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 Advancing the understanding of natural resource management is an important 

step in mitigating the effects of human activity on the environment, and ensuring 

efficient outcomes for many sectors of the economy. As humanity’s role in the natural 

world becomes better understood, the importance of interdisciplinary modeling has 

grown in leaps and bounds. This is evidenced by the rise of fields such as 

bioeconomics, the economics of climate change, and the increasing influence of 

“societal dimensions” departments in universities around the country. It is becoming 

evident that a holistic understanding of feedbacks between the natural and economic 

realms is crucial for developing the research agenda of tomorrow. In addition, 

advances in computing resources have made research questions previously restricted 

by their computational complexity viable for analysis. Both of these developments 

bode well for interdisciplinary modeling; however, much of these developments 

remain unrealized in the literature. For instance, the continued utilization of large 

scale earth system models such as the Community Earth System Model (CESM) for 

impact studies (e.g. Law et al., 2018) has highlighted the importance of representing 

the social systems accurately within the model. Despite this, the use of natural 

resource models that are consistent with economic theory are nowhere to be found 

amongst the many modules of CESM, or other similar models. Instead, economic 



 

 

models are used to inform the input datasets of these models, which is rigorous but 

unsatisfying once one realizes that this approach completely fails to capture the 

feedback between the natural and social systems that intuition tells us is there. The 

lack of such modeling also precludes running sophisticated policy experiments within 

CESM and her sister models.  

These policy experiments, with their robust representations of physical 

processes, can be better positioned to examine the effect of these policies on a variety 

of outcomes, both environmental and economic than what currently exists. This is in 

addition to the fact that there are still many aspects of policy design that are 

unexplored in natural resource management. The details about the design of 

environmental policies, especially those targeting the private provision of ecosystem 

benefits, must be fine tuned to achieve an optimal outcome. One particular aspect of 

policy design that is understudied in the literature is that of the duration of contracts 

for ecosystem service programs. Many policies currently in practice base the duration 

of the contract on environmental goals of the policy. However, economic incentives 

could change the impacts of the policy should the duration be changed.  

The efficient design of policies depends on the feedbacks between social and 

natural systems. Though models such as CESM can address uncertainties about future 

effects of climate change and disturbance, it is a deterministic model of natural 

resources. In reality, natural resources effectively behave in a stochastic manner. This 

results in management strategies that require substantial investments in monitoring 

and learning, as good information is crucial for optimal management. This has led to 

many studies examining adaptive management of natural resources, and learning in 

systems such as fisheries (Kling et al. 2017), livestock management (MacLachlan et 

al., 2017), and regulatory enforcement (White, 2005). There is a substantial gap in 

what the literature addresses. Previous studies ignore the role of price stochasticity, as 

well as stochasticity in other observable variables, in determining the optimal learning 

strategy of natural resource owners. This is a more generalized description of natural 

resource management that has implications far outside of private natural resource 

management.  



 

 

This dissertation advances the the design and application of modeling 

techniques in natural resource management, as well as theory behind these models. In 

what follows, we analyze the feedback between natural and social systems in forestry. 

We show that the forest sector adapts to disturbance events such as wildfire or pine 

beetle outbreaks through shifting harvests to different areas. This model has the 

potential to improve the representation of social systems within large scale earth 

system models, and to allow for economic policy experiments on a larger scale than 

what has been previously observed in the literature. We explore the economics of 

contract duration within a forest-based carbon offset program, which is the first time 

such a question has been addressed through modeling. It also contributes to current 

discussions of implementing forest-based carbon offsets in Oregon’s carbon 

abatement plan. This dissertation achieves an advancement of the economics of 

information in partially observable resource systems by solving a model of forest 

management where the volume of timber is observed imperfectly, and observations 

are costly and noisy.  

In Chapter 1, I introduce the common themes of the dissertation, and provide 

an overview of what is to follow. The natural resource system this work addresses is 

primarily forestry. In particular, it focuses on the issues surrounding ecosystem 

service provision and management within private forestry.  

In Chapter 2, I construct a partial equilibrium (PE) model of the forest sector 

in the western United States. The model is spatially explicit, and overcomes issues 

involving its solve time by utilizing a novel algorithm that simulates an auction 

between agents in the model. Furthermore, the model can be coupled to CESM in 

order to obtain a more realistic representation of biological processes and climate 

change relative to what is available to forest sector models currently. The realism of 

the model is aided by the incorporation of numerous datasets such as land ownership 

and transportation costs. The model is unique in its scale, and is solvable over a larger 

range and with a higher resolution than other forest sector models. It also has a 

realistic depiction of the ecology of forestry through its ability to couple to CESM. 

This model is particularly useful for modeling the feedback between the 

natural system of the forest and economic system of the forest sector. Specifically, 



 

 

it’s beneficial for understanding the impact of forest disturbances on the economy, 

and how that shapes future disturbance patterns. The results suggest that in the short 

run, the spatial distribution of harvests changes substantially, with the difference in 

overall harvests growing over time due to the effects the disturbances have on mill 

capacity and profitability. We also utilize our model for understanding the impacts of 

policies specifically addressing disturbance vulnerability, as well as the impacts of 

state-level policies and how those may affect the surrounding region. 

In Chapter 3, I utilize a regional forest sector model of western Oregon in 

order to analyze the effects of changing the duration of forest-based carbon offset 

contracts. The model is a spatially explicit model that tracks both sawtimber and pulp 

production, as well as price levels and mill capacities. It keeps track of the amount of 

timber being exported as well, and average management decisions such as rotation 

lengths. The model is applied to scenarios that vary in the duration of the contract as 

well as the price of the carbon, which is fixed during the model run. 

Whereas previous studies have examined the effects of these contracts on the 

Oregon forest sector (Latta et al., 2011), no study has yet addressed the role of 

contract duration on enrollment and program performance. We find that market forces 

stabilize the amount of carbon being removed from the landscape every time step. 

This analysis is useful in serving as a critique of current approaching to contracting 

for forest-based carbon offset programs such as the one in California by showing that 

alternative contract lengths are capable of higher levels of sequestration over given 

time periods.  

In Chapter 4, I construct a model of forest management under state 

uncertainty that optimizes both the timing of harvest as well as measurement of the 

forest resource, known as “inventory”. Forest resources, along with practically every 

other natural resource, exhibit state uncertainty – uncertainty about the present state 

of the resource. Oftentimes natural resources are only observed when investments are 

made in measurement of the resource. Furthermore, a perfect measurement of the 

resource is oftentimes infeasible, either for reasons having to do with the biology of 

the resource or because it is cost prohibitive. In this chapter I solve the forest 

manager’s problem under state uncertainty as a continuous-state Mixed Observability 



 

 

Markov Decision Process (MOMDP). I find that the optimal timing of learning is 

influenced not just by price level, but surprisingly by price stochasticity as well.  

Chapter 4’s innovation is that it presents the first continuous state model of 

natural resource management under state uncertainty that includes price stochasticity. 

For a majority of natural resource management problems, price stochasticity plays an 

important role, and the results from this project allow us to understand how it 

influences not just harvest timing, but the optimal investments in measurement and 

learning. We find that learning is valuable. Using an empirical model of forest growth 

that captures its natural stochasticity, we are able to calculate the costs associated 

with state uncertainty when inventory is not an option. We find that conducting costly 

yet accurate inventories in an optimal way greatly reduces the burden of state 

uncertainty, and increases the value of the stand through improved management. This 

chapter also presents the first model of forest inventory that is grounded in 

microeconomic theory.  

The expansion of interdisciplinary research as well as the availability of new 

computational techniques in the field of economics have resulted in opportunities for 

researchers looking to address difficult problems in natural resource economics. My 

dissertation is a combination of methodological advances, as well as inquiries into 

potential policy applications. I hope that what follows from here will aid both future 

researchers interested in similar topics, as well as policymakers with questions about 

the design of schemes targeting private forest landowners. The extensions and 

limitations of all of these studies will be discussed as they are presented. Because of 

the methodological nature of much of this dissertation’s content, the possibility exists 

to greatly expand on what has been done here in future studies.  
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1.  Introduction 

Understanding the interactions between society and the environment is a crucial 

step in crafting policies that manage natural resources efficiently and effectively.  

There are countless examples of natural resource systems that are characterized by 

heavy societal influence, where understanding of just one of these systems alone is 

inadequate. More and more, what is needed is an interdisciplinary approach in which 

models can effectively represent the feedback between the ecological and economic 

aspects of the system. Furthermore, as the computational resources that scientists 

have access to grows, we are able to incorporate more nuance into models of resource 

management. For instance, computational advances have made studying aspects such 

as state uncertainty achievable only recently for models of natural resource 

management (LaRivierre et al., 2017). This dissertation advances the theory and 

application of modeling natural resource management under uncertainty. This 

provides new models and theoretical advances that will allow future researchers to 

conduct nuanced policy experiments within large scale climate simulations, study the 

effect of localized policies on an entire region, and to optimally model information 

investments for privately managed natural resources. For policy makers, this 

dissertation advances topics of policy design, namely contract duration, for forest-

based carbon offsets, and reports on the expected effects of subsidies aimed at 

reducing forest disturbance in the western United States.  

The studies presented in this collection focus on private forest management, 

though many of the theoretical advances and research questions can be generalized to 

other systems as well. Private forest management is an important aspect of 

environmental policy in the United States and around the world, especially from the 

perspective of conservation. In the context of carbon, forests represent a massive 

carbon stock. According to Pan et al. (2011), the world’s forests sequester an 

estimated 2 petagrams of carbon annually. Furthermore, forests provide benefits such 

as biodiversity (Drechsler et al., 2017), and recreation (Bestard and Font, 2010), and 

countless forest products (e.g. White et al., 2013). Modeling forest management has a 

long and detailed history within the natural resource management literature, and 

features famous theoretical contributions (Faustmann, 1849) as well as many 
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modeling applications (e.g. Latta et al., 2013). However, there are still aspects of 

modeling this resource (and natural resources in general) that require advancement if 

we are to effectively tackle the problems of the future.  

In the first essay (Chapter 2), I examine methods of modeling the feedback 

between the forest sector, and forest ecology. I present a spatially explicit, partial 

equilibrium model of the forest sector that can be coupled to large-scale land process 

models, and used to estimate the economic effects of ecological disturbance. In 

particular, the model is built to conduct analysis within the Community Land Model 

(CLM), and future work will involve the full coupling of the two models. Presently, 

the model I construct resolves limitations of previous modeling in that it allows me to 

address the effects of forest disturbance on forest landscapes. The model presented in 

essay 1 extends over a large spatial range: the western United States. It is solved at a 

high resolution, allowing for localized policy experiments to be conducted within the 

model. The model overcomes the significant computational burden associated with 

solving a problem of its size through a novel price-search algorithm.  

We use the model presented in Essay 1 in order to investigate two different 

scenarios. The first is the region-level effects of localized forest disturbance. We 

examine how timber harvest patterns change based on the presence of forest 

disturbance. We test whether the change in harvest is localized around the disturbance 

event, or whether, through market forces, the harvest patterns change throughout the 

region, and if so to what degree. Our modeling results suggest that the market does 

indeed spread the effects of disturbance around the landscape by affecting timber 

removals in other parts of the region by a substantial degree. The second question we 

focus on concerns the effects of a policy geared at reducing the risk of disturbance on 

vulnerable landscapes. We implement subsidies of various size and scope within our 

model, and observe what the overall effects are of a regional level subsidy, as well as 

whether localized subsidies have effects outside of the region. We find that the 

presence of subsidies results in fewer harvests that are larger in size. Furthermore, we 

observe that the effects of subsidizing harvests in Oregon have substantial impacts in 

other regions as well.  
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 In essay 2 (Chapter 3) I address the design of forest-based carbon offset 

contracts, specifically focusing on the role that the duration of the contract plays in 

program performance. As more states continue to adopt market approaches for 

limiting CO2 emissions, the optimal design of offset provisions within those 

approaches is growing in importance. Notably, the California carbon market allows 

for forest-based carbon offset contracts that allow power producers to pay for 

sequestration on forestland instead of abating the pollution themselves. On the forest 

manager’s side, enrollment in such a program is required to last for one hundred years 

in order to ensure that the carbon is sequestered permanently. However, very little is 

known about the effect of changing the duration of the enrollment period. Very few 

studies (e.g. Juutinen et al., 2014) address contract duration for ecosystem service 

programs such as forest-based carbon offsets even with a theoretical approach, let 

alone with a modeling approach. The study presented here uses a partial equilibrium 

model of the forest sector of western Oregon to examine the effects of forest-based 

carbon offset contracts of different lengths. We additionally test whether the price of 

carbon influences the effects of contract duration. We find that carbon prices 

influence the role of contract duration in program performance to a large extent. 

Though we find limited differences between shorter contracts and enrollment, we find 

large differences between carbon sequestration levels and contract length, with some 

shorter contracts resulting in less carbon on the landscape after 100 years than a 

scenario in which there was no policy at all. Interestingly, we find that for shorter 

contracts and lower carbon prices, the presence of a maintenance period in which the 

manager is not paid for the carbon they sequester but is charged for the carbon that 

leaves their landscape, works to smooth out price volatility seen in other contract 

specifications and in some cases can outperform other contracts over a limited time 

range.  

In the third and final essay (Chapter 4), I examine the role of state uncertainty in 

private forest management, as well as the role of price volatility on the decision of a 

private forest manager to invest in information about their resource. We model forest 

management as a Mixed Observability Markov Decision Process (MOMDP), in 

which the timber volume is only partially observable for the forest manager. In fact, 
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the forest manager cannot observe the resource unless she invests in conducting an 

inventory, which provides a costly and imperfect observation of the timber volume in 

the stand. Furthermore, timber prices are volatile, and though they are perfectly 

observable in the present period, uncertainty about future values affects the optimal 

timing of forest inventory, as well as timber harvesting. This study expands on 

previous work in this field (e.g. Kling et al., 2017; MacLachlan et al., 2016), by 

examining how price stochasticity influences optimal investment in monitoring 

behavior. Among other findings, we uncover that price stochasticity plays a 

substantial role in the optimal timing of inventories. We also expand on previous 

papers (e.g. Plantinga 1998) by demonstrating that state uncertainty influences the 

timing of harvest. Through calculating the differences in value between stands that 

invest in inventory and those that cannot, we find that inventory improves the value 

of the forest stand in the presence of state uncertainty. 

Taken together, the three essays presented in this work advance our ability to 

understand the interactions between ecological and economic systems. It allows us to 

conduct policy experiments, as well as understand the impacts of forest disturbance to 

a much greater extent. Furthermore, this work explores previously untouched areas of 

forest resources research, such as modeling the effects of contract duration on carbon 

sequestration, or the role of price stochasticity in inventory investments for private 

landowners. The results from this study will be used in the future to inform additional 

modeling efforts, as well as conduct experiments to inform policy on ecosystem 

service provision in forest landscapes.  
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2. A Spatially Explicit Model of Timber Harvest for the Western United States 
with Applications 

  

2.1. Introduction 
 

Forests in the western United States play a large role in the environmental and 

economic health of the region. In addition to providing considerable economic 

benefits, including the supply of wood products, forests also sequester significant 

amounts of carbon from the atmosphere, and are sources of recreation and critical 

habitat for many species. These ecosystems are subject to various disturbances, 

including harvests, wildfire, and pest outbreaks. In the western United States, forest 

disturbances such as wildfire can cause substantial damages to property and human 

health (Westerling & Bryant, 2008). Forest disturbances also impact the economic 

well being of industries and communities that rely on forest resources. Due to the 

inherent feedback between the forest ecosystem and forest sector, a disturbance in 

one area can translate to disturbances in other areas through market forces. For 

instance, if supply is reduced in one area, timber will be supplied by the next most 

profitable area. However, our understanding of the role of this adaptive behavior is 

unaccounted for in many ecological modeling exercises. 

Past modeling efforts that focus on the ecological representation of forest growth 

(e.g. Hudiburg et al., 2013) often lack detailed representations of the forest sector, 

including a representation of forest product markets. Forest product pools are 

important because they differentiate the rate at which CO2 is released into the 

atmosphere. Furthermore, economic variations can cause disproportionate impacts to 

some products, while leaving others relatively unaffected. Shifting demand for wood 

products is also a crucial determinant of where harvest occurs as well as the intensity 

of that harvest. However, this feedback is unaccounted for in many models, especially 

the large-scale climate simulations used regularly to evaluate the impacts of climate 

change on various natural systems. 

A forest sector model with the ability to link to large scale climate simulations can 

improve the representation of forest management within those models. The biological 

and social systems involved in the forest sector are naturally coupled. Current 
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approaches to modeling forest management within climate simulations and land 

system models generally consist of calculating estimates and projections of country-

level timber harvests, and then downscaling that to the grid cell level. Datasets such 

as those found in Hurtt et al. (2006) can limit the resolution of the modeling results. 

This work provides a way to calculate better resolution datasets, which will improve 

the resolution of the modeling effort as a whole. 

 A modeler using these datasets performing analysis at a much higher resolution 

will still find their results limited by the poorer resolution of the harvest data. A 

contribution of this work is the development of a model that calculates timber 

harvests for conceivably any model resolution, which alleviates the limitations of 

previous datasets.  

Furthermore, our forest sector model is capable of running in conjunction with the 

Community Land Model (CLM), allowing it to respond to disturbances and other 

biological phenomena in CLM in a way that prescribed harvests cannot. Climate 

change and its effects on forest ecosystems incentivize resource managers to change 

their management strategies as conditions shift. A changing climate will change the 

productivity of forestland in the US (Pastor and Post, 1988ß). This will then affect the 

location and intensity of harvests. Because our forest sector model is capable of 

coupling to CLM, it can more accurately capture the effects of climate change on the 

forest sector. Additionally, the harvest pattern that CLM has access to will now be 

adaptive to changes in climate and forest productivity.  

Another benefit of our forest sector model is that provides the ability to conduct 

experiments within CLM. Previous policy experiments in CLM often come in the 

form of differentiated input datasets (e.g. Law et al., 2018) on land management. Our 

forest sector model, because of its partial equilibrium set up, allows for more 

sophisticated policies to be implemented within the model, for instance taxes or 

subsidies on timber removal. This improves the economic sophistication of the 

experiments that CLM is capable of. Establishing a coherent economic framework 

within the model itself opens CLM up to a broader range of academics who may now 

find it useful. 
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The development of this model is motivated by a number of research 

questions that are relevant to the economics of forest mortality in the western United 

States. We first want to know what the economic impacts of disturbance events are to 

the forest sector. Previous studies have examined economic impacts of wildfires (e.g. 

Kochi et al., 2010), and pine beetle outbreaks (e.g. Price et al., 2010), however there 

is little focus on impacts to the forest products sector itself. Extended exposure to 

these sorts of disturbances will have economic impacts that our model will be able to 

capture.  

We are also interested in understanding the effect of forest disturbance and 

climate change on the pattern of timber harvests. The economics of forest 

management play a significant role in determining the ecological impacts of harvest 

(Van Kooten et al., 1995). The forest sector model presented in this paper allows for 

the investigation of this relationship. Understanding the roles and effects of natural 

processes is important, but a major aspect of our model is the ability to conduct 

detailed and theoretically consistent policy experiments. We want to know about the 

impacts of policies targeting vulnerable areas. What is a sufficient policy to reduce 

the risk, and what are the impacts of enacting the policy in the first place? We can 

utilize the novel aspects of our model to address these questions.  

The impact of climate change on forests and the wood products industry has been 

a subject of intense research (e.g. Sohngen et al., 2001). Land use change out of 

forestry has been linked to large environmental impacts (Lubowski et al., 2006). 

Furthermore, it is known that forest management can be influenced by a changing 

climate (Spittlehouse & Stewart 2004). This feedback loop is a difficult thing to 

endogenize within a model, as modeling both systems simultaneously incurs a 

massive computational cost. Despite the obstacles, there is a significant benefit to 

performing such an analysis. For instance, it becomes possible to investigate the 

impacts of future climate change on forestry at a regional scale, as well as adaptive 

economic behavior. It can also clarify ways in which human activities can manipulate 

environmental phenomena, such as wildfire frequency and pest outbreaks.  

As part of a project investigating forest mortality in the western United States, we 

have developed an economically motivated, spatially explicit model of timber 
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harvesting for the western United States within CLM (Oleson et al. 2013). The 

community land model is a large-scale environmental model of land processes used 

as part of Community Earth System Model (CESM) (Hurrell et al. 2013). The Timber 

Harvest Model (THM) presented here solves for the market equilibrium harvest 

pattern, and is grounded in economic theory. This project is novel in that it represents 

a major advance in coupling a theoretically consistent social science model to a large-

scale environmental model, which allows for a more detailed study of the feedback 

between the two systems that was not possible before. Furthermore, the model can 

facilitate detailed policy experiments within CLM.  

This chapter will largely address the methodology behind the THM, as well as the 

theory that motivates that methodology. Two case studies are used to demonstrate the 

model. The first is an investigation into the effects of pine beetle outbreaks, and the 

second is the implementation of a localized policy aimed at alleviating the risk of 

natural forest disturbance. The biology of forest growth is modeled using a 

deterministic model found in many other bioeconomic applications (e.g. Clark et al., 

1973) instead of CLM. In the next section, I discuss the details behind the 

methodology of the THM. Afterwards, I explore the input datasets required for the 

model, and discuss how they help improve the quality of the model solution. 

Afterwards, I briefly discuss the parameterization process, and then discuss the policy 

apparatus in the model, and what kinds of policies can be implemented in the THM. I 

then proceed to set up and explain the policy experiment I perform in the THM, 

demonstrate the results, and conclude with what we learned about the policy, the 

harvest model, and potential extensions of the project. 

 

2.2. Methodology 

 The goal of the THM is to solve for the equilibrium harvest pattern, which 

includes the location and quantity of harvests on the landscape. This is consistent with 

other forest sector models (Latta et al., 2013) and represents the level of harvest one 

would expect to see on the landscape from private forest managers. This approach is 

also useful for establishing harvest on public lands, as much of that timber is 

processed by mills and used by agents in the forest sector. We acknowledge that there 
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may be factors that prevent the forest sector from reaching a state of market 

equilibrium. Markets are often in a state of adjustment. The market equilibrium is an 

indication of where the future of the market will trend towards given no other factors 

change. 

We assume that the influences of these factors cancel one another out, or are 

negligible on the scale we consider. One potential method of calculating the 

equilibrium harvest level is to search over the quantity space. This method includes 

testing different locations and harvest levels until one such combination balances 

supply and demand better than all the others. Given the scale of the model, this would 

require an extensive search or computationally expensive solution procedure. Such a 

procedure may be feasible for smaller models, but for a model that covers a wide 

region at a high resolution, it is infeasible with currently available computational 

resources and solution methods. Instead, we search over price space, which greatly 

reduces the number of variables that require optimization. Thus, the goal of our 

algorithm is to calculate the set of mill-level timber prices and market-level output 

prices that result in the amount of timber and output demanded matching the amount 

supplied. The model solves on an annual time step.  

 In order to achieve an equilibrium level of harvest, supply and demand must 

be matched in all markets associated with timber harvest. We therefore need to 

represent the forest sector itself in the model in a way that allows us to infer the 

amount of product demanded. We construct a model of the forest sector that consists 

of three different types of transactions. The first transactions are between timber plot 

owners and mills, wherein the mills purchase timber from the plots. The second is 

between mills and other mills, who trade intermediate goods with one another. Wood 

chips are a byproduct of production for many wood products (e.g. lumber), and can 

also be used as an input for other products (e.g. paper products). Thus, mills will trade 

chips instead of harvesting timber if it is cheaper. Finally, we represent transactions 

between mills and output markets. The output market is assumed to be a regional 

level market, having no specific location or set of locations (unlike the plots and 

mills). The way these three markets are represented in the THM are as a set of nested 

markets, each with their own mathematical representations. The algorithm we 
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implement (which will be discussed later in the section) solves each market 

iteratively. The algorithm relies on finding the equilibrium price level, which in turn 

depends on each level of the market’s response to price levels and timber supply.  

 The supply of timber is determined by either the Community Land Model 

(CLM), or if the THM is being run independently from CLM, a set of biomass growth 

equations that are derived empirically. More details about CLM can be found in the 

appendix. The study region – which spans across the western United States – is split 

into grid cells that are 4km x 4km (16km2). The volume of timber is tracked at the 

grid cell level. However, the representation of timber in the model is limited in that it 

does not have any age structure. This is a substantial difference from many other 

forest sector models. There are 14 different species represented in the model, called 

Plant Function Types (PFTs) that are tracked by CLM. In cases where we run the 

model uncoupled from CLM, our empirical growth models still follow CLM’s lead, 

and track the same 14 PFTs. The list of these can be found in Table 2.1. The 

empirical growth functions are derived from tables in Smith et al. (2006) that report 

the volume of timber at regular intervals for a representative stand, as well as an 

additional growth table for Larch (Stage et al., 1988). For the PFTs for which no 

reliable data could be found, an average of other PFT growth functions were used. 

The growth functions used follow a Beverton-Holt form (Beverton and Holt, 1957), 

the functional form of which is reported in Equation 2.1.  

 

𝑋"#$ = 𝑋"
𝑟

1 + 𝑟 − 1
𝐾 𝑋"

 

 

In Equation 2.1, 𝑋"#$ and 𝑋" are the next period’s and current period’s timber 

volume, respectively. The parameters 𝑟 and 𝐾 are the intrinsic growth rate of the grid 

cell and intrinsic capacity of the grid cell, respectively. The parameters 𝑟 and 𝐾 

require parameterization for each grid cell. After we attain a growth function for each 

PFT, we calculate growth functions that are specific to each grid cell. We combine 

each PFT specific growth function with data on PFT prevalence at the grid cell level 

(2.1) 
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to compute an averaged growth function for each grid cell in our study region. An 

example growth function from a grid cell in northern Oregon is shown in Figure 2.1. 

 

 

Figure 2.1: Example of a Beverton-Holt growth function for a grid cell in Oregon 
 

Each grid cell has a potential timber supply that is at least as large as the amount 

of volume on the grid cell, multiplied by the proportion of that grid cell that is 

privately owned. Additionally, some of the timber on public land can be made 

available. The actual amount that the grid cell supplies depends on the prices that 

mills offer for the timber, along with the distance of the grid cell from any mill, and 

the profit function of the grid cell (including harvest costs).  

We assume that each grid cell that is designated as private land is managed by a 

profit maximizing agent. The agent obtains revenue from selling timber to mills, and 

costs through harvest. This representation is slightly different from other models of 

forest management, where oftentimes the mills themselves pay for the rights to 

harvest timber (Leffler and Rucker, 1991). It is important to note that the net price of 

timber remains unchanged between these approaches, meaning that the solution to our 
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problem is robust to this assumption. It is well documented that harvesting costs 

decline with the intensity of the harvest (Kluender et al., 1998). However, this latter 

concern is addressed by the fact that within a 16km2 grid cell, there are a variety of 

different parcels from which the agent can harvest. Though within each parcel, the 

costs of harvest decline with intensity, the agent will naturally harvest the most 

accessible and cheapest parcels first. In this way, the cheapest parcels will be 

harvested before the most expensive, resulting in an upward sloping timber supply 

curve. We model the forest managing agent’s profit maximization problem in 

Equation 2.2 

 

max
"
		 𝑃"𝑡 − 𝛾𝑡2 

 

Where 𝑃" is the per unit price of timber that the mill is paying, and 𝑡 is the volume 

of timber sold by the plot. The parameter 𝛾 is scaling parameter for harvest cost, and 

𝛽 is an exponential parameter. The solution to the profit maximization problem in 

Equation 2.2 yields the supply curve reported below in Equation 2.3 

 

𝑡∗ =
𝑃"
𝛾𝛽

$
25$

 

 

The functional form we obtain in Equation (3) is important because it is 

increasing in 𝑃", contingent on 𝛽 > 1 and 𝛾 > 0. Equation (3) is monotonically 

increasing in prices, convex, and continuous. Because of the specification we have 

selected for the profit maximization problem (and thus supply curve), we are required 

to solve for two parameters of our supply function. These include the two parameters 

of the cost function shown in Equations 2.2 and 2.3. We simplify our representation 

by assuming that forest managers all have access to the same harvesting technology, 

which results in the same cost function. Heterogeneity in the timber supply enters 

through the plot’s distance from any given mill. We parameterized the supply curve 

such that it recreates historically observed levels of harvest in the region. Using the 

Timber Products Output (TPO) (USDA Forest Service, 2012), we parameterized 

(2.2) 

(2.3) 
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Equation 2.3 such that the study region would produce the highest and lowest harvest 

levels seen in the TPO reports given a range of prices observed in test runs of the 

harvest module. We utilized a non-linear fit routine to optimize these parameters.  A 

more detailed description can be found in Section 2.4. The prices that are plugged 

into Equation 2.3 are those that are offered by the mills, adjusted for the cost of 

transportation between the plot and the mill.   

Each mill iterates through different prices in a guided fashion until they receive 

the amount of timber that they demand. This requires a representation of mill-level 

timber demand. One option that was explored previously was to derive the timber 

demand function from the mill’s profit maximization problem. Mill production is 

represented in a variety of different ways throughout the forest sector modeling 

literature. Oftentimes, production is represented as a fixed ratio that converts timber 

into product, and the rest into byproduct residue (such as chips). However, this 

method prevents us from deriving a downward sloping demand curve for timber 

demand, as the cost function in representations found elsewhere in the literature 

generally do not have the proper qualities to result in downward sloping timber 

demand. In order to simultaneously keep consistent with the literature and utilize 

downward sloping timber demand, we adopt the ratio approach for determining 

output, but utilize empirically derived timber demand functions estimated in the 

literature from Guerrero Ochoa (2012) that represent relationships between price and 

mill level timber demand.  

Each mill is constrained in the quantity they can produce by their capacity. These 

capacities are obtained through data on capacities from 2009 (Spelter et al., 2009) as 

well as 2014 (Latta et al., 2017). It is very common for mills to change capacities year 

after year in response to economic forces the mill faces. Our model incorporates 

capacity changes as a function of the mill’s profitability. At every time step, we 

assume there a certain percentage of the mill’s capacity that decays, which is 

consistent with the way other forest sector models treat capacity (e.g. Latta et al., 

2017). Mills with negative profitability cannot pay to recover this loss; however, mills 

with positive profitability can pay a proportion of their profits to recover it. The cost 

of recovery is a fixed per-unit capacity cost. An intuitive way to consider these costs 
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is as that of maintenance. This representation is rooted in the realistic assumption that 

larger mills must pay more for maintenance costs than smaller mills.  

After all maintenance costs are paid by the mills, the new capacity is then 

distributed amongst the profitable mills. The level of new capacity is first calculated 

on a per-product basis across the whole region based on the increase in GDP from the 

Shared Socioeconomic Pathway (SSP) data, as well as income elasticities derived 

from previously estimated market demand curves. This gives us an estimate for how 

the demand for a given product will change, which we are able to use to calculate the 

magnitude of capacity change in our region. This calculated magnitude is then 

distributed across the profitable mills in proportion to the profit level, such that more 

profitable mills receive a higher proportion of the capacity than less profitable mills 

for a single product.  

The output market in the model is represented by a set of national level product 

demand curves for each product that is represented in the model. The demand curves 

are parameterized with both price and income elasticities. The price elasticities for the 

output markets are used in the price search algorithm, discussed later in this section, 

to estimate changes in price levels with respect to changes in the quantity of a product 

supplied. The income elasticities are used to shift the demand curves according to the 

growth in GDP per capita that are obtained from the SSP. The national level demand 

curves are disaggregated to the study region using a ratio of national product capacity 

levels and product capacity levels specific to the region (Latta et al., 2017).  

We utilize our model of the forest sector in the Western United States to solve for 

the equilibrium level of harvest (and production) using a price search algorithm. The 

choice of searching over price space versus quantity space is chosen because the 

number of price variables are limited by the number of mills, whereas the number of 

quantities are only limited by the number of grid cells, which are much larger in 

number. Furthermore, for any given set of prices, we can use our models of harvest 

costs, mill production, and output markets, to derive the quantity of timber supplied, 

and where it is supplied to.  

The functional forms of the demand and supply curves have been selected for 

several reasons. Importantly, supply curves that slope upward and downward sloping 
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demand are in keeping with commonly observed and well understood principles of 

economics. Furthermore, the supply and demand curves have mathematical properties 

that result in an equilibrium being possible. This is necessary for our solution 

approach, which is a price search algorithm across mill-level prices for timber and 

chips, as well as output prices. A description of the proof for the existence of 

equilibrium given the set of assumptions we have utilized in our model can be found 

in Arrow and Debreu (1957). 

The price search algorithm begins with an arbitrary guess of mill-level prices for 

both timber and chips, and output prices. We evaluate the quantity of timber supplied 

to the mills at that price level, and then check it against the amount demanded by the 

mills. If these do not match, we update the prices by taking a convex combination of 

the current price level, and the price that is implied by the amount of timber supplied. 

Because of the functional forms of the supply and demand curves in the model are 

well behaved, namely that supply is monotonically increasing in price and demand is 

monotonically declining in price, enough iterations of this convex combination will 

eventually yield an equilibrium price at which quantity supplied will be sufficiently 

close to quantity demanded. One iteration of the price search algorithm is visualized 

in Figure 2.2 Because of the functional forms, each iteration will be closer and closer 

to the true equilibrium price.  

  
Figure 2.2: A single iteration of the price search algorithm for a single mill. 

Timber 
Supply 
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This process is repeated until the amount of timber supplied by plots matches the 

level demanded by mills for each mill. Having a specific level of timber at each mill 

also implies a specific level of chip supply. Thus, the same type of calculation is 

performed for the intermediate goods market immediately following the timber 

market.  

Our model of the forest sector is naturally a nested model. Though we have the 

quantity of forest product demanded at a given price level, we do not know the 

quantity of product supplied until we have solved for the equilibrium in the input 

(timber) and intermediate goods (chips) markets. Because the demand for timber and 

chips is a function of output prices, the equilibrium price in the input and intermediate 

goods market depend on output prices, meaning every time the output price is 

updated, the equilibrium price levels for timber and chips must be recalculated. In the 

model, we first solve for the timber and input price equilibrium simultaneously. Using 

the level of output produced at that price level, we use the output market demand 

curves to check whether the supply of a given product matches the amount demanded 

at the current price level. Should it not, the output price is updated using a convex 

combination of current and implied price – similar to the mill price update – wherein 

the functional form of the market demand curve guarantees that the new price is 

closer to the equilibrium price. Because the timber demand is a function of the output 

price, once the output price is updated we repeat our iterations of the timber price 

loop. This whole process iterates until the output market, and thus the timber and 

intermediate goods market, are in equilibrium. Figure 2.3 visualizes this process.  

The result of solving the price search algorithm is a spatially explicit map of 

timber harvest, which contains both the locations of harvests as well as their 

intensities. Additionally, we obtain mill output, mill profitability, as well as the 

profitability of the forest land itself. If we have a map of initial biomass, we can solve 

the model for a year. 

 



 

 

17 

 

Figure 2.3: Schematic of the price search algorithm. Each market must clear in order 
for the algorithm to terminate. If a market clears, the algorithm moves on to the next 
market (green arrows). Should a market not clear, the price guesses for that market 
are adjusted and the algorithm starts back at the input market (red arrows).  

 

However, solving it for additional time steps requires a model of forest growth. That 

forest growth is modeled by CLM, but only during coupled runs. CLM is 

cumbersome for running multiple policy experiments, and so a simpler model of 

forest growth must be utilized when it becomes necessary to do many iterations of the 

THM across the same timespan. This simpler model is shown in Equation 1, and is a 

deterministic Markov model of forest growth. One drawback of this approach is that 

it does not include climate change, wildfires, beetles, or other disturbances in the 

same way that CLM does. Additional work on the uncoupled version of the model 

could potentially incorporate these factors through letting either the intrinsic growth 
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rate or the intrinsic capacity (or both) change with respect to climate variables, or 

disturbance-related variables.  

As time progresses in the model, we need a way of representing changes in the 

economic context of the model. These include variables such as population and GDP. 

These two factors have been demonstrated to be important drivers of forest product 

demand (Buongiorno et al., 2003), and ignoring their influence would significantly 

bias the model results. Our model incorporates national level GDP and population 

projections into the model by utilizing the Shared Socioeconomic Pathways (SSPs) 

developed by various research groups for use in climate change research. In 

particular, we utilize SSP5 (Kriegler et al., 2017) which corresponds to a scenario in 

which there is rampant CO2 emissions tied with steady economic growth. 

We combine these methods discussed above with data discussed in the following 

sector to simulate and project future harvest levels, and how they may be affected by 

climate change, forest disturbance, or targeted government policies.  

 

2.3. Data 

The THM incorporates data from a variety of sources to improve its 

representation of the forest sector. Some of these data are optional, while others are 

required to run the model. These include data on land ownership, mill location and 

capacity, and biological data on forest type and initial volumes. The section that 

follows will discuss and explore each dataset, as well as those that are needed for 

running experiments in the model. One of the most valuable outputs of the model is 

the grid cell level harvests, which in turn at least require data on biomass.  

The THM has two ways of modeling biomass growth through time, depending on 

whether the model is coupled to CLM or not. If the model is coupled to CLM, it will 

receive a new biomass level every time step that has been calculated within CLM. 

Taking the harvest of the previous year provided by the THM, CLM will grow the 

biomass in each grid cell conditional on harvests as well as other disturbances and 

natural factors that influence growth. More about the coupling procedure can be 

found in a subsequent section. If coupling to CLM is not available, the THM requires 

an initial condition and a set of growth functions, which are discussed earlier in the 
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methods section. The data used to parameterize the growth function mostly come 

from growth tables (Smith et al., 2006; Stage et al., 1988). When growth tables are 

unavailable, model output from CLM is used. If not enough observations are 

available from CLM, then a growth function is inferred by combining those that are 

available. The initial condition from biomass is provided by a CLM dataset based on 

estimated biomass levels from Berner at al. (2017). 

 

Figure 2.4: Input data on biomass used for the initial level of timber volume. 
 

Along with data on the initial state of the biomass and its associated growth 

functions, we also utilize data on the distribution of tree species. Within the model, 

the species group that a given tree belongs to is referred to as a Plant Functional Type 

(PFT). The set of PFTs in the model were selected due to their economic and 

ecological significance in the western United States. Synchronizing the PFTs in the 
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THM with CLM increases the value of the model output for researchers looking to 

utilize the THM with CLM.  

 

Table 2.1: List of Plant Functional Types in THM 

PFT 
Doug Fir 
Lodgepole Pine 
Ponderosa Pine 
Pinyin/Juniper 
Eng Spruce/Subalpine fir 
5-needle Pine 
Aspen/Hardwood 
Oak 
Hemlock/Cedar/Sitka 
Western Doug Fir 
Mixed Fir 
CA mixed con 
Redwood 
Larch 

 

 

The THM utilizes the PFT map by assigning a softwood ratio to each PFT. This 

then allows for the softwood ratio to be calculated for each grid cell. Knowing the 

softwood and hardwood prevalence in each grid cell is important for the economics of 

the model, as it constrains which mills the wood on a given grid cell can go to, and 

how much of it can be used by any given mill.  

Another important determinant of harvest level is ownership of the land. Harvest 

on private land occurs in a very different manner than harvest on public land, and 

ignoring that distinction would be problematic. In order to classify grid cells into 

either public or private categories, we make use of the protected areas database (US 

Geological Survey, 2016). On top of providing a means of sorting the private and 

public land, it also allows us to differentiate the public land by government agency, as 

well as at the National Forest level. This is important, as management differs greatly 

amongst public owners as well, with harvest allowed in some public forest whereas in 
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others it is not. This allows us to allow harvests on specific public lands, while 

preventing harvests on others.  

 

 

Figure 2.5: Private forested land in the western United States. This map is a 
combination of the ownership data from the Protected Areas Database and the initial 
biomass map in Figure 2.4 

 
Data on mill locations and capacities are collected from two datasets. These 

include data collected from Spelter (2009) as well as data from another forest sector 

model, LURA (Latta et al., 2018). Both of these datasets provide snapshots of mill 

locations and capacity levels at different periods of time. For use in the model, the 

data from Latta et al. (2018) is used as it is the most current dataset we have on the 

mills in the western US. However, the data from Spelter (2009) is useful for checking 

our model of capacity growth, discussed in the previous section. The data from Latta 

et al. (2018) allow us to utilize the location, capacity, and product type, of 421 mills 

across the western United States.  

 

= Private Land 
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     Figure 2.6:Locations of mills used in the THM 
 

The spatially explicit nature of the model, both the input data on mill locations as 

well as the spatial representation of grid cells on the landscape, allows for us to 

determine the transportation cost between the different agents in the model. It is well 

established that the costs of transportation are major determinants for where and how 

much timber is supplied to mills. In order to calculate the cost of transport, we utilize 

a proprietary software package called PC Miler (ALK Technologies, 2016) that 

converts the locations of mills and grid cells into transportation distances and driving 

times. We calculate distances and times between every mill and every grid cell, as 

well as every mill and every other mill. We assumed a constant per-gallon cost of 

gasoline and per-hour labor costs.  

There is also a considerable amount of data we utilize that pertains to the 

economic conditions of the forest sector in the western United States. This includes 

information on national-market level demand elasticities for forest products, such as 
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lumber, plywood, newsprint, and other goods. Furthermore, we incorporate 

projections of population and GDP using SSP5 (Kriegler et al., 2017). This projection 

assumes a rapid release of greenhouse gasses (GHGs) into the atmosphere due to 

economic expansion and limited mitigation of GHGs. These data are used to estimate 

the region-wide expansion of capacity. Price points for the market level demand 

curves are calculated from FAO data on production and production value (United 

Nations FAOSTAT, 2017).  

 

2.4. Parameterization Procedure 

For many components of the THM, data provided in previous studies is sufficient 

to capture the relationships among agents in the model. These include data on market 

demand curves, grid cell level ownership, and transportation costs. For several 

parameters in the model, the data are insufficient to accurately capture the 

relationships in the model in a way that is consistent with our representation. This 

includes the timber harvest cost function, growth functions, and mill production 

functions. In this section, we will detail the parameterization procedures required for 

setting up the model. 

Our approach includes a generalized representation of timber harvests. The 

production of timber is dictated by the biological dynamics of the problem. The costs, 

on the other hand, are a generalized representation of harvests across a grid cell. It is 

common to characterize within-plot harvest costs as declining in the intensity of the 

harvest (Kluender et al., 1998). Though we accept that this is certainly true at smaller 

scales, as it is cheaper per unit to fell large swaths of timber as opposed to selectively 

harvesting, on the scale of a whole grid cell, this is likely not be the case. A single 

grid cell contains many different plots of timber land that are more or less accessible, 

sloped, or otherwise difficult to reach. We assume that the forest manager chooses to 

harvest the cheapest and easiest-to-get-to timber first, followed by the next cheapest, 

and so on. Using this assumption, we can generalize a cost function over the harvest 

of timber on the grid cell that has an increasing per-unit cost. Furthermore, this results 

in a timber supply curve that slopes upwards. Because our cost function is a 

generalization, we must parameterize it ourselves. 
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In order to parameterize the harvest cost function, we first must select an 

objective with which to optimize the parameter. Through the course of the project, 

two methods with two different objectives were utilized. The first set the objective as 

recreating historic harvest levels in the state of Oregon. The second was recreating a 

realistic range of harvests for a range of prices that the grid cells would observe 

during the simulation.  

The development of the first method was part of another project examining the 

application of different heuristic algorithms in fitting model parameters. Because 

models such as the one developed in this project are large and difficult to run many 

times, heuristic approaches can be used to speed up the parameterization process. The 

application utilizes simulated annealing (Kirkpatrick et al., 1983) and particle swarm 

(Kennedy, 2011) in order to create an optimal set of parameters for both harvest costs 

and mill production. This analysis encountered numerous obstacles, including the fact 

that the harvest model itself took a very long time to run (this is before many time-

saving changes were made to the code). Furthermore, these two algorithms did not 

generate usable results when optimization of one set of parameters influenced the 

objective function on a different scale than another set. That is, the algorithm would 

optimize either the production costs or the harvest costs, but not both. Revisiting this 

analysis, and including additional meta-modeling are potential areas of expansion.  

The second method involves recreating historically observed harvest ranges using 

a range of prices. This methodology is the one currently employed in the harvest 

module. Applying the method in the above paragraph would often result in 

parameters that would recreate realistic harvest levels for a limited set of prices. Any 

prices beyond that would result in unrealistically high or low harvests. Fitting the 

parameters to a range of prices alleviates this issue. This method consists of taking 

state level harvests from the TPO (USDA Forest Service, 2012). This is then used to 

generate region-wide estimates of harvest for both high and low harvest levels. Next, 

the harvest model is run and the set of mill level prices is extracted from the model 

run. This provides the needed information on the price ranges being observed in the 

model. Using information on average rotation length as well as the number of 

harvestable grid cells in the region, the average range of per-grid cell harvest is 
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obtained. Finally, Microsoft Excel’s non-linear fit algorithm (Fylstra et al., 1998) is 

used to minimize deviations between the observed range of grid cell harvests and 

module-generated grid cell harvests across the range of prices observed. Parameters 

obtained from this procedure are included in the appendix.  

The mill level production function is another aspect of the model that required 

parameterization. Many previous forest sector models represent mill production as an 

input-output model, with labor, timber, and capital combining to create a unit of 

product. Initially, we traded this approach for a Cobb-Douglas production function. 

This allowed us to derive the mill-level demand for timber from solving the mill’s 

profit maximization problem. However, parameterizing these functions became very 

difficult, and it became clear that accurately representing mill product and timber 

demand with this approach would require more sophistication. We turned to a 

representation that matches previous forest sector models (e.g. Latta et al., 2017), 

wherein every mill has a fixed factor that converts timber into product. This approach 

is made more attractive by the fact that we have an empirically based representation 

of timber demand from a previous study (Guerrero Ochoa, 2012). 

The growth functions are needed for model runs in which CLM is not coupled to 

the THM. Initially, our method of fitting the growth function parameters was to 

utilize CLM data for each grid cell in order to fit specific grid cell level growth 

functions. This proved problematic, as many grid cells do not exhibit sufficient 

growth to successfully identify the intrinsic growth rate for grid cells. The second 

approach was to use the CLM data in order to fit PFT-level growth functions, and 

then use the PFT proportions on each grid cell to generate grid cell level growth 

functions. For many of the more productive PFTs, there was a substantial number of 

cells that were already at capacity. This resulted in identification issues. We instead 

employed growth tables from Smith et al. (2006) and interpolated the other PFT-level 

growth functions using a combination of data from CLM and similar growth 

functions.  
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2.5. Policy Module 

A goal of this project is to be able to implement policy experiments within the 

THM, both while it is coupled to CLM and when it is not. In particular, there are two 

aspects of our model that we leverage to explore novel policies. The first is the 

superior representation of biological processes in our model. The incorporation of 

CLM into the THM allows us to model the effects of climate change in a way that is 

not found elsewhere in the literature. Furthermore, the improved biological 

representation allows the forest sector to respond to disturbance events, and for that 

response to affect the disturbance itself. Taking advantage of this in the context of a 

policy experiment, we can incorporate data on vulnerability or risk in order to 

implement subsidies or taxes on timber harvest or mill production. This is made more 

appealing by the fact that our model is spatially explicit at a high resolution, allowing 

for targeting specific plots or mills. Another aspect of our model is the large spatial 

scale at which the model is solved. Other models of similar size are lower in 

resolution, and high resolution models have a much more limited range. This allows 

us to be selective about where we implement policies. This means that our model 

provides a means of testing state-level policies, and observing the potential spillovers 

of those policies.  

Implementing targeted subsidies or taxes at the grid cell level requires the reading 

in of additional data. Future research may focus on incorporating endogenous means 

of calculating grid cell level taxes and subsidies. For now, we can utilize data from 

CLM (as well as data produced from previous CLM runs). An example of such data 

includes data on timber vulnerability to drought, fire, and other disturbances, 

calculated using multiple CLM runs. Implementing such subsidies requires the 

addition of a per-unit subsidy or tax. In the case of the subsidy, this is a payment the 

forest manager receives per-unit of timber harvested per-unit of vulnerability. The 

more vulnerable the timber is, the higher the payment is. This subsidy is applied to 

the gate-price that the forest manager observes, but not to the cost that the mill pays. 

In this way, it resembles a payment from the government for social benefit of 

removing risky timber.  
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Once the above policy apparatus has been incorporated into the code, we can 

utilize a state-level map to run policy experiments that are state-specific. This 

requires a dataset mapping each grid cell to a state. We can then utilize code that 

limits the application of a policy to a single state.  

 

2.6. Policy and Disturbance Experiments 

 The THM specializes in addressing two phenomena in particular – the 

economic response and adaptation to climate change and forest disturbance, and 

policies that are spatially targeted. This is due in part to the scale at which the model 

is solved at, being both high resolution and spatially vast compared to similar models.  

In what follows, we demonstrate both of these specializations through simulating 

disturbance events, and by enacting policies that target harvests on forested grid cells 

that are vulnerable to disturbances. In the rest of this section we will set up both 

experiments, and then in subsequent sections we will describe and discuss the results 

of the experiment.  

 The first experiment we conduct in the THM is an induced natural 

disturbance. When the THM is linked to CLM, this process will occur endogenously 

within the model; however, for this experiment linkage to CLM is not required. 

Natural forest disturbances induce a large economic cost, with fire resulting in an 

average of $261 million annually (Dale et al., 2001) and insect outbreaks and other 

pathogens (the costliest natural disturbance) result in over $2 billion of annual 

damages on average (USDA, 1997). These economic damages are substantial enough 

that the industry must adapt to them in some fashion. The value of the destroyed 

timber is easy to calculate; however, there are many unknowns regarding additional 

effects of disturbance. The forest sector adapts by shifting harvests around the 

landscape, such that if a timber plot is destroyed, a mill will purchase timber from the 

next cheapest plot available. The increase in scarcity with respect to timber may 

marginally increase the value of the timberland not affected by the disturbance. 

Furthermore, there is a lasting effect of disturbance that occurs through its effects on 

mill profitability. If it is the case that previously harvestable timber is destroyed, and 

the mill must now purchase more expensive timber, it means that the mill’s profit will 
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be reduced. This leads to long run changes in capacity, as the mill will no longer be 

able to maintain their current capacity, or easily purchase new capacity. Additionally, 

the forest sector spreads the disturbance around the landscape. On top of the natural 

disturbance occurring in the forest, through the market the mills access and remove 

additional timber from the landscape. This results in an overall larger magnitude of 

disturbance than the natural disturbance alone.  

 In order to examine the effects of forest disturbance, we conduct an 

experiment within the THM in which we induce pine beetle outbreaks on the 

landscape, and compare those results to THM runs in which no natural disturbance 

occurs. The data we use on pine beetle mortality comes from Burner et al. (2017). We 

run the model for 30 years, effectively modeling the years 2014-2044 for the whole 

region. We track the evolution of harvests on the landscape, as well as the profits of 

the landowners. Furthermore, we track the changes in capacity that occur at the mill 

level. The initial biomass is taken from a CLM run in which the data are based on 

Berner et al. (2017).  

 In the second experiment we conduct a policy that subsidizes harvests on 

forest land deemed vulnerable to harvest. This experiment covers two aspects of 

natural resource regulation, including the reduction of risk for disturbance, as well as 

the effects of state-level policy versus national or region-wide policies. The risk of 

disturbance is an externality whose full extent may not be internalized by the 

landowner. Though the risk to their own property is internalized and has effects on 

management (Reed, 1984), the additional cost of increasing risk to other nearby forest 

landowners is not internalized. A subsidy would be a corrective measure in order to 

achieve harvest levels that reflect the greater risk to the region. Additionally, the 

differences amongst the state-level policies and between the state-level policies and a 

national level policy are important for determining the scale of the approach. It is also 

one of the first modeling exercises in natural resources explicitly addressing the 

difference between state and national level policies, and the spillovers that could 

potentially occur though state-level policies alone.  

 In order to implement this policy within the THM, we utilize the policy 

apparatus described in Section 2.5 in order to test the effects of targeted subsidies. 
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The subsidies themselves will increase the per-unit price of harvest that the forest 

landowner receives, while not imparting any cost on the mill. In this way, it can be 

seen as a government intervention, assuming that the policy is paid for via taxation of 

some other sector or borrowing. The distortionary effect of the tax or subsidy is not 

taken into account for this analysis. The vulnerability data comes from Buotte et al. 

(forthcoming), and ranks parcels within CLM on a scale of 1-3, with 1 being the least 

vulnerable and 3 being the most vulnerable. A single subsidy payment is applied to 

grid cells with a vulnerability ranking of “2”, whereas two subsidy payments are 

applied to grid cells with a vulnerability ranking of “3”. In practice, the magnitude 

that this subsidy should take has not been calculated in the literature, and so the 

values given here are applied conservatively. The magnitudes of the subsidy 

payments that are selected for this experiment are “$10/unit” and “$20/unit”. We 

conduct 10-year runs, effectively making the time frame of the experiment from 

2014-2024. We run a no-policy benchmark, and then run experiments for both policy 

levels for the states of California, Oregon, Washington, and additionally the whole 

region. This comprises a total of 9 model runs.  

 This paper does not address the impacts of climate change; an important 

caveat to the results. The representation of climate change is something that CLM 

captures very well; however, at the time, coupling capabilities of the THM are not 

fully developed. Another option is to develop growth functions whose parameters can 

shift with changes in climate variables such as temperature and precipitation. Such 

work is a possibility for future work on the THM. 

 

2.7. Results and Discussion from Disturbance Experiment 

 For this experiment, we implemented two model runs: one with no 

disturbance from pine beetles, and one with disturbances taken into account. The pine 

beetle disturbances remove carbon from the landscape in a similar fashion as the 

harvest: in percentage terms. The shock we modeled involved a persistent pine beetle 

invasion, rather than a one-time shock. We find that this persistent shock has major 

implications for the harvest pattern in the model. 
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 The amount of harvest in the simulation changes in two ways. First, the 

magnitude of harvests across the two simulations changes. In the early part of the 

simulation, very little change occurs across either scenario in terms of total harvest. 

However, the discrepancy grows larger as the simulation progresses. The lack of 

difference in the initial few years of the simulation highlights the important role that 

the market plays in adapting to the impacts of forest disturbance. However, the 

adaptation involves achieving a state that is less profitable than the one in which no 

disturbance occurs. This results in the capacity levels of given mills diverging from 

one another during the course of simulation. This divergence eventually becomes 

great enough to cause substantial differences in the total harvest level at the end of the 

simulation. 

 The harvest pattern itself is different in every year the simulation takes place. 

However, the pattern becomes dramatically more different in the later years of the 

simulation. We plot the absolute difference in harvest level from the no-beetle 

baseline as a function of time in Figure 2.7. The sum of absolute differences between 

the two simulations is a way to quantify the difference in harvest pattern between the 

two scenarios. From Figure 2.7, we observe that although the sum of absolute 

differences behaves almost cyclically, it trends upwards over time.  

  

 

Figure	2.7:	Absolute	value	of	harvest	differences	over	time	
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As with the total changes in harvest, this growing discrepancy in harvest pattern is 

mostly due to changes in the capacity level that are result of a less profitable 

equilibrium from beetle infestations. As mill capacities change over time, the effects 

of these changes begin to interact with one another, eventually leading to a 

substantially different map of harvest than in the scenario with no beetle outbreaks.  

 One of the questions we are interested in addressing with this study is whether 

localized beetle outbreaks have effects that are spread out across the region by the 

market. In Figure 2.8, we present two different maps of differences in timber harvest.  

In Figure 2.8, Panel (A), we present the difference in timber harvests between the 

beetle scenario and no-beetle scenario after 5 years. We see that there are a few areas 

of substantial difference in areas affected by beetles, with small or no differences 

elsewhere. For instance, western Oregon is total unchanged, for the most part. 

However, we can still see that small changes are occurring throughout the landscape. 

Panel (B) shows the difference in harvests at the end of ten years, and we can see 

from the map that the region experiencing differences in harvest is now much more 

expansive. There are many changes at plots near mills, even mills that are not 

necessarily close to areas affected by beetle outbreaks. This indicates that the 

influences of the market are playing a substantial role in spreading the disturbance. 
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Figure 2.8: The differences in harvest levels after year 5 (A) and year 10(B) between 
the no-beetles and with-beetles scenarios. 

(A)Harvest map at five years 

(B) Harvest map at ten years 
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The beetle infestations lower the supply of timber, but also affect the 

profitability of the mills surrounding the outbreak region. As an additional 

consequence, regions not affected by the beetle outbreaks are also impacted because 

the price of timber increases, which lowers the profitability of each mill. We present a 

map of capacity differences in Figure 2.9. The difference reported in Figure 2.9 is 

calculated as the difference between the no-beetles scenario and the with-beetles 

scenario, such that a positive value indicates lower capacity in the no-beetles 

scenario. There are some regions that experience increases in capacity. This is due to 

the fact that the demand for forest products is still shifting out, resulting in higher 

output prices for some products. This results in the profitable mills obtaining more 

capacity in the scenario with pine beetles than the scenario without pine beetles.   

 
 

Figure 2.9: Capacity differences between the no-beetles and with-beetles scenarios at 
the end of the simulation (𝐾89 − 𝐾:9) where 𝐾89 is the capacity in the no-beetles 
scenario and 𝐾:9 is the capacity in the with-beetles scenario .  

 

 Surprisingly, at the end of the simulation many regions have approximately 

the same capacity as the no-beetles scenario. However, there are some major regional 

differences. For instance, northern California emerges from the with-beetles scenario 
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with more capacity than in the no-beetles scenario. This is due to that region 

absorbing capacity from other regions more affected by beetle outbreaks, such as 

northern Idaho and eastern Washington.  

 The results presented here indicate that not only are the effects of localized 

disturbances not localized, but that their impact is increased as time progresses. We 

show that substantial changes occur in the forest sector as a result of localized 

disturbance, including increases in capacity in regions not affected by the disturbance 

event. This finding indicates that policies that aim to reduce forest disturbances may 

be impacting the forest sector in a different region altogether through effects on 

market forces. In the next experiment, we set up such a policy, implementing it first 

on the regional level, and then on the state level.  

 

2.8. Results and Discussion from Policy Experiment 

 We also conducted a series of policy experiments in the THM in which we 

applied subsidies to timber harvests on forestland that were vulnerable to disturbance. 

This application is an experiment in potential policies that could reduce the severity 

of disturbance events. However, without the model being coupled to CLM, we cannot 

test the effectiveness of counteracting disturbance. However, this policy experiment 

also provides an important contribution in that it tests the effects of a localized 

environmental policy on the greater region. In the rest of this section I will present the 

results of model runs in which the subsidy is applied across our study region, as well 

as a subsidy that is only applied in Oregon. 

 In the first part of this experiment, we implemented region-level subsidies at a 

low level ($10 per tonne of timber per vulnerability unit) and a high level ($20 per 

tonne of timber per vulnerability unit). We then examined the difference between 

either scenario and a no-policy counterfactual. Figure 2.10 visualizes these 

differences for the low level (Panel A) and the high level (Panel B). Both of these 

policies result in less harvest around the Willamette Valley, with substantially more 

harvest in eastern Oregon, eastern Washington, and northern Idaho. Figure 2.10 

clearly demonstrates that harvests in the Willamette region are being substituted for 
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harvests in different regions. Additionally, the larger the subsidy, the more substantial 

the increase in harvest is in northern California, as well as in the Rockies. 

 
 

 

 
 

 

 
 

Figure 2.10: Harvest differences between the no-policy scenario and the low value 
policy (A) and high value policy (B) 

(A) Harvest differences at the end of a simulation between 
the no-policy scenario and the low-subsidy scenario  

(B) Harvest differences at the end of a simulation between the 
no-policy scenario and the high-subsidy scenario  



 

 

36 

 
 Additionally, larger region-wide subsidies result in greater amounts of overall 

harvest. However, the frequency of harvest is reduced as the subsidy level rises, 

leading to less area that experiences removal, though the removals that do occur are 

more intense. Though harvests increase dramatically on land vulnerable to 

disturbance, harvests are reduced on lands that are not vulnerable. For marginal 

timber land, this could mean a steep reduction in the value of timber land, as the 

subsidy allows vulnerable timber to be shipped further.  

 In addition to conducting an experiment on region-wide subsidies, we also 

implemented state-level subsidies. Figure 2.11 displays the difference in harvests 

between the no-policy scenario and the scenarios in which the subsidies are restricted 

to Oregon alone for a low level (Panel A) and a high level (Panel B). It is clear from 

the figure that the most substantial changes occur within Oregon itself. As the level of 

subsidy increases, more harvest occurs in the eastern part of the state, while Cascade 

Range sees reductions in harvest levels.  

 The spillovers that occur are limited from the Oregon-only subsidy scenario. 

The entire region experiences minor changes in harvest, though these changes are not 

very substantial. There are two areas in which the subsidy appears to have a large 

spillover effect: northwest Idaho and southern Washington. The effects that the 

Oregon subsidy have in southern Washington are more substantial than the region 

level subsidies displayed in Figure 10. Whereas in Figure 10 the harvest levels in 

eastern Washington are higher, this is not the case in the Oregon level subsidy seen in 

Figure 2.11. Therefore, it appears that mills in Washington are substituting 

Washington timber for cheaper Oregon timber being removed from vulnerable lands. 

A table that includes statistics on harvest levels for each version of this experiment 

can be found in the appendix.  

 In general, the subsidies impact a limited number of forest products. Region-

wide subsidies result in large increases in lumber production, as well as biomass 

production. However, other products see only meager increases in production as a 

result of these subsidies.  
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Figure 2.11: Harvest differences between the no-policy scenario and the Oregon-only 
subsidy for a low subsidy (A) and a high subsidy (B 

(A)Harvest differences at the end of the simulation between the 
no-policy scenario and the low-subsidy scenario for Oregon 
only. 

(B) Harvest differences at the end of the simulation between the 
no-policy scenario and the high-subsidy scenario for Oregon 
only. 
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2.9. Conclusion 

  Advancing the modeling of coupled systems, including forestry, is an 

important step towards more accurately capturing the effects society has on the 

environment, and how society responds to environmental disturbances such as beetle 

outbreaks. Furthermore, the added nuance of these models will improve our 

measurement of policy impacts on the environment. This essay addresses this need 

through modeling interactions between the forest sector and forest ecosystem. 

In this essay, I have constructed and demonstrated a spatially explicit partial 

equilibrium model of forest sector. It can run at a high resolution over a vast spatial 

scale using a novel price-search algorithm that approximates the market equilibrium 

level of timber harvest in the western United States. Furthermore, it incorporates data 

from numerous sources such as land ownership and transportation costs in order to 

construct an accurate model of forest management for the region. This model allows 

us to conduct spatially explicit policy experiments as well as measure the effects of 

forest disturbances on the forest sector of the western United States.  

We conduct an experiment in the model in which we simulate a pine beetle 

outbreak across the western United States. In general, we are interested in whether 

localized disturbance events are distributed across the region through market forces. 

We find that in the case of our experiment, localized disturbances not only have non-

local effects, but that these effects grow through time.  

Our second policy experiment involved the implementation of a harvest 

subsidy on land that was vulnerable to natural forest disturbances. We were interested 

in what the region-wide effects of such a subsidy would be, as well as whether there 

are spillovers from localized policies such as a state-wide subsidy. We find that 

region-wide subsidies result in larger amounts of total harvest, though these harvests 

occur across a smaller range. This results in less-vulnerable land possibly losing value 

as mills will ship in the cheaper resource. We also find evidence for potential 

spillovers from state-level policies. We observe an Oregon-specific subsidy 

influencing harvest levels in southern Washington and Northern Idaho. 

There are numerous extensions to this current work. This model has the 

capability of linking to large scale climate simulations and models of land processes 
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such as CLM. An extension of this project involves coupling this model to CLM and 

running simulations that involve not just forest disturbance but also different climate 

change regimes. Additionally, the modeling advances made in this paper can be 

applied to other contexts as well, such as agriculture. Another interesting area to 

continue studying is the effect of a collection of localized policies on region-wide 

outcomes.  
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3.  The Effects of Contract Duration on the Performance of a Forest-Based 
Carbon Offset Program in Western Oregon 

 

3.1. Introduction  

Forests are responsible for significant levels of carbon sequestration, both 

worldwide and in the United States. Globally, forests absorb an estimated 2 

petagrams of carbon annually (Pan et al., 2011). In the United States alone, earlier 

estimates placed the amount of carbon sequestered by forests at approximately 162 

teragrams per year (Ryan et al., 2010). The ecosystem service of carbon sequestration 

continues to grow in value as the expected costs of climate change continue to rise 

(Hsiang et al., 2017). From previous studies, the potential value of a program 

targeting afforestation and changes in management could result in a benefit of at least 

$649 billion (Bluffstone et al., 2017). In order to fully utilize that potential value, 

forest managers must be incentivized properly, which means that policies must 

designed as efficiently as possible (Kline & Mazzotta, 2009). Current policies aimed 

at incentivizing forest-based carbon sequestration, though based on rigorous scientific 

analysis, often lack consideration of the economics of the policy, and whether a better 

outcome could be achieved through changes in the policy design.  

Forest-based carbon offsets are utilized in a number of different contemporary 

policies aimed at limiting carbon emissions. Many of these offsets are tied to carbon 

trading schemes, such as the European GHG trading scheme, the oldest such scheme 

(Ellerman & Buchner, 2007). Furthermore, the state of Oregon is considering the 

design of a carbon trading program (Sickinger, 2018), which plans to allow for forest-

based carbon offsets to account for a fixed percent of offsets. Though the design and 

requirements of forest-based carbon offsets differs across programs, the California 

program, represents an important standard. This is in part because the ambitions of 

the California program are to link itself with other contemporary carbon markets. 

This will likely have the effect of standardizing the features of the forest-based 

carbon offsets used elsewhere.  

However, the contracts that govern forest-based carbon offsets are difficult to 

design, and many questions regarding the optimality of their structure exist. For 
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instance, there are rigorous monitoring requirements for the resource (e.g. California 

Air Resource Board, 2017) that have been identified as potential barriers for adoption, 

along with the complexity of such programs (Kelly & Schmitz, 2016). Additionally, 

the duration of the contract itself varies across programs. The California program in 

particular requires the duration of these contracts last for 100 years, a standard 

adopted in order to ensure the permanence of the carbon sequestered. However, this 

does not necessarily optimize the performance of the program over shorter time 

horizons that may be relevant for carbon sequestration programs.  

This chapter addresses questions regarding the role that contract duration 

plays in the performance of forest-based carbon offset programs. We are interested in 

how the duration of the contract first and foremost influences enrollment in the 

program. Previous research looking into landowner preferences over contract length 

indicate that a shorter contract may incentivize more land to be enrolled. Does a 

shorter contract duration result in more sequestration over a given time frame? We 

are interested not just in sequestration on lands enrolled in the program, but also on 

land that does not enter into the program. We also want to explore the interaction 

between the price of carbon and the contract duration on program performance. 

Relatively higher carbon prices may result in larger discrepancies in program 

performance between contract lengths. One argument against forest-based carbon 

offsets is that the reduction in timber will increase the price, resulting in leakage as 

unenrolled lands harvest more. This chapter will explore the extent of this effect, and 

whether the price of carbon and length of the contract influence this effect. 

Furthermore, we are also interested in exploring differences in other management 

variables, such as average rotation length of enrolled versus unenrolled lands, and 

economic outcomes such as prices, capacity shifts, and effects on land prices.  

We choose to explore these problems using a regional partial equilibrium 

model of western Oregon. Timber plots as well as mills are represented in an 

explicitly spatial way, allowing for us to observe the origin and destination of the 

timber harvested in the model. The model solves over a 100-year time horizon at a 5-

yearly time step, allowing us to observe the evolution of the western Oregon forest 

sector through time. To the best of our knowledge, this represents the first study that 
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explores the effects of contract duration in a partial equilibrium modeling framework. 

We set up a number of scenarios with varying values for the price of carbon, as well 

as varying contract specifications. We are able to track numerous economically 

relevant variables that range from management details such as average rotation, to 

mill-level data on capacity, and include economic variables such as land prices.  

We find evidence that contract duration influences the performance of forest-

based carbon offset programs. Though we do observe a relationship between 

enrollment and duration, the relationship is relatively weak. However, we do see a 

non-linear relationship between the duration of the contract and amount of carbon 

sequestered. Surprisingly, we find that very short contracts result in worse outcomes 

with respect to carbon sequestration over long time frames than not having any 

program at all. Also surprisingly, we find that the 100-year contract – the standard for 

the California program – is outperformed by numerous shorter contracts over long 

(though not indefinite) time horizons. Further evidence suggests that by expanding 

our time horizon beyond 100 years, the shorter contracts may outperform the 100-

year contract. This raises the possibility that future applications of forest-based 

carbon offsets should consider shorter contracts.  

In what follows, we will present the background, results, and discussion from 

our analysis. In the next section, we will discuss the background of these programs in 

order to provide the proper context of the problem. The next section will provide a 

literature review to demonstrate how this current work fits into the studies that have 

come before it. We will then discuss the set up of the model and the methodology. 

The following section will present the results, which will then be followed by a 

section discussing the implications of the results. Afterwards, this chapter will 

conclude with a brief summary and discussion about future work. 

 

3.2. Background 

 Forest management has long been a target of efforts looking to biologically 

sequester carbon. Programs looking to pay forest landowners for the ecosystem 

service of carbon sequestration are relatively recent. Because forestry has substantial 

potential to sequester carbon, it has become a popular option for offsetting pollution 
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elsewhere. The environmental benefits these programs generate are due to the 

changes they make to forest management. Rather than force a forest landowner to 

manage in a particular way, these programs will incentivize the landowner through 

different payment structures. We know through the Hartman model (Hartman, 1976) 

that once an environmental benefit is internalized by the forest landowner, either 

through payments or some other method, that management will change such that 

rotation lengths are extended. This is also demonstrated through various extension 

documents detailing best practices for alternative management (e.g. Collins et al., 

2008). A policy that explicitly adds the value of the ecosystem service into the forest 

managers profit equation will, in theory, achieve the desired effect. Typically, 

policies attempt to ensure that the carbon sequestered is both additional and 

permanent. 

 Forest-based carbon offsets are a means by which regulated power producers 

whose carbon emissions are limited or capped through regulation can purchase 

pollution offsets through paying forest managers to sequester carbon (California Air 

Resource Board, 2017). Within the California carbon market, offsets are generated 

from a number of different sources, including agriculture, methane capture, and ozone 

depletion (California Air Resource Board, 2017). Forestry represents the largest 

source of offsets, accounting for approximately 81.7% of offsets in the program 

(California Air Resource Board, 2017). For the forest manager, this means that they 

would receive payments for the carbon sequestered on their landscape, as determined 

by annual measurements they are required to take (California Air Resource Board, 

2015). To prove that the carbon sequestration is additional, the forest manager must 

submit a harvest plan that serves as a counterfactual basis for determining the extra 

amount of carbon sequestered. This plan represents what the landowner would have 

done absent the forest-based carbon offset, and gets paid for the carbon sequestered in 

the forest above this counterfactual harvest plan, conditional on it being above a pre-

determined baseline. Anecdotal evidence suggests that forest landowners will never 

submit a plan in which the timber volume is above the pre-set standard, which 

indicates that strategic behavior is involved in the design of these future harvest plans. 

Some have criticized this approach as not accurately ensuring that the carbon 
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sequestered by forest landowners is additional. The modeling approach we adopt will 

be able to capture the expected differences between counterfactuals, and so although 

the criticism may be valid, it is not important for the analysis that follows.  

In many programs, facets of the program aim to ensure that the carbon 

sequestered is done so permanently. The forest-based carbon offset accomplishes this 

by having the forest manager legally commit to a contract in which the manager will 

be paid for all the carbon sequestered and charged for the carbon removed from their 

forest. The duration of these contracts is a subject of importance for regulators 

looking to design forest-based carbon offset programs. The California carbon market 

requires that these contracts last for one-hundred years (California Air Resource 

Board, 2015). From the perspective of a regulator, a longer contract may be 

preferable because it better ensures that the carbon is sequestered permanently. A 

shorter contract may result in the landowner harvesting earlier, and the carbon stored 

in the forest flowing back into the atmosphere. However, it may be the case that such 

programs could benefit from contracts of shorter duration by incentivizing more land 

to enter the program. Little work has been done with respect to the optimal duration 

of conservation contracts in general, let alone the duration of forest-based carbon 

offset contracts. This is despite the fact that this is a critical aspect of contract design. 

The duration of these contracts is important not just to the forest manager who has 

enrolled, but also to those that have not enrolled. Previous studies (e.g. Schwarze et 

al., 2002) have shown that enrollment in such programs can result in leakage as 

unenrolled forests increase harvest levels.  

Following Latta et al., 2016, we simulate a program based on the Climate 

Action Reserve protocol, or CAR (Climate Action Reserve, 2012). This protocol is 

used in the California cap-and-trade program (California Air Resource Board, 2015), 

which was put in place after the passage of AB-32.  Passed in August of 2006, AB-32 

required that California’s emissions be reduced by approximately 25% (estimated 

1990 levels) by the year 2020 (Hanemann, 2007).  

Many other emissions trading schemes exist, not only in the United States but 

also internationally. Another well-known example is the Regional Greenhouse Gas  
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Initiative (RGGI), which encompasses Connecticut, Maine, Delaware, New 

Hampshire, New York, New Jersey, and Vermont. The RGGI focuses on Green 

House Gases (GHGs) produced by power generators (Hanemann, 2007). A number of 

noteworthy carbon markets exist outside the United States as well. These include the 

New Zealand Emissions Trading Scheme (NZ ETS), the Australian Carbon Pollution 

Reduction Scheme (CPRS), and recently a cap-and-trade program in Quebec (Grüll 

and Taschini, 2011). Though the study presented here focuses on just a single 

program, it may be possible to draw parallels between the others. This is made even 

more true by the fact that programs can and will be linked together to create a larger 

market for offsets, such as the case with the California and Quebec markets (Newell 

et al., 2013).  

 

 

Table 3.1: Acres enrolled by registry and by state. 

 

An important aspect of the offsets under the California cap-and-trade program 

is that they can be generated out of state. Though the legislation only regulates GHG 

emissions within the state of California, offsets can be provided by entities outside the 

state, as is the case for offsets from the forest sector. These offsets are of particular 

interest to landowners in Oregon, where forestry is a significant sector of the 

economy. Private forests make up 34 percent of the land area, where 14 percent of the 

total is considered small private (Oregon Forest Resource Institute, 2016). Carbon 

offsets have the potential to provide an alternative revenue stream for smaller forest 

landowners. There are many registries that the verifying agencies can go through to 

obtain their offsets. In the case of the California market, there are three: The 

American Carbon Registry (ACR), the Climate Action Reserve (CAR), and the 

Verified Carbon Standard (VCS).  The distribution of improved forest management 

projects across these registries and by state and by registry is presented in Table 3.1. 

It is interesting to note that, despite the forest sectors of Washington and Oregon 

 CA Acres WA Acres OR Acres Other Acres Total Acres 
ACR 10 129382 2 506077 3 659092 38 1586167 53 2880718 
CAR 51 783905 1 521 0 0 58 1694213 110 2478638 
VCS 0 0 0 0 1 987 2 22497 3 23478 
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being as large as they are, there is still very little activity in those states with respect 

to offset production. This could indicate substantial potential for carbon sequestration 

in those states. The standards applied to forest managers enrolled in the program is 

still consistent across registries due to the requirements imposed by the California 

carbon market. Because the payments that the enrolled forest landowners receive 

originate from power producers paying the state for the right to pollute, the California 

program has leverage over the standards the registries adopt, including the duration of 

the contract.  

 Another aspect of these offset programs is that a proportion of the enrolled 

forestland does not receive payments for the carbon sequestered. Ever present in 

forest management is the risk of a major disturbance, such as a wildfire, that will 

release the sequestered carbon into the atmosphere (Galik & Jackson, 2009). In the 

jargon of the policy maker, this is referred to as a reversal risk. In order to buffer 

against reversal risk, every forest landowner enrolled in the program is required to 

contribute to an insurance bank. The forestland in this bank must be managed in the 

same way as the other enrolled land, however payments are not received for the 

carbon sequestered by that land.  

 

3.3 Literature Review 

The topic of carbon offsets and carbon trading in general have been a 

significant focus of the carbon policy literature. The literature review that follows is 

limited to those studies that are most pertinent to the work in this chapter. The review 

is split into two major sections based on the subject matter. The first group of papers 

reflect the work that has been done to date concerning the issues of contract length 

and permanence. The second section analyzes the impacts of carbon markets and 

offsets in general.  

 Permanence is an important feature in pollution offset projects. With respect 

to carbon offsets, it refers to the duration of time the carbon is kept out of the 

atmosphere. Most programs target a completely permanent offset, meaning the carbon 

is sequestered indefinitely. This is despite the fact that carbon stored in biological 
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systems, such as a forest, may not exhibit complete permanence (Sedjo & Marland, 

2003).  

 A number of studies discuss the issue of impermanent sequestration, and some 

studies introduce potential methods to address it. One approach involves 

incorporating the temporary nature of land-based carbon sequestration into the 

contract. Herzog et al. (2003) analyzes the value of temporary carbon storage, while 

Marland et al. (2001) considers methods of carbon accounting that address the 

potential lack of permanence. These studies take issue with the ton-year approach 

described in Boyd et al. (2001), which relies on converting impermanent 

sequestration into permanent sequestration using an equivalence factor. Marland et al. 

(2001) favors an approach where offsets are rented, instead of purchased. Other 

studies that relate to Boyd et al. (2001) attempt to develop methods for calculating 

this equivalence factor (e.g. Costa and Wilson 2000; Fearnside et al., 2000). 

 Following in a similar fashion, Kim et al. (2008) develops an analytical 

discount factor for impermanent carbon sequestration. They find that impermanent 

carbon storage can result in large discount factors, even as large as 50% of the 

carbon’s price (Kim et al., 2008). Cacho et al. (2003) assess different accounting 

methods, including the year-ton approach, through simulation. It is shown that 

transaction costs vary depending on what accounting method is chosen (Cacho et al., 

2003). Feng et al. (2002) addresses the efficiency of three carbon payment 

mechanisms that include a pay-as-you-go system, a variable contract length approach, 

and a carbon annuity account approach, all of which are shown to be efficient. 

It has been suggested that, with respect to carbon offset markets, contract duration 

plays an important role in establishing the permanence of the offsets (Layton & 

Siikamäki, 2012 ).  Contract duration has also been suggested to be a factor in 

program enrollment (Latta et al., 2016). It has been noted that a shorter contract may 

encourage additional landowners to enroll (Dickinson et al. 2012). However, this 

relationship is not as straightforward as it may seem, as Miller et al. (2012) estimates 

that for some programs, a longer contract length could improve enrollment.  

 There have been studies that focus on the impacts and effects of forest carbon 

markets on land use decisions, landowner costs, and land-based carbon sequestration 
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(Latta et al. 2016). These can be grouped into econometric studies that focus on land-

use change, market simulations, and engineering focused approaches, as in Richard 

and Stokes, (2004). Other reviews of the literature include Sedjo et al. (1995), van 

Kooten (2004), and Stavins & Richards (2005). Engineering studies have historically 

focused on afforestation (e.g. Moulton & Richards 1999). The methodology in these 

studies hinges on comparisons of cost evaluations for different sets of projects.  

Econometric studies focusing on land-use utilize statistical approaches to 

model land-use decisions and their impacts on carbon sequestration (Plantinga et al., 

1999). Many of these center around approaches that describe an agent’s preference 

between different classes of land (e.g. forestry, agricultural, urban, etc.) and what 

motivates that preference (Lubowski et al., 2006). Expanding on that, Plantinga and 

Wu (2003) model the additional benefits of forest based carbon sequestration from 

land-use change, and find that they reduce agricultural externalities, such as fertilizer 

runoff.  These models rely on land-use change being a voluntary decision based on an 

agent maximizing their profits or utility (e.g. Stavins 1999; Newell & Stavins 2001). 

These approaches can be expanded to analyze carbon leakage due to land-use change 

as well (e.g. Murray et al. 2004).  

Forest sector modeling, such as Adams et al. (1999) and Sohngen and 

Mendelsohn (2003) utilize surplus maximization to simulate land-use decisions. 

Agents are assumed to select land-uses, typically between agriculture and forestry 

(e.g. Adams et al., 1993), such that their land rents are maximized given a set of 

prices, costs, and a discount rate. In the papers that look at carbon sequestration, 

enrollment in a program that values carbon is usually mandatory (e.g. Adams et al., 

1999; Sohngen and Mendelsohn, 2003). However, both Latta et al. (2004) and Latta 

et al. (2016) deviate from this trend by modeling voluntary markets. Still other 

studies, such as Parks and Hardie (1995) focus on choosing the most efficient land to 

purchase, turning the simulation into a land selection problem.  

Literature on contract duration and design for conservation programs such as 

forest-based carbon offsets is limited. One study by Juutinen et al., (2014) solves for 

the optimal duration of contracts incentivizing biodiversity-based ecosystem service 

provision on forestland. Juutinen et al., (2014) constructs a theoretical model in which 
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a government agency is contracting to conserve private forestland, and then uses the 

results from the model in a numerical analysis. The government agency is shown to 

use a mixture of long and short contracts. As the budget the government agency 

increases, the agency tends to use longer contracts more frequently (Juutinen et al., 

2014). Expanding this analysis, Drechsler et al. (2017) examines how different 

economic and ecological parameters influence the optimal length of conservation 

contracts. They find that the optimality of longer contracts increases with the 

extinction rate of the conserved species, decreasing rate of species colonization, and 

with variability in conservation costs, amongst other things. Leaving the context of 

biodiversity, Juutinen et al., 2018 explores the role of short-term payments for carbon 

sequestration on forestland, and its feasibility as an alternative to longer term 

contracts. They find that though annual carbon payments influence the management 

of private forestland, the effect is somewhat small, indicating that such a scheme 

might only be optimal for either very dense forests or high carbon prices. 

The work presented in this study expands the previous work on contract 

duration in a number of ways. To our knowledge, we are the first study to address this 

topic on a sector-wide scale. Previous studies look at how contract duration may 

affect a government agency as well as private forest managers; however, our model 

considers the entire forest sector of our study region including mills and output 

markets. We study the effect that carbon prices have on the optimality of different 

contract specifications. Another extension of previous work is that our model allows 

for us to study how management changes on land that is not enrolled in the offset 

program, and thus gives us an estimate of potential leakage from other lands. This is 

because, unlike other models here, timber price is endogenized in our model. Yet 

another extension of our model allows for us to examine changes in the value of land 

by county.  

 

3.4 Model 

The forest manager’s decision of whether to enroll in an offset program is 

based on whether that enrollment will be more profitable than management-as-usual. 

In general, a forest manager will enroll in such a program if the payments they 



 

 

50 

receive for the carbon sequestration exceed the costs of enrollment as well as the 

expected profit they would have received had they not enrolled in the program. 

Furthermore, the enrollment of forest land into an offset program influences the 

surrounding forestland that has not enrolled through limiting supply and increasing 

the price of timber. That is, enrollment creates a pecuniary externality on the 

surrounding private forest managers who are not enrolled. 

 In order to capture the full range of effects of the forest-based carbon offset 

program, we utilize a regional forest sector model of western Oregon. The model, 

called the Pacific Northwest Regional Log Model (Montgomery et al., 2006; Adams 

& Latta, 2007; Latta et al., 2016), is a spatial-temporal partial equilibrium model. 

Incorporated into the model is the option of whether to enroll in a forest-based carbon 

offset program. The model simulates management on forest lands that are enrolled in 

the offset program, as well as land that is not. Furthermore, the model captures 

decisions made at the mill level, specifically what the levels of production are, as well 

as decisions about expanding and contracting levels of capacity. The price levels are 

endogenous in the model as well.  

 The model is an intertemporal, forward-looking optimization model that 

provides results at 5-year intervals over a 100-year time horizon. The model consists 

of a set of objective functions, the area under the mill-level log demands, and various 

constraints. There are two kinds of agents represented in the model: timber plots and 

mills. Timber plots are discrete points on the landscape that have a given acreage, 

species mix, and biomass level. The biomass is grown using vegetation simulator 

provided by the forest service. These timber plots are called log supply points. The 

mills, on the other hand, act as log demand points. Each plot can exchange demand 

points with other plots to maximize net returns from their timber sale. Similarly, mills 

can swap suppliers with other mills to minimize their costs. By finding the optimal 

matching of plots and mills, the model solves for the market solution and net benefits 

are maximized. The model breaks the entire time line of the simulation (in this case 

100 years) into five year increments. Each increment has its own set of equations 

relating to the net returns of the timber plots and costs of the timber mills. Instead of 

solving for the optimum in each time step independently, the model is solved for all 
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time steps simultaneously. For example, if there are 20 time steps as in the example 

above, with two plots and two mills, that would make 4 equations per time step, and 

so the model would solve a system of 80 equations for supply and demand. The mills 

are broken into two different categories: lumber and plywood. Mill capacity changes 

at each time step relative to prescribed projections of output demand. If the demand 

for lumber increases at a given time step, then the capital will be distributed to make 

up for the change in demand relative to which mills are most profitable. This is solved 

simultaneously along with the rest of the model. The model also captures the 

relationship between timber volume and carbon on the landscape. The relationship 

between carbon sequestration and management is based on the model developed in 

Im et al. (2007). The model is written in GAMS and solved with the CPLEX solver 

(Brooke et al., 1988). 

 

3.4.1. Scenario Construction 

We begin by assuming that carbon dioxide prices are exogenous. In the 

program that we are simulating, the price is mostly set by the California Energy 

sector, since they are primary agents in the California carbon market. However, we 

fully acknowledge that program performance is a function of carbon price, and so we 

select four price levels that represent a range that is both conservative and realistic for 

the time period we are examining. The four prices we select are: $5 per ton CO2(e), 

$10 per ton CO2(e), $25 per ton CO2(e), and $50 per ton CO2(e). At the time of this 

writing, the California carbon market values carbon at $15.10 per ton CO2(e) 

(California Carbon Dashboard, 2018), which is comfortably within the range of the 

price set for our simulations. 

 Similarly, we assumed that the contract duration is not endogenous. Instead, 

the regulator is assumed to set the duration of the contract. This is consistent with the 

actual policy. Since the focus of this paper is to assess the effects of contract duration, 

we select several scenarios that represent a reasonable range of potential contracts. 

The first five contract scenarios have assigned lengths of 20 years, 40 years, 60 years, 

80 years, and 100 years. The static length of the contract reflects the design of the 

policy in the real world. Though it is tempting to optimize the length for each 
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landowner, that would require information not available to the government agency. 

Instead, the agency issues a blanket standard. An alternative approach is possible, 

such as that described in Mason and Plantinga (2013), in which landowners sort into 

contracts of different lengths. Modeling a regional program with this scheme 

represents a potential extension of this current work. Furthermore, we assume that the 

duration of the contract is also the duration of the program in general. This means that 

a forest manager cannot re-enroll their land in the program after their contract expires. 

Addressing the problem of consecutive enrollment represents an interesting extension 

to this current work. 

.  We also model two additional versions of the contracts that have a 

maintenance period requirement. Such a requirement requires that the forest manager 

gets paid for the carbon they sequester for the first half of the length of the contract, 

but then are required to continue to manage their forest for sequestration for the 

following half. These two contracts have payment lengths of 20 years and 40 years, 

with additional maintenance periods of 20 years. and 40 years respectively.  These 

contracts allow for the cost of the program to be minimized while the carbon is stored 

on the landscape longer. However, maintenance periods affect the landowner’s 

incentives, and make it less profitable to enroll in the program. An examination of 

these contracts is reported in the sensitivity analysis.  

 We run a scenario for each price and each contract type. This means that we 

have a results for twenty-eight different scenarios. We also run a scenario with no 

carbon market at all, bringing the total up to twenty-nine.  

 

3.5. Results 

Solving the forest sector model for each of the scenarios outlined above, we 

now present the results of our analysis below. One aspect of the analysis that is 

particularly tricky is selecting a time frame over which to assess each contract. Latta 

et al. (2016) selected a time frame of 50 years. The time frame selected for this 

analysis includes the entire duration of the model run, or 100 years.  

 A controversial question that we necessarily encounter in a study such as this 

is whether or not to discount the carbon being sequestered. For the results presented 
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here, the carbon is not discounted; however, in some of the calculations of benefits of 

sequestration, the price of carbon has. This is both to reflect reality, and so that these 

calculations are consistent with the forest sector model used.  

 

3.5.1 Enrollment 

 The first aspect of program performance we address is enrollment of land into 

the program. Our results in Figure 3.1 confirm those in Latta et al. (2016) that show 

rising enrollment with the price of carbon. This makes intuitive sense, as a higher 

carbon price better compensates landowners for missed harvest opportunities. 

 

 

The effects that price and contract duration have on enrollment interact with one 

another. At low carbon prices, there is little difference in enrollment between 

contracts of differing length. In fact, the shortest contract has slightly more acres 

enrolled than any of the longer contracts. However, as prices increase more acres are 

enrolled as the contract gets longer. This finding expands on the results of Juutinen et 

al. (2014) by showing that longer contracts are used not only because the government 

can afford such contracts with larger budgets, but because it is also more beneficial 

for landowners to enroll at higher carbon prices.  

Figure 3.1: Land enrolled in carbon offset program by contract and by price 
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 Figure 3.1 also demonstrates that as contract length and carbon price both 

increase, their respective effects on the amount of land enrolled diminish. At prices of 

$25 and $50, there are substantial differences in enrollment between contracts of 20 

and 40 years, and those that are 60 years or longer. But even at these higher prices, 

the three contracts with the longest lengths have more or less the same number of 

acres enrolled. In this regard, these shorter contracts perform as well as the 100-year 

contract that serves as a benchmark when comparing our results to the performance of 

the offsets based on the California carbon trading scheme. Given that the price of 

carbon in the California market as of this writing is $15.10, it seems that should the 

price stay at that level, there is very little difference in enrollment between the 40-

year contract and the longer contracts as well. 

 

3.5.2. Carbon Sequestration 

 We have demonstrated that the duration of the contract plays a role in 

determining program enrollment. Furthermore, we have shown that, compared to the 

100-year contract, some of the shorter contracts perform just as well in terms of 

program enrollment. Another important metric of program performance is the amount 

of carbon sequestered by the program. Indeed, the whole point of this forest-based 

carbon offsets is to offset carbon, and so from the government agency’s standpoint, 

this is a metric that matters the most. The time series of carbon on the landscape in 

excess of the no-policy counterfactual is presented in Figure 3.2. The black horizontal 

line in each panel is a reference line at zero. From the figure, we can see that the 

magnitude of sequestration for almost all contracts changes substantially with the 

price of carbon. This is consistent with observations from Latta et al. (2016), which 

observed the same relationship. What is remarkable is the extent to which the price of 

carbon acts to differentiate the effects of different contracts from one another. As the 

price of carbon increases, forest managers face a stronger incentive to sequester more 

carbon in their forest. Furthermore, the build up of carbon that occurs due to the 

increased incentive creates a large stock from which the forest manager can draw on 

once the contract has expired. This results in a more rapid drawdown of timber stocks 

following the contracts end than in scenarios with lower carbon prices. This therefore 
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results in substantial differences in the level of carbon in the region between contracts 

of differing lengths at high carbon prices.  

 

 

 

For scenarios in which carbon is priced at either $25/tonne or $50/tonne, each 

contract performs at least as well as the no carbon-offset case over the entire time 

horizon. This is not the case for scenarios in which the price of carbon is either 

$5/tonne or $10/tonne. In order to observe this more clearly, Figure 3.3. presents 

those cases but magnified for the reader to see more clearly.  

Figure	3.2:	Carbon	sequestration	time	series	by	contract	and	carbon	price 
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Figure 3.3: Differences in carbon on the landscape for lower carbon prices 
 

At a carbon price of $5/tonne, we see that three contracts result in lower levels of 

carbon on the landscape than the no-contract scenario: the 20-year, 40-year, and 60-

year contracts. At a carbon price of $10/tonne, still two of the contracts perform 

worse than the no-policy scenario: the 20-year and 40-year contracts. Interestingly, 

we see that the 40-year contracts do worse than the no-policy scenario for longer, 

indicating that part of the reason driving this is because of the magnitude of the build-

up of forest resources that occur over the duration of the contract.  

 There is a flip side to this observation, namely that each contract outperforms 

all the others over different time frames. Generally, over the course of the contract’s 

lifetime, more carbon is sequestered by that contract than the others. This is the 

reason for the dramatic decline of the 40-year contract in Figures 3.2 and 3.3 Panel 

(B). Not only does the 40-year contract build up more carbon than any other contract 

at a carbon price of $10/tonne, but it does so over a briefer time horizon than many of 

the other contracts. This eventually results in a more dramatic drawdown, which 

pushes the total carbon down below the level observed in the no-policy 

counterfactual. 
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 Another interesting observation is that as the price changes, which contract 

sequestered the most carbon at any given point changes as well. When prices are $5 

and $10 per tonne, the 40-year contract has the largest amount of additional carbon at 

any given time. At a price of $25 per tonne, the 80-year contract has the largest 

amount while at $50 per tonne, the 100-year contract has the largest amount of 

carbon. Thus, at lower carbon prices, shorter contracts will sequester more carbon 

over the course of their lifetime, though not necessarily over a longer time horizon. 

This is an important concept when considering carbon discounting, or discounting the 

value of temporarily sequestered carbon. This concept in particular will be discussed 

in the sensitivity analysis.  

 

3.5.3. Economic Outcomes: Mill Capacities and Log Prices 

 It is not immediately intuitive what processes are contributing to the 20-year 

and 40-year contracts resulting in less carbon on the landscape than a scenario with 

no policy at all. The answer may lie in the sector-level response to the policy. A 

scenario in which there is a substantial amount of build-up of timber volume will 

benefit mills during the drawdown period. The increase in supply will boost their 

capacity, as well as allow for prices to drop. This could have long term effects on the 

regions harvests, as mills will process more for a time following the termination of 

these contracts. The results from our simulation show this effect clearly. In Table 3.2, 

we report the capacity levels for both lumber and plywood for each price and contract 

scenario at three different points in time: 2055, 2075, and at the very end of the 

simulation at 2095. We use Table 3.2 to compare each of these scenarios to a no-

policy counterfactual. When the capacity level is below that of the no-policy 

counterfactual, we indicate it by shading, bolding, and italicizing that entry. We 

report these three points in time because they provide a comprehensive description of 

what happens to capacity as the price of carbon and length of the contract change.  

 Looking at the results from the year 2055 tell us something interesting about 

the relationship between the duration of the contract and price. Though the 20-year 

contract has long been expired by this time, the lower carbon price scenarios report 

lower capacity at carbon prices of $5 and $10 per tonne. However, at higher carbon 
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prices, the build up of carbon is so great, and the drawdown so swift, that the mill 

capacity is dramatically larger for shorter contracts and high carbon prices. This is 

also evident from the changes in capacity that occur for the 40-year contract. 

 An important result shown in Table 3.2 is that for the duration of the contract, 

supply of timber is restricted, which restricts the capacity in the region. This 

reduction gets larger as the price of carbon climbs. However, this reduction does not 

last, and the build up of timber that occurs during the contract appears to have lasting 

results on the region’s capacity. This explains the persistent dip below the no-policy 

counterfactual observed in Figure 3.2. Though this results in more carbon being 

removed from the landscape in later time periods, it could also mean that this sort of 

policy has a late breaking benefit to the mills and the industry in the region. The only 

scenario which has lower capacity at the end of the model run is the highest and 

longest contract.  

 The changes in capacity reflect patterns in the price of logs as well. Figure 3.4 

shows the price series for lumber and plywood for three different contracts: 20-year, 

60-year, and 100-year contracts. Each panel shows four curves that correspond to 

different carbon prices. In Figure 3.4, the price series that is reported starts in year 5 

(second time step), due to the fact that the price variable in the initial period is either 

unrealistically high or unrealistically low. The difference in initial conditions with 

respect to both the lumber and plywood log prices are due to the initial level of build 

up on timber lands that correspond with each successive carbon price. It is important 

to note that both plywood and lumber prices behave in a similar manner. This 

indicates that the supply shock that results from the carbon offsets affects the supply 

of logs for both plywood and lumber equally, or that due to the trade of chips as an 

intermediate good between lumber and plywood mills, the market spreads the effect  
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Table 3.2: Capacity by contract type and price, reported at three different time points 
during the simulation 
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across both products. An interesting result that emerges from Figure 3.4 is that the 

initial conditions for lumber and plywood log prices are substantially different 

depending on the carbon price level. In the initial five years from the time the carbon 

offsets are distributed, a substantial amount of timber is held out of the market, while 

the unenrolled land is unable to respond with higher supply. The  

 

higher the price of carbon, the more timber is held off the market, which pushes the 

price up, which explain the price discrepancies between price series of different 

carbon prices.  

 

Figure 3.4: Price series for Lumber and Plywood for different carbon prices and different 
contract types 
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 The price dynamics behave differently depending on the level of timber build 

up on private land. Even with the longer contracts featured in Figure 3.4 Panels (C) – 

(F), scenarios that feature higher carbon prices result in higher log prices that begin 

declining rapidly, even before the contracts expire. This is due to response of 

unenrolled land to the higher price and harvesting more timber. For prices of carbon 

that are lower, the price still continues its upward march despite enrolled lands 

restricting supply.  

 There is a large decrease in log prices when the carbon offset contracts expire. 

Though it is not apparent in Panels (E) and (F) because of the long duration of those 

contracts, these decreases are immediately evident in the remaining panels of Figure 

3.4. Because unenrolled forest land has already adjusted to the massive dip in supply 

that corresponds to a high carbon price, the rate of price decrease following the 

expiration of 20-year contracts is much slower for the $50 per tonne scenario. 

Another interesting observation from the 20-year contract scenarios are that despite 

the build up that occurs at high carbon prices, the dip in log prices is not sustained 

like the longer 60-year contract. In the case of the 60-year contract, the higher the 

carbon price, the more the log prices decline for both lumber and plywood logs. In the 

60-year contract scenario, this decline is such that it results is a much larger price 

swing. It is true that for each of the different contract scenarios, the higher the price of 

carbon, the higher the price of logs before the contracts expire, and then the lower the 

price of logs after the contracts expire. The length of the contract appears to interact 

with the effect of carbon prices on log prices, where longer contracts result in a more 

differentiated set of log prices, with the exception of the 100-year contract.  

 

3.5.4. Maintenance Periods 

 There are a number of assumptions that have been used in the course of this 

analysis. This was done in order to provide the most conservative estimates possible 

for the effects of contract duration on the performance of forest-based carbon offset 

programs. One such assumption is that the forest landowner is paid for the carbon 

they sequester for the entire duration of the contract. However, there are potential 

configurations of these forest-based carbon offset contracts in which this is not true. 
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Instead, it is possible to construct contracts that have what are called maintenance 

periods. A maintenance period requires that, despite not being paid, the forest 

manager must continue to manage their land for carbon sequestration.  

 In order to test what the effects of this alternative contract specification were, 

we ran two different scenarios with maintenance. One such contract includes a 20-

year payment period, with a 20-year maintenance period, which lasts a total of 40-

years. The second such contract includes a 40-year payment period, and a 40-year 

maintenance period, and lasts a total of 80 years. We will limit ourselves to 

comparing these maintenance policies to the 20-year and 40-year policies in order to 

simplify the presentation of results.  

 Assessing the enrollment patterns of the contracts that have maintenance 

provide important insights into how these policies are affecting forest managers 

within the model in general. From Table 3.3 we see two very interesting things about 

enrollment in the program. The first observation is that the 20-year contract with a 

20-year maintenance period has more acres enrolled in each period than the 20-year 

contract alone. At first this is counter-intuitive. However, the benefit of everyone else 

withholding supply increases the price of timber in this scenario more than the 20-

year contract alone, and so provides a benefit to enrolled forest managers. Another 

observation is that for the 40-year contract with a 40-year maintenance period, 

enrollment goes down at very high carbon prices, but remains higher for prices 

ranging from $5/tonne through $25/tonne. This is due to the fact that in the 40-year 

maintenance period, the forest manager is required to pay for the carbon removed 

from the forest, even if they do not get paid for the carbon they sequester.  

 

 



 

 

63 

	

 One effect of the maintenance period is that it keeps the price of logs higher 

than with contracts that do not require it. This makes intuitive sense, as the 

maintenance period results in less timber supply making it onto the market. At low  

carbon prices the differences between contracts is not very substantial. Although, at a 

price of $10 per tonne, the maintenance period following the 20-year contract seems 

to smooth its respective price series out, indicating that at lower carbon prices, these 

maintenance periods could reduce price volatility. This is further evidenced in Figure 

3.5 Panel (C) in which the 40-year contract with a 40-year maintenance period results 

in less price volatility. The higher prices work as an incentive to join into the 

program. This indicates that the market-based benefits of forest-based carbon offsets 

could help the performance of these programs. However, the generalization of this 

result should be done with caution, as the solution method does not perfectly account 

Figure 3.5: Log prices for lumber mills by contract type and by carbon price 
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for strategic behavior or heterogeneous preferences amongst forest managers. An 

extended explanation of this result can be found in Section B.2 of the appendix. An 

interesting observation is that at very high carbon prices, the 40-year contract with a 

40-year maintenance has approximately the same price path as the 20-year contract 

with no maintenance. This is likely due to the fact that both programs have very 

similar enrollment, indicating that the expected benefits of joining such a program are 

similar for forest managers.  

 

Table 3.3: Acres enrolled for contracts that include maintenance and their 
corresponding no-maintenance contracts. 

 20 Year 

0 Maintenance 

20 Year 

20 Maintenance 

40 Year 

0 Maintenance 

40 Year 

40 Maintenance 

$5 / tonne 1813163.58	 1736190.75	 1756725.23	 1763935.17	

$10 / tonne 2160276.88	 2231630.18	 2270635.95	 2294237.28	

$25 / tonne 2485502.77	 2816145.41	 2895881.38	 3003529.4	

$50 / tonne 2681952.55	 2986649.29	 3228909.06	 2680888.78	

 

  

The maintenance periods consequently impact carbon sequestration in an 

intuitive way. With one exception, the 20-year contract with a 20-year maintenance 

period will sequester more carbon for longer than the 20-year contract alone, however 

it will not sequester as much as the 40-year contract with no maintenance. Similarly, 

the 40-year contract with a 40-year maintenance period will sequester more carbon 

for longer than the 40-year or 60-year contract exclusively, but not more than the 80-

year contract. This is due to the fact that the 80-year contract has the added incentive 

or receiving payments for an additional 40 years, and so intuitively it should 

outperform a contract in which payments are only received for half of its payment 

period. The exception is the 40-year contract with a 40-year maintenance period, 

which performs similarly to the 20-year contract with no maintenance. This is due to 

the same enrollment dynamics. Being charged 50 dollars per tonne of removal in the 

maintenance period is a substantial cost that, given 40 years of timber build up, many 
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landowners are not willing to pay. Unlike in other scenarios, the discount rate does 

not diminish the cost as much either.  

 Maintenance periods appear to have a number of effects on the performance 

of forest-based carbon offsets. Maintenance periods that are too long supress 

enrollment at higher carbon prices, resulting in substantially worse outcomes. At 

lower carbon prices, they result in more carbon sequestration over their duration, and 

reduce price volatility in the log market. At lower carbon prices, they also incentivize 

enrollment by pushing later-period log prices up through restricting supply.  

 

3.6. Conclusion 

 In this paper, we address the effects of contract duration on the performance 

of forest-based carbon offset programs. These programs are an important tool for the 

cost-effective abatement of greenhouse gas emissions, and their design is a critical 

aspect in their performance. We are the first paper to examine the role that contract 

duration plays in a voluntary forest-based carbon offset program. We are also the first 

to study contract duration for ecosystem service contracts in a partial equilibrium 

context, in which we can infer region-wide economic consequences of each type of 

contract. We further investigated how the price of carbon influences the effect of 

contract duration on program performance. We assessed program performance in 

terms of enrollment, carbon sequestration, and economic impacts.  

 Our methodology involved employing a partial equilibrium model of the 

forest sector in western Oregon in which log prices are endogenized. Furthermore, 

our model allows for changes in capacity at the mill level that respond to the supply 

in the region. Within our partial equilibrium model, we utilize the carbon dynamics 

described by Im et al. (2007) in order to track the amount of carbon on the landscape. 

We track prices by product as well as capacity by product. All of this provides a 

detailed examination of how contract duration influences the program performance as 

well as the regional forest sector.  

 We find that enrollment in forest-based carbon offsets is affected by both the 

price of carbon, as well as the duration of the contract. In general, there is not a 

substantial difference in enrollment in terms of acres between contracts of differing 
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length at low prices of carbon. However, as prices increase, differentiation begins to 

occur, especially with respect to the 20-year contract. That being said, at just about 

every price of carbon, there is little difference in terms of enrolled acres between 

contracts of 60-years, 80-years, and 100-years.  

 Though there are not substantial differences observed in terms of acres 

enrolled, each price and contract specification combination yields substantially 

different results in terms of carbon sequestration. At a carbon price of $5 per tonne, 

little difference is seen between the different contracts. However, we also see that at 

the end of the time horizon, the 20-year, 40-year, and 60-year contracts end up with 

less carbon on the landscape than a policy in which no carbon offsets are sold at all. 

The inclusion of a maintenance provision in the contract alleviates the feature. At 

carbon prices of $25 and $50 dollars, we observe substantially different levels of 

carbon sequestration on the landscape. With the exception of the contracts with 

maintenance provision, each contract outperforms the others over the course of it’s 

own lifetime in terms of carbon sequestered. The higher the price and longer the 

contract, the larger the build up of carbon on the landscape, leading to a more rapid 

decline once the contract expires. This drawdown is not as substantial for low carbon 

prices, but for very high carbon prices, it is very rapid.  

 We find that the rate of the drawdown after the contract expires is related to 

the price level, and the economics of the forest sector in general. The build up of 

timber in the region drives the prices of logs for both plywood and lumber up. The 

higher the price of carbon, the higher the price gets in the beginning, before 

unenrolled land begins to respond, growing more timber and drawing the price down. 

When the contract expires, the price of logs plummets as supply floods the market, 

reducing the amount of harvest on unenrolled lands. The increase in supply after the 

contract expiration results in mill capacities increasing as well. So much so, that for 

some of the shorter contracts at lower carbon prices the amount of carbon on the 

landscape ends up being lower than in the scenario in which no policy occurs.  

 This paper also investigates the possibility of adding maintenance provisions 

into the contract. We find that in general they help shorter contracts more than longer 

contracts. In the case where the maintenance period is longer, and the carbon price is 
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very high, we find that the inclusion of a maintenance provision can have negative 

effects on program performance through cutting enrollment. However, for lower 

prices of carbon, maintenance provisions are shown to reduce the price volatility 

associated with typical offset contracts. Surprisingly, maintenance provisions are 

shown to attract more acres into enrollment through keeping log prices higher for 

longer. The generalization of that last result may not hold in situations of price 

uncertainty, as well as when there is heterogeneous preferences amongst forest 

managers.  

 There are a number of limitations with this study that should be taken into 

account when generalizing results. The model we employ maximizes the net benefit 

in the regional forest sector across all time-steps simultaneously, and does not 

incorporate uncertainty about prices. These have been shown in the past to play a 

large role in forest management (see Chapter 4). Another limitation is that our model 

is limited to considering a single period of enrollment. That is, the only year that the 

contracts are available are the initial year. Forest managers cannot re-enroll once the 

program is over, and unenrolled lands cannot enroll in other time steps. Though log 

prices are endogenized within our model, the carbon price is exogenous and static.  

 The limitations discussed above also provide the foundation for future studies 

in this area. Similar projects which have multiple enrollment periods would shed 

more insight into the role of contract duration. Also, uncertainty about future values 

of carbon price, coupled with price dynamics, would be an interesting extension to 

this work. Furthermore, incorporating forms of permanence discounting, such as (e.g. 

Kim et al., 2008), would allow for the construction of marginal abatement cost curves 

that take into consideration impermanent sequestration. 

 Our study provides evidence of the impacts of contract duration on program 

performance. As more states, such as Oregon, adopt schemes to reduce their carbon 

footprint, the design and implementation of offset programs will play an important 

role in the success of these schemes. Our study contributes to this dialogue in a way 

that previous work on contract duration has not to this point.  
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4. Measure Twice, Cut Once: Optimal Inventory and Harvest under Volume 
Uncertainty and Price Volatility 

 

4.1. Introduction 

One reason information is valuable in decision making is that it tends to 

reduce the expected cost of uncertainty (Stiglitz, 2002). In natural resource 

management, multiple forms of uncertainty may be encountered that cannot be treated 

equivalently (LaRiviere et al., 2017). For instance, uncertainty about future 

realizations of a stochastic state variable must be handled differently from uncertainty 

about parameters of that variables transition equation in a formal model of optimal 

decision making. Stochasticity is treated as irreducible, while uncertainty about a 

parameter may often be reduced over time through learning. A third type of 

uncertainty that characterizes many natural resources is state uncertainty. State 

uncertainty involves uncertainty about the current value of a stochastic dynamic state 

variable, and arises because it is either not possible or cost prohibitive to perfectly 

observe the variable in every period through precise measurement. 

State uncertainty is a challenge that is commonly encountered in decision 

making for natural resource problems (Kling et al., 2017) as well as many other areas 

of economics, including regulatory enforcement (White, 2005), quality testing 

(Matthews & Postlewaite, 1985), and stock pollution regulation (Hoel & Karp, 2002). 

Since at least the early contribution by Dixon & Howitt (1980), economists have 

recognized the routine nature of state uncertainty, and noted how natural resource 

managers (a common label for decision makers in this context) often respond by 

investing to observe the current state of their resource through measurement. Because 

these activities are costly and typically yield observations that contain error, it is in 

the best interest of the manager to plan them efficiently and carefully utilize the 

information. A challenge is that, while it is typically easy for a resource manager to 

gauge the upfront cost of investment in information, it is more difficult to measure the 

benefits of the investment. 
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Nearly all economic models of optimal natural resource management ignore 

state uncertainty and effectively assume resource managers have access to costless 

and arbitrarily accurate observations of state variables. Due in part to recent advances 

in optimization methods, a growing literature addresses the disconnect between 

standard theory and the information available to resource managers in the real world 

(Fackler & Haight 2014; MacLachlan et al., 2016; Kling, Sanchirico, & Fackler 

2017). While they vary structurally and in their application, these studies limit their 

attention to problems where all dynamic state variables important for decision making 

are subject to uncertainty. However, most problems involve a complicated mix of 

variables that are imperfectly observable, and variables that can be observed with 

perfect certainty. A problem such as this is instead one of mixed observability. The 

challenge in heterogeneous information environments of this type is to understand the 

joint influence of variables with differing degrees of observability on optimal 

decision making. 

Our aim in this paper is to address the problem of mixed observability in a 

model of optimal renewable resource harvest timing when the resource is not 

perfectly observable while the resource price is stochastic but perfectly observable. 

The framework we employ to construct our model is known as a continuous-state 

Mixed Observability Markov Decision Process (MOMDP). Examples of MOMDPs 

addressing natural resource management have so far been limited to highly stylized 

applications where the resource state variable is discretized into a small number of 

categories (e.g. Chadés et al. 2012). A continuous-state MOMDP approach allows for 

a more realistic description of resource dynamics. The apparent lack of continuous-

state MOMDPs in economics is partly due to their technical difficulty; continuous-

state MOMDPs are in general analytically intractable and cannot be solved exactly on 

a computer. In order to preserve the realistic continuous-state dynamics of the 

resource, we extend a solution technique from Zhou et al., (2010) that numerically 

approximates the solution to our problem. To the best of our knowledge our model 

represents the first analysis of a continuous-state MOMDP involving state uncertainty 

in the natural resources literature. 
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We apply our model to the problem of forest resource management. We 

believe this is a good choice for several reasons. Forest management involves a 

combination of perfectly observable variables such as forest product prices, and 

imperfectly observable variables such as timber volume. Timber volume exhibits 

state uncertainty because growth is stochastic and observations are obtained through 

costly surveys, called inventories (Scott & Gove 2002; Pukkala & Kellomäki 2012). 

Current timber prices in well-functioning markets like those found in industrialized 

timber producing countries, on the other hand, can be reasonably assumed to be 

perfectly observable within the time frame of a year at negligible cost. Forest biology 

and other determinants of productivity with some exceptions (e.g., novel invasive 

pests or pathogens) are well-studied, making the simplifying assumption of no 

parameter uncertainty more plausible for this case than other biological resources. 

Lastly, to our knowledge, no rigorous microeconomic theory of forest inventory 

exists. Despite inventory being a common activity within forestry (Scott & Gove, 

2002), this is the first study to our knowledge that generates optimal timing for 

inventories. 

We find a relationship between price stochasticity and measurement behavior. 

We show that price stochasticity influences the optimal timing of measurements, for 

example by making it less likely that the manager measures at high prices. This 

supports the argument that perfectly observable variables must be considered when 

optimizing inventory strategy. We also find that state uncertainty influences optimal 

harvest timing, and that for low levels of certainty and low levels of price, harvest 

occurs at lower volume levels than without state uncertainty. This indicates that state 

uncertainty is an important consideration for models of natural resource management. 

Both results support the argument that inventory and harvest must be optimized 

together, rather than separately. This contends with other approaches at scheduling 

measurement that rely on rule-of-thumb scheduling (e.g. Northwest Natural Resource 

Group and Stewardship Forestry, 2014).  

Additionally, we find that inventory adds value to the forest when compared 

against a counterfactual in which no inventory occurs. We find that the Net Present 

Value (NPV) of a forest that optimally invests in inventories nearly matches the NPV 
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of a stand that can perfectly observe timber volume. This result contributes to 

previous studies (e.g. Eid et al. 2000) that show drops in NPV due to misinformation 

about the timber volume to be substantial for some forests. We demonstrate that 

inventory has the ability of minimizing this loss, and on average will come very close 

to eliminating it entirely.  

In what follows, section two will present a background on the relevant 

literature on uncertainty in natural resource management. Section three will discuss 

the background on forest management under uncertainty as well as details about 

forest inventory. Section four will present the model and the solution method. Section 

five will present and discuss the results of our model. This paper will conclude in 

section six. Further detail on model parameterization and solution methods can be 

found in the appendix. 

 

4.2 State Uncertainty in Models of Natural Resource Management 

While state uncertainty is a common challenge in natural resource 

management, most research in economics and related quantitative disciplines 

emphasizes other types of uncertainty encountered by decision makers (LaRiviere et 

al., 2017). Models of optimal decision making in resource management that consider 

types of uncertainty that are more general than stochasticity usually focus on 

parameter uncertainty. Parameter uncertainty describes a situation where a resource 

manager does not know the true value of a parameter of the problem, such as the 

carrying capacity of a wild population or coefficients of a resource commodity 

demand function. For example, Springborn & Sanchirico (2013) model optimal 

harvest of a fish stock when a key parameter governing survivorship of juvenile fish 

is unknown, but may be learned about from observing stock dynamics. While this 

literature provides a wide range of valuable insights into the role of learning and 

experimentation in resource management, nearly all studies assume that the current 

values of all state variables relevant for decision making are always known with 

certainty. This orientation of the literature has left the problem of making choices 
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when key states are either unobserved or partially observed relatively under 

examined1. 

State uncertainty differs from parameter uncertainty both conceptually and in 

terms of how it is operationalized in optimal resource management models. While 

parameters of a decision problem may often be approximated as static (if unknown) 

quantities, most state variables are inherently stochastic and dynamic. Crucially, 

because state variables evolve stochastically over time, in the absence of new 

information (either through direct measurement or indirect signals) a resource 

manager’s uncertainty about the current value of a state variable will typically grow 

from one decision period to the next (MacLachlan et al., 2016). 

The significance of state uncertainty in natural resource management has long 

been recognized, and there are a few path-breaking economic models that address it 

in an ad-hoc manner or by using highly simplified models (Dixon & Howitt 1980; 

Clark & Kirkwood 1986). Due to the computational challenge that state uncertainty 

presents in optimization models, more studies have appeared recently that owe their 

progress in part to greater computing power. The common thread among these 

contributions is their formalization of the management problem as Partially 

Observable Markov Decision Processes (POMDP) (Papadimitriou & Tsitsiklis, 

1987). Due to their greater numerical tractability, most POMDP applications in 

natural resource economics have assumed unobserved or partially-observable state 

variables take on only a small number of discrete values. This approach has been 

fruitful for problems when the state of a resource can be meaningfully categorized 

into a handful of pre-determined values (e.g., Fackler & Haight 2014). For example, 

                                                             
1 The multi-disciplinary literature on learning in optimal resource management is 
often grouped under the banner of “adaptive management” (Walters, 1986). The 
majority of papers in this literature restrict their attention to stochasticity and 
parameter uncertainty, and so this adaptive management is sometimes understood to 
be synonymous with parameter uncertainty. This has changed recently as state 
uncertainty has begun to receive more attention, and so a current understanding of 
adaptive management should be inclusive of models that account for state uncertainty 
(e.g., Chadés et al. 2017). However, because of this informal understanding and in 
order to emphasize our contribution to the economics of state uncertainty, we do not 
identify our model with the adaptive management literature. 
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White (2005) models regulatory compliance for natural vegetation conservation 

programs as a discrete-state POMDP, and find that the costs of measurement and 

prior beliefs about vegetation levels influence optimal monitoring strategies. 

Part of the reason discrete-state POMDPs are attractive is because the 

alternative – allowing state variables to vary continuously – results in a 

dimensionality problem that requires computationally demanding approximation 

techniques (Kling et al., 2017). On the other hand, most state dynamics in natural 

resource management are naturally modeled as continuous, or are at least difficult to 

break into the most relevant categories without advance knowledge of the optimal 

dynamics of the continuous system. In our application, for example, an implication of 

the most basic models of timber harvesting is that it will usually be difficult to 

construct a useful model of optimal harvest by pre-specifying a small number of 

timber volume categories, unless one knows from the solution to a more accurate 

continuous-state model how to choose a narrow discrete category that captures the 

right volume threshold where harvest is optimal. 

While they are substantially more challenging to solve, continuous-state 

POMDPs provide a more realistic depiction of natural resource management 

problems and align better with standard economic theory, in which resource stocks 

and most other state variables are modeled as continuous and possibly stochastic. 

Applications of continuous POMDPs are limited to a few recent studies. MacLachlan 

et al. (2016) examine disease spread amongst livestock, while Kling et al., (2017) 

focus on an invasive species management problem. Among several contributions, 

these recent papers illustrate how benchmark natural resource management models 

can be generalized to account for state uncertainty. However, neither study accounts 

for how observable stochastic-dynamic variables may influence optimal decision 

making, in particular how a resource manager responds to state uncertainty. 

In explicitly modeling stochastic price dynamics, we offer a novel economic 

application of continuous-state MOMDP methodology. As with POMDP 

applications, MOMDPs in the natural resource literature have so far apparently been 

confined to discrete-state problems because of the challenging curse of 

dimensionality. Chadés et al. (2012) outline a methodology for solving MOMDPs as 
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discrete hidden model MDPs (hmMDPs). One contribution of our model is 

illustrating how recent advances in addressing state uncertainty in continuous-state 

natural resource models can now be leveraged to analyze more general problems 

where some important stochastic-dynamic state variables are perfectly observed (or 

very accurately observed at negligible cost), while others are not. 

 

4.3 Inventory in Forest Science and Management 

Our model is applied to a case of forest resource management. Forest 

management is an important and long-standing area of research within natural 

resource economics. Forests provide both consumptive benefits through the provision 

of timber as well as non-consumptive benefits (Hartman, 1976). Previous research on 

forest management under uncertainty focuses on the influence of stochasticity from 

sources including price volatility (e.g. Thomson 1992; Plantinga 1998), wildfire risk 

(Reed, 1984), climate change (Guo & Costello, 2013), and stochastic biomass growth 

(Reed & Clarke, 1990). Morck et al., (1989) evaluate scenarios where both prices and 

quantity of the resource, measured as timber volume, behave stochastically. Studies in 

this field do not address state uncertainty, with the notable early exception of Dixon 

& Howitt (1980) who investigate timber removals in the Stanislaus national forest 

using a limited stochastic optimal control technique. 

The neglect of state uncertainty in forest economics, although not far out of 

step with other areas of natural resource economics, has meant that economists have 

been largely silent on the widespread practice and well-developed science of forest 

inventory. There are a wide variety of inventory options available to a decision 

maker, which we label for this context the forest manager. These methods range from 

collecting data on every tree in a forest (marking) or sampling the forest instead. 

Because marking is very costly, forest managers tend to survey their land instead to 

obtain an accurate yet imperfect signal of how much timber is available. These 

surveys are frequently carried out on the ground in what is called a “timber cruise” 

(Scott & Gove, 2002), but information can also be obtained from aerial observation 

(Naesset, 1997), as well as satellite imagery (Haapanen et al., 2000). Each of these 

techniques has an associated cost and expected level of error. 
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There is a significant amount of investment in inventory from both public and 

private sources. For example, total funding for the U.S. Forest Service’s Forest 

Inventory and Analysis (FIA) program in 2015 was $80 million (USDA, 2017). There 

are also many documents from university extension services with information and 

suggestions on how and when to inventory forests. Furthermore, surveys like Barlow 

& Levendis (2015) indicate that inventories are frequently performed on private 

forest land. 

Alongside anecdotal evidence from forest management practice, there exists a 

large forest science literature that explores methods of conducting forest inventories 

(Zobrist et al. 2012; Scott & Gove 2002). The focus of this literature is often on the 

development of more sophisticated statistical methods for better inventory design 

(e.g. Korhonen & Kangas 1997). Several studies in this area attempt to quantify the 

implications of poor information on timber volume. Eid et al. (2000) finds that 

suboptimal management decisions stemming from inaccurate measurements could 

potentially result in losses in the NPV of the forest. Holopainen et al. (2010b) found 

that inventory error was the largest contributor to errors in predicted levels of timber. 

Holopainen et al. (2010a) then calculated the loss in a forest’s NPV resulting from 

inventory error. Results by Kangas et al., (2015) further demonstrate the role of 

information quality in meeting specific forest management objectives. Waggoner et 

al. (2009) also provides a valuable discussion on discrepancies in forest inventory, 

and how those discrepancies influence estimates of important forest attributes, such as 

carbon stock. Given the large financial impact inaccurate forestry data can have on 

private management, our case study is economically relevant. These studies typically 

rely on standard forest sector simulations that do not consider state uncertainty 

explicitly in determining optimal management. Thus, they quantify the potential 

impacts of inaccurate forest data, but do not provide insights into how state 

uncertainty affects management, or optimal inventory timing. Taken together, these 

papers suggest–but do not rigorously demonstrate–that the optimal planning of 

inventory is maximizing the returns of managed forests. 
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4.4. Methods 

We develop a model of optimal resource extraction that includes both 

uncertainty about timber volumes and stochastic prices. The forest manager’s 

objective is to maximize the present discounted value from an infinite series of timber 

rotations, which includes profits from harvest as well as the cost of replanting the 

stand. We also introduce a control variable, which we label inventory, that provides 

an estimate, with error, of the current forest stand volume2. Each period, the forest 

manager chooses whether to harvest and replant the timber stand, to invest in 

inventory, or to do neither3. The decision to conduct an inventory is costly. The 

manager is assumed to observe the current timber price (but not future values) and to 

form a belief about the timber volume, which is represented by a probability 

distribution described by its mean and standard deviation. 

There are a number of simplifying assumptions we make in order to focus the 

analysis on state uncertainty, price dynamics, and the decision to invest in inventory. 

We assume that the forest is even-aged, comprised of a single species, and provides 

only consumptive values. Harvests are assumed to be in the form of clear-cuts. 

 

4.4.1 Forest Stand Growth Model 

The equation of motion for timber volume is given by: 

 

𝑋"#$ = 𝑓 𝑋" 𝑍"(𝑋") 

 

                                                             
2 In the literature on state uncertainty, a control variable that generates an observation 
of a state variable is often called “monitoring.” We use the label inventory instead 
because it is more common in the forest science literature. We do so at the risk of 
some confusion because inventory is sometimes also used as a synonym for the 
current level of the state variable (e.g., inventory of a durable good). In what follows, 
inventory is a control variable, not the timber volume state variable. 
3 In practice, forest management involves other activities such as thinning, the 
removal of biomass to promote the growth of remaining trees (Schultz et al., 1997). 
An area for future research is to include thinning as a control variable in the model, a 
possibility considered in the concluding section. 
 

(4.1) 
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where 𝑋" is the timber volume in period 𝑡, 𝑓(𝑋") is a deterministic component of 

growth, and 𝑍"(𝑋")is a stochastic component. The deterministic component, 𝑓(𝑋"), 

has the Beverton & Holt (1957) form:  

 

𝑓 𝑋" = 𝑋"
𝑟

1 + 𝑟 − 1
𝐾 𝑋"

							 

 

where 𝑟 is the intrinsic growth rate and 𝐾 is the carrying capacity of the forest. 

Absent growth shocks, Equation 4.2 implies that volume increases monotonically 

over time and asymptotes to 𝐾. 

The stochastic component 𝑍"(𝑋") is specified log-normal with volume-

dependent mean and variance: 

 

𝑍" 𝑋" = exp
1

(𝑋" + 1)
𝜎B$𝑢" −

𝜎BDD

2(𝑋" + 1)
 

 

where 𝑢" is a random draw from a standard normal distribution and 𝜎B$and 𝜎BD are 

positive parameters. 𝑍" 𝑋"  is strictly positive, but can be less than 1. This allows the 

timber volume to increase or decrease over time, and ensures that it remains positive. 

Conditional on 𝑋", the mean and variance of 𝑍" 𝑋"  are given by: 

 

𝐸 𝑍" 𝑋" = exp
[𝜎B$D − 𝜎BDD ]
2 𝑋" + 1 D  

 

𝑉𝑎𝑟 𝑍" 𝑋" = exp
2𝜎B$D + 𝜎BDD

𝑋" + 1 D − exp
𝜎B$D + 𝜎BDD

𝑋" + 1 D  

 

According to Equations 4.4 and 4.5, the mean and variance of the growth shock is 

decreasing in 𝑋". However, since the shock has a proportional effect on the existing 

stock, a shock of a given magnitude has a greater effect when the volume is larger. 

(4.2) 

(4.3) 

(4.4) 

(4.5) 
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There are many stochastic factors that can affect tree growth, such as weather, 

pest outbreaks, disease, and fire. Our choice for the form of 𝑍" 𝑋"  is based on 

patterns observed in timber growth data (which we describe in detail in the 

Appendix). Models of stochastic resource stocks are found in previous studies (e.g., 

Reed 1984; Morck, Schwartz, & Stangeland 1989), however, it is most common to 

specify a proportional growth shock with mean and variance that are independent of 

stock volume. In our application, this specification can lead to implausibly large 

changes in timber volume at higher volume levels. We adopt the general modeling 

approach for biological stocks proposed by Sims et al. (2017), which generates more 

realistic growth dynamics for timber stands 

 

4.4.2. The Forest Manager’s Problem 

The forest manager is a price-taker who decides, at the start of each period, 

whether the harvest and replant the stand. The net revenue from harvesting is given 

by:  

 

𝜋L(𝑋", 𝑃") = 𝑃"𝑋" − 𝐶L 

 

where  𝐶L is the cost of replanting the stand and 𝑃" is the per-unit timber price, which 

we model as a first-order autoregressive process4: 

 

ln	(𝑃"#$) = 𝛽Q + 𝛽$ ln 𝑃" + 𝜖"	 

 

where 𝜖" is a mean-zero normally-distributed error term. At the time the harvest 

decision is made, the manager is assumed to observe 𝑃", but not future values of the 

price. The manager never knows 𝑋" with certainty except immediately following a 

                                                             
4 In our model the per-unit price of the resource is the “stumpage” price, the price a 
harvester pays for the right to harvest a unit of timber on a parcel of land. The 
stumpage price is implicitly adjusted for any costs of harvesting. 
 

(4.6) 

(4.7) 
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harvest. The volume of a replanted stand is assumed to be fixed at 𝑋 and known to the 

manager. 

Timber volume is imperfectly observed, but the forest manager can obtain 

information about the volume with an inventory. For simplicity, an inventory is 

treated as a binary decision and, thus, managers do not also choose the sampling 

intensity. An inventory is conducted at the end of a period and yields an estimate of 

the volume,	𝑌", at the start of the next period. 𝑌" is related to the true volume 𝑋" by:  

 

𝑌" = 𝜔"𝑋" 

 

where 𝜔" is an iid random shock with nonnegative support. The constant variance of 

𝜔" implies that the sampling error of an inventory is constant, which accords with our 

treatment of inventories as a binary decision. Forest managers incur a cost of 𝐶U for 

each inventory. 

At the start of a period, the forest manager forms a belief about the timber 

volume, 𝐵" 𝑋" , using her knowledge of the deterministic growth function 𝑓 𝑋"  the 

distributions of the random variables 𝑍 𝑋"  and 𝜔" , and the relationship in Equation 

4.8. If an inventory was conducted at the end of period 𝑡 − 1, then the manager 

updates her belief about 𝑋"using the estimate 𝑌" and Bayes’ rule:  

 

𝐵"#$ 𝑋"#$ =
𝑝 𝑌"#$	 𝑋"#$) 𝑝 𝑋"#$	 𝑋")𝐵" 𝑋" 𝑑𝑋"	

𝑝 𝑌"#$	 𝐵"(𝑋"))

= 𝜓U 𝑋"#$, 𝐵", 𝑌"#$ 									 

 

 

where 𝑝 . . ) is a conditional probability. As in Zhou, Fu, & Marcus (2010), we 

specify 𝜓U .  as the Bayesian update function where the subscript 𝐼 indicates the 

availability of a new inventory. The denominator of Equation 4.9 is the probability of 

obtaining the estimate  𝑌" given current beliefs about timber volume, 𝐵"5$ 𝑋"5$ . It is 

expanded below as: 

 

(4.8) 

(4.9) 
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𝑝 𝑌"	 𝐵"5$(𝑋"5$)) = 𝑝 𝑌"	 𝑋"5$) 	𝑝 𝑋" 𝑋"5$)𝐵 𝑋"5$ 𝑑𝑋"𝑑𝑋"5$ 

 

If the forest manager does not conduct an inventory or harvest the stand, the belief 

state propagates through the stochastic timber volume transition function:  

𝜓8 𝑋", 𝐵"5$(𝑋"5$) = 𝑝 𝑋"	 𝑋"5$, )𝐵"5$ 𝑋"5$ 𝑑𝑋"5$ 

 

where the 𝑁 on the update function indicates that no inventory or harvest was done. 

Our MOMDP can be represented as a dynamic optimization problem over the 

Cartesian product of the belief state space and the price state space (Chadés et al. 

2012). The “belief × price” Bellman equation is presented below. To simplify the 

notation, we drop time subscripts and adopt the convention of denoting next period 

variables with a superscript “+”: 

 

𝑉 𝐵 𝑋 , 𝑃 = max
L,U

𝐻	×	[𝜋L 𝑋, 𝑃 + 𝛿 𝑉 𝑋	, 𝑃# 𝑝 𝑃# 𝑃 	𝑑𝑃#] +

𝐼		×	[−𝐶U + 𝛿 𝑉 𝜓U 𝑋#, 𝐵 𝑋 , 𝑌# , 𝑃# ×

𝑝 𝑌	# 𝑋#)		𝑝 𝑋# 𝑋)𝑝 𝑃# 𝑃 	𝑑𝑌#𝑑𝑋#𝑑𝑃#]

1 − 𝐻 1 − 𝐼 	×	[𝛿 𝑉 𝜓8 𝑋#, 𝐵 𝑋 , 𝑃#

𝑝 𝑋# 𝑋)𝑝 𝑃# 𝑃 	𝑑𝑋#𝑑𝑃#	]

𝐵 𝑋 𝑑𝑋 

 

𝑠. 𝑡.		𝐻 ∈ 0,1 ,			𝐼 ∈ {0, 1 − 𝐻}			 
 

In Equation 4.12, 𝐻 and 𝐼 are indicators for the forest manager’s choice of 

Harvest and Inventory, respectively, and 𝛿 is a discount factor. If the forest manager 

chooses harvest at the start of a period, she receives net revenues from the harvest 

plus a continuation value that depends on 𝑋, the volume of a replanted stand, and 

expectations of future prices according to Equation 4.7. In this case, the value 

function is given by the first term in brackets. If no harvest is done, then the manager 

has the option of conducting an inventory, which costs 𝐶U but yields a continuation 

(4.10) 

(4.11) 

(4.12) 



 

 

81 

value that accounts for the volume estimate 𝑌# that will become available in the next 

period. The value function in this case is the second term in brackets. Finally, if 

neither harvest nor inventory is chosen, the value function equals the last term in 

brackets, which is the continuation value updated for the stochastic volume dynamics 

in Equation 4.1. 

If a solution exists, Equation 4.12 can in principle be solved for the optimal 

value function 𝑉 𝐵 𝑋 , 𝑃  and a stationary policy function that provides the optimal 

control choice given the current period belief state and price. Like many dynamic 

optimization problems in economics involving state uncertainty, this Bellman 

equation does not have a closed-form solution. The following section summarizes our 

numerical solution method. 

 

4.4.3. Solution Method 

A technical description of the solution method is provided in the Appendix. 

We focus here on providing intuition and explaining key modeling choices. The high-

dimensionality of MOMDPs and POMDPs make them computationally difficult to 

solve in general (Papadimitriou & Tsitsiklis, 1987). Outside of special cases, exact 

numerical solutions are not possible due to the curse of dimensionality5. We apply a 

technique developed by Zhou et al., (2010), which uses a parameterized distribution 

to approximate the belief state. We select a log-normal distribution, which has the 

desirable property of a non-negative support, thus assigning positive probability only 

to strictly positive values for timber volume. A second advantage of the log-normal 

specification is that we can define the approximate belief state using only the mean 

and the coefficient of variation (CV), which are sufficient statistics for the log-

normal6. As discussed in Zhou et al., (2010), fitting the (simulated) posterior belief in 

Equations 4.9) and 4.11 involves finding the log-normal distribution parameters that 

                                                             
5 In our application, if timber volume were modeled as discrete with N possible 
categories, there would be N state variables: N − 1 probabilities defining the 
manager’s beliefs over timber volume and the current price. 
6 The coefficient of variation is the ratio of a random variable’s standard deviation to 
its mean. 
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minimize the Kullback-Leibler (KL) divergence from the posterior. Because the log-

normal is a member of the exponential family, the solution to this minimization 

problem has a convenient closed-form solution. 

The next step in the solution technique is to form a three-dimensional grid 

over the possible values of the mean and CV of the volume belief state and the price, 

where each node on the grid is mean, CV, and price triplet. We then employ value 

function iteration to solve for the policy function and value function, which relate the 

optimal action and expected value at each node. We adopt several procedures from 

Kling, Sanchirico, & Fackler (2017), including bilinear interpolation of the value 

function and the use of Halton draws for posterior belief state simulation. We also 

apply a numerical technique outlined in Fackler (2017) to reduce computational costs. 

In previous studies, storing the required state space transition model required a large 

amount of memory, and following a similar approach for this application would have 

been costly. To circumvent this problem, we exploit the independence of the price 

and belief state variables and store the associated state transition models separately. 

 

4.4.4. Numerical Application 

We find a numerical solution to the Bellman equation in Equation 4.12 using 

data on loblolly pine stands in Louisiana (more details on data sources and estimation 

procedures are found in Appendix C). Loblolly pine is the most commercially 

important tree species in the southern U.S. and tends to occur in pure stands (Gaby, 

1985). We use data from the Forest Inventory and Analysis database USDA 

(Accessed 2017) to parameterize the deterministic and stochastic components of the 

timber growth functions in Equations 4.2 and 4.3. Data on real stumpage prices are 

taken from Howard & Jones (2016) for the period 1965-2013 and used to estimate the 

autoregressive price function in Equation 4.7. The parameter estimates indicate a 

stationary price process. Inventory, harvest preparation, and replanting costs are taken 

from Dooley & Barlow (2013) and data from Reynolds (2013) is used to characterize 

a typical timber inventory in the region and to derive the sampling error of an 

inventory. We use a discount factor equal to 0.972, which is an estimate derived by 
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Provencher (1995) for Southern Pine timber management. All parameters used in the 

numerical application are reported in the Appendix. 

 

4.5. Results 

In addition to the original policy described in previous sections, referred to 

hereafter as the ’with inventory” (WI) policy, we generate several counterfactual 

policies. These counterfactual policies are used to explore the implications of the 

model results. We solve for a policy in which there is state uncertainty, but the forest 

manager is restricted from investing in inventory (referred to as the “no inventory” 

(NI) policy). In another counterfactual policy, state uncertainty is removed altogether 

such that the forest manager can perfectly observe the volume of timber in the forest 

(referred to as the “perfect observability” (PO) policy). The PO policy is used as a 

benchmark by comparing its performance in simulations to those of the WI policy 

and NI policy. In both the NI and PO policies, prices remain stochastic and perfectly 

observable in the present period, just like in the WI policy. We also generate variants 

of the WI policy in which prices are held constant at specific values, in order to assess 

to effect of price stochasticity more explicitly. Wherever relevant, the same functional 

form choices, parameter values, and solution procedures are used to obtain solutions. 

An exception to this is in a set of counterfactuals we generate where the forest 

manager is misinformed as to the proper parameter values of the timber growth 

function. We include the analysis of this counterfactual as part of the sensitivity 

analysis. 

 

4.5.1. Optimal Harvest and Inventory with Price Volatility 

Approximating a solution to the forest manager’s problem described in 

Section 4.4 generates a policy function that relates each combination of price level 

and belief state (summarized by the mean and CV of a log-normal distribution) to an 

optimal action. The mean of the belief state represents the forest manager’s current 

point estimate of timber volume, which is also the volume of timber the forest 

manager would expect to receive should she chose to harvest in the current period. 

The CV can be intuitively thought of as a measure of the confidence the forest 
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manager has about the expected timber volume. In order to aid in the interpretation of 

the results, the mean and CV of the belief state will be referred to as the expected 

timber volume and confidence, respectively. 

The policy functions for the WI, NO, and PO policies are three dimensional 

objects, except when prices are held constant. As these objects are difficult to 

represent visually, we instead show cross sections of policy functions in which 

confidence is being held constant Figure 4.1. The levels of confidence are drawn from  

different ends of the distribution of realized values obtained from simulations of  

 

 

 

forest management under the WI policy. Each cross section is divided into expected 

volume-current price regions where it is optimal to conduct an inventory, harvest and 

replant, or do nothing. For reference, we also show the volume-price harvest 

threshold from the PO policy. For a given (perfectly-observed) volume, the PO 

threshold divides price space into harvest and delay regions7. When volume is low, a 
                                                             
7 Similar results are found in Brazee and Mendelsohn (1988) and Plantinga (1998). 

Figure 4.1: Cross sections of the WI policy function holding confidence constant at 
the 30th percentile (a) and 50th percentile (b) of levels recorded in simulations of 
stand management. The cv values associated with the 30th and 50th percentile are 
0.11 and 0.52, respectively. The perfect observability threshold is overlaid for 
comparison. 
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high current price is needed for harvesting to be optimal because the manager must be 

compensated for foregoing future volume growth and the option value associated 

with harvesting later at higher prices (Plantinga 1998). 

The cross sections in Figure 4.1 illustrate that higher per-unit prices result in it 

being optimal for the forest manager to harvest at lower expected timber volumes 

compared with lower per-unit prices. This is not solely due to the fact that higher per 

unit prices generate more revenue from harvest for the forest manager. Estimating the 

parameters of Equation 4.7 (described in the appendix) reveals that the price process 

is mean-reverting. Because the price process is mean-reverting, the forest manager 

expects per-unit prices to fall when they are above the mean, which creates an 

incentive for the forest manager to take advantage of the high per-unit price while 

they can. This result is consistent with standard models of timber harvest timing that 

address price volatility but ignore state uncertainty (e.g. Plantinga 1998). 

Per-unit prices also influence optimal investment in inventory. While higher 

prices result in inventories at lower expected timber volumes (Figure 4.1, Panel (b)), 

this relationship is not preserved at high confidence (Panel (a)). When the forest 

manager’s confidence is high, inventories are only optimal at prices near the mean 

price level under our chosen parameter values, an area where the future price is 

expected to be close to the current price. For expected timber volumes near the level 

where harvest is optimal, inventory is optimal due to the forest manager expecting to 

harvest soon. Since action is expected to be imminent, inventory is done to ensure 

that the true volume is not in reality well within either the “do nothing” or “harvest” 

zones. 

Panel (b) of Figure 4.1 also demonstrates that lower levels of confidence 

result in inventory being optimal at a greater number of per-unit price levels and 

expected timber volumes. As confidence decreases, the “inventory” region expands 

around the mean per-unit price and hugs the border of the “harvest” zone. In Panel 

(a), which shows a cross section at a lower level of confidence, inventory is optimal 

for high per-unit price and low expected timber volume combinations. This is 

similarly due to both high expected timber revenues from harvesting, as well as the 
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expectation that prices will fall. Given the lower level of confidence (and thus higher 

uncertainty about the true volume of timber), the forest manager has a stronger 

incentive to have a more accurate volume estimate. At lower per-unit prices, 

inventory can be optimal when the price is sufficiently close to the mean per-unit 

price and expected volume is high. This is because the forest manager expects prices 

to remain at that level, and so they are more cautious about harvesting at low levels of 

confidence, since there is no perceived risk of missing out on a high price. 

So far, the level of state uncertainty – as measured by confidence – appears to 

have only a modest effect on the expected volume and per-unit price combinations 

that trigger the forest manager to harvest and replant. The boundary of the region in 

which harvest is optimal for the WI policy nearly matches the PO harvest threshold in 

Figure 4.1, Panel (a). However, at low levels of confidence, this is not the case. The 

policy function cross section in shown in Panel (b) demonstrates that the harvest and 

inventory zones in the WI policy begin to deviate from the PO harvest threshold when 

the per-unit price is low and expected volume is high. When confidence is very low, 

the forest manager internalizes the chance that there may be substantially more timber 

volume in the forest than she expects. This is due to the fact that the forest manager’s 

beliefs are described by a nonnegative probability distribution. In our application, 

fixing the CV of the lognormal that approximates the belief state at a low level 

assigns more probability to higher expected volume levels. As a result, lower 

confidence levels create an incentive to “gamble” on volume being higher, through 

either harvesting or investing in inventory, at per-unit price and expected volume 

combinations at which it would otherwise be suboptimal in the absence of state 

uncertainty. 

 

4.5.2. Valuing Forest Inventory 

We compare the realized performance of the WI, NI, and PO policies as a 

means of measuring the value of forest inventory. We simulate management of 5,000 

different timber stands, managed under each of the three different policies (WI, NI, 

PO). Each of the 5,000 timber stands we refer to as a simulation. For each simulation, 
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all three policies share the same set of i.i.d. random shocks, allowing each policy to 

act as a true dynamic counterfactual to the other. 

 

In addition to simulating the three policies mentioned above, we also simulate 

a myopic version of the WI policy. The myopic WI policy is like the WI policy in that 

the forest manager faces state uncertainty, but unlike the WI policy, the forest 

manager must invest in inventory every seven years. This version of the WI policy is 

meant to mimic rule-of-thumb strategies to investing in inventories. Examples of such 

strategies can be found throughout the extension literature (e.g. Northwest Natural 

Resource Group and Stewardship Forestry, 2014). 

Figure 4.2 shows expected value over time from one of the 5,000 simulations 

chosen as an example for the WI policy (Panel (a)), and for the NI policy (Panel (b)). 

For the PO policy which appears in both panels, the expected volume is simply the 

Figure 4.2: The Dynamics of Expected Value for the WI with stochastic prices (A) 
and the NI policy with stochastic prices (B). 
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actual volume, given that there is no observational uncertainty in that counterfactual. 

Inventories allow the forest manager to more closely follow the PO policy. In Figure 

4.2, Panel (b), beliefs about timber volume are overestimated in the NI policy, which 

leads the forest manager to harvest earlier than either the PO or WI policies. This 

example is a stark illustration of how inventory affects harvest timing. This in turn 

influences the realized NPV of forest management. We also see that the NI policy 

becomes more responsive to price fluctuations, as it exhibits a greater difference in 

harvest timing between it and the PO policy. Figure 4.2 also demonstrates that the 

level of confidence in the expected value of the stand plays a substantial role in 

management. In both panels of Figure 4.2, the 95% confidence interval is shown 

along with the PO policy and each panel’s respective policy. 

We report the average percent differences in NPV relative to the PO policy for 

both the WI and NI problems in Table 4.1. Within each simulation, we calculate the 

percent difference in NPV between the PO and WI policies, and between the PO and 

NI policies. We also calculate the standard deviations of both distributions of realized 

percent differences8. 

Not being able to invest in inventories reduces the value of the forest stand by 

2.31% compared to the PO policy. The standard deviation of the percent difference is 

substantial at 15.05%, indicating that the returns from the NI policy are less 

predictable than that of the WI policy. The high standard deviation for the NI policy 

also provides evidence that without inventory, the forest manager runs the risk of 

performing far worse than either the NI or PO policies. 

                                                             
8 The standard deviations reported in Table 1 should not be interpreted as standard 
errors of a point estimate. In this exercise, the full data generating process of the 
forest manager’s problem is known precisely and these results can be made exact 
with progressively more simulations at the cost of more computing time; the 
simulations reported here took 2.5 days to complete done in parallel on a dedicated 
processing machine with 41 cores utilized 
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The WI policy tends to perform better than the NI policy. On average the WI 

policy comes remarkably close to matching the NPV of forest management in the 

absence of state uncertainty. This means that the benefit provided by inventory tends 

to more than cover the cost, adding additional value to the stand relative to the NI 

counterfactual. This is surprising given the sophisticated Bayesian structure of the NI 

policy, which makes it tough competition for the WI policy. Furthermore, the returns 

from the WI policy are far more predictable; the standard deviation of the gap 

between the WI and PO policies is less than half of its level when the forest manager 

cannot invest in inventory. 

The myopic WI policy tends to perform worse than either the WI policy or the 

NI policy. The reason for this is because of an over-investment in inventory. Though 

inventory can improve the value of the stand, it only improves the value if done 

optimally. On average, the myopic WI policy invests in inventory four times as often 

as the WI policy, the costs of which reduce the NPV to a level below a forest 

managed under the NI policy. However, the returns from forest management become 

more predictable under the myopic WI policy. The frequent investments in inventory 

result in a lower standard deviation than either the WI policy or the NI policy. 

 

4.6. Sensitivity Analysis 

Many aspects of the results are sensitive to the assumptions we make in the 

model. We selected the assumptions on the basis that they would provide the most 

conservative estimates of the value from conducting inventory. In this section, we 

relax and change a set of these assumptions in order to highlight results in the model, 

Table 4.1: Mean and standard deviation of WI, NI and myopic WI policy 
performance relative to the PO policy 
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such as the effects of price stochasticity, as well as provide additional information 

using assumptions that may be less conservative but realistic. 

 

4.6.1 Fixed Prices 

The role of price stochasticity can be investigated by constructing an 

additional counterfactual in which prices are constant. We solve for three separate 

policies in which prices are held constant at a low, medium, and high level. These 

price levels are based on what is observed in the simulations. The policy functions of 

these constant price counterfactuals are two-dimensional, unlike the policy function 

from Figure 1. Instead of showing the combinations of price and expected volume at 

a specific confidence level at which harvest or inventory is optimal as in Figure 1, 

Figure 4 shows the combinations of confidence and expected volume at which a 

given action is optimal for specific levels of price. It is a differently oriented cross-

section than Figure 1. This is done in order to provide a proper comparison of the WI 

policy with its corresponding constant-price policies. 

Figure 4.3 demonstrates that although price level alone plays a role, although 

it is slight. Panels (b), (d), and (f) of Figure 4 all look similar save for the fact that as 

the per-unit price increases, both the “inventory” and “harvest” regions occur at lower 

levels of expected volume. This is consistent with classic models that do not consider 

either price stochasticity or state uncertainty (e.g. Faustmann 1849). The relationship 

that state uncertainty has on optimal harvest and inventory timing is also apparent 

from Panels (b), (d), and (f), in that lower levels of confidence (measured by the CV) 

results in inventories and harvests at lower levels of expected volume. 
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Figure 4.3: Policy cross sections holding price constant at low, medium, and high 
levels for WI policy with both stochastic prices (Panels A,C,E) and constant prices 
(Panels B,D,F). 
 

The slight changes in harvest and inventory timing shown in Figure 4.3, 

Panels (b), (d), and (f) are in contrast to Panels (a), (c), and (e), which show large 

differences in optimal harvest and inventory timing at differing price levels when 

prices are stochastic. At low prices, the forest manager is incentivized to only harvest 

at high levels of biomass as well as low levels of confidence – a result consistent with 

the “gambling” behavior observed in Figure 4.1 Panel (b). Though the differences 

between the policies with constant prices are due to the level of the per-unit price, the 

differences between the policies with and without stochastic prices are attributable to 

price stochasticity. 
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Viewing the WI policy from this perspective also reveals important results. 

Figure 4.4 Panel (a) shows a non-convexity in the policy function that occurs at low 

levels of confidence (high CV), and high expected volume levels. Similar non-

convexities appear elsewhere in the literature (e.g. Marten & Moore, 2011) and have 

been attributed to fixed costs of treatment. Similarly, the wedge between the 

“inventory” and “harvest” regions in Panel (a) of Figure 4.2 is a direct result of the 

fixed cost of inventory. At low prices and high levels of expected volume, there is a 

very high probability that the state of the system in the next period will lie within the 

“harvest” region of the WI policy function. The value of an inventory is therefore 

diminished at very high expected volume levels. At a certain point, the value of the 

inventory is less than the cost of obtaining one. Therefore, a wedge is created between 

the “inventory” and “harvest” regions. This wedge can be seen in Figure 4.1 as well. 

 

4.6.2. Alternate Growth Model 

The assumption that the forest manager has the correct model with respect to 

volume growth is a very conservative assumption. In reality, resource managers very 

rarely have a precise model of their specific resource. We construct two additional 

counterfactuals that capture the possibility of the forest manager having the wrong 

growth model. We construct one in which all of the growth parameters are 

misspecified 9(Figure 4.5, Panel (b)) and one in which only the stochasticity is 

misspecified (Figure 4.5, Panel (c)). For the sake of comparison, we also include in 

Figure 4.5 an additional panel which is the WI policy cross section (Figure 4.5, Panel 

(a)). The parameters for the alternative growth functions can be found in the 

Appendix. 

The effect of a larger proportional shock that is not scaled by timber volume 

can be seen while comparing Panels (a) and (c) of Figure 4.4. A more substantial 

shock results in a larger inventory region, holding confidence constant. Furthermore, 

                                                             
9 The growth parameters used for this exercise are estimated from the same dataset as 
the main parameters. The difference is that the stochastic parameters are set to both 
equal .1, then the intrinsic growth rate, intrinsic capacity, and initial volume are fit as 
before. 
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the harvest region is slightly smaller in Panel (c) than in Panel (a). The differences 

observed between Panels (a) and (b) of Figure 4.4 that are not already observed 

between Panels (a) and (c) are a result of differences in the deterministic portion of 

the model. The model used to generate the policy function in Figure 4.4, Panel (b) has 

a larger capacity, but slower growth rate. Both of those features mean that the forest 

manager has the option of waiting longer to improve their expected value, as the 

stand will grow for a longer period of time. This effectively increases the window 

over which it may or may not be optimal to harvest. Due to this increase, the potential 

to mistime a harvest also increases, leading to a higher value of inventory, and thus a 

larger inventory region. The differences seen in Figure 4.4 demonstrate the 

interaction between the model parameters of the deterministic portion and the 

stochasticity of growth. 

 

Additionally, Figure 4.4 reveals another non-convexity in the policy function 

in Panel (b). A similar shaped non-convexity exists in the WI policy function, but at 

levels of confidence that are sufficiently low as to not appear in the simulations. 

Unlike the previous non-convexity on the right-side of the inventory region which is 

Figure 4.4: Policy Cross Sections at a relatively high CV value for the WI policy 
(a), WI policy with an incorrect model specification (b), and the WI policy with a 
correct deterministic specification, but misspecified stochastic dynamics (c). 
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due to fixed cost, the non-convexity on the left side is attributable to price dynamics. 

The wedge of the left-side non-convexity begins at the mean price level, and then 

fans out to the left. At that price level, the forest manager does not expect prices to 

increase or decrease. Thus, the only way the forest manager expects to enter the 

harvest region is through the timber volume increasing. At higher prices, although the 

forest manager expects the price to go down, there is still an incentive to harvest 

earlier, which pushes the inventory to the left. At lower prices, the forest manager 

expects both the timber volume to increase, and for the price to go up, meaning that 

there is a higher likelihood of ending up in the harvest region in the next time step. 

Because of this, it becomes optimal to invest in inventory at lower prices and 

expected volume levels than if the price were at it’s mean value. 

 

4.6.3. Initial Conditions 

 We test whether the results described in Section 4.5.2 are sensitive to the 

initial condition of the forest, as well as the initial beliefs about the forest. In our 

previous simulations, the initial condition for biomass is set to be the replanting 

biomass, which assumes that we are working with a regenerating stand. Forest 

management involves payoffs that are separated by long periods of time, which 

means that discounting will influence the magnitude of the difference in NPV 

between different policies. Additionally, because the stochastic component of 

Equation 4.1 is scaled by the timber volume, the initial conditions will affect the 

belief dynamics of the problem as well. In order to evaluate the effects of the initial 

conditions on the NPV differences between each policy, we run four additional 

simulations10 at a different initial condition under four different belief state 

specifications.  

 We begin by setting the initial condition of timber volume in the stand to 

911.29 cubic feet of timber. The first counterfactual we analyze is one in which the 

forest manager has an accurate and certain belief about the true value of the timber 

volume. This simulates the case following an inventory in which the forest manager 

                                                             
10 The simulations presented in this section are over a shorter time horizon (50 years) 
with fewer realizations (50).  
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receives an accurate measurement from a forest inventory. This will be referred to as 

the accurate and certain counterfactual. The next counterfactual is one in which the 

confidence of the forest manager is low, but the expected volume is still accurate, 

referred to as the accurate and uncertain counterfactual. The third counterfactual has 

an inaccurate expected volume level, but a forest manager who is confidence about 

the estimate. This counterfactual refers to a situation in which the forest manager 

invested in an inventory and received an inaccurate measurement. The third 

counterfactual is referred to as the inaccurate and certain counterfactual. The fourth 

and final counterfactual is referred to as the accurate and uncertain counterfactual, 

and features an inaccurate initial expected volume and a low level of confidence. The 

table detailing the results of this simulation are shown in Table 4.2.  

 

Table 4.2: The performance of each policy contingent on different initial conditions 

 

Counterfactual 

 

Policy 

Average NPV 

relative to PO 

NPV 

Standard 

Deviation 

Accurate  With Inventory (WI) 1.08% 8.09% 

and certain Without Inventory (NI) -0.79% 11.96% 

 Myopic with Inventory (WMI) -0.016% 7.48% 

    

Accurate  With Inventory (WI) -1.46% 12.18% 

and uncertain Without Inventory (NI) -3.48% 14.32% 

 Myopic with Inventory (WMI) -4.64% 9.13% 

    

Inaccurate  With Inventory (WI) -2.85% 14.62% 

and certain Without Inventory (NI) -4.85% 16.62% 

 Myopic with Inventory (WMI) -4.64% 9.13% 

    

Inaccurate  With Inventory (WI) -3.07% 15.56% 

and uncertain Without Inventory (NI) -4.85% 16.62% 

 Myopic with Inventory (WMI) -4.64% 9.13% 
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 From the results shown in Table 4.2, we can see that though the relationship 

between the PO policy and every other policy changes, the rankings of many of the 

other policies and each other are preserved. An exception is the ranking of the NI 

policy relative to the MWI policy, which is opposite of that in Table 4.1 in every 

counterfactual except for the accurate and uncertain counterfactual. From the 

evidence we have, the initial condition does not change the result that investing in 

inventory will, on average, improve the NPV of the timber stand, and make the 

returns more predictable than the NI policy. The magnitude of the WI policy returns 

the most value in the accurate and uncertain counterfactual. In fact, the WI policy 

adds more value to the stand in the first three counterfactuals in Table 4.2 than in the 

baseline scenario with our initial condition set to the replanting volume in Table 4.1. 

However, in each counterfactual, the returns are more difficult to predict, though this 

may be due to the low number of simulations used for this sensitivity analysis. 

 Counterintuitively, the WI policy actually outperforms the PO policy in the 

accurate and certain counterfactual, though the standard deviation of NPVs is higher 

than in the baseline simulation results. This result is driven by price stochasticity: the 

WI policy will occasionally harvest at a higher price than the PO policy because it has 

a higher expected value of timber, or less confidence than the PO policy. If this 

occurs enough times, the WI policy will outperform the PO policy. The same 

phenomenon is seen in comparisons between the WI and the NI policy. However, this 

result may not be robust to increasing the number of simulation runs. However, this 

result highlights something that is seen in the comparisons between the NI and MWI 

policy as well, which is that the NPV from following these respective policies is 

much closer to the PO policy NPV than in the results from Table 4.  

The closeness of the NPV from each policy to the PO policy highlights the 

role of discounting in this exercise. By starting at an initial condition that is 1) a 

larger volume than the baseline, and 2) more certain, each policy has a much higher 

likelihood of harvesting at the same time that the PO policy does for the first harvest. 

That fact together with that initial harvest occurs much earlier, means that a large 

share of the stands value over the time horizon nearly matches the PO policy. This 

results in NPVs that are very close to one another.  
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However, this result vanishes when the initial condition becomes uncertain, as 

in the accurate and uncertain counterfactual. Compared to the results in Table 4.1, all 

policies perform worse. For the WI policy, this is due to the requirement to invest in 

inventory early on, whereas for the NI policy, this result stems from differences in 

harvest timing between the NI and PO policies. Interestingly, for the myopic policy, 

there is no difference between it’s NPV in the accurate and uncertain counterfactual 

and the inaccurate and certain counterfactual. This is due to the MWI policy having 

an inflexible inventory rule, which allows it to overcome the uncertainty or 

inaccuracies in the initial condition early, but then proceeds to overinvest in 

inventory. Intuitively, the level of certainty for inaccurate counterfactuals makes no 

difference for the NI policy, since it cannot invest in inventory anyway. However, the 

WI policy’s performance reduces dramatically as the initial condition becomes less 

accurate and less certain.  

 

4.7. Conclusion 

Our paper investigates the relationship between stochastic price dynamics and 

the decision to measure imperfectly observable variables in natural resource 

management. We advance a continuous-state MOMDP as a model of private forest 

management under state uncertainty with perfectly observable stochastic prices. To 

our knowledge, this study presents the first continuous-state MOMDP addressing 

state uncertainty in the natural resource literature. On top of demonstrating 

methodological contributions, our case study investigates the extent to which 

measurement improves the returns on resource management. 

Results from our study show that price dynamics influence the optimality of 

inventory for forest management. The price level itself is shown to influence the 

timing of inventory through affecting the timing of harvest. Additionally, price 

stochasticity plays a large role in the timing of inventory. When prices are mean-

reverting and stochastic, the resource manager wants to take advantage of the higher 

price, incentivizing harvests at lower expected volume levels and lower levels of 

certainty. Though this results in inventories at lower expected volume levels, the 

frequency with which these inventories occur is reduced. 
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Though the level of certainty and inventory timing have an intuitive 

relationship, with lower levels of certainty leading to earlier inventories, our study 

provides insight into how price stochasticity affects this relationship. Our results 

show that at the mean timber price, inventory is optimal for expected timber volumes 

that are very close to the region in which harvest is optimal, while not optimal at 

other price or expected volume levels. This results in inventories being optimal at 

higher levels of confidence around the mean price. In previous studies, the 

relationship between measurement behavior and confidence are results of the 

dynamics of the resource system. We extend these findings by showing that the 

relationship between certainty and the optimality of inventory interacts with price 

stochasticity. 

We also find a relationship between state uncertainty and harvest. At very low 

levels of confidence, harvest occurs at lower expected timber volumes than when 

confidence is high, or at perfect certainty. This result is especially stark at lower 

prices. The implication is that the timing of harvest in a natural resource with state 

uncertainty may not perfectly follow traditional models when certainty is low. Future 

work on this topic may include further scrutinizing how beliefs are formed by 

resource managers as well as examining any role these beliefs might play in observed 

deviations from standard models of resource extraction and harvest. 

A problem with investing in information – including inventory in forest 

management – is that the costs of the measurement are easy for the manager to see 

but the benefits are often difficult to detect. Our results suggest that in the case of 

forest management, optimally investing in inventory adds value to the stand above 

and beyond the cost of the activity. In fact, we find that inventory allows for the forest 

manager to come very close to matching the returns that would be obtained by a 

manager operating with perfect observable timber volume. However, this result only 

holds if inventories are optimally timed. Our results suggest that costs from mistiming 

inventories could potentially outweigh the benefits, despite alleviating risk of 

catastrophically bad outcomes. 

Our study contributes to the field of forest economics by developing the first 

bioeconomic model of forest inventory that we are aware of. Although both harvest 
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and inventory are addressed by previous studies in forest management, they are 

addressed separately. Our model optimizes harvest and inventory timing jointly. The 

joint optimization provides a microeconomic basis for modeling optimal inventory 

investments. There are also many areas in forestry where inventory and measurement 

play important roles, including in detecting disturbance risk (e.g. fire risk, bark beetle 

prevalence, etc.). Forestry offers a great platform from which to study the spatial 

aspects of information investments, for instance to prevent the spread of arboreal 

diseases. 

There are also extensions of this work in assessing policies that require 

information standards. An example of one of these is forest-based carbon offsets, 

where the forest manager must regularly invest in costly inventories. Furthermore, the 

relationship between prices and information investments could be useful for 

agricultural studies as well. Our study is useful for future analyses of these types of 

programs due to the fact that we address inventory investments in a profit-oriented 

context with a realistic description of price dynamics. 
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5. Summary and Conclusion 

 

In three essays, this essay advances the modeling of natural resource 

management under uncertainty. As environmental problems continue to grow in 

importance, modeling that incorporates both the ecological and economic aspects of 

the system are important tools for policy. Furthermore, incorporating and studying 

inherent sources of uncertainty within natural resource systems is important for 

optimal management. In this context, my dissertation addresses the following 

research questions. 

 In the first essay, I ask whether there are substantial feedbacks between 

natural and human systems. There is uncertainty within economic models as to what 

the ecological impacts of private forest management are. In order to address this 

broader question, I explore two specific research questions that include how the forest 

sector responds to pine beetle related tree mortality, and how policies targeting 

harvest on vulnerable lands spill over into other regions, and how they impact the 

ecological footprint of the forest sector in general. These two policy experiments 

exploit the benefits of the forest sector model I develop by utilizing its high resolution 

and large spatial scale, as well as its comprehensive representation of the forest 

sector. The contribution of this model is that it will now be possible for researchers to 

incorporate more detailed models of land processes including those that incorporate 

climate change explicitly into the model, in order to conduct detailed economic policy 

experiments within their respective ecology models. Furthermore, it provides a means 

to study the regional effects of localized policies. We show that there are spillover 

effects from state-level policies. This indicates the need to take market forces into 

consideration when crafting state-level policies, or when neighboring states are 

crafting environmental policies.  

In the second essay, we ask whether the duration of forest-based carbon offset 

contracts influences the performance of the program. I conduct this analysis using a 

partial equilibrium model of the forest sector of western Oregon. Very few studies 

address the duration of ecosystem service contracts such as the ones studied in Essay 

2, and when they have been studied it has been from a theoretical perspective. This 
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study contributes a modeling analysis of an ecosystem service based management 

contract that is modeled after a real-world application: the California climate market. 

As more states, such as Oregon, adopt market based approaches to mitigating CO2 

emissions, addressing aspects of the program that can be improved are crucial. In our 

study, we explore the effects of offering carbon sequestration contracts of differing 

lengths on program performance including participation, carbon sequestration, and 

economic consequences. We find that shorter contracts enroll roughly just as many 

acres into the program as the longer contracts at high prices of carbon. However, we 

discovered substantial differences in the amount of carbon sequestered between each 

contract. Each contract outperformed the others across their respective time lifetimes. 

We did not discount the carbon sequestration in the paper, and doing so may be an 

important extension in a follow up study. Furthermore, we found that longer contracts 

under higher carbon prices resulted in a substantial build up of timber, and so when 

the contract expired, the price of logs would drop. We found that the addition of a 

maintenance period alleviated the price volatility for the shorter contracts. However, 

long maintenance periods at high carbon prices resulted in poor program 

performance, both in terms of participation and carbon sequestered. The results of this 

study will be useful for policy makers interested in crafting more efficient forest-

based carbon offset provisions as part of a state level or regional carbon market. 

Furthermore, it may motivate future research into the role of contract duration, or the 

optimality of that duration for programs focusing on carbon sequestration as well as 

other ecosystem services.  

The third essay addresses forest management under state uncertainty and price 

volatility. We ask whether price volatility influences optimal investment strategies in 

information for natural resource management. Furthermore, we also ask whether state 

uncertainty influences the timing of harvest. State uncertainty is an issue integral to 

natural resource management, including forestry, and yet it is only recently that the 

problem has been addressed substantially in the literature. We construct a continuous-

state Mixed Observability Markov Decision Process model of forest management, a 

first in the forest resources literature. The model is motivated with empirical 

estimates matching private loblolly pine management in Louisiana. We find that price 
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volatility plays an important role in determining the optimal timing of investments in 

forest inventory.  

Though this dissertation represents a number of advances in the field, it also 

points to many additional studies in the future as follow ups and extensions. The 

methodology utilized in the first essay can be employed in domains other than 

forestry. For instance, one could conduct additional policy experiments in which 

taxes or subsidies affect mill level decisions such as how many chips to consume 

versus timber. Additionally, implementing a coupled version of the model is a follow 

up study that is currently in process of being done. For the second essay, there are a 

number of theoretical papers that the study motivates. For instance, constructing a 

model that solves for the optimal contract length under price volatility, which has not 

yet been evaluated. Furthermore, conducting a study in which re-enrollment is 

possible would be an interesting follow up study as well. Finally, conducting similar 

analyses of other ecosystem service contracts, or even easements, could be an 

interesting study. The third essay has a variety of interesting applications, including 

the incorporation of non-market benefits into the forest management problem. 

Additionally, the MOMDP framework could be utilized for addressing questions of 

contract and policy design for ecosystem service payments in both forestry and 

agricultural settings.  
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Appendices 

 

Appendix A: Supplementary Material for Essay 1 

 

A.1. The Community Land Model 

  The community land model is a large-scale model of land processes with the 

ability of coupling to other models within the Community Earth System Model 

(CESM). When the models are fully coupled to one another, CESM provides a model 

of the environment in which many of the natural feedbacks of these systems are well 

represented. CESM and CLM is used in numerous applications in the earth sciences.  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

CLM is unique from other models in CESM in that the way it organizes the 

landscape, the model can be scaled up very easily for parallel processing. The 

landscapes are split into discrete grid cells, generally of uniform resolution. For large 

planet-level runs, this resolution is quite coarse, though for region-level runs such as 

those presented in this paper, the resolution is much finer. Each grid cell is then split 

Leaf 

Wood 

Soil 
Figure A.1: Simplified representation of carbon flows within a column in CLM 
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into different columns representing different categories of land cover, such as 

forested, urban, or crop. Each time-step, CLM uses a vast array of equations to 

calculate the flow of matter (e.g. carbon, nitrogen, etc.) up and down each column. 

This is visualized in figure A.1. These flows are generally functions of climatic 

variables, such as precipitation or temperature. However, these are also factors that 

are determined by social systems, notably timber harvest, that affect the flow of 

matter within each grid cell. 

  Timber harvest in CLM is typically accounted for with input datasets that 

prescribe removals for each grid cell. In the version of CLM employed in this paper 

(CLM 4.5), these removals are prescribed in terms of a proportion of the biomass on 

the grid cell removed. This prevents the biomass from going negative, which would 

betray the laws of physics. However, it makes it more difficult for modelers looking 

to conduct alternative harvest scenarios that match specific volume targets. Perhaps 

for that reason, later versions of CLM have switched to represented harvest in terms 

of the level of removal. Another drawback of the way harvests are represented is that 

they are not responsive to disturbance events or changes in productivity occurring in 

the model. That is, the experimenter prescribes the harvest, and those do not change, 

even if the area they targeted for harvesting burns down. With the THM, harvest 

levels are determined endogenously. Figure A.2 visualizes the coupling process. 

  The major difficulty with coupling the THM to CLM is that the THM requires 

grid cell to grid cell communication, which is not allowed in CLM. Other models in 

CESM do feature grid cell to grid cell communication, and communicate using a 

module named the “flux coupler”. However, using the flux coupler along with CLM 

represents a substantial computational hurdle that was determined to be to expensive, 

both in terms of time and money, to pursue. Instead, we resort to stopping CLM at 

every year, and then running the THM to determine the following year’s harvests. 

Once that is calculated, the new harvest map is passed to CLM, which is then started 

again to run for another year.  
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A.2. Timber Plot Parameterization Results 

  Previous parameterization procedures (discussed in the following section) 

focused on fitting the timber plot owner’s supply function to data on historical harvest 

and production level. This was done simultaneously with the fit procedure for the mill 

production function. However, the fitting procedure would generally fit either harvest 

level or production level, resulting in modeling outputs that would be realistic for one 

or the other. Instead, we fit the range of historic harvests given a range of historic 

prices and an assumed rotation length. We employed Microsoft Excel’s non-linear fit 

algorithm (Fylstra et al., 1998). The estimated coefficients are reported in Table A.1.  

 

 

 

Run CLM 1 Year 

Run the THM 

Stitch biomass map 
together 

Feed harvest map to CLM 

Figure A.2: Visualization of the coupling procedure between the THM and CLM 

THM 
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Table A.1: Parameters for plot owner's cost function (and supply function). 

Parameter Description Value 

𝛼 Scale Parameter 0.0245 

𝛽 Exponential Parameter 1.8378 

 

 

A.3. Additional Results from the Policy Experiment 

 The manuscript presents the results from both a region-level subsidy 

experiment, and from an experiment in which the same subsidy is enacted in Oregon 

alone. However, the same experiment was run for both Washington and California. In 

table A.2, we present the results of the state level runs, as well as the no-policy run 

for the sake of comparison. We report it at two different points in the simulation: year 

5 and year 10. We report the number of plots harvested, the overall harvest level, and 

the average harvest. Future work could involve incorporating these results into a 

single unified manuscript centered on the effects of vulnerability subsidies.  
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Table A.2: Harvest statistics from the modeling results of the subsidy policy 
experiment for each version of the experiment. 

  Year 5    Year 10   

  Total 
Harvest 

Number 
of Plots 

Harvested 

Average 
Harvest 

 Total 
Harvest 

Number 
of Plots 

Harvested 

Average 
Harvest 

Region No 
Subsidy 

52132319 19433 2683  50947844 20880 2440 

 Low 
Subsidy 

54274906 13966 3886  52886475 15124 3497 

 High 
Subsidy 

59118607 10827 5460  58673085 11484 5109 

         

WA Low 
Subsidy 

52375998 18809 2785  50773350 20948 2424 

 High 
Subsidy 

52735838 16974 3107  51227069 18387 2786 
 

         

OR Low 
Subsidy 52261379 18831 2775  50780435 20366 2493. 

 High 
Subsidy 52292685 18531 2822  50910098 20100 2533 

         

CA Low 
Subsidy 52160199 19599 2661  50871103 21242 2395 

 High 
Subsidy 52388204 19092 2744  50820039 20629 2464 
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Appendix B: Supplementary Material for Essay 2 

 

B.1. Mathematical Summary of Forest Sector Model 

  We employ a partial equilibrium model of the forest sector in western Oregon 

that solves for the market equilibrium level of timber harvest, mill production, mill 

capacity level, and enrollment in the carbon offset program. The model maximizes 

the area under the inverse demand for logs at a given time step, 𝑃"(𝑞, 𝐾"), where 𝐾" is 

the capacity level and 𝑞 is the quantity of logs. The acres of forestland under a given 

management, denoted by the variable 𝑋fg, where the subscript 𝑛 denotes the 

condition of the stand, including things such as slope, soil type, age, and other factors. 

For both the enrolled and unenrolled land, the model assigns a management 

prescription, 𝑗, which consists of a series of actions to be taken at each time step over 

the time horizon. These actions include whether a removal occurs, and how intense 

that removal is. The model also optimizes the terminal conditions of the stand, which 

includes 𝐴 the average timber harvest age in the post-modeling period.  

  The model takes into account a set of costs associated with various activities 

and states of the forest sector. 𝐾" is the current level of capacity, and has an 

associated maintenance cost of 𝑐l. Furthermore, 𝐾" depreciates each year at a rate 𝛿. 

More capacity can be purchased, with 𝐼" is the amount of capacity purchased in time 𝑡 

at a cost of 𝑐U. There are also costs associated with each action in 𝑗, 𝑐g". The costs and 

benefits of the model are discounted at a rate 𝑟. The objective function is shown in 

Equation B.1. 

 

max
mno	Up	q

					
𝑃"(𝑞, 𝐾")

rs
tuQ 𝑑𝑞 − 𝑐l𝐾" − 𝑐U𝐼" − 𝑐fg"𝑋fg

v
guQ

8
fuQ

(1 + 𝑟)"

w

"uQ

 

 

Where  𝑄" is the total amount of logs delivered to mills in time period 𝑡, and 𝑇 is the 

terminal time period. This optimization is constrained by a number of different 

relationships represented in the model. 𝑄" must be equal to the amount of net log 

(B.1) 
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imports 𝑀" plus the per-acre average log volume produced from a stand of a given 

management style 𝑓fg". This constraint is shown in Equation B.2.  

𝑄" = 𝑓fg"𝑋fg + 𝑀"

v

guQ

8

fuQ

 

The next constraint (Equation B.3) requires that the capacity level, 𝐾"#$, must equal 

the depreciated current capital plus the capital purchased. 

  

𝐾"#$ = 𝐾" 1 − 𝛿 + 𝐼" 

 

The next constraint (Equation B.4) limits the amount produced such that it cannot 

exceed capacity.  

𝐾" ≥
𝑄"
𝛾  

 

Where 𝛾 is the capital stock utilization rate.   

 At this point, we have mathematically described how acres are assigned in and 

out of the carbon management program, as well as how the capacity level is selected. 

What follows is the method by which the model selects a management prescription 

for stand type 𝑛. As in Montgomery et al., 2006, we use a random search algorithm 

similar to the one in Bullard et al., 1985 in order to maximize either the Soil 

Expectation Value (SEV) for regenerated stands, or the Land Expected Value (LEV) 

for existing stands. Regenerated stands are stands that have just been harvested and 

replanted. This is a function of the log price 𝑝| where the subscript 𝑖 indicates 

destination type of the log (export, lumber, sawtimber).  The model maximizes either 

SEV or LEV depending on 𝑎, the current age of the stand, as well as 𝐴g which is the 

age at which a clear-cut occurs. Furthermore, each stand has an associated amount of 

harvest, 𝑓fg~ at a given age and management prescription. Furthermore, that harvest 

has an associated cost of 𝑐fg~. The maximization problem for the regenerating stand 

is presented in Equation B.5. 

 

(B.2) 

(B.3) 

(B.4) 
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max
g
𝑆𝐸𝑉f =

(𝑝|𝑓fg~ − 𝑐fg~)(1 + 𝑟)qo5~
qo
~uQ

(1 + 𝑟)qo − 1
 

  

The maximization problem for the existing stand is given in Equation B.6. The 
variable  𝑎Q indicates the age of the stand at the beginning of the simulation 

 

max
g
𝐿𝐸𝑉f =

(𝑝|𝑓fg~ − 𝑐fg~) 1 + 𝑟 qo5~ + 𝑆𝐸𝑉f
qo
~u~�

(1 + 𝑟)qo5~�
 

 

 The model is parameterized using a number of different sources. The inverse 

demand functions are linear, and fit to data on log demands from 1970 to 1988 

(Adams et al., 2002; Schillinger et al., 2003), with other exogenous variables coming 

from the Oregon RPA assessment (Haynes 2003). Additional variables on 

management costs come from a variety of sources such as treatment costs from Rose 

and Rose and Jacobs (1999), and harvest costs from Fight et al., (1984). Following 

Adams et al., 2002 we use a discount rate of 6%. The model as well as discussion of 

the model presented here follows that of Montgomery et al. (2006) closely, and we 

would refer the reader to that paper, as well as the other papers mentioned, for a more 

detailed description of the forest sector model.  

 

B.2. Expanded Explanation for Maintenance Period Enrollment 

 Table 3.3 presents a counterintuitive result regarding the number of acres 

enrolled in forest based carbon offset programs when the contracts require 

maintenance periods. In the table, it is shown that 20-year contracts that have an 

additional 20-year maintenance period have more acres enrolled than the 20-year 

contract with no maintenance period. Similarly, the 40-year contract with an 

additional 40-year maintenance period has more acres enrolled than the 40-year 

contract with no maintenance period. This is unexpected, as the maintenance periods 

burden enrolled forest land with additional costs should they chose to harvest. 

However, these contracts also restrict the supply of timber, increasing the price of 

(B.5) 

(B.6) 
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logs and also the economic returns to forest land. This section will explore this 

explanation, and expand on discussions in the manuscript as well as provide 

additional results that suggest this is the case.  

 Whether or not prices respond to the maintenance period can be seen by 

examining Figure 3.5. From Figure 3.5, we see that the drop in prices associated with 

the expiration of a contract are postponed for the duration of the maintenance period 

as well. As a result, the higher prices creates a more profitable economic environment 

for the unenrolled land. Also, Figure 3.5 shows that the magnitude of the price 

decrease is diminished by the maintenance period, as enrolled land will still draw 

their timber stocks down even with an additional cost over the maintenance period. 

These market effects should and do appear in the returns the forest land receives for 

both enrolled and unenrolled lands. It should also reduce the returns from carbon 

payments in the enrolled lands.  To address the aforementioned point, I present a table 

that shows the net per-acre returns to forestland for enrolled, unenrolled, and the 

overall average forest land (Table B.1), as well as a table that presents the average 

per-acre net returns from carbon sequestration on enrolled land (Table B.2).   

Table B.1 shows an intuitive result that the per-acre returns on enrolled land 

increases with the price of carbon. Interestingly, the per-acre returns on unenrolled 

land decreases as the price of carbon rises. At first this seems to contradict the 

argument of this section, since higher carbon prices result in larger amounts of timber 

being withheld from the market. The contradiction is resolved due to the fact that as 

carbon prices increase, relatively productive land gets enrolled in the program, 

meaning the average productivity of the unenrolled land decreases. Furthermore, at 

higher carbon prices, the larger amount of withheld timber results in a steeper decline 

in the price of logs. This too can reduce the returns for unenrolled land. An additional 

observation is that for the average acre of forestland, the returns increase with the 

price of carbon. This is because the gains that unenrolled lands receive from higher 

carbon prices offsets the reduction in returns for unenrolled lands. The longer the 

contract, the larger the discrepancy between the average returns at lower carbon 

prices and higher carbon prices.   
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Table B.1: Net per-acre returns (real US dollars) for four different contract 
specifications at each price for enrolled and unenrolled forestland 

Contract	 Carbon	
Price	

Enrolled	 Unenrolled	 Average	

20-year $5 9825.167139 5299.975135 6568.21061 
 $10 10281.14111 4788.131317 6622.327105 
 $25 11882.471 4397.957207 7273.393474 
 $50 13712.85889 4040.735771 8050.315017 

20-year, 20-maintenance $5 12198.91705 5322.003506 7167.515628 
 $10 12173.22609 4771.928458 7324.958891 
 $25 14237.65335 4141.470336 8536.260876 
 $50 16468.83022 3853.372015 9677.262034 

40-year $5 15284.46635 6893.662582 9172.080046 
 $10 15483.71384 6255.902862 9494.613157 
 $25 18492.67455 5370.067602 11243.97084 
 $50 21465.3903 4896.185704 13165.76412 

40-year, 40-maintenance $5 19979.44069 8852.497869 11886.2799 
 $10 19401.99207 7769.866668 11894.86055 
 $25 23444.0011 6816.199531 14535.76086 
 $50 25213.23794 7280.872926 14711.78751 

 

 The results in Table B.1 also show that as the length of the contract increases, 

so too do the returns on both enrolled and unenrolled land. Though the 20-year 

contract with no maintenance period does not produce the same per-acre returns as 

the contract with a 20-year maintenance period, the 40-year contract outperforms both 

of them in terms of both enrolled land and unenrolled land. However, it is generally 

the case that a longer contract results in larger per-acre returns. The fact that this 

holds true for unenrolled lands as well as enrolled lands demonstrates that these 

increases are likely due to changes in market conditions. If this were the case, we 

would expect lower per-acre returns from carbon payments alone on enrolled lands. 

This is due to the fact that during the maintenance period, enrolled land must pay a 

penalty for removals on their land, however they would receive no benefit for the 

additional carbon sequestered.  
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Table B.2: Net per-acre returns from carbon sequestration for enrolled lands by 
contract type and carbon price level. 

Contract	
Carbon	Price	
(per	tonne)	 	   

 $5		 $10		 $25		 $50		

20-year		 64.01063403 120.5373344 305.5140285 615.7804796 
20-year,	20-maintence	 35.43041413 80.34655957 247.0201775 571.8399582 

40-year	 40.4442473 91.6113392 289.0864897 680.4918725 
40-year,	40	maintenance	 38.23438148 84.48383135 283.7915665 503.1929215 

 

 At each price level, Table B.2 demonstrates that the contracts that have 

maintenance periods provide lower returns than the corresponding contracts with no 

maintenance periods. This result is consistent with our explanation that the higher log 

prices that come as a result of longer contract durations is what is driving the higher 

enrollment. Interestingly, we also see that the per-acre carbon benefits decrease 

between the 20-year contract with no maintenance period and the 40-year contract 

with no maintenance period for all carbon prices except for $50/tonne. 

 The results shown here provide evidence that what is driving the higher-than-

expected enrollment in contracts with maintenance periods are the price effects those 

contracts induce. We see that even unenrolled land experiences increases in per-acre 

returns as contracts become longer. This is backed by the result that although returns 

are increasing overall, returns from specifically carbon payments are not. Overall, we 

find evidence that price effects could potentially boost returns on all forestlands for 

longer contracts. However, our results do indicate that longer maintenance periods 

may have negative impacts on program performance for higher carbon prices, as we 

see the number of enrolled acres plummet, and per-acre returns from carbon 

sequestration decrease as well.  

 The result explained in this section may be due to the assumptions used to 

solve the forest sector model. In particular, the forest sector model optimizes the net 

benefit of the system, under perfect foresight and perfect information. It does not 

account for the imperfect information that forest land managers have to contend with, 

specifically about their own future actions, and the future actions of their neighbors.   
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Appendix C: Supplementary Material for Essay 3 

 

C.1. Empirical Timber Volume Transition Function 

Our model is grounded in data on volume growth, prices, and management 

costs for loblolly pine in Louisiana. The data on volume growth was taken from the 

Forest inventory and Analysis database (FIAdb) (USDA, accessed 2017), and was 

fitted to a stochastic Beverton-Holt model (Beverton & Holt, 1957). The subset of the 

database used in our study contains volumes of private timber in the state of 

Louisiana, along with the age of the timber stand. We formulate the stochastic version 

of the Beverton-Holt model by applying a proportional shock 𝑍(𝑋")to the standard 

Beverton-Holt model. The functional form is presented below. 

 

𝑋"#$ = 𝑋"
𝑟

1 + 𝑟 − 1
𝐾 𝑋"

𝑍(𝑋") 

 

Where 𝑋" and 𝑋"#$ are the current and next period timber volume, 

respectively. The parameters r and K are the intrinsic growth rate and intrinsic 

capacity of the forest stand, respectively.	𝑍(𝑋") is the volume dependent proportional 

shock, shown in Equation 4.2. We estimate values for the intrinsic growth rate and 

intrinsic capacity per acre by fitting the model to the FIAdb using a combination of 

non-linear least squares and simulated stand dynamics. In the first step of our 

simulation, we simulate many realizations of stand growth using a candidate growth 

function and a set of random shocks. Next, we average the values of each realization 

from our candidate growth function, which provides an averaged candidate growth 

function. We calculate the sum of squared errors between the averaged candidate 

growth function and the observations from the FIAdb. The optimization is performed 

with the non-linear Marquardt algorithm (Marquardt, 1963). The parameters for the 

empirical growth function are reported in Table C.1. 

(C.1) 



 

 

124 

 

 

The data provided by the FIAdb is in units of growing-stock volume; 

however, the price data we use is reported in units of sawtimber. Sawtimber volume 

is commonly defined as the volume of growing-stock large enough to be processed by 

a sawmill into product. Smith et al. (2006) provides tables for converting growing 

stock to sawtimber (Table 4.4). Table 4 in Smith et al. (2006) reports a sawtimber 

proportion of 0.658 for a pure loblolly stand. The rest of the volume in the stand we 

assume can be sold as pulpwood. Instead of splitting Equation A.1 into two equations 

– one for sawtimber and another for pulpwood – we keep Equation C.1 in units of 

growing stock. We apply the conversion factors to the prices instead. This process is 

discussed in the Section C.4 below with the rest of the details of the price model. 

The stochastic component of Equation C.1 is scaled by the timber volume 

such that higher volumes result in less variable random shocks. Though this appeals 

to intuition, it also appeals to reality, as this scaling bears out in the FIA data. Figure 

C.1 demonstrates that as the volume increases, the growth in terms of percent change  

 

Table C.1: Parameters for the timber volume transition function. 
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becomes less variable. This is consistent with the set-up of our growth model, as 

higher volumes will result in less variable shocks. 

 

 

Our sensitivity analysis includes analysis of two alternative versions of the 

growth model. Both specifications are derived from an alternative fitting routine, but 

are fit to the same data as the model used in the rest of the paper. In the alternative fit, 

we manually set the stochastic component of the model such that it is not scaled by 

the timber volume, and that both parameters 𝜎B$ and 𝜎BD  are set to a value of .1. 

From there, the Beverton-Holt equation is fit to the FIADB data to derive an alternate 

 
Figure C.1: The annual percent change in biomass as a function of initial biomass 
level for observations in the FIADB for private forestland in Louisiana. At smaller 
biomass levels, the variation in percent change is much higher than at higher biomass 
levels. This indicates that a stochastic growth model which has a constant 
proportional shock will not be able to accurately model the growth function. 
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set of deterministic parameters. Policy functions are then calculated for both this 

growth model, as well as a hybrid growth model in which the stochastic component is 

from this alternate fit and the deterministic growth parameters are from the fit used in 

the rest of the paper. We then employ these policy functions in simulations where the 

true model of volume growth is the baseline model. 

 

C.2. Cost Data 

Costs of managing forestland greatly vary between regions and species. The 

information on management costs utilized in our study comes from a survey collected 

by researchers at the Alabama Cooperative extension (Dooley & Barlow 2013; 

Barlow & Levendis 2015) and reports the average costs of specific management 

activities in the southern United States. Within these surveys, inventory costs are split 

up by purpose of the inventory. Dooley & Barlow (2013) break inventory into three 

categories: reconnaissance, sale, and appraisal. Our inventory cost figure comes from 

pre-sale category of inventory costs. Per-acre inventory costs were reported from the 

survey, and cross-referenced with reported values from other regions and extension 

documents in order to ensure that the numbers were realistic (e.g. USDA Forest 

Service, Accessed January 2018). We also utilized survey results on costs associated 

with preparation and replanting that the forest manager incurs in the event of a 

harvest. These costs are adjusted to reflect 2016 US dollars, and are reported in Table 

C.2. 
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Table C.2: Parameters of the economic model of forest management 

 
 

C.3. Observation Model 

Forest inventory is typically planned in order to achieve a specific level of 

accuracy. The number of plots is selected based on previous data on the forest, a 

selected confidence level, and an acceptable level of error. We model inventory as a 

binary decision for the forest manager, simplifying the model yet making it necessary 

to specify a single level of accuracy for the inventory decision. Modeling the 

accuracy of inventory as a continuous variable is a potentially interesting extension to 

this current work. 
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We parameterize the cost of inventory with survey data from Dooley & 

Barlow (2013), selecting the the per acre cost for pre-sale inventory (as mentioned 

above). This type of cruise is chosen because it is both common and more expensive 

than other forms in inventory. It is therefore a more conservative choice for our 

model. We then reference a separate document, Reynolds (2013), to get values for the 

confidence level, and expected error level of pre-sale inventories. We choose a 90% 

confidence level, and an error level of 5%. The costs are adjusted to 2016 US dollars, 

and the confidence and error levels are used to compute the distribution of the 

observation shocks from Equation 4.4. These values are reported in Table C.2. 

 

C.4. Price Model 

Price data was obtained from Howard & Jones (2016) and is reported as 2016 

US dollars per 1000 board feet (MBF). The data describes stumpage prices for 

sawtimber and pulpwood from private timberland in the state of Louisiana for the 

years 1965 to 2013. The rule-of-thumb conversion factor from MBF to cubic feet is 

83 $
�
. Therefore, we divide all the prices reported in Howard & Jones (2016) by 83 $

�
  

to find the per cubic foot price of the timber. As mentioned in a previous section, only 

a portion of the biomass on the stand can be sold as sawtimber. The rest of the 

growing stock is assumed to be sold as pulpwood. Under this assumption, we 

construct a price variable from the weighted average of the sawtimber and pulpwood 

prices reported in Howard & Jones (2016)), where the weights are the sawtimber 

conversation factor, and one minus the sawtimber conversion factor. We estimate a 

regression with a log-log specification (Equation 3) where current price is a function 

solely of the previous year’s price. The coefficients for our price model can be found 

in Table C.2. We characterize the stochasticity of the price process using the 

distribution of errors from the regression process. 

 

C.5. Calculating the Expected Reward and State Transition Functions 

What we present here is the standard method for calculating the reward and 

transition function. Though we employ Fackler (2017) in this step, we report the 

standard methodology in this section in order to aid intuition. Please refer to Fackler 
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(2017) for a detailed explanation of additional methodology. We convert the 

intractable forest manger MOMDP model (Equation 4.9) into a discrete Markov 

decision process (MDP) over the product of the approximate belief price state space. 

Let 𝑔| = (𝑚𝑒𝑎𝑛, 𝑐𝑣, 𝑝𝑟𝑖𝑐𝑒) be a node in the three dimensional mesh. Next, let 

𝑅(𝑔|, 𝐻, 𝐼, 𝐷𝑁)	be the expected reward function, which maps the forest manager’s 

decision to an expected instantaneous reward for a given node. Finally, let 

𝑃 𝑔|, 𝐻, 𝐼, 𝐷𝑁 (𝑔g) be the probability of transitioning from node 𝑔| to 𝑔g contingent 

on the agent’s action. Equation 4.9 can be re-written as the following discrete MDP.  

 

𝑉 𝑔| = max
L,U,�8

𝑅(𝑔|, 𝐻, 𝐼, 𝐷𝑁) 	+ 𝛿 𝑃 𝑔|, 𝐻, 𝐼, 𝐷𝑁 (𝑔g)
�

gu$

𝑉 𝑔g  

 

In order to calculate the policy function, which is the solution to our problem, 

we first need to calculate the reward function, and probability function. Both the 

reward function and transition function are calculated using techniques described in 

Zhou et al., (2010). In our application, we use a Monte-Carlo technique wherein a set 

of 𝑁 Halton draws are used to derive a set of random draws from the log-normal 

density that characterizes the projected belief state (Arulampalam et al. 2002). 

Applying these 𝑁 draws from the belief state and averaging by the number of draws 

integrates the reward function over the belief state, which yields the expected reward 

function. Let 𝑥g be a random draw from the belief state.  

 

𝑅 𝑔|, 𝐻, 𝐼, 𝐷𝑁 =
𝑅 𝑥g, 𝐻, 𝐼, 𝐷𝑁8

gu$

𝑁  

 

Calculating the transition function similarly utilizes particle filter, however because 

we are transitioning from belief state to belief state, the process is less 

straightforward. Our solution approach differs from Kling et al. (2017) because of the 

nature of observability with respect to our state variables. 

The transition probabilities matrix requires a more substantial computational 

cost. We apply methods developed in Zhou et al. (2010) and then extended by Kling 

(C.2) 

(C.3) 
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et al. (2017). In general, the algorithm operates by beginning with a single node, 

𝑔 𝐻, 𝐼  and four sets of Halton draws of identical length 𝑁: {𝜀$𝜀D𝜀�𝜀�}. The details of 

this process are further described in Table C.3. 

 

Table C.3: Calculating transition probabilities in a standard MDP framework 

 
 

C.6. Value Iteration 

Once the transition probabilities and reward matrix are estimated, we can 

begin to solve for the policy function. We do this by solving first for the value 

function, which maps each node in our mesh (𝑔| ∈ 𝐺	)to an expected value, for each 

action. We accomplish this using standard value iteration. Described simply, value 

iteration involves iterating equation nine, where the value function,	𝑉 𝑔|  is not 

known. Initially, we set 𝑉 𝑔|  to zero, and then calculate Equation 4.9, which gives 
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us an updated set of values for 𝑉 𝑔| This operation is repeated until 𝑉 𝑔| converges. 

Once this happens, we can select the action that, for each node 𝑔|, maximizes the 

expected value. This then yields the policy function, which is the solution to our 

problem. 

 

 

 

 

 

 

 

 


