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Diet variation among individuals within populations is widespread. Often diet

differences among individuals are attributable to obvious differences among indi-

viduals such as age, sex, or morphology. However, growing evidence suggests that

individual diet variation is also common among seemingly identical individuals

within populations. This phenomenon has been termed individual diet specializa-

tion. Individual diet specialization has been documented across a variety of taxa

and biomes and theory suggests that diet specialization can potentially alter the

structure and strength of predator-prey interactions. This raises two important

questions: 1) What are the causes of individual diet specialization?, and 2) What

are the potential consequences of diet specialization for populations and commu-

nities? In this dissertation, I attempt to address these two questions by combining



mathematical theory, the novel application of statistical methods, and field and

laboratory experiments with the intertidal whelk, Nucella ostrina.

A potential ultimate cause of variation among individuals is disruptive selection

in which natural selection favors individuals with more extreme trait values over

individuals with intermediate trait values. Theory has suggested that the avail-

ability of alternative resources and intraspecific competition for those resources

can drive disruptive selection in consumers and lead to increased diet variation.

However, this theory makes several ecologically unrealistic assumptions. In par-

ticular, this theory assumes that consumers have linear functional responses and

that the trait of the consumer under selection only influences the consumer’s at-

tack rates on resources. In Chapter 2, I alleviate these assumptions and show that

nonlinear functional responses and traits influencing multiple functional response

parameters simultaneously can influence the strength and likelihood of disruptive

selection. My results suggest the characteristics of consumers in which disrup-

tive selection in resource-use traits may occur and diet specialization through this

mechanism may be most likely.

To empirically evaluate hypotheses on the causes and consequences of individ-

ual diet specialization, we need to be able to accurately quantify diet specialization.

In Chapter 3, I apply Bayesian hierarchical models to the problem of estimating

diet specialization and compare the performance of the Bayesian hierarchical mod-

els to currently used methods for estimating diet specialization. Currently used

methods infer individual prey preferences using the observed proportion of prey in

individuals’ diets whereas the Bayesian hierarchical models instead estimate these



proportions. I find that the currently used approach tends to overestimate diet

specialization compared to the Bayesian hierarchical approach. This is especially

the case when sample sizes per individual are low or heterogeneous. In addition,

the Bayesian hierarchical approach provides estimates of prey proportions, their

variability, and the uncertainty on these estimates in ways that are inaccessible to

current methods. These results suggest that the Bayesian hierarchical method can

provide an improved method for quantifying diet specialization.

In Chapter 4, I present the results from a field caging experiment examining the

proximate ecological mechanisms determining individual diet specialization and its

consequences in the intertidal whelk, Nucella ostrina. Many of the hypotheses on

the ecological causes of diet specialization assume that individuals differ from one

another in their prey preferences. However, these hypotheses ignore the potential

influence of stochasticity in the foraging process in generating diet variation among

individuals. The results of this chapter suggest that changes in the magnitude of

diet variation with changes in prey community composition in Nucella ostrina can

largely be explained by stochastic foraging by individuals with shared prey pref-

erences. In this chapter, I also estimate the consequences of this diet variation for

estimates of predator feeding rates through nonlinear averaging (Jensen’s inequal-

ity) of predator attack rates. The results suggest that nonlinear averaging alters

the perceived strength of predator-prey interactions in this system providing one

of the first empirical estimates of the potential consequences of diet variation.

Overall, my dissertation provides several insights into the potential causes

of diet specialization, provides one of the first empirical estimates of a possibly



widespread consequence of diet specialization for populations and communities,

and suggests improved statistical methodology for quantifying diet specialization.

I believe that this dissertation will lead to a critical assessment of definitions of

individual diet specialization, provide guidance towards systems in which diet spe-

cialization is the most likely to occur, and encourage further empirical research

estimating the effects of diet specialization on populations and communities.
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Candidate Causes, Consequences, and Estimation of Individual

Diet Specialization

1 General Introduction

Variation among individuals is ubiquitous. Evolutionary biologists have long rec-

ognized the importance of this variation, as heritable differences among individuals

provides the raw material upon which natural selection operates. Similarly, ecolo-

gists have long recognized the importance of differences among individuals due to

factors such as age and size. However, recent quantification of intraspecific varia-

tion has shown widespread intraspecific variation in a variety ecologically relevant

traits (Araújo et al., 2011; Bolnick et al., 2003; Violle et al., 2012). Furthermore,

theoretical and empirical studies have shown that this variation can have a wide

variety of effects on ecological processes such as species interactions and coexis-

tence (Gibert and Brassil, 2014; Hart et al., 2016; Schreiber et al., 2011), food

web structure (Araújo et al., 2008; Gibert and DeLong, 2017) , the stability of

populations to perturbations(Hughes et al., 2008; Schindler et al., 2010), and eco-

evolutionary dynamics (Patel and Schreiber, 2015; Schreiber et al., 2011). In fact,

recent meta-analyses have shown that the ecological effects of differences among

individuals within a species can have an even greater ecological effect than the

differences exhibited among species (Des Roches et al., 2018; Raffard et al., 2018).

These realizations have led to a quickly growing body of literature seeking to un-
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derstand the processes generating and maintaining intraspecific variation and the

effects of this variation from populations to ecosystems.

One form of intraspecific variation that has been found to be widespread and

is thought to have important implications for the dynamics of populations and

communities is individual diet specialization (Araújo et al., 2011; Bolnick et al.,

2003). Individual diet specialization occurs when seemingly identical individuals

select different subsets of the population’s diet despite having the same resources

available (Bolnick et al., 2002). This phenomenon has been documented across a

variety of invertebrate and vertebrate taxa in terrestrial, freshwater, and marine

systems and thus appears to widespread in nature (Araújo et al., 2011; Bolnick

et al., 2003). Furthermore, theory suggests that individual diet specialization has

the potential to alter the strength of predator-prey interactions (Bolnick et al.,

2011; Patel and Schreiber, 2015; Schreiber et al., 2011), the topology and dynam-

ics of ecological networks (Araújo et al., 2008; Bolnick et al., 2011), and can drive

eco-evolutionary dynamics (Patel and Schreiber, 2015; Schreiber et al., 2011). De-

spite the apparent pervasiveness of diet specialization and its potential effects,

the factors determining the likelihood and strength of diet specialization are still

unclear and empirical measurements of the effects of diet specialization are still

lacking.

Many of the hypotheses used to explain changes in the magnitude of diet spe-

cialization are drawn from optimal foraging theory (Emlen, 1966; Stephens and

Krebs, 1986). These hypotheses assume that individuals differ in their rank pref-

erences for prey and evaluate how variation among individuals in diets should
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respond given the assumed differences in preferences and changes in prey abun-

dances due to ecological factors (Araújo et al., 2011; Svanbäck and Bolnick, 2005).

Although optimal foraging theory has proved useful in explaining diet specializa-

tion in some systems (Bolnick, 2004; Svänback and Bolnick, 2007; Tinker et al.,

2012), the focus on optimal foraging ignores potential alternative mechanisms that

can generate diet differences among individuals. Furthermore, optimal foraging

alone cannot explain why individuals differ in rank preferences for prey in the

first place. For example, it is possible that in some systems individuals become

specialized due to past experience with prey through learning or ingestive condi-

tioning and would remain specialized despite changes in prey abundances (Hall

et al., 1982; Tinker et al., 2009). Individuals can also vary in rank preferences for

a variety reasons such as differences in prey handling times, search efficiencies, or

the criteria individuals are attempting to optimize, yet these underlying causes of

differences among individuals are typically unknown (Araújo et al., 2011; Stephens

and Krebs, 1986). Altogether, these considerations suggest that our understand-

ing of the causes of diet specialization and why diet specialization might be so

widespread is still in its infancy.

Theoretical studies of intraspecific variation and diet specialization have shown

that explicitly considering differences among individuals can significantly alter the

predictions of theory relative to the typical case of assuming that all individuals

are identical or can be represented by mean parameters (Doebeli, 1996; Okuyama,

2008; Schreiber et al., 2011). However, this may not always be the case. It is

entirely possible that intraspecific variation may be common, yet is of little con-
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sequence in most systems. For example, the general magnitude of variation may

be low enough that the use of means is entirely justified and the effect of intraspe-

cific variation is small (Bolnick et al., 2011). It is currently impossible to evaluate

the importance of individual variation because we lack empirical measurements its

consequences.

My goal in this dissertation was to investigate both the causes and consequences

of individual diet specialization and thus fill some of the gaps in our current un-

derstanding. Specifically, I developed mathematical theory on potential causes for

differences in prey preferences among individuals, applied statistical models to im-

prove our ability to quantify diet specialization, provided empirical evidence for a

novel proximate mechanism for variation among individuals, and provided one of

the first empirical measurements of a potentially widespread consequence of diet

specialization.

One potential explanation for the existence of individual diet specialization is

that individuals differ in their resource preferences due to cryptic variation in traits

related to resource use or behavior (Araújo et al., 2011; Bolnick et al., 2003). A

potential ultimate cause for these individual differences is that they are the prod-

uct of disruptive selection on consumer populations (Bolnick et al., 2003; Nosil,

2012; Schluter, 2000). Disruptive selection has long been of theoretical interest

both evolutionarily and ecologically due to its ability to promote variation within

populations and its potential role in speciation (Dieckmann and Doebeli, 1999;

Doebeli, 2011; Rueffler et al., 2006; Smith, 1962). However, this body of theory

makes several ecologically unrealistic assumptions. In particular, current theory
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assumes that consumers exhibit linear functional responses on their resources and

that consumer traits only influence consumer attack rates. In Chapter 2, I alle-

viate these assumptions and examine how the parameters of nonlinear functional

responses and correlations among the parameters influence the strength and like-

lihood of disruptive selection. My results suggest the ecological conditions most

amenable to disruptive selection and thus the systems in which diet specialization

generated through disruptive selection is most likely.

To study diet specialization empirically, we need to be able to accurately quan-

tify it. Typically, individual diet specialization is quantified by comparing the diet

preferences of individuals to the preferences of other individuals within the pop-

ulation or to the overall population preference across individuals (Araújo et al.,

2008; Bolnick et al., 2002). Current methods equate the observed proportions

of each prey type in individual’s diets directly to the preferences of individuals

(Araújo et al., 2008; Bolnick et al., 2003). This estimate of prey preference is

equivalent to the maximum likelihood estimate of the proportions of prey in indi-

vidual’s diets. However, these estimates can be severely biased when sample sizes

per individual are low which is a common feature of diet data. In Chapter 3, I

compare this currently used method to a Bayesian hierarchical method that esti-

mates the proportions of each prey type in individual’s diets rather than using the

observed proportions. Through simulated data and the analysis of diet data from

American Alligators (Alligator mississippiensis) and an intertidal whelk (Vasula

(= Thais) melones), I find that currently used methods consistently overestimate

diet specialization relative to the Bayesian hierarchical approach. Furthermore,
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the Bayesian hierarchical approach provides estimates of diets, their variation, and

the uncertainty of these estimates across scales in ways that are not possible with

currently used methods. In general, these results suggest that the Bayesian hierar-

chical approach for quantifying diet specialization can provide more accurate and

robust estimates of diet specialization.

Lastly, in Chapter 4, I use an empirical field study to investigate the proximate

ecological mechanisms leading to diet specialization in an intertidal whelk, Nucella

ostrina, and the effects of diet specialization on the feeding rates of N. ostrina

through Jensen’s inequality. Most hypotheses on the causes diet specialization

assume that the observed differences among individuals in diet are due to differ-

ences among individuals in diet preferences (Araújo et al., 2011; Bolnick et al.,

2003; Svanbäck and Bolnick, 2005). However, less appreciated is the fact that

the stochastic nature of the foraging process should also generate differences in

diets among individuals even if those individuals share the same prey preferences

and experience the same prey availability. Using a caging experiment in the Ore-

gon rocky intertidal, I provide evidence that stochastic foraging among individuals

with shared prey preferences provides a better explanation of diet variation in this

system than a hypothesis derived from optimal foraging theory. Furthermore, I

use the data gathered during the experiment to estimate individual attack rates

and the effects of attack rate variation on the perceived strength of predator-prey

interactions through Jensen’s inequality. Theory predicts variation in attack rates

coupled with nonlinear functional responses should weaken predator-prey inter-

actions relative to the case in which there were no variation and all individuals
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exhibited the mean attack rate (Bolnick et al., 2011). My data provide support for

this theory and also suggest that individual variation can interact with other types

of variation, such as spatial variation, leading to even greater effects of variation

through Jensen’s inequality.
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2 Nonlinear functional responses and ecological pleiotropy alter

the strength of disruptive selection in consumers

Abstract

Much of the theory on disruptive selection has focused on selection in generalist

consumers caused by ecological opportunity through the availability of alternative

resources and intraspecific competition for those resources. This theory, however,

makes several ecologically unrealistic assumptions. First, it assumes consumers

have a linear, resource-dependent functional response, ignoring well-documented

effects of resource handling times and consumer dependence. Second, it assumes

the trait under selection only influences the per-capita attack rates of the con-

sumer, ignoring other effects of the trait that may influence feeding rates and

hence, fitness. Here, I develop a one consumer-two resource model to investigate

how nonlinear functional responses and ecological pleiotropy (traits with multiple

simultaneous ecological effects) influence the strength and likelihood of disruptive

selection. I find that handling times and interference among consumers are capa-

ble of altering disruptive selection by changing feeding rates differentially across

consumer phenotypes. In particular, handling times decrease the strength and

likelihood of disruptive selection while the effects of interference depend on the

mechanism through which interference occurs. The effects of handling times and
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interference, however, depend on whether and how ecological pleiotropy causes

correlations between handling times or interference rates and attack rates. Over-

all, my results suggest that features underlying functional responses of consumers

and the relationships among those features determine the likelihood and strength

of disruptive selection. In particular, disruptive selection should be strongest in

generalist populations with individuals who experience lower handling times and

interference rates on the resources for which their attack rates are highest.

2.1 Introduction

Disruptive selection, a process in which natural selection favors individuals with

more extreme phenotypes over individuals with intermediate phenotypes, plays

important roles in evolution and ecology. Evolutionarily, disruptive selection can

cause and maintain genetic and phenotypic variation within populations and can

drive speciation and adaptive diversification (Dieckmann and Doebeli, 1999; Doe-

beli, 2011; Rueffler et al., 2006; Smith, 1962). Ecologically, the intraspecific vari-

ation generated by disruptive selection can alter the interactions among species,

their coexistence, and their functioning in ecosytems (Barbour et al., 2016; Bolnick

et al., 2011; Gibert and Brassil, 2014; Gibert and DeLong, 2017; Hart et al., 2016;

Hughes et al., 2008; Schreiber et al., 2011; Svanbäck et al., 2015).

Of the mechanisms generating disruptive selection, much of our knowledge

comes from disruptive selection on resource-use traits in generalist consumers.

Generally, disruptive selection on resource-use traits is thought to be a product
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of ecological opportunity through the availability of alternative resources, and

intraspecific competition for those resources (Abrams et al., 2008; Nosil, 2012;

Schluter, 2000). First, the availability of alternative resources provides a basis for

fitness differences among individuals. If individuals with different traits are better

able to use different resources, then individuals with phenotypes better matched

to available resources will have greater fitness than individuals with intermediate

phenotypes. If the mean trait of the consumer population lies between the optima

for using the different available resources, disruptive selection will occur as indi-

viduals with more extreme phenotypes will have greater fitness than intermediate

individuals. Intraspecific competition is then capable of stabilizing this form of

disruptive selection by causing the selection to be frequency dependent. Given

that different trait values affect individuals’ abilities to use different resources, the

most common phenotypes will reduce the abundance of their associated resources

to the greatest extent. The reduced availability of resources then drives higher

rates of intraspecific competition in those common phenotypes. Consumers with

less common phenotypes reduce their associated resources to a lesser extent and,

all else being equal, experience less competition. The resultant increase in fitness

for less common phenotypes leads to negative frequency-dependent disruptive se-

lection because the relative fitness of phenotypes is dependent on their relative

abundance in the population (Dieckmann and Doebeli, 1999; Smith, 1962).

Several studies have provided convincing empirical evidence that ecological

opportunity through alternative resources and intraspecific competition cause dis-

ruptive selection in both the laboratory and field (Bolnick, 2001, 2004; Hendry
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et al., 2009; Martin and Pfennig, 2009). Yet, previous studies also suggest that

the existence and strength of disruptive selection through these mechanisms are

dependent on ecological features determining the relative availability of resources

and the strength of intraspecific competition. For example, in a survey of fitness

landscapes across populations of three-spined stickleback (Gasterosteus aculeatus),

Bolnick and Lau (2008) showed that differences among populations in the existence

and strength of disruptive selection was partially attributable differences in ecolog-

ical opportunity among populations through differences in the relative availability

of benthic versus limnetic habitat. In another survey of fitness landscapes, Martin

and Pfennig (2012), showed that the strength of disruptive selection in spadefoot

toad tadpoles (Spea multiplicata) was associated with the density of conspecifics,

a proxy for the strength of intraspecific competition across populations. Together

these results suggest that predicting the strength and occurrence of disruptive se-

lection in consumers requires theory incorporating common ecological factors likely

to influence ecological opportunity and intraspecific competition.

One factor likely to influence both ecological opportunity and the strength of

intraspecific competition is the strength of the underlying consumer-resource in-

teractions (Abrams et al., 2008; Jones and Post, 2013, 2016). For example, for

intraspecific competition to influence disruptive selection consumers must deplete

resources to an extent that it alters the fitness landscape across phenotypes, but,

if the consumer-resource interactions are weak, prey depletion will be minimal

and the resulting strength of disruptive selection will be weak (Abrams et al.,

2008; Jones and Post, 2013, 2016). Alternatively, if species interactions are strong,
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consumers can lead resources to local extinction, causing a decrease in ecological

opportunity, again, altering strength of disruptive selection (Abrams et al., 2008;

Jones and Post, 2013, 2016). One determinant of the strength of consumer-resource

interactions largely ignored in current theory on disruptive selection in generalists

is the consumer functional response. The consumer functional response defines the

relationship between the densities of interacting species and consumer feeding rates

and therefore is directly related to the strength of consumer-resource interactions

and likely to influence disruptive selection. The vast majority of theory on dis-

ruptive selection in consumers assumes that the consumers have a linear, resource

dependent functional response (Abrams et al., 2008; Ackermann and Doebeli, 2004;

Dieckmann and Doebeli, 1999; Doebeli, 1978; Lawlor and Smith, 1976; MacArthur,

1972). However, linear functional responses are known to be rare (Jeschke et al.,

2004). Nonlinearities in functional responses are the product of nearly ubiquitous

properties of consumer-resource interactions such as handling times and consumer

interference or facilitation (Abrams and Ginzburg, 2000; DeLong and Vasseur,

2011; Holling, 1959; Novak et al., 2017). Given the widespread nature of non-

linear functional responses and their effects on the strength of consumer-resource

interactions, incorporating nonlinear functional responses into theory on disrup-

tive selection in consumers may provide some insight into the characteristics of

consumers most likely to exhibit disruptive selection.

Incorporating nonlinear functional responses into models of disruptive selec-

tion also provides an opportunity to address another assumption of most models:

the traits of individuals only influence their per capita attack rates on resources.
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It is more likely that traits influencing an individual’s attack rates also influence

other parameters of the functional response (i.e. handling and interference) caus-

ing parameters to be correlated across individuals. The presence of such correlated

ecological trait effects has been termed ‘ecological pleiotropy’ (DeLong, 2017; De-

Long and Gibert, 2016; Strauss and Irwin, 2004). Ecologically pleiotropic trait

effects are likely to be common in functional responses. For example, a study

of protists has shown attack rates, handling times, and interference rates to all

covary with one another (DeLong, 2017). In another study, body size has been

shown to have allometric relationships with both attack rates and handling times

of consumers, at least among species (Vucic-Pestic et al., 2009). Although studies

have shown that ecologically pleiotropic trait effects can alter population dynamics

(DeLong, 2017) and have examined the evolutionary effects of pleiotropy between

functional and numerical responses (Schreiber et al., 2018), it remains unclear how

ecological pleiotropy may constrain or promote selection on underlying traits.

Here, I use a one consumer-two resource model to investigate how the pa-

rameters of nonlinear functional responses – attack rates, handling times, and

interference rates – and potential correlations among them arising from an ecolog-

ically pleiotropic trait, influence the existence and strength of disruptive selection.

My analyses indicate that nonlinear functional responses alter disruptive selection

in ways that are dependent on the correlations between attack rates and han-

dling times or attack rates and interference rates. This suggests that nonlinear

functional responses and the presence of ecological pleiotropy can alter disruptive

selection generated by intraspecific competition and ecological opportunity, offer-
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ing a potential explanation for variation in the existence and strength of disruptive

selection within and among systems.

2.2 Methods

Below, I first introduce the general one consumer-two resource model used to

investigate the relationships between nonlinear functional responses, ecological

pleiotropy, and the strength of disruptive selection. I then explain the methods

used to analyze the model. Lastly, I introduce the particular nonlinear functional

responses investigated and explain how I modeled ecological pleiotropy among

functional response parameters.

2.2.1 The General Model

To investigate the effects of nonlinear functional responses and pleiotropy on the

strength and likelihood of disruptive selection, I extended a one consumer-two

resource model developed by Schreiber et al. (2011) to include nonlinear functional

responses. The model begins with the assumption that the consumer population

has a quantitative trait, x, that is normally distributed with mean, x̄, and variance,

σ2, such that the distribution of x in the population, p(x, x̄), is described by,

p(x, x̄) =
1√

2πσ2
exp[−(x− x̄)2

2σ2
]. (2.1)
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Furthermore, I assume that the phenotypic variance of the trait, σ2, consists of an

environmental component, σ2
E, and a heritable genetic component, σ2

G, and that

the heritable genetic component is positive. The value of an individual’s trait, x,

is assumed to determine its attack rates, αi(x), on the two resources, Ri (i = 1, 2),

respectively. The maximum attack rate of an individual on the ith resource, αi,max,

occurs at a trait value of x = θi. The attack rate then decreases as the trait value

moves away from θi in a Gaussian manner,

αi(x) = αi,maxexp[−(x− θi)2

2τ 2
i

], (2.2)

with the rate of decrease determined by τ 2
i . Letting fi(R1, R2, C, x) denote the con-

sumer’s functional response on resource i which depends on both resource densities,

the trait x, and the consumer’s density in models including consumer interference,

the mean fitness of the consumer population, ω̄(R1, R2, C, x̄), is:

ω̄(R1, R2, C, x̄) =

∫ ∞
−∞

2∑
i=1

[eifi(R1, R2, C, x)]p(x, x̄)dx−m, (2.3)

where m is the per capita mortality rate of the consumer and ei is a linear con-

version efficiency of resource i into consumers. Assuming logistic growth in the

resources, the dynamics of the consumer and resource populations are:

dRi

dt
= riRi

(
1− Ri

Ki

)
− C

∫ ∞
−∞

fi(R1, R2, C, x)p(x, x̄)dx, (2.4)

dC

dt
= Cω̄(R1, R2, C, x̄). (2.5)
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where ri is the intrinsic growth rate of resource i and Ki is its carrying capacity.

Assuming that the consumer’s trait remains normally distributed and that

the variance of the consumer’s trait remains constant and is not too large, the

evolutionary dynamics of the mean of the consumer’s trait are described by:

dx̄

dt
= σ2

G

dω̄(R1, R2, C, x̄)

dx̄
, (2.6)

where σ2
G is the genetic component of the phenotypic variance of the consumer’s

trait and dω̄(R1, R2, C, x̄)/dx̄ is the fitness gradient (Abrams et al., 1993; Iwasa et al.,

1991; Lande, 1976). The fitness gradient describes directional selection on the

mean of the consumer’s trait. At the ecological and evolutionary equilibrium of

the system, there is no directional selection on the consumer’s trait and the fitness

gradient is zero by definition. The resultant equilibrium is either a fitness maximum

or a fitness minimum which can be determined from the curvature of the fitness

function at the equilibrium given by the second derivative of the mean fitness with

respect to consumer’s mean trait evaluated at the equilibrium,

d2ω̄(R∗1, R
∗
2, C

∗, x̄)

dx̄2

∣∣∣
x̄∗
, (2.7)

where the asterisks denote equilibrium values. If the curvature of the fitness func-

tion evaluated at the equilibrium is negative, the equilibrium is a fitness maximum

and there is stabilizing selection on the trait. If the curvature of the fitness function

is positive, the equilibrium is a fitness minimum and there is disruptive selection on

the trait. The magnitude of the curvature of the fitness function provides a relative
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measure of the strength of selection. Thus, the curvature of the fitness function can

be used to determine the parameters for which stabilizing or disruptive selection

occur and the strength of that selection.

2.2.2 Measuring Selection and Methods of Analysis

Here I consider a symmetric version of the above model in which all of the resource

specific parameters are equal (e.g. r1 = r2, K1 = K2, etc.) except the θi’s, and

the θi’s are symmetric about zero (i.e. θ2 = −θ1). Given the symmetric model,

if the ecological dynamics reach a stable steady state, the evolutionary dynamics

reach an equilibrium at x̄ = 0. The curvature of the fitness function at x̄ = 0 can

then be used to determine the strength of selection and whether it is stabilizing or

disruptive.

To determine how nonlinear functional responses and ecological pleiotropy alter

the likelihood of disruptive selection, I compared numerical results of the model on

the parameters at which selection changed from stabilizing to disruptive selection

to analytical results derived by Schreiber et al. (2011). Using a symmetric version

of the model with linear consumer functional responses, Schreiber et al. (2011)

showed that disruptive selection occurs when,

θ2 > σ2 + τ 2. (2.8)
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Therefore, if the consumers exhibited a linear functional response, selection switches

from stabilizing to disruptive selection when θ2 = σ2 + τ 2. I use this as a baseline

to examine how nonlinear functional responses and ecological pleiotropy change

the likelihood of disruptive selection relative to the case of consumers with linear

functional responses. Specifically, I alter the value of θ while keeping σ and τ

constant, although results are similar when varying σ and τ .

To evaluate how changes in the parameter values of nonlinear functional re-

sponses alter the strength and likelihood of disruptive selection, I performed numer-

ical analyses of the model in Mathematica (v. 11.0.1.0). I restricted my analyses

to combinations of parameter values for which the consumer-resource interactions

reached a fixed point equilibrium (i.e. did not exhibit cycles). After determining

that the consumer-resource dynamics were at a fixed point using linear stability

analysis, I varied the parameters of interest and calculated the curvature of the

fitness function to determine whether selection was disruptive or stabilizing and

the strength of selection. Although analytical results for the model were not possi-

ble, the results presented below were qualitatively similar across all of the different

parameter values investigated that met the above criteria.

2.2.3 Nonlinear Functional Response Due to Handling Times

To determine how handling times influence the strength and likelihood of disruptive

selection, I substituted a multispecies Holling Type-II functional response (Holling,
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1959),

fi(R1, R2, C, x) =
αi(x)Ri

1 +
∑2

i=1 αi(x)ηiRi

, (2.9)

into equations 3–4, where ηi is the handling time of the consumer when feeding

on resource i. I first investigated how handling times in general influenced the

likelihood and strength of disruptive selection by assuming that the handling times

for both resources were equal (i.e. η1 = η2). I then altered the magnitude of the

handling times and examined the resulting effects on the likelihood strength of

disruptive selection.

2.2.4 Consumer-dependent Functional Responses

Although there are several ‘standard’ functional responses models that include in-

terference, all were developed for a specialist consumer consuming a single resource

(Beddington, 1975; Crowley and Martin, 1989; DeAngelis et al., 1975; Hassel and

Varley, 1969). To examine the effects of interference on the likelihood and strength

of disruptive selection in the one consumer-two resource model considered here, I

extended two of the more mechanistic functional response models including inter-

ference – the Beddington-DeAngelis and Crowley-Martin functional responses – to

more than one resource (Beddington, 1975; Crowley and Martin, 1989; DeAngelis

et al., 1975).

The Beddington-DeAngelis and Crowley-Martin functional responses make dif-

ferent assumptions about how interference effects consumer feeding rates, and

therefore could lead to differences in how they predict interference to alter the
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likelihood and strength of disruptive selection (Beddington, 1975; Crowley and

Martin, 1989; DeAngelis et al., 1975). The Beddington-DeAngelis functional re-

sponse model assumes that consumers interfere with one another at a rate, γ, and

that interference decreases the time available for searching for resources. These

assumptions lead to the following functional response for two resources,

fi(R1, R2, C, x) =
αi(x)Ri

1 +
∑2

i=1 αi(x)ηiRi + γC
. (2.10)

The Crowley-Martin functional response model extends the Beddington-DeAngelis

functional response model by assuming that consumers also interfere while han-

dling resources (Crowley and Martin, 1989). Under these assumptions, with a

interference rate, λ, the Crowley-Martin functional response extended to two re-

sources is,

fi(R1, R2, C, x) =
αi(x)Ri

1 +
∑2

i=1 αi(x)ηiRi +
∑2

i=1 αi(x)ηiλRiC + λC
. (2.11)

Given these two functional responses, I examined how interference in general

changed the likelihood and strength of disruptive selection by altering the magni-

tude of interference and examining the resultant effects.

2.2.5 Ecological Pleiotropy

To determine how an ecologically pleiotropic trait controlling both attack rates and

handling times or attack rates and interference rates may influence the likelihood
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and strength of disruptive selection, I assumed that ecological pleiotropy causes

attack rates and handling times or interference rates to covary.

For ecological pleiotropy affecting both attack rates and handling times, I mod-

eled the effects of ecological plieotropy by making the handling times of each re-

source a linear function of the trait-dependent attack rates,

ηi(αi(x)) = ηi,min/max + ηi,slope × αi(x), (2.12)

where ηi(αi(x)) is the handling time of an individual on resource i with attack

rate αi(x), ηi,min/max is the handling time of an individual on resource i when the

individual has an attack rate of zero on resource i, and ηi,slope is the slope of the

relationship exhibited across individuals with different trait values between the

attack rates and handling times on resource i.

To model the effects of ecological pleiotropy affecting both attack rates and

interference rates, I made the interference rate a linear function of the total attack

rate of an individual on resources combined. Letting y represent either type of

interference examined (i.e. γ for the Beddington-DeAngelis functional response or

λ for the Crowley-Martin functional response), I modeled the correlation between

interference and attack rates as,

y(α1(x), α2(x)) = ymin,max + yslope × (α1(x) + α2(x)) (2.13)

where y(α1(x), α2(x)) is the interference rate of an individual with attack rates

α1(x) and α2(x), ymin,max is the interference rate that would be experienced if
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both attack rates were zero, and yslope is the slope of the relationship between the

total attack rate interference rates across individuals having different trait values.

I considered both positive and negative correlations between attack rates and

handling times and attack rates and interference rates. For positive correlations,

ηi,min/max and ymin/max are minimums and ηi,slope and yslope are positive. For neg-

ative correlations, ηi,min/max and ymin/max are maximums and ηi,slope and yslope are

negative. To examine the effects of the correlations between attack rates and han-

dling times or attack rates and interference rates, I altered the strength of the

relationship by increasing the magnitude of the slope parameters with a constant

maximum or minimum and examined the resulting changes in the likelihood and

strength of disruptive selection.

2.3 Results

2.3.1 Handling Times

When there is no correlation between attack rates and handling times, analysis

of the model with a multispecies Holling Type-II functional response shows that

increasing handling times reduce the parameter space over which disruptive se-

lection occurs relative to consumers with a linear functional response (compare

the dashed and solid lines in Figure 2.1A). Increasing handling times also reduce

the strength of disruptive selection (Figure 2.1A). This decrease is due to relative

changes in feeding rates across the consumer’s phenotypes (Figure 2.1B). In partic-
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ular, as handling times increase, individuals with the highest attack rates show a

decrease in feeding rates while individuals with lower attack rates show an increase

in feeding rates (Figure 2.1B). This reduces the steepness of the fitness function at

the fitness minimum thereby weakening disruptive selection. The relative changes

in feeding rates among individuals with different phenotypes are the product of

the interaction between attack rates, the saturating effect of handling times, and

consequent changes in the equilibrium densities of resources (Figure 2.1B-D). As

handling times increase, individuals with the highest attack rates saturate at in-

creasingly lower resource densities (Figure 2.1C). The reduced feeding rates of

individuals with the highest attack rates simultaneously increases equilibrium re-

source densities (Figure 2.1C-D). Individuals with low attack rates experience less

saturation from handling times and thus show an increase in feeding rates due to

the increase in equilibrium densities of the resources (Figure 2.1E).

The effects of handling time on the likelihood and strength of disruptive se-

lection depend on whether ecological pleiotropy causes a positive or negative cor-

relation between attack rates and handling times. If handling times and attack

rates are positively correlated, then the parameter space over which disruptive

selection occurs and the strength of disruptive selection decrease as the strength

of the relationship increases (Figure 2.2A). In contrast, if handling times and at-

tack rates are negatively correlated, the correlation weakens the effect of handling

times on the likelihood and strength of disruptive selection (Figure 2.2C). Under

certain parameter values, the negative correlation can increase the parameter space

over which disruptive selection occurs relative to the case of linear consumer func-
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tional responses (Figure 2.2C). These effects occur because correlations between

attack rates and handling times either exacerbate or alleviate the saturating ef-

fects of handling times on individuals with high attack rates. When correlations

between attack rates and handling times are positive, individuals with high attack

rates experience greater saturation with an increase in the strength of the corre-

lation causing a decreasing their feeding rates and increasing the feeding rates of

consumers with low attack rates (Figure 2.2B). When correlations are negative,

individuals with high attack rates experience less saturation with an increase in

the strength of the correlation leading to higher feeding rates and decreases in the

feeding rates of individuals with low attack rates (Figure 2.2D).

2.3.2 Interference Rates

When there is no correlation between attack rates and interference rates, the effects

of interference on the likelihood and strength of disruptive selection depend on the

functional response considered. If interference is modeled using the Beddington-

DeAngelis functional response, interference has no effect on the strength of disrup-

tive selection (Figure 2.3A). As interference rates increase, the feeding rates across

phenotypes remain constant because equilibrium resource and consumer densities

change while feeding rates across phenotypes remain constant (Figure 2.3B). In

contrast, if interference is modeled using the Crowley-Martin functional response,

increasing interference decreases the parameter space over which disruptive selec-

tion occurs and decreases the strength of disruptive selection (Figure 2.3C). In
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contrast to the Beddington-DeAngelis functional response, interference interacts

with the consumer’s attack rates and thus phenotype in the Crowley-Martin func-

tional response and alters feeding rates across phenotypes (Figure 2.3D).

As for handling times, the effects of interference on the likelihood and strength

of disruptive selection are dependent on whether ecological pleiotropy causes cor-

relations between attack rates and interference rates. Regardless of the functional

response considered, a positive relationship between attack rate and interference

leads to a decrease in the parameter space over which disruptive selection occurs

and the strength of disruptive selection (Figures 2.4A,2.5A). A negative relation-

ship between attack rates and interference leads to an increase in parameter space

over which disruptive selection occurs and the strength of disruptive selection (Fig-

ures 2.4C,2.5C). These effects occur because the correlation causes the saturating

effect of interference to affect consumers differently across phenotypes. For positive

relationships between attack rates and interference, phenotypes with the highest

attack rates experience the most saturation and reduced feeding rates, while this

increases feeding rates for individuals with low attack rates because of increased

equilibrium resource densities (Figures 2.4B,2.5B). For negative relationships be-

tween attack rates and interference, consumers with high attack rates experience

less interference and have increased feeding rates, while consumers with low attack

rates experience higher interference and lower equilibrium resource densities caus-

ing a decrease in feeding rates (Figures 2.4D,2.5D). For either functional response

including interference, negative relationships between attack rates and interfer-
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ence are capable of increasing the parameter space in which selection is disruptive

relative to linear functional responses (Figure 2.4C,2.5C).

2.4 Discussion

The mechanisms generating and maintaining disruptive selection in generalist con-

sumers have played a large role in our theoretical understanding of disruptive se-

lection. However, predicting the circumstances under which disruptive selection

in consumers is most likely and should be strongest remains difficult as theory on

the ecological mechanisms altering ecological opportunity and intraspecific com-

petition in consumers is still being developed. Here I show that two widespread

factors influencing the strength of consumer resource interactions – nonlinear func-

tional responses and ecological pleiotropy – are capable of altering the strength

and likelihood of disruptive selection in consumers. These results support previous

studies asserting that the strength of consumer-resource interactions can influence

disruptive selection (Abrams et al., 2008; Jones and Post, 2013, 2016) and suggest

that disruptive selection is most likely in consumers whose traits not only deter-

mine their attack rates on resources but also reduce their handling times on those

resources and their interference rates with other consumers.

The consumer-resource models presented here predict that disruptive selection

in generalist consumers should be most common in populations in which handling

times and interference are low or negatively correlated with attack rates. Confir-

mation of this with existing data is difficult, but some of the best known examples
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of disruptive selection in consumers do exhibit some of these features. For example,

disruptive selection in beak size of the medium ground finch (Geospiza fortis) of

the Galapagos Islands has been shown to be related to the ability of finches with

different beak sizes to handle different sized seeds (Hendry et al., 2009; Schluter

and Grant, 1984). Thus, attack rates and handling times should be negatively cor-

related with large-beaked individuals preferring and having lower handling times

on large seeds and small-beaked individuals preferring and having lower handling

times on small seeds. Another canonical example of disruptive selection is disrup-

tive selection in several traits related to the use of benthic v. limnetic resources in

three spine stickleback (Schluter, 1993). Morphological differences among individ-

uals in resource-use traits have been shown to correlate with the feeding efficiency

and growth rates of stickleback in benthic versus limnetic habitats (Schluter, 1993,

1995). How interference operates in this system is unclear, but the use of separate

habitats may reduce interference by reducing the potential number of competi-

tors or increase interference by concentrating individuals within habitats. Future

empirical work should aim to more explicitly examine the relationship between

consumer functional responses and natural selection. One possibility for doing so

is to use comparative studies across populations or species measuring both func-

tional responses and disruptive selection. Another possibility is to estimate the

functional responses of individuals and correlate these functional responses to in-

dividual fitness proxies. Recent advances in estimating functional responses from

observational data in the field (Novak et al., 2017) and the long history of esti-



28

mating natural selection (Kingsolver et al., 2001; Lande and Arnold, 1983) should

facilitate this effort.

The effects of handling time and interference on the strength of disruptive

selection were largely dependent on whether the underlying trait was assumed

to have pleiotropic effects that caused correlations between these parameters and

the attack rates. The parameters describing nonlinear functional responses are

likely to be correlated due to their determination by the same traits, however,

the sign and strength of correlations among parameters are likely to be system

specific. Some generalizations nevertheless might be possible. Optimal foraging

theory, for example, suggests that individuals feeding on energetically equivalent

resources should prefer the resources on which they have the lowest handling times

(Stephens and Krebs, 1986). This will cause a negative correlation between attack

rates and handling times among individuals (e.g. Tinker et al., 2007) which should

increase the strength of disruptive selection. Positive correlations seem less likely.

One possible source of this pattern could be changes in preferred resource size

with consumer body size. For example, relative to mid-sized individuals, large

bodied consumers may have higher attack rates on larger prey which require longer

handling times, while small bodied consumers may have higher attack rates on

smaller bodied resources but have higher handling times due to inefficiencies in

handling resources given their size (Hassel et al., 1976).

Interference rates could have both positive or negative correlations with attack

rates. For example, positive correlations have been observed in at least one pro-

tist system where both parameters were positively related to the swimming speed
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of the consumer (DeLong and Vasseur, 2013). However, the case could also be

made that interference and attack rates should be negatively correlated. For ex-

ample, attack rates, at least among species, commonly scale with body size (Berlow

et al., 2009; Brose, 2010; Rall et al., 2012; Schneider et al., 2012), a trait that of-

ten confers an advantage in bouts of interference which could reduce the effects

of interference on individuals with high attack rates (Rowland, 1989; Schoener,

1983). Individuals with high attack rates may also use resources more efficiently

which may reduce their exposure to interference, at least in the Crowley-Martin

functional response. Furthermore, individuals with high attack rates on partic-

ular resources may inhabit different habitats. Examples of this occur in several

lake fish species, such as three-spined stickleback (Gasterosteus aculeatus) which

have polymorphisms associated with using either benthic versus limnetic habitats

(Lavin and McPhail, 1985; Schluter, 1995). As mentioned above, the use of dif-

ferent habitats may constrain the number of individuals that interfere with one

another, thereby leading to an overall reduction in interference relative to the case

in which all individuals use the same habitat. Conversely, individuals with high

attack rates on the same resource may be concentrated within the same habitat,

increasing interference. Unfortunately, data on the correlations among parameters

in nonlinear functional responses are sparse, although traits that simultaneously

influence multiple functional response parameters should be common.

To model the effects of mutual interference competition on consumer func-

tional responses, I used two of the more ‘mechanistic’ functional response models

including interference – the Beddington-DeAngelis and Crowley-Martin functional
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responses (Beddington, 1975; Crowley and Martin, 1989; DeAngelis et al., 1975).

Which functional response was considered influenced the effects of interference on

the strength of disruptive selection. The two functional responses differ primarily

in whether or not interference occurs while consumers are handling resources. The

most appropriate model for interference therefore is likely dependent on the biology

of the particular system. For example, in systems with kleptoparasitism, fighting

amongst consumers over already captured resources, or increased handling times

in the presence of other consumers, the Crowley-Martin functional response may

more appropriate (e.g. Ens and Goss-Custard, 1984; Norris and Johnstone, 1998;

Smallegange et al., 2006; Zimmermann et al., 2015). In contrast, in systems where

interference occurs largely separate from the handling of resources, or where time

spent foraging is distinct from time spent interfering, the Beddington-DeAngelis

functional response is likely to be more appropriate (e.g. Getty, 1981; Kratina et al.,

2009; Pyke, 1979). Although the Crowley-Martin and Beddington-DeAngelis func-

tional responses are sometimes unable to be distinguished statistically (Lang et al.,

2012; Skalski and Gilliam, 2001; Stier and White, 2014; Zimmermann et al., 2015),

the models here suggest that distinguishing among them mechanistically may be

important to understand the evolutionary consequences of interference. Lastly,

the functional responses used here assumed that interference rates, or their rela-

tionships with attack rates, were equal for both resources. Recent evidence has

suggested that this may not be the case and that interference rates and facilitation

effects may be prey-specific in nature (Novak et al., 2017). These results suggest

that theory incorporating prey-specific interference rates may be needed to under-
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stand the ecological and evolutionary consequences of interference with more than

one resource.

There are several potential outcomes of disruptive selection and the particular

outcome may be a function of the strength of disruptive selection (Rueffler et al.,

2006). Under the quantitative genetics framework, the most likely outcome of

disruptive selection is an increase in the phenotypic variation of the consumer’s

resource-use trait. Patel and Schreiber (2015) have shown that the second deriva-

tive of the fitness function used here to measure disruptive and stabilizing selection

also determines selection at the evolutionary equilibrium under the adaptive dy-

namics approach for modeling evolution. Under the adaptive dynamics framework,

this theory would predict that evolutionary branching and speciation would occur

at the fitness minimum. In general, the outcome of disruptive selection is likely

to depend on system specific factors such as the underlying genetics and mating

system of the population in concert with the strength of selection. For example,

although ecological opportunity and intraspecific resource competition may cause

disruptive selection on a trait, opposing directional or stabilizing selection on that

trait from other sources, or gene flow, might overwhelm weak disruptive selection

(Lande and Arnold, 1983; Nosil, 2012). Future theory explicitly examining how the

strength of selection is likely to lead to different evolutionary outcomes will help

to further understand how changes to the strength of disruptive selection through

ecological factors are likely to manifest in nature.

Overall, my results support the assertions of Abrams et al. (2008) and Jones

and Post (2013, 2016) that the strength and likelihood of disruptive selection is de-
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pendent on the strength of the underlying consumer-resource interactions. In the

model presented here, the effects of nonlinear functional responses and pleiotropy

are largely due to how handling resources or interference produces saturation in

the feeding rates of the consumers with the highest attack rates. If saturation is

increased, the consumer-resource interactions weaken resulting in weakened dis-

ruptive selection and vice versa. Abrams et al. (2008) and Jones and Post (2013,

2016), however, have predicted a unimodal relationship between the strength of

consumer-resource interactions and the strength of disruptive selection. Their rea-

soning is that when consumer-resource interactions are very weak there is little

depletion of resources, intraspecific resource competition is weak, and thus disrup-

tive selection is weak. In contrast, when consumer-resource interactions are very

strong resources associated with the most common consumer phenotypes will go

locally extinct, ecological opportunity will decrease, and disruptive selection will

weaken. Allowing for this effect would require extending the theory here to models

with a continuous distribution of resources such as the MacArthur model which has

been used widely to model disruptive selection in consumers (MacArthur, 1972).

Caution should be taken in doing so. The MacArthur model with linear func-

tional responses has been shown to have a stable global equilibrium (Chesson,

1990). Nonlinear functional responses, however, can lead to cycling in population

dynamics which may alter evolutionary dynamics (Svanbäck et al., 2009). Nev-

ertheless, the incorporation of nonlinear functional responses and pleiotropy into

these models would be worthwhile.
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Lastly, consumer-resource models similar to those used to examine disruptive

selection have also been used to study other topics such as the coevolution of

competitors and character displacement (Case, 1981; Doebeli, 1978; Roughgarden,

1976; Taper and Case, 1992). As I have shown here that nonlinear functional re-

sponses and ecological pleiotropy can alter the likelihood and strength of disruptive

selection, these factors may also influence phenomena such as character displace-

ment. Previous studies have also suggested as much. For example, Abrams (1980),

has shown that nonlinear functional responses alter the strength of competition

among consumers in a two consumer-two resource system. Further incorporation

of nonlinear functional responses and ecological pleiotropy into evolutionary theory

will provide insight into how these widespread ecological factors influence evolu-

tionary dynamics beyond disruptive selection.
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Figure 2.1: Larger handling times are associated with weaker disruptive selection
(A). Larger handling times are also associated with a reduced parameter space over
which disruptive selection occurs (above the dashed line in A) relative to the case
in which consumers have linear functional responses (above the solid line in A).
Handling times reduce the strength of disruptive selection by differentially affecting
consumer feeding rates across the consumer’s phenotypes (compare feeding rates
of consumers with low handling times in B (solid dot in A, solid lines in B-D) to
feeding rates of consumers with high handling times (open dot in A, dashed lines
in B-D)). For individuals with high attack rates (dots in B and C), feeding rates
decrease with higher handling times despite an increase in equilibrium resource
densities due to saturation caused by handling times (C). Individuals with low
attack rates (squares in B and D) are less affected by the saturating effects of
handling times and feeding rates increase with the increasing equilibrium resource
densities (D). These changes in feeding rates reduce the potential gain in fitness
associated with disruptive selection. Parameter used in the figure are: x̄ = 0, σ =
0.2, α1,max = α2,max = 0.02, τ1 = τ2 = 0.1, r1 = r2 = 0.2, K1 = K2 = 500, e =
0.5,m = 0.5.
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Figure 2.2: Ecological pleiotropy leading to correlations between attack rates and
handling times alters the strength of disruptive selection (A,C). Positive correla-
tions lead to a decrease in the strength of disruptive selection (A), while negative
correlations lead to an increase in the strength of disruptive selection (C). The
correlations also alter the parameter space over which disruptive selection occurs
in this model (above the dashed lines in A and C) relative to the case in which con-
sumers have linear functional responses (above the solid line in A and C). Changes
in selection are due to changes across the consumer’s phenotypes in feeding rates as
the correlation is changed from weak (solid dot in A and C, solid line in B and D)
to strong (open dot in A and C, dashed line in B and D). Parameter values used
in the figure are: x̄ = 0, σ = 0.2, α1,max = α2,max = 0.02, θ1 = −θ2 = 0.3, τ1 = τ2 =
0.1, r1 = r2 = 0.2, K1 = K2 = 500, e = 0.5,m = 0.5, and η1,min = η2,min = 0.01 in
A and B, and η1,max = η2,max = 0.4 in C and D.
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Figure 2.3: The effects of interference on the strength of disruptive selection are dependent
on which functional response is considered (A – Beddington-DeAngelis functional response,C –
Crowley-Martin functional response). The interference rate of the Beddington-DeAngelis func-
tional response, (γ), has no effect on the strength of disruptive selection (A) and the parameter
space over which disruptive selection occurs in this model (above the dashed line in A) com-
pared to the case in which consumers have linear functional responses (above the solid line in
A). This is because the interference rate but has no effect on the feeding rates of the consumers
across their phenotypes (low interference: solid dot in A, solid line in B; high interference:
open dot in A, dashed line in B). The interference rate of the Crowley-Martin functional re-
sponse (λ) decreases the strength of disruptive selection (C) and parameter space over which
disruptive selection occurs in this model (above the dashed line in C) relative to the model with
linear consumer functional responses (above the solid line in C). The interference rate of the
Crowley-Martin functional response differentially effects the feeding rates of consumers across
the consumers phenotype (low interference: solid dot in C, solid line in D; high interference:
open dot in C and dashed line in D). Parameter values used in the Beddington-DeAngelis fig-
ures are: x̄ = 0, σ = 0.2, α1,max = α2,max = 0.3, τ1 = τ2 = 0.1, r1 = r2 = 0.2,K1 = K2 =
500, e = 0.5,m = 0.2, η1 = η2 = 0.01. Parameter values used in the Crowley-Martin figures are:
x̄ = 0, σ = 0.2, α1,max = α2,max = 0.1, τ1 = τ2 = 0.1, r1 = r2 = 0.2,K1 = K2 = 100, e = 0.5,m =
0.5, η1 = η2 = 0.1.



38

Figure 2.4: Ecological pleiotropy leading to correlations between attack rates
and interference rates in the Beddington-DeAngelis functional response alters the
strength of disruptive selection (A, C). Positive correlations lead to a decrease
in the strength of disruptive selection (A), while negative correlations lead to an
increase in the strength of disruptive selection (C). The correlations also alter the
parameter space over which disruptive selection occurs in this model (above the
dashed lines in A and C) relative to the case in which consumers have linear func-
tional responses (above the solid line in A and C). Changes in selection are due
to changes across the consumer’s phenotypes in feeding rates as the correlation is
changed from weak (solid dot in A and C, solid line in B and D) to strong (open
dot in A and C, dashed line in B and D). Parameter values used in the figure
are: x̄ = 0, σ = 0.2, α1,max = α2,max = 0.3, θ1 = −θ2 = 0.3, τ1 = τ2 = 0.1, r1 =
r2 = 0.2, K1 = K2 = 500, e = 0.5,m = 0.2, η1 = η2 = 0.01, and in A and B
γ1,min = γ2,min = 0.01 and in C and D γ1,max = γ2,max = 0.3.
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Figure 2.5: Ecological pleiotropy leading to correlations between attack rates and
interference rates in the Crowley-Martin functional response alters the strength of
disruptive selection (A, C). Positive correlations lead to a decrease in the strength
of disruptive selection A, while negative correlations lead to an increase in the
strength of disruptive selection (C). The correlations also alter the parameter space
over which disruptive selection occurs in this model (above the dashed lines in A
and C) relative to the case in which consumers have linear functional responses
(above the solid line in A and C). Changes in selection are due to changes across
the consumer’s phenotypes in feeding rates as the correlation is changed from weak
(solid dot in A and C, solid line in B and D) to strong (open dot in A and C,
dashed line in B and D). Parameter values used in the figure are: x̄ = 0, σ =
0.2, α1,max = α2,max = 0.1, τ1 = τ2 = 0.1, r1 = r2 = 0.2, K1 = K2 = 100, e =
0.5,m = 0.5, η1 = η2 = 0.1 and in A and B λ1,min = λ2,min = 0.01 and in C and
D λ1,max = λ2,max = 1.
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3.1 Abstract

Intraspecific variation in ecologically relevant traits is widespread. In generalist

predators in particular, individual diet specialization is likely to have important

consequences for food webs. Understanding individual diet specialization empiri-

cally requires the ability to quantify individual diet preferences accurately. Here we

compare the currently used frequentist maximum likelihood approach which infers

individual preferences using the observed prey proportions to Bayesian hierarchi-

cal models that instead estimate these proportions. Using simulated and empirical

data, we find that the approach of using observed prey proportions consistently

overestimates diet specialization relative to the Bayesian hierarchical approach

when the number of prey observations per individual is low or the number of

prey observations vary among individuals, two common features of empirical data.

Furthermore, the Bayesian hierarchical approach permits the estimation of point

estimates for both prey proportions and their variability within and among levels

of organization (i.e. individuals, experimental treatments, populations), while also

characterizing the uncertainty of these estimates in ways inaccessible to frequen-

tist methods. The Bayesian hierarchical approach provides a useful framework for

improving the quantification and understanding of intraspecific variation in diet

specialization studies.
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3.2 Introduction

Individuals within populations often differ from one another in ways that influ-

ence their function in ecological systems (Bolnick et al., 2011; Violle et al., 2012).

One manifestation of this intraspecific variation that is expected to have impor-

tant community- and population-level consequences is individual diet specialization

(Araújo et al., 2011; Bolnick et al., 2011, 2003). Theory suggests that individual

diet specialization can alter mean interaction strengths between predators and

prey, change the perceived topology and consequent dynamics of ecological net-

works, and drive eco-evolutionary feedbacks when prey preferences are heritable

(Bolnick et al., 2011; Gibert and Brassil, 2014; Schreiber et al., 2011). Since the

seminal paper on measuring diet specialization by Bolnick et al. (2002), empiri-

cal studies have further provided insight into the role of competition (e.g. Bolnick

et al., 2007; Svänback and Bolnick, 2007) and ecological opportunity (e.g. Rosen-

blatt et al., 2015; Semmens et al., 2009) in promoting diet specialization, and its

structure within populations (e.g. Araújo et al., 2008; Tinker et al., 2012). The

ability to quantify the prey preferences of individual predators accurately is a crit-

ical prerequisite for testing and developing such theory and empirical insights.

Individual diet specialization has been quantified by comparing each individ-

ual’s diet preferences to either the preferences of each other individual or to the

overall preferences of the aggregate population. Under the assumption that all

sampled individuals had equal opportunity to feed on the population’s potential

prey and exhibit equal handling times, the observed proportions of prey items in
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an individuals diet have often been equated directly to prey preference. For exam-

ple, among the most commonly used indices for quantifying a given individual’s

diet specialization is the proportional similarity index, PSi = 1− 0.5
∑

j |pij − vj|,

where pij is the observed proportion of prey j in the diet of individual i, and vj

is the average observed proportion of prey j among individuals in the population

(Feinsinger et al., 1981; Schoener, 1968). PSi varies from a value of vj if the indi-

vidual is a specialist on prey j to a value of 1 if the individual’s diet proportions

are the same as its population’s. Similarly, the IS and E indices have been com-

monly used to quantify diet specialization among individuals in a population or

some other grouping such as location, sex, or experimental treatment (Appendix

B) . IS is calculated by averaging over the PSi values for individuals within the

population (Bolnick et al., 2002). The E index is calculated by averaging across

all individual-to-individual pairwise proportional similarities (Araújo et al., 2008).

Using observed diet proportions as estimators of true diet proportions can be

viewed as a maximum likelihood estimate at the individual level. Hereafter, we

refer to this as the observed proportions method. Although such maximum likeli-

hood estimates are asymptotically unbiased, they can be severely biased for small

sample sizes (Bolker, 2008). Small sample sizes (the number of prey items per

predator individual) are a common feature of predator diet data to which infer-

ences of diet specialization can be particularly sensitive, either because indices rely

on the comparison of diet proportions that are observed with error (e.g., individual-

to-individual comparisons), or because they rely on the comparison of diet propor-

tions associated with vastly different sample sizes (individual-to-population com-
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parisons). Because the direct use of the observed diet proportions has formed

the basis of all previous diet specialization indices, including the commonly used

WIC/TNW index (Appendix B) and also those seeking to account for incomplete

sampling (Novak and Tinker, 2015), methods to assess and address this sensitivity

are needed.

Here we compare the use of the observed proportions approach to the use of

Bayesian hierarchical models for quantifying diet specialization. Bayesian meth-

ods are increasingly used in ecology (Clark, 2005; Ellison, 2004) and have been key

to the development of methods for quantifying predator-prey interactions at the

species level (e.g. Moore and Semmens, 2008; Wolf et al., 2015). When formulated

hierarchically (Fordyce et al., 2011), Bayesian models can avoid the aforementioned

limitations of the observed proportions approach by providing estimates for each

individual that are increasingly pulled towards the population’s (group’s) mean

value the lower an individual’s sample size (Gelman et al., 2013). In the context

of quantifying diet specialization, this gives lower weight to the diet proportions

of individuals having fewer prey observations, potentially reducing the bias of low

sample sizes expected for the observed proportions approach. In addition, the

Bayesian hierarchical approach permits the variability of diet proportion point es-

timates to be quantified, both within and among groups, while also characterizing

the uncertainty of these estimates in ways inaccessible to currently implemented

frequentist methods. Using simulated data where the true diet proportions are

known, we examine the accuracy of diet specialization inferences across varying

numbers of prey observations per individual, and in populations with heterogeneity
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in the number of prey observations among individuals. We also examine the corre-

spondence of common indices of diet specialization in the context of the Bayesian

framework. Lastly, we re-analyze two published empirical data sets of individual

diets to highlight the differences in inferences that the observed proportions and

Bayesian hierarchical approaches provide.

3.3 Materials and Methods

We first describe our use of Bayesian hierarchical models in a generic sense before

describing the details of our simulations and empirical analyses.

A two-level Bayesian hierarchical model for the diet of a sampled population of

individuals may be written as

~yi ∼ Multinomial(~pi, ni) (3.1)

~pi ∼ Dirichlet(~q × w) (3.2)

(Fordyce et al., 2011), where ~yi is a vector containing the number of each prey

type observed in the diet of the ith predator individual, ni is the total number of

prey items observed for the individual, ~pi is a vector of the individual’s diet pro-

portions (to be estimated), ~q is a vector of the population’s diet proportions (to

be estimated), and w is the so-called concentration parameter (to be estimated) of

the Dirichlet distribution that characterizes the clustering of the individual diets

around the population’s mean diet proportions (Figure 3.1). The concentration
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parameter thereby reflects the degree of diet specialization that exists within the

population. When no previous knowledge exists on the ~q and w parameters, uni-

form priors, such as

~q ∼ Dirichlet(~1) (3.3)

w ∼ Uniform(0, c), (3.4)

may be used. Here ~1 is a vector of ones the same length as the total number

of prey types observed for the population (Laplace’s prior; a uniform Dirichlet

distribution) and c is the maximum value that the concentration parameter w

may be presumed to achieve.

For our empirical re-analyses we expanded upon this model to include more

grouping levels by including additional equations like eqns. 3.2-3.4 with group-

specific parameters. We denote these group-specific parameters with subscripts.

For example, the concentration parameter describing the clustering of sites within

an aggregate population is denoted as wsites, but that of individuals within sites

(i.e. individual specialization per se) simply as w.

3.3.1 Diet specialization at the individual level

We used data simulated under several scenarios to compare the congruence of the

observed proportions and Bayesian hierarchical methods in quantifying the diet

specialization of individuals using the proportional similarity index, PSi. First, we
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simulated multinomial data for 500 populations consisting of 100 individuals that

were each observed feeding on either 5, 10, 25, or 50 prey items of up to 4 different

prey types. Second, because in studies of individual predator diets the number of

prey items observed per individual varies considerably among individuals, we also

simulated multinomial data for 500 populations in which 100 different predator

individuals per population were observed feeding on a range of prey item counts.

The number of observations per individual was stochastically drawn from a beta

distribution representing one of three possible scenarios: a uniform distribution

of observations per individual, Beta(α = 1, β = 1); a skewed distribution of

observations per individual whereby most individuals were observed with few prey

items, Beta(0.5,1); or a skewed distribution of observations per individual whereby

most individuals were observed with a large number of prey items, Beta(1,0.5).

Draws from the beta distribution were multiplied by 100 and rounded to the next

highest integer, leading to a total range of 1 to 101 prey items per individual (see

Appendix B for details).

For each simulation we implemented the Bayesian hierarchical model (eqns.

3.1 - 3.4) in OpenBUGS through the R package ‘R2OpenBugs’ (Lunn et al., 2000;

Sturtz et al., 2005), implemented the observed proportions method using the R

package ‘RInSp’ (Zaccarelli et al., 2013), and compared these to the true PSi values

of all individuals (Data S1, S2). For the Bayesian analysis, we used the mean of

the posterior distribution of PSi as our estimate of PSi. To quantify differences

between the estimates and the true values of PSi, we calculated the percentage

of points falling below the 1:1 line of perfect correspondence (the percentage of
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negative residuals). A method that equally under- and overestimates PSi values is

expected to have 50% negative residuals. We therefore interpret the percentages

of negative residuals for PSi greater than 50% as a measure of a given method’s

tendency to overestimate diet specialization.

3.3.2 Diet specialization at the population level

Although estimates of diet specialization at the individual level are useful for inves-

tigating the relationship between diet specialization and any number of potential

continuous traits (e.g., fitness, body size, body shape), researchers have typically

been interested in contrasting the relative diet specialization of individuals belong-

ing to different categories, such as experimental treatments, study sites, or sexes.

Therefore, we simulated data to compare the two most commonly used indices for

estimating relative diet specialization at the population level, IS and WIC/TNW,

using the observed proportions method, and the concentration parameter of the

Dirichlet distribution (w) which is unique to the Bayesian hierarchical approach.

To simplify interpretation we used the natural log of w, ln(w) (Figure 3.1), to reflect

the degree of diet specialization. A positive value of ln(w) reflects a population of

individuals whose diet proportions are concentrated around the mean diet propor-

tion of the population, a value of 0 reflects a population of individuals whose diet

proportions are uniformly distributed around the population’s mean diet, and a

negative value reflects a population of individuals whose diets are dispersed away

from the population’s mean diet. Therefore, ln(w) measures a gradient in diet
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specialization from weak specialization with increasingly large positive values to

strong specialization at negative values.

To compare methods, we used eqns. 3.1-3.2 to simulate multinomial data for

1000 populations of 100 individuals, each feeding on up to four prey types with

the count of observed prey items per individual drawn from a Uniform distribution

that ranged from 3 to 50 items, reflective of a typical empirical range for gut con-

tent data (for details see Appendix B). For each population we then implemented

the Bayesian hierarchical model (eqns. 3.1 - 3.4), implemented the observed pro-

portions method using ‘RInSp’, and contrasted the estimates of IS, WIC/TNW

and the concentration parameter ln(w) by graphing the indices against one an-

other. We also examined the accuracy with which the Bayesian method was able

to estimate true ln(w) values, and the accuracy with which the observed propor-

tions method was able to estimate IS and WIC/TNW, by calculating R2 values

and evaluating the average difference from the true values.

3.3.3 Analysis of empirical data

Simulations are limited in that they reflect only certain aspects of real data. We

therefore also re-analyzed two empirical data sets that represent contrasting data-

collection methods and predator-types: (i) gut contents from American alligators,

Alligator mississippiensis, containing multiple prey-items per gut collected in a

one-time snapshot fashion (Rosenblatt et al., 2015), and (ii) repeated longitudinal
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observations of intertidal whelks, Vasula (= Thais) melones, that feed on only one

prey item at a time (West, 1988).

3.3.3.1 Alligator data

These data represent 1,452 American alligators (combined female and male) across

19 sites in the southeastern United States. We grouped the 11-38 families of prey

species observed in the diets at each site into nine functional groups: fish, mol-

luscs, crustaceans, aquatic insects, terrestrial insects, amphibians, reptiles, birds,

and mammals. Plant material was removed prior to analysis. This reduced the

sparseness of the data and reduced the degree to which species-specific variation

in prey community composition inflated inferences of between site variation in diet

specialization.

We fit three Bayesian hierarchical models to these data: (i) a two-level model

with all individuals grouped into a single population (eqns. 3.1-3.4), (ii) a three-

level model with individuals nested within site, and (iii) a four-level model with

individuals nested within sex nested within site (see Appendix C for details). We fit

the three competing models in JAGS using the R package ‘rjags’ (Plummer, 2003,

2016) and calculated the Widely Applicable Information Criterion (also known as

the Watanabe-Akaike Information Criterion; WAIC) using the R package ‘loo’ to

select among them (Gelman et al., 2014; Vehtari et al., 2016; Watanabe, 2010).

WAIC is an information criterion that, like other information criteria, provides a

measure of model fit that is penalized by the number of model parameters, but has a
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sound theoretical foundation in Bayesian statistics (Gelman et al., 2014; Watanabe,

2010). We considered models whose WAIC scores were within 1 standard error

(SE) of one another to be indistinguishable on the basis of WAIC. In cases where

this occurred among the set of top models we chose to analyze the simplest model

on the basis of parsimony. To permit the comparison of PSi, IS, and WIC/TNW

estimates, we applied the observed proportions method to the data using ‘RInSp’

after splitting the data to the lowest level of the selected Bayesian hierarchical

model.

3.3.3.2 Whelk data

These longitudinal data represent 95 whelks from two rocky intertidal sites on the

Pacific Coast of Panama (West, 1988). Individually-tagged and measured whelks

were observed every 12 hours over a period of 3 months and, in total, were observed

feeding on 19 species of gastropods, bivalves, and polychaetes. Species were not

pooled into functional groups for the analysis of the whelk data. West reported

data for individuals with at least 5 prey observations per individual and categorized

the whelks into three size classes.

We fit three Bayesian hierarchical models to these data: (i) a two-level model

with all individuals grouped into a single population (eqns. 3.1-3.4), (ii) a three-

level model with individuals categorized by size class, and (iii) a four-level model

with individuals categorized by size class nested within site (see Appendix C for

details). As for the alligator data, we used WAIC to compare the competing
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models. The observed proportions method was again applied to the data using

‘RInSp’ after splitting them to the lowest level of the selected Bayesian hierarchical

model.

3.4 Results

3.4.1 Diet specialization at the individual level

The Bayesian hierarchical model for estimating specialization at the level of each

individual outperformed the observed proportions method both when the number

of prey items per individual was low (Figure 3.2) and when the number of prey

items per individual varied among individuals (Figure 3.3). With less than 50

observations per individual, the observed proportions method on average overes-

timated levels of specialization by underestimating the true values of PSi (Figure

3.2; 77% negative residuals when n = 5; 69% when n = 10; 62% when n = 25; 57%

when n = 50). In contrast, the Bayesian hierarchical method estimated PSi reli-

ably regardless of sample size (Figure 3.2; 45% negative residuals when n = 5; 48%

when n = 10; 50% when n = 25; 50% when n = 50). The observed proportions

method also performed poorly when sample sizes varied among individuals (Fig-

ure 3.3), tending to overestimate specialization most when most individuals had

few observations (66% negative residuals). The observed proportions method esti-

mated PSi more accurately when observations were uniformly distributed among

individuals and when most individuals had many observations, but still overesti-
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mated specialization in these cases (60% and 57% negative residuals, respectively).

In contrast, the Bayesian hierarchical method was not influenced by the variation

in the number of observations per individuals, consistently exhibiting an equal

number of over- and under-estimates for all scenarios (i.e. 49-50% negative resid-

uals).

3.4.2 Diet specialization at the population level

The IS, WIC/TNW, and ln(w) indices of population-level specialization were all

positively correlated with one another (Figure 3.4), but the relationships between

IS and either WIC/TNW or ln(w) were weaker than the relationship between

ln(w) and WIC/TNW (IS and WIC/TNW, R2 = 0.59; IS and ln(w), R2 = 0.72;

WIC/TNW and ln(w), R2 = 0.93). The latter relationship was weakly nonlin-

ear, with WIC/TNW beginning to saturate as ln(w) increased. IS tended to imply

greater diet specialization than did WIC/TNW and ln(w). The Bayesian hierarchi-

cal model estimated the true values of ln(w) accurately despite the heterogeneous

distribution of sample sizes we simulated (Figure 3.4, R2 = 0.97). The observed

proportions method estimated IS and WIC/TNW precisely, but consistently un-

derestimated both indices by average values of 0.04 and 0.03, respectively (Figure

3.4).
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3.4.3 Analysis of empirical data

3.4.3.1 Alligator data

The comparison of the three Bayesian hierarchical models indicated that the 3-

level model that included site as a grouping variable and the four-level model

that included both site and sex as grouping variables were indistinguishable by

WAIC (Table 3.1, Appendix C). We therefore analyzed the simpler 3-level model

which suggested that sites differed in their average diet proportions (Figure 3.6A,

ln(wsites) = 1.13 (95% credible interval: 0.83-1.43)). While the majority of sites

showed evidence of diet specialization at the individual level, sites also varied

substantially in their ln(w) values indicating that diet specialization was stronger

within some populations than others (Figure 3.5B, Figure 3.6B-D). Estimates of

ln(w) showed weak but positive correlations with the observed proportions method

estimates of IS (R2 = 0.30, Figure 3.5B) and WIC/TNW (R2 = 0.47, Figure 3.5C).

Estimates of PSi from the Bayesian hierarchical model and those of the comparable

observed proportions method evidenced little correspondence, with the observed

proportions method suggesting substantially higher levels of diet specialization

than the Bayesian hierarchical method for many individuals (Figure 3.5A). Esti-

mates of diet proportions at the site and individual level suggested that differences

among sites were primarily attributable to differences in the diet contributions of

invertebrates (especially molluscs) and fishes, with one site showing a large diet

proportion of reptiles. The prey taxa responsible for within-site variation in diet

proportions varied between sites.
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3.4.3.2 Whelk data

The three Bayesian hierarchical models considered were indistinguishable from

one another using WAIC, so we selected the simplest two-level model that implied

no difference among size classes and sites in whelk diet proportions (Table 3.1,

Appendix C). The PSi estimates from this model and the observed proportions

method were strongly positively correlated (R2 = 0.93; Figure 3.5E). However,

the observed proportions method consistently implied greater specialization. The

model suggested dispersion among individual diet proportions (ln(w) = 0.99, 95%

CrI = (0.67-1.29), Figure 3.6E) that was driven primarily by differences in individ-

ual’s apparent preference for either Ostrea spp. oysters, Siphonaria maura limpets,

or serpulid polychaetes.

3.5 Discussion

A prerequisite for gaining insights into the causes and consequences of diet spe-

cialization is the ability to accurately quantify specialization (Araújo et al., 2011;

Bolnick et al., 2011, 2003). Here, using simulated and empirical data, we show that

Bayesian hierarchical models are less prone to the overestimation of diet specializa-

tion than the currently used frequentist observed proportions approach, especially

when the numbers of prey observed per individual are low or are heterogeneous

among individuals. Low sample sizes per individual and heterogeneity in sample

sizes are two common features of predator diets whose influences were also ob-

served in our re-analyses of two empirical data sets. Furthermore, our analysis of
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the empirical data sets highlights the flexibility of hierarchical methods and illus-

trates the ability of the method to provide quantitative descriptions of diets and

diet specialization for individuals and groups under a single framework.

At the individual level, the observed proportions method consistently esti-

mated higher diet specialization than the underlying true values in the simulated

data, whereas the Bayesian method appeared unbiased. The observed proportions

method also estimated greater diet specialization for individuals within the empir-

ical data sets, suggesting that the observed proportions method may lead to biased

inferences of diet specialization in these cases. Our simulations showed that over-

estimation by the observed proportions method is particularly severe when sample

sizes per individual are low or variable across individuals. Indices that compare

individuals to individuals (e.g. the E index (Araújo et al., 2008)) exacerbate this

overestimation of diet specialization (Appendix A).

Hierarchical models provide so-called shrinkage estimators for which estimates

are pulled towards population-level means. The degree to which shrinkage occurs

is dependent on the sample size or amount of information that estimates are based

upon (Gelman et al., 2013). The Bayesian hierarchical method thereby gives less

weight to observations with low sample sizes whereas the observed proportions

method gives all observations equal weight regardless of sample size. For instance,

when an individual is observed feeding on three prey items of the same prey type,

the observed proportions method will infer this individual to be a complete spe-

cialist. In contrast, the Bayesian hierarchical method will associate some non-zero

probability to each of the unobserved but potential alternative prey depending on
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the assumed prior and the population-level diet proportion estimates. At high

sample sizes the observed proportions and Bayesian hierarchical models will con-

verge. In our simulations, this occurred when individuals were observed feeding

on between 25 to 50 prey items, which exceeds the median individual sample sizes

in both empirical data sets we analyzed. Although we did not consider the in-

fluence of the number of prey types fed on across individuals, this is unlikely to

influence the estimation of diet proportions in a fundamentally different manner

than assessed here given sufficient sample sizes.

In our re-analyses of the two empirical data sets, both individual- and population-

level estimates of the observed proportions method exhibited a much higher cor-

respondence with those of the Bayesian hierarchical method for the whelks than

for the alligators. Both data sets exhibited heterogeneity in sample sizes, with the

majority of individuals having low sample sizes and few individuals having large

sample sizes (Appendix D). However, the range of sample sizes was vastly different

in the two data sets, with the whelks having been observed consuming between

4 and 18 prey items per individual and the alligators having been observed with

between 1 and 2335 items in each individual’s gut. Several populations of alliga-

tors also had individuals with low sample sizes who had fed on rarely observed

prey types. The combination of these patterns means that the alligator diets were

much more heterogeneous, which is likely why the two approaches showed better

correspondence when applied to the whelk data set.

Contrasts of diet specialization between groups of individuals is a common goal

in studies of diet specialization. Although the three metrics of population-level spe-



58

cialization we examined all exhibited positive correlations with one another, the

ln(w) and WIC/TNW indices showed a higher correlation with one another than

did either index with the IS index. This result is likely driven by the fact that

IS reflects the average overlap between individual diets and the population diet,

whereas WIC/TNW and ln(w) are based on the variation in population diets ex-

plained by differences among individuals. We advocate using ln(w) as a measure

of specialization for three reasons. First, there is a large body of statistical lit-

erature on the Dirichlet distribution and its concentration parameter (see Agresti

(2002) and citations within). In contrast, the statistical properties of WIC/TNW

are unknown. Second, Roughgarden (1979) used the Shannon Diversity Index as

an analog for the variance of discrete data in calculating WIC/TNW (Appendix

B). The use of Shannon’s Diversity Index requires taking the log of proportions,

which is known to cause the overestimation of diet specialization if some individu-

als have consumed only a single prey type (Bolnick et al., 2002). Third, combining

ln(w) with the estimates of the diet proportions of individuals and groups allows

for the determination of the levels at which most variation in diet occurs, and the

particular prey that are responsible for that variation among individuals and/or

groups. For example, our reanalysis of the whelk diet data provided insufficient

support for the hypothesis that diets differed across sites or size classes, yet indi-

viduals still differed in the proportions of common prey types that they consumed.

Similarly, our analysis showed equivocal support for sex specific differentiation in

alligator diets, yet diets differed significantly among sites and among individuals
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within sites. In this case, our analysis revealed that fishes and invertebrates played

primary roles in explaining the individual differences in diets.

A further benefit of Bayesian methods is the ability to estimate the varia-

tion around point estimates of diet specialization and prey preferences. Markov

Chain Monte Carlo methods provide estimates of posterior variance even in sit-

uations where it is otherwise difficult to derive variance estimators directly or

where asymptotic approximations are required (Gelman et al., 2013). For exam-

ple, some authors have called into question the variance estimators for PSi pro-

vided by Feinsinger et al. (1981) (Bolnick et al., 2002). Indeed, estimates of the

variance of PSi from the Bayesian method showed little correspondence with the

variance estimated using Feinsinger et al.’s equations (Appendix D). Furthermore,

although variance can be estimated for IS and ln(w), there is no variance estimate

for WIC/TNW. Although Monte Carlo simulations have been used to determine

the significance of WIC/TNW and IS relative to null models of feeding (Bolnick

et al., 2002), these will also be prone to low sample size problems (Efron and

Tibshirani, 1993).

Future extensions to the Bayesian hierarchical models presented here will help

to address further questions surrounding the mechanisms underlying diet special-

ization. For example, groups may appear to display higher diet specialization rela-

tive to others due to differences in the availability or handling times of prey rather

than differences in individual diet preferences and specialization per se (Araújo

et al., 2011; Novak, 2010). The Bayesian hierarchical model can be extended to

explicitly address this possibility by modeling the concentration parameters as a
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function of such group-level attributes. A similar approach could also be used to ex-

amine the role of intraspecific competition in promoting diet specialization by mod-

eling the concentration parameters as a function of resource availability relative to

predator abundance. Several other possibilities, such as including individual-level

covariates to determine the influence of individual traits on diet specialization,

make Bayesian hierarchical models well-suited for addressing hypothesis-driven

questions regarding diet specialization and predator foraging more generally.

It is important to note, however, that Bayesian posterior distributions are a

compromise between the assumed prior distribution and the data-dependent like-

lihood function, with the latter carrying more weight as sample sizes increase

(Gelman et al., 2013). We used uniform priors on the parameters describing

the population level diet (~q; Dirichlet(~1)) and the concentration parameters (w;

Uniform(0, c)). For the analysis of both empirical data sets, we chose a maximum

value of c = 30 for the uniform prior on the concentration parameters because

the effects of increasing w on the proportional overlap among individual diets sat-

urated near 30 (Appendix D). Thus considering higher maximum values would

not likely qualitatively influence our inferences. Nevertheless, it is important to

allow for large enough values of w so as not to artificially limit it to small values

that could inflate estimates of diet specialization. Further analyses of intraspecific

diet specialization within the Bayesian hierarchical framework are needed to allow

ecologists to develop more empirically-grounded prior choices.

For methods of model fitting and parameter estimation to be useful and gen-

erally applicable, it is important to consider issues involved in implementing the
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method. For example, we had difficulty fitting the hierarchical model to the al-

ligator gut content data with prey identities resolved to the family level due to

the sparsity of these data. To address this problem, we grouped the prey items

into functional groups. Although the general influence of lumping prey into func-

tional groups is unknown for estimating diet specialization because no systematic

analyses have been performed, it is a common practice that ought to reduce the in-

ferred strength of specialization. That said, previous investigations have observed

no qualitative and only weak quantitative effects (Bolnick and Paull, 2009; Novak

and Tinker, 2015). Furthermore, models with particularly rare prey taxa may face

numerical issues involving the division by probabilities very close to zero. These

issues can be resolved by adding a small constant to each probability estimate or by

only considering taxa that appear in the diet over a certain abundance threshold,

but the influences of these choices needs further study.

Finally, it should be recognized that the Bayesian models presented here are

more difficult and require more work to implement than many of the currently-

used observed proportions methods. As an example, in Bayesian analyses, the user

must examine several model diagnostics to ensure that the Markov Chains have

converged and are well-mixed, that the burn-in period specified is long enough so as

not to bias the posterior distributions of parameters, and that posterior estimates

are reasonable (Gelman et al., 2013). Despite these added complications, our study

suggests that the inference of diet specialization from Bayesian hierarchical models

is more reliable and provides greater ecological insight into the diets of individuals

and populations. Thus, even when compared to the ease with which the observed
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proportions methods may be implemented, the Bayesian hierarchical method offers

several advantages that ultimately outweigh its additional complexity.
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Organism and model WAIC SE ∆ WAIC
Alligator
Individuals nested within 9008.5 138.6 0
site and sex
Individuals nested within site 9016.7 137.0 8.2
All individuals within the
same hierarchical level 9381.6 125.6 373.1
Whelk
Individuals nested within size 905.2 30.0 0
class and site
All individuals within the
same hierarchichal level 916.0 29.2 10.8
Individuals nested within size class 925.5 31.7 20.3

Table 3.1: The widely applicable information criterion (WAIC) suggested that
the models for the alligator data which had individuals nested within site and
individuals nested within site and sex were indistinguishable (within 1 standard
error (SE) of one another), but were preferred over the model with all individuals
in the same hierarchical level. For the whelk data, WAIC suggested that all of
the models fit to the data were indistinguishable. When WAIC was unable to
distinguish among models, we chose to analyze the simplest model (bolded). ∆
WAIC represents the difference between the model with the lowest WAIC score
and the other models considered.
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Figure 3.1: Hypothetical data illustrate the hierarchical nature of the Bayesian
models and the properties of the Dirichlet distribution. In A, the black points
represent the mean diet proportions of population sub-groups (e.g. sites or treat-
ments) and the gray point denotes the population mean over all sub-groups. The
labeled points in A represent the mean diet proportions of the sub-groups illus-
trated in B-D. In B-D, the black points represent the estimated diet proportions
of the individuals within the sub-group, whereas the gray point represents the
mean diet of the sub-group. All data were generated from Dirichlet distributions.
Each Dirichlet distribution has a vector describing the mean diet proportions of
the population or sub-group (the gray points in A-D) and a concentration param-
eter w that describes the extent to which sub-groups (A) or individuals (B-D) are
clustered around the population mean (A) or sub-group mean (B-D). A w value
of 1 (ln(w) = 0) represents a uniform distribution around the mean (as illustrated
in A); values greater than 1 (ln(w) > 0) represent a more concentrated distribu-
tion (as illustrated in B and D); values less than 1 (ln(w) < 0) represent a more
dispersed distribution (as illustrated in C).
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Figure 3.2: The observed proportions method led to the overestimation of individ-
ual diet specialization (the underestimation of PSi) at low numbers of observations
per individual. As the number of observations per individual increases, the esti-
mates from the observed proportions method and the Bayesian hierarchical models
converge and perform equally well at estimating PSi. Estimates of PSi from simu-
lated data are plotted against the true PSi values for 5, 10, 25, and 50 observations
per individual. The gray line in each graph reflects the line of equality between
the true and estimated values.
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A B C 

D E F 

Figure 3.3: Simulations with varying numbers of prey per predator individual
following one of three distributions – (A,D) a uniform distribution, (B,E) a dis-
tribution with most individuals having a large number of observations, or (C,F) a
distribution with most individuals having few observations – showed that the ob-
served proportions method overestimates specialization when the number of prey
per individual varied across individuals. In contrast, the Bayesian hierarchical
models estimated prey proportions accurately in all situations. The gray line in
each graph is the line of equality between the true and estimated PSi values.
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Figure 3.4: (A) Estimates of relative diet specialization within groups from simu-
lated data showed that the Bayesian hierarchical models provide a faithful estimate
of the true value of the Dirichlet concentration parameter, w. (B,C) Simulations
also showed that the observed proportions method provides precise estimates that
consistently underestimate the true values of IS and WIC/TNW. The gray line
reflects the line of equality between the true and estimated values. (D-F) The
three measures of population-level diet specialization within groups, ln(w), IS,
and WIC/TNW, were all positively correlated, but ln(w) and WIC/TNW show a
higher correlation than does either with IS.
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Figure 3.5: (A) Individual-level estimates of diet specialization in American alli-
gators were frequently higher when inferred by the observed proportions method
than the Bayesian model which differentiated sites but not sexes. (B) Site-level
estimates of specialization from the Bayesian model differed across sites and were
only weakly correlated with the corresponding observed proportions estimates (C)
WIC/TNW and (D) IS. (E) For whelks, the most parsimonious model did not dif-
ferentiate sites and whelk sizes. Its estimates of individual-level diet specialization
were positively correlated with the observed proportions estimates, but the latter
consistently estimated higher levels of specialization. The gray lines in A and E
represent the line of equality between estimates from the Bayesian model and the
observed proportions method.
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Figure 3.6: (A) American alligators showed variation in the mean proportion of
the three most consumed prey items (Fi = Fish, Mol = Mollusc, Cr = Crustacean)
among sites (ln(wsites) = 1.13) as well as among individuals, as illustrated by three
exemplary sites (B: ln(w17) = 2.27, C: ln(w1) = 0.71), and D: ln(w11) = 0.34).
The labeled points within A show the site means for the three sites illustrated
in B-D. (E) Whelks similarly showed variation in the proportion of the three
most frequently consumed items (Os = Ostrea spp. Oysters; Ser = Serpulid poly-
chaetes; Sm = Siphonaria maura limpets). The gray points in each ternary plot
represent either the average population-level proportions (A,E) or the site-level
average proportions (B-D).
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4 Changes in diet variation with prey community composition

alter the perceived strength of predator-prey interactions

Kyle E. Coblentz, Stephanie Merhoff, and Mark Novak
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4.1 Abstract

Diet variation among even seemingly identical individuals appears to be wide-

spread and has been hypothesized to have important ecological and evolutionary

effects. Many hypotheses surrounding the causes of this individual diet variation

center around the assumption that individuals vary among one another in their

prey preferences. However, chance alone, even if individuals have the same pref-

erences, should also cause diet variation and the magnitude of variation should

change predictably with the relative densities of prey. Here, we show support for

this stochastic foraging hypothesis in an intertidal whelk, Nucella ostrina, feeding

on barnacles and mussels. We show further that the variation in diets among indi-

viduals associated with both preference variation and variation in feeding propen-

sity alter mean feeding rates on prey through Jensen’s inequality. Furthermore,

the effects of variation through Jensen’s inequality are magnified when considering

both diet variation among individuals and spatial variation in prey densities. These

results highlight the importance of considering the stochastic nature of predator

foraging in studies of diet specialization and variation and show that variation

at multiple scales is capable of changing the perceived strength of predator-prey

interactions through nonlinear averaging.

4.2 Introduction

Individuals within generalist predator populations often differ from one another in

terms of diet. Although among individual differences in diet can often be attributed
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to various causes (e.g. ontogenetic niche shifts, sexual dimorphism, resource poly-

morphisms, etc.), studies focusing on seemingly identical individuals often still

find substantial variation among individuals in diets (Araújo et al., 2011; Bolnick

et al., 2003). This variation could have important ecological and evolutionary ef-

fects (Bolnick et al., 2011). For example, recent theoretical studies have suggested

that diet variation can alter the strengths of predator-prey interactions (Bolnick

et al., 2011; Gibert and Brassil, 2014), the eco-evolutionary dynamics of predator-

prey systems (Schreiber et al., 2011), and the coexistence of competitors (Hart

et al., 2016). Given the apparent prevalence of individual diet variation and its

potential consequences, ecologists are increasingly attempting to understand the

factors that cause it and assess its empirical effects.

Many hypotheses surrounding the ecological causes of individual diet varia-

tion are derived from optimal foraging theory (Araújo et al., 2011; Svänback and

Bolnick, 2007; Tinker et al., 2008). Optimal foraging theory predicts the prey

species that individuals should consume to maximize energy intake (Emlen, 1966;

Stephens and Krebs, 1986). Under optimal foraging theory, predators should rank

prey species according to their profitability, defined as the prey’s energy content

per unit handling time. The highest ranked prey item should be consumed when-

ever it is encountered. Lower ranked prey should only be included when the density

of higher ranked prey falls below a threshold at which ignoring lower ranked prey

would decrease the predator’s energy intake rate. Assuming that individual preda-

tors differ in their rank preferences for prey, optimal foraging theory has been used

to make predictions for how changes in prey densities and individual variation in
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rank preferences alters the magnitude of consequent diet variation. These predic-

tions underlie several hypotheses regarding the effects of intra- and interspecific

competition, ecological opportunity, and predation on the focal predator on in-

dividual diet variation (Araújo et al., 2011; Svänback and Bolnick, 2007; Tinker

et al., 2008).

Although prey preference differences among individuals is one source of diet

variation, diet variation can also be observed when all individuals share the same

prey preferences. It is recognized for example, that diet variation can result when

some individuals are able to monopolize resources or if individuals forage in dif-

ferent habitats that differ in prey availability (Bolnick et al., 2003). What has not

been generally considered is the extent to which the stochastic nature of predator

foraging influences the real and perceived magnitude of diet variation even when

individual prey preferences and experienced prey densities are the same. The ef-

fects of this stochasticity on diet variation are predictable: consider a population

of predators in which all individuals have the same and equal preferences for two

prey species. If one prey species is rare while the other is abundant, the diets

of individuals will mostly consist of the abundant species and diet variation will

be low. However, when both prey species are common, individual diets will vary

along a spectrum from nearly all of one prey species to nearly all of the other prey

species, thus increasing the amount of diet variation (Figure 4.1). It is unknown

how common this mechanism may be for generating diet variation, but its gener-

ality suggests that diet variation through stochastic foraging should be common.
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A potentially important and pervasive effect of diet variation is the alteration

of predator feeding rates due to Jensen’s inequality (Bolnick et al., 2011). Jensen’s

inequality states that, for a concave function f of a variable x the mean of the

function, f(x), will be less than or equal to the function evaluated at the mean of

the variable ,f(x). The opposite is true for convex functions. Because predator

functional responses (the relationship between prey densities and predator feeding

rates) are almost always nonlinear functions (Jeschke et al., 2004), variation among

individuals in functional response parameters is expected to alter population-level

feeding rates relative to the scenario in which all individuals exhibit the same

functional response parameters. For example, the commonly used Holling Type II

functional response (Holling, 1959) is a concave function of the predator attack rate

and a convex function of predator handling times. If predators vary in their attack

rates, then the realized mean feeding rate of predators should be less than or equal

to the expected feeding rate of the predators if all individuals exhibited the mean

attack rate (Figure 4.2). The opposite is true for variation in predator handling

times. Because individual variation and nonlinear functional responses should be

common, so should effects of Jensen’s inequality on feeding rates (Bolnick et al.,

2011). Despite the strong theoretical argument for effects of Jensen’s inequality,

we currently lack empirical data measuring this effect.

Here we used a manipulative field caging experiment with an intertidal whelk,

Nucella ostrina to examine relative support for an optimal foraging hypothesis vs.

a stochastic foraging hypothesis as causes of diet variation. We also estimate the

effects of diet variation on feeding rates through Jensen’s inequality. Our data show
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greater support for the stochastic foraging hypothesis than the optimal foraging

hypothesis as the explanation for diet variation in this system. As predicted, we

find that attack rate variation among individuals within cages decreases the mean

feeding rate of whelks relative to the scenario in which all individuals exhibited

the same mean attack rate within the cage. The total magnitude of this effect

was small. In contrast, we find up to an order of magnitude larger effect of attack

rate variation among individuals and heterogeneity in resource densities among

cages through Jensen’s inequality, suggesting that spatial variation in prey abun-

dances must be considered in concert with individual variation in attack rates to

appropriately scale between individual- and population-level feeding rates.

4.3 Methods

4.3.1 Study System

N. ostrina is a common intertidal predator on rocky shores of the Northeast Pacific

coast and feeds on several marine invertebrate species including acorn barnacles,

mussels, limpets, littorine snails, and gooseneck barnacles(Palmer, 1984; Spight,

1981). Its primary prey are the acorn barnacle, Balanus glandula, and the mus-

sel, Mytilus trossulus, hereafter referred to as barnacles and mussels, respectively,

unless otherwise noted.

Given this knowledge, we developed two hypotheses that make different pre-

dictions of how the magnitude of diet variation should change given changes in the
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total and relative abundances of the whelk’s preferred prey. The first hypothesis

is drawn from optimal foraging theory and assumes that individuals differ in their

rank preferences for barnacles versus mussels. Under this hypothesis, diet varia-

tion should be highest when both prey are at similarly high densities, intermediate

when the total density of prey is high, but prey evenness is low, and lowest when

the total prey density is low regardless of prey evenness. Under the stochastic

foraging hypothesis, when all individuals have the same prey preferences and rel-

ative preferences are intermediate, diet variation should increase as prey evenness

increases regardless of the total prey densities (Figure 4.1).

4.3.2 Experimental Methods

To empirically evaluate our two hypotheses, we used a field caging experiment

manipulating the total and relative densities of prey. In June 2015, we bolted

twenty 25x35mm stainless steel mesh cages with galvanized steel mesh lids into

an early successional disturbance patch within a California Mussel (Mytilus cali-

fornianus) bed in the mid-intertidal at Yachats, Oregon, USA (44.3°N, -124.1°W)

(Novak et al., 2017). Disturbed patches within California Mussel beds occur nat-

urally and in their early successional stages contain high densities of the preferred

prey of whelks. To modify total prey densities, we divided each cage into a grid

of ten 7x12.5cm rectangles and applied one of five treatments to four cage repli-

cates, scraping either zero, two, four, six, or eight randomly selected rectangles to

bare rock. As cages naturally varied in the composition of prey, the removal of
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prey led to continuous variation across cages in both the composition of the prey

community and the total number of prey available.

To each cage we added 30 individually-tagged whelks from the surrounding

area. The size of the whelks chosen (15.5-16.5mm) reflects the median size range

of whelks at this site in the summer months. We then performed biweekly sur-

veys during the lowest low tides of June through August and on 19 of 30 days in

September for a total of 41 surveys. Feeding whelks were recorded along with the

identity of the prey being eaten, the size of the prey, and the method by which the

whelk was feeding on the prey (drilled or prying). Every two weeks we recorded

whelk sizes were recorded every two weeks and photographed of the cage interiors.

Photographs from the beginning, middle, and end of the experiment were used

to estimate prey densities using ImageJ (Schneider et al., 2012). Any individuals

dying or escaping from the cages were replaced with a new individually tagged

whelk within the size range of the other whelks. This design provided longitudinal

samples of individual whelk diets over the course of four months and estimates of

prey densities across cages varying in both prey composition and total density.

4.3.3 Statistical Methods

4.3.3.1 Estimating Diet Variation

We estimated diet variation among individuals using a Bayesian hierarchical model

modified from Coblentz et al. (2017). We assumed that the number of barnacles
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observed in an individuals diet was binomially distributed. Because the handling

times for mussels are generally longer than the handling times for barnacles, we

added a correction for the bias in observing a feeding event on mussels versus

barnacles by accounting for the relative difference in handling times between the

two prey. Handling times and their relationship with prey size, predator size,

and feeding method were estimated from a laboratory experiment, the details of

which can be found in Appendix E. Handling times for each feeding observation

were estimated using regression coefficients from the laboratory experiment and

averaged for barnacles and mussels to generate a characteristic handling time for

each prey species across the experiment. Although estimating handling times this

way ignores possible effects of individual differences in handling times on diet

variation and its effects through Jensen’s inequality, we were unable to estimate

handling times of individuals, as individuals were only observed for a short period

of time during low tides. After correcting proportions for bias due to differences

among prey in handling times, we then assumed that the corrected proportion of

barnacles in individuals’ diets within a cage were described by a Beta distribution,

the variance of which we used as our measure of diet variation within each cage. We

used a uniform Beta prior for the mean of each Beta distribution and weak Gamma

priors on the variance of the Beta distributions, and estimated the parameters from

the model in R using the program ‘JAGS’ through the R package ‘rjags’ (Plummer,

2003, 2016).

We used model comparison to determine the relative support for two statistical

models encapsulating the differences between the optimal foraging and stochastic
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foraging hypotheses. The optimal foraging hypothesis predicts that diet variation

should be related to the total density of barnacles and mussels, the relative den-

sity of mussels to barnacles, and the interaction between these. Thus, we represent

this hypothesis with a multiple linear regression including terms for the total den-

sity, relative density, and their interaction, with the variance of the cage-level beta

distributions estimated above as the response variable. The stochastic foraging

hypothesis predicts that diet variation should be associated with the relative den-

sities of prey regardless of the total density of prey available. Thus, we represent

this hypothesis with a simple linear regression between diet variation and relative

prey densities.

To perform model comparison, we fit both models using the median point

estimates of diet variation from the hierarchical model in a Bayesian regression

framework using the R package ‘rstanarm’ (Carpenter et al., 2017; Stan Develop-

ment Team, 2016), then calculated the Widely Applicable Information Criterion

(WAIC), a Bayesian analogue to the Akaike Information Criterion (AIC) (Watan-

abe, 2010). To better meet model assumptions, we fit the models using the natural

log of diet variation and total prey density. The relative density of mussels to bar-

nacles was left untransformed. We used weakly informative priors on all of the

regression parameters (details can be found in Appendix F).
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4.3.3.2 Estimating the Effects Variation on Feeding Rates through

Jensen’s Inequality

To estimate the effects of variation through Jensen’s inequality on feeding rates,

we first estimated individual attack rates and used these individual attack rates to

estimate each individual’s feeding rate. Using the individual feeding rates, we then

calculated the observed mean feeding rate across individuals within each cage and

across all cages. We also used the individual attack rate estimates to calculate the

mean attack rate within each cage and across all cages and calculated the mean

feeding rate assuming that all individuals exhibited the same mean attack rate.

Comparing the observed mean feeding rates to the feeding rates calculated assum-

ing all individuals exhibited the same mean attack rate allowed us to measure the

effects of variation on the perceived feeding rates on prey through Jensen’s inequal-

ity within each cage and across cages (Figure 4.1). To estimate individual attack

rates, we used the attack rate estimator derived by Novak and Wootton (2008) and

Wolf et al. (2017) assuming a Holling Type II predator functional response. Al-

though this estimator has previously only been applied to snapshot feeding surveys

across individuals, it can also be applied to individuals given longitudinal samples

of individual feeding and nonfeeding events (Novak et al., 2017). Following Wolf

et al. (2017), we modeled the number of feeding events on barnacles and mussels

and nonfeeding events for each individual as multinomially distributed. The pro-

portions of feeding and nonfeeding events for each individual were assumed to have

a cage-level Dirichlet distribution with a uniform Dirichlet prior. Using estimates
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of the proportion of feeding events of individual j in cage k on prey i, pkji, the

individual’s proportion of nonfeeding events, pkj0, the density of prey i in cage k,

Rki, and the handling time of prey i, hi, the attack rate estimator for the individual

on prey i, αkji, is

αkji =
pkji
pkj0
× 1

hiRki

. (4.1)

We assumed that the densities of resources in each cage and the handling times

of prey were known and were estimated as in the above analysis of diet variation.

To calculate individual feeding rates, we substituted the estimated attack rates,

handling times, and resource densities into Holling Type II multispecies functional

responses for barnacles and mussels. From these individual feeding rate estimates,

we then estimated the mean feeding rate within each cage and across the entire

experiment by averaging the individuals feeding rates across individuals within

each cage or across the entire experiment respectively. Similarly, we estimated the

mean feeding rate using the mean attack rate for each cage and the mean attack

rate across the experiment. In calculating the feeding rate across the entire exper-

iment from the mean attack rate, the average resource densities across the cages

were used in the functional response. Thus the effect of Jensen’s inequality at the

experiment level is due to both variation among individuals in feeding rates and

variation among cages in resource densities. We measured the effect of Jensen’s

inequality by subtracting the feeding rate as estimated using the mean attack rate

from the mean feeding rate as averaged across all individual feeding rates. There-
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fore, a negative difference corresponds to an overestimation of cage or population

feeding rates when individual variation is ignored.

Lastly, because individuals can differ in attack rates due to variation in diet (the

pkji’s) and variation in the proportion of nonfeeding events (pkj0, hereafter feeding

propensity variation), we examined how these two types of variation were related

to the effects of Jensen’s inequality across cages. To do so, we performed regres-

sions on the relationships between diet variation and feeding propensity variation

and the effects of Jensen’s inequality on feeding rates for barnacles and mussels.

To estimate feeding propensity variation, we used the same model used to estimate

diet variation but with the total number of feeding events modeled as binomially

distributed. Diet variation was defined and measured using the variance of the

cage-specific beta distributions, just as measured above. Attack rates were esti-

mated using the program ‘JAGS’ through the R package ‘rjags’ (Plummer, 2003).

The regressions of the effects of Jensen’s inequality on diet and feeding propen-

sity variation were performed using the program ‘Stan’ through the R package

‘rstanarm’ (Carpenter et al., 2017; Stan Development Team, 2016).

Details of all of the statistical models used can be found in Appendix F.

4.4 Results

In total, the experiment generated 24,673 total observations for 719 individuals of

which 4,067 observations were feeding observations. Because prey densities within

the cages changed over the course of the experiment with increases in barnacles due
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to recruitment and decreases in mussels from predation, we limited the analysis to

individuals for which the mean densities of prey over the course of the experiment

were representative of the average prey densities experienced by individuals. Thus,

we focused on the 513 individuals that were observed in at least 35 of the total 41

surveys and had at least one feeding observation. Results were similar when using

different cutoffs for the minimum number of observations per individual. The 513

focal individuals had a total of 20,313 observations of which 2,713 were feeding

observations. The average number of feeding observations per individual was 5.2

and ranged from 1 to 15. Of the 2,713 feeding observations, the vast majority

were feeding observations on barnacles or mussels with only 10 observations of

individuals feeding on another species of acorn barnacle Chthamalus dalli and one

observation of an individual feeding on the limpet Lottia pelta. These observations

were removed prior to the analysis.

4.4.1 Causes of Diet Variation

Overall, cages differed in both the mean and variance of the proportion of barnacles

in the diets of individuals (Figure 4.3). Model selection using WAIC suggested

greatest support for the stochastic foraging hypothesis (WAIC Stochastic Foraging

Hypothesis = 31.3, WAIC Optimal Foraging Hypothesis = 33.4, Difference in

WAIC (Standard Error) = 1.1 (0.4)), with the magnitude of diet variation being

positively associated with the relative densities of mussels to barnacles (Figure

4.4A). Total density of prey was not associated with the magnitude of diet variation
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and there was no clear indication of an interaction between total prey density and

the relative density of mussels and barnacles influencing the magnitude of diet

variation (Figure 4.4A,4.4B).

4.4.2 Effects of Jensen’s Inequality on Feeding Rates

For both barnacles and mussels, individual variation in attack rates within cages

led to mean feeding rate estimates that were lower than the feeding rate estimated

from the cage-specific mean attack rate (Figure 4.5A-C, 4.6A-C). The mean dis-

crepancies in feeding rate estimates for barnacles ranged from -0.1 to -1.4 barnacles

per individual per 100 days. The estimated percent reduction in feeding rates on

barnacles ranged from 1.5 to 4.8%. The mean discrepancies in feeding rates for

mussels ranged from 0.003 to -0.33 mussels per individual per 100 days. The es-

timated percent reduction of feeding rates on mussels ranged from -0.2 to 5.1%.

Discrepancies in feeding rate estimates for barnacles increased with the amount

of feeding propensity variation (slope = 0.0028, 95% CrI = (0.0021, 0.0035)) and

decreased with the amount of diet variation (slope = 0.005, 95%CrI = (-0.0053,

-0.004);Figure 4.5B-C). The magnitude of the discrepancies in feeding rate esti-

mates for mussels increased with diet variation (slope = -0.001, 95%CrI = (-0.0015,

-0.0004)) and showed no relationship with feeding propensity variation (slope =

-0.0004, 95%CrI =(-0.001,0.0002), Figure 4.6B-C).

At the site scale, Jensen’s inequality also led to mean feeding rate estimates that

were lower than the feeding rates estimated from the mean attack rates (Figure
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4.5D, 4.6D). The mean estimated discrepancies at the site-scale were -4.8 barnacles

and -1.0 mussels per predator per 100 days. The estimated percent reduction in

feeding rates was 19.6% for barnacles and 21.2% for mussels.

4.5 Discussion

Intraspecific diet variation is a widespread phenomenon in generalist predators

that is hypothesized to have important ecological and evolutionary consequences

(Araújo et al., 2011; Bolnick et al., 2011, 2002). Using the intertidal whelk, Nucella

ostrina, as our focal predator, we investigated the drivers of diet variation in this

system and estimated the effects of individual variation on feeding rates through

Jensen’s inequality. Our results suggest that diet variation in this system can

be explained by individuals foraging randomly on available prey. We also find

that variation among individuals in attack rates reduces the mean feeding rates of

whelks. Furthermore, at the scale of the experiment, variation in attack rates along

with variation in resource densities reduces the mean feeding rates of the whelks

further. These results suggest that significant diet variation among individuals can

occur as a product of stochasticity and provides empirical affirmation of previous

theory on the effects of intraspecific variation on predator feeding rates through

Jensen’s inequality.

Much of the recent interest in intraspecific diet variation focuses on individual

diet specialization (Araújo et al., 2011; Bolnick et al., 2003). Individual diet spe-

cialization occurs when the diets of individuals are narrower than the diet of the
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population and the difference in diet cannot be explained by sex, age, or obvious

morphological differences (Bolnick et al., 2003). Although the variation in diets of

whelks in many cases within our experiment fits this definition, the fact that our

data provide strongest support for diet variation being driven by random foraging

of whelks makes us hesitant to use the term ‘specialization’. Although it is possi-

ble that some individuals were indeed specialized on either mussels or barnacles,

we cannot rule out that individual diets consisting of either mostly barnacles or

mostly mussels happened by chance. Ideally, studies of diet specialization would

sample prey communities concurrently with samples of individual diets. Doing so

would allow researchers to distinguish between variation due to random foraging

and variation due to diet specialization with the random foraging hypothesis act-

ing as a null model. In contrast, current null model approaches determine the

probability of the observed variation in diet among individuals if all individual’s

diets were random samples of the population-level diet using Monte Carlo tech-

niques (Bolnick et al., 2002). Using the random foraging hypothesis as a baseline

for comparison instead asks whether the observed variation could be explained by

assuming that all individuals share the population-level preference for prey but

differ in diets from random prey choice. Doing so should allow for a better dis-

tinction of whether significant variation among individuals in diets is truly due to

individual specialization.

Besides the occurrence of the expected relationship between the ratio of mussels

to barnacles under the random foraging hypothesis, other lines of evidence for the

random foraging hypothesis within the data may help researchers to distinguish
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between variation due to random foraging and diet specialization. First, the varia-

tion among individuals is relatively continuous. If individuals were specialized, one

would expect more discrete variation. For example, under the optimal foraging hy-

pothesis, if total and relative densities of prey were high enough, we would expect

to see some bimodal distributions of proportions of barnacles in diets. The lack of

bimodality in the estimates of our study is not a product of our chosen statistical

analyses, as the beta distribution used can take a bimodal form. The optimal for-

aging hypothesis also predicts that if barnacle density is high enough, individuals

that prefer barnacles over mussels should ignore mussels and consume only barna-

cles. Yet, complete barnacle specialists were absent in some cages which contained

thousands of barnacles. Another possible pattern supporting the random foraging

hypothesis that could not be assessed here is that the random foraging hypoth-

esis predicts that diet variation should be unimodal with respect to the ratio of

mussels and barnacles. Overall, distinguishing between random foraging and diet

specialization should be possible by combining statistical analyses of how variation

changes with prey densities with patterns of individual diet composition.

Random foraging is likely to be more difficult to assess in other generalist

species that may incorporate tens of species into their diets. Multivariate tech-

niques, partitioning prey into categories during the analysis, and stable isotope

analysis, however, should be useful. For example, ordination methods such as

principal components analysis or nonmetric multidimensional scaling applied to

the individual diets could provide evidence for clusters of individuals with similar

diets. A lack of clear clustering of individual diets might provide evidence for the
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random foraging hypothesis, whereas clustering that is unable to be explained by

prey densities might provide evidence for diet specialization. If there are a priori

expectations of how individuals are likely to differ in diets, the dimensionality of

the diet could be reduced by grouping prey species and then looking for evidence

of diet specialization or random foraging given differences among individuals in

the grouped prey. For example, a common specialization in fishes is on either

benthic or limnetic prey (e.g. Ehlinger and Wilson, 1988; Robinson et al., 1993;

Schluter, 1995; Svanbäck and Eklöv, 2002). After grouping prey as either benthic

or limnetic, one could then determine whether variation among individuals in pro-

portions of the grouped prey were more likely a product of the relative densities of

the grouped prey and random foraging or diet specialization. Lastly, if individuals

are foraging randomly, they may appear to be specialists over a given period of time

but, over a longer period of time, are likely to have a generalist diet. By sampling

tissues with different turnover rates for stable isotope analysis or analyzing tissues

produced sequentially over time, it should be possible to distinguish between true

specialization or variation among individuals due to random foraging.

Regardless of the cause of diet variation among individuals, we show that varia-

tion among individuals in attack rates is associated with reductions in feeding rates

through Jensen’s inequality as predicted by theory (Bolnick et al., 2011). Although

the effect of variation through Jensen’s inequality on feeding rates was detectable,

the magnitude of the effect was relatively small. The overall effect of variation

through Jensen’s inequality is dependent on the amount of variation among in-

dividuals and the nonlinearity of the function. Therefore, the effect should be
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greater in systems with larger variation among individuals such as systems with

strong diet specialization and in which the relationship between attack and feed-

ing rates is more strongly nonlinear. The effect of variation in attack rates in

whelks through Jensen’s inequality is also likely to be greater than measured, as

we purposefully minimized variation that could arise from size differences among

whelks so that this variation did not confound estimates of individual diet varia-

tion. Unfortunately, because we could not estimate individual handling times, we

could not estimate the effects of handling time variation on feeding rates through

Jensen’s inequality. As handling time variation should have the effect of strength-

ening feeding rates on barnacles and mussels, handling time variation could cancel

out the effect of attack rate variation or cause the net effect of individual variation

to be an overall strengthening of feeding rates. Future studies accounting for both

attack rate and handling time variation across naturally occurring variation among

individuals will be necessary to understand the net outcome of Jensen’s inequality

and individual trait variation.

Our results highlight that the effect of attack rate variation through Jensen’s

inequality is a product of variation in both diet composition (what we have referred

as simply diet variation) and feeding propensity variation . Furthermore, these two

types of variation can have different effects on the magnitude of the the reduction

in feeding rates. For example, the effect of variation through Jensen’s inequality

on barnacle feeding rates was greater with higher feeding propensity variation and

was dampened by diet variation. Cages with the largest effects of variation on

barnacle feeding rates were those in which diet variation was low with most indi-
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viduals feeding on barnacles. Because most individuals were feeding on barnacles,

variation in attack rates was largely attributable to feeding propensity variation

among individuals. As diet variation increased and more individuals incorporated

mussels into their diets, variation in attack rates on barnacles declined and the

consequent effects of attack rate variation through Jensen’s inequality weakened.

The effect of attack rate variation through Jensen’s inequality on mussel feeding

rates was only associated with the amount of diet variation. This was due to the

greatest amount of attack rate variation for mussels occurring when individuals

varied in the proportion of mussels within their diets. It is possible that these as-

sociations might be flipped if cages had been dominated by mussels. The fact that

feeding propensity variation alters attack rate variation widens the scope of poten-

tial effects of variation through Jensen’s inequality on feeding rates beyond diet

variation. For example, variation in feeding propensity among specialist individu-

als should also lead to the application of Jensen’s inequality. Although variation

in feeding propensity could arise randomly, feeding propensity variation could also

be the product of consistent behavioral or physiological differences among indi-

viduals. Several examples exist of consistent individual differences in traits such

as behavior and metabolism (For reviews see Biro and Stamps, 2010; Dall et al.,

2004; Sih et al., 2004). If these differences lead to differences among individuals

in the amount of prey they consume, then Jensen’s inequality should be relevant

even in specialist predators.

Combining the results that diet variation changes with prey densities and that

variation influences the strength of species interactions raises the possibility of
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an indirect interaction between prey mediated by the effects of their densities on

predator variation. For example, while mussels are rare, feeding rates through the

whelk functional response will be high on barnacles and low on mussels. However,

because of low diet variation and high feeding propensity variation, feeding rates

on barnacles will be weakened by Jensen’s inequality. As mussel densities increase,

feeding rates on mussels will increase due to the functional response. Diet variation

will also increase which should weaken the effects of variation through Jensen’s

inequality on barnacle feeding rates and increase the effects of variation through

Jensen’s inequality on mussel feeding rates, thus modifying feeding rate changes

through the functional response. It is possible that the direction of these effects

may be reversed if mussels dominated the system and barnacle densities were

increased. Altogether, this suggests that changes in whelk diet variation as a

product of changes in prey densities could cause an interaction modification (sensu

Wootton (1993)) by mussels on the whelk-barnacle interaction and vice versa.

Although this effect is likely to be weak in this system, changes in feeding rates

mediated by changes in predator variation due to prey availability is hence another

of a myriad of ways in which prey that share predators may indirectly interact

(Abrams and Matsuda, 1996; Holt, 1977).

At the level of the experiment, variation among individuals in feeding rates

and variation among cages in prey densities combined to produce a greater effect

of Jensen’s inequality than at the cage level. This effect stems from the nonlinear

relationships between both attack rates and prey densities with feeding rates in

the Holling Type II functional response. Our estimates suggest that the difference
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in feeding rate estimates were 0.048 for barnacles and 0.001 for mussels per preda-

tor per day. Over enough individuals or time, these differences suggest a possibly

substantial effect of the combined variation among individuals and variation in

prey densities. This suggests that even if a researcher is able to account for in-

dividual variation in attack rates when estimating feeding rates, they also should

account for variation in resource availability for those individuals. In our study,

individuals were confined to cages, so estimating the average densities experienced

by individuals was simple. For non-confined animals, the spatial scale over which

to determine prey densities is more complex. One option might be to estimate the

local prey density for each feeding event or sample of an individual. Alternatively,

one could sample the prey community at the scale at which the individual could

have foraged over the temporal scale for which the individual was sampled. Given

that both spatial and individual variation are likely to influence the strength of

predator-prey interactions across scales, it may be useful to extend scale transition

theory to include individual trait variation. Scale transition theory is a method

developed to scale processes from samples at small spatial scales to larger spa-

tial scales by accounting for variability in species densities and the interaction of

this variability with nonlinearities (Chesson, 1998, 2012; Melbourne and Chesson,

2006). It may be possible to take advantage of this theory to scale from the level of

the individual to the level of the population to account for individual trait variation

and its effects on ecological processes.
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4.6 Conclusions

Diet variation is generally considered as the result of differences among individuals

in their prey preferences. However, substantial variation among individuals can oc-

cur purely through stochastic prey choice by individuals. Furthermore, variation

through stochastic foraging changes predictably with prey densities. Studies of

diet variation, particularly individual diet specialization, should examine whether

stochastic foraging is able to explain diet differences among individuals and be

aware that stochastic foraging could confound inference on other ecological causes

of diet variation. Jensen’s inequality is thought to have widespread application in

ecology due to the prevalence of nonlinearities in ecology. We provide evidence

that the effect of variation through Jensen’s inequality on feeding rates is measur-

able in this system at multiple scales. Future studies incorporating individual trait

variation and its scaling to effects at the population level will give us a greater un-

derstanding of how individual differences might alter the dynamics of populations

and when these effects are likely to be important.
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Box 1: Stochastic Foraging and Diet Variation

Although many hypotheses regarding the ecological causes of diet variation as-
sume that individuals differ in their prey preferences, diet variation among in-
dividuals is expected even if all individuals share the same prey preferences and
experience the same prey densities. This stochastic mechanism can be illustrated
by considering the foraging process of a population of predators feeding on two
prey as a binomial process. Assume that all predator individuals have the same
relative preferences for prey one, q1, and for prey two, q2. Prey one and prey
two also have relative abundances in the environment, r1 and r2, respectively.
Assume that individuals randomly encounter individuals of each prey species in
proportion to their relative abundances and accept prey in proportion to their
preference for that prey. Under these assumptions, we can treat the number of
prey one in the diet of a predator as a binomially distributed random variable
with the probability of consuming an individual of prey one , p,as:

p =
q1r1

q1r1 + q2r2

.

By definition, the variance of a binomially distributed random variable is np(1−
p), where n is number of trials (in this case, the total number of prey items
consumed). Assuming a constant n, the variance is maximized when p = 0.5.
Thus, if all individuals have the same preferences for prey, the amount of diet
variation among individuals is maximized when the relative preferences for each
prey qi are equal to the reciprocals of the relative densities of each prey 1

ri
. For

example, if all predators have equal preference for both prey q1 = q2 = 0.5, then
diet variation is maximized when r1 = r2 = 0.5. These results also hold for more
than two prey where foraging can be considered as a multinomial process and
the total variance (defined as the sum of the diagonal of the variance-covariance
matrix) is maximized.

Figure 4.1: Text box providing an explanation of the generation of individual diet
variation through stochastic foraging.
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Figure 4.2: The Holling Type II functional response f is a concave function of
the attack rate α. Variation among individuals in attack rates causes the average
feeding rate among individuals f(α) to be less than the feeding rate evaluated at
the average attack rate f(α).
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Figure 4.3: The mean and variance of the proportion of barnacles in the diets of
individuals differed across cages varying in the ratio of mussels to barnacles and
the total densities of prey. The vertical line in each histogram denotes the mean
proportion of barnacles observed across individuals.
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Figure 4.4: In support of the stochastic foraging hypothesis, the magnitude of vari-
ation among individual whelks in the propotion of barnacles in their diets showed
a positive relationship with the ratio of mussels to barnacles (A), no relationship
between the total density of prey (B), and no clear evidence of the effect of an
interaction between the ratio of mussels to barnacles and total prey density (A,B).
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Figure 4.5: Individuals across cages vary in their attack and feeding rates on barnacles (A).
Attack rate variation among individuals leads to differences between the mean feeding rates of
individuals (the solid horizontal lines) and the mean feeding rate (the dotted horizontal lines,
which may overlap the solid horizontal lines) evaluated at the mean attack rate (the solid vertical
lines) due to Jensen’s inequality. The differences in the feeding rate estimates become more
negative (greater effect of Jensen’s inequality) as the variation among individuals in feeding
propensity increases (B) and less negative as the amount of diet variation increases (C). At the
experiment scale, variation among individuals in attack rates coupled with variation across cages
in prey densities again leads to differences between the mean feeding rates across individuals
(the solid horizontal line) and the mean feeding rate (the dashed horizontal line) evaluated at
the mean attack rate across individuals (the solid vertical line; D). The curved line in D gives
the relationship between attack rates and feeding rates on barnacles at the mean prey densities
across cages.
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Figure 4.6: Individuals across cages vary in their attack and feeding rates on mussels (B).
Attack rate variation among indivdiuals leads to differences between the mean feeding rates of
invdividuals (the solid horizontal lines) and the mean feeding rate (the dotted horizontal lines,
which may overlap the solid horizontal lines) evalutated at the mean attack rate (the solid
vertical lines) due to Jensen’s inequality. The differences in feeding rate estimates shows no
relationship with variation in feeding propensity (B) but become more negative (greater effects
of Jensen’s inequality) with increasing individual diet variation (C). At the experiment scale,
variation among individuals in attack rates coupled with variation across cages in prey densities
again leads to differences between the mean feeding rates across individuals (the solid horizontal
line) and the mean feeding rate (the dashed horizontal line) evaluated at the mean attack rate
across individuals (the solid vertical line; D). The curved line in D gives the relationship between
attack rates and feeding rates on mussels at the mean prey densities across cages.
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5 Conclusions

Variation among individuals in many traits is widespread, including diet. The phe-

nomenon in which diet differences among individuals cannot be attributed to ob-

vious differences among individuals has been termed individual diet specialization.

Emprical surveys of predator populations have suggested that this phenomenon is

widespread (Araújo et al., 2011; Bolnick et al., 2003), while theoretical studies have

suggested that diet specialization may have important consequences for popula-

tions and communities (Bolnick et al., 2011; Hart et al., 2016; Patel and Schreiber,

2015; Schreiber et al., 2011). In this dissertation I have attempted to address some

outstanding issues in the litterature regarding the causes, consequences, and es-

timation of diet specialization. Overall, my dissertation simultaneously provides

both critiques and support for some ideas in the field and suggests some ways

forward.

One of the motivations underlying the study of individual diet specialization

has been the large number of studies suggesting that individual diet specialization

is commonplace in a variety of taxa and biomes (Araújo et al., 2011; Bolnick et al.,

2003). However, one concern is that the magnitude of diet specialization may be

overestimated in these studies. In Chapter 3, I showed that current methods for

estimating diet specialization are biased towards the overestimation of diet special-

ization. This overestimation is particularly severe when sample sizes per individual
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are low or are heterogeneous among individuals which is a common feature of diet

data. This suggests that diet specialization may not be as widespread as previ-

ously purported. Future studies should guard against this overestimation by either

adopting methods such as those presented in Chapter 3 with shrinkage estimators

(Coblentz et al., 2017) or by excluding individuals with low sample sizes. However,

there are likely biological situations in which diet specialization itself lead to some

individuals having low sample sizes. For example in some fishes, individuals differ

in their degree of piscivory (Svanbäck et al., 2015). Piscivorous individuals will

show low sample sizes while individuals consuming invertebrates will have higher

sample sizes. This suggests that, in general, the adoption of hierarchical models

are likely the better solution in many systems.

An additional concern beyond overestimation of diet specialization is that many

studies may not be estimating diet specialization in the strict sense. In the seminal

paper defining diet specialization, Bolnick et al. (2003), individual specialists were

defined as ‘an individual whose niche is substantially narrower than its population’s

niche for reasons not attributable to its sex, age, or discrete (a priori) morphological

group.’ However, it is difficult to assess whether many studies of diet variation are

able to determine whether an individuals ‘niche is substantially narrower’ from

their samples of individuals diets. In fact, in a companion paper, Bolnick et al.

(2002), several of the issues involved in inferring diet specialization were outlined.

For example, ‘true’ diet specialization should be temporally consistent and should

not be the product of differential resource availability for individuals (Araújo et al.,

2011; Bolnick et al., 2002). Although several studies have provided evidence for
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diet specialization in this strict sense, the majority do not. I suggest that the term

diet specialization be limited to the cases in which there is evidence for consistent

limited diets of individuals relative to the population and when this is not the case

diet variation be referred to as simply diet variation.

Despite these concerns, the estimation of variation’s effect on feeding rate es-

timates through Jensen’s inequality in Chapter 4 suggests that diet variation that

does not meet the strict definition of diet specialization can still have important

ecological effects. As shown in Chapter 4, diet variation among whelks was unlikely

due to specialization. However, diet variation still influenced the attack rate vari-

ation among indviduals. This variation in attack rates interacting with nonlinear

functional responses altered the perceived strength of predator-prey interactions.

Furthermore, the variation among individuals interacted with variation in resource

densities to produce greater differences in the perceived strength of interactions.

Overall, this suggests that diet variation that is not specialization is still eco-

logically relevant. Therefore, research into causes and consequences of variation

caused by mechanisms not leading to specialization, such as stochastic foraging or

habitiat/resource availability, is still important.

In terms of systems exhibiting ‘true’ diet specialization, my dissertation pro-

vides some insight into ecological features of consumer-resource interactions that

are likely to produce disruptive selection, a potential ultimate cause of diet spe-

cialization. First, disruptive selection requires that resources require sufficiently

different traits or behavior of the consumers to use well (Patel and Schreiber (2015);

Schreiber et al. (2011), Chapter 2). Second, disruptive selection should be stronger
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when handling times and interference are low for individuals with the highest attack

rates. However, this is dependent on the nature of interference among consumers.

Lastly, Chapter 2 suggests that considering the effects of traits on multiple fea-

tures of consumer-resource interactions is important in determining the evolution

of traits. In terms of disruptive selection, the theory in Chapter 2 suggests that

disruptive selection is most likely in traits that alter the ability of an individual

to use particular resources, decrease the handling time of that individual on a

consumer, and decrease the interference experienced by the individual.

In summary, my dissertation suggests several ways forward for the study of

diet specialization. First, the definitions used in defining diet specialization and

the evidence used to provide support for diet specialization within systems are

often mismatched. However, my results also suggest that variation that may not

meet the definition of diet specialization is nonetheless important. Furthermore,

this suggests that the development of theory and empirical work into understand-

ing alternative causes and consequences of variation in diet are also important.

This dissertation also provides some insight into which systems should be targeted

in attempting to understand diet specialization. In particular, systems likely to

exhibit diet specialization due to disruptive selection on resource-use traits may

eventually provide model systems in which to examine the potential consequences

of diet specialization. Lastly, by providing an example of a way in which to empir-

ically measure a consequence of diet variation, in particular the effect of variation

and nonlinear functions through Jensen’s inequality, I hope that my research will

increase the attention given to understanding what effects this variation may have
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and the situations in which variation is most likely to alter our understanding

species interactions and ecological and evolutionary dynamics.
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Appendix A Estimates of diet specialization using individual to

individual comparisons

In the main text, we focus on indices of diet specialization that compare individual

diet proportions to those of the population. However, some authors have used

indices such as the E index that compare the diet proportion of each individual

to the diet proportions of each other individual to estimate diet specialization

(Araújo et al., 2008; Novak and Tinker, 2015). Ei is calculated by computing the

PSi index for each individual compared to each other individual then averaging

across those values and subtracting the resulting value from 1. For a group level

estimate, the index E can be calculated by averaging across all of the individual

Ei estimates. As defined by Araújo et al. (2008), Ei and E range from a value of 1

when there is complete diet specialization to 0 when all individuals have the same

diet. However, for consistency with the other indices we report, which have lower

diet specialization with increasing values, we report 1-Ei as Ei.

Because each estimate of individual diet proportions under the observed pro-

portions method is expected to be associated with error at low sample sizes, we

predicted that comparisons of individuals to individuals would be associated with

higher overestimation for the observed proportions method than the Bayesian hi-

erarchical method. Hence, we ran simulations where the true values of Ei were

known and then estimated Ei using the observed proportions and Bayesian hierar-
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chical methods under various sample sizes per individual and with heterogeneous

sample sizes among individuals.

We used simulations to compare the true Ei values to those estimated by the

observed proportions and Bayesian hierarchical methods under different sample

sizes per individual and with variation in sample sizes among individuals. First,

we investigated the effects of sample size with all indviduals having the same num-

ber of observations. We simulated 50 populations of 100 individuals feeding across

four prey types with each individual feeding on either 5, 10, 25 or 50 prey items.

For each simulation, we first drew the true population diet preference from a uni-

form Dirichlet distribution. We then drew the Dirichlet concentration parameter

from a Uniform(1,10) distribution. Using the Dirichlet distribution defined by the

population preference and the concentration parameter, we then randomly drew

preferences for each individual. Then, we used the individual level preferences to

draw multinomial data for each individual with the appropriate number of ob-

servations. Using the individual preferences, we then calculated the true values

of Ei and estimated Ei using the observed proportions method in the R package

‘RInSp’ with the function Eindex (Zaccarelli et al., 2013) and a two level Bayesian

hierarchical model (eqns. 1-4 in the main text) implemented in BUGS using the

R package ‘R2OpenBUGS’ (Lunn et al., 2000; Sturtz et al., 2005). To obtain the

Bayesian posterior estimates we used a burn-in period of 200 iterations followed by

1000 sampling iterations from every fifth iteration of the model for each of three

chains. The burn-in period, number of samples, and thinning were chosen after

applying the model to several simulated data sets and examining the convergence
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of the model, the mixing of the chains, and the autocorrelation between iterations

within chains. To compare the accuracy with which the two methods estimated Ei,

we plotted the true and estimated values against one another and calculated the

percentage of negative residuals (i.e. the percentage of points falling below the 1:1

line). If a method over and underestimates a value at equal frequencies, we would

expect to have 50% negative residuals. Therefore, we interpret values of negative

residuals above 50% as a measure of the extent to which a method overestimates

diet specialization.

To examine the accuracy with which the observed proportions and Bayesian

hierarchical methods estimated Ei with heterogeneous sample sizes among indi-

viduals, we simulated diets of individuals with known preferences. The methods

for simulating and analyzing the effects of heterogeneity in sample sizes across

individuals was the same for the analysis of the effects of sample sizes when all

individuals had the same sample size with one exception. Rather than the sample

sizes per individual being predetermined, each individual’s sample size was deter-

mined by a random draw from one of three beta distributions multiplied by 100

and rounded to the next highest integer. The three beta distributions (Beta(1, 1),

Beta(0.5, 1), and Beta(1, 0.5)) were chosen to represent three possible cases for the

distribution of sample sizes among individuals: a uniform distribution of sample

sizes, a distribution of sample sizes skewed towards many individuals having few

observations, and a distribution of sample sizes skewed towards many individuals

having many observations.
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As expected, the observed proportions method consistently overestimated diet

specialization at low sample sizes (A.1) and when sample sizes among individuals

were heterogeneous (A.2). Although the observed proportions estimates of Ei were

estimated more accurately as the sample size per individual increased to 50, the

percentage of overestimation by the maximum likelihood method remained high

(A.1; % negative residuals, n=5, 91.5%; n=10, 86.1%; n=25, 78.4%; n=50, 71.0%).

In contrast, the Bayesian hierarchical method by a sample size of 10 prey items

per individual began to over- and underestimate the values of Ei at a nearly equal

frequency (A.1; % negative residuals, n=5, 41.3%; n=10, 48.4%; n=25, 48.5%;

n=50, 49.0%). With heterogeneous sample sizes among individuals, the maximum

likelihood method performed poorly by overestimating diet specialization in all

three of the cases examined (A.2). The overestimation was highest for the case

in which most individuals had few observations (92.8% negative residuals). How-

ever, significant overestimation still occurred for uniform distributions of sample

sizes across individuals (80.8% negative residuals) and when sample sizes were

skewed towards many observations per individual (74.1% negative residuals). Het-

erogeneity in sample sizes among individuals had less influence on the Bayesian

hierarchical method in terms of over- and underestimation of diet specialization as

the percentage of negative residuals ranged from 52.0% in the case of sample sizes

skewed towards few observations per individual to 47.9% in the case of a uniform

distribution of observations per individual.

Our simulations show that indices of diet specialization that use individual to

individual comparisons of diet proportions rather than individual to population
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diet proportions using the observed proportions method also overestimate diet

specialization when sample sizes per individual are low or heterogeneous. The

overestimation of the Ei index using the observed proportions method is larger

than that of the indices using the individual to population estimates. This is be-

cause at low sample sizes the maximum likelihood estimates of the diet proportions

are associated with error. In the case of the Ei index, one is comparing estimates

of diet proportions that are each associated with error. In the case of indices that

compare individual to population level estimates, the population level estimates

are associated with higher sample sizes and therefore less error. Thus, the observed

proportions method overestimates diet specialization more often with indices that

compare individual-level estimates. The estimates of Ei using the Bayesian hierar-

chical method were associated with nearly equal under- and overestimation. Again,

this is because of the shrinkage estimators provided by hierarchical methods which

perform better at low sample sizes but converge to maximum likelihood estimates

at large sample sizes. As group level estimates constructed from Ei simply take

the average of the Ei values, these estimates follow the same general pattern of

overestimation for the maximum likelihood method (not shown).
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Figure A.1: The maximum likelihood method using the observed diet proportions
of individuals tends to overestimate Ei when sample sizes per individual are low.
The estimates become more accurate as the sample size per individual increases,
but the method still tends to overestimate Ei values. The Bayesian hierarchical
method shows equal over- and underestimation of Ei for sample sizes ten or larger.
Estimates of Ei from simulated data are plotted against the true Ei values for 5,
10, 25, and 50 observations per individual. The red line in each graph reflects the
line of equality between the true and estimated values
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Figure A.2: Simulations with varying numbers of prey per predator individual
following one of three distributions – (A,D) a uniform distribution, (B,E) a dis-
tribution with most individuals having a large number of observations, or (C,F) a
distribution with most individuals having few observations – show that the maxi-
mum likelihood method overestimates specialization when the number of prey per
individual varies across individuals. By contrast, the Bayesian hierarchical models
estimate prey proportions accurately in all situations. The red line in each graph
is the line of equality between the true and estimated Ei values.
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Appendix B Details for the simulation of data and the analysis of

simulated data

B.1 Estimating individual diet specialization across sample sizes

per individual

For each of the 500 populations simulated at 5, 10, 25, and 50 observations per

individual, we first drew a single sample from a uniform Dirichlet distribution to

determine the population diet preferences. To allow for differences among popula-

tions in the amount of diet specialization, we then drew a concentration parameter

for the population from a Uniform(1,10) distribution. Then, for each of the 100

individuals in the population, we drew the individual’s diet preferences from the

Dirichlet distribution defined by the random population preferences and concentra-

tion parameter. Each individual was then given the appropriate number of obser-

vations from a random draw from a multinomial distribution with the probabilities

of each prey item being observed defined by the individual’s prey preferences. The

individual’s true PSi value was calculated using the true population and individual

prey preferences.

The simulated data was first analyzed using the Bayesian hierarchical method

implemented in OpenBUGS through the package ‘R2OpenBUGS’ (Lunn et al.,
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2000; Sturtz et al., 2005) with the following model,

~yi ∼ Multinomial(~pi, ni) (B.1)

~pi ∼ Dirichlet(~q× w) (B.2)

with priors,

~q ∼ Dirichlet(~1) (B.3)

w ∼ Uniform(0.1, 30) (B.4)

where ~yi is a vector containing the number of each prey type observed in the diet

of the ith predator individual, ni is the total number of prey items observed for

the individual, ~pi is a vector of the individual’s diet proportions, ~q is a vector of

the population’s diet proportions, and w is the concentration parameter. We chose

uniform priors for the model to minimize the influence of priors on the resulting

posterior distributions. We used a burn-in period of 200 iterations followed by

1000 sampling iterations from every fifth iteration of the model for each of three

chains. The burn-in period, number of samples and thinning were chosen from

results of applying the model to several simulated data sets and examining the

convergence of the model, the mixing of chains, and the autocorrelation between

iterations within chains. For each iteration, PSi was calculated so that we could

estimate the variance of PSi. After fitting the model, we saved the median values
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of the posterior for PSi of each individual and calculated the variance of PSi from

the posterior distribution of PSi.

We then estimated PSi using the observed proportions method with the R

package ‘RInSp’ (Zaccarelli et al., 2013). We used the function ‘PSicalc’ with

the population diet determined by taking the average of the diet proportions of

individuals so that the results between the observed proportions and Bayesian

hierarchical methods would be comparable. After estimating PSi and the variance

of PSi, the values were saved.

B.2 Estimating individual specialization with heterogeneity in sam-

ple sizes among individuals

The simulation and analysis methods for estimating individual diet specialization

with heterogeneity in sample sizes among individuals was the same as the meth-

ods for simulation and analysis for estimating diet specialization across different

sample sizes per individual with one exception. Rather than the sample sizes per

individual being predetermined, each individual’s sample size was determined by a

random draw from one of three beta distributions multiplied by 100 and rounded

to the next highest integer. The three beta distributions (Beta(1, 1), Beta(0.5, 1),

and Beta(1, 0.5)) were chosen to represent three possible cases for the distribution

of sample sizes among individuals: a uniform distribution of sample sizes, a distri-

bution of sample sizes skewed towards many individuals having few observations,



128

and a distribution of sample sizes skewed towards many individuals having many

observations (Figure B.1).

B.3 Estimating individual specialization at the population level

To compare estimates of individual specialization at the population level, we esti-

mated three indices of relative diet specialization at the group level: IS, WIC/TNW,

and ln(w). IS is defined as the average of the PSi values within the group (see

main text for the definition of PSi). WIC/TNW is based on equations for within-

species niche partitioning derived by Roughgarden (1979). This method, when

applied to discrete diet data, decomposes the diet data into a Within-Individual

Component (WIC), a Between-Individual Component (BIC), and the Total Niche

Width (TNW) using the Shannon Diversity Index of the observed diet proportions

of each prey item as an analog for variance. The three components are given by

WIC =
∑
i

(pi ×−
∑
j

pij ln pij) (B.5)

TNW = −
∑
j

vj ln vj (B.6)

BIC = TNW−WIC, (B.7)

where pi is the proportion of the total number of the aggregated population’s prey

that are consumed by individual i, pij is the proportion of prey type j in the diet of

individual i, and vj is the proportion of prey type j in the diet of the population.

The WIC/TNW index ranges from 0 to 1, where a value of 0 represents no overlap



129

in the diet of individuals and a value of 1 represents total overlap in the diets of

all individuals. Lastly, ln(w) is the natural log of the concentration parameter of

the Dirichlet distribution describing the population diet.

The basic process of simulating data for the analysis of the relative diet spe-

cialization of populations was the same as the process of simulating data for the

analysis estimating diet specialization across different sample sizes per individual,

with some exceptions. First, for greater coverage for evaluating the accuracy with

which the Bayesian hierarchical model estimates ln(w), the concentration param-

eter was drawn from a Uniform(0.5, 10) distribution. Sample sizes per individual

were drawn from a Uniform(3, 50) distribution and rounded to the nearest integer.

Lastly, to estimate WIC/TNW, the function ‘WTdMC’ was used with the popu-

lation preferences estimated as the average observed proportions of individuals in

the population (Zaccarelli et al., 2013). After the analyses, we saved the true and

estimated values of w, WIC/TNW, and IS.
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Figure B.1: Probability density functions (pdf’s) of the three Beta distributions
from which individual sample sizes were drawn for simulating heterogeneity in
sample sizes among individuals.
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Appendix C Details of the process used to estimate diet

specialization from empirical data

C.1 American alligator data

To determine the most appropriate Bayesian hierarchical model for analyzing the

alligator gut content data, we fit three different models to the data and then used

the Widely Applicable Information Criterion (or Watanabe-Akaike Information

Criterion; WAIC) to select among the three models (Gelman et al., 2014; Vehtari

et al., 2016; Watanabe, 2010). The models we examined were: 1) all individuals

analyzed at the same hierarchical level, 2) individuals nested within site, and 3)

individuals nested within sex and site. The models are given below:

C.1.1 Individuals at the same hierarchical level

~yi ∼ Multinomial(~pi, ni) (C.1)

~pi ∼ Dirichlet(~q× w) (C.2)
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with priors,

~q ∼ Dirichlet(~1) (C.3)

w ∼ Uniform(0, 30) (C.4)

where, ~yi is the observed diet of alligator i, ~pi is the vector of estimated preferences

for alligator i, ni is the number of prey items observed in the gut of alligator i, ~q is

the vector of the estimated population preference, w is the concentration parameter

of the Dirichlet distribution describing the distribution of alligator preferences, and

~1 is a vector of ones the same length as the total number of prey items observed

for the population.

C.1.2 Individuals nested within site

~yik ∼ multinomial(~pik, nik) (C.5)

~pik ∼ Dirichlet(~qk × wk) (C.6)

~qk ∼ Dirichlet(~q× w) (C.7)



133

with priors,

wk ∼ Uniform(0, 30) (C.8)

w ∼ Uniform(0, 30) (C.9)

~q ∼ Dirichlet(~1) (C.10)

where ~yik is the observed diet data for alligator i from site k, ~pik is the vector of

estimated preferences for alligator i from site k, nik is the number of prey items

observed in the gut of alligator i from site k, ~qk is the vector of the average pref-

erences for alligators in site k, wk is the concentration parameter of the Dirichlet

distribution describing the distribution of alligator preferences within site k, ~q is

the vector of the average prey preferences across all of the sites, and w is the con-

centration parameter of the Dirichlet distribution describing the site level alligator

preferences, ~1 is a vector of ones the same length as the total number of prey items

observed for the population.

C.1.3 Individuals nested within sex and site

~yisk ∼ multinomial(~pisk, nisk) (C.11)

~pisk ∼ Dirichlet(~qsk × wsk) (C.12)

~qsk ∼ Dirichlet(~qk × wk) (C.13)

~qk ∼ Dirichlet(~q× w) (C.14)
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with priors,

wsk ∼ Uniform(0, 30) (C.15)

wk ∼ Uniform(0, 30) (C.16)

w ∼ Uniform(0, 30) (C.17)

~q ∼ Dirichlet(~1) (C.18)

where ~yisk is the observed diet of alligator i of sex s from site k, ~pisk is the vector of

estimated preferences for alligator i of sex s from site k, nisk is the number of prey in

the gut of alligator i of sex s from site k, ~qsk is the estimated preference of sex s from

site k, wsk is the concentration parameter of the Dirichlet distribution describing

the distribution of individual alligator preferences of sex s from site k, ~qk is the

estimated preference across sexes from site k, wk is the concentration parameter of

the Dirichlet distribution describing the distribution of prey preferences of sexes

from site k, ~q is the vector of the average prey preferences across all of the sites,

and w is the concentration parameter of the Dirichlet distribution describing the

site level alligator preferences, ~1 is a vector of ones the same length as the total

number of prey items observed for the population.

C.1.4 Process of model fitting and selection

For each of the three models, we used the program ‘jags’ through R using the

package ‘rjags’ to fit the model to the data (Plummer, 2003, 2016). To avoid
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numerical computation issues 0.05 was added to each term of the Dirichlet dis-

tributions (M. Plummer, Pers. communication). We used a burn-in period of

100,000 iterations to avoid drawing samples not from the posterior distribution of

the parameters. After the burn-in period, 2000 samples were collected per param-

eter by sampling once every 100 iterations. We used three simultaneous Markov

chains for sampling. To ensure that the model had converged and that the chains

had adequately mixed, we visually inspected plots of the samples. To compare

across the models, we used the R package ’loo’ to calculate WAIC from a matrix

of the pointwise log-likelihood values at each iteration of the model (Vehtari et al.,

2016). The WAIC values suggested that the model of alligators nested within site

provided the most parsimonious result.

C.2 Whelk data

To determine the most appropriate Bayesian hierarchical model to analyze the

whelk data, we again used WAIC to choose among three models. For the whelk

data, the models are identical to those used to analyze the alligator data, but with

differences in interpretation. The three models we examined were all individuals

at the same hierarchical level, individuals nested within size class, and individuals

nested within size class and site.

We fit each model to the whelk data using the program ‘jags’ implemented in R

using the package ‘rjags’ (Plummer, 2003, 2016). To avoid numerical computation

issues 0.05 was added to each term of the Dirichlet distributions (M. Plummer,
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Pers. communication). We used a burn-in period of 10,000 iterations and then

sampled the posterior of each distribution 2,000 times by drawing a sample once

every 100 iterations. We used three simultaneous Markov chains for sampling. To

ensure that the model had converged and that the chains had adequately mixed,

we visually inspected plots of the samples. Using WAIC, we found that the model

containing all individuals within the same hierarchical level was the most parsimo-

nious model.
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Appendix D Chapter 3: Supplementary figures

Figure D.1: The distribution of individual sample sizes for American alligators
with less than 500 observations.
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Figure D.2: The distribution of the number of feeding observations per individual
whelk.
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Figure D.3: The estimated variance of PSi from the Bayesian hierarchical method
and the observed proportions method. The red line represents the line of equality
between the estimates from the Bayesian hierarchical method and the observed
proportions method.
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Figure D.4: We justify using a maximum of 30 for the uniform prior in our analyses
because the relationship between the mean overlap of individuals within a popula-
tion and the concentration parameter of the Dirichlet distribution asymptotes at
approximately 30. Thus considering higher values for the maximum of the prior
on the concentration parameter is unlikely to qualitatively influence the results
because this range covers the biologically relevant variation in diet overlap.
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Appendix E Laboratory experiment to estimate whelk handling

times on barnacles and mussels

E.1 Introduction and Methods

Accounting for bias in estimates of individual diets in the whelk, Nucella ostrina,

and determining the attack rates of individual whelks requires estimates of whelk

handling times on barnacles, Balanus glandula, and mussels, Mytilus trossulus.

To determine the handling times of whelks on barnacles and mussels, we used

a laboratory experiment to parameterize a regression model quantifying the re-

lationship between handling times on the prey, predator size, prey size, and the

method by which whelks handled prey. We performed the laboratory experiment

in flow-through aquaria within a temperature controlled room at the Hatfield Ma-

rine Science Center (Newport, OR, USA). In each of the aquaria, we placed a

single whelk between 4-21mm into an aquarium with several barnacles between

1-5mm or several mussels from 4-25mm. All whelks and prey were collected from

the same site as the caging experiment, Yachats, OR. Security cameras mounted

above the aquaria filmed the whelks and we monitored the whelks several times

daily to determine whether or not the whelk individuals were feeding. Once a

whelk finished feeding, we used the video to determine the start and stop time of

the feeding event. We also examined the prey item to determine how the whelk fed
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on the prey item (drilled or pried for barnacles, drilled the valve, drilled through

the edge of the valve, or pried for mussels) and the percent of flesh remaining in

the prey item.

To quantify the relationships between handling times, predator size, prey size,

and the method of handling, we used Bayesian regression. For barnacles, we used

a linear mixed effects model because most individuals had more than one measure-

ment and we wanted to account for the non-independence of observations from

the same individual. We also log transformed handling time, predator size, and

prey size. Any observations in which there was more than 10% of flesh remain-

ing in the barnacle were thrown out. For mussels, most individuals did not have

repeat observations, so we used a simple linear regression treating the few repeat

observations as independent measurements. As with the barnacle model, we log

transformed handling time, prey size, and predator size. For mussels, any obser-

vations with more than 25% of the flesh remaining was thrown out. We fit both

models using ‘Stan’ through the R package ‘rstanarm’. For the barnacle model, we

placed a Normal(µ = 0, σ = 10) prior on the intercept, a Normal(0, 2.5) prior on

each of the coefficients, a half-cauchy distribution with location equal to zero and

scale equal to five on the residual variance, and a uniform LKJ distribution on the

random effects covariance matrix. For the mussel model, we placed a Normal(0,

10) prior on the intercept, Normal(0, 5) priors on the coefficients, and half-cauchy

distribution with location equal to zero and scale equal to five on the residual

variance. For each model, the posterior distribution was approximated with 1,000

samples from four Markov chains each after a burn-in period of 1,000 samples. We
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examined trace plots and the Gelman-Rubin statistics to assure that the chains

had converged (Gelman and Rubin, 1992).

E.2 Results

We analyzed 163 handling times on barnacles across 68 individuals with an average

handling time of 0.6 days. Whelk handling times on barnacles increased with prey

size, decreased with predator size, and were lower when whelks pried barnacles

rather than drilling them (Table E.1, Figure E.1). For mussels, we analyzed 46

handling times across 40 individuals with an average handling time of 1.68 days.

Whelk handling times on mussels also increased with prey size, decreased with

predator size, and decreased nearly the same amount if whelks pried or drilled at

the edge of the mussels valves relative to drilling through the side of the valve (Table

E.2, Figure E.2). The median regression coefficient estimates in Tables E.1 and E.2

are the coefficients used to estimate the handling time of each feeding observation

in the caging experiment. The average handling times across the estimates for each

feeding observation provided the characteristic estimates handling time across the

experiment.
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Parameter Median 95% Credible Interval
Intercept 0.312 (-0.48,1.05)
log Whelk Size -0.24 (-0.55,0.08)
log Barnacle Size 0.61 (0.465,0.847)
Barnacle Pried -1.1 (-1.46, -0.62)
Residual Standard Deviation 0.5 (0.48,0.60)
Standard Deviation of Random Intercept 0.1 (0.03,0.16)

Table E.1: Estimated coefficient values and associated 95% credible intervals for
the regression model of whelk handling times on barnacles
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Parameter Median 95% Credible Interval
Intercept 1.35 (0.15,2.51)
log Whelk Size -1.38 (-1.95,-0.83)
log Mussel Size 1.12 (0.73,1.49)
Mussel Pried -0.53 (-0.89, -0.16)
Mussel Valve Edge Drilled -0.52 (-0.89,-0.16)
Residual Standard Deviation 0.6 (0.47,0.69)

Table E.2: Estimated coefficient values and associated 95% credible intervals for
the regression model of whelk handling times on mussels
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Figure E.1: The handling times of whelks on barnacles decrease with whelk size
(A), increase with barnacle size (B), and are lower when whelks pry open their
prey as opposed to drilling (C).
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Figure E.2: The handling times of whelks on mussels decrease with whelk size
(A), increase with mussel size (B), and are lower when whelks pry open or drill
the edges of the valves of mussels as opposed to drilling through the sides of the
valves (C).
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Appendix F Details of the statistical models used in Chapter 4

F.1 Estimating the proportions of barnacles in individual diets and

diet variation within cages

To estimate individual diets and the magnitude of diet variation among individuals,

we used a Bayesian hierarchical model. We assumed that the number of barnacles

in the diet of individual i in cage j, yij is binomially distributed,

yij ∼ Binomial(pij, nij), (F.1)

where pij is the estimated proportion of barnacles in the diet of individual i in

cage j and nij is the total number of feeding observations for individual i in cage

j. Because the time required to handle mussels is generally longer than the time

required to handle barnacles, feeding events on mussels are more likely to be ob-

served. To account for this bias, we performed a correction on the proportion of

barnacles in an individual’s diet by accounting for the differences in handling times

for barnacles and mussels (for information on the handling time estimates, see the

main text and Appendix E). The correction we used is,

pij =
qijhB

qijhB + (1− qij)hM
, (F.2)
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where qij is the corrected proportion of barnacles in the diet of individual i in cage j,

hB is the average handling time on barnacles across the experiment, and hM is the

average handling time on mussels across the experiment. After correcting for the

bias due to handling time differences among prey, we assumed that the corrected

estimates of the proportions of barnacles in individual’s diets had a cage-level beta

distribution,

qij ∼ Beta(αj, βj) (F.3)

with shape parameters αj and βj. Rather than placing priors directly on the shape

parameters, we instead used moment matching to place priors on the mean and

variance of the Beta distribution. Defining αj and βj in terms of the mean of the

Beta distribution, µ and the variance of the Beta distribution σ2, gives,

αj =
(µ2

j − µ3
j − µjσ

2
j )

σ2
j

(F.4)

and

βj =
µj − 2µ2

j + µ3
j − σ2

j + µjσ
2
j

σ2
j

. (F.5)

We then placed a uniform Beta prior on the mean of the Beta distribution, µj and

a weakly informative Gamma prior on the variance of the Beta distribution,

µj ∼ Beta(1, 1) (F.6)

and

σj ∼ Gamma(1, 20). (F.7)
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The model was fit using the program ‘JAGS’ through the R package ‘rjags’ (?).

To approximate the posterior distribution, we used 2,000 samples each from three

Markov chains after a burn-in period of 10,000 iterations. We verified that the

Markov chains had converged by examining trace plots of the sampling and the

Gelman-Rubin statistic for the parameters (Gelman and Rubin, 1992).

F.2 Optimal and stochastic foraging regressions

To compare support for the optimal and stochastic foraging hypotheses as causes

of diet variation in this system, we performed regressions using the program ‘Stan’

through the package ‘rstanarm’ (Carpenter et al., 2017; Stan Development Team,

2016). The optimal foraging hypothesis was represented by a model in which the

log diet variation among cages was a function of the log total density of prey,

the relative density of mussels to barnacles, and their interaction. The stochastic

foraging hypothesis was represented by a simple linear regression in which log diet

variation was a function of only the relative density of mussels to barnacles. For

both models, a Normal(µ = 0, σ = 10) prior was placed on the intercept, Normal(0,

5) priors were placed on the coefficients, and a half-Cauchy prior with location zero

and shape parameter equal to five was placed on the residual standard deviation.

To approximate the posterior distribution, we used 1,000 samples each from four

Markov chains after a burn-in period of 1,000 iterations. We verified that the

Markov chains had converged by examining trace plot of the sampling and the

Gelman-Rubin statistic for the parameters. After fitting the models, WAIC values
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for model comparison were calculated for each model using the R package ‘loo’

(Vehtari et al., 2016).

F.3 Estimating individual attack rates

To estimate the attack rates of individuals on barnacles and mussels, we needed

estimates of the proportion of observations for each individual j in cage k that were

feeding events on barnacles or mussels and proportion of observations that were

non-feeding events. Following Wolf et al. (2017), we first assumed that the number

of observations that were feeding events on barnacles and mussels and the number

of observations that were non-feeding events, ~yjk, was multinomially distributed,

~yjk ∼Multinomial(~pjk, njk), (F.8)

where ~pjk is a vector containing the estimated proportion of feeding events on

barnacles and mussels and non-feeding events, and njk is the total number of

observations for individual j in cage k. We then assumed that individual proportion

estimates were described by a cage-level Dirichlet distribution,

~pjk ∼ Dirichlet(~qk), (F.9)

where ~qk is the vector describing the mean proportions of feeding events on bar-

nacles and mussels and non-feeding events. Lastly we assume that the cage-level
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vector has a uniform Dirichlet prior,

~qk ∼ Dirichlet(~1), (F.10)

where ~1 is a vector of all one’s of length three. This model was fit using the

program ‘JAGS’ through the R package ‘rjags’ (Plummer, 2003). To approximate

the posterior distribution, we used 2,000 samples each from three Markov chains

after a burn-in period of 100,000 iterations. We verified that the Markov chains

had converged by examining trace plots of the sampling and the Gelman-Rubin

statistic for the parameters (Gelman and Rubin, 1992). Using the estimates of

the proportion of feeding events on barnacles and mussels and the proportion of

nonfeeding events and assuming that the handling times and resource densities of

barnacles and mussels were known, we used equation 4.1 to estimate the attack

rates of each individual.

F.4 Estimating the relationships between diet and feeding propen-

sity variation and differences in feeding rate estimates due to

Jensen’s inequality

After estimating the differences in feeding rate estimates due to Jensen’s inequal-

ity, we used multiple linear regression to examine the relationships between the

magnitude of the feeding rate differences and variation among individuals in diet

and feeding propensity. The estimates of diet variation were the same as those
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used to examine support for the optimal and stochastic foraging models. Feeding

propensity variation was estimated using the same model as for estimating diet

variation but with the number of barnacles observed replaced by the number of

observations that were feeding events, the number of total feeding events replaced

by the number of total observations, and no correction for bias. The differences

in feeding rate estimates for barnacles and mussels were then regressed against

the diet and feeding propensity variation estimates. We used the same priors and

methods as for the earlier regressions in section F.2.




