


AN ABSTRACT OF THE THESIS OF

Ricardo Noe Gerardo Reyes Grimaldo for the degree of Master of Science in

Mathematics presented on September 7, 2018.

Title: A Ross-Macdonald Model with Vector Demography

Abstract approved:

Patrick De Leenheer

Malaria is a vector-borne disease that has affected humans and other animals for a

long time and which has shown high prevalence among different populations. During the

beginning of the 20th century, Sir Ronald Ross and George Macdonald developed a model

that represents the spread of malaria through the interaction of human and mosquito

populations. Throughout this work, we study the vector-host dynamics of Malaria with

respect to a model based on the work of Ross and Macdonald, which includes the demog-

raphy of susceptible mosquitoes. With the help of both classic and modern techniques

of dynamical systems, we analyze the different characteristics of the proposed model and

its connection to corresponding biological scenarios. Some features of this model are the

existence of a unique endemic equilibrium if the basic reproduction number is larger than

1; the global asymptotic stability of this equilibrium, provided a sector condition for the

function describing the vector demography holds; and the persistence of Malaria when the

basic reproduction number is larger than 1. It is also shown that the endemic equilibrium

can be unstable under certain condition.



©Copyright by Ricardo Noe Gerardo Reyes Grimaldo

September 7, 2018

All Rights Reserved



A Ross-Macdonald Model with Vector Demography

by

Ricardo Noe Gerardo Reyes Grimaldo

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 7, 2018
Commencement June 2019



Master of Science thesis of Ricardo Noe Gerardo Reyes Grimaldo presented on September 7, 2018

APPROVED:

Major Professor, representing Mathematics

Head of the Department of Mathematics

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon State

University libraries. My signature below authorizes release of my thesis to any reader

upon request.

Ricardo Noe Gerardo Reyes Grimaldo, Author



ACKNOWLEDGEMENTS

Academic

I would first like to thank my academic adviser, Dr. Patrick De Leenheer, for his

support, guidance, encouragement, dedication, patience, and expertise. I could never find

the words to thank him for the way he has shaped my understanding, interpretation,

and knowledge of various higher-level topics in mathematics. His feedback and advice

were essential for the completion of this work, and he consistently is an ideal exemplar

of seriousness, responsibility, and academic rigor that has shaped my own growth as a

researcher.

Furthermore I would like to thank the members of my thesis committee, Dr. Vrushali

A. Bokil, Dr. Yevgeniy Kovchegov, and Dr. Mark Novak for their on-going feedback on

my work and suggestions for improvement.

Finally, I thank to my colleagues, professors, and staff of the Department of Math-

ematics. Each one of you have shown me how to be a better teacher, researcher, and

human being. My interactions with all of you have improved my perspectives on teaching,

researching, and learning mathematics.

Personal

I would like to thank my parents and loved ones for giving their unconditional sup-

port. Without my parents I would not have had the opportunities and experiences that

had brought me to this graduate program in mathematics. Finally, and foremost to my

wife Sarah Erickson for providing me with unfailing support and continuous encourage-

ment throughout my years of study and through the process of researching and writing

this thesis.

This accomplishment would not have been possible without all of you. Thank you.

Ricardo Reyes Grimaldo



TABLE OF CONTENTS

Page

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Biological Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Malaria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Life Cycle of Malaria Parasite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2. Mathematical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Ross-Macdonald Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.2 Analysis of the Ross-Macdonald model . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2. A ROSS-MACDONALD MODEL WITH VECTOR DEMOGRAPHY . . . . . . . . 12

2.1. SIS Version of the Ross-Macdonald Model with vector demography . . . . . 12

3. EQUILIBRIA AND STABILITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1. Boundary and positive equilibria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2. Extinction of the disease. Global stability of the disease free equilibrium

when R0 < 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3. Global Stability of the endemic equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4. (In)Stability of the positive steady state when mosquitoes grow logistically 28

4. PERSISTENCE OF THE DISEASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5. GLOBAL ASPECTS OF OSCILLATORY BEHAVIOR IN THE MODEL . . . . 40

6. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48



TABLE OF CONTENTS (Continued)

Page

A. APPENDIX Monotone Dynamical Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

B. APPENDIX Persistence Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

INDEX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62



LIST OF FIGURES

Figure Page

1.1 Malaria Symptoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Malaria Life Cycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Transfer diagram Ross-Macdonald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Vector Field of Ross-Macdonald at ∂D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Ross-Macdonald directed graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 Ross-Macdonald phase plane diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Transfer diagram modified Ross-Macdonald . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1 Incidence graph associated to the matrix (3.10) . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Graphic representation of the condition (SV − S∗V )(f(SV )− f(S∗V )) ≤ 0. . 24

5.1 Example of oscillatory solution for the system (2.2)-(2.4) . . . . . . . . . . . . . . . . 42

5.2 Example of oscillatory orbit that appears to converge to stable limit cycle 43



A ROSS-MACDONALD MODEL WITH VECTOR DEMOGRAPHY

1. INTRODUCTION

In this chapter we describe the importance of Malaria and also some of the different

classical approaches to study its dynamics and spread among the human and mosquito

population. We review the work by Sir Ronald Ross [27, 28], and the generalization

introduced by George Macdonald [33, 21].

1.1. Biological Background

1.1.1 Malaria

The disease known as malaria is a vector-borne disease, that is a human infectious

disease caused by a parasite, virus or bacteria and that it is transmitted between humans

or from animals to humans [23]. Malaria is caused by parasites of the genus Plasmodium

[1, 21, 25, 26, 27, 29]. There are four members that affect mainly humans: P. vivax, P.

falciparum, P. malariae and P. ovale.

Malaria is one of the diseases that affect humans with higher prevalence and, deadly

when left untreated [26]. The World Health Organization reported in 2016 that 216 million

cases of Malaria had occurred worldwide that year, where about 445 000 of these cases

resulted in human fatalities [24]. In 2015, 95 countries and territories had ongoing malaria

transmission and about 3.2 billion people, almost half of the world’s population, were at

risk of infection by malaria. Among the characteristics of this disease is that its symptoms

appear between 7 and 15 days after the infective mosquito bite [26], whilst normally the
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disease is treatable, but if not treated within 24 hours malaria can progress to severe

illness, often leading to death.

In Asia and Africa the most common Plasmodium parasites are falciparum and

malariae; whilst the cases of vivax are more frequent in Africa, India and Latin America;

finally, the last member ovale occurs only in Africa.

The main transmitter or vector of this disease is the female mosquito of the genus

Anopheles. The life cycle of the malaria is extremely complex, which provides tools for its

survival [1, 27, 29]. P. falciparum is the most common parasite that affects humans among

the four members of Plasmodium described above, thus making it the focus of research

among epidemiologists [9].

1.1.2 Life Cycle of Malaria Parasite

P. falciparum has a life cycle that is typical among protozoan parasites [1, 29]. The

complexity of the life cycle of P. falciparum provides it with an advantage for its survival.

It is the dependence of Malaria on both vectors and humans that makes it difficult to

eradicate. This follows from the fact that even if mosquitoes, the vector transmitter of

this disease, are affected through external controls, the infected humans allow the parasite

to survive in a given geographical area. It is proven that a simpler life cycle makes an

infectious agent more prone to elimination, like smallpox for example [9].

As we mentioned before, the spread of malaria is caused by mosquitoes of the genus

Anopheles. Nevertheless, only the female Anopheles mosquito is capable of biting humans

[27]; this is caused by the incapability of the male Anopheles to penetrate human skin;

the male mosquito feeds only on plant juices and some fruits.

Once a human has been bitten by a mosquito the Plasmodium parasite makes its

way through the bloodstream towards the liver, where it attaches to the parenchymal

cells of the liver [1, 27, 37, 40]. Some members of the Plasmodium genus, P. vivax and

P. ovale, can remain dormant in the liver cells for months or even years [26, 40]. In
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FIGURE 1.1: Main Symptoms of Malaria [8]

the case of P. falciparum the incubation period is about 9-14 days [40], during this time

the cell replication of the parasite allows it to enter back in the bloodstream where it

invades the red blood cells. It is in this stage of the life of the Plasmodium parasite

where the symptoms of fevers, and chills appear in infected humans, similar to flu-like

symptoms or even conditions resembling sepsis and gastroenteritis [9, 40]. In some cases

malaria patients can experience headache, fever, shivering, joint pain, vomiting, hemolytic

anemia, jaundice, hemoglobin in the urine, retinal damage, and convulsions (cf. Figure

1.1).

Once the Plasmodium parasite has infected the erythrocyte, it feeds on the hemoglobin

in order to develop to its mature state. After reaching adulthood, it will reproduce and

generate more individuals each of which can start the life cycle to infect another red

blood cell (cf. Figure 1.2). The second generation of the parasite is ingested by the

mosquito along with its blood meal (the parasite is in its gametocyte stage). Once the

mosquito achieve its reproductive stage and creates more sporozoites, after 10 to 24 days

the mosquito becomes infected thus starting the full life cycle again.
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FIGURE 1.2: Life Cycle of the Malaria Parasite [22]

1.2. Mathematical Background

1.2.1 Ross-Macdonald Model

Sir Ronald Ross (1857-1932), who received the Nobel Prize in Physiology and

Medicine in 1902, discovered the parasite responsible for Malaria [27, 28]. In his work “The

Prevention of Malaria” he showed that transmission of this disease was through mosquito

bites and designed a Mathematical Model to predict that malaria can be controlled by

maintaining the mosquito population under a certain threshold. Later, George Macdon-

ald improved Ross’ model, which concentrated on the distribution of infected human and

mosquito populations. This was the earliest attempt to quantitatively understand the

dynamics of malarial transmission, and this is now known as the Ross-Macdonald model.
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d

dt
Sh = µhN − αb

ShIv
N
− µhSh + γhIh

d

dt
Ih = αb

ShIv
N
− µhIh − γhIh

d

dt
Sv = µvV − bδ

SvIh
N
− µvSv + γvIv

d

dt
Iv = bδ

SvIh
N
− µvIv − γvIv

(1.1)

where

N Human population

Sh(t) Number of susceptible humans

Ih(t) Number of infected humans

V Mosquito population

Sv(t) Number of susceptible vectors

Iv(t) Number of infected vectors

b average number of mosquito bites per day per mosquito

α probability that a susceptible human who is bitten, becomes infected

δ probability that a susceptible mosquito that is bitten, becomes infected

µh Human birth and death rate

γh Human recovery rate

µv mosquito birth and death rate

γv mosquito recovery rate

TABLE 1.1: Parameters of the Ross-Macdonald model

In this model, N and V denote the constant total human and mosquito populations

respectively. Individuals that get infected and then recover from the disease become

susceptible again. The individual populations are divided in susceptible and infected

clases.
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We denote Sh(t) and Ih(t) as the number of susceptible and infected humans at

time t respectively. Similarly, we denote Sv(t) and Iv(t) to be the number of susceptible

and infected female mosquitoes at time t respectively.

Sh Ih

Sv Iv

µhN

µvV

ab
Sh

N
Iv

µhSh

bδ
Ih

N
Sv

µvSv µvIv

γvIv

µhIh

γhIh

FIGURE 1.3: Transfer diagram for Ross-Macdonald model. Solid arrows indicate transfer.

Dashed arrows indicate cross infection.

The parameter b is the average number of mosquito bites per day per mosquito.

Thus, daily there are a total of bIv(t) infectious mosquito bites at time t. Of these, a

proportion of Sh
N target susceptible humans, and if successful at infecting (which occurs

with probability α), these yield newly infected humans. The parameter α depends on the

immunity of the host, the virulency of the parasite and another factors of social nature,

economic, etc [1, 6, 27].

Thus, the rate of transmission per unit of time from mosquito to human is given

by αb
Iv(t)Sh(t)

N
. In a similar way δb

Ih(t)Sv(t)

N
is the transmission rate from human

to mosquito, where δ denotes the probability that a susceptible mosquito bite yields an

infected mosquito.
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Finally, infected humans recover at a rate γh and the birth rate and death rates of

each population are assumed constant, leading to an interaction among the two popula-

tions like the one depicted on Figure 1.3.

By defining m =
V

N
, the proportion of female mosquitoes and humans, and by

scaling the infected human and vector populations by their respective total populations,

sh(t) =
Sh(t)

N
, ih(t) =

Ih(t)

N
, sv(t) =

Sv(t)

V
and iv(t) =

Iv(t)

V
, we obtained a scaled version

of (1.1) for the proportions of humans and mosquitoes populations:

d

dt
sh(t) = µh − αbmshiv − µhsh + γhih

d

dt
ih(t) = αbmshiv − µhih − γhih

d

dt
sv(t) = µv − δbsvih − µvsv + γviv

d

dt
iv(t) = δbsvih − µviv − γviv

(1.2)

Notice that since sh + ih = 1 and sv + iv = 1 we may choose to utilize two of the four

variables. We choose ih and iv, which are the infected proportions in the human and

mosquito populations. We now denote x = ih and y = iv, so that sh = 1 − x and

sv = 1− y. Substituting into (1.2) we obtain the following:

x′ = αbmy(1− x)− µx

y′ = bδx(1− y)− νy
(1.3)

Here, we have defined µ = γh + µh and ν = µv + γv. Note that model (1.3) is defined on

the unit square

D = {(x, y)|0 ≤ x, y ≤ 1} .

1.2.2 Analysis of the Ross-Macdonald model

Having introduced the Ross-Macdonald model, we can study the qualitative be-

havior of its solutions in order to predict the prevalence of malaria among a group of

individuals. Since the system (1.3) is a planar system of differential equations, it can
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be studied with classical tools [4, 41] such as phase plane analysis using nullclines and

the linearization about equilibria. Nevertheless, the system (1.3) has other interesting

properties as discussed in the following theorem.

Theorem 1.2.2.1. The solutions of system (1.3) remain in D, and the system is coop-

erative and monotone (cf. Appendix A.).

Proof. Rewriting the system (1.3) as Ẋ = F (X) on the rectangle D, we see that if

(x, y) ∈ ∂D\(0, 0) then the vector field F (X) points towards the interior of D, and the

origin is a steady state of (1.3). Thus the solutions on D stay in D, implying that they

remain bounded.

(0, 0)

FIGURE 1.4: Vector Field of Ross-Macdonald at ∂D.

Observe that the Jacobian matrix is given by −αbmy − µ αbm(1− x)

δb(1− y) −δbx− ν

 (1.4)

which has an associated directed graph that is strongly connected (cf. Figure 1.5). Since

the Jacobian matrix has non-negative off-diagonal entries in D, the system (1.3) is coop-
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erative [30, 2, 31]. Then by Theorem A.0.8 we have that the system (1.3) is monotone (cf.

[39]).

x

y
+

−
+

−

FIGURE 1.5: Directed graph associated to the Jacobian matrix of (1.3)

Kamke’s Theorem implies that cooperative systems are monotone (cf. Theorem

A.0.7). This means that if the system Ẋ = F (X), with X ∈ Rn, is cooperative then its

solutions preserve the partial order relation in Rn given by (a1, ..., an) ≤ (b1, ..., bn) if and

only if ai ≤ bi for i = 1, ..., n. Moreover, since the system (1.3) is planar, it follows from

Theorem A.0.9 that all solutions converge to an equilibrium point.

Through a phase plane analysis we obtain that the x−nullcline of (1.3) is given by

y = f(x) :=
µ

αbm

x

1− x . (1.5)

On the other hand, the y−nullcline of (1.3) is given by

y = g(x) :=
x

x+ ν
δb

. (1.6)

Notice that (1.5) and (1.6) are strictly increasing in their respective domains, and the

function g(x) < 1 for all x ∈ R+.

From the nullclines we obtain that the two equilibria of the system (1.3) are the

disease-free equilibrium P0 = (0, 0), and possibly an endemic equilibrium P1 = (x∗, y∗)

where

x∗ =
αδb2m− νµ
δb(αbm+ µ)

y∗ =
µx∗

αbm(1− x∗) .

Notice that existence of P1 in D, implies uniqueness, and P1 exists in D if and only if

0 < x∗ < 1 and 0 < y∗ < 1.
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In order to determine conditions for the existence of P1, we study the disease-free

equilibrium. Notice that the Jacobian matrix (1.4) at P0 is given by −µ αbm

δb −ν

 =

 0 αbm

δb 0

−
 µ 0

0 ν

 =: F − V

since the Jacobian matrix at the disease-free equilibrium can be expressed as the difference

of a non-negative matrix F and a non-singular Metzler matrix V. By the work of Van

den Driessche and Watmough [38] we can define the basic reproductive number R0 as the

spectral radius ρ of the matrix FV−1:

R0 := ρ(FV−1) = ρ


 0 αbm

ν

δb
µ 0


 =

√
δb

ν
· αbm
µ

Observe that R0 =

√
g′(0)

f ′(0)
. If R0 > 1 we have that g′(0) > f ′(0) then for all

sufficiently small ε > 0 we have that g(ε) > f(ε). Moreover, since f(1 − ε) > g(1 − ε)

for all sufficiently small ε > 0, we have that f(x) = g(x) for some x ∈ (0, 1) proving the

existence of P1 in D.

On the other hand, if R0 < 1 we have that g′(0) < f ′(0), since f(x) and g(x) are

strictly increasing, and f(x) is a convex function and g(x) is a concave function, we have

that g(x) 6= f(x) for all x ∈ (0, 1) thus having that P1 does not exist in D in this situation

(cf. Figure 1.6).

As noted, if R0 > 1 then we have two equilibria in D and when R0 < 1 we have only

one equilibrium in D. Thus we need to analize the stability of P0. Notice that from the

Jacobian matrix at P0, its eigenvalues have negative real part if and only if R0 < 1 [38].

If R0 > 1, one eigenvalue of the Jacobian matrix at P0 has positive real part. Hence by

Theorem A.0.9, P0 is globally asymptotically stable for R0 < 1. P0 is unstable if R0 > 1.

Thus, if R0 > 1, the nonzero solutions converge to P1 by Theorem A.0.9 and because the

stable manifold of P0 does not intersect D\{P0}. Indeed, this stable manifold is tangential
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to the eigenvector associated to the negative eigenvalue of the Jacobian matrix at P0, and

this eigenvector does not belong to R2
+. Moreover P1 is asymptotically stable in this case.

P1

P0
δb
ν

µ
αbm

(a) R0 > 1

P0
δb
ν

µ
αbm

(b) R0 < 1

FIGURE 1.6: Phase plane diagram of system (1.3) with x−nullcline in green and

y−nullcline in red.

To appreciate the practical relevance of R0, we determine the critical mosquito

population level Vc, below which the disease will be cleared. Recalling that m = V
H , it

follows from the definition of R0

Vc =
νµH

αδb2

obtained by setting R0 = 1. This is important for control purposes which are often aimed

at reducing the mosquito population. Of course there are other control measures, for

example lowering the biting rate b (using bed nets, for instance).
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2. A ROSS-MACDONALD MODEL WITH VECTOR
DEMOGRAPHY

In this chapter we present our model, which is based on the Ross-Macdonald model,

but includes the demography of susceptible mosquitoes which is neglected in the original

Ross-Macdonald model.

2.1. SIS Version of the Ross-Macdonald Model with vector demography

As we discussed on Chapter 1, the Ross-Macdonald model implies that human and

mosquito populations remain constant. Whereas this seems reasonable for the human

population, given that the time scale of infection is far shorter than the time scale of

human demography, it is far less reasonable for the mosquito population.

Therefore, we shall explicity include the vector demography, representing it as a

function f(SV ) that depends on susceptible mosquitoes, i.e. we assume that infected

mosquitoes don’t reproduce. We also assume that infected mosquitoes don’t recover from

the infection. This leads to the following extension of the Ross-Macdonald model, framed

using an SIS (Susceptible-Infectious-Susceptible) approach:

˙SH = −cIV
(

SH
SH + IH

)
+ rIH

˙IH = cIV

(
SH

SH + IH

)
− rIH

ṠV = −dSV
(

IH
SH + IH

)
+ f(SV )

˙IV = dSV

(
IH

SH + IH

)
− µIV

(2.1)

where µ > 0, f(SV ) is a function dependent on SV , for which assumptions will be stated

later. The compartmental diagram of this model can be found in Figure 2.1.
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f(SV )

SV IV

SH IH

dSV
IH

SH + IH µIV

cIV
SH

SH + IH

rIH

FIGURE 2.1: Transfer diagram for proposed modified Ross-Macdonald model. Solid

arrows indicate transfer. Dashed arrows indicate cross infection.

Similarly to the Ross-Macdonald model, we denote SH(t) and IH(t) as the number of

susceptible and infected humans at time t, SV (t) and IV (t) are the number of susceptible

and infected female mosquitoes at time t. The parameter c is the successful infection by

a mosquito, assuming it bites at the average daily rate. It compares to αb in the original

Ross-Macdonald model (1.3). The parameter d can be interpreted similarly. We also

assume a constant recovery rate for the human population given by the parameter r, but

neglect the recovery of infected mosquitoes. In summary, when comparing the models

(1.3) and (2.1) we have that c = αb, d = δb, r = γh, µh = 0, γv = 0, µ = µv and

µv(Sv + Iv)− µvSv is replaced by f(SV ).

As mentioned in Chapter 1, the Ross-Macdonald model implies that the populations

of mosquitoes and humans remain constant. Notice from model (2.1) that this is still

true for the human population because
d

dt
(SH + IH) = 0, but not true for the mosquito

population. Indeed,
d

dt
(SV + IV ) = f(SV )−µIV and we won’t assume that f(SV ) = µIV .

Finally, the function f(SV ) is the dynamics of the susceptible vector population in the

absence of the infection. This allows us to study different types of population dynamics for

the mosquitoes: affine decreasing (f(SV ) = b−µSSV ), logistic (f(SV ) = pSV (1−SV /K))

or logistic with immigration (f(SV ) = b + pSV (1 − SV /K)), where all parameters are
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assumed to be positive, are common examples. Consequently, the mosquito population

is not necessarily constant. The conservation of the human population (SH + IH = H)

enables us to reduce model (2.1) to:

ṠV = − d

H
SV IH + f(SV ) (2.2)

İV =
d

H
SV IH − µIV (2.3)

İH =
c

H
IV (H − IH)− rIH (2.4)

We assume that f(SV ) is C1, that f(0) ≥ 0, f(K) = 0 for some K > 0, and that f(SV ) > 0

if 0 < SV < K, and f(SV ) < 0 for SV > K. Consequently, all positive solutions of the

equation ṠV = f(SV ), converge to K, which can be thought of as the carrying capacity.
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3. EQUILIBRIA AND STABILITY

In this chapter we study the existence of equilibria of the system (2.2)- (2.4) and

conditions for the global stability of the endemic equilibria and the case of local oscillatory

instability.

3.1. Boundary and positive equilibria

Theorem 3.1.0.1. Let f : R+ → R be C1, and assume there exists a unique positive

K > 0 such that

f(SV ) =


> 0, if 0 < SV < K

= 0, if SV = K

< 0, if SV > K

and such that f ′(K) < 0. If f(0) = 0 we also assume that f ′(0) > 0. Define

R0 :=

(
cd

µr

K

H

)1/2

Then:

• If f(0) > 0, then (2.2)-(2.4) has exactly one equilibrium E1 = (K, 0, 0) on the

boundary of R3
+, which is locally asymptotically stable if R0 < 1, but unstable if

R0 > 1.

• If f(0) = 0, then (2.2)-(2.4) has two equilibria E0 = (0, 0, 0) and E1 = (K, 0, 0)

on the boundary of R3
+. E0 is unstable, and E1 is locally asymptotically stable if

R0 < 1, but unstable if R0 > 1.

• If R0 ≤ 1, there are no positive steady states.

• If R0 > 1, then there exists at least one positive steady state. Moreover, if f in C2

and f ′′(SV ) < 0 for all SV in R+, then there is exactly one positive steady state.



16

Proof. Equilibria of the system (2.2)-(2.4) are solutions of

d

H
SV IH = f(SV ) (3.1)

d

H
SV IH = µIV (3.2)

rIH =
c

H
IV (H − IH) (3.3)

• Case 1: f(0) > 0. Suppose that (SV , IV , IH) is a boundary equilibrium. Then

necessarily SV > 0 by (3.1). If IH = 0, then IV = 0 as well by (3.2). Similarly, if

IV = 0, then IH = 0, also by (3.2). Finally, since IH = 0, it follows from (3.1) that

SV must equal K. In summary E1 = (K, 0, 0) is the only boundary steady state of

(2.2)- (2.4).

• Case 2: f(0) = 0. If (SV , IV , IH) is a boundary equilibrium, and if SV = 0, then

IV = IH = 0 by (3.2) and (3.3). Thus, E0 = (0, 0, 0) is a boundary steady state. If

SV > 0, then the same argument as in Case 1, shows that necessarily this boundary

equilibrium is E1 = (K, 0, 0).

To establish the local stability properties of E0 and E1 in both cases, we consider the

Jacobian matrix:

Jac =


− d
H IH + f ′(SV ) 0 − d

HSV

d
H IH −µ d

HSV

0 c
H (H − IH) − c

H IV − r

 (3.4)

At E1 = (K, 0, 0), which exists in both cases,

Jac(E1) =


f ′(K) 0 − d

HK

0 −µ d
HK

0 c −r


The eigenvalues of Jac(E1) are f ′(K), which is negative by assumption, and the eigenval-
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ues of the 2× 2 matrix −µ d
HK

c −r

 =

 0 d
HK

c 0

−
 µ 0

0 r

 = F − V

The latter matrix has two eigenvalues with negative real part if and only if

R0 := ρ(FV−1) =

(
cd

µr

K

H

)1/2

< 1 (cf. [38]).

It has an eigenvalue with positive real part if and only if

R0 > 1 .

These observations establish the claimed stability properties of E1.

In case f(0) = 0, the Jacobian matrix at E0 = (0, 0, 0) is:

Jac(E0) =


f ′(0) 0 0

0 −µ 0

0 c −r

 ,

which has one positive eigenvalue f ′(0), and two negative eigenvalues. Therefore, E0 is

unstable.

Next we look for possible equilibria (SV , IV , IH) which must satisfy the equations

(3.1)-(3.3). Dividing (3.2) by (3.3), and solving for IH , yields:

IH = H

(
1− 1

R2
0

K

SV

)
. (3.5)

From (3.2) we can solve for IV and by using the value of IH above we obtain

IV =
1

µ

d

H
SV IH =

d

µ

(
SV −

K

R2
0

)
. (3.6)

Substituting this in (3.1) yields:

f(SV ) = d

(
SV −

K

R2
0

)
(3.7)
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• If R0 < 1, then
K

R2
0

> K, hence any solution SV to (3.7) occurs at a value SV that

is larger than K. But this implies that f(SV ) < 0, and then (3.1) cannot be met for

a positive value of IH . Thus if R0 < 1, there are no positive equilibria. If R0 = 1,

then SV = K is the only solution of (3.7). But then f(SV ) = 0, hence IV = IH = 0

must hold by (3.1) and (3.2).

• If R0 > 1, then
K

R2
0

< K. Then f
(
K
R2

0

)
> 0, and 0 = f(K) < d

(
K − K

R2
0

)
, hence

by the intermediate value theorem, there exists at least one postive solution SV to

(3.7), and SV belongs to

(
K

R2
0

,K

)
. Notice that (3.5) then implies that IH > 0,

and from (3.2) then follows that IV > 0. Thus, if R0 > 1, there exists at least one

positive steady state.

To see that when f is C2 and f ′′(SV ) < 0 for all SV in R+, there is exactly one positive

state, we argue by contradiction. First, notice that the steady state equations (3.1)-

(3.3) imply that if (S1
V , I

1
V , I

1
H) and (S2

V , I
2
V , I

2
H) are distinct positive steady states,

then necessarily S1
V 6= S2

V (Indeed, if S1
V and S2

V were equal, so would I1H and I2H

by (3.1) and then also I1V and I2V by (3.2)). Assume without loss of generality that

S1
V < S2

V . Since S1
V and S2

V solve (3.7), and since we know that R0 > 1 must hold,

there follows that

K

R2
0

< S1
V < S2

V < K .

Define g(SV ) = f(SV )− d
(
SV −

K

R2
0

)
. Thus, g(S1

V ) = g(S2
V ) = 0, and g′′(SV ) < 0

for all SV . Since g

(
K

R2
0

)
> 0 = g(S1

V ), there exist an S∗V in

(
K

R2
0

, S1
V

)
such that

g′(S∗V ) < 0 by the mean value theorem. Since g(S1
V ) = g(S2

V ) = 0, there exists an S∗∗V

in (S1
V , S

2
V ) such that g′(S∗∗V ) = 0. Thus, we have found S∗V < S∗∗V with g′(S∗V ) < 0,

yet g′(S∗∗V ) = 0. This contradicts that g′′(SV ) < 0 for all SV . In summary, when

f is C2 and f ′′(SV ) < 0 for all SV in R+, there is exactly one positive steady state

(see figure below).
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K
R2

0

S∗
V K

−dK
R2

0

3.2. Extinction of the disease. Global stability of the disease free equi-
librium when R0 < 1

Throughout our studies for the system (2.2)-(2.4), we need to point out the impor-

tance of two sets:

Ω = {(SV , IV , IH) ∈ R3
+ | SV ≥ 0 , IV ≥ 0 , 0 ≤ IH ≤ H} (3.8)

which is the state space of the system (2.2)-(2.4) and the cone

K = {(SV , IV , IH) ∈ R3 | SV , IH ≥ 0 , IV ≤ 0} . (3.9)

endowed with the partial order ≤K given by x ≤K y if x1 ≤ y1, x2 ≥ y2 and x3 ≤ y3.

Theorem 3.2.0.1. The system (2.2)-(2.4) is competitive with respect to the cone K (cf.

(3.9)). (cf. [30], p. 49)

Proof. Consider the system (2.2)-(2.4) with its state space Ω and partial order K. Recall

that the Jacobian matrix of system (2.2)-(2.4) at an arbitrary point of Ω has the following
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sign structure (cf. (3.4)): 
∗ 0 −

+ ∗ +

0 + ∗

 (3.10)

where some of the off-diagonal entries (+ or -) can be zero at points on the boundary of

Ω. The matrix (3.10) is sign-symmetric, i.e., for every i 6= j the product of the (i, j)th and

(j, i)th entry is nonnegative. The incidence graph associated with this matrix, where edges

between the nodes are labeled with a sign accordingly to the sign on the corresponding

entry on the Jacobian matrix (see Figure 3.1), satisfies the following property: every closed

loop in this graph possesses an odd number of edges with - signs. This property implies

that the system is competitive (cf. [30], pp. 48-50).

1

2 3

−

+

+

+

FIGURE 3.1: Incidence graph associated to the matrix (3.10)

Alternatively, the change of variables (SV , IV , IH) → (SV , T, IH), with T = −IV , results

in the system

ṠV = f(SV )− d

H
SV IH

Ṫ = − d

H
SV IH − µT

İH = − c

H
T (H − IH)− rIH

whose Jacobian matrix has nonpositive off-diagonal terms on the relevant domain, making

it a competitive system with respect to the usual, componentwise partial order.
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The relevance for the system (2.2)-(2.4) to be competitive relies on the theory de-

veloped by Morris W. Hirsch and Hal L. Smith [10, 11, 12, 14, 13, 15, 30]. A specific

consequence of the theory of competitive systems is a generalization of the Poincaré-

Bendixson Theorem (cf. Theorem A.0.10) to dimension 3, see Theorem A.0.12. This

allows us to conclude, for example, that a compact limit set of a competitive system in

R3 which contains no steady states is a periodic orbit.

Theorem 3.2.0.2. If R0 < 1, then the disease free equilibrium E1 = (K, 0, 0) is globally

asymptotically stable with respect to all initial conditions when f(0) > 0; when f(0) = 0,

E1 is globally asymptotically stable with respect to all initial conditions not on the invariant

(IV , IH)−plane.

Proof. Let f(0) > 0. If E1 is not Globally Asymptotically Stable then there exists X0 ∈

Ω = {(SV , IV , IH) ∈ R3
+ | SV ≥ 0 , IV ≥ 0 , 0 ≤ IH ≤ H} such that the solution X(t) =

(SV (t), IV (t), IH(t)) starting at X0, does not converge to E1, i.e. X(t) 6→ E1. We then

have two cases: E1 ∈ ω(X0) or E1 /∈ ω(X0).

If ω(X0) 3 E1, since E1 is locally asymptotically stable (cf. Theorem 3.1.0.1), then

ω(X0) = {E1}. Contradicting that X(t) 6→ E1.

If ω(X0) 63 E1, then no equilibria belong to ω(X0) because E1 is the only equilibrium

of system (2.2)-(2.4). Then by Theorem A.0.12, we have that ω(X0) is a periodic orbit,

since (2.2)-(2.4) is competitive by Theorem 3.2.0.1.

We claim that the periodic orbit given by ω(X0) must belong to int(Ω). Indeed, it

is easy to check that solutions that start on the boundary of Ω but not on the SV−axis

enter int(Ω) instantaneously. This implies that points on this part of the boundary of Ω

cannot belong to a periodic orbit. It is also clear that no point on the invariant SV−axis

belongs to a periodic orbit.

Now, since ω(X0) ⊂ int(Ω) and ω(X0) is compact, there is a box B that contains

ω(X0) and whose sides are parallel to the coordinate planes and also lies in int(Ω). B can
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be expressed as a closed order interval with respect to the usual order given by the positive

orthant R3
+ (defining an order cone), ≤, say B = [p,q] = {x ∈ R3 | p ≤ x ≤ q}. Now,

since the boundary of R3
+ and the boundary of K are parallel to each other, we can find a

homomorphism between the closed order interval [p,q] and some closed order interval with

respect to the order ≤K. Indeed, the closed order interval [p,q] defines a parallelepiped in

int(Ω) where one of its spatial diagonals joins the points p and q. Let us consider the sides

parallel to the (SV , IH)−plane and let g and l be the points diagonal opposite to p and q

on their respective sides. Due to the order ≤K these points g and l define the same box B

over the order ≤K with its respective closed interval B = [l,g]K = {x ∈ R3 | l ≤K x ≤K g}

(see figure below).

B

p l

g q

Since the periodic orbit ω(X0) is such that ω(X0) ⊂ [l,g]K ⊂ int(Ω) then by Theorem

A.0.14, B must contain a steady state of (2.2)-(2.4). However, E1 is the only steady state

of the system (since R0 < 1 and f(0) > 0, see Theorem 3.1.0.1) and E1 /∈ B. Therefore

ω(X0) cannot be a periodic orbit, a contradiction.

Therefore E1 is globally asymptotically stable in this case.

Let f(0) = 0. If E1 is not Globally Asymptotically Stable then there exists X0 ∈
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Ω = {(SV , IV , IH) ∈ R3
+ | SV ≥ 0 , IV ≥ 0 , 0 ≤ IH ≤ H} but not on the invariant

(IV , IH)−plane such that the solution X(t) = (SV (t), IV (t), IH(t)) starting at X0, does

not converge to E1. We have the same two cases as when f(0) > 0, the case when

E1 ∈ ω(X0) follows in an analogous way. The difference occurs when E1 /∈ ω(X0). In

this case, since we have an additional equilibrium on the SV−axis, E0 = (0, 0, 0) (cf.

Theorem 3.1.0.1) we have to determine if also E0 is, or is not in ω(X0). We claim that

E0 /∈ ω(X0). Indeed, suppose that E0 ∈ ω(X0). Since X0 is a hyperbolic equilibrium,

the Butler-McGehee Lemma (cf. Theorem A.0.11) implies that ω(X0) contains a point

of W u(E0)\{E0}, which is the open segment on the SV−axis connecting E0 and E1.

By the invariance and closedness of ω−limit sets, ω(X0) must then also contain E1, a

contradiction. The rest of the proof now proceeds as in the case where f(0) > 0: since

ω(X0) does not contain either of the system’s two equilibria E0 or E1, it must be a periodic

orbit by Theorem A.0.12. This leads to a contradiction as before, and we conclude that

E1 is globally asymptotically stable.
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3.3. Global Stability of the endemic equilibrium

Theorem 3.3.0.1. Let X∗ = (S∗V , I
∗
V , I

∗
H) be a positive steady state (or equilibrium) of

the system (2.2)-(2.4). Then X∗ is globally asymptotically stable with respect to initial

conditions in int(R3
+), if

(SV − S∗V )(f(SV )− f(S∗V )) ≤ 0 , for all SV (cf. Figure 3.2). (3.11)

S∗V

f(S∗V )

FIGURE 3.2: Graphic representation of the condition (SV − S∗V )(f(SV )− f(S∗V )) ≤ 0.

Proof. For the system (2.2)-(2.4), we will prove that a Lyapunov function exists. The

steady state equations for the steady state X∗ = (S∗V , I
∗
V , I

∗
H) are:

f(S∗V ) =
d

H
S∗V I

∗
H = µI∗V (3.12)

rI∗H =
c

H
I∗V (H − I∗H) (3.13)

We define the function

V =

∫ SV

S∗
V

1− S∗V
x
dx+

∫ IV

I∗V

1− I∗V
x
dx+ α

∫ IH

I∗H

1− I∗H
x
dx , (3.14)
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where α is a positive constant, defined later. Notice that

V̇ =

(
1− S∗V

SV

)
ṠV +

(
1− I∗V

IV

)
İV + α

(
1− I∗H

IH

)
İH

=

(
1− S∗V

SV

)(
− d

H
SV IH + f(SV )

)
+

(
1− I∗V

IV

)(
d

H
SV IH − µIV

)
+ α

(
1− I∗H

IH

)( c
H
IV (H − IH)− rIH

)
=

(
1− S∗V

SV

)(
− d

H
SV IH + f(SV ) + f(S∗V )− f(S∗V )

)
+

(
1− I∗V

IV

)(
d

H
SV IH − µIV

)
+ α

(
1− I∗H

IH

)( c
H
IV (H − IH)− rIH

)
=

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) +

(
1− S∗V

SV

)
f(S∗V ) +

d

H
S∗V IH − µIV −

d

H

I∗V SV IH
IV

+ µI∗V + α

(
1− I∗H

IH

)( c
H
IV (H − IH)− rIH

)
=

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) +

(
1− S∗V

SV

)
f(S∗V ) +

d

H
S∗V I

∗
H

IH
I∗H
− µI∗V

IV
I∗V

− d

H
S∗V I

∗
H

I∗V SV IH
IV S∗V I

∗
H

+ µI∗V + α

(
1− I∗H

IH

)( c
H
IV (H − IH)− rIH

)
=

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) + 2µI∗V −

S∗V
SV

µI∗V + µI∗V
IH
I∗H
− µI∗V

IV
I∗V
− µI∗V

I∗V SV IH
IV S∗V I

∗
H

+ α

(
1− I∗H

IH

)( c
H
IV (H − IH)− rIH

)
=

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) + µI∗V

(
2− S∗V

SV
+
IH
I∗H
− IV
I∗V
− I∗V SV IH
IV S∗V I

∗
H

)
+ α

(
1− I∗H

IH

)( c
H
IV (H − IH)− rIH

)
=

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) + µI∗V

(
2− S∗V

SV
+
IH
I∗H
− IV
I∗V
− I∗V SV IH
IV S∗V I

∗
H

)
+ α

(
cIV −

cIV IH
H

− rIH −
cI∗HIV
IH

+
cI∗HIV
H

+ rI∗H

)
We want to take advantage of a common factor for µI∗V and to simplify the term rI∗H , and

set

α =
µI∗V
rI∗H
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Then notice that

V̇ =

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) + µI∗V

(
2− S∗V

SV
+
IH
I∗H
− IV
I∗V
− I∗V SV IH
IV S∗V I

∗
H

)
+
µI∗V
rI∗H

(
cIV −

cIV IH
H

− rIH −
cI∗HIV
IH

+
cI∗HIV
H

+ rI∗H

)
=

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) + µI∗V

(
2− S∗V

SV
+
IH
I∗H
− IV
I∗V
− I∗V SV IH
IV S∗V I

∗
H

)
+ µI∗V

(
cIV
rI∗H
− cIV IH
HrI∗H

− IH
I∗H
− cIV
rIH

+
cIV
Hr

+ 1

)
=

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) + µI∗V

(
3− S∗V

SV
− I∗V SV IH
IV S∗V I

∗
H

− IV I
∗
H

I∗V IH

)
+ µI∗V

(
IV I

∗
H

I∗V IH
− IV
I∗V

+
c

rI∗H
IV −

cIH
HrI∗H

IV −
c

rIH
IV +

c

Hr
IV

)
=

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) + µI∗V

(
3−

(
S∗V
SV

+
I∗V SV IH
IV S∗V I

∗
H

+
IV I

∗
H

I∗V IH

))
+ µI∗V IV

(
I∗H
I∗V IH

+
c

rI∗H
+

c

Hr
− 1

I∗V
− cIH
HrI∗H

− c

rIH

)
Notice that (3.13) gives us the following relations:

I∗H
I∗V

=
c

rH
(H − IH) =

c

r
− cIH
rH

1

I∗V
=

c

I∗Hr
− cIH
rHI∗H

by substituting in the last term of V̇ we obtain

V̇ =

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) + µI∗V

(
3−

(
S∗V
SV

+
I∗V SV IH
IV S∗V I

∗
H

+
IV I

∗
H

I∗V IH

))
+ µI∗V IV

(
c

IHr
− c

rH
+

c

rI∗H
+

c

Hr
− c

I∗Hr
+

cIH
rHI∗H

− cIH
rHI∗H

− c

rIH

)
=

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) + µI∗V

(
3−

(
S∗V
SV

+
I∗V SV IH
IV S∗V I

∗
H

+
IV I

∗
H

I∗V IH

))

Let us notice that 3−
(
S∗V
SV

+
I∗V SV IH
IV S∗V I

∗
H

+
IV I

∗
H

I∗V IH

)
≤ 0 as a consequence of the inequality

of arithmetic and geometric means. Since by hypothesis we know that f(SV ) satisfies:

(SV − S∗V )(f(SV )− f(S∗V )) ≤ 0 ,

there follows that V̇ ≤ 0.
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Let us observe that V is a Lyapunov function (cf. Definition A.0.9), since V = 0 if

X = X∗, V > 0 if X 6= X∗. Moreover, from what deducted above we have that V̇ ≤ 0,

then by the Lyapunov Theorem (cf. TheoremA.0.3) we know that X∗ is stable.

We also claim that every sublevel set {X ∈ int(R3
+) | V (X) ≤ V0}, where V0 ≥ 0

is an arbitrary constant, is a compact subset of int(R3
+). Indeed, according to (3.14),

V (X) = V1(SV ) + V2(IV ) + V3(IH), and every Vi(·) is non-negative and strictly convex

on int(R+), and such that Vi(z) → +∞ as z → 0+, or z → +∞. This implies that all

sublevel sets of each Vi(z), are compact in int(R+), from which the claim follows.

The fact that V̇ ≤ 0, together with the compactness of the sublevel sets of V (X)

implies that these sublevel sets are forward invariant. Since they are compact sets, this

implies in particular that every solution of (2.2)-(2.4) in int(R3
+) is bounded, enabling an

application of LaSalle’s Invariance Principle (cf. TheoremA.0.15). Notice that V̇ = 0 if

and only if both(
1− S∗V

SV

)
(f(SV )− f(S∗V )) = 0 and

(
3−

(
S∗V
SV

+
I∗V SV IH
IV S∗V I

∗
H

+
IV I

∗
H

I∗V IH

))
= 0

From our condition in (3.11), we have that

(
1− S∗V

SV

)
(f(SV )− f(S∗V )) = 0 if and only if

S∗V
SV

= 1 .

Substituting this in the second term of V̇ yields:

3−
(
S∗V
SV

+
I∗V SV IH
IV S∗V I

∗
H

+
IV I

∗
H

I∗V IH

)
= 0

3−
(

1 +
I∗V IH
IV I∗H

+
IV I

∗
H

I∗V IH

)
= 0

2 =
I∗V IH
IV I∗H

+
IV I

∗
H

I∗V IH

The equation above can be rewritten as 2 = x + x−1 by setting x =
I∗V IH
IV I∗H

, and the only

solution of this equation is x = 1. Therefore,

I∗V IH
IV I∗H

= 1 .
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Thus, the subset of R3
+ where V̇ vanishes is

E =

{
(SV , IV , IH) ∈ R3

+ |
S∗V
SV

= 1 ,
I∗V IH
IV I∗H

= 1

}
.

We claim that the largest invariant set in E is {E1}. To see this, let (SV (t), IV (t), IH(t))

be a solution in E. Then SV (t) = S∗V for all t. Consequently, ṠV (t) = 0, and then (2.2)

implies that IH(t) =
H

d

f(S∗V )

S∗V
for all t. But then IH(t) = I∗H for all t. Then İH(t) = 0 for

all t, and (2.4) implies that IV (t) =
H

c
r

I∗H
H − I∗H

for all t, or equivalently that IV (t) = I∗V

for all t.

3.4. (In)Stability of the positive steady state when mosquitoes grow
logistically

Lemma 3.4.0.1. Let X∗ = (S∗V , I
∗
V , I

∗
H) be a positive steady state (or equilibrium) of

the system (2.2)-(2.4). Then X∗ is locally asymptotically stable with respect to initial

conditions in int(R3
+), provided that f ′(S∗V ) < 0.

Proof. Given a positive steady state for the system (2.2)-(2.4), we can evaluate the Ja-

cobian matrix (3.4) at the positive equilibrium. Moreover, by taking advantage of the

equations (3.1), (3.5) and (3.6) we know that

d

H
I∗H =

f(S∗V )

S∗V
,

c

H
(H − I∗H) =

cK

R2
0S
∗
V

and − c

H
I∗V − r = −rR2

0

S∗V
K

.

This allows us to express the Jacobian matrix in terms of S∗V

J =


f ′(S∗V )− f(S∗

V )
S∗
V

0 − d
HS
∗
V

f(S∗
V )

S∗
V

−µ d
HS
∗
V

0 cK
R2

0S
∗
V
− rR2

0S
∗
V

K

 ,
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whose characteristic polynomial is given by

p(λ) =

(
λ+

f(S∗V )

S∗V
− f ′(S∗V )

)
(λ+ µ)

(
λ+ rR2

0

S∗V
K

)
+
f(S∗V )

S∗V

cdK

HR2
0

− cdK

HR2
0

(
λ− f ′(S∗V ) +

f(S∗V )

S∗V

)
=λ3 + λ2

(
rR2

0

S∗V
K

+ µ+
f(S∗V )

S∗V
− f ′(SV )

)
+ λ

(
µrR2

0

(
S∗V
K
− 1

R2
0

)
+

(
f(S∗V )

S∗V
− f ′(S∗V )

)(
rR2

0

S∗V
K

+ µ

))
+ µrR2

0

(
f(S∗V )

K
− f ′(S∗V )

(
S∗V
K
− 1

R2
0

))
= : λ3 + a2λ

2 + a1λ+ a0

Notice that a2 > 0 given that f ′(SV ) < 0. Moreover, as a result of Theorem 3.1.0.1,

for the first component of the positive equilibrium holds that
S∗V
K

>
1

R2
0

and f(S∗V ) > 0.

Hence a0 > 0 and also a1 > 0, and thus the Routh table associated to the characteristic

polynomial above is given by

1 a1

a2 a0
a2a1 − a0

a2
0

a0

Hence by the Routh-Hurwitz test (cf. [41], p. 14) we have that the equilibrium E∗ is

stable given that 0 <
a1a2 − a0

a2
.

a1a2 − a0 =− µrR2
0

(
f(S∗V )

K
− f ′(S∗V )

(
S∗V
K
− 1

R2
0

))
+

(
rR2

0

S∗V
K

+ µ+
f(S∗V )

S∗V
− f ′(SV )

)
×
(
µrR2

0

(
S∗V
K
− 1

R2
0

)
+

(
f(S∗V )

S∗V
− f ′(S∗V )

)(
rR2

0

S∗V
K

+ µ

))
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=− µrR2
0

f(S∗V )

K
− f ′(SV )

(
f(S∗V )

S∗V
− f ′(S∗V )

)(
rR2

0

S∗V
K

+ µ

)
+

(
rR2

0

S∗V
K

+ µ+
f(S∗V )

S∗V

)(
µrR2

0

(
S∗V
K
− 1

R2
0

)
+

(
f(S∗V )

S∗V
− f ′(S∗V )

)(
rR2

0

S∗V
K

+ µ

))
=

(
rR2

0

S∗V
K

+
f(S∗V )

S∗V

)(
µrR2

0

(
S∗V
K
− 1

R2
0

)
+

(
f(S∗V )

S∗V
− f ′(S∗V )

)(
rR2

0

S∗V
K

+ µ

))
+ µ

(
µrR2

0

(
S∗V
K
− 1

R2
0

)
+ µ

S∗V
S∗V
− f ′(S∗V )

(
rR2

0

S∗V
K

+ µ

))
− f ′(S∗V )

(
f(S∗V )

S∗V
− f ′(S∗V )

)(
rR2

0

S∗V
K

+ µ

)
Since f ′(S∗V ) < 0 and

1

R2
0

<
S∗V
K

< 1 all the terms in the last equation above are positive,

and thus a1a2 − a0 > 0. Hence by the Routh-Hurwitz test we know that X∗ is locally

asymptotically stable.

The strictly positive equilibrium is globally stable given the sector condition (SV −

S∗V )(f(SV )− f(S∗V )) ≤ 0, for all SV . This raises the question of what happens when the

sector condition fails.

A common assumption is that populations grow logistically. Notice that the usual

logistic growth f(SV ) = pSV

(
1− SV

K

)
does not satisfy the condition provided for global

stability, since the sector condition fails near SV = 0 as 0 < S∗V < K.

Hence we assume that f(SV ) = pSV

(
1− SV

K

)
where p > 0 and K > 0 denote the

maximal per capita growth rate, and K the carrying capacity of mosquitoes respectively.

From Theorem 3.1.0.1 we have found the unique positive equilibrium E∗ whenever

R2
0 > 1. By using a similar approach to the one used on Lemma 3.4.0.1, we can compute

the Jacobian matrix to determine the stability of this equilibrium. Our first goal is to

express the Jacobian in (3.4) using S∗V only and to avoid explicit reference to I∗V and I∗H .

Notice that f ′(SV ) = p

(
1− 2

SV
K

)
. Now, by using (3.1) we have that

d

H
I∗H =

f(S∗V )

S∗V
= p

(
1− S∗V

K

)
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this implies that

− d

H
I∗H + f ′(S∗V ) = −p

(
1− S∗V

K

)
+ p

(
1− 2

S∗V
K

)
= −pS

∗
V

K
.

Also, from (3.5),

c

(
H − I∗H
H

)
= c

1

R2
0

K

S∗V
,

and from (3.6),

c

H
I∗V =

cd

µH

(
S∗V −

K

R2
0

)
=
cdK

µrH

(
rS∗V
K

)
− cdK

µrH

r

R2
0

= rR2
0

S∗V
K
− r ,

yielding

− c

H
I∗V − r = −rR2

0

S∗V
K

These relations help us to express the Jacobian matrix at the positive equilibrium E∗ in

terms of S∗V only:

JacE∗ =


−pS

∗
V
K 0 −dK

H
S∗
V
K

p
(

1− S∗
V
K

)
−µ dK

H
S∗
V
K

0 c 1
R2

0

K
S∗
V
−rR2

0
S∗
V
K

 =


−pz∗ 0 −dK

H z∗

p(1− z∗) −µ dK
H z∗

0 c 1
R2

0z
∗ −rR2

0z
∗


where z∗ =

S∗V
K

, so z∗ ∈
(

1

R2
0

, 1

)
.

Notice that the characteristic polynomial of the above matrix is given by

T (λ) =

∣∣∣∣∣∣∣∣∣∣
λ+ pz∗ 0 dK

H z∗

−p(1− z∗) λ+ µ −dK
H z∗

0 −c 1
R2

0z
∗ λ+ rR2

0z
∗

∣∣∣∣∣∣∣∣∣∣
=(λ+ pz∗)(λ+ µ)(λ+ rR2

0z
∗) + (p(1− z∗))

(
c

R2
0z
∗

)(
dK

H
z∗
)

− (λ+ pz∗)

(
dK

H
z∗
)(

c

R2
0z
∗

)
=λ3 + (pz∗ + µ+ rR2

0z
∗)λ2 + (pz∗µ+ prR2

0(z∗)2 + µrR2
0z
∗ − µr)λ

+ prµ(R2
0(z∗)2 − 2z∗ + 1)

=λ3 + a2λ
2 + a1λ+ a0
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Note that a2 > 0, and a0 > 0 because R2
0 > 1. The Routh table associated to the

characteristic polynomial above is given by

1 a1

a2 a0
a2a1 − a0

a2
0

a0

Hence by the Routh-Hurwitz test (cf. [41], p. 14) we have that the equilibrium E∗ is

stable given that

0 <
a1a2 − a0

a2
,

and unstable if this inequality is reversed. We thus need to find the sign of a1a2 − a0:

a2a1 − a0 =

(
S∗V
K

)2(
µ+ rR2

0

S∗V
K

)
p2 + (µr)

(
R2

0

S∗V
K
− 1

)(
µ+ rR2

0

S∗V
K

)
+

[(
S∗V
K

){
µ2 + µrR2

0

S∗V
K

+

(
rR2

0

S∗V
K

)
+ µr

(
R2

0

S∗V
K
− 1

)}
− µr

(
1− 2

S∗V
K

)]
p

=

(
S∗V
K

)2(
µ+ rR2

0

S∗V
K

)
p2 + (µr)

(
R2

0

S∗V
K
− 1

)(
µ+ rR2

0

S∗V
K

)
+

[(
S∗V
K

){
µ2 + 2µrR2

0

S∗V
K

+

(
rR2

0

S∗V
K

)2

+ µr

}
− µr

]
p

=

(
S∗V
K

)2(
µ+ rR2

0

S∗V
K

)
p2 +

[(
S∗V
K

){(
µ+ rR2

0

S∗V
K

)2

+ µr

}
− µr

]
p

+ (µr)

(
R2

0

S∗V
K
− 1

)(
µ+ rR2

0

S∗V
K

)
=αp2 + βp+ γ .

Note that α > 0 and γ > 0

(
because

S∗V
K

>
1

R2
0

)
. In order to make E∗ unstable, we need

to show that β < 0 and β2− 4αγ > 0. Notice that for all sufficiently small S∗V /K we have

that

β =

[(
S∗V
K

){(
µ+ rR2

0

S∗V
K

)2

+ µr

}
− µr

]
< 0
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this also makes that γ < 0. On the other hand, notice that

β2 − 4αγ =

[(
S∗V
K

){(
µ+ rR2

0

S∗V
K

)2

+ µr

}
− µr

]2
− 4

(
S∗V
K

)2(
µ+ rR2

0

S∗V
K

)2

(µr)

(
R2

0

S∗V
K
− 1

)

=

(
S∗V
K

)2
(µ+ rR2

0

S∗V
K

)2

+ µr − µr(
S∗
V
K

)
2

− 4

(
µ+ rR2

0

S∗V
K

)2

(µr)

(
R2

0

S∗V
K
− 1

)
=

(
S∗V
K

)2
[(

µ+ rR2
0

S∗V
K

)2

+ µr

(
1− 1

S∗
V
K

)
+ 2

(
µ+ rR2

0

S∗V
K

)√
(µr)

(
R2

0

S∗V
K
− 1

)]

×
[(

µ+ rR2
0

S∗V
K

)2

+ µr

(
1− 1

S∗
V
K

)
− 2

(
µ+ rR2

0

S∗V
K

)√
(µr)

(
R2

0

S∗V
K
− 1

)]

From the last expression the last two factors can be made negative, by choosing S∗V /K

sufficiently small, due to the term −µr 1
S∗
V
K

in each factor. This implies that β2− 4αγ > 0.

Thus, a2a1 − a0 < 0, and by the Routh-Hurwitz test, the steady state E∗ = (S∗V , I
∗
V , I

∗
H)

is unstable.

Lemma 3.4.0.2. Given the system (2.2)-(2.4) with f(SV ) = pSV

(
1− SV

K

)
and R0 > 1.

The positive steady state E∗ = (S∗V , I
∗
V , I

∗
H) is unstable for S∗V /K sufficiently small for all

values of p belonging to some interval.

We claim that S∗V /K can be made sufficiently small. Indeed by solving the equation

d

(
SV −

K

R2
0

)
= pSV

(
1− SV

K

)
for

SV
K

, we obtain the solution
S∗V
K

:

S∗V
K

=

p− d+

√
(d− p)2 + 4

pd

R2
0

2p
. (3.15)

To see that
S∗V
K

can be made arbitrarily small, consider the special case where p = d is

arbitrary. Then
S∗V
K

=
1

R0
. Thus if R0 is arbitrarily large, then

S∗V
K

is arbitrarily small.
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4. PERSISTENCE OF THE DISEASE

In this chapter we establish that system (2.2)-(2.4) is a persistent dynamical system

when R0 > 1.

Persistence is an important notion in the study of population biology and epidemi-

ology. It implies the endemicity of the disease; or in other words, the long term prevalence

of a disease.

In order to establish persistence, we first have to show that solutions are and ulti-

mately uniformly bounded (cf. Definition A.0.16), following the techniques discussed in

[5] and [35].

Lemma 4.0.0.1. The set Ω = {(SV , IV , IH) ∈ R3
+ | SV ≥ 0 , IV ≥ 0 , 0 ≤ IH ≤ H}

is forward invariant for system (2.2)-(2.4). Moreover there exists P > 0 such that for

all solutions (SV , IV , IH) in Ω, holds that SV (t), IV (t) < P for all large t, that is, the

solutions of the system (2.2)-(2.4) are ultimately uniformly bounded in Ω (cf. Definition

A.0.16).

Proof. The positive invariance of Ω follows from the fact that whenever any of the state

variables equals zero, the corresponding component of the vector field generated by the

system (2.2)-(2.4) is nonnegative, and whenever IH = H, the corresponding IH component

is nonpositive. That is, if SV = 0 we know by (2.2) that ṠV = f(0) ≥ 0 from the definition

of f(SV ) in Theorem 3.1.0.1; if IV = 0 then by (2.2) we have that İV = d
HSV IH ≥ 0 for

SV , IH ∈ R+; and if IH = 0 then by (2.4) follows that İH = cIV ≥ 0 for IV ∈ R+; and

if IH = H, then İH = −rH ≤ 0. Therefore, Ω is positively invariant by the Nagumo

Theorem (cf. Theorem A.0.16).

In order to prove that the solutions are ultimately uniformly bounded, firstly notice

that for any initial condition, IH(t) ∈ [0, H] for all t ∈ R+ by the forward invariance of Ω.
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Now, since ṠV = f(SV )− d
HSV IH we know that ṠV ≤ f(SV ), and this implies that

if SV > K then f(SV ) < 0 and for any fixed ε > 0 we have that SV (t) ≤ K + ε for all

t >> 1. Let M = max
SV ∈R+

{f(SV )}. Notice that by adding (2.2) and (2.3) we obtain that

ṠV + İV = f(SV )− µIV ≤M − µIV ,

let A > 0 be such that Aµ > M + ε and notice that as long as SV (t) + IV (t) ≥ A+K + ε

for t >> 1 then

−µIV (t) ≤ µSV (t)− µ(A+K + ε) ≤ µ(K + ε)− µ(A+K + ε) ≤ −µA .

This implies that for t >> 1 we have ṠV + İV ≤ M − µIV ≤ M − µA < −ε. Therefore

SV (t) + IV (t) ≤ A + K + ε for t >> 1, thus proving that all solutions of (2.2)-(2.4)

are uniformly bounded for t sufficiently large. For simplicity let us fix ε = 1 and define

P := A+K + 1.

Having proved the positive invariance of Ω and the ultimate uniform boundedness

of the solutions of (2.2)-(2.4), we proceed to prove the uniform strong persistence of the

system (cf. Definition B.0.1).

Theorem 4.0.0.1. If R0 > 1, then there exists ε > 0, independent of initial conditions

satisfying (SV (0), IV (0), IH(0)) in Ω = {(SV , IV , IH) ∈ R3
+ | SV ≥ 0 , IV ≥ 0 , 0 ≤ IH ≤

H}, such that lim inf
t→∞

X(t) > ε for X = SV , IV , IH .

Proof. This result follows from applying Theorem 4.6 in [35] (cf. Theorem B.0.3). Let

X = Ω, X1 = int(Ω), X2 = ∂Ω and B = {(SV , IV , IH) ∈ Ω | 0 ≤ SV ≤ P , 0 ≤ IV ≤

P , 0 ≤ IH ≤ H.

To see that int(Ω) is positively invariant, we argue by contradiction. Suppose X(0)

in int(Ω) is such that X(T ) /∈ int(Ω), for some T > 0. Let T be the smallest such time.

Since Ω is forward invariant, it follows that X(T ) ∈ ∂Ω.
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If f(0) > 0, then X(T ) must belong to the SV−axis because the vector field points

to int(Ω) elsewhere on ∂Ω. But the SV−axis is forward and backward invariant. This

leads to a contradiction to the existence and uniqueness of solutions of ODEs, because at

least two distinct backward solutions starting in X(T ) would exist.

If f(0) = 0, then X(T ) must belong to either the SV−axis of the (IV , IH)−plane.

This also leads to a contradiction to the existence and uniqueness property of solutions of

ODEs.

Notice that since Ω is positively invariant and the solutions of (2.2)-(2.4) are ul-

timately uniformly bounded (cf. Lemma 4.0.0.1), all solutions (SV (t), IV (t), IH(t)) that

start in Ω ultimately enter the compact set B and remain there. It is with the help of

these two properties that we claim the conditions of compactness (C4.2) in Definition

B.0.11 hold. Indeed, the ultimately uniformly boundedness of solutions guarantee that for

any initial condition (SV , IV , IH) ∈ Ω, the solution (SV (t), IV (t), IH(t)) ∈ B for t >> 1,

implying that d((SV (t), IV (t), IH(t)), B) → 0 as t → ∞. Now, for any δ > 0 we notice

that B ∩ {(SV , IV , IH) ∈ Ω | d((SV , IV , IH), ∂Ω) < δ} is bounded, thus having compact

closure.

We need to determine the following set

Ω2 =
⋃
y∈Y2

ω(y) , Y2 = {(SV , IV , IH) ∈ X2 | (SV (t), IV (t), IH(t)) ∈ X2 ∀t > 0} , (4.1)

where ω((SV , IV , IH)) is the omega limit set of the solution (SV (t), IV (t), IH(t)) starting

in (SV , IV , IH). From this point onward we have to consider two distinct cases: if f(0) = 0

and if f(0) > 0 (cf. Theorem 3.1.0.1).

If f(0) > 0, the system (2.2)-(2.4) has only one equilibrium in ∂Ω which is E1 =

(K, 0, 0). Moreover, the set {(SV , IV , IH) ∈ Ω | IV = 0 , IH = 0} is invariant, but any

other solution starting on ∂Ω but not on the SV−axis leaves ∂Ω. Consequently, clearly

Y2 = {(SV , IV , IH) ∈ ∂Ω | IV = 0 , IH = 0}. Moreover Ω2 = {E1}, because all solutions

starting on the SV−axis, converge to E1. Recall that the Jacobian matrix for (2.2)-(2.4)
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at E1 is given by

J1 =


f ′(K) 0 − d

HK

0 −µ d
HK

0 c −r

 .

Since f ′(K) < 0, E1 is a hyperbolic equilibrium, making {E1} an isolated covering of Ω2

(see Definition B.0.8), and since no homoclinic connection of E1 to itself exists on the

SV−axis, {E1} is an acyclic covering of Ω2 (see Definition B.0.10).

There remains to show that E1 is a weak repeller for int(Ω), i.e. for every solution

(SV (t), IV (t), IH(t)) starting in int(Ω), there must hold that:

lim sup
t→∞

d((SV (t), IV (t), IH(t)), E1) > 0 . (4.2)

We claim that this holds if the stable manifold of E1, denoted W s(E1), does not intersect

int(Ω). Indeed, if (4.2) does not hold for some solution (SV (t), IV (t), IH(t)) that starts in

int(Ω) then, since Ω is positively invariant for the system (2.2)-(2.4),

lim inf
t→∞

d((SV (t), IV (t), IH(t)), E1) = lim sup
t→∞

d((SV (t), IV (t), IH(t)), E1) = 0

and lim
t→∞

(SV (t), IV (t), IH(t)) = E1; which cannot happen if W s(E1) ∩ int(Ω) = ∅.

We claim that W s(E1) ∩ int(Ω) = ∅. Recall that E1 is unstable if R0 > 1 (cf.

Theorem 3.1.0.1). Notice that the Jacobian matrix at E1, J1, has one eigenvalue with

positive real part (denoted λ+) and two eigenvalues with negative real part (f ′(K) and

one denoted λ−, with the possibility of f ′(K) = λ−). The stable eigenspace of E1 can be

determined, as mentioned above (1, 0, 0)T is an eigenvector of J1 associated to f ′(K). If

λ− 6= f ′(K) then the eigenvector associated to λ− is of the form (∗, v2, v3)T where v2 and

v3 hold  −µ dK
H

c −r


 v2

v3

 = λ−

 v2

v3

 . (4.3)

Notice that if λ− = f ′(K) then f ′(K) is a repeated eigenvalue, and an associated gener-

alized eigenvector posseses the same structure (∗, v2, v3)T .
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We claim that in both cases the vector (v2, v3)
T /∈ R2

+. The matrix in (4.3) is an

irreducible Metzler matrix (a Metzler matrix is a matrix with nonnegative off-diagonal

entries). An interesting property of the matrix in (4.3) is that by adding the positive

multiple of the identity matrix (µ + r)I, we obtain a nonnegative irreducible matrix for

which the Perron-Frobenius Theorem holds. This implies that the matrix in (4.3) has

a positive real eigenvalue which is larger than the real part of any other eigenvalue, i.e.

a dominant eigenvalue. The dominant eigenvalue is λ+ and by the Perron-Frobenius

theorem we know that every eigenvector that is not associated to the dominant eigenvalue

is not in the positive quadrant in our case. This means that (v2, v3) /∈ R2
+, which implies

that the (generalized) eigenspace associated to E1 does not intersect int(Ω). Therefore

W s(E1) ∩ int(Ω) = ∅, and thus E1 is a weak repeller for int(Ω). Then by Theorem B.0.3

we obtain that ∂Ω is a uniform strong repeller for int(Ω), thus proving the existence of

some ε > 0, such that lim inf
t→∞

X(t) > ε for X = SV , IV , IH when f(0) > 0.

If f(0) = 0, the system (2.2)-(2.4) has two equilibria in ∂Ω which are E0 = (0, 0, 0)

and E1 = (K, 0, 0). The set {(SV , IV , IH) ∈ Ω | IV = 0 , IH = 0} is still invariant as in

the case when f(0) > 0, but we also have that the set {(SV , IV , IH) ∈ Ω | SV = 0} is

invariant. This last fact follows from the equations (2.2)- (2.4) when SV = 0, we have

that ṠV = 0 thus any solution starting in the set {(SV , IV , IH) ∈ Ω | SV = 0} remains

there. But notice that when SV = 0, İV = −µIV and IH = −rIH , thus all the solutions

starting in {(SV , IV , IH) ∈ Ω | SV = 0} converge to E0.

Now, any solution starting on ∂Ω but not in the set {(SV , IV , IH) ∈ Ω | SV =

0} ∪ {(SV , IV , IH) ∈ Ω | IV = 0 , IH = 0} leaves ∂Ω. This allows us to define the set

Y2 = {(SV , IV , IH) ∈ Ω | SV = 0} ∪ {(SV , IV , IH) ∈ Ω | IV = 0 , IH = 0}, and then also

Ω2 = {E0, E1}. Indeed, solutions which start on the SV−axis, different from E0, clearly

converge to E1, and as we remarked above, solutions starting on the (IV , IH)−plane
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converge to E0. Moreover, recall that the Jacobian matrix at E0 is

J0 =


f ′(0) 0 0

0 −µ 0

0 c −r


which has one positive eigenvalue f ′(0) and two negative eigenvalues. Which implies

that E0 is a hyperbolic equilibrium. Note that the unstable manifold of E0 is the open

segment between E0 and E1 on the SV−axis, and the stable manifold of E0 consists of

the (IV , IH)−plane in Ω.

Given the corresponding stable and unstable manifolds for E0 and E1 we know

that E0 and E1 are hyperbolic equilibria. Clearly, there are no homoclinic or heteroclinic

connections in Y2 between these two equilibria. Thus M = {E0} ∪ {E1} is an acyclic

isolated covering of Ω2.

For this case it remains to show that E0 and E1 are weak repellers for int(Ω), i.e.

for every solution (SV (t), IV (t), IH(t)) starting in int(Ω)

lim sup
t→∞

d((SV (t), IV (t), IH(t)), Ek) > 0 . k = 0, 1 . (4.4)

The fact that E1 is a weak repeller is exactly the same as in the case that f(0) > 0. On

the other hand, we have proved that W s(E0), does not intersect int(Ω), since W s(E0) =

{(SV , IV , IH) ∈ Ω | SV = 0}, and thus E0 is also a weak repeller for int(Ω). Then by

Theorem B.0.3 we obtain that ∂Ω is a uniform strong repeller for int(Ω), i.e. that there

exists ε > 0, such that lim inf
t→∞

X(t) > ε for X = SV , IV , IH when f(0) = 0.
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5. GLOBAL ASPECTS OF OSCILLATORY BEHAVIOR IN THE
MODEL

We have seen that the system (2.2)-(2.4) possesses a unique positive steady state,

E∗, whenever R0 > 1 (cf. Theorem 3.1.0.1), and that when f(SV ) = pSV (1 − SV /K)

this positive steady state can be unstable (cf. Lemma 3.4.0.2). The persistence result in

Theorem 4.0.0.1 implies that the omega limit set of a solution which is initiated in the

interior of Ω = {(SV , IV , IH) ∈ R3
+ | SV ≥ 0 , IV ≥ 0 , 0 ≤ IH ≤ H} ultimately stays

away from the boundary of Ω. In this chapter we will show that for the unstable case

introduced in Lemma 3.4.0.2 the solutions that do not start on the invariant part of the

boundary of Ω, and also not on the stable manifold of the endemic equilibrium, have an

omega limit set that it is a periodic orbit. Moreover, there always exists a stable periodic

orbit if f(SV ) is analytic.

Theorem 5.0.0.1. Suppose that R0 > 1. If f(0) > 0, then the omega limit set of any

solution not initiated on the invariant SV−axis, either contains E∗ or is a periodic orbit.

If f(0) = 0, the same conclusion holds if in addition, the solution is also not initiated

on the invariant (IV , IH)−plane.

Proof. Let f(0) > 0. Let X0 be an initial condition not on the SV−axis. Since R0 > 1,

Theorem 4.0.0.1 implies the omega limit of a solution, that does not start in the SV−axis,

cannot contain a point on the SV−axis. Because there is only one steady state in Ω which

does not belong to the SV−axis, E∗, the Poincaré-Bendixson Theorem for competitive

systems in dimension 3 (cf. Theorem A.0.12) guarantees that the omega limit set either

contains E∗ or is a periodic orbit.

Similarly, if f(0) = 0 and R0 > 1. For any initial condition X0 that is not on the

SV−axis nor the (IV , IH)−plane, its omega limit cannot contain a point on these invariant

sets by Theorem 4.0.0.1. By Theorem 3.1.0.1 there is only one steady state in Ω that does
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not belong to either the SV−axis nor the (IV , IH)−plane, E∗. Theorem A.0.12 guarantees

that the omega limit set either contains E∗ or is a periodic orbit.

Theorem 5.0.0.2. Let f(SV ) = pSV (1 − SV /K), R0 > 1, and suppose that S∗V /K is

sufficiently small and that an appropriate value of p are chosen, such that the steady

state E∗ is hyperbolic and unstable (cf. Lemma 3.4.0.2). Then there exists an orbitally

asymptotically stable periodic orbit. Every solution except those whose initial data on

the one dimensional stable manifold of E∗, or on the SV−axis, or the (IV , IH)−plane

approaches a nontrivial periodic orbit.

Proof. This result follow from Theorem B.0.4 (cf. [32]). Notice that the vector field given

by (2.2)-(2.4) is analytic in R3
+. Let us consider as domain the interior of Ω and recall

that the only steady state in this set is E∗. Since R0 > 1, by Lemma 4.0.0.1 the solutions

of the system (2.2)-(2.4) are ultimately uniformly bounded, and by Theorem 4.0.0.1 the

system (2.2)-(2.4) is uniformly strongly persistent. Therefore the system (2.2)-(2.4) holds

the dissipative condition of Theorem B.0.4. By Lemma 3.4.0.2 we have that the Jacobian

matrix at E∗ has two eigenvalues with positive real part and one negative eigenvalue.

Since the determinant of a matrix is the product of its eigenvalues, the Jacobian matrix

at E∗ has negative determinant. Moreover, the Jacobian matrix at E∗ is irreducible:

JacE∗ =


−pS

∗
V
K 0 −dK

H
S∗
V
K

p
(

1− S∗
V
K

)
−µ dK

H
S∗
V
K

0 c 1
R2

0

K
S∗
V
−rR2

0
S∗
V
K

 .

Finally, recall that the system(2.2)-(2.4) is competitive (cf. Theorem 3.2.0.1) in Ω, hence

also in int(Ω), and therefore by Theorem B.0.4 there exists at least a periodic orbit that

is orbitally asymptotically stable. Now, since the Jacobian matrix at E∗ is irreducible,

appliying Perron-Frobenius Theorem to see that the dominant eigenvalue, which is the

negative eigenvalue of the Jacobian matrix, has a positive eigenvector with respect to the
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partial order ≤K, i.e., v ≥K 0. Therefore by Theorem A.0.13 we have that the forward

orbits of the appropriately restricted initial conditions approach a periodic orbit.

An example of this behavior can be generated through numerical simulations. Con-

sider the following parameter values for system (2.2)-(2.4):

d = 5 , H = 100 , µ = 0.2 , r = 0.5 , p = 0.5 , K = 30 , c = 1 .

This set of parameters yields R2
0 = 15, thus providing the existence of the positive equilib-

rium (cf. Theorem 3.1.0.1), and it is given by E∗ = (2.2042, 5.1057, 9.2653) with Jacobian

matrix 
−0.0367 0 −0.1102

0.4633 −0.2 0.1102

0 0.9073 −0.5511

 .

The eigenvalues of the Jacobian matrix are: λ1 = 0.01213+0.2395i, λ2 = 0.01213−0.2395i

and λ3 = −0.8121. Therefore, E∗ is an unstable hyperbolic equilibrium.

We obtain that the solutions of the system (2.2)-(2.4), for an initial conditions close

to the equilibrium, are given by

FIGURE 5.1: Solution for the system (2.2)-(2.4) near the positive steady state
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The solution starting at E∗ + (1/2, 1/2, 1/2) appear to converge to a stable limit

cycle, in accordance with Theorem 5.0.0.2.

FIGURE 5.2: Orbit of solution with initial condition at E∗+ (1/2, 1/2, 1/2) appearing to

converge to a stable limit cycle
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6. CONCLUSIONS

Throughout this work we have studied the vector-host dynamics of Malaria with

respect to a model, based on the work of Ronald Ross and George Macdonald, which

includes the demography of susceptible mosquitoes.

We have analyzed the effects of including the vector demography in the classic

Ross-Macdonald model. With the study of our main model we determined the existence

of a unique endemic equilibrium whenever R0 > 1 and the asymptotic stability of the

disease-free equilibrium whenever R0 ≤ 1. We also provided a specific condition for the

demography of susceptible vectors, such that when holds and given R0 > 1 the epidemic

equilibrium is globally asymptotically stable. When this condition fails, the disease can

exhibit sustained oscillations when R0 > 1.

Moreover, when R0 > 1 we have proved that for our main model the solutions for

endemic initial conditions persist for arbitrarily large values of t. This has an important

comparisson to the endemicity of Malaria and its prevalence among both human and

mosquito populations, as often reported by the World Health Organization [26].
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A. APPENDIX Monotone Dynamical Systems

In this Appendix we list several definitions and key results concerning dynamical

systems and monotone dynamical systems. We refer the reader to the work of Hal Smith

[30] for more details.

Among the different results referred to here we will consider the autonomous system

of ordinary differential equations

x′ = f(x) (A.1)

where f is continuously differentiable in an open subset D ⊂ Rn. We also denote by φt(x)

the solution of (A.1) that starts at the point x at t = 0. Then nonnegative cone Rn+

provides with a partial order given by y ≤ x if x− y ∈ Rn+. We write x < y if x ≤ y and

xi < yi for some i and we write x << y if xi < yi for all i. The (closed) order interval

determined by u, v ∈ Rn is the closed set [u,v] = {x ∈ Rn | u ≤ x ≤ v} which may be

empty.

Definition A.0.1 (Monotone Dynamical System cf. [30], p. 2). We say that the

system (A.1) is monotone if whenever x, y ∈ D satisfy x ≤ y and the solutions φt(x) and

πt(y) are defined and are hold that φt(x) ≤ φt(y) for all t ≥ 0.

We say that is strictly monotone if x < y implies that φt(x) < φt(y) for all t ≥ 0.

We say that the system is strongly monotone if x < y implies that φt(x) << φt(y)

for all t ≥ 0.

Definition A.0.2 (Equilibrium Solution cf. [41], p. 5). An equilibrium solution of

(A.1) is a point x̄ ∈ Rn such that f(x̄) = 0, i.e., a solution which does not change in time.

We also refer to an equilibrium solution to be a fixed point, rest point, critical point or

steady state.

Definition A.0.3 (Lyapunov Stability cf. [41], p. 7). Let x(t) be any solution of

(A.1), we say that x(t) is stable (or Lyapunov stable) if, given ε > 0, there exists a
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δ = δ(ε) > 0 such that, for any other solution, y(t), of (A.1) satisfying |x(t0)− y(t0)| < δ,

then |x(t)− y(t)| < ε for t > t0, t0 ∈ R.

Definition A.0.4 (Asymptotic Stability cf. [41], p. 7). Let x(t) be any solution of

(A.1), we say that x(t) is asymptotically stable if it is Liapunov stable and for any other

solution, y(t), of (A.1), there exists a constant b > 0 such that, if |x(t0)− y(t0)| < b, then

lim
t→∞
|x(t)− y(t)| = 0.

Definition A.0.5 (Positive Orbit cf. [41], p. 8). Let x0 be a fixed point of (A.1), the

positive orbit through the point x fot t ≥ t0 is given by

O+(x0, t0) = {x ∈ Rn | x = x̄(t), t ≥ t0, x̄(t0) = x0} . (A.2)

Recall that the distance between the an arbitrary point p ∈ Rn and a set S ⊂ Rn is

given by d(p, S) = inf
x∈S
|p− x|.

Definition A.0.6 (Orbital Stability cf. [41], p. 9). Let x(t) be any solution of (A.1),

we say that x(t) is orbitally stable if, given ε > 0, there exists a δ = δ(ε) > 0 such that, for

any other solution, y(t), of (A.1), satisfying |x(t0)−y(t0)| < δ, then d(y(t),O+(x0, t0)) < ε

for t > t0.

Definition A.0.7 (Asymptotic Orbital Stability cf. [41], p. 9). Let x(t) be any

solution of (A.1), we say that x(t) is asymptotically orbitally stable if it is orbitally stable

and for any other solution y(t), of (A.1), there exists a constant b > 0 such that, if

|x(t0)− y(t0)| < b, then lim
t→∞

d(y(t),O+(x0, t0)) = 0.

Theorem A.0.1 (cf. [41], p. 11). Let x(t) be any solution of (A.1) and let Df(x) be

the Jacobian matrix of (A.1) at x(t) (the linearization of this system). Suppose all of the

eigenvalues of Df(x) have negative real parts. Then the equilibrium solution x of (A.1)

is asymptotically stable.
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Definition A.0.8 (Hyperbolic Fixed Point cf. [41], p. 12). Let x be a fixed point of

(A.1). Then x is called a hyperbolic fixed point if none of the eigenvalues of Df(x) have

zero real part.

Theorem A.0.2 (Hartman-Grobman Theorem cf. [4], p. 27). If x0 is a hyperboic rest

point for the autonomous differential equation (A.1), then there is an open set U containing

x0 and a homeomorphism H with domain U such that the orbits of the differential equation

(A.1) are mapped by H to orbits of the linearized system ẋ = Df(x0)(x − x0) in the set

U .

Definition A.0.9 (Lyapunov function cf. [4], p. 28). Let x0 be a fixed point of (A.1).

A continuous function V : U → R, where U ⊆ Rn is an open set with x0 ∈ U , is called a

Lyapunov function for the differential equation (A.1) at x0 if

(i) V (x0) = 0,

(ii) V (x) > 0 for x ∈ U\{x0},

(iii) the function V is continuously differentiable on the set U\{x0}, and, on this set,

V̇ (x) :=gradV (x) · f(x) ≤ 0.

The function V is called a strict Lyapunov function if, in addition,

(iv) V̇ (x) < 0 for x ∈ U\{x0}.

Theorem A.0.3 (Lyapunov Stability Theorem cf. [4], p. 29). If there is a Lyapunov

function defined in an open neighborhood of a fixed point of the differential equation (A.1),

then the fixed point is stable. If, in addition, the Lyapunov function is a strict Lyapunov

function, then the fixed point is asymptotically stable.

Definition A.0.10 (Invariant Set cf. [4], p. 34). A set S ⊆ Rn is called an invariant

set for the differential equation (A.1) if, for each x ∈ S, the solution t 7→ φt(x), defined
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on its maximal interval of existence, has its image in S. Alternatively, the orbit passing

through each x ∈ S lies in S. In addition, S is called an invariant manifold if S is a

manifold.

Definition A.0.11 (Stable Manifold cf. [4], p. 36). The stable manifold of a fixed point

x0 (W s(x0)) for an autonomous differential equation with flow φt is the set of all points

x in the domain of definition of φt such that lim
t→∞

φt(x) = x0. The unstable manifold

of x0 (W u(x0)) is the set of all points x in the domain of definition of φt such that

lim
t→−∞

φt(x) = x0.

Theorem A.0.4 (Stable Manifold Theorem cf. [34], p. 261). Suppose that f ∈ Ck

in the system (A.1), has a fixed point x0 with corresponding Jacobian A. Then, there

is a neighborhood U(x0) = x0 + U and functions hs ∈ Ck(Es(x0) ∩ U,Eu(x0)) and

hu ∈ Ck(Eu(x0)∩U,Es(x0)), where Es(x0) and Eu(x0) are the linear stable and unstable

manifolds respectively, such that

W s(x0) ∩ U(x0) = {x0 + a+ hs(a) | a ∈ Es(x0) ∩ U} ,

W u(x0) ∩ U(x0) = {x0 + a+ hu(a) | a ∈ Eu(x0) ∩ U} .

Both hs and hu, and their Jacobians vanish at x0, that is, W s(x0) and W u(x0) are tangent

to their respective linear counterpart Es and Eu at x0. Moreover,

|φt(x)− x0| ≤ Ce−tα , t ≥ 0 , x ∈W s(x0)

|φt(x)− x0| ≤ Cetα , −t ≥ 0 , x ∈W u(x0)

for any α < min{|Re(αj)| | αj ∈ σ(A) , Re(αj) 6= 0} and some C > 0 depending on α.

Theorem A.0.5 (Stable Manifold Theorem addendum if fixed point is hyper-

bolic cf. [34], p. 261). Suppose that f ∈ Ck in the system (A.1), has a hyperbolic fixed

point x0. Then there is a neighborhood U(x0) such that O+(x, t0) ⊂ U(x0) (respectively



53

O−(x, t0) ⊂ U(x0)) if and only if x ∈W s(x0) (x ∈W u(x0)). In particular

U s(x0) = {φt(x) | x ∈W s(x0), t ≥ 0} ,

Uu(x0) = {φt(x) | x ∈W u(x0),−t ≥ 0} .

where U s(x0) and Uu(x0) are the stable and unstable set at x0 respectively.

Definition A.0.12 (ω and α limit set cf. [4], p. 92). Suppose that φt is a flow on Rn

and p ∈ Rn. A point x in Rn is called an omega limit point (ω−limit point) of the orbit

through p if there is a sequence of numbers t1 ≤ t2 ≤ t3 ≤ · · · such that lim
i→∞

ti = ∞ and

lim
i→∞

φti(p) = x. The collection of all such omega limit points is denoted ω(p) and is called

the omega limit set (ω−limit set) of p. Similarly the α−limit set α(p) is defined to be the

set of all limits lim
i→∞

φti(p) where t1 ≥ t2 ≥ t3 ≥ · · · and limi→∞ ti = −∞.

Theorem A.0.6 (cf. [4], p. 92). The omega limit set of a point is closed and invariant.

Definition A.0.13 (Cooperative and Competitive Systems cf. [31], p.370). A dy-

namical system (A.1) is cooperative if
∂fi
∂xj

(x) ≥ 0, i 6= j, x ∈ D. We say the system is

competitive if
∂fi
∂xj

(x) ≤ 0, i 6= j, x ∈ D.

Definition A.0.14 (Kamke condition cf. [30] p. 32). Given the system (A.1) we say

that f is of type K in D if for each i, fi(a) ≤ fi(b) for any two points a and b in D

satisfiying a ≤ b and ai = bi.

Theorem A.0.7 (Kamke’s Theorem cf. [30], p. 32). Let f be type K on D and

x0, y0 ∈ D. Let <r denote one any of the relations ≤, < or <<. If x0 <r y0, t > 0 and

φt(x0) and φt(y0) are defined, then φt(x0) <r φt(y0).

Theorem A.0.8 (cf. [39], p.268). Let π(x, t) denote the dynamical system generated by

the autonomous system of differential equations (A.1). If (A.1) is cooperative in D, then

π is a monotone dynamical system with respect to ≤ in D. If (A.1) is cooperative and

irreducible in D, then π is a strongly monotone system with respect to ≤ in D.
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Theorem A.0.9 (cf. [30], p. 35). All bounded solutions of a cooperative system in R2

converge to an equilibrium point.

Theorem A.0.10 (Generalized Poincaré-Bendixson Theorem cf. [34], p. 215 and

[41], p. 120). Let M be a positively invariant region for the vector field generated by (A.1)

in R2 and where the vector field has a finite number of fixed points. Let p ∈ M , and

consider ω(p). Then one of the following possibilities holds.

• ω(p) is a fixed point;

• ω(p) is a closed orbit;

• ω(p) consists of a finite number of fixed points p1, . . . , pn and orbits γ with α(ω) = pi

and ω(γ) = pj.

Theorem A.0.11 (Butler-McGehee Lemma cf. [19], p. 261, [42], p. 16 and [39], p.

12). Let P be a hyperbolic equilibrium of the system (A.1). Suppose P ∈ ω(x), {P} 6 ω(x),

the omega limit set of O+(x, t0), x ∈ Rn. Then there exists points q ∈W s(P ) ∩ ω(x) and

q̂ ∈W u(P )∩ ω(x), where W s(P ), W u(P ) are stable and unstable manifold of equilibrium

P , respectively.

Theorem A.0.12 (cf. [16] and [30], p. 41). A compact limit set of a competitive or

cooperative system in R3 that contains no equilibrium points is a periodic orbit.

Theorem A.0.13 (cf. [16] and [30], p. 43). Suppose that D ⊂ R3 contains a unique

equilibrium p for the competitive system (A.1) and it is hyperbolic. Suppose further that

its stable manifold W s(p) is one-dimensional and tangent at p to a vector v >> 0. If the

orbit of q ∈ D\W s(p) has compact closure in D, then ω(q) is a nontrivial periodic orbit.

Theorem A.0.14 (cf. [30], p. 44). Let γ be a non-trivial periodic orbit of a competitive

system in D ⊂ R3 and suppose that there exists p, q with p << q such that

γ ⊂ [p,q] ⊂ D .
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Then K = {x ∈ R3 | x is not related to any point y ∈ γ} = (γ + R3
+)c ∩ (γ − R3

+)c

is an open subset of R3 consisting of two connected components, one bounded and one

unbounded. The bounded component, K(γ), is homeomorphic to the open unit ball in R3.

K(γ) ⊂ [p,q], is positively invariant and its closure contains an equilibrium.

Theorem A.0.15 (LaSalle Invariance Principle cf. [20], p.128). Let Ω ⊂ D be a

compact set that is positively invariant with respect to (A.1). Let V : D → R be a

continuously differentiable function such that V̇ (x) ≤ 0 in Ω. Let E be the set of all points

in Ω where V̇ (x) = 0. Let M be the largest invariant set in E. Then every solution

starting in Ω approaches M as t→∞.

Theorem A.0.16 (Nagumo Theorem cf. [17], p. 304). Let K be a closed subset of

a C2 manifold M and let f be a vector field on M which is Lipschitz continuous. The

following conditions are equivalent:

• Any integral curve of f starting in K remains in K, i.e. K is positively invariant.

• 〈f(m), v〉 ≤ 0 for any exterior normal vector v at a point m in K.

Definition A.0.15 (Ultimate boundedness cf. [3], p. 154). Let π(x) be a dynamical

system defined on a locally compact metric space X, we say that pi is ultimately bounded

if there exists a compact set K ⊂ X with nonempty ω−limit set ω(x0) and such that

ω(x0) ⊂ K for each x0 ∈ X, i.e. whenever there exists a compact global attractor in X.

Definition A.0.16 (cf. [20], p. 169). The solutions of (A.1) are

• uniformly bounded if there exists a positive constant c, independent of t0 ≥ 0 and

for every a ∈ (0, c), there is β = β(a) > 0, independent of t0, such that

‖x(t0)‖ ≤ a⇒ ‖x(t)‖ ≤ β , ∀t ≥ t0 . (A.3)
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• globally uniformly bounded if (A.3) holds for arbitrarily large a.

• uniformly ultimately bounded with ultimate bound b if there exists positive constants

b and c, independent of t0 ≥ 0, and for every a ∈ (0, c), there is T = T (a, b) ≥ 0,

independent of t0, such that

‖x(t0)‖ ≤ a⇒ ‖x(t)‖ ≤ b , ∀t ≥ t0 + T . (A.4)

• globally uniformly ultimately bounded if (A.4) holds for arbitrarily large a.

Theorem A.0.17 (Perron-Frobenius cf. [18], p. 534). Let A ∈ Mn×n be irreducible

and nonnegative, and suppose that n ≥ 2. Then

• ρ(A) > 0, where ρ(A) is the spectral radius of A.

• ρ(A) is an algebraically simple eigenvalue of A.

• there is a unique real vector x = [xi] such that Ax = ρ(A)x and x1 + · · · + xn = 1;

this vector is positive

• there is a unique real vector y = [yi] such that yTA = ρ(A)yT and x1y1+· · ·+xnyn =

1; this vector is positive.

B. APPENDIX Persistence Theory

On this section we list different definitions and results key on the study of dynamical

systems and persistent dynamical systems. We refer to the reader to the more in depth

work of Hal Smith [31, 39] and Horst Thieme [31, 35, 36].

Let X be an arbitrary nonempty set, J ⊂ [0,∞) and ρ : X → R+.
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Definition B.0.1 (cf. [31], p. 61). A semiflow Φ : J × X → X is called weakly

ρ−persistent, if

lim sup
t→∞

ρ(Φ(t, x)) > 0 ∀x ∈ X, ρ(x) > 0.

Φ is called strongly ρ−persistent, if

lim inf
t→∞

ρ(Φ(t, x)) > 0 ∀x ∈ X, ρ(x) > 0.

A semiflow Φ : J ×X → X is called uniformly weakly ρ−persistent, if there exists some

ε > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

Φ is called uniformly strongly ρ−persistent, if there exists some ε > 0 such that

lim inf
t→∞

ρ(Φ(t, x)) > ε ∀x ∈ X, ρ(x) > 0.

Definition B.0.2 (cf. [31], p. 62). A semiflow Φ : J ×X → X is called ρ−dissipative, if

there exists some c > 0 such that

lim sup
t→∞

ρ(Φ(t, x)) < c ∀x ∈ X .

Φ is called weakly ρ−dissipative, if there exists some c > 0 such that

lim inf
t→∞

ρ(Φ(t, x)) < c ∀x ∈ X .

Φ is called ρ−permanent, if Φ is both ρ−dissipative and uniformly ρ−persistent.

Definition B.0.3 (cf. [31], p. 335). A semiflow Φ : J ×X is called periodic, with period

η > 0, if

Φ(t+ η, x) = Φ(t, x) ∀x ∈ X .

Theorem B.0.1 (cf. [31], p. 335). Let Φ : J×X → X be a periodic semiflow, X a metric

space with metric d and Φ continuous. Let ρ : X → R+ be uniformly continuous. Then

Φ is uniformly ρ−persistent whenever it is uniformly weakly ρ−persistent and a closed

subset B of X exists with the following properties:
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(a) For all x ∈ X, ρ(x) > 0, d(Φ(t, x), B)→ 0 as t→∞.

(b) If 0 < ε1 < ε2 <∞, the intersection B ∩ {ε1 ≤ ρ(x) ≤ ε2} is compact.

(c) If y ∈ B and ρ(y) > 0, there exist no t > r > 0 such that ρ(Φ(r, y)) = 0 and

ρ(Φ(t, y)) > 0.

Definition B.0.4 (cf. [35] p. 2). Let (X, d) be a metric space with metric d and let X be

the union of two disjoint subsets X1 and X2. Consider Φ to be a continuous semiflow on

X1, i.e., a continuous mapping Φ : [0,∞)×X1 → X1 such that

Φt ◦ Φs = Φt+s t, s ≥ 0 ; Φ0(x) = x , x ∈ X1 .

Φt denotes the mapping from X1 to X1 given by Φt(x) = Φ(t, x). Recall that for a point

x ∈ X and a subset Y of X, the distance from x to Y is given by d(x, Y ) = inf
y∈Y

d(x, y).

Let Y2 be a subset of X2

• Y2 is called a weak repeller for X1 if

lim sup
t→∞

d(Φt(x1), Y2) > 0 ∀x1 ∈ X1 .

• Y2 is called a strong repeller for X1 if

lim inf
t→∞

d(Φt(x1), Y2) > 0 ∀x1 ∈ X1 .

• Y2 is called a uniform weak repeller for X1 if there exists some ε > 0 such that

lim sup
t→∞

d(Φt(x1), Y2) > ε ∀x1 ∈ X1 .
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• Y2 is called a uniform strong repeller for X1 if there exists some ε > 0 such that

lim inf
t→∞

d(Φt(x1), Y2) > ε ∀x1 ∈ X1 .

Typically X1 is open, and X2 is considered the “boundary” of X. The dynamical system

Φ is called (uniformly) weakly or (uniformly) strongly persistent if X2 is a (uniform) weak

or (uniform) strong repeller for X1.

Definition B.0.5 (cf. [7]). The continuous flow F = (X,R,Φ) is point dissipative over

a nonempty set M ⊂ X if there exists a compact set N ⊂ X such that for any y ∈ M ,

there exists t(y) > 0 such that for any t ≥ t(y), Φt(y) ∈int(N).

Theorem B.0.2 (cf. [7], p. 593). Let E be a closed, positively invariant subset of X

with nonempty interior int(E) and ∂E. Suppose there exists α > 0 such that F is point

dissipative on {x | x ∈ X , d(x, ∂E) ≤ α} ∩ int(E). Then one of the following statements

holds.

• The boundary ∂E is not isolated.

• There exists y ∈ int(E) such that ω(y) ⊂ ∂E.

• There exists ε > 0 such that for any x ∈ int(E), lim
t→∞

d(Φt(x), ∂E) ≥ ε.

Definition B.0.6 (cf. [35], pp. 422-423). The ω−limit set of a point y is defined

ω(y) =
⋂
t≥0

Φ([t,∞)× {y}) .

An element y ∈ X has a full orbit, if there is a function x(t), −∞ < t < ∞, such that

x(0) = y and x(t+ s) = Φt(x(s)) for all t ≥ 0, s ∈ R. The α−limit set of a full orbit x(t)

is defined by

α(x) =
⋂
t≥0

x((−∞,−t]) .
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Recall that a subset M of X is called forward invariant if and only if Φt(M) ⊂M , t > 0,

and invariant if and only if Φt(M) = M , t > 0.

Definition B.0.7 (cf. [35], p. 423). A compact invariant subset M of Y ⊆ X is called an

isolated compact invariant set in Y if there is an open subset U of X such that there is no

invariant set M̃ with M ⊆ M̃ ⊆ U ∩ Y except M . U is called an isolating neighborhood

of M .

Definition B.0.8 (cf. [35], p. 425). A finite covering M = ∪mk=1Mk in X2 is called

isolated if the sets Mk are pairwise disjoint subsets of X2, which are isolated compact

invariant sets in X.

Definition B.0.9 (cf. [35], p. 425). A set M ⊂ X2 is said to be chained (in X2) to

another (not necessarily different) set N ⊂ X2, symbolically M 7→ N , if there is some

y ∈ X2, y /∈ M ∪ N , and a full orbit through y in X2 whose α−limit set is contained in

M and whose ω−limit set is contained in N .

Definition B.0.10 (cf. [35], p. 425). A finite covering M = ∪mk=1Mk is called cyclic

if, after possible renumbering, M1 7→ M1 or M1 7→ M2 7→ · · · 7→ Mk 7→ M1 for some

k ∈ {2, . . . ,m}. M is called an acyclic covering otherwise.

Definition B.0.11. From the work described in [35] we define the following compactness

conditions.

(C4.1) There exists δ > 0 with the following properties:

– If x ∈ X such that d(Φt(x), X2) < δ for all t ≥ 0, then the forward orbit of x

has compact closure in X.

– If xn is a sequence in X satisfying

lim sup
t→∞

d(Φt(xn), X2)→ 0 , n→∞

then
⋃
n∈N

ω(xn) has compact closure.
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(C4.2) There exists δ > 0 and a subset B of X with the following properties:

– If x ∈ X and d(x,X2) < δ, then d(Φt(x), B)→ 0, t→∞.

– The intersection B ∩ Bδ(X2) of B with the δ−neighborhood of X2, Bδ(X2) :=

{x ∈ X | d(x,X2) < δ} has compact closure.

Theorem B.0.3 (cf. [35], p. 426). Let X1 be open in X and forward invariant under Φ.

Further, let the compactness assumption (C4.2) hold. Assume that Ω2,

Ω2 =
⋃
y∈Y2

ω(y) , Y2 = {x ∈ X2 | Φt(x) ∈ X2 ∀t > 0} ,

has an acyclic isolated covering M = ∪mk=1Mk such that each part Mk of M is a weak

repeller for X1. Then X2 is a uniform strong repeller for X1.

Theorem B.0.4 (cf. [32]). Let the following conditions hold for the system (A.1)

• The system is dissipative: For each x ∈ D, O+(x, t) has compact closure in D.

Moreover, there exists a compact subset B of D with the property that for each

x ∈ D there exists T (x) > 0 such that x(t, x) ∈ B for t ≥ T (x).

• The system is competitive and irreducible in D.

• D is an open, convex subset of R3

• D contains a unique equilibrium point x∗ and det(Df(x∗)) < 0.

• f is analytic in D.

If x∗ is unstable then there is at least one but no more than finitely many periodic orbits

for (A.1) and at least one of these is orbitally asymptotically stable.
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