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Chapter 1: Introduction

1.1 Historical Perspective

Computer vision (CV) got its start in the 1960s as a subtask of the nascent field of

artificial intelligence (AI). Although its exact origins are contested, one of the first for-

mulations [54] of modern CV came from Lawrence Robert’s 1963 thesis on extracting

3D information from 2D perspective views [113]. Work in AI predated CV, with notable

advancements in the 1950s such as the coining of the phrase “Artificial Intelligence” in

1955 by John McCarthy [89] and the development of the perceptron in 1957 by Frank

Rosenblatt [115]. AI and CV have come a long way since their inception, and modern

approaches to e.g. image recognition have since matched or exceeded human capabilities

(see [24] for an algorithm that has exceeded human performance on traffic sign recog-

nition). Much of CV’s recent advancements have been fueled by the advent of deep

learning (DL). Although relatively recent, DL was largely theorized in the 1980s and

1990s, e.g. Kunihiko Fukushima’s ‘Neurocognitron’ [37] had many of the conceptual

underpinnings of modern deep convolutional networks, and Lenet-5 [74] in 1998 was a

successful implementation of a multi-layer convolutional neural network (CNN) trained

with backpropogation. Similarly, Long Short-Term Memory (LSTM) networks were in-

troduced in 1997, and remain as one of the most successful recurrent neural network

(RNN) architectures in the present [90]. Despite the prolific work done in the 1980s and

1990s on artificial neural networks, deep neural networks only became the preeminent

paradigm starting in 2012 with AlexNet [67] and its impressive performance on ImageNet

[32].

1.2 Deep Learning

The rise of DL was likely due to a confluence of necessity and hardware improvements.

Datasets grew to sizes that proved difficult for contemporary approaches, and Graphical

Processing Units (GPU), originally developed for computer graphics applications, be-
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came sufficiently affordable, powerful, and easily programmable to be used for DL work-

loads [44]. Although GPUs had been available for many years prior, they were closely tied

to graphical applications, and frameworks such as OpenGL used fixed-function pipelines

that made general purpose computation difficult. Compute shaders were introduced to

enable more general purpose programs not directly related to graphics and/or render-

ing (but still operating within the graphics pipeline), and ushered in the era of general

purpose GPU computing (GPGPU). Compute Unified Device Architecture (CUDA) was

introduced by NVIDIA in 2006 [94] to facilitate GPGPU, and was entirely independent

of graphical applications. This proved to be a critical development for DL, as DL work-

loads map efficiently to GPU hardware. More specifically, they have high arithmetic

complexity and relatively regular memory access patterns, and thus are well suited to

utilizing single instruction, multiple thread (SIMT) parallelism. Due to the large dataset

sizes, massive number of trainable parameters, and intensive processing inherent to DL,

the high throughput that GPUs offer 1 are necessary for efficient DL application devel-

opment. All modern deep learning frameworks have CUDA and/or OpenCL backends.

Deep networks require large offline datasets to train, which necessitates the creation

of labeled datasets. Depending on the task at hand, these datasets can simultaneously

be invaluable for innovation and prohibitively expensive to create. We detail the cre-

ation of a visual tracking dataset in chapter 3. DL algorithm design revolves around

defining networks, consisting of cascades of non-linear functions that compute represen-

tations of data. Intuitively, each successive layer in the network learns more semantically

detailed representations; early (shallow) layers learn simple features, such as color fea-

tures and edges, and later (deeper) layers learn higher-order information [157]. The

exact feature extraction functions are defined by the network architecture, which consist

of differentiable processing routines with learnable parameters, referred to as weights.

Network parameters are learned at training time to minimize a loss function with re-

spect to the desired ground truth results. Although there are different branches of DL

(e.g. supervised versus unsupervised, generative versus discriminative, etc.), supervised

methods have enjoyed greater successes than unsupervised, and we specifically focus on

supervised disriminative approaches in this work. DL is thought to better scale to high-

dimensional data than past approaches, and has relaxed local constancy and smoothness

assumptions which models complicated real-world data more closely [44]. As such, DL

1The NVIDIA TITAN X, the current NVIDIA flagship GPU, has a reported 11 TFLOPS
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is an important tool in CV (and AI in general), and will remain so for the foreseeable

future.

1.3 Computer Vision

CV itself is a broad and multi-faceted field, with applications ranging from self-driving

cars to robotics to image style transfer [39], and draws inspiration from diverse fields

such as mathematics, electrical engineering, neuroscience, and psychology. As a disci-

pline, the broad goal of CV is to extract information from images, whether this be 3D

pose estimation from images, or semantic instance segments in video sequences. In many

ways, CV can be formulated as an inverse of computer graphics: while graphics takes

information about a scene and generates an image, CV takes an image and infers infor-

mation about the scene it depicts. While CV is an impossibly broad field, this thesis

is specifically concerned with a sub-component of CV, namely object segmentation and

tracking.

Although CV and machine learning (ML) have similar roots, CV does not necessarily

employ learning techniques. There are rich subfields and operations in CV that are closer

to signal processing than machine learning, such as estimation or filtering. In the 1990s

and first decade of the 2000s, the predominant CV approach was to have computer

vision specialists hand-engineer features for specific tasks, and learn a classifier, such as

a decision forest or SVM, to operate on the features. Hand-engineered features have

mostly been subsumed by learned deep features, with DL methods being dominant in

many CV tasks (e.g. classification and detection). However, there are still some tasks,

such as visual tracking, that have seen slower adoption of learned features, or for which

hand-engineered features still outperform learned ones (such as the deformable parts

model [35] for pedestrian detection [73]). In all, the trend seems to be that learned

features will replace hand-engineered ones, and the work presented in this thesis will

focus entirely on the DL aspects of CV.

1.3.1 Applied Computer Vision

Although much CV work has been done in the theoretical domain and evaluated on

fixed, artificial datasets, CV holds promise for improving efficiency and providing deeper
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insights in a wide variety of problem domains. Data from unconstrained environments

is generally more challenging than synthetic datasets, which historically has limited the

utility of CV ‘in the wild’. As algorithmic accuracy has improved, applied CV has become

more feasible, and tangible commercial efforts have become increasingly prominent. The

work detailed in chapter 3 was done as part of an interdisciplinary team to facilitate the

use of CV for fisheries science and management. We present a new and challenging visual

tracking dataset of beamtrawl videos for surveying flatfish off of the Oregon coast, laying

the groundwork for closer integration between CV practitioners and scienctists. Datasets

are an important catalyst for CV innovation, and there is an acute need for larger, more

diverse datasets across disparate tasks. Concurrently, there is a strong need for applying

CV innovations to the relevant societal and environmental problems in the current day.

We believe the application of CV and ML ‘in the wild’ will become increasingly common

and important in the coming years, and the work presented in chapter 3 of this thesis is

potentially an important step into this domain.

1.4 Video Analysis

Historically, CV datasets emphasized still images over video sequences. This is likely a

reflection of the historical availability of camera hardware and the computational limi-

tations of algorithms, processing, and storage hardware available at the time. However,

the proliferation of accessible video capture hardware (e.g. cellphones) have accelerated

the rate of video creation, GPGPU computing is now ubiquitous, and video process-

ing is becoming increasingly important. While videos are simply collections of images,

they introduce an important new dimension to the data not found in still images: time.

Concretely, 2D images have spatial information, 2.5D (e.g. Kinect [159] [46]) and 3D

(e.g. LIDAR) images have spatial and depth information, and videos have temporal

information. In keeping, 2D videos are three dimensional; 2.5D and 3D videos are

four dimensional. As a side-effect, videos require significantly more storage space and

computing power to process than still frames. However, they also encode much more

information, and are a more general data modality (i.e. an image is a video at a singular

point in time). In this thesis, we address two video analysis tasks: semi-supervised video

instance segmentation in chapter 2, and visual tracking-by-detection in chapter 3.

Since adjacent frames in a video are captured sequentially, the frames’ contents gen-



5

erally exhibit spatial and temporal continuity. That is, assuming a standard video frame

rate (such as 24 or 30 frames per second (FPS)), objects move through a video in a

consistent manner with smooth spatial and temporal displacements. In the case of the

beam trawl videos (presented in detail in chapter 3), frames are captured at 24 FPS,

meaning there are roughly 42.67 ms between each frame. Although some objects can

move very quickly, not many get far in a 43 ms span. As such, due to the high capture

rate of video frames, objects in the scene move regularly in video, with (approximately)

piecewise linear motion. This allows using information inferred in frame t to inform

processing in the neighboring frames within a temporal window t±N . In theory, faster

moving scene elements have smaller N , while slowly varying ones can afford larger N .

This semantic dependence makes integrating temporal information challenging. In ad-

dition, by re-using inferred information, errors can cascade to later frames. However,

simply treating each frame as being independent in a video is an incorrect assumption –

at best, it is inefficient (since treating frames as being independent discards useful infor-

mation); at worst, it limits the information that can be gleaned from video (maintaining

a consistent identity through time is important for accurate scene characterization, e.g.

counting the number of distinct objects in the video sequence). Both the VOS network

presented in chapter 2 and the video tracking-by-detection dataset in chapter 3 operate

over videos and explicitly integrate temporal information.
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Chapter 2: ReGuide: Guidance Windows for Long-term

Appearance Models in Video Object Instance Segmentation

2.1 Introduction

Segmentation is the process of assigning labels to pixels in a scene indicating logical

groupings. It is a fundamental CV problem, playing a central role in myriad tasks, such

as medical image analysis, action recognition, video summarization, and video editing.

Segmentation is also very challenging: similar to classification, segmentation requires

parsing a scene into groupings; unlike classification, segmentation operates on the per-

pixel level, and thus has very stringent localization requirements. Image segmentation

has been a longstanding CV task, while video segmentation has seen increasing interest

in recent years. Although image and video segmentation are very similar, video segmen-

tation introduces a temporal dimension to the problem. The temporal aspect of video

segmentation introduces new challenges, such as increased data sizes, object appearance

shift, object interactions, partial or full occlusion, etc. It also presents new opportuni-

ties, such as being able to leverage motion cues and share information among temporally

localized frames. Although image segmentation algorithms can be applied as-is to video

sequences (as a sequence of per-frame image segmentations), this implicitly treats each

video frame as being independent, which is generally false. Temporal information pro-

vides important information, and many state of the art video segmentation algorithms

have some form of temporal information built into them, e.g. [62], [79], [72], [122], [52],

[59], [104], [143], [69], [155], [57], [153], [20], [152], [51]. Intuitively, video sequences are

locally continuous, i.e. adjacent frames are slowly-varying and movement between frames

is smooth and slow [87]. This allows re-using information inferred from one frame to the

next, and is important for tracking and motion estimation techniques.

Segmentation can be roughly subdivided into semantic and object (non-semantic)

segmentation. Semantic segmentation involves assigning a semantic class label to seg-

ments, and has seen considerable interest in recent years. In contrast, object segmen-

tation does not require any ontological parsing, and only needs to separate foreground
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from background elements in the scene. While this seems like a simpler problem (i.e.

it is semantic segmentation without requiring classification), object segmentation gen-

erally requires segmenting a broader set of objects, and is a less constrained problem.

Specifically, semantic segmentation datasets have a finite number of semantic categories:

PASCAL VOC [34] has 20 classes, Cityscapes [25] has 30, and MS COCO [82] has 80.

As such, semantic segmentation algorithms only have to learn the appearance models

for a restricted set of objects, and anything else is classified as background. In contrast,

object segmentation datasets have no such categories and are unconstrained in the set

of objects that can be labeled as foreground. As such, a successful object segmenta-

tion algorithm must be flexible, capable of segmenting a broader class of objects, and

have learned a concept of objectness, which semantic segmentation approaches do not

necessarily require.

Semi-supervised segmentation refers to a particular formulation of the segmentation

problem, in which the ground truth mask is provided for the 1st frame of the sequence.

This serves to inform the algorithm of the foreground object(s) to segment, and more

importantly, reformulates the problem into one of mask propagation and refinement.

More specifically, unlike unsupervised segmentation, where the algorithm is required to

discover what the foreground versus background objects are (which requires develop-

ing a notion of saliency and/or generic concepts of groupings, e.g. Gestalt laws), the

foreground objects are provided. Thus, the problem becomes one of propagating infor-

mation through time and re-identifying and accurately localizing the given foreground

object(s) in subsequent frames. In this sense, although still predicting a mask output,

semi-supervised segmentation differs significantly from other forms of segmentation.

Instance segmentation is a generalization of binary segmentation, in which the fore-

ground objects have distinct labels which must be maintained throughout the sequence.

Rather than viewing foreground objects as a homogeneous entity and performing bi-

nary foreground versus background segmentation, each foreground object has a unique

ID, which corresponds to the label value in the mask predictions. This introduces more

stringent constraints of temporal continuity, since specific object identities must be main-

tained through time. Instance segmentation has seen increasing interest in recent years,

and this work we focus specifically on video object instance segmentation.
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2.1.1 Motivation

The motivating idea behind the guidance window construct stems from the observation

that current state of the art VOS approaches do not use long-term appearance models.

Many successful contemporary approaches only integrate temporal information through

the prior frame’s mask and/or optical flow, but do not build appearance models over

the span of multiple frames. This seems like a serious shortcoming when working with

video data and successfully constructing and integrating long term appearance model

information should prove valuable in building robust VOS algorithms.

2.1.2 The Guidance Window

Pre-DL approaches constructed long-term appearance models, but would generally use

hand-crafted feature extractors, such as SIFT [85] or HOG [29]. Learned deep features

have largely proven superior to hand-crafted features in many CV tasks, although success

thus far in tracking has been mixed [49]. This is likely due to the fact that deeper

features are semantically richer, but have coarser spatial localization accuracy, which is

important for tracking and segmentation tasks. Ideally, a video segmentation and/or

tracking approach would utilize deep features while simultaneously making use of long-

term appearance information. In our formulation, we aim to update the approach used

in [77] and [151], which used a multi-output regularized linear regression formulation

for visual tracking. We use this as the mathematical underpinnings of our network,

and approximate it using the deep convolutional and recurrent network described in

section 2.3.

The formulation is as follows:

y = Xw

w = (XTX)−1XT y

Xw = X(XTX)−1XT y

The variables are defined as:

• w: the output guidance construct; if using a guidance vector, w is a [d x 1] vector.
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If using a guidance window, w is a matrix of dimension [d x k]

• X: the image features; this is a matrix of dimension [n x d] extracted from a CNN

layer. In our formulation, X is a smaller sub-block of the total feature, namely a

[13 x 13 x 512] feature slice.

• y: the instance-dependent information; namely, X is instance agnostic, and con-

tains feature(s) for the entire frame. y needs to have the instance-specific informa-

tion. The dimensionality of y is dependent on the dimension of w – if w is [d x

1], then y is [n x 1]. If w is [d x k], then y has to be [n x k].

To compute (XTX)−1, we take a low-rank approximation as (XTX)−1 ≈
∑b

i=1(kik
T
i ),

where b is the dimensionality of the approximation, and ki is a [d x 1] dimensional vec-

tor.

Xw =
b∑

i=1

(Xkik
T
i X

T y)

=
b∑

i=1

[Xki]
[
kTi X

T y
]

=

b∑
i=1

ci [Xki]

Using this grouping, we define
[
kTi X

T y
]

as the target-dependent component ci, and

[Xki] as the instance-independent feature fi, for i ∈ [1, . . . , b]. More specifically, the

fi feature is the same across all instances, since it is devoid of any instance-specific

information. Thus, we can compute it once per feature block X and re-use it for all

instances. In contrast, ci involves y, which encodes information specific to a particular

instance. The other insight of note is that ci is a scalar value, so for a given instance we

will have a b-dimensional vector c. fi is [n x 1], so f is a [n x b] matrix for a given

feature block X.

In this work, we present a novel, online, end-to-end trainable method for explicitly

integrating long-term temporal information by utilizing a bilinear LSTM. This builds
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richer appearance models over a sequence and provides a method for online adaptation

to object appearance shift. Our guidance window is a flexible and extensible network

component that can be integrated into a wide variety of architectures, and can be used

in tandem with other temporal refinement methods. Experimental results show great

promise for harnessing the structure of video data, and improving temporal features in

video analysis tasks. Experiments presented in section 2.5 show significant improvement

over the baseline architecture, validating the utility of the guidance window.

2.2 Related Works

VOS has long been an active area of research, and has enjoyed considerable interest in

the past few years. Prior to DL, there were multiple distinct approaches to the prob-

lem which integrated temporal information. Among unsupervised methods, clustering

methods were prominent, which would track feature points across multiple frames, then

cluster them based on similarity metrics, e.g. [12], [95], [96], [76] and [97]. Other ap-

proaches defined spatio-temporal superpixels and optimize over graphical models built

from 3D video volumes, such as [137], [55], and [6]. Both supervised and unsupervised

segment proposal-based approaches have been proposed, such as [141], [75], [68], [158],

[77], [99], and [151]. Broadly, these approaches generate pools of overlapping segments

per frame, and use various heuristics (e.g. appearance similarity, boundary coherence,

motion, contour cues [11], etc.) to rank and merge proposals into temporally consistent

segmentation volumes. The proposals represent hypotheses regarding what in the scene

is plausibly a foreground object, and the selection process amounts to ranking the differ-

ent hypotheses. More recently, CNN-based approaches have become dominant for VOS,

likely due to the superior appearance features provided by deep networks. Despite the

widespread usage of long-term temporal information in pre-DL methods, temporal in-

formation is difficult to integrate with CNN-based methods, and contemporary methods

make comparatively limited use of the temporal dimension in videos.

Modern semi-supervised VOS datasets started from Segtrack [137], and have grown to

include YoutubeObjects [107], SegTrackv2 [77], VSB100 [38], and more recently, DAVIS-

2016 [103]. DAVIS-2017 [106] expands on DAVIS-2016, adding more sequences and in-

stance segmentation annotations. The DAVIS Challenges in 2017 [106] and 2018 [18]

have helped to distill the field and provide an objective benchmark to compare alter-
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native VOS methods with. Early approaches to DAVIS made limited use of temporal

information; OSVOS [17] was an initial successful algorithm that has inspired many

subsequent ones, and formulated video object segmentation as a per-frame image seg-

mentation problem. However, its performance has since been surpassed by methods that

use temporal information. MaskTrack [104] was another early method with many simi-

larities to OSVOS, except it used the previous frame’s predicted mask as a network input

for the next frame. This effectively reformulated the segmentation problem as a mask

propagation and refinement task. This has become a common approach for state-of-

the-art VOS algorithms, with numerous methods (including the top-placed DAVIS-2017

Challenge entries) making use of it, e.g. [62], [79], [72], [122], [52], [59]. The recently

concluded DAVIS-2018 challenge continued the trend: [7] proposed an offline, graphi-

cal model with a Markov Random Field incorporating unary, appearance, and temporal

energy terms; however, they simply use optical flow computed between the K = 2 pro-

ceeding and following frames for the temporal pixel-energy term. Since optical flow relies

on smooth movement for accurate pixel associations, it is unable to make use of longer

temporal connections (i.e. K > 2), and may struggle with video sequences that exhibit

fast motion or which have low frame rates. Many methods incorporate temporal and

motion information by passing the previous frame’s mask prediction and/or optical flow

as an input for the current frame. This provides very short-term temporal information,

utilizing only the immediately adjacent few frames. We believe that making better use

of longer historical information would lead to more robust features and superior tracking

and segmentation performance.

There have been recent attempts at integrating long-term temporal information for

VOS. MaskRNN [52] uses the previous frame prediction as input, but runs backpropagation-

through-time over seven frames, thereby incorporating longer dependencies within a

video sequence. [122] uses an offline spatio-temporal segment proposal tracking system

that runs a backtracking re-tracker that improves its segment appearance model over the

entire video. [79] uses an offline, iterative re-identification module to re-track dropped or

ID-switched segments. In both cases, the long-term appearance information is added via

a separate, offline module that requires the entire sequence to be processed first. In con-

trast, our method can be run entirely online, with past temporal information integrated

directly into the feature extraction. This improves runtime performance, widens the al-

gorithm’s potential application domains, and learns better appearance models. However,
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our approach is complementary to these offline processing techniques, and could leverage

post-hoc re-tracking and re-identification methods.

Online methods that use long-term temporal information have also recently been

proposed. [58] uses all of the sequence’s past frames and corresponding mask predictions

in bilateral space to sample features from. However, the algorithm is only evaluated on

DAVIS-2016, it is unclear how the algorithm would generalize to instance segmentation,

and performance has since been eclipsed by other methods. Multiple methods have

integrated tracking-by-detection approaches to enforce temporal consistency: [21] and

[124] both utilize object tracking, with [21] first tracking instance parts, then segmenting

and merging them, and [124] using bounding box tracks as a means to enforce spatio-

temporal regularity of segments. Although both have favorable runtime performance,

their accuracy suffers, likely due to the difficulty of predicting an accurate bounding

box. Namely, it is common for the bounding box approach to cut off protruding parts

of objects (e.g. arms, legs, or other irregularly shaped parts of). Alternately, bounding

boxes can grow too large and incorporate the background; in the general case, bounding

boxes are poor approximations of articulated or irregularly shaped objects, and even

accurate bounding boxes can incorporate majority background pixels. In either case,

the object appearance model degrades and segmentation accuracy suffers.

Building on recent advances in semantic segmentation, there have been efforts to

leverage semantic segmentation methods for VOS. This has enjoyed some degree of suc-

cess on DAVIS, as many of the sequences feature objects that overlap with categories in

common semantic segmentation datasets e.g. MS COCO and PASCAL VOC. [16] uses

a conditional pixel-wise classifier, and uses MNC [28], a semantic instance segmentation

method, to define a semantic prior. Many of the successful approaches for the DAVIS-

2017 Challenge used semantic segmentation algorithms to generate segment proposals,

such as [122] and [62]. However, there are sequences in DAVIS that are not readily cov-

ered by semantic categories in existing semantic segmentation datasets (e.g. sequences

lock, aerobatics, or car-race in DAVIS-2017’s test-dev split), which limits the direct

applicability of semantic segmentation methods.

More recently, meta-learning has emerged as a promising avenue for efficient VOS.

[155] learns a spatial and visual modulator, which apply a learned affine transformation

to adjust intermediate feature layers to better fit the target instance based on the initial

frame ground truth. The visual modulator is a CNN that produces parameter scaling
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factors, and the spatial modulator produces parameter bias terms. [69] improves on [155]

by introducing convLSTMs [125] on the last three feature extraction layers, thereby

introducing spatio-temporal features. The spatial and visual modulator formulation

remains the same as in [155]. Our work bears resemblance to the meta-learning approach,

in that we are learning a layer (the bilinear LSTM), which is then used to manipulate

the computed features to better focus on a particular object. However, our approach

explicitly does so with a modular, online bilinear LSTM layer (i.e. it can be composed

with any feature extraction network architecture and can be dropped into a wide variety

of architectures). Our proposed network architecture differs significantly, and although

both network’s goals are similar, our approaches are very different.

A common approach in semi-supervised VOS is to run extensive fine-tuning at the

start of inference; this is only possible in the semi-supervised case, where the ground

truth segmentation is provided for the 1st frame. OSVOS, MaskTrack, and LucidTracker

all make use of this, performing a wide array of augmentations on the 1st frame image

and ground truth mask to simulate future frames. They then run many iterations of

fine-tuning on the augmented data, hoping to learn a better fit to sequence’s specific

objects. In effect, they fine-tune a different model for each sequence in the dataset. This

inference-time training is more valuable for the network than training offline on different

video sequences, since the data is in-domain. However, this method is computation-

ally expensive and is susceptible to overfitting to the initial frame, thus being unable to

adapt to non-rigid appearance deformations in subsequent frames. This can be especially

problematic when the object to segment undergoes significant appearance change during

the sequence, whether due to viewpoint shift, object motion, or partial occlusion. See

fig. 2.1 for an example of the magnitude of appearance shift objects can undergo in a

sequence. In contrast, methods such as [143], [69] and [155] use online adaptation to fit

the instance appearances at test time, avoiding the per-sequence runtime overhead and

better accommodating non-rigid instance deformations. However, the online adaptation

and inference-time fine-tuning are not mutually exclusive, and some report better per-

formance doing both [69]. We believe that extensive reliance on run-time fine-tuning is

not a robust solution to VOS: it is exclusive to the semi-supervised formulation, overfits

to the initial object appearance, and requires training a new model for each sequence

being evaluated, which is both inelegant and computationally expensive. It also is only

effective for sequences where the object appearance does not undergo dramatic defor-



14

Figure 2.1: 1st, 47th, and 69th (last) frame of DAVIS sequence mallard-fly with ground
truth mask overlays demonstrating the high degree of appearance change that an object
can undergo throughout a sequence, and the perils of overfitting to the first frame
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mations through time. This is because the 1st frame augmentations cannot accurately

model the full range of object affordances, and is mostly limited to rigid transformations.

This is a fundamental limitation, as with just the first frame and mask, it is impossible

to know how objects can move in the scene without further semantic information about

the objects. For example, augmentations would not be able to capture the appearance

shift that the duck in the first frame of fig. 2.1 undergoes, as without intimate knowledge

of duck physiology, there is no information regarding what parts of the duck can move or

how they move. In turn, having semantic information of scene elements is problematic

for VOS, since not all objects to be segmented are common semantic categories. We

explicitly design the ReGuide network to not rely on online fine-tuning; although it can

make use of online fine-tuning with augmentations in the style of LucidTracker, we pri-

marily rely on the guide’s ability to naturally adapt online to the instance appearance

shifts through the memory component of the guide layer. None of the presented results

in this thesis use fine-tuning.

2.3 Guide Window

The main architectural components of the system are explained in the following sec-

tions. All components are trained end-to-end. It is important to note that our approach

is geared towards simplicity, clarity, and validating the utility of the guide window, rather

than maximizing segmentation performance. As such, there are no post-processing steps

or extensive engineering tricks for improving performance, such as using segmentation

network ensembles, multi-crop inference, or extensive hyper-parameter search. The over-

all network architecture is shown in fig. 2.2.

1. Initial features are computed with DeepLabv2 features [19] with a ResNet-101

backbone (we don’t use the DeepLabv2 fully-connected CRFs or spatial pyramid

pooling); we also have a set of lateral connections to each residual block (up to

the final average pooling layer) similar to the ones in Feature Pyramid Networks

(FPN) [80]. Further details are in section 2.3.1.

2. Guidance Window: This construct encompasses the guide component. It has three

main elements:
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Figure 2.2: The architecture diagram and data flow for the ReGuide network. For each
frame t, we run this sequence through the guidance network for each instance i. We
thus generate a predicted mask per instance per frame, and use the predicted masks as
temporal inputs for the network in subsequent frames. The bilinear LSTM is shown in
more detail in fig. 2.4, and the tiled guide filtering in fig. 2.3. Best viewed in color.
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• A pair of 1x1 convolutions to fix the depth-dimension of X and y features to

be passed to the bilinear LSTM.

• The guide bilinear LSTM. Further details about the bilinear LSTM are given

in section 2.3.2.1.

• The guidance filter, whose weights are taken to be the bilinear LSTM’s last

hidden state vector.

The bilinear LSTM learns object-specific appearance information as its hidden

state. The guide filter uses the previous frame’s bilinear LSTM hidden state to

compute the guide-informed CNN features. More details are in section 2.3.2.

3. Mask Predictor: A sequence of dilated (atrous) convolution layers for computing

the output mask, similar to DeepLabv2. The predictor receives features from the

guide components to generate the output mask (at the ROI dimensionality). More

details are in section 2.3.3

4. Instance Tracker: In the present architecture, this is an extremely simple tracker.

We expect a more sophisticated tracker integrating occlusion detection would be

beneficial for performance. More details are in section 2.3.4.

The network input for a given frame t consists of the image (It), previous mask

(Mt−1), and masked image (the image pixels at non-zero locations of the mask). Given

these inputs, a DeepLabv2 ResNet-101 feature extraction network with FPN-style lat-

eral connections computes the initial, whole frame features. These are then tiled into

blocks for the guide to filter chunk-by-chunk, which then are re-composed into the guide-

informed CNN features. The guide-informed feature tensor is used to compute a ROI

for the instance in the tracker, which defines a bounding box for the instance in the

guide-informed feature map. A normalized feature tile is then extracted using roi-align

located at the tracker’s ROI, which is finally used to update the guide’s bilinear LSTM.

The resulting filtered feature block is passed through the mask prediction layers, mapped

back to image space, and written to an output frame. This overall system information

flow is depicted in fig. 3.5, and the individual architecture components are explained in

more detail in the following sections.
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Although our algorithm performs instance segmentation, it formulates multi-instance

sequences as a collection of single-instance sequences, and segments each instance inde-

pendently. Then, the individual instances are merged in a post-processing step and

mapped to their appropriate instance labels. This allows for the guide to better adapt

online to individual instance appearances, and disentangle the visual elements of the

scene.

2.3.1 Feature Extraction

We use DeepLabv2 with a ResNet-101 backbone to extract initial convolutional fea-

tures. DeepLabv2 uses atrous convolutions to preserve spatial locality information, and

serves in our network as a means to compute rich features over salient objects in the

scene. It is important to note that the extracted features are instance-agnostic, and the

DeepLabv2 network can be thought of more as a generic segmentation subnetwork. In

addition, we added an FPN-style set of lateral connections to residual blocks 2 through

5, building a top-down feature map incorporating the multi-scale CNN feature maps.

This is motivated by the duality inherent to deep features for localization tasks; while

the later residual blocks produce semantically richer features, segmentation and tracking

tasks need to preserve the spatial locality present in earlier feature maps. Also, features

suitable for tracking (e.g. color) are often found in earlier feature layers [157]. As such,

it is important to facilitate the preservation of certain shallow features, while taking

advantage of the semantically richer deep features; the lateral connections assist in the

flow of information from earlier feature maps in the CNN. The DeepLabv2 features are

computed over the entire (full-resolution) frame, and thus contain features for all in-

stances in the sequence. The guide window focuses attention on the specific instance to

be segmented in the sequence.

2.3.2 Guide Window

The guide processes fixed-sized feature blocks from the CNN features, and interacts

with the CNN features in two stages. In the first stage, the full-resolution CNN features

are subdivided into overlapping tiles based on the guide feature size, and convolved

sequentially with the guide filter. See fig. 2.3 for details. The rationale is that the guide
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Figure 2.3: Diagram of the feature tiling; the CNN features are divided into overlapping
tiles of fixed dimensions, such that every element in the feature tensor is covered at least
once. Then, each tile is convolved sequentially with the guide filter, and summed into the
guide-informed feature tensor at the original feature coordinate locations. The guide-
informed features are then divided-elementwise by the number of tiles the element is
covered by. In this figure, the tile number is in the upper-left corner of its corresponding
tile.

has learned an accurate appearance model for the target object, and will have higher

responses on region where the instance is present and lower responses on non-instance

pixels. In contrast, the CNN features are largely agnostic of the particular instance to

be segmented, so this step focuses the features on the target instance. However, we do

not want to update the LSTM hidden state, since we are processing the entire scene,

much of which will not contain the instance. To avoid polluting the LSTM state, we

convolve the tiles with the stored guide filter. The guide-informed tiles are summed into

a full-resolution feature tensor at each tile’s origin coordinates, and the entire feature

map is averaged based on the number of times each pixel was processed by the guide.

The resultant feature map is used in conjunction with the previous mask prediction by

the tracker (section 2.3.4) to compute a region-of-interest (ROI) for the instance.
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2.3.2.1 Bilinear LSTM

The bilinear LSTM is an important component in the guide layer. We use the bilinear

LSTM formulation from [63], which proposed the bilinear LSTM as a gating network in

the Multiple Hypothesis Tacking (MHT) domain. Specifically, the bilinear LSTM is used

to learn the long-term appearance model features of objects, which are used for track

hypothesis ranking. While traditional LSTMs have had limited success in learning se-

quential appearances models, the bilinear LSTM improves upon vanilla LSTMs by using

a multiplicative relationship between input and memory. Concretely, the bilinear LSTM

uses the Hadamard product to integrate information from the input vector and hidden

state, while conventional LSTMs simply sum them. This formulates the integration as

a form of gating between the input and internal state, and changes the LSTM from first

order to second order [150] [45]. This allows more expressive interactions between the

input and state vectors: in vanilla (additive) LSTMs, if one information source is large

and the other small, the small one will have no effect. In bilinear LSTMs, the product

operation ensures both information sources have significant magnitudes of effect. This

also formulates the bilinear LSTM memory as a component of a least-squares regressor,

as described in section 2.1.2. While [63] used bilinear LSTMs for multi-object tracking

appearance modeling, we use it for object instance segmentation.

The bilinear LSTM update equations are given by:

i = σ(Wiix+Whih
′
+ bi)

f = σ(Wifx+Whfh
′
+ bf )

g = tanh(Wigx+Whgh
′
+ bg)

o = σ(Wiox+Whoh
′
+ bo)

c = f ∗ c′ + i ∗ g

h = o ∗ tanh(c)

where x is the input, h
′

is the previous hidden state, c
′

is the previous cell state, Wzi

is the input weight matrix, Whz is the hidden state weight matrix, and bz the bias for each

information source. In this notation, z corresponds to the different gating and activation

functions, i.e. z ∈ {i, f, g, o} for i being input, f forget, g cell, and o output. h is the next
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hidden state, c is the next cell state. The bilinear LSTM also retains spatial information.

Concretely, although it still uses a 1D hidden state, we simply flatten the 2D input, then

re-shaped the resultant hidden state back to 2D. Since the bilinear LSTM is trained

and the reshaping operation is deterministic, the bilinear LSTM implicitly learns the

reshaping protocol. Intuitively, the guide filter can be viewed as learning a template

of the object appearance; by using a multiplicative relationship between memory and

input, the filter vectors can be viewed as different appearance templates, which explains

how the bilinear LSTM is able to adapt to appearance changes in the video sequence.

Figure 2.4: Bilinear LSTM module diagram. The inputs are the N past feature tensors
FX and Fy, which are used to update the LSTM hidden state, and store the LSTM
output as a convolutional filter. In the next frame, the image features FX are convolved
with the filter, yielding improved, instance-specific features.

2.3.2.2 Guide ROI Features

After we get an instance ROI from the tracker, we apply the ROI to the original CNN

feature map to extract a fixed-size feature block. We use roi-align for this step, as

described in [47]. This is an important step, as the guide operates on fixed-size feature

windows, but the object sizes are variable. Recomputing the features based on the image-

space tracker ROI would be computationally inefficient, and roi-align has been shown to
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avoid the spatial quantization errors present in other ROI pooling methods.

Conceptually, the roi-align’ed feature block is X in the mathematical formulation

described in section 2.1.2. Due to computational constraints, it is first convolved with

a 1x1 convolution to reduce the feature depth of X; otherwise, the guide consumes too

much memory (further details are provided in section 2.4.3). The fused X feature is

passed into the bilinear LSTM module as input. This updates the LSTM’s hidden state

(i.e. the guide’s instance appearance model). By using the ROI feature block rather

than the whole frame, we derive two benefits:

1. An accurate ROI provides the LSTM with features consisting of minimal non-

instance scene elements, thereby ensuring that the online appearance model adap-

tation is accurate for the target instance.

2. Despite objects being of different scales, the feature sizes are uniform. Thus, the

network handles large scale variations, preserves object details, and increases seg-

mentation performance on small objects.

After the forward pass through the LSTM, its hidden state is stored as a 1x1 con-

volutional filter and operates as the guide filter thereafter. This filter is then applied

as a 1x1 convolution to the frame’s roi-align pooled X feature to generate an updated,

guide-informed feature block for the current frame. By using the bilinear LSTM hidden

state as the convolutional filter and jointly training the features and LSTM, the guide

can learn to model the long-term appearance information of specific objects. This has

the benefit of being able to adapt over the course of the video sequence to object appear-

ance shifts and integrate richer sources of information about the instance over longer

time spans. The differences between the different features’ focuses are shown in fig. 2.5.

2.3.3 Mask Prediction

The prediction layers consist of a sequence of dilated convolutions, as in DeepLabv2. The

output predicted mask is generated from the guide-informed features, corresponding to

the feature-space region of interest from the tracker. To map the predicted mask back

to image-space, the mask is bilinearly reshaped to be of the same dimension as the

input ROI in feature-space, and is written back to a full-resolution frame of zeros at the

tracker’s ROI in image-space.
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Figure 2.5: Different mask predictions based on the features used; the 1st image is
the ground truth (features correspond to instance #3, the rightmost yellow one), the
2nd is from DeepLabv2 (non-guide-informed) features, the 3rd one is the tiled guide-
informed features, and the 4th is the guide-ROI features. Note the progression from
generic segmentation to specific object in the resultant mask predictions.

2.3.4 Bounding Box Tracker

Despite the benefits of using cropped ROI inputs for the guide (i.e. better effective

resolution, smaller memory footprint, and less visual distractors), it also introduces an
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important dependency on having accurate ROIs. We have found that the approaches of

[62] and [102] of using the optical flow-warped previous mask is insufficient for computing

an accurate bounding box in the current frame. Ideally, a bounding box will be tight,

including no extraneous scene elements, but also encompassing the entire object. An

inaccurate bounding box will provide the LSTM with unrepresentative information about

the instance, and the segment appearance model will degenerate. These errors can

cascade, as an inaccurate appearance model will lead to worse predictions, which in turn

lead to less accurate ROIs in the following frames. Bounding box errors fall under two

categories:

1. The predicted ROI truncates part(s) of the object: the guide will then update its

object appearance model to similarly exclude the truncated regions, and will be

less likely to include them as part of the object in subsequent frames, even if the

bounding box encompasses them again.

2. The predicted ROI is overly large: the guide features may pollute the object’s long-

term appearance model, which can lead to ID switches, segments for distinct but

spatially adjacent instances fusing, or conversely dropping the segment entirely.

Therefore, the tracker must fully contain the object of interest, while simultaneously

excluding non-object scene elements as much as possible. However, between the two

bounding box errors, the former is more detrimental than the latter, as the guide is en-

tirely deprived of the information, and recovering an accurate appearance model is more

challenging in this case. The latter is more of an issue when there are visually similar,

but distinct instances in the scene (such as the DAVIS sequences camel, gold-fish, or

salsa).

In the present architecture, the tracker performs warping on the previous frame mask

prediction with the current frame’s inverse optical flow frame (if provided). Specifically,

the mask warping is done using the inverse optical flow frame from t to t − 1. The

optical flow is computed using DCFlow [154]. This acts as a simple, albeit noisy, motion

model. Frame appearance features are not integrated, but doing so would likely improve

bounding box accuracy. Then, the warped mask’s elements above a given threshold are

tallied, using the median coordinate location as the bounding box center, and defining

the bounding box dimensions using standard deviations along both spatial dimensions.
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We expect that a more sophisticated tracker would be beneficial for computing tighter

bounding boxes; the present tracker was chosen for the sake of simplicity, and to ensure

the instance would not be truncated.

2.4 Implementation

We implemented the network in pytorch, and trained the model with a combination

of offline training and online semi-supervised fine-tuning. Although the online fine-

tuning is not required, we found that it improves mean intersection-over-union (mIoU)

performance, as it informs the guide which scene elements to emphasize. However, it also

increases the inference times significantly. Since the goal of this work is not necessarily to

maximize performance, but rather to validate the guidance window concept, we elected to

forgo inference-time fine-tuning in experiments. Experimental results are in section 2.5.

We use two GTX 1080 Ti GPUs during training and inference. Offline training on

DAVIS-2017 train & val splits for 60 epochs takes ∼ 55 hours, inference on test-dev

without test-time fine-tuning takes ∼ 0.5 hours. With test-time fine-tuning, inference

takes over an hour per sequence.

2.4.1 Offline Training

We train the network using DAVIS-2017’s train and val splits (with 60 and 30 sequences

respectively) for 60 epochs. Since we split each sequence per instance, this yields 205

effective sequences. Since we are training the same model using different sequences, it

learns to be a general object detector, relying on the previous frame’s predicted mask to

indicate the desired foreground element to segment. We use a learning rate of 10−5 with

a learning rate decay update step of lr = lr∗(1−e/emax)0.9, where e is the current epoch,

emax is the maximum number of epochs, and lr is the learning rate. We use a weight

decay of 0.0005 and use SGD with momentum 0.9. Since the network makes use of the

previous frame’s mask prediction, during training we randomly use a portion of ground

truth masks and predicted masks as input. Specifically, we start training using 75%

ground truth and 25% prediction, and reduce the proportion of ground truth until it hits

0% in the last epoch. We perform affine and elastic deformations when using the ground

truth mask, and dilate the mask to remove finer details to preclude overfitting. Using
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mask predictions rather than ground truth has multiple benefits: it acts as a regularizer

for the network, prevents over-reliance on simply refining the previous frame mask, better

simulates conditions during inference, and ameliorates overfitting. In addition, to better

handle occlusion and instances exiting the scene, we append N extra frames to the end of

each training sequence from a different sequence, with all-zero (i.e. background) ground

truth. This helps inhibit spurious segments in the frame in the case of occlusion, which

can lead to ID-switches and/or pollute the guide LSTM hidden state. We use multiple

loss sources:

• Weighted binary cross-entropy loss over the full-resolution tiled guide-informed

features. This fine-tunes the DeepLabv2 feature extraction, and gives the guide

and mask prediction layers a broader field of view during training.

• Weighted binary cross-entropy loss over the final mask ROI prediction. This helps

to fine-tune the bilinear LSTM to focus on the given object.

We also use loss weighting to further penalize predictions made in cases where the

object has exited the scene, or is fully occluded. Also, we assign higher loss weight

to false negatives on small objects, to combat the class imbalance small objects suffer

from. Experimentally, we have found that the initial few training iterations benefit from

using very low learning rates (e.g. ∼ 10−7) to prevent the guide from diverging. Once

the guide training has stabilized, we reload the model and begin training with a higher

learning rate.

2.4.2 Online Fine-Tuning

Although online fine-tuning based on the first frame runs the risk of overfitting to the

initial frame and generalizing to the rest of the sequence poorly, it can function as a

system-wide prior for informing the system which objects emphasize. While the offline-

trained network learns general object features, the test-time fine-tuning helps to better

fit the current sequence. In turn, this assists the guide in learning better features for

the specific instance to be segmented. To run the online training, we use the extensive

augmentation algorithm from LucidTracker, generating 250 individual smoothly-varying

triplet sequences per video consisting of the image, ground truth mask, and forward and

inverse optical flows. Although we refer the reader to [62] for further details, we use
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foreground affine transformation parameters of ±30◦ rotation, ±15% scale, and ±10%

translation and background parameters of ±10◦ rotation, ±15% scale. The foreground

transformations simulate potential object movement and appearance variation in the

scene, and background transformations simulate camera motion. We also use non-rigid

foreground transformations, approximating elastic deformations by generating a grid of

random numbers, filtering it with a 2D Gaussian filter (with α = 30 and σ = 5), and

applying the smoothed coordinate offsets to the affine-transformed image, mask, and

optical flow frames.

2.4.3 Dimensionality

Ideally, the guide filter would be as spatially large and deep as possible. However, we

are limited by LSTM memory consumption constraints. As such, the guide filter is a

1x1 convolution with a depth of 20. The input feature patches (X) have a fixed spatial

resolution of [13 x 13] in feature-space, which maps roughly to [101 x 101] in image

space. The features computed from DeepLabv2 with a ResNet-101 would ordinarily

have a depth of 2048, but our top-down FPN-style refined feature map has a depth of

256 (as is done in [80]), and we use that as the network’s CNN features. However, a

feature depth of 256 is still too large for the bilinear LSTM; as such, we fuse the X

feature depth channels with a 1x1 convolution to 146 (reduced from 256). Functionally,

since the guide-filter has 20 output channels, the LSTM takes an input of dimension

[13 x 13 x 146], and outputs (via its hidden state) 146 filters of dimension [1 x 1 x 20].

Having greater input and output channels would allow more expressive appearance model

representations, and having higher filter spatial dimensions would give wider receptive

fields. However, with the given parameters, the bilinear LSTM accounts for more than

10GB of GPU memory during training. As such, using larger filters is computationally

intractable. The chosen parameters are the maximum they can be on current hardware,

and represent a good trade-off between input feature depth, output feature depth, and

filter kernel dimensions.
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Figure 2.6: Example network results on DAVIS-2017 test-dev sequence helicopter with
predicted masks overlaid from start, middle, and end of sequence. Note how the segments
persist despite appearance shift in the helicopter.
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Figure 2.7: Example network results on DAVIS-2017 test-dev sequence slackline with
predicted masks overlaid from regularly sampled points in the sequence (frames 1, 20,
40, and 59). Note how the network is able to accommodate dramatic appearance shift
in object appearance.

2.5 Experiment Results

2.5.1 Baseline Architecture

The baseline architecture is identical to the ReGuide architecture, except without the

Guidance Window component. This serves as a clear means to examine the impact of the

Guidance Window. Based on the experiment results shown in table 2.1 and table 2.3, the

guide component has a large and significant positive impact on segmentation performance

across all measurement metrics. The baseline architecture diagram is shown in fig. 2.8

2.5.2 DAVIS

DAVIS-2016 is a modern dataset consisting of 50 high-resolution video sequences with

densely annotated ground truth segmentations. DAVIS-2017 expanded on DAVIS-2016,

subsuming the sequences from DAVIS-2016 and adding another 100 sequences, and in-

troducing instance annotations. DAVIS-2017 has a total of 10459 frames and 376 total

different instance objects, and sequences are subdivided into 4 splits: 60 train, 30 val,
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Global J & F Region J Boundary F
Method Mean ↑ Mean ↑ Recall ↑ Decay ↓ Mean ↑ Recall ↑ Decay ↓

ReGuide 57.30 61.29 75.27 6.62 53.30 56.85 6.35

Baseline 34.10 36.91 27.02 9.25 31.28 13.91 10.32

Table 2.1: Results on the DAVIS-2016 validation dataset. Note that these results are
fully online, without any runtime fine-tuning, and without any engineering or post-hoc
refinement performance tricks (e.g. ensembling, CRFs, etc). The baseline is the same
DeepLabv2 base feature network and prediction layers, but without the guide component.
The baseline architecture is described in section 2.5.1. J corresponds to region similarity
(mIoU), and F is a measure of contour accuracy.

30 test-dev, and 30 test-challenge. The test-dev and test-challenge ground

truth annotations are not publicly available (other than the 1st frame), and performance

is evaluated on an independent evaluation server. Since the test-challenge evaluation

server is only available during the associated workshop challenge, we primarily evaluate

our method using test-dev.
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Method DAVIS-2016 J Fine-Tune Optical Flow CRF

ReGuide 61.3 7 7 7

Baseline 36.9 7 7 7

OFL [138] 68.0 - 3 3

BVS [88] 60.0 - 7 7

ConvGRU [136] 70.1 7 3 7

VPN [58] 70.2 7 7 7

MaskTrack-B [102] 63.2 7 7 7

SFL-B [22] 67.4 7 3 7

OSVOS-B [17] 52.5 7 7 7

OSNM (2nd)[155] 74.0 7 7 7

ReConvNet [22] 78.0 7 7 7

OnAVOS [143] 86.1 3 7 3

OSVOS-S [87] 85.6 3 7 7

PLM [156] 70.0 3 7 7

MaskTrack [102] 63.2 3 7 7

SFL [22] 74.8 3 3 7

Table 2.2: Comparison against the state of the art on the DAVIS-2016 validation dataset.
Performance numbers used collected from published works. Note that some networks
use additional refinement steps and/or information sources, e.g. OSVOS-S [87] uses
semantic segmentation proposals, OSVOS [17] uses contour boundary snapping, etc. J
corresponds to region similarity (mIoU).

Global J & F Region J Boundary F
Method Mean Mean Recall Decay Mean Recall Decay

ReGuide 23.0 20.0 17.6 18.6 26.0 17.7 17.8

Baseline 14.5 10.5 5.8 11.1 18.6 6.2 12.5

Table 2.3: Results on the DAVIS-2017 test-dev dataset, as given by the DAVIS evaluation
server. The baseline architecture is described in section 2.5.1. J corresponds to region
similarity (mIoU), and F is a measure of contour accuracy.
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Figure 2.8: The baseline architecture diagram used for validating the Guidance Window
component. This is simply the ReGuide architecture, sans the guide-related components.
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2.6 Discussion

The guide window learns the long-term appearance models for a particular instance in

its hidden state; the target instance is provided by the previous frame mask, which

allows the guide to learn appearance models online for generic objects, without requiring

online fine-tuning. Functionally, convolving the input features with the bilinear LSTM

memory functions like template matching. Specifically, the different guide filters contain

different appearance models of the object (e.g. its different appearances through time),

and via the multiplicative relationship with the inputs, generates features with a higher

response on instance pixels. Similarly, this filtering suppresses image regions that do not

belong to the instance. Since the guide memory is updated per-frame over the entire

sequence, it can build appearance models integrating information over longer time scales.

Conceptually, the DeepLabv2 ResNet-101 feature network extracts more general features

over the entire frame, the guide filter focuses the filters on the instance, and the ROI-

extracted feature tile is used to update the bilinear LSTM memory with the instance

information from that time step. Experiment results show that the guide component

is effective, and the bilinear LSTM and associated guide filter successfully modulates

learned features to encode long-term appearance information. In doing so, we resolve the

two problems identified with current state of the art VOS networks, and create a modular

and extensible network layer to perform online adaptation via network modulation:

1. Limited temporal usage: The guide layer learns object appearance information over

the course of the entire sequence, integrating new information into its hidden state

memory. Applying the guide filters to the CNN features injects this long-term

appearance information into the network features.

2. Over-reliance on online fine-tuning : While numerous state of the art VOS algo-

rithms effectively learn a model for each sequence they’re applied on, our guide

component operates as a general object tracking machine, and uses the previous

mask information to inform what to track, rather than requiring expensive aug-

mentations and in-situ training at run-time.
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2.6.1 Limitations

The guide window is not without its limitations; as alluded to in section 2.4.3, the

memory consumption of the bilinear LSTM increases commensurately with the guide

filter dimensions, which limits the depth and receptive field of the guide filter.

The guide appearance model is sensitive to pollution by non-instance scene elements,

and (too) easily merges multiple segment instances. Specifically, each segment often

grows to encompass multiple instances when two or more instances occlude each other.

This leads to incorrect segment IDs; see fig. 2.9 for an example. This is one of the

main reasons for the dramatic decrease in performance between DAVIS-2016 valida-

tion and DAVIS-2017 test-dev sequences. Performance on test-dev sequences that

do not exhibit multi-instance co-occlusion are much better, such as the helicopter

and slackline sequence. Results with mask overlays on helicopter are presented in

fig. 2.6 and slackline in fig. 2.7. We believe using a more sophisticated tracker with

occlusion detection would greatly ameliorate this shortcoming, as the segment growing

problem occurs due to the guide window updating its appearance model to encompass

the occluding scene elements as well.

Figure 2.9: Sequence of frames showing the instance region-growing problem: each seg-
ment instance grows to encompass all instances, leading to incorrect (and conflicting)
instance IDs. However, all foreground objects are still covered.

2.7 Conclusion

We present ReGuide, a novel, online, end-to-end trainable recurrent convolutional net-

work for semi-supervised VOS. Our method integrates long-term appearance information

and motion cues through a bilinear LSTM that adapts online to a particular instance.
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Our design combines a convolutional network, whose features are computed over the

whole frame, and an LSTM, which acts as a guide for the CNN features. In turn, the

guide-informed features are used by a bounding-box tracking system to impose spatial

and motion smoothness constraints, which are used to update the guide hidden state

with normalized regions of the scene centered on the instance. Our system is online, and

can use of (but does not require) test-time fine-tuning using the extensive data augmen-

tation utilizing the ground truth 1st frame mask. The proposed guide module is easily

integrated into existing convolutional systems, and shows great promise for building dis-

criminative, long-term features suitable for video analysis. Performance on DAVIS-2016

shows competitive results, especially in light of the lack of network elements in ReGuide

such as post-hoc refinement, re-identification modules, or optical flow, or run-time fine-

tuning, as is commonly found in state of the art methods. Significant improvements over

the baseline architecture demonstrates the efficacy of the guide window and its capacity

to learn long-term appearance models.
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Chapter 3: NHFish: Tracking-by-Detection Dataset of Oregon

Beam Trawl Video Data

3.1 Introduction

Research traditionally takes place in disciplinary silos, with insular terminology, method-

ology, and techniques. Fertile research opportunities arise at the boundaries between dis-

ciplines; a notable example is the discovery of the DNA helix structure, which required

integrating “genetics, biochemistry, chemistry, physical chemistry, and X-ray crystallog-

raphy,” [1] and gave rise to an entirely new interdisciplinary subject, molecular biology.

Even half a century later, DNA research continues to push interdisciplinary boundaries,

with the Genome Project involving “scientists in a variety of disciplines, such as biol-

ogy, chemistry, genetics, physics, mathematics, and computer science.” [101] In general,

difficult real-world problems, such as climate change [71], span multiple disciplines and

require unprecedented and sweeping action across vast swaths of society. Especially

pernicious and pervasive problems have been referred to as ‘wicked problems’, and may

not even have definitive solutions or problem statements [112]. Solutions to such prob-

lems necessarily integrate multiple disciplines working closely in tandem; in addition

to enabling solutions to such problems, interdisciplinary work can produce more cre-

ative, integrative, and robust solutions. Many important disciplines arose out of close

collaborations between disparate fields, such as computer science or molecular biology.

Interdisciplinary work is an important mode of inquiry, and is critical to solving the

large-scale wicked problems looming in the future.

As CV has matured, its applicability and utility to other fields has become more

apparent and important. AI and ML techniques already have widespread use in pro-

tein folding [60], high energy particle physics (such as the TrackML Particle Tracking

Challenge from CERN [117] [5] [116]), and new, emerging fields such as self-driving cars,

robotics, [142] and cybersecurity [15]. However, CV research is often done on synthetic

datasets without concrete, tangible applications and top-ranked conferences in CV (e.g.
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ICCV 1, ECCV 2 and CVPR 3), all have a strong disposition towards pure CV work.

In general, the community seem to value basic research over applied and/or interdisci-

plinary work. Although basic research is of critical importance, applied research appears

to be comparatively neglected. This is not a problem unique to CV, and is recognized

as a barrier to interdisciplinary work in scientific and medical fields, where students are

often actively encouraged to specialize in narrow disciplines [40].

Although CV is intrinsically interesting, it is important to address real-world prob-

lems with it. Increased automation is projected to engender high degrees of social and

economic displacement and disruption [9] [14]. However, automation also holds promise

to enhance productivity and open new and transformative solutions to myriad large-

scale problems (such as in law [129] or medicine [3]). It is important to use AI for

ethical means to address problems of societal relevance. Applications that enhance the

state of human knowledge and/or aid in solving societal and ecological problems should

be encouraged. In this work, we address the problem of automated video analysis for

underwater beamtrawl videos of Oregon coast benthos by proposing a new visual track-

ing dataset, Newport Hydrographic Groundfish, or NHFish. The goal of automated

processing is to extract higher-order information which can subsequently be used to

make ecological inferences correlating environmental conditions to observed groundfish

behavior. The foundation of such analysis centers around temporal data association

(tracking-by-detection): given a set of fish detections for each frame, the goal is to

generate a set of fish tracks by assigning a common label to each detection through

time, thereby forming a temporally consistent sequence with a common identity. This

enables characterizing fish behavior, as well as localized fish population counts, which

can be used for better stock assessments and scientific understanding of fish behavior

and ecosystem conditions. However, this sort of automated underwater video analysis

of partially-buried and visually non-distinctive groundfish in artificially turbid waters is

a challenging task, and the beamtrawl videos are more difficult than comparable state

of the art video tracking datasets. However, if successful algorithms prove to be more

accurate than current stock assessment methods, then they will increase the spatial and

1International Conference on Computer Vision, https://ieeexplore.ieee.org/servlet/opac?punumber=1000149
2European Conference on Computer Vision, https://link.springer.com/conference/eccv
3Computer Vision and Pattern Recognition, https://ieeexplore.ieee.org/servlet/opac?punumber=1000147
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timescale resolutions of fisheries data, improve fisheries ecosystem understanding and

stock assessments, and reduce fishery scientists’ data gathering workload. Conversely, as

a challenging visual tracking dataset, CV work performed on NHFish may help improve

the state of the art in visual tracking methods.

3.1.1 NH-Line Beam Trawl Videos

The NHFish dataset consists of 15 underwater beam trawl video sequences, collected

off of the Oregon Coast along the Newport Hydrographic Line (NH-line) 4. Traditional

beam trawls are conducted using a chain and a net; the chain disturbs the benthos,

and the net catches a subset of them for subsequent analysis. In our case, a top-down

facing camera, spotlight, and laser range-finder are also attached to the beam trawl rig

to capture visual data. Each video sequence is of a trawl conducted between two set

locations (referred to as a ‘tow’). At the end of a tow, the net’s contents are analyzed for

various parameters, such as the number of each fish population type, size, age, weight,

etc. Although the fisheries science community generally just uses the net catch data and

not video data, this approach is not without its flaws:

• Since the tow is only inspected at the end of a run, there is no information regarding

where along the tow any given fish was caught. As such, it has very coarse spatial

resolution, and complicates attempts at correlating environmental condition and

fish populations.

• The sampling technique may not collect a representative sample, as it will only

count the fish that were caught; this may mean that net catch tows have a bias

towards counting either very young or very old fish, or ones in poor health. Con-

versely, healthy fish or more agile species may evade the net, and thus remain

uncounted.

• The trawls involve fish mortality (i.e. caught fish are frozen and dissected); al-

though this allows more in-depth data collection, it is invasive and disruptive for

the affected environment.

4https://catalog.data.gov/dataset/newport-hydrographic-line-newport-hydrograhic-line
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• The uncertainty in catch accuracy is not quantifiable; there is no means to quantify

uncertainty regarding how representative or accurate of a sampling it is.

• The sampling is very labor-intensive and expensive, and requires fisheries scientists

on a boat at sea to conduct and sift through the net catch.

In contrast, the beam trawl video-based technique addresses some of the shortcomings

of traditional sampling methods, and offers potential for future innovations unavailable

to existing methods. Specifically, the video-based approach can have fine-grained spatial

resolution, allowing for very accurate correlation of fish behavior and environmental

conditions, and is posed to benefit from future technical improvements from automated

analysis techniques. Benefits of the video analysis method include:

• Analysis of fish behavior: net trawls do not provide any insight into fish behavior

or actions in the water. This is an important information source for developing a

richer understanding of fisheries ecosystems and behavior dynamics.

• Fine-grained spatial resolution: analysis can correlate boat GPS with video data

time-stamps to get accurate location information (e.g. longitude / latitude) for

any given fish in the video.

• Fine-grained temporal resolution: analysis can provide real-time information re-

garding fish populations in an area. It is conceivable that given sufficient video-

coverage and sophisticated processing techniques, real-time automated analysis of

ocean conditions and fish levels could be computed, enabling more accurate and

proactive fisheries understanding and management.

• Unbiased sampling: since no fish are excluded (although visually non-distinctive

fish are challenging to detect and track, this is something that will likely see sus-

tained and consistent future improvements). Thus, even fish that escape the trawl

net can be counted.

• Quantifiable uncertainty: by using labeled datasets of the beam trawl videos, algo-

rithmic performance can be computed, giving a quantifiable measure of uncertainty

regarding automated analysis results.
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Relying solely on video sampling does have a few shortcomings compared to tradi-

tional methods. However, we believe many of these shortcomings are surmountable by

improving CV techniques, specifically issues one through four below. Our hope is that

by generating the NHFish dataset and making it available to the broader community,

we will encourage further work on these tasks.

1. Inferring exact fish dimensions can be challenging and noisy, and fish subspecies

can be difficult depending on the available view(s) of the fish.

2. Performing accurate detection and tracking is currently challenging.

3. Population surveys done by visual tracking can potentially double-count fish that

exit and re-enter the scene (it is ambiguous whether any given fish is a new, unique

fish or a repeat fish). This is partially ameliorated by the fact that fish generally

escape away from the trawl chain.

4. Juvenile (i.e. very small) fish are challenging to detect and track; the video analysis

approach is presently infeasible on fish < 10 cm in length.

5. Video analysis does not allow for inspecting the fish in detail (i.e. cannot dissect,

and thus cannot infer diet, health, etc).

6. Video quality suffers in certain months when visibility is poor (e.g. winter storms

can cause turbid conditions, some days in the spring or summer have algal blooms).

In these cases, the videos are mostly occluded by marine debris and are non-

informative. See fig. 3.1 for an example of a discarded sequence on account of poor

visibility.

As such, we do not currently propose video beam trawl data to be a wholesale

replacement for net trawl data, but rather act as a complimentary source of information

offering faster turnaround times, broader sampling ranges, shorter temporal timescales,

and a means to infer certain information unavailable to net catch. This will help provide

more accurate and unbiased fish counts and assist in quantifying both the number of fish

and the uncertainty regarding the net catches. As analysis approaches and video capture

technologies improve, video-based beam trawl sampling may largely supplant net-based

ones, and net catches will be infrequently performed, i.e. when certain information such
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Figure 3.1: A frame from a trawl on July 11th, 2014 – the water for this trawl was too
turbid to be used for analysis

as fish diet or tissue samples are required. However, this will likely be a gradual process,

and is contingent on sufficiently powerful analytic techniques being developed. Although

the beam trawl video analysis method is not without its flaws, it is well-posed to benefit

from future technological improvements, such as camera hardware and video analysis

techniques, and could enable transformative changes in fisheries science and management.

The NHFish dataset will encourage further work from the CV community on problems

pertinent to accurate underwater fisheries analysis, thereby improving automated video

processing techniques available to fisheries science.

3.1.2 Machine Learning and Ecological Inference

Visual tracking is defined by [128] as “the analysis of video sequences for the purpose

of establishing the location of the target over a sequence of frames (time).” Visual

tracking is an essential component in video analysis, as it is a primary method for

integrating temporal information; algorithms devoid of tracking treat each frame as being

independent. Tracking specifically links detections through time into a construct called

a ‘track’, consisting of detections that belong to a single object through a temporally
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sequential collection of frames. There are multiple formulations of tracking; one of the

most common is tracking-by-detection, where one or more detection algorithms provide

noisy bounding boxes of potential salient objects in the scene, and the tracker builds

tracks from the proposed detections. This is the formulation we use for the beam trawl

video analysis problem, and we present NHFish, our challenging beam trawl video dataset

as a tracking-by-detection dataset in a similar vein to the MOT dataset [91][73]. The

beam trawl videos fit the multi-object tracking paradigm, but feature some new and

interesting challenges not seen in contemporary tracking datasets. For example:

• The data has many visual distractors, some of which are shown in fig. 3.11.

• The target objects (flatfish) are naturally camouflaged in benthic environments, as

seen in fig. 3.13.

• There can be non-linear camera and object motion, out-of-plane rotation, signifi-

cant scale variation, and unexpected visual occlusions (such as water droplets on

the camera lens, as in fig. 3.7).

• Flatfish can exhibit significant appearance deformation fig. 3.6,

• Flatfish have relatively homogeneous object appearances and can interact with

each other, as in fig. 3.10.

As such, motion cues and temporal continuity become important for building accurate

tracks, and appearance models may be less useful. In addition, unlike most tracking

datasets, this one does not feature humans as a detection target, reducing the utility of

person-specific methods such as Deformable Parts Model (DPM) [35] and potentially mo-

tivating novel solutions. More details regarding the dataset are presented in section 3.4.

Despite the apparent difficulty of the beam trawl dataset, there is much benefit to

be gleaned from automating its analysis. Past attempts at using video beam trawl

data for scientific research and ecological inquiry have been limited by the high degree

of manual effort by scientists required to analyze the videos. To date, there has been

one published paper [133] using the NH-Line beam trawl data, despite it having been

collected for over two decades. This is because performing manual analysis requires

measuring characteristics of the fish from the video frames by hand, sifting through

the video frame-by-frame. In addition, this sort of activity can only be done by skilled
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marine ecologists, so the labor burden is especially onerous. Being able to perform video

analysis tasks without manual work by scientists would greatly expedite the extraction

of information, and would open the door to expanded video collection and analysis. The

effects this could have on marine science is not to be underestimated; in the words of

Shafait et al. [123], automating fisheries video data would “transform marine science.”

We hope that by making the video dataset available, fisheries science and manage-

ment will benefit by having greater attention from the CV community. Although there

is considerable interest in performing automated video analysis in unconstrained under-

water environments, the state of the art methods employed in ecology often lag behind

those proposed in the CV community. By having a dataset that straddles both, we hope

that new CV approaches to the challenging beam trawl video data will be proposed and

the integration of pure CV and applied ecological work will become closer.

3.1.2.1 Datasets as Boundary Objects

Datasets can act as catalysts for interdisciplinary work, lowering the barriers to working

on specific tasks. On a more philosophical level, they can also serve as boundary objects

[147] for interdisciplinary projects. A boundary object is a construct that collaborators

from diverse disciplines can understand, and which often serve as the linchpins of collab-

orative projects. Different disciplines often have insular conventions, with terminologies

and methodologies that are often foreign to people outside of that field. Boundary objects

are important for spanning these differences and creating common ground for collabo-

rators. Datasets make for natural boundary objects, as they are more tangible, and are

often the basis for interdisciplinary collaboration to begin with. This is especially true

in combining fisheries science and CV – the NHFish dataset served as a boundary object

for our interdisciplinary OSU NSF NRT team, and will likely continue to do so in future

collaborative work between fisheries science and CV. We believe that leveraging datasets

to encourage interdisciplinary work is an area that will see increasing attention in the

future, especially when AI-related fields are involved.
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Figure 3.2: Supervised machine learning algorithms have two passes; the forward pass,
where the algorithm predicts an output based on an input, and the backward pass,
which computes how wrong the forward pass prediction was (via a loss function and
ground truth). The algorithm weights are then adjusted to make the algorithm output
predictions in the future that will minimize the loss function.

3.2 Datasets and Machine Learning

Data lies at the heart of ML, as it is the information that the machine is meant to learn

from. However, in the supervised learning paradigm, the raw data itself is insufficient;

there must also be the desired result of any processing. This serves to both define the

task to be performed, and provides the implicit relationships between the input and

output data samples. While the network’s parameters are directly updated via gradient

descent, which is a function of the loss, the loss is a function of the ground truth and the

network predictions (see fig. 3.2). Thus, the dataset’s ground truth is the most important

part of any supervised algorithm’s training.

On a more philosophical level, datasets are a means to distill a specific task to be

performed. Any number of tasks can be performed on a piece of data; within the infinite

set of potential tasks, the dataset is what defines what the desired outcome should be.

For example, an image can be used as input to myriad processing routines; common tasks

include classification (stating what is in the scene), detection (localizing elements within

the scene), segmentation (pixel-wise localization), among others. The dataset labels
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determine the type of task to be performed; classification would consist of categories

per image, detection would have zero or more bounding boxes, segmentation would have

pixel-wise mask images. Given a different set of labels, we can define a different task on

the same input data – the ground truth labels determine both which parts of the data

is important, and what tasks the algorithm learns to perform.

On a more fundamental level, datasets are required for ML algorithms to learn.

The “No Free Lunch” theorem (NFLT) (for supervised learning) states that no learning

algorithm outperforms any other, when evaluated over all possible problems [149] (there

are corresponding no free lunch theorems for other domains, notably for optimization).

The NFLT implies that if there is no prior information or assumptions made about

the data to evaluate an algorithm with, then no algorithm is better than any other;

performing well on one task just means performing poorly on a different one. Practically,

this means that algorithms need to impose assumptions regarding the data distributions

involved to be successful on any given task. Often this is done by assuming structured

data to be more common (i.e. data is likely to have lower Kolmogorov complexity) [70].

In general, stronger assumptions are both more informative, and more restrictive. Any

such assumption must be made with a specific dataset in mind, and using an inaccurate

assumption will hamper an algorithm’s capabilities to generalize to the data. In addition,

since the dataset specifies what the desired result is for every input (the ‘ground truth’),

the dataset is directly tied to how well the algorithm performs. If the dataset provides

incorrect or noisy labels to the algorithm, then the algorithm will learn the incorrect

model for the task at hand and will likely generalize poorly. A more insidious problem

is when datasets consist of biased data. While algorithms themselves have no inherent

biases (and this is often considered a benefit over humans — humans have egos and biases

that inhibit objectivity, e.g. there are more favorable parole decisions given by judges

early in the day and after lunch [30]), they can inherit biases that have been encoded

in the datasets they are trained on. For example, the Microsoft Common Objects in

Context dataset (MS COCO) was found by [160] to contain significant gender bias in

visual semantic role labeling; even worse, they also found that training algorithms on

such datasets can further amplify biases found in datasets. As ML algorithms have

entered the commercial sphere, there has been increasing awareness about implicit biases

enshrined in datasets. There have been highly visible mistakes in the past few years,

such as Google’s racist face recognition [26] in 2015 and Uber’s self-driving car death
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[144] in 2018. There are also concerns regarding less visible or regulated algorithmic

decision making, such as automated credit decisions (e.g. FICO scores), or COMPAS (a

proprietary predictive software application used to decide which prisoners are eligible for

early release) that may have built-in biases, but which are not available to be audited or

examined due to intellectual property constraints. This raises ethical concerns around

proprietary and/or automated algorithms that make decisions with minimal oversight.

It also highlights the profound importance of datasets in the creation of valid models.

Throughout the history of ML, datasets have propelled innovation. Recent advance-

ments in DL have been fueled (in part) by increased dataset sizes [135]. Using even

larger data in tandem with higher complexity models holds promise to continue improv-

ing representation learning. Specifically, the recent work by [135] found that such transfer

learning features improved performance (on vision tasks) logarithmically with respect to

the training data volume. As such, it is likely to remain beneficial for performance to

continue increasing dataset sizes and expanding model complexity commensurately.

3.2.1 Technical Impacts of Datasets

The process of supervised ML broadly proceeds in three main stages: training, valida-

tion, and evaluation. Note that this is a generalization; in practice, more sophistication

methods may be used, such as k-folds cross validation.

• Training: This stage is where the algorithm learns from data. The implementer

defines an algorithm, which consists of learnable weights. These weights are up-

dated during this stage to minimize a defined cost function, often by some variant

of backpropagation and gradient descent. In practice, training is an iterative pro-

cess of computing high-dimensional representations of the data in feature space,

fitting decision boundaries to the feature-space samples, and adjusting the learned

curve-fitting based on the algorithm loss function (which in turn, is dependent

on the dataset’s ground truth). In the case of binary classification, the training

step would involve adjusting the model weights of the feature extraction layers,

and jointly learning a decision boundary (e.g. a manifold in feature space) that

separates the positive and negative samples in a way that minimizes the loss (e.g.

binary cross-entropy).
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• Validation: While the training stage provides a measure of performance on the

training set, this is not necessarily a good measure of overall performance. Namely,

since the model has access to the ground truth, it may end up overfitting to the

training data, and thus generalize poorly. The validation stage is a way to get a

measure of the model’s performance on data outside of the training set. This, in

turn, will reveal overfitting, especially if hyperparameters are being adjusted.

• Evaluation: While the validation set is meant to give an objective view of gener-

alizability of the learned algorithm, it is often used for hyperparameter validation,

which after multiple such iterations, can end up causing the algorithm to also over-

fit to the validation set. The true testing set is one that should be unseen during

algorithm development and training. Functionally, we take the learned feature

extraction model and learned decision boundary, and apply it to the new data

samples; the assumption is that if the model has fit the training data accurately,

and the training and testing data are from the same generating distribution, that

the model will perform well on the testing data as well. Conversely, if the training

and testing data diverge too much or the model unfit or overfit to the training

data, then it may suffer poor performance on the testing data.

3.2.1.1 Overfitting and Underfitting

Algorithms may not generalize well for the task they have been trained on: this can

broadly be attributed to the model either overfitting or underfitting the data. The

characteristic trait for overfitting is that the model performs well during training, but

suffers poor performance during validation and/or evaluation. In contrast, if the model

underfits the data, then it will perform poorly during all the stages. The primary goal

in ML is not just to train a model, but to train a model that generalizes well, i.e. that

performs well on previously unseen data. Overfitting occurs when the model complexity

is much higher than that of the data. This allows the model to simply memorize the

training data, thus performing very well for only that specific set of data. Functionally,

this usually is due to the algorithm learning both the data and the random noise in the

training dataset, rather than the true underlying data distribution, as shown in fig. 3.3.

As such, the model learns arbitrary, non-informative relationships within the training
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Figure 3.3: Diagram of underfitting, appropriate fitting, and overfitting of a quadratic
function of one variable. Figure from [44].

data. Consequently, it invariably performs poorly on anything other than the training

set. Underfitting is the converse of overfitting; underfitting occurs when the model is

not sufficiently complex to capture the relationships in the data, and is thus unable to

adequately model it. For example, trying to fit a high-degree non-linear function with

a linear model will always result in poor predictions. No amount of additional training

data will help with this fig. 3.3.

On a fundamental level, ML algorithms are tailored to the data they will be evalu-

ated on. Algorithms that are entirely agnostic of their target data will perform poorly

based on the NFLT, so it is important to create specific datasets and write algorithm

architectures suitable for the target data. If the algorithm model is too complex relative

to the data, then it runs the risk of overfitting; if the model is not sufficiently expressive

for the data, then it will underfit. While these intuitively make sense, there is also a

mathematical framework for expressing the mechanisms behind under- and overfitting.

Vapnik-Chervonenkis (VC) dimension is a measure of model complexity, and can be used

for defining bounds on the generalization error of an algorithm. Specifically, if H is the

space of functions learnable by a statistical classification model, then the VC dimension

of H define loose quantitative bounds characterizing the bias (underfitting) versus vari-

ance (overfitting) behavior of H. VC dimension bounds are distribution independent,
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while Rademacher complexity allows computing tighter, distribution-dependent bounds.

Namely, it defines a the capability of a learner to fit random data, which can be used

to derive an upper bound on the learners generalization error based its training error

[162]. However, explicitly calculating these bounds are generally impractical, so in prac-

tice more empirical methods are used (specifically, comparing the observed training and

testing error). However, VC dimension and Rademacher complexity are important in

that they offer a degree of mathematical rigor to the intuition behind the bias-variance

tradeoff.

3.2.2 Institutional Impacts of Datasets

In addition to being key components in the technical performance of algorithms, datasets

also have deeper, more profound impacts on shaping the types of problems that the

CV and ML communities focus on. There is a fundamental interplay between datasets

and technological innovation and focus. Once a dataset is established, it becomes a

benchmark that algorithms are evaluated against, and concentrates research efforts onto

the problem(s) posed by the datasets. One of the most successful examples is ImageNet,

which arguably launched the DL era and presided over multiple substantial gains in

image classification accuracy and DL innovation. Datasets also offer an opportunity

for establishing standardized benchmarks for comparing new methods to. There are

often leaderboards 5 6 7 associated with each dataset that offer “objective measures of

performance and therefore are important guides for research.” [82]

While datasets are of fundamental importance to ML, they can be time- and resource-

intensive to create. At its inception in 2009, ImageNet consisted of 3.2 million labeled

images [31]. As of 2014, it had over 14 million images [119]. The JFT-300M dataset

used in [135] consists of over 300 million (weakly annotated) images, and calls for larger

datasets still. The cost of creating large, modern datasets can be prohibitive, and is

contingent on the task defined by the dataset. Labeling classification tasks are compara-

tively simple, while video segmentation is notoriously difficult. For example, Cityscapes

is a modern semantic segmentation dataset with high-quality pixel-wise instance-level

5DAVIS: https://competitions.codalab.org/competitions/16526#results
6MOT: https://motchallenge.net/results/MOT17
7MS COCO: http://cocodataset.org/#detection-leaderboard

https://competitions.codalab.org/competitions/16526#results
https://motchallenge.net/results/MOT17
http://cocodataset.org/#detection-leaderboard
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semantic labels. In creating the dataset, “[a]nnotation and quality control required more

than 1.5 h on average for a single image.” [25] Cityscape has 5,000 high quality frames

and 20,000 frames with coarser annotations. Similarly, MS COCO [82] is a modern

object instance detection and segmentation dataset, consisting of roughly 2.5 million im-

ages. The authors report that when using Amazon Mechanical Turk, the image labeling

process took roughly 85,000 worker hours to complete. As such, it can be prohibitively

expensive to create datasets of sufficient scale for modern DL methods. In the DL era,

large labeled datasets are crucial for training deep models and achieving satisfactory per-

formance. Problems that lack suitable datasets have a higher opportunity cost to work

on, and inevitably, see less attention from the CV community. While the presence of a

dataset can promote research in its domain, academic and/or limited-budget institutions

may not have the resources to create new datasets; as such, research efforts on topics

lacking suitable datasets are inhibited. In keeping, if a suitable dataset does exist for a

task (and made freely available), then the barrier to working on that task is lowered and

it will receive more attention. Thus, the landscape of datasets shapes the work being

done.

Datasets do not exist in a vacuum, and are generally created around problems that

entities find relevant. Often this comes from a company (e.g. Cityscapes was funded

in part by Daimler’s autonomous driving Research and Development unit) for a spe-

cific task important to their business interests, and there are numerous large proprietary

datasets. However, datasets are not strictly created for commercial purposes; many

notable datasets such as ImageNet and PASCAL VOC originated from academic insti-

tutions, as they filled dataset gaps in areas of significant interest to the CV community.

Thus, there is a cyclical relationship fig. 3.4 between the interests of the community and

the datasets in existence: problems that researchers and/or institutions are interested

in will inevitably have datasets created about them, and people will work on problems

that have pre-existing datasets. This has the effect of lowering the barrier to working on

problems with datasets already, and raising the bar for working on problems that have

no such datasets. However, there are still many problems for which no large-scale dataset

exists. More concretely, our project is concerned (in part) with performing tracking-by-

detection; however, we are examining Oregon nearshore benthos, and the beam trawl

environment is unique. As such, although our project falls within a common CV task,

algorithms trained on existing tracking datasets will not necessarily generalize well to
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Figure 3.4: Tasks with one or more datasets have a lower barrier to working on them;
tasks without datasets have a higher one. Problems that are important usually have
datasets created for them, while datasets that are unimportant do not. Creating a
dataset for a problem can encourage further research on the task. The sciences can
encourage collaboration by creating datasets relevant to their problem domains.

the beam trawl videos (due to how divergent it is from existing datasets). Hence, we

built our own dataset, NHFish. Although this was a significant undertaking, we hope it

will prove beneficial in the future by encouraging others in the CV community to work

with the beam trawl video data.

Our labeled NHFish dataset is the latest in a long line of video tracking datasets.

Video tracking is one of the fundamental tasks in video analysis pipelines, as it allows

for forming temporally consistent sequence information between frames in a video. Most

recently, the VOT [66] and MOT [91] [73] datasets have taken the mantle as the state

of the art single and multi-object video tracking (single camera) datasets, respectively.

In addition, any video segmentation dataset can also be used as a tracking dataset, but

since the labeling burden for segmentation is higher, segmentation datasets are generally

smaller. In addition, there are multi-camera tracking datasets, such as PETS [100],

which generally focus more on the video surveillance applications. Despite the array of

other visual tracking datasets, the beam trawl video data poses some unique challenges.

Namely, all of the data is captured underwater, with specific scene elements common to

all beam trawl videos. More specifically, the lighting is supplied by a spotlight mounted
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on the camera rig, making the center regions bright and the four corners of the frame

comparatively dark. Likewise, shadows are cast in a consistent manner, and the camera is

a relatively consistent distance from the ocean floor. There are two laser beams (mounted

on the beam trawl rig) projected into the middle of the frame for range-finding. The

Oregon benthic habitats sampled are all sandy-bottomed, with colors largely in hues of

brown and green. Also, the target objects for tracking are flatfish, which can both burrow

into the sand, and have evolved to be well camouflaged against the ocean floor. This

makes appearance features less informative and motion cues more important. Similarly,

there are frequent and disruptive visual distractors, since the sampling method relies on

the trawl chain chain to disturb the fish in order to induce motion. These factors make

our video collection distinctive and challenging in the video tracking dataset landscape.

3.3 Related Works

3.3.1 Applied Computer Vision

CV has a long history of applied work in the natural sciences. [145] provides a compre-

hensive survey of CV for plant species identification, [108] gives an overview of CV for

medical imaging, and [65] describes CV use in natural disaster warning and detection

systems. There are multiple science-oriented CV tool boxes, such as WildBox [8] for ani-

mal counting and identification, TMARKER [120] for cell counting and staining analysis,

and BioTracker [92] and trackdem [13] for visual tracking of animal populations, among

others. In general, CV can reduce manual workloads and increase the scope, power,

and insight of natural science inquiry when repetitive visual tasks are required. Visual

tracking is especially important for many ecological tasks, as it enables making ecolog-

ical inferences, such as population counting, individual behaviors, and group dynamics.

There are numerous specific works of applied visual tracking, such as honey bees in con-

trolled environments [64] and in the wild [10], elephant detection and tracking [126] [27],

and most pertinent to this project, analyzing fish in underwater conditions. For example,

[127] used pre-trained CNNs for fish classification on underwater images from Australia

and [50] used GMMs for detection, SVMs for classification, and Kalman filters for track-

ing. [114] used a 3D optical stereo matching approach for fish segmentation. [23] used

a deformable parts kernel matching tracker for underwater fish tracking. In addition,
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there is interest from the regulatory agencies, such as NOAA, regarding applications of

automated recognition systems in fishery services [148].

Despite strong interest in underwater fish analysis methods, the primary existing

dataset is the SeaCLEF subset of the LifeCLEF dataset [93]. However, it mostly is

concerned with classification of tropical fish in less turbid waters, and is a poor fit for our

specific task. The Fish4Knowledge project [36] started in 2010, and examined detection

and tracking in a large corpus of underwater tropical coral reef fish. Unfortunately,

the project is now defunct, the cameras were stationary, and the tropical underwater

environment differed significantly from the beam trawl dataset. In keeping, despite the

corpus of work on underwater fish video analysis, none of the existing approaches are

suitable to our NH-line beam trawl video data. [50]’s reliance on background subtraction

is only feasible for stationary cameras, [114] requires a custom multi-camera arrangement,

and was performed on data from a controlled (indoor pool) environment. [23] heavily

relies on appearance features, which may be of limited utility for Oregon benthos. The

closest approach is detailed in [127], but transfer learning is heavily reliant on testing and

training datasets being sufficiently close; none of the existing datasets are remotely close

to the beam trawl video, so transfer learning performance would suffer. [123] and [56] are

two recent works dealing with video detection and tracking in unconstrained underwater

environments. [123] performs species recognition in video sequences, but does not address

detection and tracking, and uses ImageCLEF for training and evaluation. [56] uses a two-

stage graph-based tracking formulation over learned CNN features, calculating tracklets

in a shortest-path problem formulation, then groups tracklets with an affinity metric

based on the L2-distance of their CNN features. In all, existing work on underwater fish

video analysis is promising, but taken by itself, is insufficient for our dataset.

3.3.2 Detection

Recent works in detection and tracking have significantly improved upon the past state

of the art methods. PASCAL VOC [34] and MS COCO [82] are datasets with image

detection annotations, and have helped drive the field of object detection forward in

recent years. Broadly, modern convolutional object detection algorithms can be divided

into two groups, one-stage and two-stage detectors. We provide a brief survey of mod-

ern detection algorithms to motivate our choices of detection proposal methods for the
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presented NHFish dataset.

Some of the most successful and popular detection algorithms in recent years have

stemmed from R-CNN [42]. Proposed in 2014, it has inspired numerous subsequent

methods, and the lineage of R-CNN, Fast R-CNN [41], Faster R-CNN [111], and Mask

R-CNN [47] have all been highly successful as two-stage detection algorithms. R-CNN

uses selective search [139] to propose ∼ 2K differently-sized bounding boxes on each

frame, resizing each ROI to a common resolution and running them through a CNN

sequentially. Afterward, each region is classified as containing an object or not. Although

state of the art in 2014, it was also extremely slow, due to passing each ROI through

the CNN individually. Fast R-CNN improved upon R-CNN by computing features over

the entire frame once, then proposing bounding boxes in feature space using selective

search. Each feature ROI is then pooled to a common resolution, and two outputs

are generated: one from a softmax classification layer deciding whether the given box

contains an object, and the other from a bounding box regressor to adjust the bounding

box coordinates to accurately localize the object in image space. Faster R-CNN builds on

insights from Fast R-CNN and replaces selective search with a Region Proposal Network

(RPN) to propose bounding boxes over the image CNN features of varying aspect ratios

and scales. See fig. 3.5 for the network architecture diagram. Faster R-CNN proved

to be extremely successful and highly influential; as of November 2016, “half of the

submissions to the COCO object detection server [...] are reported to be based on the

Faster R-CNN system in some way.” [53] We use Faster R-CNN as one of the detection

proposal methods in this work. Mask R-CNN uses Faster R-CNN, but adds another

output head to perform segmentation (pixel-wise labeling) rather than just bounding

boxes, and adds a more accurate feature pooling method than the ones Fast R-CNN

and Faster R-CNN used. These additions pushed Mask R-CNN to be among the most

accurate methods for detection (and instance semantic segmentation) on COCO through

2017, and remains highly competitive currently. Unfortunately, Mask R-CNN requires

segmentation annotations for offline training, and segmentation masks are expensive and

laborious to create. The NHFish video dataset does not have segmentation masks, so

evaluating Mask R-CNN as a detection proposal method was not feasible.

Although two-stage detection methods have enjoyed considerable success in recent

years, there have also been considerable effort in developing 1-stage detectors. 1-stage de-

tectors are often faster, albeit at the cost of lower performance on average. Overfeat [121]
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Figure 3.5: Faster R-CNN architecture diagram; we use Faster R-CNN with a ResNet-
101 feature extractor as one of the detection proposal networks in the beam trawl video
dataset. Figure from [111]

was an early (2013) DL approach for detection, using a CNN to perform classification,

localization, and detection using multiscale sliding windows. The predicted bounding

boxes are accumulated to build detection confidence measures. YOLO [110] was another

impressive 1-stage detector, and formulated detection as a regression task from image

space to bounding boxes, enjoying reasonable performance at real-time speeds. SSD

[84] improved on YOLO’s runtime and accuracy performance by defining a fixed-size set

of bounding boxes, predicting likelihoods of each box containing an object, and refin-

ing probable boxes for more accurate localizations, all at multiple scales. RetinaNet [81]

formulates a novel loss function that rectifies the foreground versus background pixel im-

balance (i.e. on average, the majority of pixels in an image belong to scene elements not

of interest). The authors couple this loss function (termed ‘focal loss’) with a relatively

simple detection network architecture and achieve state of the art runtime and accu-

racy performance. Due to its impressive performance, RetinaNet is the other detection

proposal method used in this work.
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3.4 NHFish Dataset

The NHFish dataset consists of 15 video sequences, with 19,899 annotated bounding

boxes and nearly 218K high-resolution frames. The beam trawl video data exhibits an

array of challenging factors; we discuss them in the following section. To perform the

analysis, we borrow some of the nomenclature from the DAVIS dataset. Specifically,

DAVIS is a modern state of the art video object segmentation dataset, and consists of 50

high-resolution video sequences with densely annotated ground truth segmentations. For

comparison, the DAVIS-2016 [105] dataset has a compendium of challenging factors in

video data; the beam trawl data exhibits nearly all of them (except Heterogeneus Object

(HO) — rather, the general lack of color variation in the beam trawl videos is actually

one of the primary challenges). For reference, a (lightly edited) list of the challenging

attributes from DAVIS are duplicated here:

• (BC) Background Clutter. The back- and foreground regions around the object

boundaries have similar colors (χ2 over histograms). See e.g. fig. 3.13.

• (DEF) Deformation. Object undergoes complex, non-rigid deformations. See

fig. 3.6 and fig. 3.9.

• (MB) Motion Blur. Object has fuzzy boundaries due to fast motion.

• (FM) Fast-Motion. The average, per-frame object motion, computed as centroids

Euclidean distance, is larger than τfm = 20 pixels.

• (LR) Low Resolution. The ratio between the average object bounding-box area

and the image area is smaller than tlr = 0.1.

• (OCC) Occlusion. Object becomes partially or fully occluded. See fig. 3.13.

• (OV) Out-of-view. Object is partially clipped by the image boundaries. Fish

generally escape to the borders of the frame (away from the trawl chain), so most

fish in the dataset exhibit OV at some point.

• (SV) Scale-Variation. The area ratio among any pair of bounding-boxes enclosing

the target object is smaller than τsv = 0.5.
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• (AC) Appearance Change. Noticeable appearance variation, due to illumination

changes and relative camera-object rotation. See fig. 3.6.

• (EA) Edge Ambiguity. Unreliable edge detection. The average ground truth edge

probability (using [33]) is smaller than τe = 0.5.

• (CS) Camera-Shake. Footage displays non-negligible vibrations.

• (HO) Heterogeneus Object. Object regions have distinct colors; some visual dis-

tractors are colorful compared to flatfish. See fig. 3.11.

• (IO) Interacting Objects. The target object is an ensemble of multiple, spatially-

connected objects. See fig. 3.10.

• (DB) Dynamic Background. Background regions move or deform; in our case, the

dust cloud from the trawl chain is ever-present. fig. 3.19 and fig. 3.8.

• (SC) Shape Complexity. The object has complex boundaries such as thin parts

and holes.

In addition to exhibiting the above difficulties, the beam trawl dataset introduces

some new challenges of its own. Namely, the video sequences are often characterized

by a lack of color variation: most flora and fauna along the ocean floor is a shade of

brown, green, or grey (see fig. 3.8). In addition, we are primarily surveying flatfish, which

have evolved natural camouflage with respect to the ocean floor, and are not colorful or

visually distinctive, unlike tropical fish. As such, appearance-based features, which are

typically the most discriminative, are of limited use. In addition, there are some other

problems that do not show up in DAVIS:

• Non-linear and out-of-plane camera and object motion. Although related to CS,

this concerns camera motion, as well as depth motion (i.e. the camera rig bobs up

and down as the boat moves, potentially inducing significant scale variation).

• Environmental camera lens occlusion / obscuring. In some video samples, water

enters the camera housing, creating water droplets on the camera lens and distorts

parts of the frame. See fig. 3.7.
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Figure 3.6: Six consecutive frames (∼ 1
4 second) showing the significant appearance shift

flatfish can undergo (frames in order of top-to-bottom, left-to-right), in this case due to
the fish being run over by the trawl chain and flipping over.
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Figure 3.7: Example of a water droplet on the camera lens housing obscuring the left
part of the frame around the trawl chain region; note the swimming flatfish partially
occluded / distorted by the droplet.

Figure 3.8: Example frame exhibiting how prominent the dust cloud can be. Depending
on the boat speed, elevation above the ocean floor, and type of sandy bottom, the dust
cloud will be more or less obtrusive. In this case, the boat slowed down, so the dust
cloud overtook the trawl chain and obscured the majority of the scene.
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Figure 3.9: Sequence of RetinaNet detection proposals for a fish emerging from being run
over by the trawl chain (as well as an unfortunate starfish caught on the trawl chain).
Sequence proceeds top-down, left-to-right.
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Figure 3.10: RetinaNet detection proposals of a sequence of frames showing two fish
occluding each other, which leads to bounding boxes merging and diverging. This is
a challenging case for a tracker to maintain consistent track IDs. Sequence proceeds
top-down, left to right
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Figure 3.11: Images showing false positive detections due to some of the challenging
conditions found in NHFish. The top frame depicts a false positive on the dust cloud
in turbid conditions, the middle frame is a false positive on account of visual distractors
(specifically, two sea pens). The bottom frame is a false positives on a jellyfish, as well
as on a water droplet on the camera lens housing in the lower left corner.
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Even within the various categories shared with DAVIS, the beam trawl video data is

significantly more difficult than what is present in DAVIS (most notably, BC, OCC, OV,

AC, and DB), which is the current state of the art video object segmentation dataset.

While segmentation would allow semantically richer ecological inferences, in light of the

difficulties posed by the beam trawl video data, we elected to opt for a slightly simpler

CV task, of performing detection and tracking. Detection and tracking allows inferring

information about fish trajectories and coarse behavior information, as well as computing

population counts. These tasks are all both valuable and, if performed by manually by

a human, work-intensive undertakings.

The NHFish dataset is relatively unique in the multi-object tracking space. Most

efforts in tracking center around detecting and tracking humans, such as MOT [91] [73],

Cityscapes [25], and PETS [100]. This is partially due to most practical applications of

video tracking dealing primarily with human-centric activities, e.g. self-driving cars and

surveillance applications. Hence, there has been considerable interest in detection and

tracking of humans, as well as tertiary semantic categories, such as cars and bicycles.

However, these are all a far cry from flatfish in turbid waters. Similarly, contemporary

MOT datasets consist of many foreground objects in cluttered scenes; in contrast, the

beam trawl video has relatively few objects in the scene concurrently, and can have

long stretches of video in which there are no flatfish at all. However, there are many

persistent visual distractors (notably, the dust cloud produced by the trawl chain), which

can often resemble salient objects. As such, there is a strong class imbalance in the

dataset, with relatively few true positives, and many potential (and convincing) false

positives. In addition, flatfish are naturally camouflaged, and often have a predilection

for partially burying themselves in the sand, as seen in fig. 3.13. This makes detection

a very challenging task, as the target objects are, by evolution, visually non-distinctive

at best, and not visible at worst. This is also why the trawl chain is of importance:

the chain induces motion in the fish, and fish motion plays a large role in being able

to identify them in the scene. By the same token, the trawl chain is the cause of the

dust cloud, which is the primary visual distractor. In addition, an unfortunate side

effect is that there is a strong prior for the fish becoming visible at the border of the

dust cloud. This is because the fish will often be partially buried in the sand until it

makes contact with the chain, and only begin swimming at that point. As such, fish are

probabilistically more likely to appear in or around the visual distractors in the scene,
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which further complicates accurately detecting and tracking them (see fig. 3.13).

3.4.1 Dataset Technical Aspects

Although our main contribution is the labeled NHFish video dataset, we also present

the preliminary results of applying the detection proposal methods to the dataset in

section 3.6, in order to assess the feasibility of current methods in the beam trawl domain.

Since we believe the dataset would primarily be of interest to the CV community as a

tracking dataset, we formulate it from a tracking-by-detection perspective. We draw

inspiration from the MOT dataset [91] [73], the current primary multi-object tracking

dataset, in pre-computing detection proposals and including them as part of the dataset.

MOT consists of 14 sequences, for a total of 33,705 frames and 3,993 distinct tracks,

and supplies detection proposals from three detection methods. We adopt a tracking-by-

detection paradigm for analyzing the beam trawl video, using two standard state of the

art detectors, Faster R-CNN [111] and RetinaNet [81]. We use the official open source

implementations provide at the Facebook AI Research Detectron repository8 [43]. The

base network models are trained on MS COCO detection, and fine-tuned on the NHFish

dataset. The feature extraction backbone networks are ResNet-101 and ResNet-50 [48]

for Faster R-CNN and RetinaNet, respectively. Detection proposals are extracted for all

of the labeled video frames, and stored to disk as part of the dataset. We format the

beam trawl dataset into the COCO JSON format, as it has become a defacto standard

for detection tasks and integrates easily with many existing codebases. The filesystem

layout is presented in fig. 3.14.

3.4.2 Datasets and Applied Works

We believe that the NHFish dataset is an important step in bringing together CV research

and difficult problems of relevance ‘in the wild’. More concretely, there are myriad social

and environmental problems that could potentially benefit from CV. Already there are

many successful examples of applied CV, and there is intense interest in leveraging CV for

wider applications. Conversely, CV requires large, challenging, and varied datasets. As

CV moves into arenas with tangible impacts, it could benefit from noisier data that better

8https://github.com/facebookresearch/Detectron
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Figure 3.12: Two fish in the same frame, one stationary in the sand (upper right corner),
and one lurking and partially occluded in the dust cloud (lower right corner).

Figure 3.13: Another example of a flatfish partially buried in the sand (on the right side,
just above the trawl chain). Note how well the fish blend into the background.
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reflects complex, real-world conditions rather than curated datasets. Such datasets would

force algorithms to be robust to noise and generalize better to unexpected scenarios found

in real data (such as occasional occlusion by a stray crab pot (fig. 3.15) or trawl net, as

found sometimes in NHFish). In addition, performance often improves significantly on

tasks that have datasets: initial state of the art results on DAVIS-2016 improved from a

mIoU of 66.5% by [88] in 2016 to 86.1% by [143] in 2017. Similarly, the 2010 ImageNet

ILSVRC winner had a 71.8% top-5 classification accuracy [83], while the 2015 winner

had a 96.43% top-5 classification accuracy [48]. Both datasets presided over significant

gains in performance for their respective tasks. The presence of a dataset for a specific

task can serve to focus the community and drive improvements in the state of the art.

As such, it is plausible that creating new and challenging datasets for real-world, applied

tasks would both:

1. Encourage research by the CV community on that task.

2. Improve algorithmic performance on that task and encourage novel solutions.

Given that CV can automate repetitive visual tasks, using CV increases the feasi-

ble scale of data analysis and scientific research (scaling both up and out). Therefore,

it would be beneficial to have tighter integration between CV and the sciences. Since

datasets are one of the important drivers of CV research and efforts, using representative

data samples from the natural sciences to build datasets can be an effective and mutually

beneficial way to couple CV practitioners and scientists. Concretely, CV researchers will

have more data available to them, and scientists will have more powerful analytics and

processing power at their disposal. Our NHFish dataset is an important work in this

regard. Although there have been datasets created from the natural sciences before (e.g.

the iNaturalist dataset [140] is a recent example, albeit for image classification and detec-

tion only), NHFish is a modern, large-scale, challenging high-resolution video tracking

dataset created to address a significant social, environmental, and economic problem.

We believe this is a pragmatic but mutually beneficial framework for facilitating future

interdisciplinary work between CV specialists and the broader scientific community.
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Figure 3.14: Filesystem layout of NHFish dataset. <seq #> denotes the sequence name,
and frames with no annotations have no corresponding annotation file in the Annotations
directory.
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Figure 3.15: Example frame depicting the the sort of unexpected visual distractors that
can arise in real-world data. In this case, the trawl chain caught an errant crab pot,
which obscured the scene for the remainder of the trawl video.
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3.5 Potential Ecological Inferences in Fisheries Science

CV in fisheries science has historically been deployed in largely controlled environments

for recognizing dead fish, e.g. [134]. More recent work has attempted to tackle the

problem of analyzing live fish in uncontrolled environments, e.g. [123], which is a much

harder problem. In the context of CV, live fish analysis tasks generally involve detection

and tracking, as in [123], which used a particle filter for tracking, or [146], which used

keypoint descriptor tracking for movement pattern analysis. Some works use classifica-

tion, done on a per-frame basis. [118] used a SVM classifier with deformable template

matching, and [109] used sparse low-rank matrix decomposition for foreground extrac-

tion, computed deep features over the foreground, and classified fish species per-frame

in video with a SVM. [131] performed both classification and tracking, using shape and

texture features. [130] proposed a system for detection, tracking, and counting fish in

unconstrained underwater video. Although highly related to our task, their work is over

a decade old, evaluated solely on tropical fish as part of the now-defunct EcoGrid project,

and used CamShift [4] as the tracking algorithm of choice, which has long since been

surpassed by other multi-object tracking algorithms.

CV tasks can be broadly grouped into four categories: classification, detection, track-

ing, and segmentation. Detection and tracking are more challenging than classification,

as they involve performing localization (for detection) and integrating temporal infor-

mation (for tracking), both of which are absent in classification. However, detection

and tracking can reveal more information regarding fish behavior, and are important

for properly utilizing video data. Segmentation has even more stringent localization re-

quirements than detection, as it involves per-pixel labeling rather than bounding boxes.

Each of these fundamental CV tasks facilitate different ecological inferences. For a (non-

exhaustive) list:

• Classification: Identifying the presence of specific fish species in an image, identi-

fying habitats.

• Detection: Localizing different fish in an image, counting the number of fish. Pre-

requisite for performing tracking.

• Tracking: Counting the number of fish in a video sequence, analyzing fish trajec-

tories or response times.
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• Segmentation: Analyzing specific fish behaviors, detailed fish sizes and potential

interactions.

Tracking is a cornerstone operation for video data processing, as it unifies per-frame

information along the temporal axis. Namely, detection and classification tasks are

performed on a per-frame basis, but only provide information for that given frame; each

frame is implicitly treated as being independent. As such, inferring temporal continuity

between frames is not possible. In contrast, tracking associates information computed

between frames within a temporal window. As such, without utilizing tracking, the

types of information that can be gleaned from video data is limited. For example,

computing accurate counts of the number of fish in a video requires both detection and

tracking. Detection provides the number of fish in any given frame, but to compute an

accurate count through the entire video, it must be possible to discern new fish from old.

Concretely, frame t can have 1 fish, and frame t+1 can also have 1 fish, but if the fish from

frame t exits the scene, and a new fish enter the scene in t+1, then the sequence contains 2

distinct fish. If simply performing per-frame detection, it would appear that the sequence

only has 1 fish. Differentiating between new and old fish can only be done if the frames

are not assumed to be independent, which in turn, necessitates tracking. There are

also more insidious issues, such as a fish exiting the field of view, then re-entering at a

later date. Identifying these occurrences would require re-identification logic; although

person re-identification is a common task (e.g. CUHK03 [78] and Market-1501 [161] are

both datasets for person re-identification), doing so on flatfish is more difficult. Flatfish

lack of visual distinctiveness, can be within the field of view for a short period of time

(some fish in the beam trawl videos are in the scene < 5 frames (i.e. 200ms)), and often

are only seen from limited angles and exhibit significant appearance variation based on

viewpoint. We expect successful approaches to the NHFish dataset to have to integrate

some type of re-identification module to compute accurate population counts.

3.5.1 Fishery Stock Assessment

Fisheries science makes heavy usage of predictive models, and sound fisheries manage-

ment is heavily reliant on accurate population dynamics predictions [98]. However,

counting the number of fish in a given area is a difficult, expensive, and error-prone un-
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dertaking. Some species of fish can be elusive, others are naturally camouflaged, and all

move around (albeit some more than others). There are annual survey trawls performed

along the west coast of the continental US undertaken by NOAA [61] every May through

October, and are an essential resource for establishing annual fisheries management pol-

icy. Notably, such surveys are mandated by United States law (The Magnuson-Stevens

Fisheries Conservation & Management Act [2]) for setting fishing quotas. Specifically,

the law calls for establishing fishing quotas that admit the “maximum sustainable yield,”

as determined by “best available science.” In the intervening years since its passage in

1976 (and subsequent reauthorizations), this mandate has evolved to require frequent

fishery stock assessments, as fish population models heavily rely on population esti-

mates to predict fish population dynamics. Although surveys are frequently performed

using net catch data, automated video analysis would greatly reduce fishery scientist

workloads and streamline stock assessments. Two of the main impediments to adopting

video techniques are the lack of automated analysis techniques and the high amount of

labor required to process videos manually [123]. CV has to potential to bridge this gap,

and our work and resultant dataset are contributions in this arena.

3.5.1.1 Application: Counting Fish

Although there is a wealth of potential questions to be asked of the beam trawl video (as

discussed in detail in section 3.5), we believe the task of fish counting is a good target

application for this work. The reason for that is twofold:

1. Computing accurate fish counts is of vital importance to fisheries science and man-

agement, as it is tantamount to performing stock assessments.

2. The technical bedrock laid for performing fish counting is easily transferable to a

wide array of analysis techniques pertinent to many other salient ecological ques-

tions.
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3.5.2 Evaluation Metrics

For the application of counting fish, we borrow metrics used for crowd counting [86] and

propose to evaluate algorithmic counting accuracy via mean absolute error:

ε =
1

N

N∑
i=1

|yi − ŷi|

where N is the number of sequences, yi is the algorithmic prediction of the number

of fish for sequence i, and ŷi is the ground truth number of fish for sequence i.

Since we have frame level bounding box annotations with unique object identifiers,

the dataset annotations allow for broader applications than just fish counting. As alluded

to previously, we believe this dataset will be of interest to the multi-object tracking

domain, and accurate tracking algorithms can enable deeper insights into fish behavior

and ecosystem dynamics. Hence, we also propose to use standard multi-object tracking

metrics, as used in the MOT dataset [73] [91]. Specifically, the two metrics of Multiple

Object Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP),

as defined by [132]:

MOTA = 1−
∑N

i (FNi + FPi + IDSWi∑N
i GTi

MOTP =

∑
i,t di,t∑
i ci

where for MOTA N is the number of frames, FNi is the number of false negatives,

FPi is the number of false positives, and IDSWi is the number of track ID switches in a

given frame i. For MOTP, di,t is the distance measure of target t from its ground truth

annotation in frame i, and ci is the number of predicted bounding box matches with

the ground truth in frame i. di,t is typically the intersection-over-union (IoU), and we

follow suite, thresholding matching bounding boxes at 50% IoU. Intuitively, MOTP is a

measure of how well a tracker can localize object positions, while MOTA is a combination

of three error metrics, which expresses how well the tracker can estimate the number of

objects and maintain consistent track trajectories.
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3.6 Results and Discussion

There are a total of 19,901 annotated bounding boxes and nearly 218K frames across

the train and val splits of the NHFish dataset. Specifically, each split has:

• Training Set: 9361 annotations, across nearly 143K frames

• Validation Set: 10540 annotations, across nearly 75000 frames.

There are varying weather and ocean conditions across the sequences, and the data

is drawn from trawls performed in different months in 2013 and 2014 along the NH Line

in Oregon. This provides a representative sample of the data produced by the beam

trawls. Example frames are given in fig. 3.19. Statistics regarding dataset ground truth

are given in table 3.1.

Bounding Box Metric Value

Mean Area 39929 px

Median Area 35534 px

Mode Area 32760 px

Median Height 171 px

Median Width 206 px

Height Std. 75.46 px

Width Std. 74.31 px

Skew, Kurtosis 4.62, 38.11

Table 3.1: Descriptive statistics about ground truth bounding box annotations across
the train and validation dataset splits.

3.6.0.1 Detection Proposals

The detection proposals from RetinaNet and Faster R-CNN are included in the dataset;

since proposals were generated from fine-tuned networks, we performed two training and

evaluation cycles for the detector networks, starting from their base COCO-detection

trained models:

1. Train on the NHFish training set, generate proposals for the validation set
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Figure 3.16: Ground truth bounding box size histogram, in terms of pixels using 50 bins.
Note that the majority are comparatively small, with the smallest bounding box at 30
pixels.

2. Train on the NHFish validation set, generate proposals for the training set

In this way, we generate detection proposals for all frames in the dataset. In total,

there are 70,588 bounding box proposals that have confidence scores > 0.5, and 457,104

proposals total without thresholding generated from RetinaNet. There are 60,726 Faster

R-CNN proposals, 47,409 of which have confidence scores > 0.5. The detection proposal

performance, as given by the Detectron project’s [43] utilities, are given in table 3.2 and

table 3.3.

The evaluation metrics in table 3.2 and table 3.3 are used by COCO for evaluat-

ing detection performance. The evaluation descriptions from the COCO website 9 are

replicated below:

• Average Precision (AP):

– AP : AP is averaged over 10 discrete thresholds (specifically, IoU = [.50 :

.05 : .95]) rather than a single one. This provides progressively higher AP for

9From COCO Detection: http://cocodataset.org/#detection-eval

http://cocodataset.org/#detection-eval
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RetinaNet AP AP50 AP75 APs APm APl

train-val 0.2506 0.4932 0.2215 0.0 0.0022 0.2546

val-train 0.30095 0.5584 0.2930 0.0 0.0091 0.3098

Table 3.2: RetinaNet ResNet-50 detection performance on the two detection proposal
generation runs; train-val means the RetinaNet model was trained on the NHFish
training set, and the proposals were generated on the NHFish validation set. val-train
is the inverse (training on validation, proposals on train). This provides the opportunity
for detection proposals in all frames in the dataset.

Faster R-CNN AP AP50 AP75 APs APm APl

train-val 0.2793 0.5116 0.2747 0.0 0.0080 0.2838

val-train 0.2909 0.5233 0.2930 0.0 0.0203 0.2991

Table 3.3: Faster R-CNN ResNet-101 detection performance on the two detection pro-
posal generation runs; train-val means the Faster R-CNN model was trained on the
NHFish training set, and the proposals were generated on the NHFish validation set.
val-train is the inverse (training on validation, proposals on train). This provides the
opportunity for detection proposals in all frames in the dataset.

bounding boxes with more accurate object localizations.

– AP50: AP with a threshold of IoU=.50 for determining bounding box match-

ing. Concretely, if two bounding boxes have < 0.5 IoU, they do not match;

otherwise they do.

– AP75: AP with a threshold of IoU=.75 for determining bounding box match-

ing. This is a more stringent localization requirement than AP50.

• AP Across Scales:

– APs: AP for small objects: area < 322

– APm: AP for medium objects: 322 < area < 962

– APl: AP for large objects: area > 962

RetinaNet and Faster R-CNN are both successful state of the art object detection
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networks. Their relatively poor performance on NHFish, as shown in table 3.2 and

table 3.3, is indicative of how challenging the dataset can be for existing methods. This

motivates the creation of inventive and effective automated analysis techniques that can

accommodate NHFish’s difficult factors. Additionally, in light of the detection network

results, successful tracking approaches on NHFish will have to be robust to imperfect

detection proposals. Depending on the confidence threshold used for filtering which

detection proposals, there may be too few true positives, or too many false positives.

In all cases, there may be poorly localized bounding boxes. This sort of noise in the

detection proposals adds an additional layer of difficulty for tracking methods on NHFish.

Proposal Bounding Box Metric RetinaNet ResNet-50 Faster R-CNN ResNet-101

Mean Area (pixels) 36486 35195

Median Area (pixels) 29439 30294

Mode Area (pixels) 2877 1890

Median Height (pixels) 178 176

Median Width (pixels) 158 160

Height Std. (pixels) 77.91 61.76

Width Std. (pixels) 64.24 79.89

Skew, Kurtosis 2.34, 13.03 2.81, 25.12

Table 3.4: Descriptive statistics about the set of RetinaNet and Faster R-CNN bounding
box proposals across the train and validation dataset splits.
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Figure 3.17: RetinaNet bounding box proposal size histogram, in terms of pixels using
50 bins. Note that the detection’s area approximates the ground truth’s distribution
relatively closely, as seen in fig. 3.16

Figure 3.18: Faster R-CNN bounding box proposal size histogram, in terms of pixels us-
ing 50 bins. Note that the detection’s area approximates the ground truth’s distribution
relatively closely, as seen in fig. 3.16, but seems more skewed towards smaller proposals
than RetinaNet fig. 3.17.
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Figure 3.19: Example frames from different video sequences in the NHFish dataset; each
frame is the 1000th or 10000th frame of a different sequence.



79

3.7 Conclusion

We present NHFish, a novel and challenging tracking-by-detection dataset of beam trawl

video from the NH-Line with bounding box annotations. We believe this is a significant

step towards fostering greater interdisciplinary collaboration between fisheries science

and CV, and will encourage future work beneficial to both fields. The NHFish dataset

has great potential for improving scientific understanding of Oregon benthos, and stream-

lining stock assessments, which play a critical role in fisheries management. Likewise,

successful tracking and video analysis algorithms will have to integrate motion cues and

be robust to myriad distractors and noise sources, which poses an interesting oppor-

tunity for innovation in CV. On a more philosophical level, we believe that datasets

can operate as boundary objects for interdisciplinary projects, and are an effective and

general means for catalyzing greater interdisciplinary collaborative efforts that will see

increasing attention in coming years.
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Chapter 4: Conclusion

In this thesis, we present two video analysis methods, one for performing semi-supervised

VOS (ReGuide), and the other an application of tracking-by-detection on a newly pro-

posed, high-resolution underwater visual tracking dataset of Oregon benthos, NHFish. In

both cases, the driving component was to better utilize long-term temporal information

in videos, and elevate video processing above simply frame-by-frame image processing.

In the case of ReGuide, we use a bilinear LSTM to learn long-term appearance models of

target objects, and apply it as a convolutional filter to modulate learned CNN features

of the scene. This enables the network to adapt online to the appearance shift specific

objects undergo over a video sequence. The ReGuide network is online and end-to-end

trainable, and the guide network component can be integrated into a variety of net-

work architectures. It is complementary to inference-time fine-tuning, as is common in

semi-supervised VOS, and can be used in conjunction with other post-hoc refinement

methods, including those involving offline temporal refinement. Initial experiments on

DAVIS show promising results with favorable performance compared to baseline meth-

ods.

NHFish is a new video tracking dataset of beam trawl data along the Newport Hydro-

graphic Line, specifically looking at endemic flatfish populations. It consists of roughly

218K frames, with 19,899 bounding box annotations between the training and validation

set. It offers a unique set of challenges in a video tracking dataset, such as visually non-

distinct (naturally camouflaged) target objects, frequent and invasive visual distractors,

and non-linear object and camera motion, all in an underwater environment. Success-

fully integrating motion cues is an especially important aspect for successfully analyzing

the data, and we believe it will be of interest to CV practitioners. We present a set of

detection proposals from state of the art detection methods, and offer initial results for

fish stock assessments from the videos. On the ecological side, the beam trawl data has

the potential to greatly expedite the process of fishery stock assessments and perform

automated ecological inferences from video data. This could prove valuable for gaining

deeper insights for fisheries science into fish behavior, ecology and lifecycles, and for fish-
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eries management in creating economically and ecologically viable management plans.

We believe this dataset will foster greater integration between CV and marine science,

and contribute towards the use of AI techniques for societal and environmental good.
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Appendix A: NRT FishLabeler

As part of the OSU NSF NRT team, we manually labeled a selection of beam trawl

videos to define the ground truth tracks for the NHFish dataset. As part of that effort, a

labeling application (NRT FishLabeler) was developed; the driving goal was to have an

application that was simple to set up on a variety of operating systems, which could step

through videos frame-by-frame, and which supported a variety of per-frame metadata

annotation modalities (i.e. pixel-wise segmentation labels, geometric shapes, textual

information, etc). This is the document distributed among the team detailing the steps

for setup, usage, and labeling heuristics. The FishLabeler software is open source, and

both the docker images and source code have been made available.

A.1 Introduction

FishLabeler is a piece of software written to expedite the video labeling process. Specif-

ically, it allows stepping through the video on a frame-by-frame basis, annotating the

frames with pixel-wise segmentation labels or bounding boxes, and adding free-text an-

notations for frames. The resultant metadata (i.e. bounding box lists, segmentation

masks, and free-text data) are written out to disk. To simplify distribution, the applica-

tion is dockerized, and so in theory is relatively portable – the main challenge is getting

the X-forwarding to work, since this is a GUI-based application. To date, it works on

Linux, Windows, and Mac systems. You can find the docker image at the docker hub

repository 1 and the source code at the git repository 2 (under the dockerized branch).

A.2 Before You Run

Check if your docker image is up to date: in the terminal, run docker pull alrikai/nrt

to pull the latest image from the docker hub repository. You can see which docker images

1https://hub.docker.com/r/alrikai/nrt/
2https://bitbucket.org/alrikai/fishlabeler

https://hub.docker.com/r/alrikai/nrt/
https://hub.docker.com/r/alrikai/nrt/
https://bitbucket.org/alrikai/fishlabeler
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are on your system by running docker images. If docker is not running, then begin run-

ning it (if it’s not open, then you should get an error message when running any docker

commands).

For example, running docker images gives:

alrik@kai:~$ docker images

REPOSITORY TAG IMAGE ID CREATED SIZE

alrikai/nrt latest a63170ce013c 9 days ago 1.33GB

Old docker images will clutter your system over time; old docker images can be

deleted by running (on the command line):

docker system prune

A.3 Linux (Tested on Ubuntu 17.10 and 16.04)

A.3.1 Installation Requirements and Setup

1. Install Docker CE – follow instructions on the page

2. Follow instructions on running docker as non-root user. This is important for

sharing the X11 socket.

A.3.2 Running Docker Image

1. Make sure your docker image is up-to-date section A.2

2. Run the docker image from the command line:

docker run -ti --rm -u $(id -u) -v <src data dir>:/data \

-v <dst data dir>:/outdata -e DISPLAY=$DISPLAY \

-v /tmp/.X11-unix:/tmp/.X11-unix alrikai/nrt bash

Note that the −u name option sets the username within the docker container. On

one system, I have it set to NRTFish (since this is the username that is set in the

Dockerfile), but it seems to work with the current user ($(id -u)) as well. e.g.

https://docs.docker.com/engine/installation/linux/docker-ce/ubuntu/#install-docker-ce
https://docs.docker.com/engine/installation/linux/linux-postinstall/#manage-docker-as-a-non-root-user
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docker run -ti --rm -u $(id -u) -v /home/alrik/Data:/data \

-v /home/alrik/Data:/outdata -e DISPLAY=$DISPLAY \

-v /tmp/.X11-unix:/tmp/.X11-unix alrikai/nrt bash

3. Run commands as detailed in section A.6.

A.4 Windows

A.4.1 Installation Requirements and Setup

1. Install Docker (if Win10 Pro, install Docker CE, otherwise install Docker Toolbox).

2. Install XMimg using default options.

3. Open Docker ‘Settings’, select ‘C’ (or whatever drive has the video data) as a

shared drive.

A.4.2 Running Docker Image

1. Make sure your docker image is up-to-date section A.2

2. Run XLaunch if XMimg is not running, note the display number (defaults to 0),

and select the ’No Access Control’ checkbox under the ’Additional Parameters’

dialog. Leave everything else as defaults. Or, you can save the profile to disk to

expedite the process in the future.

3. Open the XMimg log in the toolbar (right click, ”view log”, if open), note the

XMimg IP address (the one next to newAddress).

4. Open Powershell if Docker CE, or docker quickstart terminal if Docker Tool-

box – see below for commands depending on if you’re using Docker toolbox or

Docker CE.

5. Start docker if it’s not running.

https://docs.docker.com/docker-for-windows/install/
https://sourceforge.net/projects/xming
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A.4.3 Docker CE

1. docker run -ti --rm -u NRTfish -v <src data dir>:/data \

-v <dst data dir>:/outdata \

-e DISPLAY=<ip addr>:<display #> alrikai/nrt bash

The commands between < brackets > should be substituted with actual values

(and the brackets omitted). As a concrete example,

docker run -ti --rm -u NRTfish -v C:/:/data -v C:/:/outdata \

-e DISPLAY=192.168.56.1:0 alrikai/nrt bash

2. Run commands as detailed in section A.6.

A.4.4 Docker Toolbox

1. docker run -ti --rm -u NRTfish -v "<src data dir>":/data \

-v "<dst data dir>":/outdata \

-e DISPLAY=<ip addr>:<display #> alrikai/nrt bash

... where the parts between <brackets> should be substituted with actual values

(and the brackets omitted). As an example,

docker run -ti --rm -u NRTfish \

-v "/c/Users/Katlyn/Documents/NRT/NRTDATA/Source":/data \

-v "/c/Users/Katlyn/Documents/NRT/NRTDATA/Output":/outdata \

-e DISPLAY=10.248.234.174:0 alrikai/nrt bash

2. Run commands as detailed in section A.6.

A.5 Mac

A.5.1 Installation Requirements and Setup

1. Install homebrew (if needed)

https://brew.sh/
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2. Install Docker

3. Install XQuartz (or via homebrew → brew cask install xquartz)

4. Install socat (brew install socat)

A.5.2 Running Docker Image

1. Make sure your docker image is up-to-date section A.2

2. Run socat TCP-LISTEN:6000,reuseaddr,fork UNIX-CLIENT:\"$DISPLAY\" in a

terminal, leave that running

3. Run XQuartz in a new terminal open -a XQuartz

4. Determine IP address for X-forwarding – ifconfig | grep inet

5. Run the docker image from the command line:

docker run -ti --rm -u NRTfish -v <src data dir>:/data \

-v <dst data dir>:/outdata -e DISPLAY=<ip addr>:<display #> \

-v /tmp/.X11-unix:/tmp/.X11-unix alrikai/nrt bash

Note that the −u name option sets the username within the docker container. On

one system, I have it set to NRTFish (since this is the username that is set in the

Dockerfile), but it seems to work with the current user ($(id -u)) as well. e.g.

docker run -ti --rm -u NRTfish \

-v /Users/SamanthaNewton/Drive/NRTLabeling:/data \

-v /Users/SamanthaNewton/Drive/NRTLabeling/DockerOutput:/outdata \

-e DISPLAY=10.249.17.255:0 -v /tmp/.X11-unix:/tmp/.X11-unix alrikai/nrt bash

6. Run commands as detailed in section A.6.

https://docs.docker.com/docker-for-mac/install/
https://www.xquartz.org/
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A.6 Running the FishLabeler Application

In all cases, running the docker run command in the above sections will download (if

required) and launch the docker container, build the application, and navigate to the

fishlabeler directory. The next important step is to run the application – to do so, run

the LabelFish.sh script, passing in 2 command-line arguments:

1. The path to the video to label (using the mounted path directory, i.e. starting

from /data).

2. The path to the directory to write the video frames and labeling metadata (also

using the mounted paths, i.e. starting from /outdata).

e.g. The following command would extract video 20130117144639.mts and output all

the resultant data (and metadata) to /outdata/NRT/20130117144639. Where exactly

this is on your host filesystem depends on your docker run command arguments, specifi-

cally the<src data dir> and<dst data dir> arguments. If, for example, <src data dir> is

/home/alrik/Data, then the input file would be at /home/alrik/Data/NRT/20130117144639.mts.

Similarly, if the <dst data dir> argument is /home/alrik/Data/NRTFish, then the re-

sults would end up at /home/alrik/Data/NRTFish/NRT/20130117144639.

$ bash LabelFish.sh /data/NRT/20130117144639.mts /outdata/NRT/20130117144639

The LabelFish.sh script will extract the individual frames of the video and write

them to the specified path as jpeg images, extract some video metadata, and then launch

the labeling application. If there are already frames in the specified output directory,

then the script will skip the frame extraction step. If using the script, the Fishlabeler

application will pop up with the specified (i.e. newly-extracted or already-existing) video

sequence selected after the frame extraction completes. In the event that the application

is run manually (i.e. running the application executable directly), then there are two

options:

1. No command-line arguments are provided: You should see a dialog UI pop up, and

use that to navigate to the directory of frames you want to label. Once you’ve

selected your target directory, the main window will pop up, and you can begin

labeling.



104

2. The user passes in the target directory, which already has its frames and video

metadata extracted, as is done in the LabelFish.sh script. Then no dialog

UI will be displayed, and the user-specified video sequence will be opened. e.g.

./FishLabeler /data/NRTFishAnnotations/20130117144639

Also, if you want to skip the frame extraction and metadata extraction step (i.e.

if you’ve already gone through the extraction steps), then you can also just run the

executable directly from the build directory.

A.7 Using the FishLabeler Application

Fishlabeler is supposed to be relatively bare-bones, so it should be straightforward to

use. The default window will look similar to appendix A.7. Different fish should be

given different instance IDs, which correspond to different colored bounding boxes. The

specific functionality provided by the Fishlabeler application is detailed in the following

sections:

• Frame navigation: subsection A.7.1

• Segmentation (per-pixel labeling): subsection A.7.2

• Detection (bounding boxes): subsection A.7.3

• Detection interpolation: subsection A.7.4

• Hotkeys: subsection A.7.5

When labeling, don’t bother with fish < 10 cm, as (in my experience) they are too

small to be easily seen by eye. The laser range-finder is calibrated to be roughly 10 cm

on the ocean floor, so this is a good heuristic to use for determining which fish to label

and which to ignore.

A.7.1 Frame Navigation

The bottom panel has the frame navigation tools; the left side displays the current frame

number and timestamp, the edit box for instance ID controls what ID the bounding box

to be drawn is assigned, the timestamp edit fields allow jumping to a specific timestamp
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Figure A.1: The Fishlabeler UI window of a beamtrawl video sequence frame (and
starfish casualty).

(enter the timestamp, click the apply offset button), while prev and next buttons

move through frames according to a fixed frame offset, as set in the edit field frame

move, which defaults to 1. Corresponding hotkeys can be found in subsection A.7.5.

The brush size edit field controls the annotation pixel size (i.e. for the bounding box

border, or the number of pixels that each click corresponds to in segmentation).

A.7.2 Segmentation

Segmentation is the process of assigning labels to pixels, i.e. designating the labeled

pixels as belonging to a groundfish, and the non-labeled pixels as being background

(or anything not-groundfish). This differs from detection in that segmentation operates

in pixel-space. As such, it is correspondingly more work-intensive to label, since one

has to assign labels to every pixel of interest in the scene. However, segmentation also

gives more information about the scene than detection does, so it is valuable to do. To

perform segmentation in Fishlabeler, click the Label Mode button in the upper right
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until it says Segmentation, then clicking on the displayed frame will produce labels for

the affected pixels, contingent on the current brush size and instance ID. An example

is shown in appendix A.7.2. In the interest of full disclosure, segmentation annotations

are extremely tedious to label, and despite having implemented the functionality for it

in the application, I gave up on segmentation labeling after a few dozen frames.

A.7.3 Detection

Detection is the process of enclosing a target object within a (axis-aligned) rectangle,

such that the entirety of the object is contained within the rectangle, and as few pixels

that don’t belong to the target object are included as possible. This is the weakest form

of localization information, but is fast to draw and to process, and enables detection

and tracking algorithms (which form the basis of many video analysis algorithms). The

rectangle is commonly referred to as a bounding box. To draw detection annotations

in Fishlabeler, ensure the annotation mode is not set to Segmentation, and then draw

the bounding box by first clicking on the frame for the upper-left corner of the bounding

box, dragging the mouse to the bottom right corner, then releasing the button. The

bounding box will then be shown on the frame. Clicking on an existing bounding box

outline and dragging it elsewhere will translate the bounding box according to the mouse

movement rather than creating a new bounding box. An example labeled frame is shown

in appendix A.7.3.

A.7.4 Interpolation

The aim of the interpolation module is to automate some of the tedious detection labels;

currently, only linear interpolation is implemented, so it works best when the apparent

fish motion is linear. Note that since the camera is also moving (in a non-linear fashion),

linearity assumptions are limited, and the apparent fish size is contingent on where the

fish is in the scene, and varies heavily based on the distance of the fish from the camera

(if it swims closer to the camera, its apparent size increases). Thus, it is not a good idea

to rely solely on interpolation, as it will often be inaccurate. However, it can give good

results in certain situations (constant, linear motion), so it is still of use. I’ve found it

to be best applied over relatively short time-scales, and/or when the fish is stationary
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and the boat is moving at a relatively constant rate.

To use the interpolation, the starting and ending bounding boxes have to be provided,

and the interpolation logic will ’guess’ the bounding boxes in between. To provide the

starting (LHS) and ending (RHS) boxes, check the corresponding checkbox in the lower-

right side of the window, then draw the box on the frame. This will register that

annotation to either the LHS or RHS, based on which checkbox was chosen. Once a box

has been registered, the frame index that the box is at, and the instance ID of the box

will be displayed. Clicking the Go to frame button will change the current frame to the

associated bounding boxes’ frame. Once the LHS and RHS boxes have been chosen, click

the interpolate button to compute the intervening frame’s bounding boxes. Navigating

to these frames should display them, and the user can adjust the boxes accordingly (either

by translating the boxes by dragging them by their frame, or by undoing them (using

ctrl + z, see subsection A.7.5 for hotkey details) and re-drawing, if necessary. The LHS

and RHS instance IDs should match, since it is assumed that they refer to the same fish

(and indeed, they should).

A.7.5 Hotkeys

• n: next frame, according to the current frame move value (hold the n-key down

to move quickly)

• p: previous frame, according to the current frame move value (hold the p-key

down to move quickly)

• ctrl + z: undo the last bounding box or pixel-label on the current frame. This

can be used to erase existing annotations (e.g. hold down ctrl, then press z to

remove detections / pixel labels)

• ctrl + r: redo the last bounding box or pixel-label on the current frame that was

undone. This can be used to restore an undo operation; i.e. if you erroneously

erased an existing annotations with ctrl + z, then ctrl + r will restore it. Once

you navigate to a different frame, the re-do history will be lost however.

• f : toggle the frame display mode; either full-sized (which generally requires scrolling),
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or zoomed-to-fit (no scrolling required, but the image is smaller to fit the screen).
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Figure A.2: Before and after screenshots of a segmentation. Note that the upper-right
button is in Segmentation mode. The color of the segment corresponds to the instance
ID (in this case, ID 0). The goal in creating a segmentation annotation is to cover the
pixels belonging to the fish as accurately as possible.
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Figure A.3: Screenshot of the Fishlabeler UI with three fish detections annotated. The
different colored bounding boxes correspond to different instance IDs. The bounding
boxes should cover the entirety of the fish, but be as tight as possible to the fish (i.e.
not have extraneous non-fish background pixels with in the bounding box).
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A.8 After Running the FishLabeler Application

The metadata results will be in the output folder based on how the docker command

was run. There will be 3 folders with the labeling results, Annotations, Detections,

Metadata for segmentation masks, detection bounding boxes, and text information re-

spectively. These are not uploaded anywhere automagically, so (unless you really enjoy

labeling), upload them somewhere before deleting anything. Currently, the defacto loca-

tion is at box.com under the NRT/Labeling Metadata folder. After labeling a sequence,

you can safely delete the video frames that get extracted to your system, as they can

always be regenerated from the video file (and after you’ve uploaded the metadata, you

can delete those folders too).




	Introduction
	Historical Perspective
	Deep Learning
	Computer Vision
	Applied Computer Vision

	Video Analysis

	ReGuide: Guidance Windows for Long-term Appearance Models in Video Object Instance Segmentation
	Introduction
	Motivation
	The Guidance Window

	Related Works
	Guide Window
	Feature Extraction
	Guide Window
	Mask Prediction
	Bounding Box Tracker

	Implementation
	Offline Training
	Online Fine-Tuning
	Dimensionality

	Experiment Results
	Baseline Architecture
	DAVIS

	Discussion
	Limitations

	Conclusion

	NHFish: Tracking-by-Detection Dataset of Oregon Beam Trawl Video Data
	Introduction
	NH-Line Beam Trawl Videos
	Machine Learning and Ecological Inference

	Datasets and Machine Learning
	Technical Impacts of Datasets
	Institutional Impacts of Datasets

	Related Works
	Applied Computer Vision
	Detection

	NHFish Dataset
	Dataset Technical Aspects
	Datasets and Applied Works

	Potential Ecological Inferences in Fisheries Science
	Fishery Stock Assessment
	Evaluation Metrics

	Results and Discussion
	Conclusion

	Conclusion
	Bibliography
	Appendices
	NRT FishLabeler

