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Western juniper is a native species in eastern Oregon that became invasive during the 

last century since its range increased fivefold from 1936 to 1988. Western juniper’s 

ability to absorb rainfall and groundwater has deleterious effects on stream flow and 

sensitive sage grouse habitat in eastern Oregon. New methods of western juniper 

remediation have been proposed, including harvesting and processing western juniper 

as merchantable timber. An essential part of these methods is the accurate survey of 

trees and a harvesting plan. The objective of my thesis was to estimate the existing 

juniper resource in Wheeler county, Oregon, and to develop a harvesting plan for the 

resource. To estimate the existing juniper resource, I implemented two methods of 

segmenting individual tree using their ground-projected crown and applied them to 

orthorectified multispectral aerial images. This work involved estimating the canopy 

height model from multispectral aerial imagery, which was performed with a 

generative adversarial network. The generated canopy height model was used with 

the most accurate tree crown detection method to create a map of juniper locations, 



 

 

with their corresponding height. Based on the knowledge of location and size of each 

juniper I developed a novel individual tree level harvest strategy. The strategy was 

evaluated using two heuristic techniques, simulated annealing and record to record, 

on two areas, each of approximately 1600 ha. The results indicate that landscape 

restoration by removing junipers depends on the amount and value of the junipers, 

and in many cases, financial incentives would likely be needed. 
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1 Introduction 

Western juniper is a native, invasive tree species in eastern Oregon. The extent of 

juniper savannahs, defined as having any amount of western juniper canopy cover, 

has increased more than five times since 1938 (Miller and Rose, 1995). 

Furthermore, the extent of forests with more than 10% western juniper reached over 

1.3 million acres (Azuma et al., 2005), which is six times more than the estimated 

juniper in 1938 (Miller, 2005). Growing in a high elevation steppe of the 

intermountain west, western juniper has adapted to have a large root area relative to 

its size (Jeppesen, 1977), which is capable of absorbing significant amount of 

groundwater. Therefore, western juniper remediation is a priority for watershed 

managers throughout eastern Oregon, to increasing range productivity and stream 

flows (Gedney et al., 1999), as well as to recover the habitat of endangered species, 

like the sage grouse (Baruch-Mordo et al., 2013). Current juniper remediation 

techniques focus on removing the trees onsite, either by felling  or burning (Miller, 

2005). The low density and reduced economic value of the vast majority of junipers, 

concentrates the remediation to sensitive habitats. Processing juniper to create 

marketable wood products has been proposed as a remediation technique that might 

make more habitat restoration possible, since the value of processed juniper could be 

used to offset the cost of removal. However, processing juniper requires prior 

knowledge of the value of juniper, to estimate the potential profit from harvesting. 

The combination of a sparse presence on the landscape with the low economic value 

make infeasible conventional forest inventory methods, which rely on sampling 

(Nielsen et al., 2013). Therefore, in this work, I describe two methods of estimating 
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juniper location and height from remotely sensed imagery, which makes surveying 

juniper over large areas feasible. Accurate information on the location and amount of 

juniper allows estimation of the value of junipers. Consequently, in this work I 

investigate two methods of creating a tree harvest schedule that uses as elementary 

harvest unit individual juniper. In concert, these methods can be used to detect, 

estimate value, and develop a harvest plan for western juniper in eastern Oregon.  

1.1 Thesis organization 

The thesis contains four chapters, structured as followed: 

Chapter 1. Introduction.  In the introductory chapter I will describe the problem and 

lay out the structure of the thesis.  

Chapter 2. Generative adversarial networks for tree crown extraction and 

measurement. In the second chapter of the thesis I will apply two methods based on 

deep convolutional neural networks to the problem of tree crown detection. I also 

apply a generative adversarial network to the problem of individual tree height 

measurement. 

Chapter 3. Optimal tree level strategies for harvesting western juniper. The third 

chapter presents two strategies of harvesting junipers at the individual tree level 

Chapter 4. Conclusion. In the final chapter of my thesis I will summarize the finding 

of the previous two chapters. 
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2 Deep convolutional neural networks for tree crown detection and 

measurement 

2.1 Introduction 

Traditional forestry techniques can require extensive field measurement to estimate 

many parameters relevant to forest management, such as tree density, total height, or 

diameter at breast height. A large field effort is often infeasible due to the size of the 

forest or the costs involved in manual collection. Furthermore, in sparse and irregular 

stands, such as those found within the juniper savannah in Oregon, the effectiveness 

of manual forest measurement is reduced. For large forestry projects remotely sensed 

data are used in estimation of the parameters of interest (Nielsen et al., 2013). There 

is a long history showing that remotely sensed imagery can lead to accurate forest 

inventory, even at tree level, particularly for tree cover (Hulet et al., 2014) and tree 

height (Næsset, 2002). The ability of remote sensing to provide fast and inexpensive 

estimates is particularly attractive for forest inventories exhibiting difficult 

conditions, such as the sparse juniper woodland (Nielsen et al., 2013). Inventory of 

dispersed trees is expensive because large areas have to be cruised if traditional forest 

estimation techniques are used. However, obtaining tree metrics at the landscape 

scale has been made possible over the past decades because of the proliferation of 

high resolution remotely sensed data. A large array of methods are available for forest 

inventory from remote sensed data (Zhen et al., 2016), most of them focused on tree 

count and total height. Depending on data format and the approach used to estimate 

forest attributes, the methods can be separated in two categories: raster-based and 

vector-based. Raster based methods use as input two-dimensional data of fixed scale, 
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typically imagery, whereas vector based methods uses as input unstructured three 

dimensional data, like lidar.  Because raster-based estimates are obtained using a 

predefined grid, the results depend on the scale. The dimension of the grid, which is 

selected according to the type of and size of the forest, plays a significant role in the 

quality of the results. Vector based estimates are scale free, but collecting and 

processing unstructured three dimensional data can be costly and difficult. 

Forest inventory methods can be also separated according to the perspective of the 

device recording the data from which the attributes will be estimated. From this 

perspective, there are nadir view methods, which use data describing the upper part of 

the forest, and side or zenith view methods, which use data describing the lower part 

of the forest. The first step to estimate attributes of individual trees from nadir 

acquired data is to segment the crown of each tree, then compute the values of 

interests, such as total height or height to the base of live crown. When side or zenith 

acquired data are used in estimation, then the focus is on segmenting individual 

stems, followed by diameters along the trunk. 

 

Most forest inventories identify species, the number of trees, and the size of the trees 

(Avery and Burkhart, 2015; Kershaw et al., 2017). One of the most common 

strategies in tree identification is segmentation of crowns (Chen et al., 2006; 

Jakubowski et al., 2013; Camps-Valls et al., 2014; Ayrey et al., 2017). Individual tree 

crown detection methods can be roughly separated between those which operate on 

2D data, like nadir or near nadir imagery, and those which operate on 3D  data, like 

lidar or  photogrammetric point clouds (Zhen et al., 2016). Jakubowski et al. (2013) 
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found that tree crown detectors applied to three-dimensional data outperformed those 

applied to two-dimensional data. Arguably, the most popular methods used to 

delineate individual tree crowns are feature based algorithms (Camps-Valls et al., 

2014; Long et al., 2015; Strimbu and Strimbu, 2015; Ayrey et al., 2017). Feature 

based methods use properties describing the forest to distinguish trees crowns from 

neighboring entities, such as vegetation or adjacent tree crowns, within a remotely 

sensed scene. Watershed segmentation (WS) (Wang et al., 2004) and spatial wavelet 

analysis (SWA) (Strand et al., 2006) are two commonly encountered procedures from 

this broadly defined class of algorithms (Kaartinen et al., 2012). Conceptually, in 

WS, tree crowns are represented as revered watersheds. Individual crowns are 

detected starting from local canopy maxima, representing a possible top of a tree 

crown, which is used as a fill point or sink for the inverted tree crown. Subsequent to 

the identification of the sink points, crowns are delineated similarly to basins from 

watershed analysis. SWA exploits both local maxima and the relative circular shape 

of tree crowns, as seen from nadir. A wavelet, like the Mexican hat function is 

convolved along the image at different scales. This wavelet is shaped to be at a 

maximum value when it is convolved on an object with an identical, or near identical 

radius, and a local maxima at its center, which roughly describes a tree in nadir 

imagery. Poznanovic et al. (2014) found that SWA performed favorably when 

compared to other feature-based method for individual juniper detection in 

southeastern Oregon. Both of these feature-based methods work similarly on both 

spectral and lidar data, since the tallest point of an object, in the trees case the treetop, 

is a local maxima in terms of spectral value in a nadir image (Wang et al., 2004). 
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Object based image analysis allows a user to define feature-based rules for tree crown 

detection, and, as the name suggests, focuses on the full object to be detected, which 

differs from a pixel by pixel approach (Blaschke, 2010). Hulet et al. (2014) explored 

the used of the object based image analysis for the purpose of juniper tree crown 

detection for canopy cover estimation. Skurikhin et al. (2013) found that individual 

tree crown detection methods can work well for sparse canopies (<20% canopy 

cover), which characterizes landscapes dominated by juniper. 

 

Another class of individual tree crown detectors are based on the concept of machine 

learning (Bengio et al., 2013; Längkvist et al., 2016), which uses training data to 

create a model for tree crown location and sizes. Although these methods have a 

costly ground-truth generation step, a learned model can find features that may have 

been missed by other methods; therefore, have a superior predictability (Zhen et al., 

2016). Deep convolutional neural networks (CNN), which are a class of machine 

learning model,  have recently been applied to tree identification (Längkvist et al., 

2016). Li et al. (2016) implemented a sliding window CNN for detection of 

individual trees from satellite imagery in palm plantations. Wegner et al. (2016) used 

Faster Region-based CNN (Faster RCNN), which is an object detection model based 

on deep CNNs, to catalog urban trees using remotely sensed imagery. 

 

Multidimensional data can increase the accuracy of individual tree crown detection 

(Jakubowski et al., 2013). Jakubowski et al. (2013) compared the accuracy of 

individual tree crown detection methods on both 2D data, from aerial imagery, and 
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3D data, derived from photogrammetry, and found that three-dimensional data 

outperformed the object based image analysis segmentation technique. However, in 

many areas there are no 3D data available, which means that algorithms which 

require 3D inputs cannot be directly applied. Previous work has explored estimating 

3D data from 2D imagery, and found that texture metrics were important predictors 

for juniper stand metrics, such as average tree height and volume (Nielsen et al., 

2013). In their study, the texture metrics were derived from scattered lidar collections 

and modeled using random forests. Recently, the focus has shifted towards 3D 

estimation with the potentially more powerful predictive modeling of deep CNNs. 

Rather than predicting a full point cloud, Ghamisi and Yokoya (2018) describe the 

use of a generative adversarial network (GAN) to generate a rasterized digital surface 

model from satellite imagery. GANs are a class of deep neural networks that are 

commonly used for image generation, and have been shown to be powerful models 

for the generalized problem of paired image to image translation (Isola et al., 2017), 

where a target image is predicted from an available image source.  

  

In eastern Oregon, juniper presents considerable variation in projected crown and 

canopy cover (Gedney et al., 1999). For sparse canopies, individual tree crown 

detection has been shown to perform well for extracting canopy metrics (Skurikhin et 

al., 2013). For this reason, we chose to investigate the use of two individual tree 

crown detection techniques to extract metrics for western juniper at the landscape 

scale. These methods are based on Faster R-CNN (Ren et al., 2015) and a watershed 
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detection algorithm augmented by a canopy height model (CHM) generated from a 

GAN.  

 

Depending on the objective, management of western juniper is based on individual 

trees or on trees aggregated to a fixed scale. For example, juniper stand age and 

canopy cover are important in determining priority areas for restoring sage-grouse 

habitat (Baruch-Mordo et al., 2013).  Nielsen et al. (2013) created a model based on 

spectral data to predict aggregated metrics at a 30-meter scale for western juniper and 

found it more accurate than performing individual tree crown detection and 

aggregating the detected crowns. The aggregated metrics included a texture 

component, which was modeled from lidar data adjacent to their study area. The 

texture proved vital to the accuracy, demonstrating the usefulness of 3D data for 

predicting canopy statistics. The individual tree crown detection methods used for 

comparison were based only on spectral data and did not include a texture model. 

Furthermore, availability of tree level information, even relatively erroneous, adds a 

spatial dimension to the data that is not available to aggregated data, and which also 

allows for operations on a variety of different scales, as opposed to the fixed scale of 

aggregated data. Therefore, the objective of this study is to estimate the location and 

size of western junipers within Wheeler County, Oregon. To achieve this task we 

focused on individual tree crown detection enhanced by a 3D surface model, which 

will be used to estimate the size of detected tree crowns. 
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2.2 Methods 

2.2.1 Study Area 

The study was triggered by the North Slope Ochoco Holistic Restoration Project, 

which was funded by the USA Natural Resources Conservation Service. The project 

area is defined by the watershed of three tributaries of the John Day River, namely 

Cherry, Bridge, and Mountain Creeks (Figure 1). The study area is comprised mostly 

of rangeland, and sparse juniper woodlands, but a significant percentage in the 

southern portion of the study area contains denser forests, comprised of a mix of 

ponderosa pine and western juniper. The main challenge when considering detecting, 

measuring, and planning harvests of individual trees in this study area is size, since 

the site comprises approximately 350,000 acres.  

 

Figure 1. Study area overlaid on the NAIP imagery 



 

10 

2.2.2 Remotely Sensed Data 

2.2.2.1 Input Data 
The images used in this study were collected for the National Aerial Imagery 

Program (NAIP) in 2009. This collection is freely available, and is of a higher spatial 

resolution than later imagery collections. The images have four bands, red, green 

blue, and near infrared, and a spatial resolution of 0.5 m, making them suitable for 

vegetation monitoring and detection (Ke and Quackenbush, 2011). We chose to use 

the red (R) and near infrared (NIR) bands, after determining that use of the blue (B) 

and green (G) bands did not provide any significant benefit to our analysis.  

(Davies et al., 2010) suggested that environmental factors, specifically elevation and 

aspect, are key indicators of potential juniper cover. Therefore, in addition to spectral 

data, we also used for delineation of tree canopy a hillshade raster derived from the 

10-meter DTM from the USGS (Archuleta et al., 2017). The hillshade provides 

aspect and spatial relationship to neighboring raster cells to our predictive models.  

Lidar derived data products, such as digital elevation models, are provided by the 

Oregon Department of Geology for many locations within Oregon. For our study we 

used the Pine Creek collection performed in 2011 and the Ochoco West collection 

performed in 2013, which intersect our study area. For the Pine Creek dataset, we 

used the full extent of collected data, which includes data collected outside our study 

area. This data was chosen since the forest canopy structure across the Pine Creek 

area closely matched the forest structure within our study area. The majority of the 

Ochoco West lidar covered dense ponderosa pine forests, which make up only a small 

portion of our study area. For this reason, we only use data from the Ochoco West 

dataset which lies within our study area, to match the forest structure types within the 
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Cherry, Bridge, and Mountain Creek watersheds. We used two digital elevation 

models in the study, one describing the terrain (DTM) and one describing the surface 

(DSM), both with 1-meter resolution. The canopy height model (CHM) can be 

obtained by simply subtracting the DTM from the DSM. Each pixel in a CHM 

represents the relative height above the ground. Since a CHM provides a 3D structure 

of a canopy, it is often used for individual tree crown detection (Zhen et al., 2016).  

2.2.2.2 Data Preprocessing 
The predictive modelling techniques we explore are designed to be used with 3-band 

imagery with 8 bits per pixel. Using a trial and error approach, we found that the 

bands with the most predictive power for vegetation detection were red (R) and near 

infrared (NIR) bands, which are also commonly used in many vegetation health 

indices (Bannari et al., 1995). In addition to differentiating between vegetation and 

non-vegetation, the R and NIR bands are also useful for separating vegetation from 

unhealthy or dead vegetation, which are not the focus of the study. Environmental 

data, such as rainfall and terrain have also been shown to explain some tree structure 

characteristics of western juniper (Davies et al., 2010). Our intuition in including 

environmental data was that forest structure prediction would create a more accurate 

canopy height model. Since we were restricted to only three bands, we chose to 

incorporate hillshade data as the last band in our image. The hillshade raster provides 

a consistent representation of aspect, as well as some spatial terrain data. For 

example, a convolutional filter applied to a hillshade raster could potentially 

determine which points were in canyons by detecting sharp changes in hillshade, as 

shown in (Figure 2). To combine the 10-meter resolution hillshade with our 0.5-meter 
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resolution imagery, we resampled the hillshade data using a nearest neighbor 

technique. 

  

Figure 2. Example hillshade raster showing complex terrain 

 

We combined the three bands in a raster that contains red in the first band, near 

infrared in the second band, and hillshade in the third band. An example of the false 

color image with the three bands is shown in Figure 3. 

 

Figure 3. A false color red, near infrared, and hillshade portion of an image 
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Imagery collected of objects with a sufficiently large angle between the sensor and 

object can lead to situations where a tall object, like a tree, appears ‘tilted’, and is 

commonly referred to as relief displacement (Figure 4). Lidar data on the other hand, 

by recording the location of each return, is minimally affected by departure from 

nadir. The tilt of the objects away from the principal points (Lillesand et al) can lead 

to misalignment between lidar derived data, like our CHM, and aerial imagery. Based 

on the work of (Safdarinezhad et al., 2017), we perform an alignment routine based 

on the hypothesis that for our imagery and digital surface model, which is dominated 

by vegetation, overlap between pixels containing elevations above ground and 

vegetation should be greatest when the images are correctly aligned. Alignment 

determined in this manner was consistent across NAIP and lidar derived images.  

 

Figure 4. Effect of non-nadir viewpoint on image object location 

 



 

14 

2.2.3 Tree Crown Identification 

2.2.3.1 Faster RCNN 

Convolutional object detectors have seen great success in general object detection 

(Ren et al., 2015), as well as success in object detection in remote sensing (Tang et 

al., 2017). For our study, we used the Faster RCNN implementation in the 

Tensorflow Object Detection Framework (Huang et al., 2017). This framework 

allowed for rapid and consistent configuration, as well as potential extension in the 

future to newly develop object detection models. The basic unit in most object 

detection models is a bounding box that contains the objects to be identified. 

 

Trained operators created ground truth tree location data by visually interpreting the 

NAIP imagery. The images within the study area were split into 50 by 50 meter chips, 

to allow for a random sample of locations within each image to be drawn. For each 

observed tree crown which was at least 50 percent within a chip, a corresponding 

bounding box was created. Bounding boxes below 9 square meters were removed, as 

the crown area of these detections likely corresponds to a juniper tree height less than 

1.8 m, which is below the threshold selected for delineating woody vegetation from 

non-woody vegetation. Bounding boxes were digitized using labelImg (Tzutalin, 

2015).  Overall, 750 chips were processed, with a total of 8111 individual tree 

detections. Chips were chosen to obtain a representative sample of canopy cover 

percentages and tree species that exist within the chip sample area.  

 

The ground truth boxes were randomly split 70/30 into training and testing datasets, 
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similar to (Li et al., 2016).To increase the effective number of training images we 

augmented the dataset, which has been shown to reduce overfitting and improve 

performance for small datasets (Ronneberger et al., 2015). In general, data collected 

at a nadir viewpoint is rotation invariant (Cheng et al., 2016), which means we can 

rotate the image up to 270 degrees, and flip along any axis, and the resulting image 

will still be a valid representation of the ground truth data. In addition to data 

augmentation through rotation, we configured the Tensorflow Object Detection 

framework to randomly crop and pad images to their original size. This ensured that 

the resulting cropped images would have objects of the same scale as non-cropped 

images. These data augmentations allowed us to extend our small dataset enough to 

avoid overfitting.  

Appropriate anchor box sizes and aspect ratios are two of the most important 

parameters for accurate detection with Faster RCNN, especially when detecting small 

objects (Eggert et al., 2017). Anchor boxes are used by Faster RCNN as the basic unit 

of object detection. At a fixed grid of points, the model estimates the likelihood that 

an object exists within that anchor box, centered at that point. Each anchor box in the 

Tensorflow Object Detection framework is defined as a square box size, and a set of 

aspect ratios. These aspect ratios can be used to capture rectangular objects. Anchor 

box sizes, and aspect ratios, should be chosen to fit the set of object sizes in the 

dataset (Eggert et al., 2017). The main tradeoff between adding a new anchor box is 

speed, so a small, but representative set of anchor boxes must be chosen.  To 

determine the set of boxes and aspect ratios appropriate for our dataset we first chose 

a number of anchor boxes (i.e., six) and aspect ratios (i.e., three) that would provide 
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an acceptable range and running time. Second, we performed a histogram analysis of 

bounding box side length, choosing to split the histogram in six bins, as 

recommended by (Eggert et al., 2017). We performed a similar analysis on the 

histogram of bounding box aspect ratios, and found that almost all tree crowns are 

roughly square, and fit within the base aspect ratio of 1.0. In order to capture those 

crowns which deviated slightly from this ratio, we also configured the framework to 

amend the chosen base anchor box sizes with aspect ratios of 0.75 and 1.25. 

Table 1. Anchor box sizes for Faster RCNN 

Box Number Box Size 

As a ratio of base size 

(256x256) 

In square pixels In GSD (square 

meters) 

1 0.10375 28 7 

2 0.140625 36 9 

3 0.171875 44 11 

4 0.203125 52 13 

5 0.25 64 16 

6 0.5 128 32 

 

2.2.3.2 Generative Adversarial Network 

We used a GAN to generate an estimated canopy height model for areas within our 

study site that do not have available lidar data. The input for the GAN is the 

multispectral NAIP images, which are available for the entire study area. This 

transformation belongs to a class of problems known as the paired image to image 

translation problem, which GANs are particularly well suited for (Isola et al., 2017). 



 

17 

We use the pix2pix framework which was developed for the paired image to image 

translation problem (Isola et al., 2017). Training and testing data was generated by 

splitting the input data (i.e., Red, NIR, and hillshade), the ground truth data, and the 

canopy height model into paired chips, each 256 x 256 pixels. For the Pine Creek and 

Ochoco West, clipped to the extent of the lidar data, we obtained approximately 

50,000 image pairs, which we split 70/30 between training and evaluation. The 

majority of the CHM values are zero or near zero. Therefore, we used a modified L1 

loss function (Equation 1) to properly weight the class of pixel we are generating 

(Long et al., 2015). The modified L1 loss is defined by a threshold, in our case 1.8 m. 

The threshold was chosen based on field measurements of western juniper height and 

represents the minimum crown height of potentially harvestable trees. The threshold 

is also supported by the distribution of heights (Figure 5), as a peak starts around 6 ft. 

The vast majority of non-zero elevation values represents woody vegetation, so we 

use the threshold as a separator of ground from woody vegetation.  

𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝐿1 𝐿𝑜𝑠𝑠 = {
0  𝑖𝑓 𝑦𝑡𝑟𝑢𝑒 < 6 

𝑎𝑏𝑠(𝑦𝑡𝑟𝑢𝑒 − 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)  𝑖𝑓 𝑦𝑡𝑟𝑢𝑒 ≥ 6
  

Equation 1: Modified L1 loss 
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Figure 5. Truncated CHM histogram 

2.2.3.3 Multi-scale Watershed Detection 

We apply a multi-scale watershed segmentation technique, adapted from Wang et al. 

(2004), on both the generated three-dimensional data and two-dimensional imagery, 

and compared results to photo-interpreted ground truth. Our method of individual tree 

crown detection is based off the work of Wang et al. (2004), where a multi-scale local 

maxima filter is used to determine tree local maxima, followed by a watershed 

segmentation to segment individual tree crowns. We modify the method of Wang et 

al. (2004) slightly, since our study area contains large areas of non-woody vegetation 

and some human created structures, which must be filtered before local maxima 

detection.  

To match the format of input data in (Wang et al., 2004), we perform two main 

preprocessing steps. First, we create a mask of vegetation, using a threshold. We base 

this threshold off the NDVI, which is the normalized difference between the red and 

infrared spectral data. Using NDVI also gives us the benefit of filtering out some non-

living juniper, since unhealthy vegetation is also filtered when setting this threshold. 
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We set this threshold at 0.6 for our study, which was determined by trial and error and 

assessing the precision and accuracy metrics after iterating through a set of potential 

NDVI thresholds. Second, we create a mask of height, using a threshold on the 

generated CHM. This mask is used to differentiate woody and non-woody vegetation. 

The threshold we chose was 6 feet, based on Figure 5. Since the non-ground pixels in 

our CHM are dominated by woody vegetation, we interpret the dip in Figure 5 as the 

separation between ground and noise CHM pixels, and non-ground, woody 

vegetation.   

We then perform a dilation of 1 pixel on both masks, individually, to close any gaps 

in the mask, since we expect neighboring pixels to belong to the same class (i.e., a 

pixel next to, or surrounded by pixels labeled as vegetation, is likely also vegetation).  

Intersecting the masks provides the location of the woody vegetation. The intersection 

filters the generated CHM by removing the non-woody vegetation, in preparation for 

further image processing. Based on the work of Wang et al. (2004), we perform a 

multi-scale maxima filter on our generated CHM. The purpose of this filter is to 

smooth within crown local maxima, which could be caused by tree branches or noise 

within our CHM generation. For our study, we used a circular maxima filter with 

radii of 1, 2, and 3 meters. These radii were chosen from field observation of western 

juniper, as well as an analysis of the distribution of juniper crown sizes from photo 

interpretation of aerial imagery. A circular filter was chosen to match the roughly 

circular shape of western juniper crowns in the CHM. For each scale, we then 

computed a flow direction map. This mapping transforms an elevation raster, in our 

case a CHM, into a raster with each pixel storing the direction of the water ‘flow’ if it 
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would be placed at that elevation. This transformation is an intermediate step in 

traditional watershed segmentation (Ke and Quackenbush, 2011). Pixels with a zero 

flow value represent our local elevation maxima, which should correspond to the tops 

of trees. Due to the maxima filtering applied beforehand, this treetop is blurred into a 

set of pixels, with the estimated treetop lying in the middle of the set of pixels. One of 

the major problems in tree crown detection is differentiating within crown local 

maxima, and canopy height local maxima (Wang et al., 2004). The purpose of this 

multi-scale approach is that canopy height local maxima are maxima at all, or most 

scales of maxima filtering, whereas within crown maxima are only local maxima in a 

minority of the chosen scales. The three flow maps, corresponding to the different 

maxima scales, are combined together using a majority filter on corresponding pixels, 

ensuring that only those pixels which are maxima at multiple scales are preserved.  

Our method of determining tree crown location from multiple scales of watershed can 

also be applied to just multispectral imagery. To determine the difference in accuracy 

between crown segmentation based only on imagery and on the enhancement of 

imagery with a generated CHM, we performed the multi-scale watershed 

segmentation using only NAIP imagery. Since we no longer have a CHM to aid in 

filtering below a certain height, we base our initial segmentation only on NDVI 

indices. The raster used for maxima filtering is also changed from the generated CHM 

to the NDVI raster.  

2.2.4 Tree Crown Measurement 

Beyond detection, deriving tree crown metrics can provide additional useful 

information for tree harvest and forest management. Using both two and three-
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dimensional data, crown shape and area can be determined from watershed 

segmentation (Zhen et al., 2016). We use the detected treetop as a sink, or flow 

output, and treat our local maxima filter raster as an elevation map. From there, we 

can use a watershed delineation algorithm, like Wang et al. (2004), to determine the 

extent of each individual tree crown within each tree cluster. This method has been 

applied by Poznanovic et al. (2014) to estimate juniper crown area using spectral 

imagery. 

The generated CHM provides us with 3D data, which allows identification of the 

crown shape, and tree height. Tree height is of particular interest, since it is a 

predictor of western juniper volume, which can be used to estimate merchantable 

value. We estimate the tree height as the maximum value of the CHM within the 

estimated tree crown.   

2.3 Results 

2.3.1 Generative Adversarial Network 

Evaluation of GAN is challenging, as depends on the problem, particularly for the 

image generation problem. Metrics typically either attempt to evaluate the qualitative 

value of the generated images or perform a quantitative analysis of the generated 

distribution in comparison to the ground truth, or ‘real world’ distribution of images 

(Zhu et al., 2017). Qualitative measurements rely on extensive manual image 

analysis, which is infeasible for this study. Since generated pixels correspond to a 

real-world height measurement, as opposed to other image generation tasks, where 

the pixel values do not have an obvious physical meaning, we used a quantitative 

assessment of GAN performance. Because the GAN produced a CHM, which can be 
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converted to heights, the main tool we use for GAN assessment is the histogram of 

heights. We have developed two histograms, each with 0.3 m bins: one for lidar based 

CHM and one for GAN generated CHM. The difference between the ground truth 

height histogram and the generated CHM histogram is an aggregate measure of 

accuracy of the estimated individual tree height. We assessed the departure between 

the two histograms using the two-sample Kolmogorov-Smirnov (KS) tests.  

The volume and height of western juniper are positively correlated [Dodson]. 

Therefore, an underestimation of tree height would lead to an underestimation of tree 

value. Harvesting and processing larger trees is more efficient from an economic 

perspective, due to the large time-labor cost associated with changing logs on a 

manual mill typically used for western juniper processing. Since we are also only 

concerned with height measurements for woody vegetation, which we classify to be 

taller than 1.8 m, we only assessed the divergence of height distribution above 1.8 m. 

Since we use CHM derived from two separate lidar datasets, we wished to compare 

GANs trained on a combined dataset, as well as on individual lidar datasets. KS test 

revealed that there is no difference (p>0.9) between the histograms of the CHM 

produced from lidar and from GAN (Table 2). Additionally, we explored the effect of 

different loss functions, including the default L1 loss for pix2pix (Isola et al., 2017), 

as well as removing the adversarial loss component. The KS test supplied the same 

conclusion that the lidar and generated height histograms are not different (Table 3). 

 

Table 2. Kolmogorov-Smirnov distance for generated and ground truth histograms of 

models trained on separate datasets. All values are not significant, as p-values > 0.9 

Histogram\Model Modified L1 Loss + Modified L1 Loss + Modified L1 Loss + 
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Wheeler Ochoco + 

Pine Creek 

Wheeler Ochoco Pine Creek 

Wheeler Ococo + 

Pine Creek 

0.011 0.022 0.037 

Pine Creek 0.003 0.025 0.001 

Wheeler Ochoco 0.026 0.01 0.107 

 

Table 3. Kolmogorov-Smirnov distance for model histograms trained with different 

loss functions 

Distribution\Model Modified L1 Loss + 

Wheeler Ochoco + 

Pine Creek 

L1 Loss + Wheeler 

Ochoco + Pine Creek  

L1 Loss + No 

Adversarial Loss + 

Wheeler Ochoco + 

Pine Creek 

Wheeler Ococo + 

Pine Creek 

0.011 0.023 0.016 

Pine Creek 0.003 0.020 0.027 

Wheeler Ochoco 0.026 0.027 0.038 

 

Pixel-wise RMSE was considered as an additional metric for GAN selection. We 

hypothesized that a network with a lower pixel-wise RMSE value would estimate 

individual tree heights with more accuracy. The results for pixel-wise RMSE 

calculated between the ground truth dataset and the generated datasets suggests that 

the GAN with an L1 Loss function, no adversarial loss, and trained on both areas 

performs the best using the RMSE metric (Table 4). 

Table 4. Pixel-wise RMSE of generated CHM  

Distribution\

Model 

Modified L1 

Loss + Wheeler 

Ochoco + Pine 

Creek 

Modified L1 

Loss + 

Wheeler 

Ochoco 

Modified L1 

Loss + Pine 

Creek 

L1 Loss + 

Wheeler 

Ochoco + 

Pine Creek  

L1 Loss + No 

Adversarial 

Loss + 

Wheeler 

Ochoco + 

Pine Creek 
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Wheeler 

Ococo + 

Pine Creek 

18.782 19.279 19.031 16.36 13.135 

Pine Creek 5.856 5.768 10.176 5.816 4.275 

Wheeler 

Ochoco 

28.346 31.699 29.291 26.121 19.338 

2.3.2 Tree Crown Detection 

Ground truth tree crowns were digitized from the 2009 NAIP dataset, which was also 

used as our predictive spectral data for all tree crown detection methods we evaluated. 

We use the same bounding boxes to both evaluate the Faster RCNN network and tree 

crown detection methods. For Faster RCNN, detections were determined at 0.5 

confidence, and were counted as a true positive if the intersection over union (IoU) 

was greater than 0.1.  

Each estimated treetop was converted into a point detection by taking the centroid of 

the detected polygon. Since some ground truth polygons were of trees which were 

only partially within the grid cell, it is possible that a detected tree point could 

correspond to a ground truth polygon but lie outside of it. For this reason, we allowed 

for detected tree points to lie within a buffer of a ground truth polygon and still count 

as a true positive. For our study area, this buffer was set to two meters. Each tree 

point was assigned to its spatially closest bounding box. If multiple detected tree 

points were assigned to a single ground truth, only the closest point was counted as a 

true positive, and all other points were counted as a false positive. The metrics used 

for assessment are mean of precision (Eq. 2), recall (Eq. 3), and the F1 score (Eq. 4).  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑣𝑒
        2 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
         3 
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𝑓1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
         4 

  

Table 5. Individual tree detection metrics. MSWD stands for multiscale watershed 

detection 

Algorithm 

 

Assessment metric  

Recall Precision F1 Omission 

error 

Commission 

error 

2D MSWD  0.813 0.533 0.644 0.713 0.187 

3D MSWD 0.706 0.761 0.733 0.222 0.294 

Faster RCNN 0.735 0.913 0.814 0.070 0.265 

2.3.3 Aggregated Tree Statistics 

Since our method can also produce aggregated statistics, we compare our results from 

aggregation to work by (Nielsen et al., 2013). Ground truth for this comparison was 

taken from our digitized tree crown polygons. Since our polygons were digitized 

using 50-meter grid cell size, and at a different grid offset, we converted the digitized 

polygons into estimated canopy cover at a 30-meter grid cell size, for which we use a 

method adopted from (Nielsen et al., 2014). If the ground truth chip outline, 

representing the image basis for digitization, contains at least 50% of the grid cell, we 

assume that the canopy cover estimated for that grid cell from polygon area is 

accurate. We then normalize the total canopy cover from digitized polygons by the 

amount of overlapping area between the chip and ground cell to get an estimate of 

canopy cover percentage. We computed the  difference from ground truth between 

our individual tree crown detection method and the random forest work of (Nielsen et 

al., 2013) by averaging the absolute value of the difference between the ground truth 

and estimated canopy cover. The results reveled that our method is superior to 



 

26 

random forests, by almost 50%, as it produced an absolute error of 4.98% compared 

with random forests (Nielsen et al., 2013) that had 8.63%. 

2.4 Discussion 

2.4.1 Generative Adversarial Network 

Training the GAN to produce a high-quality CHM was challenged by the fact that our 

ground truth data came from two different data sources, collected in two different 

years, and at a different time of year. Since a forest is a system that is constantly 

changing, the discrepancies in data could lead to inconsistent learning from the 

network, especially considering that lidar collections from different years may have 

different height distributions, not necessarily explained by the dynamics of the juniper 

ecosystem. We found that using only one dataset for training led to a network which 

did not fit the natural distribution of heights from the CHM. To determine the effect 

of the addition of lidar from different years, we compare networks trained on only the 

Pine Creek lidar dataset, Ochoco West lidar dataset, and the combination of both 

datasets (Table 2). We can see that the height histogram generated from each network 

most closely matches the height histogram of the data used to train the network. 

However, the network trained from the combined dataset was able to closely match 

each datasets height histogram, as well as the combined dataset height histogram. Our 
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results confirm the findings of (Hulet et al., 2014), where datasets collected from 

different years were not found to be significantly different. 

  

Figure 6. Truncated histogram for ground truth and generated heights 

 

The Ochoco West project area is dominated by dense ponderosa pine stands, whereas 

the Pine Creek project area is defined by low density juniper savannah. The large 

difference in RSME is likely due to the larger heights of ponderosa pine, where the 

height difference between trees and ground are much larger. Any misestimation by 

the generator network is therefore highlighted due to the outlier magnification of 

RMSE. Unsuitability of RMSE for estimating the network performance can be 

inferred from the observation that the worst method, as described by KS test, was the 

best when considering RMSE. 

2.4.2 Faster RCNN 

2.4.2.1 Tree Classification 

One of the potential benefits of a convolutional object detector which we explored 

was the ability to classify as well as to detect tree crowns. Classifying trees from 
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remotely sensed imagery has been explored by (Wegner et al., 2016), and Faster 

RCNN has been used to both detect and classify between coniferous and broadleaf 

trees. The two major tree species in our study area which we would like to classify 

are western juniper and ponderosa pine, both coniferous species. However, the 

framework we chose is designed to work with 8-bit, three band images. This 

restriction precluded the inclusion in the network of environmental variables, like 

elevation, which can range from 1400 to 6800 feet within our study area. Future work 

could explore working with a different convolutional object detection framework, 

which could allow for data that cannot be represented in a 24bpp format. We found 

that this restriction prevented accurate classification between western juniper and 

ponderosa pine. For this reason, we modified our dataset to contain a single class of 

type ‘tree’, which aligned Faster RCNN with other tree detection algorithms focused 

only on detection rather than classification.  

2.4.2.2 Small Object Detection 

Tree detection in remote sensing is a combination of some of the worst-case scenarios 

for convolutional object detectors, namely that many trees objects are small relative 

to the image size, and that tree objects are often spatially close. Detection of small 

objects for proposal-based methods, which are a class of convolutional object 

detectors to which Faster RCNN belongs, has been shown to be worse than detection 

on medium objects (Huang et al., 2017). Since these networks downsample each 

image into a latent feature space before attempting to detect objects, these small 

objects may not appear in the feature space. This problem is exacerbated with 

grouped objects, since multiple objects in image space can be reduced to a single 
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object in feature space (Hu and Ramanan, 2017). Previous work has explored ways to 

mitigate these problems, including expanding the range of bounding box anchors 

(Eggert et al., 2017), or preforming data augmentation to change the scale of objects 

(Hu and Ramanan, 2017). Even with these improvements, performance for small 

objects from proposal based convolutional object detectors still lags behind 

performance on large objects (Huang et al., 2017). (Li et al., 2016) explored the use 

of a sliding window convolutional object detector for tree crown detection, which 

outperformed other similar tree crown detection techniques. (Hu and Ramanan, 2017) 

proposes using detections at multiple scales to detect small faces in imagery. Further 

work incorporating this recent work in small object detection would likely improve 

metrics for tree crown detection in remote sensing. 

2.4.3 Tree Crown Detection 

In this paper, we examined the benefit of adding a CHM generated by a GAN to an 

existing tree crown detection method. We chose the multi-scale watershed 

segmentation due to its success in tree crown detection in 2D (Wang et al., 2004) and 

3D spaces (Zhen et al., 2016). When comparing the multi-scale watershed 

segmentation between 2D and 3D data, we observed that 2D data tends to lead to a 

relative overprediction of tree crowns. This overprediction is due to the lack of height 

data that allows for thresholding of vegetation types. Without any height context, 2D 

data will classify all vegetation in an area as a potential tree crown, as opposed to 

only woody vegetation. This overprediction by the 2D dataset is not matched by a 

similar underprediction by the 3D dataset, as evidenced by the F1 metric (Table 5). 
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Although we show that Faster RCNN outperforms the multi-scale watershed 

segmentation algorithm, even with the addition of 3D data, convolutional object 

detectors present many challenges for accurate detection. First and foremost is the 

generation of ground truth data. Generating bounding box data for this study took 

approximately 48 skilled operator hours. When comparing to a method like the multi-

scale watershed segmentation, which requires no manual ground truth data creation, 

the time required to increase accuracy may not be worth pursuing.  

2.5 Conclusion 

In this study we apply two different individual tree crown detection methods to the 

problem of detecting woody vegetation, mainly western juniper, in eastern Oregon. 

The first method is based on a convolutional object detector, specifically Faster 

RCNN, which was tuned to detect tree crowns within our study area. The second 

method generated a canopy height model using a generative adversarial network, 

which was used as an additional predictive input for a multi-scale watershed detection 

method. We demonstrate the effectiveness of this additional input, in comparing to 

only using 2D data for tree crown detection, showing approximately 15% 

improvement in multiscale watershed detection F1 score when using 3D data (Table 

5). We aggregate the detections for comparison with the existing work focused on 

western juniper detection, and we found that the Fast RCNN reduced tree 

identification errors by almost half. We believe that use of a generative network for 

estimating three dimensional characteristics of a forest stand has many potential 

applications in the forestry field, including tree measurement and improvement of 

existing methods of canopy metric estimation. In addition, we find the results given 
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by Faster RCNN to be very encouraging for future study in the application of 

convolutional object detectors to tree crown detection, and object detection in remote 

sensing in general. 

3 Individual Tree Harvest Strategies for Landscape Level Planning 

using Western Juniper in Oregon 

3.1 Introduction 

Western juniper (Juniperus occidentalis Hook.)  is a native, invasive species in 

Oregon. Remediation of western juniper is an important step for watershed and 

habitat restoration in many areas of eastern Oregon, where extent of juniper 

savannahs, defined as having any amount of western juniper canopy cover, has 

increased more than five times since 1938 (Miller and Rose, 1995). Currently, 

western juniper is remediated using techniques typical to invasive species 

remediation, including burning and manual felling. In the past few decades, progress 

has been made on establishing mills capable of processing the western juniper and its 

complex tree shape (Swan et al.). With the establishment of a potential demand for 

western juniper, harvesting as a remediation technique becomes feasible, with the 

possibility of the profit of harvesting offsetting some of the cost of remediation. In 

order to perform a harvest, a harvest system(s) must be specified, a harvest schedule 

must be devised - where trees to be harvested, infrastructure to be constructed, and 

some estimate of costs and values of the harvest are identified. 

Applying traditional stand level tree harvest scheduling to western juniper is 

challenging for a number of reasons. First, given its sparse stand structure and 

varying stand density, it is difficult to create homogeneous stands which stand level 

harvesting requires. The complex terrain it thrives in also plays a factor in this varied 
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stand structure and is especially stark in the Pine and Bridge Creek watersheds in 

which our study area is located. We have also found during the course of our study 

that many junipers cannot be profitably harvested, due to the lack of merchantable 

wood volume within those trees to offset the costs associated with harvesting. 

Consideration of individual trees allow us to optimize for harvest profitability by 

accepting solutions which exclude trees that are unprofitable to harvest. Therefore, 

the objective of this study is to develop a harvest scheduling method that considers 

the individual tree as elementary management units. This granularity allows us to 

plan harvest schedules in a much more flexible manner, and in such a way that we 

can adapt the harvest plan to areas of high or low stand density, and varied stand 

structure.  

3.2 Methods 

3.2.1 Study Area 
We have selected two areas of approximately 1,600 ha in Wheeler County, Oregon, to 

test the tree level harvesting strategies developed in this study ( 

Figure 7); Pine Creek, with an elevation gradient of approximately 500 m, and Bridge 

Creek with an elevation gradient of approximately 600 m (Table 6). We have chosen 

the two areas to represent the landscape complexity and distribution of the junipers of 

Wheeler county as a whole.  
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Figure 7. The study areas overlaid on NAIP image (true colors) 

The soils present in the two basins are mainly Mollisols, from the Palexerolls and 

Argixerolls Great Groups (Soil Survey Staff, 1999). The climate is predominantly 

semiarid warm continental, according to Thornthwhite classification, with average 

temperature of 11.3°C (hottest month 30.5°C and coldest month 5.5°C), average 

rainfall 390 mm, and average snowfall of 150 mm. The detailed Koppen-Geiger 

classification places almost all of Wheeler county in two climates, one warm 

temperate (i.e., Cfa and Csa – Temperate (C) with hot summers (a) that can be 
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without dry season (f) or dry summer (s)) and one arid (i.e., BSk – Arid (B) steppe (S) 

cold (k)). The main tree species growing in these edaphic and climatic conditions is 

western juniper. 

Table 6. Summary statistics describing the two areas 

Study Area Surface Elevation  

Mean  / min ↔ max / 

std.dev 

Roads 

length 

# sub-basins 

[ha] [m] [km] [count] 

Bridge Creek 1667.9 950 / 642 – 1259 / 178.4 21.9 km 12 

Pine Creek 1597.1 1133 / 833 – 1358 / 95.7 19.4 14 

 

To identify each tree we used the NAIP multispectral imagery supplied by the USDA 

(USDA Aerial Photography Field Office, 2015) and two lidar derived products 

provided by the Oregon Department of Geology and Mineral Industries; namely the 

digital surface model and the digital terrain model. Lidar collected from the Pine 

Creek area was used to create a model for generating a canopy height model. This 

canopy height model was used, along with the multispectral imagery, to provide 

individual tree locations. The lidar data collected for the Pine Creek site was 

indirectly used for model creation, but not directly used in this study. No freely 

available lidar data exists for the Bridge Creek study area. 

We used terrain data to ensure that the solutions take into account the complex terrain 

that dominates the study sites, which can make moving equipment required for 

harvesting and processing western juniper difficult (Dodson, 2010). We use the 10 

meter resolution DEM provided by the USGS (Archuleta et al., 2017) to estimate 
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basins for individual trees and landing locations. We delineated the watershed with 

the D8 flow direction model (O'Callaghan and Mark, 1984). The sub-basins of this 

model are chosen based on segment length threshold (O'Callaghan and Mark, 1984). 

This resulted in 14 sub-basins for the Pine Creek area and 12 sub-basins for the 

Bridge Creek area.  

3.2.2 Input data 

3.2.2.1 Individual Tree Location and Value  
A full survey of tree locations was performed using Faster RCNN, applied to the 

multispectral imagery provided by NAIP (USDA Aerial Photography Field Office, 

2015). The algorithm estimated the spatial coordinates of approximately 175,000 

trees in the Pine Creek area and approximately 160,000 trees for the Bridge Creek 

area. Positional information was combined with a canopy height model. The height 

model was derived using a generative adversarial network trained on a lidar data 

collected from a region of similar terrain and tree species distribution. The canopy 

height model allowed us to estimate tree height, which was on average 27 feet for 

Pine Creek Area and 19 feet for the Bridge Creek area (Table 7). The algorithm did 

not identify the tree species for each detected tree; however, field survey and random 

NAIP images analysis revealed that more than 90% of the trees were western juniper, 

with only a small portion being other species, mostly ponderosa pine. Although other 

species are present on the study areas, for simplicity we considered that all trees are 

western juniper.  

Table 7. Summary statistics for the predicted tree height and value 

Study area # trees Height 

Mean / Min - Max 

Std. dev  

 [count] [ft] [ft] 

Pine Creek 178515 27.09 / 6 -119 14.70 

Bridge Creek 162941 19.04 / 6 - 80 8.29 
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To represent the value of an individual juniper tree, we have harvested a set of 26 

western juniper trees, which were processed at the “In The Sticks” sawmill at Fossil, 

OR The trees were selected randomly, the focus being on stems that provide revenue, 

measured as merchantable timber. Therefore, to estimate the value of each tree, first 

we computed the merchantable volume of each stem, in cubic feet, then we developed 

a linear model that relates the volume with the total height of juniper (Equation 5) 

Volume juniper = 0.82 ˟ height juniper 

Equation 5. Equation relating juniper height in feet to merchantable volume in cubic 

feet 

 

Although the final product sold by the mill is square timber, the wood is acquired 

using weight. Therefore, from landowner’s perspective green weight is the measure 

used to estimate potential value of harvested juniper. This value is estimated at $65 

per US ton (Derby, 2018). We converted the volume from Equation 5 to weight 

assuming a density of 31 lb/cf, as estimated by Swan and Connolly (1998). Since this 

density assumes a moisture content of 12%, which is lower than would be in a freshly 

felled juniper, we convert to a moisture content of 45% to approximate the green 

weight of each log. For our weight computation, we assume a density of 49.91 lb/cf. 

These equations were used during a data preprocessing step in order to convert 

estimated juniper height to estimated merchantable value.  

We split each juniper into two categories based on weight, those which will be 

harvested and sent to a mill for processing, and those which will be felled and left in 

the field. Many juniper are too small to be harvested profitably, due to junipers 

challenging morphology (Gedney et al., 1999). However, these trees are still valuable 
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from an ecosystem services sense, and this value is recognized by the USDA which 

has provided grants for juniper remediation (cutting). Western juniper which are 

harvested have this value, in addition to the potential merchantable timber value. 

Each juniper is determined to either be a harvestable or non-harvestable tree, based on 

a weight threshold. Only western juniper above a certain weight threshold contain 

enough merchantable volume to be profitably harvested, so we split trees into two 

categories. This weight threshold for western juniper was determined to be 0.3 metric 

tons, based on the costs of felling, processing, and skidding described in (Dodson, 

2010), to ensure that all processed trees would be profitable, given the costs of 

processing and the revenue of selling a processed log. All trees below 0.3 metric tons 

only had felling costs and the remediation value modeled, whereas all trees above 0.3 

metric tons had felling, processing, and skidding costs, as well as remediation and 

harvest value. The values were determined using the estimated tree weight but split 

into categories to deal with the problem of modeling trees whose size prevents them 

from being profitably harvested. 

Given that the value of juniper is determined almost entirely by the merchantable 

volume calculation, we also investigated the effect of a different value per ton of 

juniper. For this investigation, we used a value of $45 per ton.  

3.2.3 Landing Locations 

Landing locations are truck accessible points where logs can be loaded onto trucks for 

transport to the mill. Logs are skidded from their felling point to a landing. Potential 

landing locations were determined from the improved and unimproved road network 

(Table 8). The improved roads in the two study areas are gravel roads that are 
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constantly maintained, while the unimproved roads are roads with limited or no 

maintenance (Figure 8 a, c). The unimproved tracks were digitized from the NAIP 

aerial imagery in ArcGIS 9.3 (Environmental Systems Research Institute, 2008). The 

potential landings were relatively evenly distributed along the road network, 

approximately 150 feet apart. In addition to the existing roads, we have digitized the 

location of other possible landings (Figure 8 b, d) using four criteria: 1) increasing 

accessibility to western juniper, 2) the possibility to connect unimproved and 

improved roads, 3) realistic positioning on the slope and landscape, and 4) ensuring a 

distance of approximately 150 feet between landing locations. 
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Figure 8. Road network and landings for the two study areas overlaid on the digital 

terrain model: a) road network of the Bridge Creek area, b) landings for the Bridge 

Creek Area, c) road network of the Pine Creek area, d) landings for the Pine Creek 

Area 

 

Table 8. Summary statistics for the possible landings 

Study area # landings Average area / landing 

[ha] 

Bridge Creek 344 4.6 

Pine Creek 399 4.2 

 

3.3 Individual Tree Harvest Scheduling Optimization 

Spatial explicit forest planning problems using stands as an elementary management 

unit have polynomial complexity (Bettinger et al., 2003). Tree level forest planning 

problems can be considered from the view of each stand consisting of a single tree, 

which demonstrates that tree level harvesting is also polynomial in complexity.  

Considering that each individual tree and landing location is a distinct decision 

variable, the scale of this problem suggests heuristic methods rather than linear 

programming. To process the large number of possible solutions that select the trees 



 

40 

to be harvested in a feasible computation time, we explore the use of two Monte 

Carlo based optimization heuristics: simulated annealing (Metropolis et al., 1953; 

Kirkpatrick et al., 1983) and record to record  travel  (Dueck, 1993). This class of 

optimization techniques have shown good results for tree harvest scheduling 

(Bettinger et al., 2003), and are noted for their solution quality and ease of 

implementation in comparison to other heuristic optimization techniques. Monte 

Carlo methods are based on a neighborhood search, where each solution is a 

modification of a previous solution. By choosing these modifications wisely, we can 

efficiently search the problem space to find a near-optimal solution. Our problem is 

combinatorial in nature, in that we must simultaneously find a set of trees and landing 

sites which optimize profit. 

 

Our optimization criteria are based on solution profitability, which is represented as 

the sum of the values of each tree scheduled to be harvested, minus the costs 

associated with harvesting of those trees including development of landing sites and 

transport costs.  We were interested in modelling these values and costs to produce a 

realistic harvesting plan for our two areas. The cost and revenue for each tree depends 

on two variables, the weight of the tree and distance from the tree to the closest active 

landing.  We model two scenarios for each area, one assuming the area is very close 

to the mill, and one that assumes the area is farther from the mill. 

3.3.1 Harvest Costs 

Modeled costs are based on the work of Dodson (2010), which examined a series of 

potential harvest systems for western juniper in eastern Oregon. Felling and 

processing costs are both based on tree weight, and skidding weight is based on a 
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combination of tree weight and distance to landing. To enforce a maximum distance 

constraint for small trees, which are only felled for their USDA remediation value, we 

also model equipment moving cost, which is based on distance to the centroid of each 

proposed harvest unit. 

One of the most important concerns in forest harvest scheduling is distance from the 

proposed harvest units and the potential landing locations. For our project, we started 

with a Euclidean distance metric to measure the distance between the coordinates of 

the harvest unit centroid and the landing point coordinate. However, the study areas 

contain challenging terrain which would be difficult to traverse for some forest 

harvest machinery, and whose cost would not be modeled in a simple Euclidean 

distance. To avoid crossing large ridges, we segment the study areas into basins, 

using a sub-watershed segmentation adapted from (Wang et al., 2004). Crossing 

between basins is a good indicator that a significant terrain change has occurred. 

Therefore, we add the basin identifier as component to the coordinates for both the 

landing points and harvest units. If a change in basins between a landing and harvest 

unit occurs, then a significant cost is applied, which will encourage the heuristic to 

select a different landing point or abandon that harvest unit. For our algorithm, we 

found a distance penalty of 10,000 feet to be sufficient to ensure that harvest units 

were not assigned to landings outside of their basin. 

Each landing location also has an associated fixed cost. Land acquisition costs were 

not considered, so the cost is defined by the creating of a landing, which was 

estimated at $500 (Sessions, 2018).   
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3.3.2 Spatial implementation of the harvests 

Spatial considerations in scheduling harvests is focused on constraining the harvest 

such that a large opening does not occur. Achievement of this constraint is commonly 

implemented with three approaches (St. John and Tóth, 2013): restricting neighbors 

for harvest once an elementary management unit is cut, as in the unit restricted model, 

restricting the size of the cut, as in the area restricted model, and a combination of 

difference equation. However, our study is not limited by the size of the harvest, as 

the purpose of the study was landscape restoration by removing all possible juniper. 

To clear an area as large as possible we started by defining the smallest area on which 

harvest can occur. We can naturally define such an area, which serves as an 

elementary planning unit, by referring to the capabilities of the devices executing the 

harvests. For juniper logging will be most likely executed with a excavator-based, 

feller-buncher, which can reach trees at most 25 feet from the operator (Dodson, 

2010). If a rubber-tired drive-to-tree feller buncher is used, we assume the same 

collection distance.  Therefore, we define an elementary planning unit as a square 

with side length of 50 feet. The elementary planning units create a grid with the cell 

size of 2500 ft2. We should point out that even though a grid is used for harvesting, 

scale is not a part of the analysis, as the cell size is defined by the forest operations, 

and not analytically. Furthermore, no spatiality or generality is lost as all the trees 

within a cell will be harvested from one location, the center of the cell.  

Trees within each grid cell are aggregated and used for optimization. Each grid cell is 

a harvest unit. After aggregating all trees into grid cells, we reduce problem 

complexity by not including the harvest units with costs that exceed the value of the 



 

43 

trees. If a harvest unit is not profitable, even assuming the closest possible landing 

point, then it is removed from the set of eligible harvests. 

In order to use a heuristic to find the optimal solution for a problem, we must first 

define the problem space, and the method by which the heuristic will move through it. 

In our problem, we have only two sets of decision variables, the set of active harvest 

units (𝑎ℎ𝑢), and the set of active landings (𝑎𝑙). With these sets of decision variables, 

our movement through the problem space is simple, we can move a harvest unit 

between the active and inactive set or move a landing point between the active and 

inactive set. For our problem formulation, we enforced that the active landing set 

must always contain at least one member, that is, if there was only one element in the 

active landing set, there was no way to move that active landing into the inactive set. 

The set of active harvest units and landing points make up a solution. Each solution 

has all the required information for the objective function, which is used by the 

heuristic to determine if the move chosen though the solution space was effective. 

For each possible move, we also define a probability for that move occurring. We 

determined this probability through trial and error; however we followed a basic 

intuition about the frequency we would like these moves to occur in relation to each 

other. When selecting a possible move, we compare a random uniform number in the 

set (0, 1] to this probability, and choose the move if the random value is less than the 

probability. In this way, over 200,000 total moves, these values form a probability of 

a type of move occurring, in relation to the other possible moves.  

• Move harvest unit from inactive to active set 1.0 

• Move harvest unit from active to inactive set  0.5 
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• Move landing from inactive to active set  0.1 

• Move landing from active to inactive set   0.1 

Modifying these probabilities determines the general class of a solution, w 

3.3.3 Record to Record Travel  

Record to Record Travel (R2R) is an optimization heuristic which focuses on only 

allowing the current solution to exist within certain range of deviation from the best 

observed solution (Dueck, 1993).This method is conceptually similar to the naive hill 

climbing heuristic, with the difference that deviation for selection of non-optimal 

solutions are allowed. The major advantage of R2R over other heuristic methods is 

the reduced number of parameters to tune; only two, namely the amount of deviation 

allowed and the ending of the algorithm. To find the values suitable for our problem 

we used a trial-and-error approach, common in application of heuristic techniques 

(Strimbu and Paun, 2012). We found that a deviation of 10% from the best observed 

solution and an exploration of 200,000 moves supplies acceptable solutions. We also 

implemented an additional stopping rule based on non-improvement of the solution. 

If the best solution does not improve after 10,000 moves, or 5% of the total possible 

moves, we terminate the heuristic under the assumption that the optimum value for 

this run has been reached. In order to avoid premature termination, we only enforce 

this stopping condition after 150,000 moves. At the termination of the algorithm, the 

best solution was chosen as the output of the heuristic. Being heuristic, R2R can 

supply close to optimal or far from optimal solutions. Consequently, we have 

executed a set of 29 runs for each study area, which we expect will render solutions 
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close to optimality. A pseudocode description of the R2R implementation which we 

choose is shown below. 

moves since last improvement = 0 

minimum moves before termination = 150000 

non-improving moves before termination = 10000 

 

maximum moves = 200000 

allowed deviation = 0.1 

 

move  

    if continue_solving 

        if accept_solution 

            current solution = proposed solution 

 

            if proposed solution > best solution 

                best solution = proposed solution 

                moves since last improvement = 0 

         

        increment moves since last improvement   

 

 

continue_solving 

    if current moves > maximum moves 

        do not continue solving 

 

    if current moves > minimum iterations before moves and    

       moves since last improvement > non-improving moves before 

termination 

        do not continue solving 

     

    continue solving 

 

accept_solution 

    if proposed solution > best solution - abs(best solution * 

allowed deviation) 

        accept proposed solution 

    else do not accept proposed solution 

 

Figure 9. Psuedocode for Record to Record implementation 

3.3.4 Simulated Annealing  

Simulated Annealing (SA) is a heuristic technique based off the idea that the 

allowable negative deviation from the current solution should decrease over the 

number of iterations (Metropolis et al., 1953; Kirkpatrick et al., 1983; Van Deusen, 

1999). This heuristic follows the analogy of physical properties of a metal as it cools 
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during an annealing process. Early in the cooling process, molecules are driven by the 

energy required by annealing and are able to move substantially, but later in the 

cooling process this energy is reduced, and molecules move much less. SA is 

mathematically represented through an exponential function and a ‘temperature’ 

variable, which allows for large negative deviation for high temperatures, and only 

small negative deviation when the temperature is small. SA is driven by at least four 

parameters (Bettinger et al., 2002): annealing rate, initial temperature, number of 

moves at each temperature, and the stopping rule. The acceptance of a non-improving 

solution is analogous to reheating the metal. Identification of proper parameters has a 

significant role on SA performance. We have chosen the parameters by trial-and 

error, which are: 

• Annealing rate:   0.99 

• Initial temperature:   0.25 

• Number of moves/temperature: 200 

• Stopping rule: freezing temperature of 0.00001 or no improvement for 10,000 

moves (~5% of the possible moves), whichever occurs first. If SA reaches the 

freezing temperature 201,000 moves were executed. 

We found that normalizing the deviation between neighboring solutions by the 

current solution value provided the consistent results. This normalization, which 

bounded the solution fitness deltas between -1 and 1, is the reason for the low initial 

temperature. The full description of the SA implementation which we chose, 

including the normalization, is shown in pseudocode below. To mirror the results of 

R2R we have executed 29 SA runs for each study area.  

 

moves since last improvement = 0 

minimum moves before termination = 150000 
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non-improving moves before termination = 10000 

 

current temperature = 0.25 

alpha = 0.99 

repetitions per temperature = 200 

minimum temperature = 0.00001 

 

move 

    if current move % repetitions per temperature is 0 

        current temperature = current temperature * alpha 

 

    if continue_solving 

        if accept_solution 

            current solution = proposed solution 

 

            if proposed solution > best solution  

                best solution = proposed solution 

                iterations since last improvement = 0 

         

        increment iterations since last improvement   

 

 

continue_solving 

    if current temperature < minimum temperature 

        do not continue solving 

 

    if current iterations > minimum moves before termination and 

    moves since last improvement > non-improving moves before 

termination 

        do not continue solving 

 

    else continue solving 

     

accept_solution 

    normalized fitness delta =  

        (current solution - proposed solution) /  

        (abs(current solution) + abs(proposed solution)) 

     

    accept probability = 1.0 / exp(normalized fitness delta / 

temperature) 

 

    if random uniform value (0, 1] < accept probability 

        accept proposed solution 

    else do not accept proposed solution 

 

Figure 10. Psuedocode for Simulated Annealing implementation 

3.3.5 Harvesting problem formulation 

The objective function to be maximized is the net revenue obtained from harvesting 

all active harvest units, and constructing all active landings:  
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𝑚𝑎𝑥(∑ (𝐹𝑉𝑖 + 𝐻𝑉𝑖)  − (𝐸𝑄𝑀𝐶𝑖 + 𝐹𝐶𝑖 + 𝑃𝐶𝑖 + 𝑆𝐾𝐶𝑖)
𝑎ℎ𝑢
ℎ − ∑ 𝐿𝐶𝑖

𝑎𝑙
𝑙 )    6 

subject to 

ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 > 0.3 𝑡𝑜𝑛𝑛𝑒𝑠  

𝑛𝑜𝑛 ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑤𝑖𝑒𝑔ℎ𝑡 = 𝑠𝑢𝑚 𝑜𝑓 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 𝑤𝑖𝑡ℎ 𝑤𝑒𝑖𝑔ℎ𝑡 ≤ 0.3 𝑡𝑜𝑛𝑛𝑒𝑠  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑎𝑐𝑡𝑖𝑣𝑒 𝑙𝑎𝑛𝑑𝑖𝑛𝑔 =
𝑒𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑓𝑟𝑜𝑚 𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑜𝑓 ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑢𝑛𝑖𝑡, 𝑖𝑛 𝑓𝑒𝑒𝑡    
 

Each active harvest unit, defined as the ℎ𝑡ℎ value in the active harvest unit set: 

• Does not belong to the inactive harvest unit set 

Has a fitness value > 0 when assigned to the closest possible landing location, where 

the harvest unit fitness is defined by the values and costs in  

• Table 9. 

Each active landing, defined as the 𝑙𝑡ℎ landing in the active landing set: 

• Does not belong to the inactive landing set 

where 

Constant Value Units Short Description 

Felling constant  2.0 dollars/tree Estimated USDA 

remediation value 

(Magenheimer, 2011) 

Harvest value 

constant 

71.65 dollars/metric ton Estimated value of tree at 

mill (Derby, 2018) 

Equipment Moving 

constant 

0.01 dollars/foot Estimated cost of moving 

equipment to harvest unit 

(Sessions, 2018) 

Non-harvest felling 

constant 

12 dollars/metric ton Cost of felling a non-

harvested tree (Dodson, 

2010) 

Harvest felling 

constant 

10 dollars/metric ton  Cost of felling a harvested 

tree (Dodson, 2010) 

Processing constant 15 dollars/metric ton Cost of processing a 

harvested tree (Dodson, 

2010) 

Skidding Distance 

constant 

0.061 dollars/foot * 

metric ton 

Cost of moving juniper to 

the landing (Dodson, 2010) 
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Skidding Weight 

constant 

20 dollars/metric ton Cost of moving juniper to 

the landing (Dodson, 2010) 

Landing constant 500 dollars/landing (Sessions, 2018) 

 

Table 9. Juniper harvest cost and value constants 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑢𝑛𝑖𝑡𝑠 (𝑎ℎ𝑢)  

 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑎𝑐𝑡𝑖𝑣𝑒 𝑙𝑎𝑛𝑑𝑖𝑛𝑔𝑠 (𝑎𝑙) 

 

𝑓𝑒𝑙𝑙𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 (𝐹𝑉) = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑒𝑒𝑠 𝑖𝑛 ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑢𝑛𝑖𝑡 ∗
 𝑓𝑒𝑙𝑙𝑖𝑛𝑔 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

ℎ𝑎𝑟𝑣𝑒𝑠𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 (𝐻𝑉) = ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑣𝑎𝑙𝑢𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

 

𝑒𝑞𝑢𝑖𝑝𝑒𝑚𝑒𝑛𝑡 𝑚𝑜𝑣𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 (𝐸𝑄𝑀𝐶) = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑎𝑐𝑡𝑖𝑣𝑒 𝑙𝑎𝑛𝑑𝑖𝑛𝑔 ∗
𝑒𝑞𝑢𝑖𝑝𝑚𝑒𝑛𝑡 𝑚𝑜𝑣𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

 𝑓𝑒𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 (𝐹𝐶) = 𝑛𝑜𝑛 − ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑛𝑜𝑛 −
ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑓𝑒𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑓𝑒𝑙𝑙𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 (𝑃𝐶) = ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

𝑠𝑘𝑖𝑑𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 (𝑆𝐾𝐶) = ℎ𝑎𝑟𝑣𝑒𝑠𝑡 𝑤𝑒𝑖𝑔ℎ𝑡 ∗ (𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑎𝑐𝑡𝑖𝑣𝑒 𝑙𝑎𝑛𝑑𝑖𝑛𝑔 ∗
𝑠𝑘𝑖𝑑𝑑𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑠𝑘𝑖𝑑𝑑𝑖𝑛𝑔 𝑤𝑒𝑖𝑔ℎ𝑡 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡)  

𝑙𝑎𝑛𝑑𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 (𝐿𝐶) = 𝑙𝑎𝑛𝑑𝑖𝑛𝑔 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

 

3.4 Results 

An upper bound for the objective function can attain is $559,281 for the Pine Creek 

area and $289,752 for the Bridge Creek area, under the assumptions that each harvest 

unit will travel to the closest possible landing, harvest units with negative values after 

this step are removed, and that no costs for landings are assumed and the transport 

cost to the mill is zero.  Given this value, the baseline naïve solution would be 

obtained with every landing with a positive value in the active harvest set, and all 

possible landings in the active landing set and the transport cost is zero.  This naïve 

value can be obtained by subtracting the costs of all landings from the largest value, 

which equal $359,781 for Pine Creek area and $117,752 for the Bridge Creek area. 

The results of the 29 runs show the existence of a large number of solutions below the 

lower bound for each area and both algorithms (Table 10). 
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Table 10. Summary statistics of the 29 runs at $65 per ton 

Study area Algorithm Maximum 

value 

# solutions 

above lower 

bound 

Stopping of 

best solution 

Bridge creek SA 154,943 23 freezing 

 R2R 125,464 23 Non-

improvement 

Pine Creek  SA 397,219 12 freezing 

 R2R 365,836 19 Non-

improvement 

 

The top solutions revealed consistent results, with the R2R terminating because the 

solution did not improve for more than 10,000 moves whereas SA ended when the 

freezing temperature was reached (Figure 11). Nevertheless, for both areas the SA 

solutions did not improve more than 1% for the last 40,000 moves, which suggests 

that increasing the number of moves will not significantly improve the objective 

function.  
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Figure 11. Improvement of the solution with the number of moves at $65 per ton: a. 

Bridge Creek area b. Pine Creek area  

For both algorithms and study areas, the best solutions revealed that the average 

weight reaching a landing is more than 20 tons, which is the expected load of one 

truck (Table 11). We also see that the best R2R solution had significantly more 

landings than the solutions chosen by SA, which contributed to the lower per landing 

averages for the harvest unit metrics. 

Table 11. Summary statistics describing the best solution for each area and algorithm 

Study area Heuristic # landings Average 

weight/ 

landing 

Average 

distance 

from cell 

to landing 

Average # 

cells/ 

landing 

Average# 

trees 

harvested/ 

landing 

  [count] [metric ton] [ft] [count] [count] 

Bridge 

creek 

SA 223 90 233 94 228 

 R2R 308 65 214 68 201 

Pine Creek  SA 260 293 236 171 550 
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 R2R 354 108 224 63 202 

 

 

We also computed a smaller set of statistics for the runs working off a value of $45 

per ton (Table 12). Additional graphs showing the fitness of each run at steps of 1000 

moves is shown in Figure 12. 

Table 12: Summary statistics of runs at $45 per ton 

Study area Algorithm Maximum 

value 

Bridge creek SA -461 

 R2R -486 

Pine Creek  SA 17,468 

 R2R 17,315 
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Figure 12: Improvement of the solution with the number of moves at $45 per ton: a. 

Bridge Creek area b. Pine Creek area.  

3.5 Discussion 

Overall, for the grid-cell based method, we see that the solutions are separated into 

two main classes, and that the values for the top five solutions are internally very 

consistent. The two classes we see the solutions forming are those which are located 

close to the global optima, and those which became trapped in a local minimum. Of 

those solutions which became trapped in a local minimum, a frequent occurrence was 

obtaining a solution which contained only one active landing, and a small number of 

cuts which would be optimally harvested to that landing. This was a common solution 

case due to the fixed cost of establishing a new landing, which was $500, and the 

heuristic formulation which only allowed a percentage deviation from the current 

solution fitness. If the fitness of the current solution was near zero, the heuristic was 

unlikely to choose a solution with an additional landing, due to the fact that the fixed 

landing cost would often exceed the allowed deviation from the current solution. 
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We also see in our results some solutions which are below, but close to, the baseline 

value. In this case, the solution was trapped in a local minimum for the first 100,000 

iterations. The solution reached a plateau near the 150,000 iterations and was 

terminated around iteration 160,000 because of the stopping rule which terminates a 

run after 10,000 iterations without improvement. If this rule had not been in place, it 

is likely that this solution would have exceeded the baseline value and been closer to 

the rest of the solution class which were closer to the local optima. 

We observe that SA performs 10 to 20% better than R2R travel for this problem 

formulation. We believe that the weak performance of R2R in respect with SA is due 

to the fact that the R2R runs were more likely to terminate with the non-improvement 

stopping rule, than reaching their maximum iterations. This indicates that the R2R 

runs were more likely to be trapped in a class of solutions which were a local 

minimum, and which have more active landings in the final landing set. This outcome 

is likely due to the complexity and number of steps required for the heuristic to 

remove a landing in our algorithm formulation. Later in the run, when more and more 

harvest units are in the active set, removing a landing can mean a significant cost 

increase, as all harvest units whose closest landing was removed are re-assigned to 

their new closest landing, which can be much farther away. We mitigated this case by 

allowing these harvest units to have zero fitness for a small number of moves, or until 

a closer landing was activated. However, even with this allowance, removing a 

landing can lead to a loss of fitness if the value of all associated cuts is greater than 

the cost of a landing, even if this temporary loss of fitness could lead to a better 
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overall solution. From these results, we concluded that R2R was not able to explore 

the very large solution space as effectively as SA. 

From the experiments with the reduced value per ton of western juniper, we see that 

the value per ton has a significant effect on the final solution value. Given that this is 

the main driver of juniper value, this is to be expected. This dramatic drop off in 

solution value with a 30% reduction in juniper value per weight shows that even a 

smaller change in juniper value may have a dramatic effect on the overall profitability 

of harvesting. We also assume in this paper that the $65 per ton is the at landing 

value, as opposed to the at mill value, since we do not model transportation costs 

from the landing to the mill. This $45 per ton estimate can also be viewed as a 

surrogate for modelling the value at the mill, when removing the costs of transporting 

from the landing to the mill. We can see that a study site which is a significant 

enough distance from the mill will likely have similar results to the solutions 

generated assuming $45 dollars per ton. 

3.6 Conclusion 

Western juniper poses a number of challenges to harvest scheduling. However, 

harvest scheduling is an important step towards viewing western juniper as a 

merchantable resource, as opposed to an invasive species. We have demonstrated a 

procedure, based on tree harvesting systems, of aggregating individual trees into 

elementary harvest units. In addition, we have formulated an algorithm which defines 

the solution space for working with these harvest units in a harvesting context, 

including felling, processing, and skidding to a set of potential landings. This 

approach proved robust to difficult terrain, and a large number of decision variables. 
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Two areas of similar size and terrain but with far different tree distributions were 

defined. We applied two heuristics, simulated annealing and record to record travel, 

to this algorithm, in order to optimize the fitness for our current objective of 

profitability. These heuristics produced results with a greater fitness than the baseline 

naïve solution in almost all non-trivial runs. Ultimately, we found that the complexity 

of the solution space lead to simulated annealing outperforming record-to-record 

travel in both of our study areas. Through this example problem formulation, we 

demonstrate that our algorithm and solution space definition could be applied to 

similar problem sets where complex stand structure preclude the use of traditional 

stand level harvest scheduling, and instead require a more granular system. 

The two scenarios, (i) negligible truck transport costs, and (ii) significant transport 

costs suggest that the positive solutions are highly dependent on the transport 

distance.  The farther the landing is from the mill, the closer to the landing the juniper 

tree must be to be viable.  

3.7 Future Work 
Future work should include transportation from the individual landing to the mill.  

The small volumes per landing in these examples, suggest that a self-loading truck 

might be preferable to a separate loader.  Landing costs in this study assumed 

mobilization of a separate loader.  A study of transport distance, truck load capacity 

with and without the self-loader, and landing mobilization costs for the separate 

loader will need to be considered.  
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4 Conclusion 

In this work I describe two novel methods that provide essential information for 

forest decision making: estimation of the available resources and the feasibility of 

harvesting those resources. This work is focused on the major tree species within our 

study area, western juniper. I estimated the location of each western within study area 

inventory using two methods, one based on Faster RCNN and one based on the 

watershed algorithm. The novelty of my method consists in estimation of three-

dimensional data in the form of a canopy height model from two dimensional, 

multispectral images. I found that the convolutional neural network outperforms the 

classical watershed algorithm for tree crown detection for our study area. My findings 

show that the accuracy of my individual tree crown detection methods is superior to 

the existing work, which is based on a fixed grid scale. The most important 

contribution of my work is development of a method that allows tree height 

measurement for every detected tree crown using multispectral images.  

The tree height estimated from 2D data serves as inputs in an allometric relationship 

that computes tree weight and merchantable value. Based on the estimated value 

distributed spatially on the landscape, I developed a method for scheduling tree 

harvests. The method is novel contribution to the field of harvest scheduling, which is 

historically focused on stand level harvesting, whereas my method is tree level 

centered. This method allows for harvest scheduling for unmanaged stands, or forest 

composed primarily from uneven aged-multispecies stand with medium to low 

density. I believe that the tools that I developed will be useful for western juniper 
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remediation, as well as provide valuable information to decision makers that manage 

forests with similar ecological and geographical parameters.  
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