-private public-key functional en-

cryption – it is essentially obfuscation with secret inputs – and so the following question arises:

Is there an efficient function-private public-key

functional encryption scheme for wildcards?

In Chapter 5, we answer in the affirmative in the generic bilinear map model. In Section 5.2, we
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give the first function-private public-key functional encryption scheme for the family of functions

fpat(x, y) =


y if Match(pat, x)

⊥ otherwise

where pat is sampled from the distribution of wildcard patterns with at most n− ω(log λ) wild-

cards. Our scheme is strongly inspired by BKMPRS wildcard obfuscation [BKM+18]. In fact,

our proof of function privacy directly relies on it. Our scheme is efficient – the public key contains

4n + 1 encodings, the secret key and ciphertext each contain 2n encodings, and our decryption

routine consists of 2n pairings.

Following Boneh, Raghunathan, and Segev, we separate the orthogonal concerns of message

privacy and function privacy [BRS13a, BRS13b]. Message privacy holds if the adversary cannot

distinguish two messages, even if it can request secret keys that do not trivially distinguish them.

In Section 5.2.2.2 we show the message privacy of our scheme using an analysis in the generic

bilinear map model.

Function privacy is trickier due to the min-entropy requirement discussed above. In general,

function privacy requires that it is difficult for the adversary to distinguish a secret key for a

function sampled from a chosen distribution from a secret key sampled uniformly. Since our

setting is for a single distribution, namely the distribution of wildcard patterns containing at

most n − ω(log λ) wildcards, function privacy requires that the adversary cannot distinguish a

valid secret key from an invalid one. In addition, in our scheme, an adversary is also allowed

to obtain ciphertexts whose (random) attribute matches a particular secret key (following “en-

hanced” function privacy in [BRS13a]). This reflects real-world applications where a user may

be given a secret key as well as ciphertexts decryptable with that secret key. Our proof of func-

tion privacy in Section 5.2.2.3 uses an analysis in the generic bilinear map model to show these

encryptions do not reveal anything about the secret keys. We then reduce to BKMPRS to show

the indistinguishability of real keys with simulated keys.

Summarizing, our contribution in Chapter 5 is the first function-hiding, public-key functional
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encryption scheme for the wildcard matching functionality. This chapter is based on ongoing

research with collaborators James Bartusek, Abhishek Jain, Tancrède Lepoint, Fermi Ma, Tal

Malkin, Alex Malozemoff, and Mariana Raykova.
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2 Preliminaries

Notation. For an integer n > 0, we use [n] to denote the set of integers {1, . . . , n}. We use

λ to represent the security parameter, where “λ-bit security” means that security should hold

up to 2λ clock cycles. We assume that all of our procedures run efficiently, or more formally,

in polynomial-time with respect to the size of the input to the procedure, and polynomial in

the security parameter λ. We let κ denote the multilinearity (maximum supported depth of

multiplications) of the multilinear map used in our constructions.

2.0.1 Program Obfuscation

Intuitively, program obfuscation allows one party to obfuscate a program in such a way that any

other party cannot learn anything about the internal workings of the program besides what can

be deduced from input/output relationships.

Definition 2.0.1. A program obfuscator is a tuple of algorithms (obf, eval) defined as follows:

• obf(λ,C) → Obf: Takes as input the security parameter λ and an arithmetic circuit C :

{0, 1}n → {0, 1}m, and returns an obfuscation Obf.

• eval(Obf,x) → z: On input obfuscation Obf and bitstring x ∈ {0, 1}n, output bitstring

z ∈ {0, 1}m.

Definition 2.0.2 (Correctness). A program obfuscator (obf, eval) is correct for circuit C if for

all x ∈ {0, 1}n, it holds that

eval(obf(λ,C),x) = C(x).

Definition 2.0.3 (Efficiency). A program obfuscator (obf, eval) is efficient for circuit C if there

exists polynomial p(·) such that |obf(λ,C)| < p(λ).
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Regarding security, the two key notions are virtual black-box (VBB) obfuscation and indis-

tinguishability obfuscation (IO).

Definition 2.0.4. A program obfuscator (obf, eval) is an indistinguishability obfuscator for cir-

cuit class {Cλ} if for all λ ∈ N and for every pair of circuits C0, C1 ∈ Cλ such that |C0| = |C1|

and C0(x) = C1(x) for all inputs x, then

{C0, C1, obf(λ,C0)} ≈ {C0, C1, obf(λ,C1)}.

Definition 2.0.5. A program obfuscator (obf, eval) is a virtual black-box obfuscator for circuit

class {Cλ} if for every efficient adversary A, there exists a simulator S such that for every λ ∈ N

and C ∈ Cλ it holds that

Pr[A(obf(λ,C)) = 1]− Pr[SC(λ) = 1] is negligible ,

where SC denotes that the simulator has black-box access to circuit C.

2.0.2 Multi-input Functional Encryption

Multi-input functional encryption (MIFE) [GGG+14] provides a way to compute a function over

multiple ciphertexts such that the “decryptor” only learns that function of the ciphertexts and

nothing else. In this work we utilize the secret-key variant of MIFE introduced by Boneh et

al. [BLR+15].

Definition 2.0.6. A single-key secret-key multi-input functional encryption (1SK-MIFE) scheme

is a tuple of algorithms (1SK-MIFE.Setup, 1SK-MIFE.Enc, 1SK-MIFE.Dec) defined as follows:

• 1SK-MIFE.Setup(n,C) → (sk, ek): Takes as input the security parameter λ and an arithmetic

circuit C : {0, 1}d1 × · · · × {0, 1}dn → {0, 1}m and returns a secret key sk and an evaluation

key ek.
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• 1SK-MIFE.Enc(sk, i, x)→ ct: Takes as input secret key sk, index i, and input x ∈ {0, 1}di , and

outputs a ciphertext ct(i).

• 1SK-MIFE.Dec(ek, ct(1), . . . , ct(n)) → y: Takes as input an evaluation key ek and ciphertexts

ct(1), . . . , ct(n), and outputs a bitstring y.

Definition 2.0.7 (1SK-MIFE Correctness). A 1SK-MIFE scheme Π is correct if for any multi-

input circuit C, and any inputs x(1) ∈ {0, 1}d1 , . . . , x(n) ∈ {0, 1}dn , if (ek, sk)← 1SK-MIFE.Setup(1n, C)

and for each i ∈ [n], ct(i) ← 1SK-MIFE.Enc(sk, i, x(i)), then,

1SK-MIFE.Dec(ek, ct(1), . . . , ct(m)) = C(x(1), . . . , x(m)).

Towards defining security, we introduce the following security game. Given a circuit C,

adversary A, and bit b ∈ {0, 1}, we define the experiment Expt1SK-MIFE
C,Q,b (A), parameterized over a

number of queries Q:

Experiment Expt1SK-MIFE
C,Q,b (A):

1. Compute (sk, ek)← 1SK-MIFE.Setup(1n, C) and send ek to A.

2. For q ∈ [Q], A sends (iq, xq,0, xq,1) and is given ciphertext ctq ←

1SK-MIFE.Enc(sk, iq, xq,b).

3. A outputs bit b′ ∈ {0, 1}.

We define security for a 1SK-MIFE scheme in the composite-order multilinear map generic

model. For this we use the notion of admissible execution traces [BLR+15]. An execution

trace includes the sequence of queries from A to both its oracle and the mmap. An execu-

tion trace is admissible if for all tuples of queries ((1, xq1,0, xq1,1), · · · , (n, xqn,0, xqn,1)) we have

that C(xq1,0, . . . , xqn,0) = C(xq1,1, . . . , xqn,1).
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Definition 2.0.8 (IND-security for 1SK-MIFE). A 1SK-MIFE scheme is Q-IND-secure if, for all

circuits C and all efficient adversaries A, the quantity

Adv1SK-MIFE
C,Q (A) := |W0 −W1|

is negligible, where

Wb = Pr

 Expt1SK-MIFE
C,Q,b (A) outputs 1 and yields

an admissible execution trace

 .

2.0.3 Composite-order Multilinear Maps

Multilinear maps provide a way to add and multiply secret encoded values up to a certain point,

at which a given encoding can be “zero-tested” to determine whether its secret value is zero or

non-zero. In particular, mmaps provide an Encode operation that maps a value into its encoded

form, and Add and Mul operations that allow adding and multiplying encoded values. At a

certain point, the ZeroTest operation can be run to test equality with zero. Composite-order

mmaps allow using multiple slots of encoded values, where now ZeroTest outputs zero if and only

if all values in all slots are zero.

Many obfuscation constructions are proven secure in an mmap generic model, which provides

oracle access to the various mmap operations, returning “handles” to encoded values rather

than the encoded values themselves. The composite-order multilinear generic model is a slight

strengthening of this to allow encoding values across all of the mmap slots. We define this

formally below.

Definition 2.0.9. The composite-order multilinear generic model [Zim15] is defined by the

operations Setup, Encode, Add, Mul, and ZeroTest, defined as follows.

• Setup(U , λ,N)→ (pp, sp, p1, . . . , pN ): Takes as input a top-level index set U , security parame-

ter λ, and the number of slots N , and produces public parameter pp, secret parameter sp, and
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primes p1, . . . , pN .

• Encode(sp, x1, . . . , xN ,S) → h: Takes as input secret parameter sp, scalars x1, . . . , xN , and

index set S ⊆ U , and returns an “encoding” which is a fresh “handle” h $← {0, 1}λ. An entry

h 7→ (x1, . . . , xN ,S) is added to the (internal) table T , and h is returned.

• Add(pp, h1, h2) → {h,⊥}: Takes as input public parameter pp and handles h1 and h2. If

h1 7→ (x1,1, . . . , x1,N ,S1) and h2 7→ (x2,1, . . . , x2,N ,S2) are in T , and S1 = S2 ⊆ U , then

compute a fresh “handle” h and add h 7→ (x1,1 +x2,1 (mod p1), . . . , x1,N +x2,N (mod pN ),S1)

to T , returning h; otherwise, return ⊥.

• Mul(pp, h1, h2) → {h,⊥}: Takes as input public parameter pp and handles h1 and h2. If

h1 7→ (x1,1, . . . , x1,N ,S1) and h2 7→ (x2,1, . . . , x2,N ,S2) are in T , and S1∪S2 ⊆ U , then compute

a fresh “handle” h and add h 7→ (x1,1 · x2,1 (mod p1), . . . , x1,N · x2,N (mod pN ),S1 ∪S2) to T ,

returning h; otherwise, return ⊥.

• ZeroTest(pp, n) → {“zero”, “non-zero”,⊥}: Takes as input public parameter pp and handle h.

If h 7→ (x1, . . . , xN ,S) is in T and S = U , then return “zero” if x1 ≡ 0 (mod p1), . . . , xN ≡ 0

(mod pN ), else “non-zero”; otherwise return ⊥.



21

3 5Gen: A Framework for Prototyping Applications Using

Multilinear Maps and Matrix Branching Programs

Secure multilinear maps have been shown to have remarkable applications in cryptography, such

as multi-input functional encryption (MIFE) and program obfuscation. To date, there has been

little evaluation of the performance of these applications. In this chapter we initiate a systematic

study of mmap-based constructions. We build a general framework, called 5Gen, to experiment

with these applications. At the top layer we develop a compiler that takes in a high-level program

and produces an optimized matrix branching program needed for the applications we consider.

Next, we optimize and experiment with several MIFE and obfuscation constructions and evaluate

their performance. The 5Gen framework is modular and can easily accommodate new mmap

constructions as well as new MIFE and obfuscation constructions, as well as being an open-

source tool that can be used by other research groups to experiment with a variety of mmap-based

constructions.

3.1 Framework Architecture

Our framework incorporates several software components that together enable the construction

of applications using mmaps and MBPs. In particular, we use our framework to develop imple-

mentations of MIFE and program obfuscation. See Figure 3.1 for the framework architecture.

The top layer of our framework, cryfsm, takes as input a program written in Cryptol [Cry],

a high-level language designed to express manipulations over bitstreams in a concise syntax, and

compiles the program into an MBP. This process, and the various optimizations we introduce,

are described in more detail in Section 3.2.

The bottom layer of our framework, libmmap, provides an API for using various mmaps,
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Figure 3.1: Framework architecture. We use cryfsm to compile a Cryptol program (here denoted by
prog.cry) to an MBP, which can either be used as input into our MIFE implementation or our obfuscation
implementation. Both these implementations use libmmap as a building block, which supports both the
CLT (libclt) and GGHLite (libgghlite) mmaps.

which in our case includes the CLT (through the libclt library) and GGHLite (through the

libgghlite library) mmaps. The libmmap library, which we describe in Section 3.3, is also

designed to allow for a straightforward integration of future mmap implementations.

We combine the above components to realize various applications of mmaps and MBPs: in

particular, MIFE and program obfuscation. We demonstrate the applicability of our MIFE

implementation (cf. Section 3.4) through two examples: order-revealing encryption (ORE) and

three-input DNF (3DNF) encryption. We implement program obfuscation based on two main

approaches: the techniques described by Sahai and Zhandry [SZ14], and also the scheme by

Zimmerman [Zim15], which operates over arithmetic circuits, but only applies to the CLT mmap.

3.2 From Programs to MBPs

3.2.1 Matrix Branching Programs

Formally, a matrix branching program (MBP) of length n on length-`, base-d inputs is a collection

of variable-dimension matrices Bi,j for i ∈ [n] and j ∈ {0, . . . , d− 1}, a “final matrix” P, and an

“input mapper” function inp : [`]→ [n]. We require that, for each i ∈ [2, n] and j ∈ {0, . . . , d−1},

the number of columns of Bi−1,j is equal to the number of rows of Bi,j , so that the product of

these matrices is well-defined. The evaluation of an MBP on input x ∈ {0, . . . , d− 1}` is defined



23

as

MBP(x) =


1, if

∏n
i=1 Bi,xinp(i)

= P,

0, otherwise.

We note that numerous generalizations and extra properties [BLR+15, SZ14] of MBPs have

been explored in the literature—however, we will only need to use our simplified definition of

MBPs for the remainder of this work.

3.2.2 MBP Compiler

One of our key contributions in this work is a compiler, cryfsm, that takes as input a program

written in Cryptol [Cry], a domain-specific language for specifying algorithms over generic streams

of bits, and produces an MBP for the given input program. cryfsm does this by translating

a Cryptol specification into a layered state machine, which can then be transformed into an

optimized MBP.

Our toolchain proceeds as follows. The user writes a Cryptol function of type [n] -> Bit

for some n (that is, the function takes n input bits and produces one output bit). This function

is interpreted as deciding membership in a language. The toolchain symbolically evaluates this

function to produce a new version of the function suitable for input to an SMT solver, as explained

in detail below. Queries to the SMT solver take the form of deciding the prefix equivalence

relation between two initial bitstrings, which is sufficient to build the minimal layered state

machine, which we then convert to an MBP.

Our solver-based approach results in a substantial dimension reduction of the corresponding

output MBPs. In contrast, the traditional approach would be to heuristically optimize the state

machine design in an attempt to achieve a best-effort optimization. The dimension reduction we

achieve recovers the most efficient known MBPs for several previously studied bit-string functions,

including MBPs for point functions that are smaller than the MBPs constructed from boolean

formulas using existing techniques (e.g., [SZ14]). In the remainder of this section, we describe the
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key steps in this toolchain, along with several optimizations to the MBPs that we use throughout

the remainder of this work.

Specifying functions in Cryptol. Cryptol is an existing language widely used in the in-

telligence community for describing cryptographic algorithms. A well-formed Cryptol program

looks like an algorithm specification, and is executable. The Cryptol tool suite supports such

execution, along with capabilities to state, verify, and formally prove properties of Cryptol spec-

ifications, and capabilities to both prove equivalence of implementation in other languages to

Cryptol specifications and automatically generate such implementations. In our work, a user

specifies an MBP in Cryptol, and then we use cryfsm to transform the high-level specification

into a minimal layered state machine, and further transform it into an efficient MBP.

Minimal layered state machines. There is a standard translation from traditional finite

state machines to MBPs: create a sequence of matrix pairs (or matrix triples for three-symbol

alphabets, etc.) that describe the adjacency relation between states. If state i transitions to

state j on input symbol number b, then the bth MBP matrix will have a 1 in the ith row and

jth column and 0 elsewhere. For many languages of interest, this is inefficient: for an automaton

with |S| states, each matrix must be of size |S|2, even though many states may be unreachable.

In this work, we consider functions on inputs of a fixed length. Hence, for a positive integer

n, we can take advantage layered state machines of depth n, which are simply (deterministic)

finite state machines that only accept length-n inputs. Here, the ith “layer” of transitions in the

machine is only used when reading the ith digit of the input. As a result, layered state machines

are acyclic.

To generate minimal layered state machines, our compiler must introduce machinery to track

which states are reachable at each layer, which allows us to reduce the overall MBP matrix

dimensions. To do this, cryfsm computes the quotient automaton of the layered state machine

using an SMT solver to decide the state equivalence relation. The quotient automaton is then

used as the new minimal layered state machine for the specified function. Then, from a layered

state machine of depth n, we construct the corresponding MBP on base-d inputs of length n
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in a manner essentially equivalent to the techniques of Ananth et al. [AGIS14] for constructing

layered branching programs. Intuitively, for each i ∈ [n] and j ∈ [d], the ith matrix associated

with the jth digit is simply the adjacency matrix corresponding to the transitions belonging to

the ith layer of the machine, associated with reading the digit j. Then, the “final matrix” (that

defines the output of the MBP being 1) is simply the adjacency matrix linking the initial state

to the final state.

Optimizations for MBP creation. Boneh et al. [BLR+15] describe a simple five-state finite

state machine for ORE, and describe the translation to MBPs that produces 5 × 5 matrices at

each depth. The MBP we build and use for our ORE application differs from this one via three

transformations that can be generalized to other programs: change of base, matrix premultipli-

cation, and dimension reduction. Of these, matrix premultiplication and dimension reduction

are a direct consequence of the technique used by cryfsm for constructing MBPs and therefore

automatically apply to all programs, whereas choosing an input base remains a manual process

because it must be guided by outside knowledge about the performance characteristics of the

mmap used to encode the MBPs. While the change of base and matrix pre-multiplication opti-

mizations are described by Boneh et al., we introduce dimension reduction as a new optimization

that is useful for ORE yet generalizable to other applications.

For each optimization, we use the integer d to represent the “input base”, the integer n to

represent the length (number of digits) of each input, the integer N to represent the input domain

size (so, we have that dn ≥ N), the integer m to represent the length of the MBP, and the integer

M to represent the total number of elements across all the matrices of the MBP.

At a high level, the optimizations are as follows.

• Condensing the input representation corresponds to processing multiple bits of the

input, by increasing d, to reduce the length of the MBP, at the expense of increasing the

number M of total elements.

• Matrix premultiplication also aims to reduce the parameter m, but without increasing

the parameter M .
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• Dimension reduction aims to directly reduce the number M of total elements, but may

not be fully compatible with matrix premultiplication, depending on the function.

To help with the understanding of the intuition behind these optimizations, we use the simple

comparison state machine as a running example—however, we stress that these optimizations are

in no way specific to the comparison function, and can be applied more generally to any function

expressed as a layered state machine.

Condensing the input representation. The most immediate optimization that we apply is to

condense the representation of inputs fed to our state machines. MBPs are traditionally defined

as operating on bitstrings, so it is natural to begin with state machines that use bits as their

alphabet, but using larger alphabets can cut down on the number of state transitions needed (at

the potential cost of increasing the state space).

As an example, for evaluating the comparison state machine, this optimization translates to

representing the input strings in a larger base d > 2, and to adjust the comparison state machine

to evaluate using base-d representations. The resulting state machine consists of d + 3 total

states.

A naive representation of an input domain of size N with a state machine that processes the

inputs bit-by-bit (in other words, d = 2) would induce an MBP length of m = 2 · dlog2(N)e

and M = 50 ·m total elements (in two 5 × 5 matrices). However, by using the corresponding

comparison state machine that recognizes the language when the inputs are in base-d, we can

then set m = 2 · dlogd(N)/ log2(d)e and M = 2 · (d+ 3)2 ·m.

Concretely, settingN = 1012, without condensing the input representation, we requirem = 80

and M = 2000 for the resulting MBP. However, if we represent the input in base-4, we can then

obtain m = 20 and M = 1960, a strict improvement in parameters.

Matrix premultiplication. Boneh et al. [BLR+15] informally describe a simple optimization to

the comparison state machine, which we explain in more detail here. The natural state machine

for evaluating the comparison function on two n-bit inputs x and y reads the bits of x and y in

the order x1y1x2y2 · · ·xnyn.
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However, Boneh et al. show that a slight reordering of the processing of these input bits can

result in reduced MBP length without compromising in correctness. When the inputs are instead

read in the following order:

x1y1y2x2x3y3 · · · ynxn, (3.1)

then, rather than producing one matrix for each input bit position during encryption, the two

matrices corresponding to y1 and y2 can be pre-multiplied, and the result is a single matrix

representing two digit positions. Naturally, this premultiplication can be performed for each pair

of adjacent bit positions belonging to the same input string (such as for x2x3, y3y4, and so on),

and hence the number of matrices produced is slightly over half of the number of matrices in the

naive ordering of input bits.

As a result, for evaluating the comparison state machine, where n is the length of the base-d

representation of an input, applying this optimization implies m = n + 1, a reduction from the

naive input ordering, which would result in m = 2n, and a reduction from M = 2 · (d+ 3)2 ·m to

M = (d+3)2 ·m. When applying this optimization in conjunction with representing the input in

base d = 4, for example, setting N = 1012 only requires m = 21 and M = 1029, a huge reduction

in cost that was emphasized by Boneh et al., and another strict improvement in parameters.

A new optimization: dimension reduction. We now describe a more sophisticated opti-

mization that can be applied to general MBPs which also results in a reduced ciphertext size.

As an example, we describe this optimization, called dimension reduction, as it applies to the

comparison function state machine (without applying the reordering of input bits from matrix

premultiplication), but we emphasize that the technique does not inherently use the structure of

this state machine in any crucial way, and can naturally be extended to general MBPs.

Our new optimization stems from the observation that, for each bit position in the automaton

evaluation, the transitions in the automaton do not involve all of the states in the automaton.

This is the same observation that motivates the use of layered state machines over finite state

machines.
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In particular, for the even-numbered bit positions, the transitions map from a set of d states

to a set of only 3 states. Similarly, for the odd-numbered bit positions, the transitions map from

a set of (at most) 3 states to a set of d states. As a result, the corresponding matrices for each

bit position need only be of dimension d × 3 or 3 × d (depending on the parity), as opposed to

the naive interpretation of the Boneh et al. construction which requires matrices of dimension

(d+ 3)× (d+ 3).

Note, however, that the dimension reduction optimization is not fully compatible with matrix

premultiplication, since the effectiveness of dimension reduction can degrade if matrix premulti-

plication is also applied. In particular, when applying matrix premultiplication to the comparison

state machine, we notice that there is less room for improvements with dimension reduction, as

the transitions for the position y1y2 correlate from a domain of d states to a range of also d states.

In Section 3.4.1, we concretely show how to apply a mixture of these optimizations to the com-

parison automaton, and then use these optimizations to obtain asymptotically shorter ciphertexts

for order-revealing encryption.

3.3 A Library for Multilinear Maps

In this section we describe our library, libmmap, which provides an API for interacting with

different mmap backends. In this work we implement GGHLite (libgghlite) and CLT (libclt)

backends1, although we believe that it should be relatively straightforward to support future

mmap implementations.

The libmmap library exports as its main interface a virtual method table mmap_vtable, which

in turn contains virtual method tables for the public parameters (mmap_pp_vtable), the secret

key (mmap_sk_vtable), and the encoded values (mmap_enc_vtable). Table 3.1 lists the available

functions within each table. Each underlying mmap library must export functions matching

these function interfaces and write a wrapper within libmmap to match the virtual method table
1We also have a “dummy” mmap implementation for testing purposes.
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vtable function comments

mmap_pp_vtable
fread/fwrite read/write public parameters

clear clear public params

mmap_sk_vtable
init/clear initialize/clear secret key

fread/fwrite read/write secret key

mmap_enc_vtable

init/clear initialize/clear encoding
fread/fwrite read/write encoding

set copy encoding
add implements Add
mul implements Mul

is_zero implements ZeroTest
encode implements Encode

Table 3.1: Interfaces exported by the libmmap library.

interface. A user of libmmap then defines a pointer “const mmap_vtable *” which points to

the virtual method table corresponding to the mmap of the user’s choice (in our case, either

clt_vtable or gghlite_vtable). In the following, we describe the two mmap schemes we

support in libmmap: libgghlite (Section 3.3.1) and libclt (Section 3.3.2).

3.3.1 The GGHLite Multilinear Map

Building off of the original mmap candidate construction of Garg et al. (GGH) [GGH13a],

Langlois et al. [LSS14] proposed a modification called GGHLite, along with parameter and

performance estimates for the resulting encodings of the scheme. More recently, Albrecht et

al. [ACLL15] proposed further modifications and optimizations on top of GGHLite, along with

an implementation of their scheme under an open-source license. In this work, we refer to GGH-

Lite as the construction from the work of Albrecht et al., as opposed to the original work of

Langlois et al.

Our GGHLite implementation. We use as our starting point the implementation of GGH-

Lite2 released by Albrecht et al. [ACLL15]. We modified this implementation to add functionality
2https://bitbucket.com/malb/gghlite-flint

https://bitbucket.com/malb/gghlite-flint
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for handling the reading and writing of encodings, secret parameters, and public parameters to

disk. We also extended the implementation to handle more expressive index sets, which are used

in MIFE and obfuscation, as follows.

Typically, multilinear maps only support “levels”, where each encoding is created with respect

to an integer i ∈ [κ] (for an mmap of degree κ). The GGHLite implementation supports more

advanced labelings of encodings, by allowing for a universe U of κ indices to be defined, and each

encoding can be created with respect to a singleton subset (containing only one element) of this

universe U . Multiplication of two encodings with respect to sets of indices S1 and S2 produces

an encoding with respect to the multiset union of S1 and S2. The zero-testing parameter is then

created to test for encodings which are labeled with respect to U . However, this functionality is

still not sufficiently expressive to match the needs of our implementation and our definition of

mmaps.

Consequently, we upgraded the handling of these encodings to support labelings of an encoding

with respect to any subset S of indices of the universe U . Then, when two encodings labeled

with two different subsets are multiplied, the resulting encoding is labeled with respect to their

multi-set union. Finally, as before, the zero-testing parameter allows to check for encodings of 0

labeled at U , only.

Finally, we isolated and rewrote the randomness generation procedures used by GGHLite,

since the original implementation relied on the randomness obtained from the GMP library,

which is not generated securely. We split this into a separate library, libaesrand, which uses

AES-NI for efficient randomness generation, and which may be useful in other contexts.

Attacks on GGHLite. Recently, Hu and Jia [HJ16] showed how to perform “zeroizing” attacks

on GGHLite, to recover the secret parameters given certain public encodings of 0. However, since

neither MIFE nor obfuscation publish any encodings of 0, these applications seem to be unaffected

by the zeroizing attacks. More recently, Albrecht, Bai, and Ducas [ABD16] gave a quantum break

for GGHLite without using any encodings of 0 or the public zero-testing parameter. Subsequently,

Cheon, Jeong, and Lee [CJL16] showed how to give a (classical) polynomial-time attack on
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GGHLite, again without using any encodings of 0. However, their attack requires exponential

time if the parameters of GGHLite are sufficiently increased (by a polynomial amount).

In concurrent work, Miles, Sahai, and Zhandry [MSZ16] gave a completely different form

of attack, known as an “annihilation” attack, on applications of GGHLite, specifically, MIFE

and program obfuscation. They show that provably secure instantiations of these primitives

from mmaps are in fact insecure when the mmap is instantiated with GGHLite. Despite the

annihilation attacks, our implementations of these primitives from GGHLite still serve as a

useful benchmark for the efficiency of GGHLite and for the efficiency of future GGH-like schemes

resistant to annihilation attacks.

3.3.2 The CLT Multilinear Map

Coron, Lepoint, and Tibouchi [CLT13] proposed a candidate multilinear map over the integers,

which works over a composite modulus that is assumed to be hard to factor.

Our CLT implementation. Our implementation started with the implementation3 of CLT

in C++ by Coron et al. [CLT13]. We rewrote it in C and added functionality to save and

restore encodings and the public parameters. As in the GGHLite case, we also modified its basic

functionality to support indices instead of levels.

Furthermore, in our extension of CLT, we improve the efficiency of the encoding process which

allows for us to apply the CLT multilinear map to the large parameter settings that we consider

in the remainder of this work. The original CLT implementation applies the Chinese Remainder

Theorem in the procedure that produces encodings of plaintext elements. Our implementation

employs a certain trade-off that allows for the application of the Chinese Remainder Theorem

in a recursive manner, resulting in more multiplications to compute the encoding, but with the

efficiency gain that the elements being multiplied are much smaller.

Experimentally, this yields a large speedup in the encoding time, more noticeably with larger
3https://github.com/tlepoint/multimap

https://github.com/tlepoint/multimap
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Figure 3.2: Estimates for the size of a single encoding in megabytes (MB) produced for security
parameters λ = 80 and λ = 40 and varying the multilinearity degree κ ∈ [2, 30] for the GGHLite and
CLT mmaps.

parameters. In particular, for λ = 80 and κ = 19, without this optimization, it takes 134 seconds

to produce a CLT encoding, whereas with our optimization, this time drops to 33 seconds.

Attacks on CLT. Similarly to other candidate constructions for multilinear maps, the CLT

construction was not based on an existing hardness assumption but rather introduced a new

assumption. Subsequently Cheon et al. [CHL+15] demonstrated a zeroizing attack against the

construction of CLT, which succeeds in recovering the secret parameters of the scheme. This

attack was further extended in the work of Coron et al. [CGH+15], which demonstrated how it

can be generalized and applied against some proposed countermeasures [BWZ14, GGHZ14] to

the attack by Cheon et al. [CHL+15]. But again, as with the zeroizing attacks on GGHLite,

these results do not apply directly to the constructions we consider in this work.

Size estimates. Figure 3.2 presents estimates for the size of an encoding using GGHLite and

CLT for security parameters λ = 80 and λ = 40. As we can see, the CLT mmap produces smaller

encodings than GGHLite as we vary both λ and κ. This appears to be due to the growth of

the lattice dimension in GGHLite compared to the number of secret primes required by the CLT

scheme, among other factors.
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3.4 Multi-Input Functional Encryption Implementation

MIFE implementation. We implemented the Boneh et al. [BLR+15] MIFE construction us-

ing our libmmap library, and provide interfaces for keygen, encrypt, and eval, which perform the

respective operations supported by MIFE. We parallelize the computation performed during

keygen, but for encrypt, we choose to sequentially construct the encodings belonging to the ci-

phertext, and instead defer the parallelism to the underlying mmap implementation for producing

encodings, in the interest of reducing memory usage at the cost of potentially increased running

times. We note that, since CLT enjoys much more parallelism than GGHLite when constructing

encodings, this optimization causes the encrypt time for GGHLite to be less efficient. Finally,

for eval, we multiply encodings in parallel for CLT, since the multiplication of CLT encodings

natively does not support parallelism. However, for GGHLite, we choose to multiply encodings

sequentially, and instead rely on the parallelism afforded by GGHLite encoding multiplication.

The ciphertexts produced by a call to encrypt on an `-length input are split into ` components

(one for each input slot), which can be easily separated and combined with different components

from other ciphertexts in a later call to eval. Hence, with a collection of full ciphertexts, an

evaluator can specify which components from each ciphertext should be passed as input to eval,

in order to evaluate the function on components originating from different sources.

3.4.1 Optimizing Comparisons

In this section, we describe a case study of applying the optimizations detailed in Section 3.2.2 to

the comparison function. We establish two distinct “variants” of the comparison function which

result in shorter ciphertext sizes. Both variants are built from a combination of condensing the

input representation into a larger base d > 2, followed by dimension reduction, and optionally

applying matrix pre-multiplication.

• DC-variant. The degree-compressed optimization is to first apply matrix pre-multiplication

to re-order the reading of the input bits as in Equation (3.1). Then, the dimensions of the
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resulting matrices from the layered state machine are slightly reduced.

• MC-variant. The matrix-compressed optimization is to directly apply dimension reduction

in the normal interleaved ordering of the bits (as x1y1x2y2 · · ·xnyn). Here, the dimensions

of the matrices can be reduced to depend only linearly in the base representation d, as

opposed to quadratically.

We now discuss each optimization in more detail.

The degree-compressed variant (DC-variant). By optimizing the (layered) comparison state

machine, we obtain that not all matrices need to be of dimension (d+ 3)× (d+ 3). For example,

the first matrix need only be of dimension 1×d, and the second matrix need only be of dimension

d×(d+2). Also, the last matrix can be of dimension (d+2)×3. And finally, each of the remaining

intermediate matrices need only be of dimension (d + 2) × (d + 2). Putting these observations

together, the total number of encodings in the ciphertext is

M = d+ d(d+ 2) + 3(d+ 2) + (κ− 3)(d+ 2)2

= d2(κ− 2) + (d+ 1)(4κ− 6). (3.2)

The matrix-compressed variant (MC-variant). Note, however, that if we do not apply the

matrix pre-multiplication optimization, but instead apply dimension reduction directly to the

comparison state machine associated with the normal (not interleaved) ordering of the input

digits, then the first matrix is of dimension 1 × d, the second matrix is of dimension d × 3, and

all other κ− 2 matrices are of dimension either 3× (d+ 2) or (d+ 2)× 3. Putting this together,

we have κ = 2n and

M = d+ 3d+ 3(κ− 2)(d+ 2)

= 3(κ− 2)(d+ 2) + 4d. (3.3)

Concretely, for a domain of size N = 1012, if we choose to represent the inputs in base
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d = 5, then this implies n = 18 (since 12 ≤ log10(518) < 13), and hence with the matrix pre-

multiplication optimization along with the Cryptol optimization for dimension reduction, we have

κ = 19 and M = 845. Without applying matrix pre-multiplication and only using dimension

reduction with base d = 10, we have n = 12, κ = 24, and M = 832.

Experimentally for the mmaps we tested, we found that the matrix pre-multiplication opti-

mization produces shorter ciphertexts than applying dimension reduction without matrix pre-

multiplication. However, we only tested this for an input domain of N = 1012 and security

parameter λ = 80. As N grows larger, depending on the asymptotic behavior of encoding sizes

as κ increases and λ varies, future implementations of the comparison state machine may find

that one can produce shorter ciphertexts when applying dimension reduction without matrix

pre-multiplication.

3.4.2 Order-Revealing Encryption

To implement order-revealing encryption, we set our plaintext domain to the numbers in the

range [N ]. By taking N = 1012, we found that selecting the base representation d = 5 and

applying the matrix pre-multiplication optimization resulted in using only κ = 19 levels of the

underlying mmap, which achieved the shortest ciphertexts for this domain. In fact, this con-

struction yields the shortest known ciphertexts for ORE on a domain of size 1012, as explained

below.

An alternative (basic) construction. The closest competitor to our ORE construction in

terms of ciphertext size and overall efficiency is a construction due to Lewi and Wu [LW16],

which we refer to as the “basic” ORE scheme, described below.

Let [N ] be the message space. Let F : {0, 1}λ × {0, 1}λ → {0, 1}λ be a secure pseudorandom

function (PRF) and H : {0, 1}λ × {0, 1}λ → {0, 1} be a hash function (modeled as a random

oracle). Let cmp be the comparison function, defined as cmp(x, y) = 1 if x < y and cmp(x, y) = 0

if x > y. The basic ORE scheme Πore is defined as follows.
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• keygen(1λ)→ (pp, sk). The algorithm samples a PRF key k $← {0, 1}λ for F , and a random

permutation π : [N ] → [N ]. The secret key sk is the pair (k, π), and there are no public

parameters.

• encrypt(sk, i, x) → ct. Write sk as (k, π). If i = 1, the ciphertext output is simply ct =

(F (k, π(x)), π(x)). If i = 2, then the encryption algorithm samples a nonce r $← {0, 1}λ,

and for j ∈ [N ], it computes vj = cmp(π−1(j), y) ⊕ H(F (k, j), r). Finally, it outputs

ct = (r, v1, v2 . . . , vN ).

• eval(pp, ct1, ct2) → {0, 1}. The compare algorithm first parses ct1 = (k′, h) and ct2 =

(r, v1, v2, . . . , vn), then outputs vh ⊕H(k′, r).

Note that a single ciphertext from this scheme is N + 2λ + dlog2(N)e bits long. For N = 1012

and λ = 80, this amounts to ciphertexts of length 116.42 GB.4

Choosing the best optimizations. Our goal is to construct an ORE scheme which achieves

shorter ciphertexts than the above construction, without compromising security. To do this, we

use our MIFE implementation for the comparison function, and we apply our optimizations to

make the ciphertext as short as possible.

We compare the ciphertext sizes for four different ORE constructions, obtained from either

using the GGHLite or CLT mmap, and by applying either the DC-variant or MC-variant opti-

mizations. For each of these options, we fix the input domain size N = 1012 and vary the input

base representation d ∈ [2, 25]. Using Equations (3.2) and (3.3), we can compute the estimated

ciphertext size as a function of d (since κ is determined by the choice of d and N). See Figure 3.3

for the results. We find that, for N = 1012, the shortest ciphertexts for ORE from GGHLite are

obtained when d = 5 using the DC-variant optimization, and the shortest ciphertexts for ORE

from CLT are obtained when d = 4 using the DC-variant optimization as well.

Under these settings, the DC-variant optimization for GGHLite reads the inputs in base 5,

requiring κ = 19, to produce a total of 845 encodings per ciphertext, for a total size of 91.4 GB.
4Clearly, increasing λ has a relatively unnoticeable effect on the overall ciphertext size for the settings of N we

consider.
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Figure 3.3: Estimates of the ciphertext size (in GB) for ORE with best-possible semantic security at
λ = 80, for domain size N = 1012 and for bases d ∈ [2, 25]. We compare GGHLite and CLT, with the
DC-variant and MC-variant optimizations.

For CLT, the DC-variant optimization reads in the inputs in base 4, requiring κ = 21, to produce

a total of 694 encodings, for a total size of 5.68 GB.

We also measure the ciphertext size as we vary the domain size; see Figure 3.4. We measure

the estimated ciphertext size for various domain sizes when using GGHLite, CLT, and the Πore

construction described above. The results for GGHLite and CLT are using the optimal bases as

detailed in Figure 3.3. We find that for N = 1011 and N = 1012, ORE using the CLT mmap and

GGHLite mmap, respectively, produces a smaller ciphertext than Πore. This demonstrates that

for certain domain sizes, our ORE construction produces the smallest known ciphertexts (versus

ORE schemes that do not require mmaps).

3.4.3 Three-Input DNF Encryption

We now explore the applications of MIFE to a function on three inputs, which we call the 3DNF

function. For n-bit inputs x = x1 · · ·xn, y = y1 · · · yn, and z = z1 · · · zn, the 3DNF function is
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Figure 3.4: Estimates of the ciphertext size (in GB) for ORE with best-possible semantic security
at λ = 80, for varying domain sizes. The exponent e on the x-axis denotes support for plaintexts in
the range from 1 to N = 10e. We compare GGHLite map (DC-variant), the CLT map, and the basic
construction Πore (described in Section 3.4.2).

defined as

3DNF(x, y, z) = (x1 ∧ y1 ∧ z1) ∨ · · · ∨ (xn ∧ yn ∧ zn) ∈ {0, 1}.

This function is similar to the “tribes” function studied by Gentry et al. [GLW14], who also use

mmaps to construct tribe instances. We refer to a MIFE scheme for the 3DNF function as a

3DNF encryption scheme, and we refer to each ciphertext as consisting of three components, one

for each input slot: the left encryption, middle encryption, and right encryption. To the best

of our knowledge, 3DNF encryption schemes do not follow directly from simpler cryptographic

assumptions.

Application to fraud detection. An immediate application of 3DNF encryption is in the

fraud detection of encrypted transactions. Consider the scenario where a (stateless) user makes

payments through transactions that are audited by a payment authority. In this setting, each

transaction is associated with a string of n flags, represented as bits pertaining to a set of n

properties of the transaction. A payment authority, in the interest of detecting fraud, restricts

the user to make at most (say) ` = 3 transactions per hour, and wants to raise an alarm if a



39

common flag is set in all ` of the transactions made in the past hour (if less than ` transactions

were made in the past hour, then the authority does not need to perform a check).

To protect the privacy of the user, the length-n flag string associated with each transaction

can be sent to the payment authority as encrypted under a 3DNF encryption scheme, where the

stateless user holds the decryption key. Here, the user would send a left encryption for the first

transaction, a middle encryption for the second, and a right encryption for the third. Then, since

the payment authority cannot decrypt any of the flag strings for the transactions, the privacy

of the user’s transactions is protected. However, the payment authority can still perform the

fraud detection check by evaluating a set of ` transactions to determine if they satisfy the 3DNF

function. Since we require that the user is stateless between transactions, this application fits

the model for a 3DNF encryption scheme, and does not seem to directly follow from simpler

primitives.

Optimizing 3DNF encryption. Similar to the case of the comparison function, we can apply

the branching program optimizations to the 3DNF function as well, in order to reduce the overall

efficiency of the resulting 3DNF encryption scheme. We constructed a 3DNF encryption scheme

using our MIFE implementation, for n = 16 bit inputs at security parameter λ = 80. We

optimized the 3DNF encryption scheme by condensing the input representation into base d = 4.

Additionally, we applied the matrix pre-multiplication optimization, which meant that our input

bits were read in the order x1y1z1z2y2x2x3y3 · · · (the natural generalization of the interleaving

of Equation (3.1) to three inputs). This resulted in a setting of degree κ = 17 for the underlying

mmap. Finally, we used cryfsm to generate the corresponding MBP, which automatically applied

the appropriate dimension reduction optimizations. Under the CLT mmap, a left encryption is

637 MB, a middle encryption is 1.4 GB, and a right encryption is 680 MB.
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3.5 Program Obfuscation

We construct a point function obfuscator for the Sahai-Zhandry obfuscator [SZ14]. Our obfusca-

tor operates identically to the Sahai-Zhandry obfuscator, which is VBB secure (cf. Section 2.0.1),

except that we discard half of the ciphertext that corresponds to the second input in the “dual-

input” branching programs that obfuscator uses. We emphasize that as any attack on our ob-

fuscator immediately results in an attack on the Sahai-Zhandry obfuscator. See the CCS 2016

version of this chapter for more details [LMA+16].

In this section we show how we use cryfsm and libmmap to build such a program obfuscator.

Apon et al. [AHKM14] gave the first implementation of program obfuscation, using the CLT

mmap [CLT13] and a program compiler based on the approaches of Barak et al. [BGK+14] and

Ananth et al. [AGIS14]. We extend this codebase in the following ways:

• Multilinear maps. We integrate in libmmap to support both the CLT and GGHLite

mmaps.

• Program compilers. We support MBPs output by cryfsm, using the Sahai-Zhandry

obfuscator [SZ14].

Point function obfuscation. We evaluated our implementation by obfuscating point func-

tions, namely, functions that output 0 on a single (secret) input, and 1 otherwise. Previous

work [AHKM14] also evaluated obfuscation for point functions, but was only able to successfully

obfuscate 14-bit point functions with an mmap security parameter of λ = 60. As noted by Bern-

stein et al. [BHLN15], the secret input of an n-bit point function can be recovered by simply

enumerating over all 2n possible inputs. In our experiments, we set n = λ, and consider point

function obfuscation for 40-bit and 80-bit inputs.

The MBP for a λ-bit point function is of length λ and consists of a total of 2λ matrices,

each of dimension 2× 2. As a small optimization, we can apply dimension reduction to obtain a

branching program where the first pair of matrices need only be of dimension 1 × 2. The more

significant optimization comes by condensing the input representation through increasing the
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Figure 3.5: Estimates for the ciphertext size (in GB) for point function obfuscation, for domain sizes
N = 280 = 2λ and N = 240 = 2λ. In the case of λ = 80, the minimums are achieved at d = 19 for
GGHLite and d = 8 for CLT. In the case of λ = 40, the minimums are achieved at d = 9 for GGHLite
and d = 6 for CLT.

input base d.

The total number of encodings that we must publish in the obfuscation of a λ-bit point

function can be computed as M = 2 + 4 · d · `, where ` is the length of the MBP. We estimate

the ciphertext size for various choices of bases in Figure 3.5, which incorporates our estimations

for the size of a single encoding in GGHLite and CLT for λ = 40 and λ = 80.

• For λ = 40, we find that the minimal ciphertext size for domain size N = 240 is produced

using MBPs under base 9 and length 13 for GGHLite, and base 6 and length 16 for CLT.

• For λ = 80, we find that the minimal ciphertext size for domain size N = 280 is produced

using MBPs under base 19 and length 19 for GGHLite, and base 8 and length 27 for CLT.

Obfuscator implementation. Our implementation is in a mix of Python and C, with Python

handling the frontend and with C handling all the computationally expensive portions, and pro-

vides interfaces to both obfuscate (obf) and evaluate (eval) an MBP. We parallelize the encoding

of the elements in the MBP by using a threadpool and delegating each encoding operation to a

separate thread. Once all the threads for a given matrix in the MBP complete, we then write
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the (encoded) matrix to disk. Thus, the threadpool approach has a higher RAM usage (due to

keeping multiple encodings in memory as we parallelize) than encoding one element at a time

and letting the underlying mmap library handle the parallelization, but is more efficient.

Other obfuscators. Our obfuscator is built upon improvements inspired by the Sahai-Zhandry

obfuscator, which is built on the general obfuscator described by Barak et al. [BGK+14] and

Ananth et al. [AGIS14]. In addition to these obfuscators, we also implemented the Zimmer-

man [Zim15] obfuscator. However, because the Zimmerman obfuscator induces a seemingly

unavoidable lower bound on the degree of multilinearity for the inputs we consider, we found

that the Zimmerman obfuscator was not competitive with the obfuscator we implemented. More

specifically, the Zimmerman obfuscator requires that the degree of multilinearity for the obfus-

cation of any program be at least twice the number of inputs that the circuit accepts—a cost

that may be insignificant when obfuscating other programs, but was too high for point functions

(even when we tried to increase the input base representation to minimize this cost), and hence

unsuitable for our purposes.

3.6 Experimental Analysis

All of our experiments in this chapter were performed using the Google Compute Engine servers

with a 32-core Intel Haswell CPU at 2.5 GHz, 208 GB RAM, and 100 GB disk storage.

3.6.1 MIFE Experiments

We evaluated our multi-input functional encryption constructions with two applications: order-

revealing encryption (ORE) (cf. Section 3.4.2) and three-input DNF (3DNF) encryption (cf.

Section 3.4.3). In Section 3.4, we showed how we can accurately estimate the ciphertext size

from parameters derived from the input size and the security parameter λ, and our experiments

confirmed that these parameter estimates are reasonably accurate (all within 1–2% of our reported
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values).

Additionally, we assessed the performance of the MIFE interface algorithms keygen, encrypt,

and eval, along with memory utilization during the encrypt computation, which was by far the

most costly step. We note that, since the files that we are working with are so large, a non-trivial

amount of time was spent in the reading and writing of these files to disk, and so an exact

reproduction of our numbers may also need to mimic the disk storage specification we use.

As another sidenote, we reiterate that our primary interest in selecting the parameters for

our applications is to create the most compact ciphertexts possible. As a result, some of our

optimizations come with a cost of increased evaluation time, and hence, we believe that it is

possible to reduce our evaluation time (potentially at the expense of having larger ciphertexts).

Experimental results. We summarize our MIFE experiments in Table 3.2 and Table 3.3. We

evaluated the MIFE constructions for ORE with input domain sizes N = 1010 and N = 1012, and

for 3DNF encryption on 8-bit inputs, testing both GGHLite and CLT as the underlying mmap.

For each experiment, we report the computation wall time for encrypt and eval, the overall

ciphertext size |ct|, along with the memory usage during the encrypt computation. The keygen

operation varied from several seconds (for CLT with λ = 40) to 145 minutes (for GGHLite with

λ = 80). The encryption statistics measured were for generating a complete ciphertext, containing

all components, as opposed to containing only the left or right (or middle) components.

Since the CLT mmap produces shorter encodings, the encryption and evaluation time for the

experiments using CLT were much faster than the corresponding experiments for GGHLite. This

is also partly due to the fact that CLT enjoys much more parallelism than GGHLite. We also

only present timings for CLT with λ = 80 because we ran out of RAM during the encryption

procedure when using GGHLite.
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λ mmap N d ` encrypt eval |ct| RAM

40
CLT 1010 4 19 1 s 0.3 s 13 MB 17 MB

1012 4 22 3 s 1.6 s 18 MB 18 MB

GGH 1010 4 19 38 m 47 s 7.1 GB 23 GB
1012 4 22 52 m 68 s 9.6 GB 25 GB

80 CLT 1010 4 19 28 m 4 m 4.7 GB 5 GB
1012 4 22 37 m 6 m 6.0 GB 6 GB

Table 3.2: ORE experiments. “λ” denotes the security parameter of the underlying multilinear map;
“mmap” denotes the multilinear map; “N ” denotes the domain size; “d” denotes the MBP base; “`”
denotes the MBP length; “encrypt” denotes the running time of encryption; “eval” denotes the running
time of evaluation, “|ct|” denotes the size of the ciphertext; and “RAM” denotes the RAM required to
encrypt. We use “h” for hours, “m” for minutes, and “s” for seconds.

λ mmap N d ` encrypt eval |ct| RAM

40 CLT 16-bit 4 17 0.6 s 0.2 s 7.4 MB 18 MB
GGH 16-bit 4 17 20 m 28 s 3.9 GB 22 GB

80 CLT 16-bit 4 17 12 m 3 m 2.5 GB 4 GB

Table 3.3: 3DNF experiments. See Table 3.2 for the column details.

3.6.2 Program Obfuscation Experiments

To evaluate our program obfuscation implementation, we chose a random secret 40-bit and a

random secret 80-bit point, and used cryfsm to create the corresponding MBPs for the point

functions associated with these points. We selected the input base representation for these

programs with the goal of minimizing the total obfuscation size for each obfuscated point function

(see Section 3.5 for our calculations). Like with MIFE, optimizing for obfuscation or evaluation

time could lead to different optimal input base representations.

Experimental results. We tested three settings for point function obfuscation: 40-bit inputs

with λ = 40, 80-bit inputs with λ = 40, and finally, 80-bit inputs with λ = 80. We also

obfuscated using both CLT and GGHLite for λ = 40, but only used CLT for λ = 80, as the

GGHLite experiment was too resource-intensive. Our results are summarized in Table 3.4. As

we observed in the MIFE experiments, we note that GGHLite performs significantly worse when

used in obfuscation compared to CLT. We also note that while obfuscation takes a huge amount
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λ mmap N d ` obf eval |obf| RAM

40
CLT 40-bit 6 16 1.7 s 0.1 s 6.3 MB 1.7 GB

80-bit 7 29 6.6 s 0.3 s 21.7 MB 1.7 GB

GGH 40-bit 9 13 28 m 5.9 s 3.5 GB 38 GB
80-bit 6 31 56 m 39 s 13.7 GB 37 GB

80 CLT 80-bit 8 27 3.3 h 180 s 8.3 GB 11 GB

Table 3.4: Program obfuscation experiments. See Table 3.2 for the column details. Note that “ |obf|”
denotes the obfuscation size.

of time and resources, evaluation is much less resource-intensive, for both GGHLite and CLT—a

consequence of the fact that eval only requires multiplying (encoded) matrices, which is highly

parallelizable and also much less costly than the encoding operation itself.

These results, while evidently impractical, are a huge improvement over prior work [AHKM14],

which took 7 hours to obfuscate a 14-bit point function with λ = 60, resulting in an obfuscation of

31 GB. This improvement mainly come from (1) using a much tighter matrix branching program

representation of the program, and (2) operating over different sized bases.

3.7 Conclusions

In this chapter, we presented 5Gen, a framework for the prototyping and evaluation of appli-

cations that use multilinear maps (mmaps) and matrix branching programs. 5Gen is built as

a multi-layer software stack which offers modularity and easy integration of new constructions

for each component type. Our framework offers an optimized compiler that converts programs

written in the Cryptol language into matrix branching programs, a representation widely used in

mmap-based constructions. 5Gen includes a library of mmaps available through a common API;

we currently support the GGHLite and CLT mmaps, but our library can be easily extended with

new candidates. Leveraging the capabilities of our compiler and mmap libraries, we implemented

applications from two computing paradigms based on mmaps: multi-input functional encryption

(MIFE) and obfuscation.

We measured the efficiency of our MIFE and obfuscation applications with various parameter
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settings using both the GGHLite and CLT mmaps. While the results show efficiency that is

clearly not usable in practice, they provide a useful benchmark for the current efficiency of these

techniques.

Our 5Gen framework provides an easy-to-use testbed to evaluate new mmap candidates for

various applications and is open-source and freely available at https://github.com/5GenCrypto.

https://github.com/5GenCrypto


47

4 5Gen-C: Multi-input Functional Encryption and Program

Obfuscation for Arithmetic Circuits

Program obfuscation is a powerful security primitive with many applications. White-box cryptog-

raphy studies a particular subset of program obfuscation targeting keyed pseudorandom functions

(PRFs), a core component of systems such as mobile payment and digital rights management.

Although the white-box obfuscators currently used in practice do not come with security proofs

and are thus routinely broken, recent years have seen an explosion of cryptographic techniques

for obfuscation, with the goal of avoiding this build-and-break cycle.

In this chapter, we explore cryptographic program obfuscation and the related primitive of

multi-input functional encryption (MIFE). In particular, we extend the 5Gen framework intro-

duced in Chapter 3 to support circuit-based MIFE and program obfuscation, implementing both

existing and new constructions. We then evaluate and compare the efficiency of these construc-

tions in the context of PRF obfuscation.

As part of this chapter we (1) introduce a novel instantiation of MIFE that works directly

on functions represented as arithmetic circuits, (2) use a known transformation from MIFE to

obfuscation to give us an obfuscator that performs better than all prior constructions, and (3)

develop a compiler for generating circuits optimized for our schemes. Finally, we provide detailed

experiments, demonstrating, among other things, the ability to obfuscate a PRF with a 64-bit

key and 12 bits of input (containing 62k gates) in under 4 hours, with evaluation taking around

1 hour. This is by far the most complex function obfuscated to date.
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4.1 Overview of Existing Techniques

In this section, we briefly describe the high-level idea behind circuit obfuscation (Section 4.1.1)

and compare it with the approach of obfuscation from constant-degree mmaps (Section 4.1.2).

4.1.1 Circuit Obfuscation

The main idea behind circuit obfuscation is to run the circuit itself directly on inputs encoded by

the mmap. While this does not hide the circuit itself (as the circuit is needed by the evaluator

to know which encodings to add and multiply), this can be solved by having the circuit itself be

a universal circuit, taking the particular function to hide as input. However, in this work we are

interested in obfuscating PRFs, where the PRF functionality is public but the (embedded) key

should be hidden from the evaluator, and thus making the PRF functionality public is not an

issue.

In order to prevent the evaluator from computing something other than the specified circuit,

these obfuscators encode a “check computation” in the encoded inputs, so that a valid result

will be computed if and only if the evaluator correctly computes the circuit. This is done using

composite-order mmaps (defined in Section 2.0.3). These mmaps have multiple “slots”, where

computation occurs in parallel across all the slots. The idea is then to use one of the slots to

embed the check computation so that it only cancels out if the circuit was correctly computed.

Otherwise, a random value will appear in the resulting top-level encoding, and thus the ZeroTest

operation will return “non-zero”. Another slot encodes the main computation, which only returns

a valid result if the check computation succeeds.

In circuit obfuscators, every encoded element is indexed by a (multi-)set of special symbols,

called the index set. Only encodings with the same index set can be added together, resulting in

a new encoding at that same index set. Any encodings can be multiplied together, resulting in

a new encoding at the product of the index sets. For instance, suppose we have encodings [x]AB

at index set {A,B} and [y]AB also at index set {A,B}. These encodings can be both added
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deg(g : Gate)

if g = Add(x, y)

return max(deg(x), deg(y))

if g = Mul(x, y)

return deg(x) + deg(y)

else

return 1

Figure 4.1: Function to compute the multiplicative degree of an arithmetic circuit consisting of Add,
Mul, and input gates, with a single output gate. The degree of a circuit with multiple outputs is the
maximum of the degrees of its outputs considered individually.

and multiplied. If we add the encodings, the result [x + y]AB has the same index set. If we

multiply the encodings, however, the result [xy]AABB has index set {A,A,B,B}. The idea then

is that as we compute the arithmetic circuit, we add and multiply encodings, increasing the size

of the index set. Eventually, we reach an output wire, with the resulting index set viewed as the

“top-level” index set (i.e., the index set at which we can successfully zero-test).

As mentioned above, as we evaluate the circuit we multiply and add encodings. Each time

we multiply encodings, we increase the noise level of the encoding. Thus, we must generate

encodings to support enough noise such that they still retain fidelity upon reaching the top-level.

Put another way, in the underlying mmap we must know what the maximum multiplicative

degree (defined by Figure 4.1) will be in order to generate encodings with the appropriate noise

tolerance.

4.1.2 Comparison with Obfuscation from Constant-degree Multilinear

Maps

Starting with the work of Lin [Lin16], a recent and concurrent line of work has looked at building

obfuscation from constant-degree mmaps [LV16, AS17, Lin17, LT17]. All of these approaches uti-
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lize the “bootstrapping” approach for building obfuscation from (succinct) functional encryption

(FE) [BV15, AJ15]; namely, the authors design the FE scheme using constant-degree mmaps,

and then use that scheme as the underlying FE scheme in the bootstrapping procedure. Thus,

the efficiency bottleneck of these schemes becomes the bootstrapping procedure: even if the nec-

essary FE construction can be built using very efficient tools, if the bootstrapping is prohibitively

expensive then this approach will not outperform the circuit approach for many functions.

We focus here on the bootstrapping approach of Bitansky and Vaikuntanathan [BV15], who

build obfuscation from succinct public-key FE (the approaches of Ananth and Jain [AJ15] and Lin

et al. [LPST16] are similar). The (simplified) idea is that, given circuit C(x) : {0, 1}n → {0, 1}m,

the Obfuscate procedure constructs a functional key FSKC∗ for circuit C∗ defined as

C∗(SK, x) := Sym.Dec(SK,CT)(x),

where SK is a symmetric key, CT = Sym.Enc(SK, C), and (Sym.Enc,Sym.Dec) defines a symmetric

key scheme. Namely, C∗ decrypts a ciphertext, interprets the decrypted object as a circuit, and

evaluates it on the input x.

Next, the procedure computes (PKC∗ ,FSKC∗) ← FE.Setup(C∗), and then recurses by com-

puting

Obfn−1 :=
(
Obfuscate(λ,FE.Enc(PKC∗ , x1, . . . , xn−1, 0,SK)),

Obfuscate(λ,FE.Enc(PKC∗ , x1, . . . , xn−1, 1,SK))
)
.

The obfuscation is then (Obfn−1,FSKC∗).

It is important to note in this construction that when we recurse, we view the FE.Enc operation

as the circuit to embed in the functional secret key. Thus, if FE.Enc is a complex operation, it

quickly becomes infeasible to even just view it as a circuit; for example, a single 1024-bit modular

exponentiation requires over four billion gates [WMK17]. The best current FE construction

uses trilinear maps [LT17], and thus the circuit representations would have to include such
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prog.cry

dsl.hs

cryfsm

obfuscator

mife

libmmap

libclt libgghlite

cxs libacirc

mio

Figure 4.2: The 5Gen framework architecture, with new components introduced in this work in bold and
gray boxes. The original 5Gen architecture takes as input a cryptol program (here given by prog.cry),
which is fed into a compiler, cryfsm, to produce a matrix branching program. This is then fed into
either an obfuscator or multi-input functional encryption implementation, which uses a multilinear map
backend (libmmap) that supports both the CLT (libclt) and GGHLite (libgghlite) multilinear maps.
In this work, we introduce four new components: (1) cxs, an arithmetic circuit compiler suite which
takes as input either a cryptol program as before or a program written in a domain-specific language
(here given by dsl.hs), (2) libacirc, a language for describing arithmetic circuits, and (3) mio, an
implementation of circuit obfuscation and multi-input functional encryption.

trilinear map operations, resulting in a circuit of infeasible size. Thus, we conclude that the

approach to obfuscation utilizing bootstrapping in its current form is much more expensive than

the circuit approach we investigate in this work (and we also note that the non-black-box use of

constant-degree mmaps seems inherent [PS16]). However, efficiency improvements to either the

bootstrapping step or the underlying FE primitive could change this, and are interesting open

problems.

4.2 Circuit Obfuscators

In this section we review the three existing circuit obfuscators in the literature: the Zimmerman

obfuscator [Zim15], denoted by Zim, the Applebaum-Brakerski obfuscator [AB15], denoted by

AB, and the Lin obfuscator [Lin16], denoted by Lin.
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4.2.1 Obfuscation using Zim

In Zim, each “public” input bit xi is encoded under symbol Xi,b; namely, the obfuscation contains

mmap encodings x̂i,b := [b, αi]Xi,b
, where b ∈ {0, 1} and αi denotes the check value associated

with that input. For each “secret” input yj , the obfuscation contains encoding ŷj := [yj , βj ]Y ,

where βj denotes the check value associated with that input and Y is a common symbol for all

secret inputs.

For a multiplication gate with inputs [x]X and [y]Y , the index set of the output [xy]X∪Y is

the union of the input index sets X and Y. For addition gates, when two inputs with equal index

sets are added the encodings can be added directly. To support additions for inputs with unequal

index sets, encodings of 1 are provided. These encodings are associated with a particular public

input through its index set; namely, ûi,b := [1, 1]Xi,b
. When an addition gate has input wires

with unequal index sets, the evaluator multiplies each input the minimum number of times with

the appropriate encodings of one to bring them into alignment.

The best case for an addition gate is when the index set of one input is a subset of the other.

Then, the evaluator “raises” that input up the minimum amount, and the degree of the output

encoding is not more than the highest degree input. For instance, suppose the inputs are [x]A

and [y]AB . Then the evaluator computes [x]A[1]B + [y]AB = [x+ y]AB and the output degree is

two.

The worst case for an addition gate is when the input arguments have completely disjoint

index sets. Then, the evaluator must “multiply in” the entire index set of the other for both

arguments. After multiplying by each encoding of one, the output degree is then equivalent to a

multiplication.

For instance, suppose we wish to add [x]A and [y]B . Each input has degree two already. In

order to add, we must calculate [x]A[1]B + [y]B [1]A = [x+ y]AB , resulting in output degree two,

and thus the same degree as multiplying [x] and [y] would have given. Fortunately, addition

gates with entirely disjoint index sets occur rarely in the circuits we consider. For instance, while

a single round of AES has thousands of addition gates, only one gate has completely disjoint
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AB/Lin Zim/LZ MIO

Circuit # Enc κ # Enc κ # Enc κ

aes1r 66,691 22,999 66,307 239 33,669 128
ggm_1_32 690 250 594 17 399 14
ggm_1_128 2,706 250 2,322 17 1,551 14
ggm_2_32 1,218 34,706 1,122 81 667 74
ggm_2_128 4,770 34,706 4,386 81 2,587 74
ggm_3_32 1,746 5.0e+06 1,650 385 935 374
ggm_3_128 6,834 5.0e+06 6,450 385 3,623 374
ggm_4_32 2,274 7.2e+08 2,178 1,889 1,203 1,874
ggm_4_128 8,898 7.2e+08 8,514 1,889 4,659 1,874

Table 4.1: Number of encodings (# Enc) and multilinearity values (κ) for several circuits across the
circuit-based program obfuscators considered in this work. See Appendix A for circuit details.

indices.

Computing κ. Let n be the number of inputs to the circuit C, and let deg(·) denote the multi-

plicative degree of its input. Besides the evaluation of C, there are an additional n multiplications

to construct the straddling sets in order to prevent “mix-and-match” attacks. Thus, we have

κZim ≤ n+
∑
i∈[n]

deg(xi).

Results. See Table 4.1 for κ values across various circuits. Note that the above formula is exact

only when the circuit has a single output bit. However, for circuits with multiple output bits this

formula may result in a large over-approximation of the actual value of κ needed. To calculate

the “real” κ, we use a “dummy” mmap which tracks the degree of each encoded element. We can

then take the maximum degree over all of the output encodings as the “real” κ. This can often

make a huge difference in practice. For example, for aes1r, the above formula gives κ = 567,

whereas using the dummy mmap approach gives κ = 239, a 2.5× improvement.
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4.2.2 Obfuscation using AB

The AB approach is similar to Zim in that it uses a “check slot” to enforce that the circuit is

correctly computed. However, the particular details differ. In AB, every element is a pair (R,Z)

where R contains some randomness and Z contains a secret masked by that randomness. For

example, each “public” input bit xi is encoded as Rxi,b := [ri,b,1, ri,b,2] and Zxi,b := [ri,b,1 ·b, ri,b,2 ·αi],

where ri,b,1, ri,b,2, and αi are random. Likewise, “secret” inputs yj are encoded as Ryj := [rj,1, rj,2]

and Zyj := [rj,1 · yj , rj,2 · βj ] where rj,1, rj,2, and βj are random.

This “El-Gamal”-style encoding directly supports both addition and multiplication: Suppose

we have two pairs of encodings (R1, Z1) and (R2, Z2). An addition gate results in the pair

of encodings (R1R2, Z1R2 + R1Z2) and a multiplication gate results in the pair of encodings

(R1R2, Z1Z2). The downside to this is of course that both addition and multiplication now

require multiplication of encodings, and thus an (often substantial) increase in the overall degree.

To contrast this approach to Zim, consider the following (simplified) example. We wish to add

two encodings [x]A and [y]AB . In AB, these values are represented as (Rx, Zx) = ([rx]A, [rxx]A)

and (Ry, Zy) = ([ry]AB , [ryy]AB), with addition producing

(RxRy, ZxRy + ZyRx) = ([rxry]AAB , [rxryx+ rxryy]AAB).

In Zim, these values are represented directly by [x]A and [y]AB , and the addition can be computed

by raising x by the appropriate encoding of 1 and then adding the resulting encoding to [y]AB .

Thus, in AB we increase the degree, whereas in Zim the degree stays the same.

Computing κ. Let n be the input length and d the multiplicative degree of the circuit.

Lin [Lin16] defines the notion of type-degree, which captures the growth of the degree given

the El-Gamal-style encodings of AB. Let typedeg(i) be the type-degree of the ith input. Lin

upper-bounds the multilinearity of this construction as

κAB ≤ 3 + 2n+ d+
∑

i∈[n+1]

typedeg(i) ≤ 5(t+ n),
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where t is the maximum type-degree of all the inputs, which Lin proves is < 2depth.

Results. See Table 4.1. As in Zim, we calculated these κ values using a dummy mmap. Note

how much worse the κ values are for AB versus Zim. This is because all addition gates in AB

require multiplying encodings; as κ is a function of the multiplicative degree of the top-level

encodings, needing multiplication for both addition and multiplication quickly blows up κ.

4.2.3 Obfuscation using Lin

In a breakthrough result, Lin showed how to construct obfuscation from constant-degree mmaps

[Lin16]. To do so, Lin designed a “bootstrap” circuit with constant degree which uses a polynomial-

size input domain PRF. Lin’s PRF is a variant of the “GGM” PRF of Goldreich, Goldwasser,

and Micali [GGM84], which constructs a PRF directly from a PRG. While the particular details

for now are not important (see Section 4.6 for more details on Lin’s variant of the GGM PRF),

we note that the core technique is to split the input into “Σ-vectors”. A Σ-vector is a vector of

bits, where to represent the integer i (mod n) we have a “1” in the ith position and “0” elsewhere:

[
0 . . . 0︸ ︷︷ ︸
i−1

1 0 . . . 0︸ ︷︷ ︸
n−i

]
.

That is, a Σ-vector can be viewed as a unary encoding of a value in the domain {0, . . . , |Σ| − 1}.

For example, a Σ-vector of length |Σ| = 16 can encode log2(16) = 4 possible “real” inputs.

Put another way, a 16-bit input can be viewed as four Σ-vectors each of length |Σ| = 16, or

alternatively, two Σ-vectors each of length |Σ| = 256 (since 16 = 4 · log2(16) = 2 · log2(256)).

The advantage of Σ-vectors is that sub-string selection only requires multiplicative degree two.

This works by multiplying the string pairwise with the appropriate Σ-vector and summing up

the result. For instance, to get the jth bit of string x ∈ {0, 1}n, compute
∑
i∈[n] eixi, where e is a

Σ-vector encoding of j. This approach also generalizes to strings composed of longer sub-strings

than single bits. Let ` be the length of the sub-string you wish to obtain and let x ∈ {0, 1}`n.
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n k κAB κZim κLin κLZ κMIO

4 128 250 17 17 7 7
8 128 34,706 81 123 34 33
12 128 5.0e+06 385 977 163 161
16 128 7.2e+08 1,889 8,163 797 794

Table 4.2: Multilinearity values (κ) for the GGM PRF using AB, Zim, Lin, LZ, and MIO for various
input lengths (n) and key lengths (k), in bits. For the Lin, LZ, and MIO obfuscators the inputs are
treated as Σ-vectors with |Σ| = 16.

Then, to use e to select a sub-string, compute

∑
i∈[n]

eixi`+1‖
∑
i∈[n]

eixi`+2‖ · · · ‖
∑
i∈[n]

eixi`+`. (4.1)

Lin introduced a variant of the Applebaum-Brakerski obfuscator that supports Σ-vectors. We

denote this obfuscator as Lin. Note that when Σ-vectors are not used, Lin reduces to (a slight

variant of) the AB scheme.

Computing κ. The computation of κLin is the same as in AB.

Results. As mentioned above, Lin performs the same as AB when Σ-vectors are not in use; see

Table 4.1. However, for certain functions, using Σ-vectors can have a huge improvement. In

Table 4.2 we show the effect on κ when using Σ-vectors for the GGM PRF (cf. Section 4.6.2).

We can see huge improvements going from κAB to κLin, and κLin is competitive with κZim, at least

for smaller input lengths.

4.3 Multi-input Functional Encryption from Circuits

In this section we present our new construction for single-key multi-input functional encryption,

defined in Section 2.0.2. We begin with some high-level intuition before describing the scheme in

detail in Section 4.3.1. In Section 4.3.2 we present a security proof, in Section 4.3.3 we describe

some optimizations, and in Section 4.3.4 we show how to build an obfuscator from our MIFE

construction.
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Our MIFE construction expands the functionality of the scheme presented by Boneh et

al. [BLR+15], which supports a single key represented as a branching program. Our construc-

tion allows the functional key to be described as an arithmetic circuit. To do so, we leverage

techniques from the circuit obfuscation construction of Zimmerman [Zim15].

Program obfuscators provide the capability to evaluate the obfuscated function on any possible

input. Thus, existing obfuscators provide encodings for both zero and one for each input bit.

On the other hand, in the MIFE setting we need to enforce that the only inputs on which the

functionality can be evaluated should correspond to the inputs encrypted in valid ciphertexts.

That is, one should not be able to mix-and-match input bit values from different ciphertexts for

the same slot.

A possible approach for achieving the above in the circuit setting would be to adapt ideas from

Boneh et al.’s branching program construction. There, the authors introduced the notion of an

exclusive partition family, which allows one to generate “straddling sets” for the bits in each MIFE

ciphertext with the property that any evaluation that uses encodings from different ciphertexts

can obtain an encoding at the zero-testing level only with negligible probability. However, these

techniques crucially rely on the way branching programs are evaluated as a sequence of matrix

multiplications. This property is no longer true for circuit evaluations and thus poses substantial

challenges to extending the straddling techniques to work with circuits. Instead, we develop a

different approach, inspired by the check value idea from circuit obfuscation constructions.

As discussed in Section 4.1 and Section 4.2, circuit obfuscators employ two main techniques:

(1) they enforce that an evaluation can reach the zero-testing level if and only if it uses consistent

assignment to each input bit, and (2) they ensure that the function evaluated is the intended

function by using an additional check slot in the mmap encodings.

The first technique is not easily amenable to changes that could help prevent mix-and-match

attacks across MIFE ciphertexts for the same MIFE slot. Instead, we propose a way to extend

the check value technique to enforce that all encodings from a ciphertext are used consistently.

Recall that in Zimmerman’s construction, each input bit encoding has two slots, where the first
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slot contains the actual bit value and the second slot has a fixed value; for example, the encodings

for input bits zero and one for the ith input bit encode the pairs [0, αi] and [1, αi]. Thus, any

honest evaluation of the obfuscated function f on n input bits should be an encoding at the zero-

testing level with value f(α1, . . . , αn) in the second slot. The obfuscation provides an encoding

of [0, f(α1, . . . , αn)] at the zero-testing level, which can be subtracted and enables zero-testing

encodings obtained with honest evaluation of the obfuscated function. The proof of security uses

the Schwartz-Zippel lemma to show that the probability of an adversary obtaining an encoding

at the zero-testing level with a zero value in the second slot in any other way than the honest

evaluation is negligible.

We adapt this technique to the setting where we want to guarantee that a subset of the

input bits are used consistently together. In particular, in the MIFE setting these subsets of

bits correspond to the MIFE ciphertext for a particular MIFE slot. We handle this by using a

designated mmap slot for each MIFE slot. The first mmap slot corresponds to the actual circuit

evaluation, whereas the other n slots (for an n-input MIFE) correspond to a “check slot” for each

MIFE slot.

Let C : {0, 1}d1 × · · · × {0, 1}dn → {0, 1}m be our n-input MIFE circuit, with the ith input

being of length di, and for simplicity assume m = 1 (there is only one output bit) for now. A

ciphertext for MIFE slot i contains a set of di encodings, where encoding j ∈ [di] has random

value αj in the (i + 1)th mmap slot. For a ciphertext in MIFE slot k 6= i, the (i + 1)th mmap

slot has value 1. The ciphertext for MIFE slot i also provides an encoding ŵi that has value 1 in

all of its mmap slots, except in its (i+ 1)th mmap slot it has the value

C(1, . . . , 1︸ ︷︷ ︸
d1

, . . . , 1, . . . , 1︸ ︷︷ ︸
di−1

, α1, . . . , αdi , 1, . . . , 1︸ ︷︷ ︸
di+1

, . . . , 1, . . . , 1︸ ︷︷ ︸
dn

).

That is, the (i + 1)th mmap slot contains the output of circuit C evaluated on all ones except

for the ith MIFE slot which contains its associated α values.

On decryption, the special ŵi values are multiplied in to reach the zero-testing level and

then subtracted from the output encoding of the circuit, thus guaranteeing that an evaluator can



59

obtain an encoding at the zero-testing level with zero in its (i+ 1)th mmap slot if and only if it

has used the bits of a ciphertext for the ith MIFE slot consistently.

Thus, on honest decryption, the resulting zero-testing encoding is [C(ct(1), . . . , ct(n)), 0, . . . , 0],

where ct(i) denotes the ith ciphertext. On dishonest decryption, the resulting encoding is

[C∗, C∗1 , . . . , C
∗
n], where C∗ denotes the output of the maliciously evaluated circuit, and C∗i de-

notes the output of that same circuit on the ith check slot. By the Schwartz-Zippel lemma, these

C∗i values are non-zero with overwhelming probability.

We note that the increased number of mmap slots required in our construction only affects

performance if this is more slots than available in the underlying mmap. However, for the CLT

mmap [CLT13] which we use in our implementation, this does not occur when using reasonable

security settings and input lengths. In particular, the number of slots in the CLT mmap is a

function of both the security parameter and multilinearity. As an example, for a single gate

circuit with security parameter 80, the CLT scheme requires 9,632 slots, and the 12-bit PRF we

obfuscate (cf. Section 4.6) requires 13,111 slots, well above the number of inputs of these two

circuits.

4.3.1 Construction

Let C : {0, 1}d1×· · ·×{0, 1}dn → {0, 1}m be an arithmetic circuit on boolean inputs, let deg(x(i))

denote the maximum degree of the bits of the ith MIFE slot across all output bits, and let

deg(x
(i)
o ) denote the maximum degree of the bits of the ith MIFE slot for output bit o ∈ [m].

Our 1SK-MIFE1 construction works as follows:

1SK-MIFE.Setup(1n, C):

1. Define top-level index set

U := Z
∏
i∈[n]

W (i)(X(i))deg(x(i)).

1Security for 1SK-MIFE is defined in Section 2.0.2
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2. Compute (pp, sp, pev, pchk1, . . . , pchkn)← Setup(U , n, 1 + n).

3. Generate the following encoding:

Ĉ∗ := [0, 1, . . . , 1︸ ︷︷ ︸
n

]
Z

∏
i∈[n](X

(i))deg(x
(i))

4. For i ∈ [n], generate the following encoding:

ûi := [1, 1, . . . , 1︸ ︷︷ ︸
n

]X(i) .

5. Generate the following encoding:

ẑ := [δ, 1, . . . , 1︸ ︷︷ ︸
n

]Z
∏

i∈[n]W
(i) ,

where δ ← Zpev .

6. Set sk := (sp, C) and ek :=
(
pp, C, ẑ, {ûi}i∈[n], Ĉ

∗
)
.

1SK-MIFE.Enc(sk, i,x ∈ {0, 1}di):

1. For j ∈ [di], generate the following encoding:

x̂j := [xj , 1, . . . , 1︸ ︷︷ ︸
i−1

, αj , 1, . . . , 1︸ ︷︷ ︸
n−i

]X(i) ,

where αj ← Zpchki
.

2. For o ∈ [m], generate the following encoding:

ŵo := [0, 1, . . . , 1︸ ︷︷ ︸
i−1

, C†o , 1, . . . , 1︸ ︷︷ ︸
n−i

]W (i) ,
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where

C†o := C(1, . . . , 1︸ ︷︷ ︸
d1

, . . . , 1, . . . , 1︸ ︷︷ ︸
di−1

, {αj}, 1, . . . , 1︸ ︷︷ ︸
di+1

, . . . , 1, . . . , 1︸ ︷︷ ︸
dn

)o ∈ Zpchki
.

3. Output ciphertext ct :=
(
{x̂j}j∈[di], {ŵo}o∈[m]

)
.

1SK-MIFE.Dec(ek, ct(1), . . . , ct(n)):

1. Parse ek as
(
pp, C, ẑ, {ûi}i∈[n], Ĉ

∗
)
.

2. For i ∈ [n], parse ct(i) as
(
{x̂(i)
j }j∈[di], {ŵ

(i)
o }o∈[m]

)
.

3. For o ∈ [m], evaluate the oth output of circuit C on inputs x̂(1)
1 , . . . , x̂

(1)
d1
, . . . , x̂

(n)
1 , . . . , x̂

(n)
dn

,

using {ûi} as needed (as is done in Zim [Zim15]). Denote the final term as

Ĉo := [C(x(1), . . . ,x(n))o, (C
†
o)(1), . . . , (C†o)(n)]∏

i∈[n] (X(i))deg(x
(i)
o )

4. For o ∈ [m], compute

t̂o := ẑĈo − Ĉ∗
∏
i∈[n]

ŵ(i)
o .

5. Output the bitstring resulting from running ZeroTest(t̂o) for o ∈ [m].

4.3.2 Proof of Security

Theorem 4.3.1. The construction in Section 4.3.1 is correct according to Definition 2.0.7.

Proof. Correctness follows directly by inspection.

Theorem 4.3.2. The construction in Section 4.3.1 is secure according to Definition 2.0.8.

Proof. In the generic mmap model the distributions of the encodings obtained during the encryp-

tion oracle queries are independent of the bit b. Thus, we need to argue that the answers obtained

from successful zero testing queries in Expt1SK-MIFE
C,Q,0 (A) and Expt1SK-MIFE

C,Q,1 (A) are negligibly close.
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The zero-testing returns a value different from ⊥ only on encodings at the top-level index set

U . We consider the two main ways to obtain an encoding at the zero testing level: either using

Ĉ∗ or not using it.

1. Using Ĉ∗: The only way to obtain encoding at the zero testing level from Ĉ∗ is by multiplying

it with
∏
i∈[n] ŵ

(i).

2. Not using Ĉ∗: Monomials that represent encodings at level U are of the form

 ∏
j∈[di]

(x̂
(i)
j )mi(û

(i)
j )deg(x̂

(i)
j )−mi

 ẑ (4.2)

where x̂(i)
j , û

(i)
j , ẑ belong to ciphertexts for MIFE slot i.

Therefore, valid zero-testing queries will be linear combinations of monomials of the form either

Ĉ∗
∏
i∈[n] ŵ

(i) or Equation 4.2.

An encoding successfully zero-tests if and only if the values in all of its mmap slots are zero.

By the Computational Schwartz-Zippel Lemma [Zim15, Lemma 3.12], the values in the mmap

slots are zero with non-negligible probability if and only if the polynomial over the encoded values

evaluates to zero.

We consider mmap slot j for j ∈ [2, . . . , n + 1]. Since each encoding in the ciphertext for

MIFE slot i = j − 1 contains a random value at mmap slot j and the encoding ŵ from the

ciphertext at MIFE slot i has value C† := C(1, . . . , 1, {αj}j∈[di], 1, . . . , 1) at mmap slot j, in

order to obtain a polynomial that evaluates identically to zero, this polynomial needs to have

as a divisor the polynomial C(1, . . . , 1, {x̂(i)
j }j∈[di], 1, . . . , 1)ẑ− Ĉ∗ŵ(i) · ? · · · ?︸ ︷︷ ︸, where ? denotes an

encoding that has value one in mmap slot j (for clarity, we have omitted the multiplications with

encodings û(i)
j ). In other words, this means that all monomials can use encodings only from a

single ciphertext at MIFE slot i. Applying this reasoning to all MIFE slots we conclude that the

polynomials that evaluate to zero must be of the form C({x̂(i)
j }i∈[n],j∈[di])− Ĉ∗

∏
i∈[n] ŵ

(i) (again

omitting encodings û(i)
j ), except with negligible probability.
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Since for all admissible tuples of queries in the MIFE security game the circuit C evaluates to

the same value independent of the challenge bit b, it follows that the encodings that successfully

zero-test will also be independent of the challenge bit b, completing the proof.

4.3.3 Optimizations

We note an optimization that can help reduce the overall multilinearity by two for certain func-

tions. When using MIFE on a circuit with constants, the naive approach is to utilize one slot

to encode the constants. However, this slot can instead be “rolled into” the encodings generated

in 1SK-MIFE.Setup, as follows. Suppose the (n+ 1)th MIFE slot contains the constants. Instead

of computing Ĉ∗ := [0, 1, . . . , 1]
Z

∏
i∈[n+1](X

(i))deg(x
(i)) , we directly compute the combination of Ĉ∗

and ŵ(n+1)
o ; that is, we replace Ĉ∗ with ŵ(n+1)

o := [0, 1, . . . , 1︸ ︷︷ ︸
n

, C†o ]
ZW (n+1)

∏
i∈[n+1](X

(i))deg(x
(i)) for

o ∈ [m]. Now, the right-hand-side computation in Step (4) of 1SK-MIFE.Dec is just
∏
i∈[n+1] ŵ

(i)
o .

This reduces the multilinearity by one for functions with constants where the number of inputs

is larger than the overall degree of the circuit.

We can reduce this computation further by combining ŵ(i)
o with, say, the ŵ(1)

o values corre-

sponding to the first MIFE slot. Thus, the final right-hand-side product becomes
∏
i∈[n] ŵ

(i),

reducing the multilinearity by two versus the naive approach.

Computing κ. The main cost of our construction is the computation of C, plus one additional

multiplication to reach the top-level index set. However, if the multilinearity from computing C

is less than the number of inputs, the right-hand-side computation of Step (4) of 1SK-MIFE.Dec

dominates. Thus, we get the following:

κ ≤ max{1 +
∑
i∈[n]

deg(x(i)), n}.
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4.3.4 Obfuscation from MIFE

Our MIFE construction immediately gives us an obfuscation scheme using the transformation of

Goldwasser et al. [GGG+14]: set each MIFE slot to be a single bit, with the obfuscation being

the 2n encryptions corresponding to the zero and one values in each MIFE slot, and evaluation

being the MIFE decryption operation. We denote this construction by MIO. Note that we can

also directly support Σ-vectors by encrypting each σ ∈ Σ for each MIFE slot.

MIO.Obfuscate(1n, C):

1. Compute (sk, ek)← 1SK-MIFE.Setup(1n, C).

2. For i ∈ [n], b ∈ {0, 1}, compute cti,b ← 1SK-MIFE.Enc(sk, i, b).

3. Output the following as the obfuscated program:
(
ek, {cti,0, cti,1}i∈[n]

)
.

MIO.Evaluate(Obf,x):

1. Parse Obf as
(
ek, {cti,0, cti,1}i∈[n]

)
.

2. Output 1SK-MIFE.Dec(ek, ct1,x1 , . . . , ctn,xn).

Computing κ. This approach gives us the same κ values as our MIFE construction. We

also note that MIO requires many fewer encodings than existing approaches, as we are in some

sense trading the use of encodings with mmap slots to enforce security. See Table 4.1 for some

examples; roughly, MIO requires up to 2× fewer encodings than all existing approaches, which

directly impacts the obfuscation time and size.

Results. See Table 4.1 and Table 4.2 for results. We can see that MIO is better than all existing

schemes, both in terms of κ values as well as the number of encodings needed.

4.4 Compiling Circuits for Obfuscation

The running time of circuit obfuscation is directly related to the multilinearity of the underlying

mmap: the larger the multilinearity, the longer the running time and resulting size. Indeed, for
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existing mmaps, the running time is exponential in the multilinearity. As the multilinearity is

always greater than or equal to the multiplicative degree, reducing the multiplicative degree often

has a direct impact on the multilinearity. In this section we focus on the multiplicative degree,

whereas throughout the rest of the paper the focus is on multilinearity.

The degree is calculated as follows. As we evaluate an arithmetic circuit, the degree of an

addition gate is the maximum degree of its inputs, whereas the degree of a multiplication gate is

the sum of the degree of its inputs (see Figure 4.1). Thus, in the worst case the degree of the whole

circuit is exponential in its depth — this occurs when a circuit contains only multiplication gates.

However, in the best case, the degree can be much lower — this occurs when the multiplication

gates are “spread out” effectively in the circuit. The primary goal when compiling circuits is in

reducing the degree required, even at the cost of increasing the total number of gates.

Existing circuit compilers either minimize the number of gates [HFKV12, MGC+16] or the

depth [BHWK16]. As an early attempt, we took a similar approach using off-the-shelf tools:

taking a Cryptol [Cry] function as input, we used the Software Analysis Workbench [Gal16] to

generate circuits composed of And and Not gates, optimized them using either ABC [BM10], a

tool for synthesizing and optimizing binary sequential logic circuits, or Yosys [WGK13], a tool

for synthesizing and optimizing Verilog scripts, and then finally translated the outputs to an

arithmetic circuit. These tools were somewhat effective, but they did not provide the ability

to use custom optimizations to reduce the degree and thus often produced poorly performing

circuits. Thus, we built our own circuit compiler to address this gap. As an example, for 1-round

AES we were able to reduce the degree from 14,900 to 33 when using our compiler.

The compiler itself is an embedded domain specific language (DSL) in Haskell which directly

constructs arithmetic circuits from addition, multiplication, and subtraction gates. This is less

a limitation than it seems, since we can use the full power of Haskell to construct circuits.

For example, access to low-level representations allows for clever circuit optimizations, such as

replacing a subroutine with a lookup table. The DSL can also compose circuits, which allows us to

use heavily optimized sub-circuits as subroutines. Finally, the DSL provides generic optimizations
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specifically tailored to reduce the degree.

In Section 4.4.1 we discuss circuit optimizations. This includes improvements to the way

a circuit is initially constructed, as well as optimizations we apply after the circuit is created.

Then, in Section 4.4.2 we show how well the optimizations perform on a circuit that computes a

single round of AES.

4.4.1 Circuit Optimizations

In this section we describe each of our circuit optimization approaches: using off-the-shelf opti-

mizers (Section 4.4.1.1), using a DSL (Section 4.4.1.2), encoding lookup tables (Section 4.4.1.3),

folding constants (Section 4.4.1.4), and circuit flattening (Section 4.4.1.5).

4.4.1.1 Off-the-Shelf Boolean Circuit Optimizers

Our early compiler generated boolean circuits which could then be fed into off-the-shelf optimiz-

ers. We were inspired by TinyGarble [SHS+15] to use ABC [BM10] and Yosys [WGK13], tools

which are used by hardware engineers for optimizing circuits. We then converted the optimized

boolean circuit to arithmetic. The advantage of this approach is that existing optimizers are well

developed, easy to use, and effective. Using this method, if we compile the AES S-Box directly as

an arithmetic circuit, it has degree 283. Optimizing with ABC takes the degree down to 250, and

further optimization with Yosys takes the degree down to 220. However, these tools optimize for

size, not degree, and the resulting degrees are well beyond values that we could hope to obfuscate

in a reasonable amount of time.
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4.4.1.2 Using a Domain-specific Language

In order to take advantage of low-level circuit optimizations that are not captured by existing

off-the-shelf tools, we developed our own DSL for building circuits. The basic idea is to build

a circuit directly from gates in Haskell. The user primarily interacts with “Refs”, which are

indices into an array of wires. We provide functions for addition, subtraction, multiplication,

etc., based on Refs. There is also a mechanism for avoiding duplicate gates. The user can use

Haskell functions to create their circuits, dynamically passing Refs around, and existing circuits

can be imported as sub-circuits. This allows us to take the best compilation method for every

circuit, or to pre-compute sub-circuits that have a long optimization step. Finally, the DSL

provides tools for exploring new optimization techniques (both during and after compilation), as

described below.

4.4.1.3 Encoding a Lookup Table as a Circuit

One simple but effective optimization we can do is to replace an n-input circuit with a lookup

table of degree n. The cost is an exponential blowup in the number of gates in the circuit,

corresponding to every possible input. However, since size is not the limiting factor for our

obfuscation schemes, we apply this optimization whenever we can.

As an example, consider the circuit corresponding to a truth table with single-bit entries[
0 1 1 0

]
, where on input i the circuit returns the ith bit of the table. We can convert this

circuit to the formula

((1− i1) · i0) + (i1 · (1− i0)),

where i1i0 corresponds to the base-2 representation of i, giving us a circuit of degree two.

Using the DSL and the above lookup table encoding reduces the degree of the AES S-Box

from 220 to 8, a 27× improvement.
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4.4.1.4 Folding Constants

Another simple optimization which is surprisingly effective is “constant folding”. Namely, we scan

the circuit for gates that add or multiply constants and replace such gates with new constants.

We can also remove gates that add or subtract zero or multiply by one. Our circuits often contain

these gates since we use 1− x to simulate Not(x). Such gates also occur if we fix input bits to a

constant.

4.4.1.5 Circuit Flattening

This optimization uses the fact that our arithmetic circuits emulate boolean circuits in that every

wire only ever carries zero or one. We can take advantage of this to reduce the circuit degree

as follows: (1) convert the circuit to a polynomial; (2) “expand” the polynomial by converting it

from a product of sums to a sum of products; (3) remove all exponentiations, possible because

the variables in the polynomial are boolean; and (4) simplify and convert back to circuit form.

As an example, consider the circuit represented by the polynomial (1−x1)(1−x1x2). Expan-

sion produces the polynomial (1−x1−x1x2 +x2
1x2). Since the inputs are bits we can remove all

exponents from the polynomial. Simplifying, we get the polynomial (1 − x1), which has degree

one, in comparison to the original which has degree three.

Polynomial expansion has exponential blow-up, so this optimization only works for sufficiently

small circuits (experimentally, we found around depth 14 to be the limit). We thus locate high-

degree sub-circuits, flatten these independently, and then use the DSL to stitch them back in,

repeating until a fixed-point is reached. This method takes the degree of 1-round AES-128 from

57 to 33.
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Circuit Opt. Level # Gates # Muls Degree

-O0 22,368 5,600 57
-O1 22,368 5,600 57aes1r
-O2 80,564 9,203 33

-O0 1,101 569 41
-O1 820 420 26aes1r_64_1
-O2 1,324 614 18

Table 4.3: Comparison of DSL optimizations. ‘Opt. Level’ denotes the optimization level used (‘-O0’
denotes no optimizations; ‘-O1’ denotes constant folding; and ‘-O2’ denotes constant folding and sub-
circuit flattening); ‘# Gates’ denotes the total number of gates in the circuit; ‘# Muls’ denotes the total
number of multiplication gates; and ‘Degree’ denotes the multiplicative degree.

4.4.2 Optimization Results

See Table 4.3 for a comparison of the various DSL optimization approaches on two variants of

one-round of AES-128: aes1r denotes one-round of AES-128, and aes1r_64_1 denotes one-round

of AES-128 with 64-bits of the input fixed and only one output bit. We can see that in both

cases, we see benefits to using our circuit flattening optimization, reducing the degree from 57

to 33 in the case of aes1r and reducing the degree from 26 to 18 in the case of aes1r_64_1.

Constant folding only sees a benefit for aes1r_64_1; this is because in that circuit 64 input bits

are fixed, and thus can be folded into the computation, reducing the degree from 41 to 26.

Note that the circuit flattening optimization often increases both the total number of gates

and the number of multiplication gates. For example, using sub-circuit flattening increases the

number of gates in the aes1r circuit by almost 4× and the number of multiplication gates by

almost 2×. However, as mentioned before, degree is the main efficiency bottleneck, and thus this

extra increase is largely irrelevant from an efficiency standpoint given the reduction in degree.

4.5 Implementation

We implemented the MIFE scheme described in Section 4.3 and all of the obfuscators discussed

in Section 4.2 and Section 4.3. We have packaged these into a program, mio, containing around

20,000 lines of C code and using libmmap as the underlying mmap library (and in particular,

the instantiation of the CLT mmap [CLT13] available as part of libmmap). We also developed



70

a language and associated library, libacirc, for describing arithmetic circuits. All the code is

available at https://github.com/5GenCrypto/.

Attacks on CLT While our MIFE and obfuscation schemes are secure in the composite-order

mmap generic model, in our implementation we instantiate this generic model using the CLT

mmap [CLT13]. Unfortunately, the CLT mmap is prone to several attacks. Most relevant to our

constructions, Coron et al. [CGH+15] demonstrated an attack on the Zimmerman construction

for the specific circuit comprised of the product of an odd number of inputs. However, it is not

clear how to extend their attack to arbitrary circuits, and in particular, to PRFs. Intuitively, it

appears that any successful partitioning of the input space needed in their attack would lead to

an attack on the underlying PRF, although this remains to be formalized.

More recently, Coron et al. [CLLT17] demonstrated attacks on matrix branching program

constructions using the CLT mmap, but again, we are not aware of how to map this attack to

the more general circuit approach. Existing attacks rely on some inherent structure of the com-

putation, be it matrix multiplication using branching programs or multiplications when attacking

the product circuit in Zimmerman’s construction. In addition, embedding PRFs in obfuscation

constructions based on the GGH mmap [GGH13a] has been used to eliminate all known at-

tacks [GMM+16], albeit in the branching program context. This seems to suggest that when

obfuscating PRFs themselves, the “lack of structure” provided by the PRF prevents existing at-

tacks from working. Thus, while we do not have a proof that our construction circumvents all

known attack techniques, we believe existing attacks do not affect our construction when applied

to obfuscating PRFs.

4.6 Performance Results

We found that for functions that can be mapped efficiently to finite automata, the matrix branch-

ing program approach of 5Gen is superior. In particular, for order-revealing encryption and point

function obfuscation we were unable to produce circuits with smaller κ than 5Gen. However,

https://github.com/5GenCrypto/
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as the complexity of the circuit grows, the circuit-based approach quickly becomes superior. In-

deed, we were unable to even compile branching program representations for any of the circuits

considered below.

We investigate two function classes to obfuscate: AES (cf. Section 4.6.1) and the Goldreich,

Goldwasser, Micali (GGM) PRF (cf. Section 4.6.2). We explored a number of other PRF con-

structions, including MiMC [AGR+16] and the PRF of Applebaum and Raykov [AR16]. However,

both approaches require finite field operations resulting in circuits of very high degree. For exam-

ple, we found the Applebaum-Raykov PRF with 8-bit input and 24-bit key to have multiplicative

degree greater than 1026.

We note that all of the obfuscators we implemented only satisfy the weaker indistinguishability

obfuscation definition; thus, we assume heuristically that our constructions are virtual black-

box obfuscators for the specific functions considered below. Due to its efficiency over the other

obfuscators, both in terms of multilinearity and number of encodings, all of the below experiments

are done using our MIFE-based construction from Section 4.3.

4.6.1 AES

Obfuscating AES can be seen as the “holy-grail” of program obfuscation due to its wide-spread

use in industry. Unfortunately, obfuscating the entire 10-round AES-128 construction is well

beyond our capabilities at the moment. For a single round of AES we can achieve κ = 128, but

for even two rounds of AES this balloons to over 2,000.

Recall from Table 4.3 that the multiplicative degree of our circuit is 33, yet the resulting

multilinearity is 128. This is due to the fact that our obfuscator has a minimal multilinearity

equal to the number of inputs, and thus in some sense we cannot take advantage of the low

multiplicative degree in this case. Thus, an interesting open problem is constructing a circuit

obfuscation scheme that has multilinearity independent of the number of inputs, while also making

only black-box queries to the underlying mmap to avoid the efficiency bottleneck of using mmaps
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in a non-black-box way (cf. Section 4.1.2).

4.6.2 Goldreich-Goldwasser-Micali PRF

AES is not particularly suited to our program obfuscation approach due to its many rounds,

and thus high degree. As mentioned above, we explored other PRFs but found the Goldreich,

Goldwasser, and Micali (GGM) PRF [GGM84] as the most feasible approach.

Let Fk : {0, 1}n → {0, 1}n denote a PRF. GGM introduced a way to construct Fk directly

from a stretch-two2 PRG G : {0, 1}n → {0, 1}2n as follows. Let G(k) = G0(k)‖G1(k), where

Gi : {0, 1}n → {0, 1}n denotes the ith n-bit block of output of G. The idea is to repeatedly apply

G, using the input bits of the PRF as an index into which half of the output of G to return.

Namely, letting x := x1 · · ·xn, we define Fk(x) := Gxn(Gxn−1(· · · (Gx1(k)))).

Lin [Lin16] used a variant of the GGM PRF in her construction of obfuscation from constant-

degree mmaps (cf. Section 4.1.2). Her variant uses a PRG with polynomial stretch (as opposed

to the GGM construction, which only requires stretch two), which allows for minimization of the

depth and thus degree of the resulting circuit. In particular, Lin showed that by using a special

unary “Σ-vector” encoding of the input (cf. Section 4.2.3) and a polynomial stretch PRG we can

minimize the depth of the resulting PRF.

More formally, let x := σ1 · · ·σn, where σi ∈ Σ, and let |Σ| denote the length of Σ. Using

a PRG G : {0, 1}n → {0, 1}|Σ|n, our PRF becomes Fk(x) := Gσn(Gσn−1(· · · (Gσ1(k)))). Note

that the “real” length of x (i.e., the number of bits of input that x can encode) corresponds to

n · log2(|Σ|), since a Σ-vector of length |Σ| corresponds to a unary encoding of a value in the set

{0, . . . , |Σ|−1}. In particular, this approach reduces the number of PRG evaluations by log2(|Σ|).

Thus, the main “cost” (in terms of degree) of the PRF becomes the particular PRG it is

instantiated with. To measure this, we calculated the depth, degree, and multilinearity of the

GGM PRF with the PRG instantiated by an identity function. When using four Σ-vector inputs

each of length 16 (corresponding to 64 bits of “real” input) and a key length of 128, we get a
2We define a stretch-t PRG to be one that on n-bit input, produces a tn-bit output.
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depth of 20, a degree of 5, and a multilinearity of 6. On the other hand, instantiating the PRF

with an actual PRG (in this case, Goldreich’s PRG as discussed below), we get a depth of 48,

degree of 781, and multilinearity of 1,126.

4.6.2.1 Selecting a PRG for the GGM PRF

As the PRG choice greatly effects the overall degree of the circuit, and thus the required multi-

linearity when obfuscating, choosing an appropriate PRG is of vital importance to efficiency. In

particular, we would like a polynomial-stretch PRG in NC0 (the class of boolean circuits with

constant depth) due to its low depth, and thus low degree. One of the main candidate PRGs in

this space is by Goldreich [Gol00]: letting G : {0, 1}n → {0, 1}m be our PRG, for some fixed k

take m random k-tuples of the n input bits and apply a predicate P : {0, 1}k → {0, 1} to each

tuple, producing m bits of output. Due to the parallelizability of this approach, the degree of G

is simply the degree of the predicate P .

There are various possible choices of both the predicate P and its input size k. Goldre-

ich [Gol00] suggested choosing P at random. O’Donnell and Witmer [OW14] suggested the

xor-and predicate

P (x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4x5 (mod 2).

Finally, Applebaum and Lovett [AL16] suggested the xor-maj predicate

P (x1, . . . , xd) = x1 ⊕ · · · ⊕ xbd/2c ⊕Majority(xbd/2c+1, . . . , xd).

In order to choose the most efficient predicate, we compare xor-maj and xor-and, along with

the (completely insecure) linear predicate P (x1, . . . , x5) =
⊕
xi to get an idea of the “simplest”

predicate we could hope for. See Table 4.4 for the results.

We found that all three predicates have roughly the same multilinearity, with xor-and and
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Predicate n m # Gates # Muls Depth Degree κ

linear 32 32 504 126 9 5 33
linear 32 128 1,904 476 9 5 33
linear 64 64 1,024 256 9 5 65
linear 64 128 2,028 507 9 5 65
linear 128 128 2,028 507 9 5 129

xor-and 32 32 414 126 7 5 33
xor-and 32 128 1,609 484 7 5 33
xor-and 64 64 827 254 7 5 65
xor-and 64 128 1,645 502 7 5 65
xor-and 128 128 1,656 510 7 5 129

xor-maj 32 32 829 414 9 5 32
xor-maj 32 128 3,159 1,622 9 5 32
xor-maj 64 64 1,914 895 9 6 64
xor-maj 64 128 3,756 1,783 9 6 64
xor-maj 128 128 5,350 2,794 10 7 128

Table 4.4: Circuits computing Goldreich’s PRG for various choices of predicate. linear denotes the
predicate P (x1, . . . , x5) :=

⊕
xi; xor-and denotes the predicate P (x1, . . . , x5) := x1 ⊕ x2 ⊕ x3 ⊕ x4x5;

xor-maj denotes the predicate P (x1, . . . , xd) := x1 ⊕ · · · ⊕ xbd/2c ⊕Majority(xbd/2c+1, . . . , xd), where d
is set to logn; ‘n’ denotes the number of input bits; ‘m’ denotes the number of output bits; ‘# Gates’
denotes the total number of gates; ‘# Muls’ denotes the number of multiplication gates; ‘Depth’ denotes
the depth of the circuit; ‘Degree’ denotes the multiplicative degree of the circuit; and ‘κ’ denotes the best
multilinearity achieved.

linear being slightly better than xor-maj. This is due to the fact that we are computing

boolean operators using arithmetic circuits. In particular, the XOR operation is no longer cheap:

XOR(x, y) := x+ y− 2xy, thus requiring one multiplication and three linear operations, whereas

AND(x, y) := xy, costing one multiplication but no linear operations. Since the main cost is the

multiplicative degree, we can ignore the cost of the linear operations and thus XOR and AND

end up costing the same.

We also experimented with the block-local PRG of Barak et al. [BBKK17], but found its

performance worse than the above instantiations. Thus, we chose to instantiate our PRG in the

GGM PRF construction using the xor-and predicate.
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κ

n k Boolean Σ

4 128 14 7
8 128 74 33

12 128 374 161
16 128 1,874 794

Table 4.5: Multilinearity values for the GGM PRF obfuscated using MIO for both boolean and Σ-vector
inputs with |Σ| = 16. ‘κ’ denote the multilinearity; ‘n’ denotes the number of “real” input bits; ‘k’ denotes
the key length; ‘Boolean’ denotes that the inputs are represented as bits; and ‘Σ’ denotes that the inputs
are represented as Σ-vectors. As an example, for n = 16 and using the Σ vector representation, we have
four Σ-vectors and thus 4 · 16 = 64 input bits, which corresponds to 4 · log2(16) = 16 “real” input bits.

4.6.2.2 Implementing the GGM PRF

We implemented the GGM PRF within our DSL for both boolean inputs and Σ-vector inputs;

see Table 4.5 for the results. We found that Σ-vector inputs produced much smaller κs than their

boolean input counterparts. This is due to two reasons: (1) we require fewer applications of the

PRG, reducing the overall depth and thus degree of the circuit, and (2) we can produce very small

lookup tables by directly using the Σ-vector as the index (i.e., the e value in Equation (4.1)).

4.6.2.3 Performance Results

See Table 4.6 for performance results. All results were run on a machine with 2 TB of RAM and

four Xeon CPUs running at 2.1 GHz, with sixteen cores per processor and two threads per core

(resulting in 128 “virtual” cores). We used λ = 80 throughout. Due to the long running time,

the numbers correspond to a single execution.

The largest circuit we were able to obfuscate and evaluate was a 12-bit GGM PRF with a

64-bit key3. This took 3.7 hours to obfuscate, resulting in an obfuscation of 120 GB and an

evaluation time of 67 minutes. While still far from practical, this is by far the most complex

function obfuscated to date that we are aware of. In particular, Lewi et al. [LMA+16] obfuscated

an 80-bit point function, and Halevi et al. [HHSSD17] obfuscated a 100-state non-deterministic
3We successfully obfuscating a 12-bit GGM PRF with a 128-bit key, but evaluation ran out of memory.
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n |Σ| # PRGs k # Gates κ Obf time Obf size Eval time

8 256 1 32 23,710 7 10 h 121 GB 4.4 m
8 256 1 64 27,692 7 10 h 121 GB 4.7 m
8 256 1 128 29,889 7 10 h 121 GB 4.9 m
8 16 2 32 8,580 33 127 m 11 GB 11 m
8 16 2 64 16,138 33 127 m 12 GB 17 m
8 16 2 128 31,431 33 130 m 13 GB 29 m
12 64 2 32 32,998 33 3.7 h 119 GB 42 m
12 64 2 64 62,227 33 3.7 h 120 GB 67 m
12 64 2 128 121,798 33 3.7 h 122 GB —

Table 4.6: Obfuscation details for various GGM PRF circuits. ‘n’ denotes both the number of “real”
input bits (i.e., n = #PRGs · log2(|Σ|)) and the number of output bits of the circuit; ‘|Σ|’ denotes the size
of the Σ-vectors; ‘# PRGs’ denotes the number of applications of the PRG; ‘k’ denotes the key length;
‘# Gates’ denotes the number of gates in the circuit; ‘κ’ denotes the required multilinearity of the mmap;
‘Obf time’ denotes the obfuscation time; ‘Obf size’ denotes the obfuscation size; ‘Obf RAM’ denotes the
maximum amount of RAM used during obfuscation; ‘Eval time’ denotes the evaluation time; and ‘Eval
RAM’ denotes the maximum amount of RAM used during evaluation. ‘—’ denotes that we ran out of
memory.

finite automaton with 68 input bits. On the other hand, our obfuscated circuit contains 48 input

bits (albeit in Σ-vector form), 12 output bits, and 62,227 gates.

We also compared the tradeoff of Σ-vector length versus number of PRG applications. As

the number of PRG applications increases, the overall multilinearity does as well. Indeed, for a

single PRG application, we can achieve κ = 7, whereas with two applications this jumps to 33,

and with three applications we reach 161, outside the realm of runnability. Thus, playing with

the Σ-vector length, we compared the running time of an 8-bit PRF with |Σ| = 256 (resulting in

one application of the PRG and thus κ = 7) versus |Σ| = 16 (resulting in two applications of the

PRG and thus κ = 33). Interestingly, the PRF with the lower κ ended up taking much longer

to obfuscate and resulted in a much larger obfuscation. This is due in a large part to the huge

number of encodings needed when using |Σ| = 256. As an example, for key length 128 we need

67,872 encodings for |Σ| = 256 versus 1,064 encodings for |Σ| = 16. Thus, even though κ is around

4× larger in the latter case, we need to encode 64× fewer values, reducing the obfuscation time

(10 hours versus 130 minutes) and size (121 GB versus 13 GB). However, we do note that the

evaluation time is much faster for |Σ| = 256: 4.9 minutes versus 29 minutes using our previous
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example. This presents an interesting tradeoff of obfuscation time/size versus evaluation time.

4.7 Conclusion

In this chapter, we present a thorough investigation of circuit-based multi-input functional en-

cryption (MIFE) and program obfuscation, introducing a new MIFE scheme and associated

program obfuscator that performs better than all existing approaches when obfuscating pseudo-

random functions (PRFs). This allowed us to obfuscate the Goldreich-Goldwasser-Micali (GGM)

PRF for a small number of inputs; however, the multilinearity quickly increases as we increase

the input size, preventing us from being able to obfuscate “real-world” input sizes.

This work motivates several interesting research questions. The running time of obfuscating

the GGM PRF depends heavily on the pseudorandom generator (PRG) used within the PRF;

can one construct a more “obfuscation-efficient” PRG for this use case? Can one construct a

lower degree PRF than the GGM PRF? More generally, can one construct a more efficient

circuit obfuscator than our MIFE construction, and in particular, one that has multilinearity

independent of the input length while still being black-box in the mmap? Finally, as all of these

constructions rely heavily on the efficiency of the underlying mmap, a major open question is

the construction of more efficient composite-order mmaps.
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5 Public-Key Function-Private Functional Encryption for Wildcard

Pattern-Matching

In this chapter, we give the first function-private functional encryption scheme for wildcard

pattern matching. In order to understand how our construction works, we describe the BKMPRS

obfuscator in more detail. The obfuscator first chooses a random polynomial F such that F (0) =

0. Then for each index i ∈ [n] and bit assignment b ∈ {0, 1}, the obfuscator sets qi,b := F (2i+ b)

or qi,b ← Zp randomly depending on whether that particular bit assignment is matched by the

pattern. That is, if the pattern is pat ∈ {0, 1, ?}n, then the bit assignment match occurs when

pat[i] = b or pat[i] =?. The obfuscator encodes the qi,bs in the group, and releases the 2×n table

consisting of these encodings. Bishop et al. show that it is hard to distinguish a with purely

random encodings from one created for a pattern sampled from the distribution of patterns with

at most 3/4n wildcards (improved by Bartusek & Ma to at most 1− ω(log λ) wildcards).

The evaluator chooses the encodings from the table that correspond to their input x ∈ {0, 1}n.

Then, they have picked up the encodings gqi,xi for i ∈ [n]. They compute the Lagrange coefficients

Li for interpolating F at 0 such that F (0) =
∑
i∈[n] Liqi,xi under the assumption that each

qi,xi = F (2i + xi) is a real polynomial evaluation. Then, they exponentiate the obfuscation

encodings with the Lagrange coefficients and sum the result, effectively interpolating F at 0 in

the exponent. That is, they compute
∑
i∈[n](g

qi,xi )Li . If the input is matched by the pattern,

then all the chosen encodings will be polynomial evaluations, and the result of interpolation will

be g
∑

i∈[n] qi,xi
Li = gF (0) = g0. If the input does not match the pattern, then there will be at

least one random value mixed in, and interpolation will fail.

The intuition of our wildcard encryption construction is this: we would like to extend the

BKMPRS obfuscator to allow it to be evaluated on secret inputs. A ciphertext must then contain

the necessary information to evaluate the obfuscation. In BKMPRS, Lagrange coefficients are
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used to evaluate a secret polynomial. These coefficients depend on the plaintext, and would leak

information in our scheme if they were given in the clear. So, we hide them in the exponent of

the group using a random mask. Then, to decrypt, we multiply the Lagrange coefficients with

the appropriate wildcard obfuscation encodings which are evaluations of a random polynomial.

Since both the polynomial evaluations and the Lagrange coefficients are encoded in the exponent

of a group, we must use a bilinear map to multiply. Finally, if the pattern matches the input, a

predetermined value is returned as the result of interpolation, which is then used to decrypt the

message payload.

One issue is that we cannot give out the BKMPRS wildcard obfuscation directly as a secret

key, even though at first glance this seems like the ideal solution. Since the decryptor has no

knowledge of the plaintext – it just holds the ciphertext – it cannot choose the correct obfuscation

encodings from the 2×n table to use, even if it had the correct Lagrange coefficients in the clear.

So, we must include a mechanism for selecting the correct input encodings from the wildcard

obfuscation. Our construction solves this problem by making our secret key the coefficients of a

degree-2 polynomial. When this polynomial is evaluated it returns the appropriate underlying

polynomial evaluations for the particular input.1 Then, the Lagrange coefficients can be applied,

and the evaluation works correctly. We give the details of our scheme in Section 5.2.1.

5.0.1 Related Work

Patranabis and Mukhopadhyay very recently gave function-private public-key constructions for

identity-based encryption, subspace-membership encryption, and hidden-vector encryption [PM18].

These constructions are shown secure using DDH-like assumptions, and are for the weakest pos-

sible min-entropy requirement on predicates. In particular, their setting of hidden-vector en-

cryption is very similar to our own. Hidden-vector encryption produces secret keys of patterns
1These polynomials could conceivably be degree-1, since they must only have 2 points fixed – namely the

BKMPRS encodings corresponding to the possible values of the ith input bit. However, this allows an attack on
the ciphertext since one of the values will be adversarially known, allowing an attacker to divide off the known
values and compare for equality.
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consisting of field elements or wildcards. These secret keys match against ciphertexts that are

vectors of field elements. Our scheme hides the location of the wildcards, whereas in PM18, the

locations of wildcards are public. Furthermore, PM18 does not directly support binary strings.

Each non-wildcard element must be a value from a finite field Fq where q is a prime of size at

least ω(log λ). This limits the possible locations of wildcards, since each non-wildcard part of a

pattern must be of length ω(log λ). This also requires the wildcards to consume ω(log λ) chunks

of the input vectors.

5.1 Preliminaries

Let λ denote the security parameter. We let G denote a group of prime order p, where we

implicitly assume that p is Θ(λ) bits long. For n ∈ N we let [n] denote the ordered list of integers

[1, 2, . . . , n], and for m < n ∈ N we let [m,n] denote the ordered list of integers [m,m+ 1, . . . , n].

Let G1,G2,GT be distinct groups of order p with generators g1, g2, gT , respectively, such that

there exists an efficiently computable bilinear map e : G1×G2 → GT such that (1) e(g1, g2) = gT ,

and (2) for all a, b ∈ Zp, e(ga1 , gb2) = gabT . We use the bracket notation of Escala et al. [EHK+13]

throughout, and thus we can rewrite the second bilinear map property as e(JaK1, JbK2) = JabKT .

We use the notation ‘$’ to denote a value sampled uniformly at random from some set, where

the set will be clear from the context.

Let P = {0, 1, ?}∗ denote the set of all wildcard patterns, and let Pn = {0, 1, ?}n denote the

set of wildcard patterns of length n. We say a string s ∈ {0, 1}n matches pattern pat ∈ Pn if for

all i ∈ [n] it holds that either s[i] = pat[i] or pat[i] = ?, and use the notation s ∈ pat to denote

that s matches pat. Let Matchn : Pn × {0, 1}n → {0, 1} be a polynomial-time algorithm that

outputs 1 if and only if the input m ∈ {0, 1}n matches pattern pat ∈ Pn.
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5.1.1 Security Notions

Definition 5.1.1 (Distributional Virtual Black-Box). Let D = {Dn}n∈N be an ensemble of

distributions, where Dn is a distribution over Pn. We define the distributional virtual black-box

(dist-VBB) advantage of adversary A for obfuscation scheme Obf and simulator S as

Advdist-VBB
Obf,S,A(λ,D, n)

def
=
∣∣∣Pr
[
Exptdist-VBBΠ,S,A (λ,D, n, 0) = 1

]
− Pr

[
Exptdist-VBBΠ,S,A (λ,D, n, 1) = 1

]∣∣∣
where for λ ∈ N, n ∈ N, and b ∈ {0, 1}, the experiment Exptdist-VBBΠ,S,A (λ,D, n, b) is defined as:

Exptdist-VBBΠ,S,A (λ,D, n, b)

return AO(1λ)

O( )

if b = 0:
pat← Dn
return Obf(1λ, pat)

else:
return S(1λ, n)

Let D = {Dn} be the distribution ensemble where Dn is the uniform distribution over {0, 1, ?}n

such that ≤ 3n
4 entries are wildcards. Bishop et al. [BKM+18] showed an obfuscation scheme

Obf for D in the generic group model such that for all adversaries A there exists a simulator S

such that

Advdist-VBB
Obf,S,A(λ,D, n) ≤ (Q+ 2n)2

2n
+ 2−0.0613n,

where Q is the number of queries made by A to the generic group oracle.

5.1.1.1 Generic Bilinear Group Oracle

We use the definition of the Generic Bilinear Group Oracle from [KLM+16, Definition 2.7].
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Definition 5.1.2 (Generic Bilinear Group Oracle). A generic bilinear group oracle is a stateful

oracle BG that responds to queries as follows:

• On a query BG.Setup(1λ), the generic bilinear group oracle will generate two fresh nonces

pp, sp← {0, 1}λ and a prime q (as in the real setup procedure). It outputs (pp, sp, q). It will

store the values generated, initialize an empty table T ← {}, and set the internal state so

subsequent invocations of BG.Setup fail.

• On a query BG.Encode(k, x, i) where k ∈ {0, 1}λ, x ∈ Zq and i ∈ {1, 2, T} (for the “left”

group G1, the ”right“ group G2, and the target group GT ), the oracle checks that k = sp

(returning ⊥ if the check fails). The oracle then generates a fresh nonce h← {0, 1}λ, adds

the entry h 7→ (x, i) to the table T , and replies with h.

• On a query BG.Add(k, h1, h2) where k, h1, h2 ∈ {0, 1}λ, the oracle checks that k = pp, that

the handles h1, h2 are present in its internal table T , and are mapped to the values (x1, i1)

and (x2, i2), respectively, and where i1 = i2 (returning ⊥ otherwise). If the checks pass, the

oracle generates a fresh handle h ← {0, 1}λ, computes x = x1 + x2 ∈ Zq, adds the entry

h 7→ (x, i1) to T , and replies with h.

• On a query BG.Pair(k, h1, h2) where k, h1, h2 ∈ {0, 1}λ, the oracle checks that k = pp, that

the handles h1, h2 are present in T , and are mapped to values (x1, 1) and (x2, 2), respectively

(returning ⊥ otherwise). If the checks pass, the oracle generates a fresh handle h← {0, 1}λ,

computes x = x1x2 ∈ Zq, adds the entry h 7→ (x1, x2, T ) to T , and replies with h.

• On a query BG.ZeroTest(k, x) where k, x ∈ {0, 1}λ, the oracle checks that k = pp, that the

handle h is present in T , and that h maps to some value (x, i) (returning ⊥ otherwise). If

the checks pass, the oracle returns “zero” if x = 0 ∈ Zq and ”non-zero“ otherwise.

Note that the generic bilinear group oracle leaks equality by allowing two encodings to be

subtracted and then zero-tested. This is equivalent to generic oracles whose handles are in one-

to-one correspondence with values. We also repeat the usage of formal polynomials as in KLM+,

and repeat their Remark 2.8 verbatim [KLM+16, Remark 2.8].
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Remark 5.1.3 (Oracle Queries Referring to Formal Polynomials). Although the generic bilinear

map oracle is defined formally in terms of “handles” (Definition 5.1.2), it is more conducive

to regard each oracle query as referring to a formal query polynomial. The formal variables in

this formal query polynomial are specified by the expressions supplied to the BG.Encode oracle

(as determined by the details of the construction), and the adversary can construct terms that

refer to new polynomials by making oracle queries for the generic group operations BG.Add and

BG.Pair. Rather than operating on a “handle,” each valid BG.ZeroTest query refers to a formal

query polynomial, and the result of the query is “zero” if the polynomial evaluates to zero when

its variables are instantiated with the joint distribution over their values in Zq as generated in

the real security game.

We also require the Schwartz–Zippel lemma [Sch80, Zip79], stated as follows.

Lemma 5.1.4 (Schwartz–Zippel Lemma). Fix a prime p and let f ∈ Fp[x1, . . . , xn] be a n-variate

polynomial with degree at most d and which is not identically zero. Then,

Pr[x1, . . . , xn ← Fp : f(x1, . . . , xn) = 0] ≤ d/p.

5.1.2 Defining Wildcard Encryption

Definition 5.1.5 (Public-Key Wildcard Encryption). A public-key wildcard encryption scheme

Π = (Setup,KeyGen,Enc,Dec) is a tuple of probabilistic polynomial-time algorithms defined as

follows:

• Setup(1λ, n,m) → (msk, pk) : On input security parameter λ ∈ N (provided in unary),

pattern length n ∈ N, and payload length m ∈ N, output master secret key msk and public

key pk.

• KeyGen(msk, pat) → sk : On input master secret key msk and wildcard pattern pat ∈ Pn,

output secret key sk.
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• Enc(pk, x, y) → ct : On input public key pk, string x ∈ {0, 1}n, and payload y ∈ {0, 1}m,

output ciphertext ct.

• Dec(skpat, ct) → {⊥} ∪ {0, 1}m: On input secret key sk for pattern pat and ciphertext ct,

output either ⊥ or payload y ∈ {0, 1}m.

Definition 5.1.6 (Correctness). A public-key wildcard encryption scheme Π is correct if for all

n,m ∈ N, pat ∈ Pn and (x, y) ∈ {0, 1}n × {0, 1}m such that Matchn(pat, x):

Pr


(msk, pk)← Setup(1λ, n,m)

sk← KeyGen(msk, pat)

ct← Enc(pk, x, y)

∣∣∣∣∣ Dec(sk, ct) = y

 = 1− ν(λ)

where the probability is taken over the internal randomness of the algorithms and ν(·) is a negli-

gible function.

5.1.2.1 Message Privacy

Definition 5.1.7 (Message Privacy). Let Π be a public-key wildcard encryption scheme, and let

A be a stateful adversary. We define the message privacy (MP) advantage as

AdvMP
Π,A(λ, n)

def
=
∣∣∣Pr
[
ExptMP

Π,A(λ, n,m, 0) = 1
]
− Pr

[
ExptMP

Π,A(λ, n,m, 1) = 1
]∣∣∣ ,

where for λ ∈ N, n ∈ N, m ∈ N, and b ∈ {0, 1}, the experiment ExptMP
Π,A(λ, n,m, b) is defined as:

ExptMP
Π,A(λ, n,m, b)

(msk, pk)← Setup(1λ, n,m)

(x0, x1, y0, y1)← AKeyGen(msk,·)(1λ, pk)

ct← Enc(pk, xb, yb)

return AKeyGen(msk,·)(ct)

where |x0| = |x1| = n and |y0| = |y1| = m and the patterns input to KeyGen are of length n.
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We require that A is admissible in the following sense: for all KeyGen queries pat made by A

the following holds:

1. Match(pat, x0) = Match(pat, x1), and

2. if Match(pat, x0) = Match(pat, x1) = 1 then y0 = y1.

We say Π is message private if for all λ ∈ N, n ∈ N, m ∈ N, and ppt adversaries A, there exists a

negligible function ν(·) such that AdvMP
Π,A(λ, n,m) ≤ ν(λ).

5.1.2.2 Function Privacy

Definition 5.1.8 (Function Privacy). Let Π be a public-key wildcard encryption scheme, let A

be a stateful adversary, and let S be an explicit ppt algorithm simulating KeyGen. We define the

function privacy advantage for distribution ensemble D = {Dn} as

AdvFP
Π,S,A(λ,D, n,m)

def
=
∣∣∣Pr
[
ExptFPΠ,S,A(λ,D, n,m, 0) = 1

]
− Pr

[
ExptFPΠ,S,A(λ,D, n,m, 1) = 1

]∣∣∣ ,
where for λ ∈ N, n ∈ N, m ∈ N, and b ∈ {0, 1}, the experiment ExptFPΠ,S,A(λ,D, n,m, b) is defined

as:

ExptFPΠ,S,A(λ,D, n,m, 0)

(msk, pk)← Setup(1λ, n,m)

return AO(msk)(1λ, pk)

O(msk)

pat← Dn
return KeyGen(msk, pat)

ExptFPΠ,S,A(λ,D, n,m, 1)

(msk, pk)← Setup(1λ, n,m)

return AS(1λ, pk)

We say Π is function private for distribution ensemble D if there exists a simulator S such that

for all λ ∈ N, n ∈ N, m ∈ N, and ppt adversaries A, there exists a negligible function ν(·) such

that AdvFP
Π,S,A(λ,D, n,m) ≤ ν(λ).
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Definition 5.1.9 (Enhanced Function Privacy). Let Π be a public-key wildcard encryption

scheme, let A be a stateful adversary, and let S =(SKeyGen, SEnc) be an explicit ppt algorithm

simulating KeyGen and Enc. We define the enhanced function privacy advantage for distribution

ensemble D = {Dn} as

AdveFP
Π,S,A(λ,D, n,m)

def
=
∣∣∣Pr
[
ExpteFPΠ,S,A(λ,D, n,m, 0) = 1

]
− Pr

[
ExpteFPΠ,S,A(λ,D, n,m, 1) = 1

]∣∣∣ ,
where for λ ∈ N, n ∈ N, m ∈ N, and b ∈ {0, 1}, the experiment ExpteFPΠ,S,A(λ,D, n,m, b) is defined

as:

ExpteFPΠ,S,A(λ,D, n,m, 0)

(msk, pk)← Setup(1λ, n,m)

Initialize j = 1

return AOKeyGen(msk),OEnc(pk,·,·)(1λ, pk)

OKeyGen(msk)

patj ← Dn
j++
return KeyGen(msk, patj)

OEnc(pk, j, y)

x← {0, 1}n such that Match(patj , x) = 1

return Enc(pk, x, y)

ExpteFPΠ,S,A(λ,D, n,m, 1)

(msk, pk)← Setup(1λ, n,m)

return ASKeyGen(),SEnc(·,·)(1λ, pk)

We say Π is enhanced function private for distribution ensemble D if there exists a simulator S

such that for all λ ∈ N, n ∈ N, m ∈ N, and ppt adversaries A, there exists a negligible function

ν(·) such that AdveFP
Π,S,A(λ,D, n,m) ≤ ν(λ).
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Setup(1λ, n)

for i ∈ [n]:
ri,0, ri,1 ← Zp

α← Zp
msk := ({ri,0, ri,1}i∈[n], α)

pk := ({Jri,0K1, Jr2
i,0K1, Jri,1K1, Jr2

i,1K1}i∈[n], JαKT )

return (msk, pk)

KeyGen(msk, pat)

parse msk = ({ri,0, ri,1}i∈[n], α)

for i ∈ [n− 1]:
ci ← Zp

F (x) := α+
∑
i∈[n−1] cix

i

for i ∈ [n]:
for b ∈ {0, 1}:

if pat[i] ∈ {b, ?}:
qi,b := F (2i+ b)

else:
qi,b ← Zp

Vi :=

r2
i,0 ri,0 1

r2
i,1 ri,1 1

0 0 1


~ai := V −1

i ·
[
qi,0 qi,1 0

]T
return {Jai,2K2, Jai,1K2}i∈[n]

Enc(pk, x, y)

parse pk = ({Jri,bK1, Jr2
i,bK1}i∈[n],b∈{0,1}, JαKT )

for i ∈ [n]:
Li :=

∏
j 6=i∈[n]

−2i−xj

2i+xi−2i−xj

β ← Zp
p := H(JαKβT )⊕ y
return ({Jr2

i,xi
KβLi

1 , Jri,xiK
βLi

1 }i∈[n], p)

Dec(sk, ct)

parse sk = {Jai,2K2, Jai,1K2}i∈[n]

parse ct = ({Jr2
i,xi

KβLi

1 , Jri,xiK
βLi

1 }i∈[n], p)

z :=
∏
i∈[n] e(JβLir

2
i,xi

K1, Jai,2K2) · e(JβLiri,xiK1, Jai,1K2)

return p⊕H(z)

Figure 5.1: Our public-key function-private wildcard encryption scheme. H : GT → {0, 1}m is a random
oracle taking as input an element of GT and producing a bit string of length m.
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5.2 Wildcard Encryption

5.2.1 Construction

We define our wildcard encryption scheme precisely in Figure 5.1. In more depth, our scheme

works as follows. First, the master secret key contains the ri,b values which allows KeyGen to

program the degree-2 polynomials to return the correct underlying polynomial evaluations of F .

The public key contains encodings of both ri,b and r2
i,b, which provides oblivious evaluation of

the degree-2 polynomials. The public key allows Enc to choose the right inputs to the degree-

2 polynomials in order to obtain the underlying polynomial evaluations of F for a particular

message during decryption.

The master secret key also contains the secret value α. This α is used along with β in the

target group as an input to H to mask the payload. In order to allow the decryptor to recover

this mask, we have two mechanisms. Firstly, F is programmed with F (0) = α. Then a matching

pattern evaluation will produce an encoding of α during decryption. Secondly, each Lagrange

coefficient Li comes multiplied by β, which scales up each polynomial evaluation of F by β.

Subsequently in decryption, this causes us to interpolate the polynomial F ′(x) = β · F (x). Since

F (0) = α, we have that F ′(0) = αβ. Finally since the payload is masked by H(JαβKT ), the

payload message can be recovered.

There is some cleverness in how the secret keys are constructed. At root, each secret key

contains a degree-(n − 1) polynomial F which is programmed with F (0) = α. We then follow

BKMPRS and encode the input pattern pat into the qi,b values – each qi,b either random or an

evaluation of F depending whether that particular i, b combination represents a match in pat.

We use the qi,b values to create the degree-2 polynomial, whose coefficients will be encoded in

the secret key. We compute these coefficients by using the inverted Vandermonde matrix on

points (ri,0, qi,0), (ri,1, qi,1), and (0, 0).2 Finally, during decryption, the degree-2 polynomials will

be evaluated with either ri,0 or ri,1 depending on the bits of the ciphertext (which determine
2We include (0, 0) in order to force this polynomial to be degree-2 but have a 0 constant coefficient, avoiding

attacks on message privacy while keeping the secret key size to 2n encodings.
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which public key encodings to use in encryption), returning the appropriate qi,b’s for Lagrange

interpolation.

Theorem 5.2.1 (Correctness). Let Π be a public-key wildcard encryption scheme as defined in

Figure 5.1. Then Π is correct for all n ∈ N, pat ∈ Pn, and (x, y) ∈ {0, 1}n × {0, 1}m where

Matchn(pat, x).

Proof. In Dec we have the product of many pairings of ciphertext elements with secret key

elements. These pairings serve to simultaneously evaluate the degree-2 polynomials as well as

multiply the Lagrange coefficients with the resulting polynomial evaluations of F . Since xmatches

pat, we require that the final value z must equal JαβKT . This allows recovery of the payload

message. The decryption computation results in

z =
∏
i∈[n]

e(JβLir2
i,xi

K1, Jai,2K2) · e(JβLiri,xiK1, Jai,1K2)

= Jβ
∑
i∈[n]

Li(r
2
i,xi

ai,2 + ri,xiai,1)KT

= Jβ
∑
i∈[n]

Liqi,xiKT .

By construction of KeyGen, we have that for each i ∈ [n] that qi,xi = F (2i+ xi). Therefore each

Li is paired with the appropriate F (2i + xi) value for interpolation of F (0) = α. Then we have

that

Jβ
∑
i∈[n]

Liqi,xiKT = Jβ
∑
i∈[n]

LiF (2i+ xi)KT = JαβKT ,

allowing recovery of the payload y via

p⊕H(JαβKT ) = y ⊕H(JαβKT )⊕H(JαβKT ) = y.



90

5.2.2 Security

We first state and prove Lemma 5.2.2, which will be crucial for proving message privacy (Sec-

tion 5.2.2.2) and enhanced function privacy (Section 5.2.2.3).

5.2.2.1 Security Lemma

Lemma 5.2.2 roughly states that a generic adversary trying to learn anything non-trivial about

a particular ciphertext can only do so by honestly following the decryption procedure. That is,

it must honestly pair the 2n group elements of the ciphertext with the 2n group elements of a

particular secret key as dictated by the decryption procedure defined in Figure 5.1.

This holds since an adversary can only learn information in the generic bilinear group model

by canceling out the underlying randomness, without knowing the random values themselves.

In particular, Lemma 5.2.2 concerns the ri,b’s drawn during Setup, and the ci’s and qi,b’s drawn

during KeyGen. These random values can only be cancelled out honestly by the adversary. The

only other randomness used in the scheme is the ciphertext blind β, which is drawn during Enc.

Each element the adversary can manipulate is multiplied by β, so it can simply be factored out.

This will be made formal when we show message privacy and enhanced function privacy.

Towards defining the lemma, consider a “deterministic” encryption (without β) of an attribute

x ∈ {0, 1}n. This encryption has the form

{
Li(x)ri,xi , Li(x)r2

i,xi

}
i∈[n]

,

where Li(x) is the ith Lagrange coefficient corresponding to x. Also consider a set of J secret keys

{a(j)
i,2 , a

(j)
i,1}i∈[n],j∈[J] for patterns {pat(j)}j∈[J]. The adversary can pair arbitrary elements from

the ciphertext with arbitrary elements from the secret key. It can also lift ciphertext elements

to the target group by paring them with J1K2. In this lemma, we do not consider terms that the

adversary obtains by lifting secret key elements to the target group. Then, the following is a
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polynomial for terms that the adversary can obtain via bilinear group operations:

∑
i∈[n],i′∈[n],j∈[J]
d∈{1,2},e∈{1,2}

γi,i′,j,d,eLi(x)rdi,xi
ai′,e,j +

∑
i∈[n],d∈{1,2}

ηi,dLi(x)rdi,xi
+ κ. (5.1)

Here the γ, η, and κ terms are fixed coefficients which are chosen by the adversary with no

knowledge of the underlying randomness. Recall that the {ri,b}i∈[n],b∈{0,1} terms are each sampled

uniformly at random, and the {ai,1,j , ai,2,j}i∈[n],j∈[J] terms are secret key elements generated

using the random coefficients of the polynomial {c(j)n−1, . . . , c
(j)
1 }j∈[J] for the jth secret key, and

the random values {q(j)
i,b | i, b where pat(j)[i] = 1 − b} which are sampled for the jth secret key.

Finally, let

J ′ := {j | Match(pat(j), x) = 1, j ∈ [J ]}

be the set of patterns that x matches.

Lemma 5.2.2. Let x ∈ {0, 1}n be an attribute, encrypted as

{
Li(x)ri,xi , Li(x)r2

i,xi

}
i∈[n]

.

Then, for Polynomial 5.1 to evaluate to zero with probability greater than 6n+2
p over the ran-

domness of the terms {ri,b}i∈[n],b∈{0,1}, {c
(j)
i }i∈[n],j∈[J], and {q

(j)
i,b }i∈[n],b∈{0,1},j∈[J], the following

constraints on the coefficients must hold:

1. ηi,d = 0 ∀i ∈ [n], d ∈ {1, 2},

2. γi,i′,j,d,e = 0 ∀i 6= i′,

3. γi,i′,j,d,e = 0 ∀d 6= e,

4. γi,i′,j,d,e = 0 ∀j /∈ [J ′],

5. γ1,1,j,1,1 = γ1,1,j,2,2 = ... = γn,n,j,1,1 = γn,n,j,2,2 ∀j ∈ [J ′].

Finally, for j ∈ [J ′] let kj to be the value defined by the equality in Item 5. Then,
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6. κ = −
∑
j∈[J′] kj.

Furthermore, any setting of coefficients that meets the above constraints makes Polynomial 5.1

evaluate to zero with probability 1.

In words, Item 1 shows that the adversary cannot cancel out the ri,b randomness in a ciphertext

without first pairing the ciphertext elements with other elements of the scheme. Item 2 and

Item 3 show that the adversary cannot hope to cancel out all randomness via dishonest pairings

between ciphertext and secret key elements. Item 4 shows that the adversary cannot hope to

cancel out all underlying randomness by pairing its ciphertext with a secret key for a pattern

for which the underlying attribute does not match. Finally, Item 5 and Item 6 show that the

adversary must sum the results of honestly pairing the ciphertext and secret key elements before

introducing scaling factors. An important note which will be used in the following proofs is that

the coefficients given by this lemma are independent of the choice of attribute x.

Proof. We begin by turning the underlying randomness in the expression into formal variables,

and arguing via the Schwartz–Zippel lemma (Definition 5.1.4) that except with very low probabil-

ity, the chosen coefficients must cancel out these formal variables in order to make Polynomial 5.1

go to zero. Let R := {ri,0, ri,1}i∈[n] be a set of 2n formal variables corresponding to the master

secret key. For a given pattern pat(j), let C(j) := {c(j)
i }i∈[n−1] be the set of formal variables

replacing the random polynomial coefficients, and let

Q(j) := {q(j)
i,b | patj [i] = 1− b}i∈[n],b∈{0,1}

be the set of formal variables replacing the remaining randomly drawn values in KeyGen. Now

we can write the result of computing KeyGen for pattern patj as a set of rational functions over

the underlying formal variables:

{
â

(j)
i,2 := a

(j)
i,2 (R, C(j),Q(j)), â

(j)
i,1 := a

(j)
i,1 (R, C(j),Q(j))

}
i∈[n]

.



93

Now Polynomial 5.1 can be written as

∑
i∈[n],i′∈[n],j∈[J]
d∈{1,2},e∈{1,2}

γi,i′,j,d,eLi(x)rdi,xi
â

(j)
i′,e +

∑
i∈[n],d∈{1,2}

ηi,dLi(x)rdi,xi
+ κ. (5.2)

In the following, we will extensively use the substitution

â(j)
i′,2

â
(j)
i′,1

 =

r2
i′,1 ri′,1

r2
i′,0 ri′,0


−1 q(j)

i′,1

q
(j)
i′,0


=

1

r2
i′,1ri′,0 − r2

i′,0ri′,1

 q
(j)
i′,1ri′,0 − q

(j)
i′,0ri′,1

−q(j)
i′,1r

2
i′,0 + q

(j)
i′,0r

2
i′,1

 ,
which holds for all j ∈ [J ]. Applying this substitution in Polynomial 5.2 yields a rational function

over the ri,b variables. As it is easier to reason about polynomials, we multiply by

R :=
∏
i′∈[n]

(r2
i′,1ri′,0 − r2

i′,0ri′,1)

to clear the denominators. This results in the polynomial

∑
i∈[n],i′∈[n],j∈[J],
d∈{1,2},e∈{1,2}

γi,i′,j,d,eLi(x)rdi,xi
Râ

(j)
i′,e +

∑
i∈[n],d∈{1,2}

ηi,dLi(x)rdi,xi
R + κR (5.3)

where

Râ
(j)
i′,1 = (−q(j)

i′,1r
2
i′,0 + q

(j)
i′,0r

2
i′,1)

∏
i′′ 6=i′

(r2
i′′,1ri′′,0 − r2

i′′,0ri′′,1),

Râ
(j)
i′,2 = (q

(j)
i′,1ri′,0 − q

(j)
i′,0ri′,1)

∏
i′′ 6=i′

(r2
i′′,1ri′′,0 − r2

i′′,0ri′′,1).

We now determine the probability that Polynomial 5.3 equals zero. Observe that Polyno-

mial 5.3 has degree 3n + 2 over the R, C, and Q formal variables. To see why, note that each
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term has at most degree 3n+ 1 over the R variables and is linear in the q(j)
i,b terms, each of which

is either a single formal variable q
(j)
i,b or a linear combination of the C variables.

Now if the coefficients γ, η, and κ are not fixed so that Polynomial 5.3 is identically zero

over its formal variables, then by Schwartz-Zippel, it will evaluate to zero with probability at

most 3n+2
p when its formal variables are instantiated with random values from Zp. Similarly

by Schwartz-Zippel, R only evaluates to zero with probability 3n
p when the R variables are

instantiated. Thus, if the coefficients are not set so that Polynomial 5.3 is identically zero over

its formal variables, then Polynomial 5.1 goes to zero with probability at most 6n+2
p . We proceed

by determining which setting of γ, η, and κ result in Polynomial 5.3 being an identically zero

polynomial.

Lemma 5.2.3. If Polynomial 5.3 is identically zero, then for all i ∈ [n], d ∈ {1, 2}, ηi,d = 0.

Proof. The monomial rdi,xi

∏
i′∈[n] r

2
i′,1ri′,0 in Polynomial 5.3 only appears in the second sum due

to the multiplication of r2
i,xi

and R. Its coefficient, which must be zero, is ηi,dLi(x), and Lagrange

coefficients are always non-zero.

Given Lemma 5.2.3, we eliminate the second term in Polynomial 5.2 to obtain

∑
i∈[n],i′∈[n],j∈[J],
d∈{1,2},e∈{1,2}

γi,i′,j,d,eLi(x)rdi,xi
Râ

(j)
i′,e + κR. (5.4)

Lemma 5.2.4. If Polynomial 5.4 is identically zero, then for all j, d, e, γi,i′,j,d,e = 0 whenever

i 6= i′.

This lemma corresponds to the “mismatched” pairing of elements JLi(x)rdi,xi
K1 from the ciphertext

and elements Ja(j)
i′,eK2 from the secret key, for different bits. We show that this pairing produces

unique monomials which can not be canceled out by other terms.

Proof. Fix some choice of i, i′ satisfying i 6= i′.
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• First we claim γi,i′,j,1,1 = 0 for all j ∈ [J ]. To prove this, we consider the following monomial

of R variables:

ri,xir
2
i′,0

∏
i′′ 6=i′

r2
i′′,1ri′′,0.

In the summation in Polynomial 5.4, this monomial only appears once for each j ∈ [J ].

Namely it appears as the first term of the expansion of ri,xiRâ
(j)
i′,1. Its coefficient is

∑
j∈[J]

−q(j)
i′,1γi,i′,j,1,1Li(x).

If we fix i′ and consider {q(j)
i′,1}j∈[J], these each involve a distinct q or c formal variable,

as each arises from a different secret key. Thus, each −γi,i′,j,1,1Li(x) is the coefficient of a

distinct monomial over the formal variables R, {C(j)}j∈J , and {Q(j)}j∈J , so each −γi,i′,j,1,1

must be zero.

• γi,i′,j,1,2 = 0 for all j ∈ [J ]. This follows from applying the above argument but to coeffi-

cients of monomials including

ri,xiri′,0
∏
i′′ 6=i′

r2
i′′,1ri′′,0.

• γi,i′,j,2,1 = 0 for all j ∈ [J ]. Same argument as above, but with monomials that include

r2
i,xi

r2
i′,0

∏
i′′ 6=i′

r2
i′′,1ri′′,0.

• γi,i′,j,2,2 = 0 for all j ∈ [J ]. Same argument as above, but with monomials that include

r2
i,xi

ri′,0
∏
i′′ 6=i′

r2
i′′,1ri′′,0.

This covers all possible γi,i′,j,d,e coefficients for each i 6= i′, so the claim follows.
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Applying Lemma 5.2.4 allows us to further simplify Polynomial 5.4. Since all the γi,i′,j,d,e

terms are 0 when i 6= i′, we drop the i′ subscript, letting γi,j,d,e stand in for γi,i,j,d,e. So

Polynomial 5.4 becomes

∑
i∈[n],j∈[J],

d∈{1,2},e∈{1,2}

γi,j,d,eLi(x)rdi,xi
Râ

(j)
i,e + κR (5.5)

We expand Polynomial 5.5 by substituting in the values of Râ(j)
i,1 and Râ

(j)
i,2 , giving

∑
i∈[n],j∈[J]

γi,j,1,1Li(x)ri,xi(−q
(j)
i,1 r

2
i,0 + q

(j)
i,0 r

2
i,1)

∏
i′ 6=i

(r2
i′,1ri′,0 − r2

i′,0ri′,1)

+
∑

i∈[n],j∈[J]

γi,j,2,1Li(x)r2
i,xi

(−q(j)
i,1 r

2
i,0 + q

(j)
i,0 r

2
i,1)

∏
i′ 6=i

(r2
i′,1ri′,0 − r2

i′,0ri′,1)

+
∑

i∈[n],j∈[J]

γi,j,1,2Li(x)ri,xi(q
(j)
i,1 ri,0 − q

(j)
i,0 ri,1)

∏
i′ 6=i

(r2
i′,1ri′,0 − r2

i′,0ri′,1)

+
∑

i∈[n],j∈[J]

γi,j,2,2Li(x)r2
i,xi

(q
(j)
i,1 ri,0 − q

(j)
i,0 ri,1)

∏
i′ 6=i

(r2
i′,1ri′,0 − r2

i′,0ri′,1)

+ κR.

(5.6)

Lemma 5.2.5. If Polynomial 5.6 is identically zero, then for all i ∈ [n], j ∈ [J ], γi,j,2,1 =

γi,j,1,2 = 0 and γi,j,1,1 = γi,j,2,2.

This lemma reflects the fact that the adversary must use the correct public key values with the

correct secret key values, or else result in monomials that cannot be canceled by any other terms.

Proof. This proof follows from the same techniques used for the previous lemmas.

• γi,j,2,1 = 0 for all i, j. This follows from inspecting the r2
i,xi

r2
i,0

∏
i′ 6=i r

2
i′,1ri′,0 monomial of

R variables, which has coefficient

∑
j∈[J]

−q(j)
i,1 γi,j,2,1Li(x)
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and relies on the disjointedness of the formal variables included in the {q(j)
i,1 }j∈[J] terms

such as in the proof of Lemma 5.2.4.

• γi,j,1,2 = 0 for all i, j. This follows from inspecting the ri,xiri,0
∏
i′ 6=i r

2
i′,1ri′,0 monomial of

R variables, which has coefficient

∑
j∈[J]

q
(j)
i,1 γi,j,1,2Li(x)

and relies on the same argument as above.

• γi,j,1,1 = γi,j,2,2 for all i, j. This follows from inspecting the r3
i,xi

∏
i′ 6=i r

2
i′,1ri′,0 monomial

of R variables, which occurs in both the first and fourth terms regardless of the value of

xi. In both cases this monomial has coefficient

∑
j∈[J]

q
(j)
i,1−xi

((−1)1−xiγi,j,1,1 + (−1)xiγi,j,2,2)Li(x)

and relies on the same argument as above.

Using Lemma 5.2.5, we define ki,j := γi,j,1,1 = γi,j,2,2 and simplify Polynomial 5.5 to obtain

R

 ∑
i∈[n],j∈[J]

ki,jLi(x)(r2
i,xi

a
(j)
i,2 + ri,xia

(j)
i,1 ) + κ

 = R

 ∑
i∈[n],j∈[J]

ki,jLi(x)q
(j)
i,xi

+ κ

 . (5.7)

And now since the expression inside the parentheses is a polynomial over the {C(j)}j∈J and

{Q(j)}j∈J variables, we drop the R term and conclude that the following polynomial must be

identically zero:

∑
i∈[n],j∈[J]

ki,jLi(x)q
(j)
i,xi

+ κ (5.8)

Lemma 5.2.6. If Polynomial 5.8 is identically zero, then ki,j = 0 for all j ∈ [J ′], i /∈ [n].
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This lemma shows that secret keys for patterns that don’t match x are useless to the adversary.

Proof. For every j considered in the lemma statement, x does not match patj , so the correspond-

ing
∑
i∈[n] ki,jLi(x)q

(j)
i,xi

term involves at least one value of i such that q(j)
i,xi

is just the formal

variable q
(j)
i,xi

(implying that the associated ki,j must be zero). Furthermore, the following holds

for at most n− 1 values of i ∈ [n]:

q
(j)
i,xi

= F (j)(2i+ xi),

where F (j) is a degree-(n−1) polynomial with formal coefficients {c(j)
i }i∈[n−1]. Now since any set

of less than n of F (j)’s evaluations are linearly independent over the underlying coefficients, the

adversary must set the remaining ki,j to zero. We then conclude that ki,j = 0 for all i ∈ [n].

We can now restrict the summation in Polynomial 5.8 to only include values j ∈ [J ′], and

rewrite the q(j)
i,xi

values as polynomial evaluations:

∑
i∈[n],j∈J′

ki,jLi(x)F (j)(2i+ xi) + κ. (5.9)

Lemma 5.2.7. If Polynomial 5.9 is identically zero, then k1,j = ... = kn,j := kj ∀j ∈ [J ′] and

κ = −
∑
j∈[J′] kj

Proof. We expand each polynomial evaluation F (j) in terms of its coefficients, as

F (j)(x) = c
(j)
n−1x

n−1 + . . . c
(j)
1 x+ 1.
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Plugging this into Polynomial 5.9 yields

∑
i∈[n],j∈J′

ki,jLi(x)F (j)(2i+ xi) + κ

=
∑

i∈[n],j∈J′
ki,jLi(x)

(
1 +

∑
`∈[n−1]

c
(j)
` (2`+ xi)

`
)

+ κ

=
∑

j∈J′,`∈[n−1]

c
(j)
`

(∑
i∈[n]

ki,jLi(x)(2`+ xi)
`

)
+
∑
i∈[n]

ki,jLi(x) + κ.

Now we solve for the ki,j values that make the coefficient on each c
(j)
` term go to zero. For each

value of j we have the following system of equations:


L

(x)
1 (2 + x1)n−1 L

(x)
2 (4 + x2)n−1 · · · L

(x)
n (2n+ xn)n−1

...
...

...
...

L
(x)
1 (2 + x1) L

(x)
2 (4 + x2) · · · L

(x)
n (2n+ xn)

 ·

k1,j

...

kn,j

 =


0

...

0

 .

From the correctness of Lagrange interpolation (where row i consists of evaluations of the poly-

nomial f(y) = yn−i), one solution (regardless of the setting of b) is ki,j = 1 for all i ∈ [n]. Also

note that regardless of x, this matrix has rank n − 1 (view it as the transpose of scalar multi-

ples of n − 1 columns of an n × n Vandermonde matrix). Therefore, this matrix has the same

1-dimensional kernel, spanned by the all 1’s vector, for any attribute string x.

We conclude that k1,j = k2,j = ... = kn,j := kj for all j ∈ Q′. The resulting expression is

∑
i∈[n],j∈J′

kjL
(xb)
i + κ =

∑
j∈J′

kj + κ

so κ must be set to −
∑
j∈J′ kj , which completes the proof.

Lemma 5.2.2 follows by combining the above lemmas.
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5.2.2.2 Message Privacy

In this section we prove Theorem 5.2.8, which states that our wildcard encryption construction Π

achieves message privacy in the generic group model. Our proof strategy involves considering all

possible combinations of group elements the adversary might form. A slight annoyance for this

strategy comes from the fact that in our construction Π, the last component of the ciphertext

is p := H(JβK1) ⊕ y, which is not a group element. To get around this, our proof steps will be

written with a modified scheme Π′ in mind. Π′ is a simple modification of Π where p := JβK1, and

Dec(sk, ct) simply outputs a bit indicating if p = z. Intuitively, Π′ is a weakened scheme where

secret keys allow the user to learn whether or not the encoded attribute matched the pattern but

nothing else.

Throughout the course of the proof, we will explain how indistinguishability in the message

privacy experiment for Π′ implies the same notion for the full construction Π. We do this by

modeling H as a random oracle whose domain is G1. Since the generic adversary can only specify

handles to group elements, it requests evaluations of H from the model by submitting a handle.

The model checks if the handle corresponds to a group element it has previously seen, and if

so, it queries a random oracle H (which it can implement itself) and returns the result to the

adversary.

Theorem 5.2.8. Let Π be the wildcard encryption scheme. Then for any PPT adversary A that

performs K zero test queries in the generic group model, AdvMP
Π,A(λ, n) ≤ (12n+6)K

p .

Proof. We consider the behavior of some ppt adversary A interacting with the alternate scheme

Π′ in the generic group model. We want to show that A’s view when b = 0 is indistinguishable

from its view when b = 1. A obtains handles to the public key, the group elements output

by Enc(pk, xb, yb), and the group elements resulting from its J secret key queries (indexed from
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1, . . . , J):

Public key: J1K1, J1K2, Jr2
1,0K1, Jr1,0K1, Jr2

1,1K1, Jr1,1K1, . . . , Jr2
n,0K1, Jrn,0K1, Jr2

n,1K1, Jrn,1K1,

Encryption of (xb, yb): JβbL
(b)
1 r2

1,xb,1
K1, JβbL

(b)
1 r1,xb,1K1, . . . , JβbL

(b)
n r2

n,xb,n
K1, JβbL

(b)
n rn,xb,nK1, JβbK1,

Secret keys: {Ja(j)
1,2K2, Ja

(j)
1,1K2, . . . , Ja

(j)
n,2K2, Ja

(j)
n,1K2}j∈[J].

Note that A can send any element in G1 or G2 to GT by pairing with J1K2 or J1K1 respectively,

so we restrict attention to GT .

In the most general form possible, any encoding in GT that A computes is of the form

∑
i∈[n],i′∈[n],j∈[J]
d∈{1,2},e∈{1,2}

γi,i′,j,d,eβbLi(xb)r
d
i,xb,i

a
(j)
i′,e +

∑
i∈[n],i′∈[n],j∈[J]

d∈{1,2},e∈{1,2},f∈{0,1}

δi,i′,j,d,e,fr
d
i,fa

(j)
i′,e

+
∑

i∈[n],d∈{1,2}

ηi,dβbLi(xb)r
d
i,xb,i

+
∑

i∈[n],d∈{1,2},f∈{0,1}

µi,d,fr
d
i,f +

∑
i′∈[n],j∈[J],e∈{1,2}

νi′,j,ea
(j)
i′,e

+ κ1βb + κ0

(5.10)

for some setting of the coefficients {γi,i′,j,d,e}, {δi,i′,j,d,e,f}, {ηi,d}, {µi,d,f}, {νi′,j,e}, κ1, κ0

It will be helpful to factor out βb. We denote the term multiplying βb as P1 and the remaining

term with no dependence on xb as P0:

P1 :=
∑

i∈[n],i′∈[n],j∈[J]
d∈{1,2},e∈{1,2}

γi,i′,j,d,eLi(xb)r
d
i,xb,i

a
(j)
i′,e +

∑
i∈[n],d∈{1,2}

ηi,dLi(xb)r
d
i,xb,i

+ κ1

P0 :=
∑

i∈[n],i′∈[n],j∈[J]
d∈{1,2},e∈{1,2},f∈{0,1}

δi,i′,j,d,e,fr
d
i,fa

(j)
i′,e +

∑
i∈[n],d∈{1,2},f∈{0,1}

µi,d,fr
d
i,f

+
∑

i′∈[n],j∈[J],e∈{1,2}

νi′,j,ea
(j)
i′,e + κ0.

(5.11)
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Equation 5.10 can then be re-expressed as

P1βb + P0. (5.12)

We write the kth zero test query submitted by A as P (k)
1 βb + P

(k)
0 .

First, we claim that for any set of K zero test queries submitted by A, that for all k ∈ [K],

Pr
[
P

(k)
1 = 0 ∧ b = 0⇔ P

(k)
1 = 0 ∧ b = 1

]
≥ 1− (12n+ 4)K

p
.

To show this, consider any fixed setting of the γ, η, and κ1 coefficients that comprise P1.

Lemma 5.2.2 shows that regardless of the attribute x, and thus regardless of the bit b in this

scenario, if the coefficients meet the six constraints stated in the lemma, then P1 = 0 with prob-

ability 1. If the coefficients do not meet the constraints, then P1 = 0 with probability at most

6n+2
p . Thus with probability at least 1 − 6n+2

p , P1 = 0 if and only if the coefficients meet these

constraints. By a union bound over the K zero test queries made by A, this holds simultaneously

for all zero test queries with probability at least 1− (6n+2)K
p . Now since this property holds for

both b = 0 and b = 1, another union bound over the two settings gives the claim.

Now we claim that with probability 1 − (12n+8)K
p , the values returned by the K zero test

queries are completely independent of the bit b. Consider the pair (P1, P0) corresponding to a

zero test query submitted by A. By Schwartz-Zippel over the randomness of βb, the result of the

zero test query is ‘zero’ if and only if P0 = P1 = 0, with probability 1 − 1/p. Then by a union

bound over the K zero test queries submitted by A, with probability at least 1−K/p, the result

of each of the K zero test queries is ‘zero’ if and only if the corresponding P0 = P1 = 0. Now

by a union bound over the two settings of b and with the previous claim, with probability at

least 1 − (12n+6)K
p the result of each zero test query will either be ‘non-zero’ (corresponding to

non-zero P1) or will be ‘zero’ if and only if P0 = 0 (corresponding to P1 = 0). Since P0 is the

same expression regardless of the bit b, the claim follows.
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Finally, we note that in the generic group model, A gains information only from successful

zero test. This is because the result of any Add or Pair operation is a new uniformly drawn handle.

Thus A can only hope to distinguish between two implementations of the generic group model by

submitting a set of coefficients for zero testing such that the result is ‘zero’ in one implementation

and ‘non-zero’ in the other with some noticeable difference in probability. However, we showed

above that this does not happen except with probability at most (12n+6)K
p .

We now split into two cases in order to argue that the above implies message privacy for

scheme Π with at most the same advantage. We analyze what additional advantage A has when

interacting with scheme Π instead of scheme Π′. We show that this advantage does not improve

A’s distinguishing probability.

Case 1: J ′ = ∅. In scheme Π, A no longer has a priori access to the handle βb. But since

it is given H(βb) ⊕ yb, there is a possibility that A can gain distinguishing information (such

as yb) by obtaining a handle to βb via Add and Pair operations, since it can evaluate H on the

handle and compare with H(βb)⊕yb. However, obtaining a handle to βb in ExptMP
Π,A(λ, n,m, b) im-

plies successfully zero testing with non-trivial P1 coefficients in ExptMP
Π′,A(λ, n,m, b). But J ′ = ∅

implies via Lemma 5.2.2, Schwartz-Zippel over βb, and a union bound, that A cannot obtain

a successful zero test in ExptMP
Π,A(λ, n,m, b) with any setting of non-trivial P1 coefficients, ex-

cept with probability at most (12n+6)K
p . This is because J = ∅ implies that all γ and η terms

are 0. Then, in order to obtain ‘zero’ from zero testing, κ1 (the coefficient of βb) must be 0 as well.

Case 2: J ′ 6= ∅, which by admissibility implies that y0 = y1. Now, the adversary can obtain a

successful zero test with non-trivial P1 coefficients when interacting with Π′. This means that

there is a possibility of obtaining a handle to βb when interacting with Π. Since admissibility

requires that y0 = y1, such a handle does not allow distinguishing via payload decryption. How-

ever, when interacting with Π, A knows when it obtains a handle to βb. The question remains

whether the adversary can use this knowledge for a distinguishing advantage. So, assume toward
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a contradiction an adversary B exists that breaks message privacy for scheme Π by obtaining a

handle to βb. By subtracting, this implies an adversary that breaks message privacy for Π′ by

way of a zero test query, which we ruled out above except with probability at most (12n+6)K
p .

5.2.2.3 Enhanced Function Privacy

Theorem 5.2.9. Let Π be the wildcard encryption scheme and D be the uniform distribution on

patterns with a fixed number of wildcards n − w(n). Then there exists a simulator S such that

for all ppt adversaries A that performs K zero test queries, J queries to its KeyGen oracle, and

Q queries to its Enc oracle, there exists a ppt adversary B such that for all λ ∈ N and n ∈ N, it

holds that

AdveFP
Π,S,A(λ,D, n,m) ≤ (12n+ 5)K

p
+

2JQ

2w(n)
+ J ·Advdist−VBB

Obf,SObf ,B(λ,D, n)

Proof. We prove enhanced function privacy for the same modified scheme Π′ as in Section 5.2.2.2.

Recall that in the scheme Π′, the adversary does not include the payload y in the encryption

oracle query and JβqK1 is given to the adversary instead of H(JβqK1)⊕ y on its q’th query to the

Enc oracle.

Enhanced function privacy for Π′ implies enhanced function privacy for Π with the same

advantage, which we show via reduction as follows. Consider a successful adversary A against

enhanced function privacy for scheme Π. We can then use A to construct a successful adversary

B against enhanced function privacy for scheme Π′. B simply follows A’s routine, with the fol-

lowing alteration when A makes query q to the Enc oracle. Since the hash function H is public,

B simply hashes its received handle to βq and XORs the result of this hash with the y that A

would have queried to the Enc oracle had it been interacting with Π. The result of this is exactly

what A would have received when interacting with Π, so B returns this value to A, along with

the other 2n handles received from the model. The rest of the interaction is unchanged, and B

simply outputs whatever A outputs, completing the reduction.
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Proof Strategy: Since KeyGen uses the BKMPRS obfuscation as a subroutine, we would like

to reduce function privacy to the security of BKMPRS obfuscation. However, the security of

BKMPRS obfuscation relies crucially on the fact that an adversary can’t find an accepting input

except with negligible probability. In enhanced function privacy, we explicitly give the adversary

ciphertexts that correspond to accepting inputs, so at first this notion of security seems like a

hopeless goal. However, we are saved by the fact that the accepting input (represented by the

appropriate Lagrange coefficients) is encoded in a group. This implies that an adversary can

learn that an attribute is an accepting input without learning what the attribute actually is or

anything else about the pattern.

Now to argue security, we introduce a sequence of hybrid simulations. The hybrids begin

with the real protocol and end with simulations of KeyGen and Enc that are independent of the

master secret key. The first thing we do is alter the Enc oracle to be independent of the patterns

drawn by the KeyGen oracle. We do this by appealing to Lemma 5.2.2, which intuitively says

that an encryption of an accepting attribute relative to some secret key skj induces just a single

linear relation among the elements of the secret key and the elements of the encryption. Then,

once the Enc oracle is independent of patterns drawn by the KeyGen oracle, we are free to replace

the BKMPRS obfuscation in KeyGen with random and appeal to the security of BKMPRS.

Once the obfuscation returns random elements, the last observation is that during KeyGen,

the master secret key elements are only used in the context of a full rank linear transformation

from the BKMPRS output to the resulting secret key elements. Thus, if the BKMPRS output

is actually uniformly random, then the secret key elements will also be uniformly random and

independent of the secret key elements, completing the proof.

Now we proceed with the proof. In order to describe the hybrid simulations concisely, we

introduce some notation. First, let Obfexp(pat) be a routine that runs BKMPRS obfuscation on

pattern pat and outputs the 2n exponents that result rather than the 2n group elements. We also
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let Vi =

r2
i,0 ri,0

r2
i,1 ri,1

, which is the full rank transformation used by KeyGen that was mentioned

above. Finally, whenever we say sample, we mean sample uniformly at random from the space

that should be clear from context.

Throughout the proof, we assume the adversary makes J queries to its KeyGen oracle and

Q queries to its Enc oracle. We’ll consider three spaces of handles corresponding to exponents

encoded in the three different groups G1,G2, and GT . Also, note that our description of the

bilinear generic group model does not differentiate between group elements and their exponents.

Therefore, we essentially lose the notion of a public key when describing the model simulations,

so we’ll imagine giving OEnc the master secret key rather than the public key when describing the

real interaction (experiment 0). The important point is that in our final simulation (experiment

1), neither OEnc nor OKeyGen receive any information about the master secret key, in fact, their

implementation is completely independent of Setup.

We begin by describing how the real protocol, which we call Sim-Real, proceeds in the generic

bilinear group model. As in the generic description of the generic bilinear group oracle given

in Definition 5.1.2, Sim-Real maintains a table that maps between exponents and handles. In

Sim-Real, Add, Pair, and ZeroTest are implemented as described in the definition, with Sim-Real

generating a new handle to represent the result of each Add and Pair operation over exponents

in Zp. Note that this behavior means that multiple handles could end up mapping to the same

exponent. However, the adversary can always notice this by zero-testing the difference of the

two handles. As a final bit of notation, for an exponent r ∈ Zp, let h(b)
r be the result of drawing

a random string in the handle space Hb (for b ∈ {1, 2, T}) and associating the result with r. In

addition, Sim-Real calls the obfuscator Obfexp explicitly. This is equivalent the functioning of

protocol Π. We define Sim-Real in the following figure.
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Sim-Real(1λ,D, n)

Sample msk := {ri,0, ri,1}i∈[n]

Initialize table T with
{(ri,0, h(1)

ri,0), (r2
i,0, h

(1)

r2i,0
), (ri,1, h

(1)
ri,1), (r2

i,1, h
(1)

r2i,1
)}i∈[n]

Initialize j = 1, q = 1

return AOKeyGen(msk),OEnc(msk,·)(1λ, pk)

OKeyGen(msk)

{qi,b,j}i∈[n],b∈{0,1} ← Obfexp(patj ← D)

for i ∈ [n]:[
ai,2,j

ai,1,j

]
:= V −1

i ·

[
qi,0,j

qi,1,j

]
Add to table T
{(ai,1,j , h(2)

ai,1,j ), (ai,2,j , h
(2)
ai,2,j )}i∈[n]

j++
return {h(2)

ai,1,j , h
(2)
ai,2,j}i∈[n]

OEnc(msk, j)

Choose any xq matching patj , calculate {Li(xq)}i∈[n]

Sample βq
Define ei,2,q := βqr

2
i,xq,i

Li(xq), ei,1,q := βqri,xq,iLi(xq)

Add to table T
{(ei,2,q, h(1)

ei,2,q ), (ei,1,q, h
(1)
ei,1,q )}i∈[n], (βq, h

(1)
βq

)

q++
return {h(1)

ei,2,q , h
(1)
ei,1,q}i∈[n], h

(1)
βq

Next, we give the hybrid Sim-Enc, where we remove the dependence of OEnc on patterns drawn

by OKeyGen. To argue this, we introduce a set of formal variables E := {ei,2,q, ei,1,q}i∈n,q∈[Q] into

the exponent space. Thus Sim-Enc implements Add, Pair, and ZeroTest over the ring Zp[E ] instead

of Zp.
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Sim-Enc(1λ,D, n)

Sample msk := {ri,0, ri,1}i∈[n]

Initialize table T with
{(ri,0, h(1)

ri,0), (r2
i,0, h

(1)

r2i,0
), (ri,1, h

(1)
ri,1), (r2

i,1, h
(1)

r2i,1
)}i∈[n]

Initialize j = 1, q = 1

return AOKeyGen(msk),OEnc(·)(1λ, pk)

OKeyGen(msk)

{qi,b,j}i∈[n],b∈{0,1} ← Obfexp(patj ← D)

for i ∈ [n]:[
ai,2,j

ai,1,j

]
:= V −1

i ·

[
qi,0,j

qi,1,j

]
Add to table T
{(ai,1,j , h(2)

ai,1,j ), (ai,2,j , h
(2)
ai,2,j )}i∈[n]

j++
return {h(2)

ai,1,j , h
(2)
ai,2,j}i∈[n]

OEnc(j)

Let ej,q(E) =
∑
i∈[n],d∈{1,2} ai,d,jei,d,q

Add to table T
{(ei,2,q, h(1)

ei,2,q ), (ei,1,q, h
(1)
ei,1,q )}i∈[n], (ej,q(E), h

(1)
ej,q(E))

q++
return {h(1)

ei,2,q , h
(1)
ei,1,q}i∈[n], h

(1)
ej,q(E)

Lemma 5.2.10. A ppt adversary A making K zero test queries, J OKeyGen queries, and Q OEnc

queries can distinguish between Sim-Real(1λ,D, n) and Sim-Enc(1λ,D, n) with probability at most
(12n+5)K

p + JQ
2w(n) for distributions D that are uniform over strings with n− w(n) wildcards.

Proof. Let jq be the value of j submitted on the q’th query to OEnc and xq be the attribute

selected uniformly by OEnc for that query. First, we show that with probability JQ
2w(n) , for every

j ∈ [J ], q ∈ [Q], xq does not match patj′ for j′ 6= jq. Since the w(n) fixed positions of each patj′

are uniformly random and independent of xq, the probability that xq matches the pattern is

1/2w(n). The claim follows from a union bound.

In the case that each queried ciphertext matches exactly one pattern, we follow the same
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proof outline as in the proof of message privacy. That is, the general form of a polynomial that

A can construct in the Sim-Real game is

∑
q∈[Q]

βq

( ∑
i∈[n],i′∈[n],j∈[J]
d∈{1,2},e∈{1,2}

γi,i′,j,d,e,qLi(xq)r
d
i,xq,i

ai′,e,j +
∑

i∈[n],d∈{1,2}

ηi,d,qLi(xq)r
d
i,xq,i

+ κq

)

+

( ∑
i∈[n],i′∈[n],j∈[J]

d∈{1,2},e∈{1,2},f∈{0,1}

δi,i′,j,d,e,fr
d
i,fa

(j)
i′,e +

∑
i∈[n],d∈{1,2},f∈{0,1}

µi,d,fr
d
i,f

+
∑

i′∈[n],j∈[J],e∈{1,2}

νi′,j,ea
(j)
i′,e + κ

)

:=
∑
q∈[Q]

βqPq + P0.

(5.13)

The general form of a polynomial that A can construct in the Sim-Enc game is

∑
q∈[Q]

( ∑
i∈[n],i′∈[n],j∈[J]
d∈{1,2},e∈{1,2}

γi,i′,j,d,e,qai′,e,jei,d,q +
∑

i∈[n],d∈{1,2}

ηi,d,qei,d,q + κq

( ∑
i∈[n],d∈{1,2}

ai,d,jqei,d,q

))

+

( ∑
i∈[n],i′∈[n],j∈[J]

d∈{1,2},e∈{1,2},f∈{0,1}

δi,i′,j,d,e,fr
d
i,fa

(j)
i′,e +

∑
i∈[n],d∈{1,2},f∈{0,1}

µi,d,fr
d
i,f

+
∑

i′∈[n],j∈[J],e∈{1,2}

νi′,j,ea
(j)
i′,e + κ

)

:=
∑
q∈[Q]

Pq(E) + P0.

(5.14)

We express the k’th zero test query submitted by A to Sim-Real as
∑
q∈[Q] P

(k)
q βq + P

(k)
0 and to

Sim-Enc as
∑
q∈[Q] P

(k)
q (E) + P

(k)
0 . We claim that for any set of K zero test queries submitted

by A, with probability at least 1 − (12n+4)K
p − JQ

2w(n) , the following holds simultaneously for all

k ∈ [K]:

P (k)
q = 0 ∀q ∈ [Q] in Sim-Real ⇔ P (k)

q (E) = 0 ∀q ∈ [Q] in Sim-Enc.

To show this, we characterize the sets of coefficients that A can submit when interacting with



110

Sim-Enc that result in Pq(E) = 0 for all q ∈ [Q]. We claim that A satisfies this with probability 1

if the following constraints on the coefficients hold, and otherwise this is satisfied with probability

at most (6n+2)K
p (over the randomness of the ai,e,j values). These constraints are:

• γ1,1,jq,1,1,q = γ1,1,jq,2,2,q = ... = γn,n,jq,1,1,q = γn,n,jq,2,2,q = κq for all q ∈ [Q]

• γ1,1,j,1,1,q = γ1,1,j,2,2,q = ... = γn,n,j,1,1,q = γn,n,j,2,2,q = 0 for all j 6= jq

• γi,i′,j,d,e,q = 0 for all i 6= i′, d 6= e

• ηi,d,q = 0 for all i ∈ [n], d ∈ {1, 2}, q ∈ [Q].

Assume toward a contradiction that for some q ∈ [Q], there exists a setting of coefficients

other than γ1,1,jq,1,1,q = γ1,1,jq,2,2,q = ... = γn,n,jq,1,1,q = γn,n,jq,2,2,q = κq and all others equal

to 0, such that Pq = 0 with probability greater than 6n+2
p . Then, replace the ei,d,q variables in

Pq(E) with Li(x)rdi,xi
for some x which matches pattern patjq . This results in a Pq which can be

written in the form of Lemma 5.2.2, since
∑
i∈[n],d∈{1,2} ai,d,jqLi(x)rdi,xi

= 1 by correctness. But

by assumption, the coefficients do not match the constraints given by Lemma 5.2.2, and Pq still

evaluates to zero with probability at least as large as before ( 6n+2
p ) which is a contradiction. Now,

by a union bound over A’s set of K zero test queries, A will only be able to set P (k)
q (E) = 0 for

all q ∈ [Q], k ∈ [K] by setting coefficients to match the above constraints except with probability
(6n+2)K

p .

We characterize the set of coefficients that A can submit that result in P
(k)
q = 0 for all

q ∈ Q, k ∈ [K] in Sim-Real. We argue that A can only satisfy this with probability greater than
(6n+2)K

p + JQ
2w(n) by following the same constraints above for each of its K zero test queries. If

for all q ∈ [Q], xq only matches the pattern corresponding to the single secret key skjq (which

we know is true with probability at least 1− JQ
2w(n) ), Lemma 5.2.2 shows that the adversary can

only choose non-trivial coefficients such that Pq = 0 for all q ∈ [Q] with probability greater than
(6n+2)

p by setting γ1,1,jq,1,1,q = γ1,1,jq,2,2,q = ... = γn,n,jq,1,1,q = γn,n,jq,2,2,q = κq and the rest

0. The claim follows from a union bound over the K zero test queries. Now combining the two

characterizations with a union bound, we see that the original claim follows.
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We claim that with probability at least 1 − (12n+5)K
p − JQ

2w(n) , the answers returned by any

K zero test queries submitted by A are completely independent of whether A was interacting

with Sim-Real or Sim-Enc. By Schwartz-Zippel over the randomness of the βq values, the result

of each of the K zero test queries submitted by A when interacting with Sim-Real is ‘zero’ if

and and only P
(k)
0 = P

(k)
1 = ... = P

(k)
Q = 0 for all k ∈ [K]. Note that this property is true

with probability 1 in Sim-Enc. So by a union bound with the previous claim, with probability at

least 1− (12n+5)K
p − JQ

2w(n) , the result of each of the K zero test queries will either be ‘non-zero’

(corresponding to some non-zero Pq for q ∈ [Q]) or ‘zero’ if and only if P0 = 0 (corresponding to

Pq = 0 ∀q ∈ [Q]). Since P0 is the same expression in Sim-Real and in Sim-Enc, the claim follows.

This is now sufficient to complete the proof by using the same generic bilinear group model

properties as in the message privacy proof.

We now continue with a sequence of hybrids that replace the BKMPRS subroutine in KeyGen

with a subroutine that simply outputs random elements in Zp. We do this for one KeyGen query

at a time, resulting in J new hybrids.



112

Sim-KeyGen-j′(1λ,D, n)

Sample msk := {ri,0, ri,1}i∈[n]

Initialize table T with
{(ri,0, h(1)

ri,0), (r2
i,0, h

(1)

r2i,0
), (ri,1, h

(1)
ri,1), (r2

i,1, h
(1)

r2i,1
)}i∈[n]

Initialize j = 1, q = 1

return AOKeyGen(msk),OEnc(·)(1λ, pk)

OKeyGen(msk)

if j ≤ j′ :

Sample {qi,b,j}i∈[n],b∈{0,1}

else

{qi,b,j}i∈[n],b∈{0,1} ← Obfexp(patj ← D)

for i ∈ [n]:[
ai,2,j

ai,1,j

]
:= V −1

i ·

[
qi,0,j

qi,1,j

]
Add to table T
{(ai,1,j , h(2)

ai,1,j ), (ai,2,j , h
(2)
ai,2,j )}i∈[n]

j++
return {h(2)

ai,1,j , h
(2)
ai,2,j}i∈[n]

OEnc(j)

Let ej,q(E) =
∑
i∈[n],d∈{1,2} ai,d,jei,d,q

Add to table T
{(ei,2,q, h(1)

ei,2,q ), (ei,1,q, h
(1)
ei,1,q )}i∈[n], (ej,q(E), h

(1)
ej,q(E))

q++
return {h(1)

ei,2,q , h
(1)
ei,1,q}i∈[n], h

(1)
ej,q(E)

Note: Sim-KeyGen-0 is equivalent to Sim-Enc

Lemma 5.2.11. For all j′ ∈ [J ], a ppt adversary A making K zero test queries, J OKeyGen

queries, and Q OEnc queries can distinguish between Sim-KeyGen-(j′ − 1)(1λ,D, n) and Sim-

KeyGen-j′(1λ,D, n) with probability at most Advdist−VBB
Obf,SObf ,B(λ,D, n).

Proof. We define the following reduction B which interacts with the BKMPRS obfuscation generic

group model security game and presents a simulation of the generic group model to A. We define
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OObf to be the oracle which implements the BKMPRS security game - that is, it either honestly

implements the generic group model for the obfuscation or outputs handles to random group

elements. We introduce an additional set of formal variables G := {gi,b}i∈[n],b∈{0,1} which B will

associate with the 2n handles {h∗i,b}i∈[n],b∈{0,1} that it receives from OObf . Now B implements

its Add and Pair operations over the ring Zp[E ,G]. zero test will still be over the ring Zp[E ] and

will be discussed on more detail below. One thing to note is that the handles {h∗i,b}i∈[n],b∈{0,1}

will only be used (and OObf will only be interacted with) during zero test queries to B.
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BOObf (1λ,D, n)

Sample msk := {ri,0, ri,1}i∈[n]

Initialize table T with
{(ri,0, h(1)

ri,0), (r2
i,0, h

(1)

r2i,0
), (ri,1, h

(1)
ri,1), (r2

i,1, h
(1)

r2i,1
)}i∈[n]

Initialize j = 1, q = 1

Receive {h∗i,b}i∈[n],b∈{0,1} ← OObf

return AOKeyGen(msk),OEnc(·)(1λ, pk)

OKeyGen(msk)
if j < k :

Sample {qi,b,j}i∈[n],b∈{0,1}

for i ∈ [n]:[
ai,2,j

ai,1,j

]
:= V −1

i ·

[
qi,0,j

qi,1,j

]
Add to table T
{(ai,1,j , h(2)

ai,1,j ), (ai,2,j , h
(2)
ai,2,j )}i∈[n]

else if j = j′

for i ∈ [n]:[
ai,2,j(G)

ai,1,j(G)

]
:= V −1

i ·

[
gi,0
gi,1

]
Add to table T
{(ai,1,j(G), h

(2)
ai,1,j(G)), (ai,2,j(G), h

(2)
ai,2,j(G))}i∈[n]

else

{qi,b,j}i∈[n],b∈{0,1} ← Obfexp(patj ← D)

for i ∈ [n]:[
ai,2,j

ai,1,j

]
:= V −1

i ·

[
qi,0,j

qi,1,j

]
Add to table T
{(ai,1,j , h(2)

ai,1,j ), (ai,2,j , h
(2)
ai,2,j )}i∈[n]

j++
return {h(2)

ai,1,j , h
(2)
ai,2,j}i∈[n]

OEnc(j)
Let ej,q(E ,G) =

∑
i∈[n],d∈{1,2} ai,d,j(G)ei,d,q

Add to table T
{(ei,2,q, h(1)

ei,2,q ), (ei,1,q, h
(1)
ei,1,q )}i∈[n], (ej,q(E ,G), h

(1)
ej,q(E,G))

q++
return {h(1)

ei,2,q , h
(1)
ei,1,q}i∈[n], h

(1)
ej,q(E,G)
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On a zero test query, B first writes the associated expression in the form

∑
i∈[n],b∈{1,2},q∈[Q]

Pi,b,q(G)ei,b,q + P0

That is, it stratifies by the E variables and writes each coefficient as a linear polynomial in the

G variables. This is possible because formal variables in E are only encoded in G1 and formal

variables in G are only encoded in G2. Now note that this expression is zero over Z[E ] if and

only if Pi,b,q(G) = 0 for all i ∈ [n], b ∈ {1, 2}, q ∈ [Q] and P0 = 0. Since each Pi,b,q(G) is a linear

polynomial in the G variables, B can check if it evaluates to 0 through a series of Add operations

to OObf over the {h∗i,b}i∈[n],b∈{0,1} handles followed by a zero test.

Now if OObf is implementing an honest obfuscation, then the j′’th KeyGen query is no different

than the queries for j > j′, and A’s view of the model is exactly its view of the Sim-KeyGen-

(j′ − 1) hybrid. Otherwise, there are uniformly random elements of Zp associated with the

{h∗i,b}i∈[n],b∈{0,1} handles and the j′’th query is no different than all the queries for j < j′. Thus

A’s view of the model is exactly its view of Sim-KeyGen-j′, which completes the proof.

Finally, we give the simulator Sim-Ideal, which is independent of the master secret key.
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Sim-Ideal(1λ,D, n)

Sample msk := {ri,0, ri,1}i∈[n]

Initialize table T with
{(ri,0, h(1)

ri,0), (r2
i,0, h

(1)

r2i,0
), (ri,1, h

(1)
ri,1), (r2

i,1, h
(1)

r2i,1
)}i∈[n]

Initialize j = 1, q = 1

return AOKeyGen,OEnc(·)(1λ, pk)

OKeyGen

Sample {ai,b,j}i∈[n],b∈{0,1}

Add to table T
{(ai,1,j , h(2)

ai,1,j ), (ai,2,j , h
(2)
ai,2,j )}i∈[n]

j++
return {h(2)

ai,1,j , h
(2)
ai,2,j}i∈[n]

OEnc(j)
Let ej,q(E) =

∑
i∈[n],d∈{1,2} ai,d,jei,d,q

Add to table T
{(ei,2,q, h(1)

ei,2,q ), (ei,1,q, h
(1)
ei,1,q )}i∈[n], (ej,q(E), h

(1)
ej,q(E))

q++
return {h(1)

ei,2,q , h
(1)
ei,1,q}i∈[n], h

(1)
ej,q(E)

Lemma 5.2.12. Sim-KeyGen-J is perfectly indistinguishable from Sim-Ideal

Proof. This follows immediately by considering

ai,2,j
ai,1,j

 = V −1
i ·

qi,0,j
qi,1,j


for any i ∈ [n], j ∈ [J ] and noting that Vi is full rank, so even conditioned on the entries of Vi,

the ai,2,j and ai,1,j values are uniformly random and independent of the entries of Vi if the qi,0,j

and qi,1,j values are.

This completes the proof of enhanced message privacy by summing the advantages in each

lemma, since the oracles in Sim-Ideal are implemented independently of the master secret key.
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A Circuit Information

In Table A.1, we list the circuits we consider in Chapter 4, as well as attributes about those

circuits relevant to obfuscation. We describe each circuit below.

• aes1r: One-round AES.

• aes1r_x_y: One-round AES with x input bits and y output bits.

• ggm_x_y: The GGM PRF using x applications of Goldreich’s PRG, using the xor-and

predicate, and y bits of output.

• ggm_sigma_x_y: The GGM PRF using Σ-vectors with x applications of Goldreich’s PRG,

using the xor-and predicate, and y bits of output.
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Circuit n m # Gates # Muls Depth Degree κ

aes1r∗ 128 128 80,564 9,203 25 33 128
aes1r_2_1∗∗ 2 1 4 1 3 2 3
aes1r_4_1∗∗ 4 1 44 17 7 5 6
aes1r_8_1∗∗ 8 1 1,282 389 15 9 10
aes1r_16_1∗∗ 16 1 1,282 389 15 9 16
aes1r_32_1∗∗ 32 1 1,282 389 15 9 32
aes1r_64_1∗ 64 1 1,324 614 23 18 64
aes1r_128_1∗ 128 1 1,951 967 23 33 128
ggm_1_32 4 32 7,031 2,212 12 9 14
ggm_1_64 4 64 14,453 4,690 12 9 14
ggm_1_128 4 128 29,696 9,775 12 9 14
ggm_2_32 8 32 13,647 4,348 24 49 74
ggm_2_64 8 64 28,727 9,315 24 49 74
ggm_2_128 8 128 59,247 19,519 24 49 74
ggm_3_32 12 32 20,188 6,391 36 249 374
ggm_3_64 12 64 43,063 14,002 36 249 374
ggm_3_128 12 128 88,905 29,244 36 249 374
ggm_4_32 16 32 27,102 8,570 48 1,249 1,874
ggm_4_64 16 64 57,538 18,600 48 1,249 1,874
ggm_4_128 16 128 118,315 38,916 48 1,249 1,874
ggm_sigma_1_16_32 16 4 937 310 12 6 7
ggm_sigma_1_16_64 16 4 954 318 12 6 7
ggm_sigma_1_16_128 16 4 956 320 12 6 7
ggm_sigma_1_32_32 32 5 2,326 758 13 6 7
ggm_sigma_1_32_64 32 5 2,375 786 13 6 7
ggm_sigma_1_32_128 32 5 2,393 798 13 6 7
ggm_sigma_1_64_32 64 6 5,309 1,676 14 6 7
ggm_sigma_1_64_64 64 6 5,629 1,855 14 6 7
ggm_sigma_1_64_128 64 6 5,726 1,904 14 6 7
ggm_sigma_1_256_32 256 8 23,710 7,021 16 6 7
ggm_sigma_1_256_64 256 8 27,692 8,666 16 6 7
ggm_sigma_1_256_128 256 8 29,889 9,780 16 6 7
ggm_sigma_2_16_32 32 8 8,580 2,730 24 31 33
ggm_sigma_2_16_64 32 8 16,138 5,224 24 31 33
ggm_sigma_2_16_128 32 8 31,431 10,332 24 31 33
ggm_sigma_2_32_32 64 10 17,022 5,227 26 31 33
ggm_sigma_2_32_64 64 10 31,997 10,099 26 31 33
ggm_sigma_2_32_128 64 10 62,416 20,171 26 31 33
ggm_sigma_2_64_32 128 12 32,998 9,913 28 31 33
ggm_sigma_2_64_64 128 12 62,227 19,090 28 31 33
ggm_sigma_2_64_128 128 12 121,798 38,383 28 31 33
ggm_sigma_3_16_32 48 12 16,173 5,064 36 156 161
ggm_sigma_3_16_64 48 12 31,259 10,085 36 156 161
ggm_sigma_3_16_128 48 12 61,989 20,400 36 156 161
ggm_sigma_4_16_32 64 16 23,682 7,461 48 781 794
ggm_sigma_4_16_64 64 16 46,418 15,050 48 781 794
ggm_sigma_4_16_128 64 16 92,394 30,324 48 781 794

Table A.1: Circuits and their associated attributes. All of these circuits were compiled with constant
folding (-O1), with ∗ denoting those run through the sub-circuit flattener optimization (-O2) and ∗∗

denoting those run through the full-circuit flattener (-O3). ‘n’ denotes the number of input bits; ‘m’
denotes the number of output bits; ‘# Gates’ denotes the total number of gates; ‘# Muls’ denotes the
number of multiplication gates; ‘Depth’ denotes the multiplicative depth of the circuit; ‘Degree’ denotes
the multiplicative degree of the circuit; and ‘κ’ denotes the multilinearity value computed using MIO.
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