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Satellite Based evapotranspiration (ET) models have become a dominant means to estimate 

large-scale surface fluxes of water.  Global and regional ET estimates are important 

parameters in many climate forecasts and hydrologic models.  However, large scale 

partitioning of ET into soil evaporation, transpiration, and canopy interceptions remains 

largely unknown and modeled estimates have been shown to diverge strongly.   This study 

examines three such remote sensing-based models: the Penman-Monteith model from the 

Moderate Resolution Imaging Spectroradiometer (PM-MOD), the Priestley-Taylor Jet 

Propulsion Laboratory model (PT-JPL), and the Global Land Evaporation Amsterdam Model 

(GLEAM).  Modeled ET and component estimates are compared against a compiled dataset 

of field estimates using stable isotopes, sap flux, and other methods.   Results are analyzed 

across land cover type, precipitation regime, and field methods.  Overall, we find large 

deviations between field and modeled estimates of soil evaporation (RMSD = 90-114%, r2 = 

0.14-0.25, N = 35),  interception (RMSD = 62-181%, r2 = 0.39-0.85, N = 13), and 

transpiration (RMSD = 54–114%, r2 = 0.33-0.55, N = 35)  compared to the deviations found 

in the total ET estimate (RMSD = 35-49%, r2 = 0.61-0.75, N = 35).   We then conduct a 

Monte Carlo sensitivity analysis using varying degrees of parameter uncertainty to determine 

how forcing data error influences model estimates and to determine which parameters are the 

primary drivers of each model.  We find large sensitivity and bias in component estimates 

that becomes mitigated when aggregated into a total ET estimate.  The results also show that 



 

 

 

 

the total ET of PT-JPL, PM-MOD, and GLEAM is most sensitive to NDVI, RH, and net 

radiation, respectively.  The results of each study suggest that the soil evaporation component 

exhibits large errors and may be culpable for errors in ET partitioning.   These results suggest 

that future improvements to remote sensing-based ET component estimates will vastly 

improve the confidence of the total ET estimates and provide greater understanding in how 

water interacts with vegetation, climate, and society.  
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I. Introduction: 
 

Evapotranspiration (ET), the process by which liquid water returns to the atmosphere 

as vapor, represents a central nexus at the intersection of the carbon, water, and energy cycles 

(Oki and Kanae, 2006).  Terrestrial ET is traditionally partitioned into three components: 

transpiration of water through plant stomata, soil evaporation from the top layer of soil, and 

canopy interception and re-evaporation of rainfall. Each component represents an alternative 

pathway for water to return to the atmosphere via evaporation.  The partitioning of ET 

between these pathways is controlled through a variety of competing factors including the 

productivity of vegetation, regional and local climatic factors, water table and rooting depth, 

groundwater connectivity to surface water, and phenology (Cavanaugh et al., 2011; Hu et al., 

2009; Wang et al., 2014).  How vegetation responds to a changing climate is one of the key 

uncertainties in climate forecasts, and partially depends on the magnitude of expected 

changes to transpiration rates and ET partitioning (Friedlingstein et al., 2014; Lawrence et 

al., 2007).  

Remote sensing-based model estimates of ET have become ubiquitous in global 

climate research and often depend upon the aggregate of ET component estimates (Fisher et 

al., 2017; K. Zhang et al., 2016).  While significant research has been done to enhance our 

ability to estimate total ET, our understanding of the components of ET remains critically 

limited (Miralles et al., 2016; Schlesinger and Jasechko, 2014).  The development of accurate 

ET partitioning estimates has been hindered by the lack of a quality field dataset by which to 

validate modeled estimates.  Remote sensing-based ET estimates have benefited from 

FLUXNET, the global network of eddy covariance tower sites used to validate modeled ET 

estimates (Baldocchi et al., 2001).  Transpiration and soil evaporation fluxes are measured 
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using stable isotope techniques (Brunel et al., 1997; Gibson and Edwards, 2002; Jasechko et 

al., 2013), sap-flux probes (Fernández et al., 2006; Williams et al., 2004), and other methods 

(Gibson and Edwards, 2002; Lautz, 2008; McJannet et al., 2007), while interception is 

measured as the residual of rainfall captured above and below the canopy (Carlyle-Moses 

and Gash, 2011; Crockford and Richardson, 2000).   ET partitioning data remains sparse and 

uncoordinated, and field methods lack the scale and quality that eddy covariance towers 

provide.   

Furthermore, multiple models and forcing datasets exist to estimate ET and its 

components (Mccabe et al., 2016; Michel et al., 2016). Comparisons between models have 

shown large discrepancies in partitioning (Miralles et al., 2016), but these comparisons suffer 

from the unique data fields and parameters that each model requires.  Model disparities can 

then result from both the formulation of the model and from error introduced by the 

uncertainty of a unique parameter within that model.  Previous studies have attempted to 

force multiple models using the same dataset (Mccabe et al., 2016; Michel et al., 2016; 

Mueller et al., 2011), or to force the same model using multiple datasets to isolate sources of 

error (Badgley et al., 2015).  However, models rarely share data requirements exactly and 

sources of error are more difficult to isolate when we assess the state of ET models more 

broadly.   

This study attempts to assess the accuracy in the partitioning of three remote sensing-

based ET models.  First, we assess the performance of the modeled total ET and component 

estimates against a dataset of globally dispersed field estimates.  We then conduct a 

sensitivity analysis on each of the models using the same forcing dataset.  We contend that 

the field study estimates of ET, while containing errors of their own, can be aggregated to 
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provide information and trends against which to validate the remote sensing-based models.  

We can then assess the performance of the model across different metrics and parameters, 

and use the sensitivity analysis to determine if the model’s sensitivity to a given parameter 

might explain the model component performance determined by the field studies.   

The focus of the sensitivity analysis on the individual model components and their 

comparison against field derived values is novel.  Few studies have explored the different 

partitioning strategies within these models, despite their importance to land surface feedbacks 

and to the model ET estimate itself.  The ease and quantity at which remote sensing data is 

available will continue to create opportunities to refine and improve ET estimates.  However, 

our poor understanding of the partitioning of ET will continue to limit those estimates.  We 

hope that the following study provides insight into the performance of the partitioning 

strategies of the models as well as the broader challenges associated with determining ET 

partitioning and plant-water relations.  
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Abstract: 

Satellite based retrievals of evapotranspiration (ET) are widely used for assessments of global 

and regional scale surface fluxes.  However, the partitioning of the estimated ET between soil 

evaporation, transpiration, and canopy interception regularly shows strong divergence between 

models, and to date, remains largely unvalidated.  To examine this problem, this paper 

considers three algorithms: the Penman-Monteith model from the Moderate Resolution 

Imaging Spectroradiometer (PM-MODIS), the Priestley-Taylor Jet Propulsion Laboratory 

model (PT-JPL), and the Global Land Evaporation Amsterdam Model (GLEAM).   Surface 

flux estimates from these three models, obtained via the WACMOS-ET initiative, are 

compared against a comprehensive collection of field studies, spanning a wide range of 

climates and land cover types.  Overall, we find errors between estimates of field and remote 

sensing-based soil evaporation (RMSD = 90-114%, r2 = 0.14-0.25, N = 35), interception 

(RMSD = 62-181%, r2 = 0.39-0.85, N = 13), and transpiration (RMSD = 54–114%, r2 = 0.33-

0.55, N = 35) are relatively large compared to the combined estimates of total ET (RMSD = 

35-49%, r2 = 0.61-0.75, N = 35). Errors in modeled ET components are compared between 

land cover types, field methods, and precipitation regimes.  Modeled estimates of soil 

evaporation were found to have significant deviations from observed values across all three 

models, while the characterization of vegetation effects also influences errors in all three 

components. Improvements in these estimates, and other satellite based partitioning estimates 

are likely to lead to better understanding of the movement of water through the soil-plant-water 

continuum. 
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2.1 Introduction: 

 The evaporation of water from the Earth’s surface to the atmosphere represents a 

critical link between the global water, carbon, and energy cycles (Oki and Kanae, 2006). An 

estimated two thirds of terrestrial rainfall returns to the atmosphere as evapotranspiration (ET) 

from the continents (Hobbins et al., 2004; Teuling et al., 2009) and the associated latent heat 

flux corresponds to a cooling of the Northern Hemisphere of about 15o-25oC (Shukla and 

Mintz, 1982). ET is a critical process governing water resource availability, agricultural 

productivity, and irrigation efficiency, as well as impacting the severity of droughts, floods, 

and wildfires (Littell et al., 2016; Molden et al., 2010; Trenberth, 2011; Wallace, 2000). 

Furthermore, the energy flux associated with ET fundamentally influences the development of 

the planetary boundary layer and the atmospheric processes contained within it (Ek and 

Holtslag, 2004; Pielke et al., 1998; Seneviratne et al., 2010). Future climate warming is 

expected to significantly alter the global water cycle, affecting regional and global rates of ET, 

precipitation, and streamflow (Huntington, 2006; Y. Zhang et al., 2016).  Given the important 

role of ET in a variety of land surface processes, accurately estimating large-scale fluxes of ET 

is critical to our understanding of the earth system.  

Spatially distributed, remote sensing-based ET models have become a dominant means 

to estimate catchment and global-scale ET fluxes (Anderson et al., 2007; Fisher et al., 2017; 

Schmugge et al., 2002).  The large spatial extent and fine temporal resolution of these remote 

sensing products makes them perhaps the only observational means to assess global-scale 

impacts of changes in ET fluxes.   These factors have made remote sensing-based models a 

powerful tool in both climate and large-scale hydrologic applications.  Many of these remote 

sensing-based models estimate total ET via combination of its separate components: 
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transpiration through plant stomata, soil evaporation from the top layer of soil, and canopy 

rainfall interception. However, the wide array of algorithms and choice of forcing datasets have 

hampered the analysis of model results, as errors in model estimates may come from both 

forcing errors and/or errors in algorithms and parametrizations (Ershadi et al., 2015).  Recent 

efforts have compared ET fluxes from several satellite-based ET models using a common 

forcing dataset, simplifying the comparison substantially (McCabe et al., 2016; Michel et al., 

2016; Miralles et al., 2016). 

These remote sensing-based ET estimates have shown good relative agreement in 

global estimates, but larger discrepancies regionally (Michel et al., 2016). Interestingly, the 

limited number of studies comparing individual ET components have shown that the global 

and regional contribution of transpiration, soil evaporation, and interception vary significantly 

between models, even where total ET estimates agree (Miralles et al., 2016). The divergence 

of ET partitioning estimates suggests that some models may contain large ET partitioning 

errors. Accurate partitioning estimates are highly desired for research related to agriculture, 

climate and land-use change, hydrology, and water resource availability.  ET partitioning is 

also a crucial factor for global climate models as the partitioning of ET has proven to be a 

significant source of uncertainty for future climate projections (Lawrence et al., 2007).  

Incorrect parameterizations within ET models are likely to compromise the accuracy of 

estimates across ecoregions and through time. Furthermore, any divergence of ET partitioning 

is certainly an indicator that models may contain systematic errors in their formulations. 

The mechanisms that govern the individual ET components of transpiration, soil 

evaporation, and canopy interception operate on varying spatial scales from relatively small 

(i.e. stomata, single plants) to larger regional scales (i.e. climate system) (Good et al., 2017; 
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Pieruschka et al., 2010; Wang and Dickinson, 2012; Wang et al., 2014). Field methods for 

measuring transpiration typically measure at the scale of an individual leaf or plant (Rana and 

Katerji, 2000; Schlesinger and Jasechko, 2014). Such field techniques include: sap-flow 

measurements, diurnal water table changes, water-balance approaches, and isotope based 

approaches (Gibson and Edwards, 2002; Lautz, 2008; McJannet et al., 2007; Nizinski et al., 

2011). Measurements from such studies are extrapolated to larger spatial scales through 

assumptions about the variability of sap-flux densities (Dye et al., 1991; Fernández et al., 

2006), changes in isotopic composition of water within the plant (Brunel et al., 1997), and 

general homogeneity of vegetation and stomatal response to environmental conditions.  The 

spatial scale of these measurements remains a limitation for ET partitioning validation, as 

research into regional hydrologic and climatic processes often requires estimates of partitioned 

fluxes at much larger spatial scales. 

Furthermore, field studies of ET partitioning often focus on a single component such 

as transpiration or interception, and rarely attempt to estimate all contributing ET components. 

Canopy interception, for instance, is a well-developed field of study (Carlyle-Moses and Gash, 

2011; Crockford and Richardson, 2000; Levia and Frost, 2006; Muzylo et al., 2009), and is 

often estimated as the difference between rainfall above and below the canopy. However, few 

canopy interception studies attempt to quantify the role of interception as part of the ET flux. 

Similarly, transpiration studies are often focused on the physiologic processes of vegetation 

and disregard the role of transpiration in larger hydrologic and atmospheric cycles. Some field 

methods do not directly measure soil evaporation, and instead quantify it as the residual of ET 

and transpiration.  Due to the fractured nature of the ET partitioning research, few field studies 

are available quantifying transpiration, soil evaporation, and interception simultaneously.   
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To address the uncertainty surrounding ET partitioning in remote sensing-based ET 

models, we evaluate three models and their partitioning strategies against a compilation of field 

studies. We hope to contextualize partitioning comparisons made by Miralles et al. (2016) 

using empirical field methods.  While previous studies have attempted to compare specific 

model estimates of either canopy interception or transpiration against field data, few have 

jointly assessed errors in remote sensing-based estimates against transpiration, soil 

evaporation, and interception. In comparing model performance against compiled field 

estimates we hope to (1) reconcile the deviations between each model partition against a field 

standard, (2) determine if the modeled errors are consistent or vary across different land surface 

or climate conditions, (3) identify assumptions or parameters within the model that contribute 

to error, (4) and contextualize some of the partitioning comparisons made by Miralles et al. 

(2016).  

 

2.2. METHODOLOGY: 

 We compared ET components from three remote sensing-based models against a 

compilation of field estimates of soil evaporation, transpiration, and interception. We assessed 

the Priestley-Taylor Jet Propulsion Lab model (PT-JPL)(Fisher et al., 2008), the Penman-

Monteith MODerate Resolution Imaging Spectroradiometer (PM-MODIS) (Mu et al., 2011), 

and the Global Land Evaporation Amsterdam Model (GLEAM) (Martens et al., 2017; Miralles 

et al., 2011, 2010) model. Each model is widely used to estimate ET and provide relatively 

comparable estimates of the total ET flux (Miralles et al., 2016).  Global annual mean values 

of ET for each model have been estimated at 54.9, 72.9, and 72.5 x 103  km3 for PM-MOD, 

GLEAM, and PT-JPL respectively (ibid.).  
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2.2.1 Evaporation Models 

 Each model evaluated for this study adopts a similar structure to estimate total ET 

fluxes as well as the individual components of ET. The model structure may be categorized 

into three separate functions: (1) quantifying potential ET, (2) partitioning the potential ET 

into its given components to be aggregated as total ET, and (3) translating the potential ET into 

an actual ET based on the constraints of the component processes.  Different models employ 

different strategies in accomplishing these basic functions but individual model parameters 

often fall into a single categorical function. 

a. Priestley-Taylor Jet Propulsion Lab (PT-JPL) 

 The PT-JPL model utilizes the Priestley-Taylor equation (Priestley & Taylor, 1972) to 

estimate potential ET flux and is described in depth in Fisher et al. (2008).  The model uses 

ecophysiological and atmospheric constraints to reduce the potential ET flux to an actual ET 

flux. The total ET is partitioned between soil evaporation, 𝐸𝑠 [m/s], canopy transpiration, 𝐸𝑣 

[m/s], and canopy interception, 𝐸𝑖 [m/s] as 

(1a)  𝐸𝑠 = (𝑓𝑤𝑒𝑡 +  𝑓𝑆𝑀(1 − 𝑓𝑤𝑒𝑡))𝛼
Δ

𝜆𝑣𝜌𝑤(Δ+𝛾)
(𝑅𝑛𝑠 − 𝐺), 

(1b)  𝐸𝑣 = (1 − 𝑓𝑤𝑒𝑡)𝑓𝑔𝑓𝑇𝑓𝑀𝛼
Δ

𝜆𝑣𝜌𝑤(Δ+𝛾)
𝑅𝑛𝑐, 

(1c)  𝐸𝑖 = 𝑓𝑤𝑒𝑡𝛼
Δ

𝜆𝑣𝜌𝑤(Δ+𝛾)
𝑅𝑛𝑐 

where 𝑎 is the Priestley-Taylor coefficient (considered equal to 1.26), ∆ is the slope of the 

vapor pressure curve [Pa/K], 𝛾 is the psychrometric constant [Pa/K], 𝑅𝑛 is the net radiation 

[W/m2], 𝐺 is the energy flux into the ground [W/m2], 𝜆𝑣is the latent heat of vaporization[J/kg], 

𝑓𝑤𝑒𝑡 is a relative surface wetness parameter (see below), 𝑓𝑆𝑀 is the soil moisture constraint, 𝑓𝑔 
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is the green canopy fraction, 𝑓𝑇 is the plant temperature constraint, and 𝑓𝑀 is the plant moisture 

constraint. 

 PT-JPL effectively accomplishes its partitioning using a canopy extinction equation to 

estimate the radiation penetrating through the canopy. This canopy extinction equation utilizes 

the leaf area index (LAI) in conjunction with the Beer-Lambert law of light attenuation 

(Norman Ay et al., 1995) to partition net radiation between the canopy and soil.  Canopy 

processes (interception and transpiration) are determined using the radiation intercepted 

according to the Beer-Lambert equation, and soil evaporation is determined using the residual 

radiation penetrating the canopy. 

 PT-JPL scales each ET component by various scalars (f parameters) between 0 and 1 

to account for environmental constraints on potential evaporation such as water and heat stress. 

Transpiration is constrained using four vegetation-based physiological parameters. 

Temperature and plant moisture effects on transpiration are calculated by normalizing 

phenological parameters by the maximum observed value per pixel. A canopy greenness 

fraction further constrains the transpiration flux based on the ratio between the fraction of 

absorbed photosynthetically active radiation (𝑓𝐴𝑃𝐴𝑅) and the fraction of intercepted 

photosynthetically active radiation (𝑓𝐼𝑃𝐴𝑅).  The fourth constraint on transpiration is the 

surface wetness based on atmospheric relative humidity (𝑓𝑤𝑒𝑡). Soil evaporation constraints 

are determined by the surface wetness parameter (𝑓𝑤𝑒𝑡) and the available soil moisture (𝑓𝑠𝑚), 

the latter estimated by both relative humidity and vapor pressure deficit.  Interception is 

estimated using the same 𝑓𝑤𝑒𝑡 parameter. 
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b. Penman-Monteith MODerate Resolution Imaging Spectroradiometer (PM-MODIS) 

 The PM-MOD model uses a framework based on the Penman-Monteith equation and 

utilizes specific conductance terms representing the vapor movement from the land surface to 

the overlying atmosphere. The model is described in depth by Mu et al. (2011) and estimates 

the components as: 

(2a)   𝐸𝑖 = 𝑓𝑤𝑒𝑡𝑓𝑐

Δ(𝑅𝑛−𝐺)+𝜌𝑐𝑝
𝑉𝑃𝐷

𝑟𝑎
𝑤𝑐⁄

𝜆𝑣𝜌𝑤(Δ+𝛾
𝑟𝑠

𝑤𝑐

𝑟𝑎
𝑤𝑐)

, 

(2b)  𝐸𝑣 = (1 − 𝑓𝑤𝑒𝑡)𝑓𝑐

Δ(𝑅𝑛−𝐺)+𝜌𝑐𝑝
𝑉𝑃𝐷

𝑟𝑎
𝑡⁄

𝜆𝑣𝜌𝑤(Δ+𝛾
𝑟𝑠

𝑡

𝑟𝑎
𝑡 )

, 

(2c)  𝐸𝑠 = [𝑓𝑤𝑒𝑡 + (1 − 𝑓𝑤𝑒𝑡)ℎ
𝑉𝑃𝐷

𝛽⁄
]

(𝑠×𝐴𝑠𝑜𝑖𝑙+𝜌𝐶𝑝(1−𝑓𝑐)𝑉𝑃𝐷
𝑟𝑎𝑠

⁄ )

𝜆𝑣𝜌𝑤(𝑠+ 𝛾
𝑟𝑡𝑜𝑡
𝑟𝑎𝑠

)
. 

Interception, transpiration, and soil evaporation are separated using fractional cover,𝑓𝑐, 

calculated using 𝑓𝐴𝑃𝐴𝑅. The partitioned fluxes are constrained based on relative humidity (h), 

the fraction of wet surface (𝑓𝑤𝑒𝑡), and look-up table values of vegetation-dependent 

aerodynamic and surface resistances (𝑟𝑎, 𝑟𝑠). 

 

c. Global Land Evaporation Amsterdam Model (GLEAM) 

Similarly to PT-JPL, GLEAM relies on a Priestley-Taylor framework to calculate 

potential ET.  GLEAM uses a separate algorithm to calculate interception (Ei) based on a Gash 

analytical model (Gash, 1979; Valente et al., 1997) driven by precipitation observations. Ei  

estimates have been previously validated against field data independently (Miralles et al., 

2010). The GLEAM model computes interception only for the tall canopy fraction within each 

pixel (see below).  
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 Then soil evaporation (𝐸𝑠), tall canopy transpiration (𝐸𝑡𝑐) and short canopy 

transpiration (𝐸𝑠𝑐) are calculated as 

 (3a)  𝐸𝑠 = 𝑓𝑠𝑆𝑠𝛼𝑠
Δ

𝜆𝑣𝜌𝑤(Δ+𝛾)
(𝑅𝑛

𝑠 − 𝐺𝑠) 

 (3b)   𝐸𝑠𝑐 = 𝑓𝑠𝑐𝑆𝑠𝑐𝛼𝑠𝑐
Δ

𝜆𝑣𝜌𝑤(Δ+𝛾)
(𝑅𝑛

𝑠𝑐 − 𝐺𝑠𝑐), 

(3c)  𝐸𝑡𝑐 = 𝑓𝑡𝑐𝑆𝑡𝑐𝛼𝑡𝑐
Δ

𝜆𝑣𝜌𝑤(Δ+𝛾)
(𝑅𝑛

𝑡𝑐 − 𝐺𝑡𝑐) – 𝐸𝑖. 

The transpiration (Ev) is then calculated as the sum of Esc and Etc. In equation (3a), (3b) and 

(3c), the partitioning of the evaporative flux into different components is based on the 

fractional vegetation cover (𝑓). The fractional cover utilized is the MODIS Continuous 

Vegetation Fields product, MOD44B, which describes each pixel as a combination of bare soil, 

tall canopy, and short canopy vegetation (i.e. “𝑠”, “𝑡𝑐”, and “𝑠𝑐”, respectively). The model 

uses vegetation-dependent parameterizations of 𝐺 as well as different values of 𝑎 for each 

vegetation cover type.  Characteristic albedo ratios per vegetation cover type come from look 

up tables and determine how 𝑅𝑛 is distributed per cover fraction.  

GLEAM model constrains the Priestley and Taylor potential evaporation estimates 

based on an evaporative stress factor. This stress factors, 𝑆, is parameterized separately for the 

bare soil, tall canopy, and short vegetation components based on soil moisture and vegetation 

phenology for the vegetated fractions (see Ss, Stc and Ssc in eq. (3a), (3b) and (3c), 

respectively).. The soil moisture is estimated based on a multilayer soil module driven by 

precipitation observations, and further optimized using a data assimilation system that 

incorporates observations of surface soil moisture (Martens et al., 2017, 2016). The 

transpiration stress associated with phenological changes is based on microwave vegetation 

optical depth, a proxy for vegetation water content (Miralles et al., 2011). 
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2.2.2 Field Validation Data 

Field studies measuring the separate components of ET (i.e. soil evaporation, 

transpiration, and interception) are scarce. We utilized a set of studies previously consolidated 

by Schlesinger and Jasechko (2014) as well as additional studies containing annual values for 

transpiration and total ET. We then calculated soil evaporation as the residual of transpiration 

and total ET, assuming negligible interception.  We compared the residual field estimate 

against modeled soil evaporation and the modeled residual (ET-T) and found that this 

assumption did not significantly influence the aggregate results of the study. These studies 

span several decades and use a variety of measurement techniques, primarily sap-flow 

measurements, isotope-based measurements, or meteorological models scaled using eddy-

covariance and water balance models. Other studies have scaled measurements using 

biophysical models or through a water balance method to obtain canopy level values of 

transpiration and ET. Each field method suffers from their own set of assumption and is 

associated with some measurement error.  Field study site locations are displayed in figure 2.1 

and listed in table 2.1.  Despite the range of spatial support and uncertainty related to each 

technique in the dataset, we believe that, in the aggregate, the field estimates offer a good 

means to evaluate the performance of the model estimates.   

Some field studies within the dataset span only the growing season of a given year and 

may overestimate the ratio of transpiration to ET on an annual scale. Other studies span several 

years and report a single annual estimate for transpiration and ET fluxes. Field estimates are 

reported as annual values and are compared against the modeled annual means. Instances 

existed where separate field studies reported values for the same pixel, in which case the field 

estimates were averaged. 
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Figure 2.1: Map of field study locations (white circles) and associated IGBP land cover types. 

Land cover is derived from the MODIS-based MCD12Q1 product. 

 

The field studies described above largely ignore evaporation of rainfall intercepted by 

the canopy. To validate the interception components of the models we used the dataset 

previously used in the validation of the GLEAM interception loss estimates (Miralles et al., 

2010). This dataset includes studies estimating the interception of forested canopies and 

excludes field sites in grasslands or shrublands where herbaceous interception may occur. The 

field dataset describes the interception at a given site as a mean annual depth per area of 

canopy.  In order to estimate the interception in a given pixel, we scaled each field value using 

the fraction of forested land cover described by the MCD12C1 land cover fraction product 

(NASA LP DAAC, Friedl, 2015).  This does not account for the interception by herbaceous 

vegetation in non-forested areas, even though the rates of interception by short vegetation are 

expected to be comparatively much lower due to differences in aerodynamic conductance 

(David et al., 2005). 
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2.2.3 Model Forcing Data 

 For those input variables that are common to all three models, we used the WAter Cycle 

Observation Multi-mission Strategy - ET database (WACMOS-ET, 

http://wacmoset.estellus.eu/), which includes remote sensing derived surface meteorology and 

radiation fluxes (Michel et al., 2016; Miralles et al., 2016). In addition to the parameters already 

included in the WACMOS-ET forcing dataset, the PM-MOD model requires LAI, IGBP land 

cover, and 𝑓𝐴𝑃𝐴𝑅 as inputs while the PT-JPL model requires NDVI.  The original WACMOS-

ET dataset contains LAI and 𝑓𝐴𝑃𝐴𝑅 derived from the Joint Research Centre two-stream 

inversion package, but the values are not consistent with the MODIS derived LAI and 𝑓𝐴𝑃𝐴𝑅 

that both PM-MOD and PT-JPL require.  We used MODIS vegetation products (NASA LP 

DAAC, Didan, 2015) to supplement the WACMOS-ET data to force the PT-JPL and PM-

MOD.  

 The input datasets vary in spatial and temporal resolution, but are re-sampled to a 

common 0.25° latitude x 0.25° longitude grid, and a 3-hourly temporal scale for PT-JPL and 

PM-MOD models, and a daily temporal scale for GLEAM. GLEAM no longer provides sub-

daily estimates of ET, but PT-JPL requires maximum daily temperature and minimum daily 

humidity and is thus executed using the original 3-hourly forcing. In addition to the time variant 

fields, both GLEAM and PM-MOD require static fields. PM-MOD requires IGBP land cover 

values while GLEAM requires soil parameters derived from IGBP-DIS (Global Soil Task 

Group, 2014), and the MOD44B global vegetation continuous fields product. 

  

http://wacmoset.estellus.eu/
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2.3 Results: 

 We compared the modeled estimates for each ET component against the field study 

estimates at each location. Table 2.2 lists the r2 correlation coefficient, the standard error, the 

percent mean bias deviation (% MBD), and the percent root mean squared deviation (% 

RMSD) across different models.  Figure 2.2 shows linear regressions of the modeled estimates 

against the field estimates for each model and individual ET component.   

 

Figure 2.2: Comparison between modeled ET estimates and field observed estimates for (a) 

soil evaporation, (b) transpiration, (c) interception, and (d) total ET flux for each model. A 

regression is plotted with the 95% confidence interval for each model shaded. The grey line 

represents a perfect fit between field and modeled results. 
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Total ET results are comparable between models and show similar agreement with 

previous validations of total ET (Miralles et al., 2016). The modeled estimates generally 

overestimate the field estimates for small ET fluxes, and underestimate the field estimates at 

high values. Both PM-MOD and GLEAM show a tendency to underestimate the total flux, 

exhibiting a percent mean bias deviation (%MBD) of -21.6% and -20.9% respectively.  PT-

JPL ET estimates shows a %MBD of just -2.3%.  The standard error exhibited by each model 

is very similar as are the overall trends.  Comparatively, the modeled partitions show large 

discrepancies among themselves and agianst field data.  

 GLEAM offers the best results for estimating the transpiration flux, showing the 

lowest %RMSD, %MBD, and highest r2 value. PT-JPL shows similar results to GLEAM for 

most statistics, except a lower correlation. The %MBD for the PM-MOD transpiration flux is 

-66.0%, which is substantially larger as compared to PT-JPL and GLEAM, where values of -

10.7 % and -5.4 % are obtained respectively. The PT-JPL transpiration correlation (r2 = 0.33) 

is much lower than previous validations of the transpiration component by Fisher et al. (2008) 

using sap flow estimates at three flux tower sites of alpine and sub-alpine climates. Compared 

to these three flux tower sites, our partitioning data spans a greater range of climate at a coarser 

temporal resolution.  Recall that the slight underestimation of PT-JPL and GLEAM 

transpiration could be the result of certain field measurements reflecting only the growing 

season for a given year, rather than model deficiencies. 

 Both GLEAM (r2 = 0.82) and PM-MOD (r2 = 0.85) offer high correlations with field 

interception estimates. However, GLEAM shows lower RMSD (62.1%) and MBD (25.3%) as 

compared to PM-MOD (181.0% RMSD, 149.9%  MBD).  PT-JPL estimates of canopy 

interception compare poorly based on all statistical measures, resulting in an r2 correlation of 
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only 0.39 and a RMSD of 157.4%.  Overall, estimates of interception showed a large level of 

divergence with the field estimates for both PM-MOD and PT-JPL.  Model estimates showed 

especially large errors where field estimates exhibited small fluxes or where the fraction of 

forest within the pixel was determined to be small. However, the small number of field 

interception studies (N=13) makes it difficult to definitively assess the model performance.    

 While the PT-JPL model provided the highest r2 value and lowest RMSD for soil 

evaporation (89.8 %RMSD, r2=0.25), the results are relatively poor compared to the 

transpiration estimates.  Modeled estimates of soil evaporation were inaccurate across all 

models and displayed little agreement with the field estimates. GLEAM, while exhibiting a 

low standard error (0.05), consistently underestimated the flux of soil evaporation compared 

to the field results (-45.6 %MBD), which is mostly responsible for the bias in total ET exhibited 

by GLEAM.  Conversely, PT-JPL estimates showed little bias (11.0 %MBD) and a relatively 

high standard error (0.17).  PM-MOD performed poorly across all statistical measures, 

exhibiting a positive bias (49.4 %MBD).    

 Grouping the results by land cover type, water availability, and observational method 

allows us to identify how model performance changes across these groups.  Figure 2.3 shows 

the relative error for each model estimate against field estimates categorized by land cover 

type. We consolidated IGBP land cover values into four new groupings: forests (IGBP #1-5), 

shrublands (IGBP #6-7), grasslands (IGBP #8-10), and cropland and urban (IGBP # 0, 11-16). 

An analysis of each IGBP classification individually was impractical given the small number 

of values in each land cover group.  
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Figure 2.3: Relative error between modeled and field estimates based on IGBP land cover type 

classification from MODIS using the WACMOS-ET dataset. The original IGBP land cover 

types were consolidated into four groups: Forests (IGBP 1-5), Shrublands (6-7), Grasslands 

(8-10), and Cropland and Urban (0, 10-16).  
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GLEAM, when analyzed across land cover, generally shows more variance in 

shrublands and grasslands and comparatively little variance in forests. This is most evident in 

the GLEAM model estimates of soil evaporation, where the modeled estimates are extremely 

consistent in forests, less so in grasslands and croplands, and least in shrublands. As the 

GLEAM soil evaporation estimates become less consistent across these land cover types, the 

bias of these estimates shifts positively. A strong negative bias is evident in forests, and a 

positive one develops in shrublands. Similarly, the GLEAM model shows higher variance in 

its estimate errors of transpiration in shurblands and grasslands, and smaller variance in forests.   

 The differences between land cover types when considering interception become 

difficult to interpret because of the small amount of data in non-forested areas.  The field 

interception dataset reports values exclusively from forests, so a non-forested land cover type 

for that location may suggest that the study site is not representative of the larger pixel.  Apart 

from interception, PT-JPL and PM-MOD show little change in the bias of their estimates 

depending on land cover. Generally, all three models show a wider variation in estimate error 

in shrublands and grasslands than in forests.     

 Figure 2.4 shows the relative estimate error of each model across different precipitation 

regimes. Each model shows large errors in interception at low precipitation, with PM-MOD 

exhibiting large sensitivity to annual precipitation. The relative error of the GLEAM soil 

evaporation trends negatively with increasing precipitation as does the PT-JPL estimate of total 

ET.  
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Figure 2.4: Relative error between modeled and field estimates separated into different 

precipitation regimes using the WACMOS-ET dataset. 
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Figure 2.5 shows the relative error of each model plotted by the field method used to 

partition ET. Estimates in soil evaporation are constant across field method, as are estimates 

in total ET to a lesser extent.  Recall that soil evaporation is calculated as the residual of ET 

and transpiration, so that error in the observational method will be reflected in both 

transpiration and soil evaporation components. The PM-MOD transpiration estimates are also 

consistent, showing a clear negative bias regardless of field method. However, GLEAM and 

PT-JPL estimates vary slightly, while showing consistent estimates to one another.    
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Figure 2.5: Relative error between field and modeled estimates separated by field method type.  

The field methods are discretized into five groups: Isotopes, Sap Flow, Modeled using 

collected and meteorological data, modeled using no meteorological data, and a miscellaneous 

group. 
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2.4 Discussion: 

 One of the inherent limitations in remote sensing-based evaluation studies is the 

challenge of acquiring independent observations that are representative of the scale of 

measurement. As such, we acknowledge that the spatial and temporal scale of the field-based 

estimates used in this study are not the ideal dataset for assessing the performance of these 

models, but few alternatives exists to estimate the individual components of ET. While eddy 

covariance observations are much better equipped for comparison with larger spatial fluxes 

and the finer temporal resolution of remote sensing-based ET products, they do not offer 

information regarding the individual components of ET.  The field studies used in our analysis 

use a wide range of scaling techniques to acquire a canopy level ET measurement, and include 

eddy flux towers.  Inevitably, some approaches are likely to be smaller in spatial scale than the 

satellite estimates, but, in the aggregate, still offer insight into how ET should be partitioned.  

  Our results show a moderate variation in total ET between each of the models, in 

agreement with previous studies (Michel et al., 2016; Miralles et al., 2016). However, the 

objective of this study is primarily the evaluation of the evaporation partitioning in these 

models.  As large discrepancies exist between the separate fluxes estimated by different 

models, they are likely to overshadow the measurement error between field methods. 

 Clear patterns between modeled estimates are evident in the soil evaporation 

components of each model as well as the PM-MOD component of transpiration.  This is 

illustrated in figure 2.5, where differences in modeled estimates are consistent regardless of 

the field method employed.  PT-JPL and GLEAM estimates of transpiration show similar 
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results, while varying slightly across different field methods. This highlights the difficulties in 

disentangling the results of PT-JPL and GLEAM transpiration, given the errors that may exist 

in the field data.  As such, we will only discuss where clear differences between models exist 

or where the models show large biases with respect to the field data.  

 Through rooting uptake, plants are able to utilize water for transpiration held in the soil 

long after rain events. Soil evaporation and interception are much more dependent on transient 

rain events, which increase water storage in the canopy or upper layer of soil that becomes 

available for fast evaporation (Williams et al., 2004; Yepez et al., 2005).  The available water 

source for either flux also depends on the connectivity of that water to surface water or deeper 

soil stores (Good et al., 2015). The differences in water sources for separate evaporation 

components changes the fundamental nature of those processes and the modeling techniques 

and data required to capture these physical processes.  While fine temporal sampling may be 

required to capture rain events contributing to soil evaporation and interception, it may not be 

required to capture transpiration rates.  

 The modeled soil evaporation shows little correlation with field estimates across all 

models.  In addition, both PT-JPL and PM-MOD show large standard error in their estimates 

of soil evaporation.  While the inability of model routines to fully capture the physical process 

of soil evaporation might be responsible for part of the total error, differences in the spatial and 

temporal scales of soil evaporation as compared to transpiration may contribute to larger 

standard error in the results of soil evaporation.  Soil moisture dynamics have shown to vary 

significantly in time and space depending on the antecedent conditions (Grayson et al., 1997).  

Moreover, changes in the lateral or vertical movement of water in soil associated with these 

changes could affect the connectivity to surface water flows and the availability of water for 
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soil evaporation.  Soil evaporation, being highly dependent on spatially variable soil moisture, 

could thus be disproportionately influenced by the differences in spatial scale between the field 

and modeled estimates.  Additionally, different model representations of ground heat flux 

directly contribute to uncertainties in soil evaporation (Purdy et al., 2016). 

 Estimates of soil evaporation from GLEAM clearly underestimate the field 

measurements.  The relative error in soil evaporation estimates is highly correlated with the 

MOD44B products, showing a tendency to underestimate field measurements corresponding 

with areas of higher fraction of vegetation and lower bare soil. This arises due to the fact that 

GLEAM only considers soil evaporation from bare soil and does not estimate the soil 

evaporation occurring under the canopy or under herbaceous vegetation. The higher correlation 

of the estimate error with herbaceous vegetation than tall canopy suggests that the 

underestimation of soil evaporation by GLEAM is more significant in areas of herbaceous 

vegetation. Figures 2.3 and 2.4 further corroborate this results.  The underestimation in soil 

evaporation is most apparent in forested land cover and shows a negative relationship with 

increasing rainfall.  As shown in Figure 2.2, this causes most of the underestimation in the 

GLEAM estimates of total ET. 

 PM-MOD and PT-JPL share their approach to scale the soil evaporation using 

observations of relative humidity and vapor pressure deficit. As a result, they largely show 

similar estimates of soil evaporation, and similar validation statistics.  Therefore, different 

parameters must cause the divergences found in the soil evaporation products of PT-JPL and 

PM-MOD.  Differences in the Penman-Monteith and Priestley-Taylor models often depend on 

the parametrization of α in the Priestley-Taylor equation and resistance factors in the Penman-

Monteith equation.  The largest deviations between Penman-Monteith and Priestley-Taylor ET 
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estimation occur when aerodynamic resistances and net radiation are small and VPD is high 

(Komatsu, 2005).  Given the similarities between the model routines and output, it seems that 

the poor performance of the soil evaporation component likely stems from their shared 

assumptions.   

 PT-JPL and PM-MOD, by excluding precipitation and using relative humidity as a 

metric of a system’s overall moisture, may see significant errors when soil and air moisture are 

in a state of disequilibrium. VPD and RH are correlated with soil moisture over weekly to 

seasonal time scales, but become decoupled over shorter time periods (Novick et al., 2016).  

Soil evaporation, more so than transpiration, may occur over shorter time periods following 

precipitation events. The use of humidity-based functions to account for water availability 

could explain the large standard error of the PM-MOD and PT-JPL soil evaporation 

component. However, spatial differences in the field and remote sensing-based products could 

also be culpable for the error.  Higher frequency observations of ET partitioning are needed to 

better understand short-term dynamic changes in partitioning and how to reflect these 

dynamics within models.  

Furthermore, soil moisture has been found to have a non-linear relationship with soil 

evaporation that can be characterized in two stages.  The first stage is characterized by capillary 

transport, which sustains moisture at the soil surface.  During the second stage, drying disrupts 

the hydraulic pathways within the soil and the vaporization plane moves below the soil surface, 

resulting in a significant reduction in soil evaporation (Haghighi and Or, 2013; Or et al., 2013).  

The point at which drying soils shift between stages of evaporation is largely dependent on 

physical soil characteristics and pore size and can cause dynamic shifts at hourly time scales 

in evaporation resistances (Aminzadeh and Or, 2017; Decker et al., 2017; Merlin et al., 2016).  
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Neither PT-JPL nor PM-MOD consider soil properties in their estimate of soil evaporation, 

while GLEAM uses field capacity and wilting point to determine stress factors.  The non-

consideration of soil properties could be contributing to the large standard error in those soil 

evaporation estimates.  

 The transpiration estimates of both PT-JPL and GLEAM show better agreement with 

field estimates than their respective soil evaporation estimates. Partitioning research has shown 

transpiration to be the dominate flux of total ET (Jasechko et al., 2013). Therefore, the 

transpiration estimate of the model is critical in the models’ ability to estimate total ET. 

Transpiration estimation and vegetation modeling represent research areas where remote 

sensing provides tremendous utility. The large degree of variability in plant species and size 

make ground measurements of canopy scale interaction difficult. The use of vegetation indices 

derived from remotely sensed products are much more advantageous for measuring 

heterogeneous vegetation and biophysical processes such as transpiration (Glenn et al., 2008).   

 PM-MOD strongly underestimates the transpiration flux estimated by field techniques.    

The only vegetation parameter used by PM-MOD is the fraction of absorbed 

photosynthetically active radiation, 𝑓𝐴𝑃𝐴𝑅, along with surface and aerodynamic resistances 

from the literature based on IGBP land cover type. These resistances can be very difficult to 

parameterize, and look-up table values do not reflect the temporal variability in these 

resistances.  However, since the underestimation is consistent across all land cover types, it 

seems more likely that the use of 𝑓𝐴𝑃𝐴𝑅 is driving the transpiration bias.  Since PM-MOD 

uses 𝑓𝐴𝑃𝐴𝑅 to partition radiation, the accuracy of the model may vary seasonally as phenology 

changes. 
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 GLEAM performed very well at capturing the field interception estimates, as shown in 

previous studies (Miralles, 2010). Interception has been studied extensively, but little 

information exists on interception rates outside of densely forested ecosystems. While 

GLEAM models interception only for the tall canopy fraction of the pixel, the other models 

estimate interception outside of forests based on leaf area index and 𝑓𝐴𝑃𝐴𝑅.  Interception 

losses outside of forests are likely small relative to total ET fluxes (David et al., 2005), but the 

value of including this interception remains unknown, given that few field measurements exist 

outside of forests.    

Comparisons of interception estimates across Amazonia conducted by Miralles et al. 

(2016) found that PT-JPL and PM-MOD estimates (based on the WACMOS-ET vegetation 

properties as input) nearly doubled the interception rates of GLEAM and field-measured values 

found in the literature. Furthermore, interception has been shown to correlate strongly with 

both rainfall intensity and volume as they relate to canopy storage capacity (Pypker et al., 

2005).  PM-MOD and PT-JPL lack a canopy storage parameter, instead electing to use 

humidity as a proxy for surface wetness, and do not use precipitation as a forcing parameter.  

By not defining a storage capacity for the vegetation in PM-MOD and PT-JPL, the models 

could overestimate the flux for rain events exceeding the canopy storage.  While PM-MOD 

and PT-JPL rely heavily on radiation as main driver of interception, field studies have shown 

that the flux of interception loss is partly decoupled from the available energy (Holwerda et 

al., 2011). In that sense, GLEAM likely provides better remote sensing-based estimates of 

interception, as it builds upon the knowledge gained in ground-based research on interception, 

which identifies vegetation characteristics and rainfall properties as the main determinants of 

the flux (Gash, 1979). 
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2.5 Conclusion:  

While this study attempted to validate the individual components of ET, little reliable 

data for these individual fluxes exists. Given the paucity of field datasets, it is difficult to draw 

definite conclusions on the sources of error within the modelled estimates of partitioned ET 

fluxes.  While estimates diverge significantly between models, and modeled error is likely 

driving the bulk of the discrepancy with field partition estimates, the field methods themselves 

are also prone to errors.  Furthermore, it is difficult to assess if the modeled estimates deviate 

due to the differences in model structure, or because of different forcing datasets and errors 

inherent in the forcing data.  Given the multiple sources of potential error, it was challenging 

to determine to what magnitude we could attribute partitioning error to model methodology.     

Remote sensing-based models will continue to play a dominant role in future ET 

research and its global implications (Fisher et al., 2017; Zhang et al., 2017). Improved spatial 

resolution and spectral availability of remote sensing products will undoubtedly provide a glut 

of  modeled ET data for future researchers (Marshall et al., 2016; McCabe et al., 2017; Sun et 

al., 2017). However, the relative dearth of reliable field estimates for transpiration, soil 

evaporation, and interception inhibits quantifying the accuracy and applications of remote 

sensing-based ET estimates. Clearly, observations of the individual ET components are 

necessary to constrain ET models and improve ET accuracy for future research into climate 

and hydrologic dynamics. The consolidation of a global dataset of sap flux measurements 

(Poyatos et al., 2016) will undoubtedly present tremendous utility in validating remote sensing-

based models and contribute to the advancement of ET science.   

 The results of this study present the first steps towards the validation of ET partitioning 

within remote sensing-based models. Our analysis shows that remote sensing-based ET 
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models, despite showing similar and quite accurate total ET retrievals, produce estimates of 

individual components that deviate significantly from field measurements. Even for locations 

where the total ET is accurately modeled, the modeled components show significant deviations 

from observations. The uncertainty of the ET partitioning may cause model estimates to 

deteriorate when applied more broadly across space and time.   

In particular, we find that: 

- PM-MOD showed a strong negative bias in its transpiration estimate that caused a negative 

bias in the total ET estimate. The bias is likely related to the scaling parameters of the canopy, 

as PM-MOD relates the absorbed PAR linearly to the transpiration rate.   

- Model estimates of soil evaporation showed little correlation with field estimates across all 

models. GLEAM exhibited a strong negative bias likely due to the non-consideration of below-

canopy soil evaporation. Both PM-MOD and PT-JPL also exhibited large standard error in 

their estimates of soil evaporation.   

- The quality of the interception estimates outside of forests was not assessed. GLEAM showed 

good agreement with the field data over forests, while PT-JPL and PM-MOD showed larger 

divergences. The non-consideration of rainfall and canopy storage capacity in PT-JPL and PM-

MOD, and the direct dependency of interception loss on radiation, are the most likely causes 

for the disagreement with the field data.  

- Finally, our results confirm that caution should be taken when applying any of these models 

in isolation, as long as the goal of the study relies heavily on the models partitioning of ET 

fluxes. 
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Tables: 

Reference 
Start 

Date 
End Date 

Duration 

[days] 
Location Lat. Long. Forest Type Method 

Precip. 

[mm/yr] 

Ev 

[mm/yr] 

ET 

[mm/yr] 

PET 

[mm/yr] 
T/ET Aridity 

Poole t al. 

1981 

Annual 

Mean 
- - Chile -33.07 -71.00 

Mediterranean 

Shrubland 

Xylem pressure 

potential 
590 206.5 531 1388 0.39 0.43 

McJannet 

2007 
9/13/2003 6/30/2005 656 Queensland -17.45 145.50 LMCF Sapflow 2983 591 1445 1476 0.41 1.83 

McJannet 

2007 
9/13/2003 6/30/2005 656 Queensland -17.45 145.50 LMRF Sapflow + other 2420 591 1087 1476 0.54 1.83 

McJannet 
2007 

8/9/2002 1/23/2004 532 Queensland -16.53 145.28 LMCF Sapflow 3040 579 1459 1513 0.40 1.94 

McJannet 

2007 
8/9/2002 1/23/2004 532 Queensland -16.53 145.28 LMRF Sapflow + other 2833 579 882 1513 0.66 1.94 

Calder et al. 

1986 
4/6/1985 4/26/1985 20 Indonesia -6.58 106.28 

Tropical 

Rainforest 

Model (with met. 

data), Isotopes 
2851 883.81 1482.52 1591 0.60 1.79 

Nizinski et 

al. 2011 
- - - 

D.R. 

Congo 
-4.69 12.08 

Tropical 

Rainforest 

Radial flow 

meter 
1019 825.39 947.67 1375 0.87 0.74 

Nizinski et 

al. 2011 
- - - 

D.R. 

Congo 
-4.69 12.08 

Tropical 

Grassland 

Radial flow 

meter 
1019 591.02 703.11 1375 0.84 0.74 

Leopoldo et 

al 1995 
1/1/1981 12/31/1983 1094 Amazon -3.13 -60.03 

Tropical 

Rainforest 

Model(with met. 

Data) Water 
Balance 

2209 1243.7 1495 1612 0.83 1.29 

Leopoldo et 

al. 1995 
1/1/1981 12/31/1983 1094 Brazil -3.13 -60.03 

Tropical 

Rainforest 

Model(with met. 

Data) Water 
Balance 

2209 1237.04 1480.03 1612 0.84 1.29 

Salati and 

Vose 1984 
- - - Brazil -2.95 -59.95 

Tropical 

Rainforest 

Model(with met. 
Data) Water 

Balance 

2000 1240 1620 1612 0.77 1.29 
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Salati and 

Vose 1984 
- - - Brazil -2.95 -59.95 

Tropical 

Rainforest 

Model(with met. 

Data) Water 
Balance 

2000 980 1500 1612 0.65 1.29 

Shuttleworth 

1988 
9/1/1983 9/1/1985 731 Brazil -2.95 -59.95 

Tropical 

Rainforest 

Model(with met. 

Data) Water 
Balance 

2232 892.8 1116 1612 0.80 1.29 

Tani et al 

2003 
1/1/1996 12/31/1999 1460 Malaysia 2.97 102.30 

Tropical 

lowland forest 

Model (with met. 

data) Water 
Balancd 

1571 1218 1548 1689 0.79 0.93 

Ataroff 
2000 

1/1/1996 12/31/1998 1095 Venezuela 8.63 -71.03 TMCF Micromet 4450 484 674 1011 0.72 4.40 

Aparecido 

2016 
1/1/2014 12/31/2014 364 Costa Rica 10.39 -84.63 TMRF Sapflow + other 4200 540 1004 1543 0.54 2.72 

Tanaka 
2011 

1/1/1999 11/4/2002 1403 Thailand 18.80 98.90 LMCF Sapflow 1768 626 812 1743 0.77 1.01 

Banerjee in 

Galoux et al. 

1981 

- - - India 22.50 87.30 
Tropical 

Rainforest 
- 1623 730.35 1639.23 1617 0.45 1.00 

Scott et al. 

2006 
10/1/2003 10/31/2007 1491 

United 

States 
31.70 

-

110.40 
Desert Sap Flow 322 119.14 202.86 1516 0.59 0.21 

Cavanaugh 

et al. 2011 
1/1/2008 12/31/2008 365 

United 

States 
31.74 

-

110.05 
Desert 

Model (with met. 

data), Sap flow 
260 54.6 148.2 1567 0.42 0.17 

Cavanaugh 
et al. 2011 

1/1/2008 12/31/2008 365 
United 
States 

31.91 
-

110.84 
Desert 

Model (with met. 
data), Sap flow 

212 44.52 101.76 1460 0.47 0.15 

Liu et al. 
1995 

1/1/1992 12/31/1993 730 
United 
States 

31.95 
-

112.94 
Desert 

Model(with met. 
Data), Isotopes 

200 160 200 1758 0.80 0.11 
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Schlesinger 
et al. 1987 

8/27/1983 7/17/1984 325 
United 
States 

32.52 
-

106.80 
Desert 

Water-balance; 

control and bare 

plots 

210 151.2 210 1519 0.72 0.14 

Poole et al. 
1981 

9/1/1976 7/31/1977 333 
United 
States 

32.83 
-

116.43 
Mediterranean 
Shrubland 

Xylem pressure 
potential 

475 152 394.25 1441 0.39 0.33 

Kumagai et 
al., (in 

press) 

4/1/2007 6/30/2008 456 Japan 33.13 130.72 
Temperate 

Forest 

Model (with met. 

data), sap flow 
2128 486.2 911.4 949 0.53 2.24 

McNulty 

1996 

Annual 

Mean 
- - 

United 

States 
34.00 -85.80 

Temperate 

Forest 

Xylem pressure 

potential 
1225 600.25 784 1334 0.77 0.92 

Waring et 
al. 1981 

- - - 
United 
States 

34.64 
-

111.78 
Temperate 
Forest 

Xylem pressure 
potential 

1085 531.65 694.4 1349 0.76 0.80 

Flore et al. 

1982 
- - - Tunisia 35.80 9.20 Steppe 

Model (with met. 

data) 
144 64.8 144 1533 0.45 0.11 

Wilson et al. 

2001 
1/1/1998 12/31/1998 364 

United 

States 
35.96 -84.29 

Temperate 

Deciduous 
Forests 

Model (with met. 

data), sap flow 
1333 253.27 439.89 1242 0.58 1.07 

Smith et al. 
1995 

1/1/1988 12/31/1988 365 
United 
States 

36.93 
-

116.56 
Desert 

Xylem pressure 
potential 

150 52.5 150 1431 0.35 0.10 

Paco et al. 

2009 
1/1/2005 12/31/2005 364 Portugal 38.50 -8.00 

Temperate 
Deciduous 

Forests 

Sap flow 669 488.37 669 1165 0.73 0.57 

Huang et al. 
2010 

1/1/2003 12/31/2006 1460 China 43.53 116.67 Steppe 
Model (with met. 
data) 

275 151.25 244.75 814 0.62 0.53 

Hu et al. 

2009 
1/1/2003 12/31/2005 1095 China 43.55 116.67 

Temperate 

Grassland 

Model (with met. 

data) 
580 226.2 510.4 814 0.44 0.53 

Waring et 

al. 1981 
10/1/1973 9/30/1974 364 

United 

States 
44.20 

-

122.30 

Temperate 

Forest 

Xylem pressure 

potential 
2355 376.8 635.85 855 0.59 2.75 
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Liu et al. 
2012 

1/1/2009 12/31/2009 364 China 44.28 87.93 Desert 
Energy balance 
model 

150 57 150 996 0.38 0.15 

Telmer and 

Veizer 2000 
9/1/1991 9/30/1992 395 Canada 45.70 -76.90 Boreal Forest 

Isotope-based 

(catchment) 
872 392.4 462.16 842 0.85 1.04 

Tajchman 

1972 
1/1/1965 12/31/1965 364 Germany 48.04 11.56 

Temperate 

Forest 

Energy balance 

model 
725 268.25 427.75 757 0.63 0.96 

Granier et 
al. 2000 

1/1/1995 12/31/1995 364 France 48.67 7.08 

Temperate 

Deciduous 

Forests 

Sap flow 763 251.79 366.24 774 0.69 0.99 

Prazak et al. 

1994 
1/1/1985 12/31/1989 1825 

Czech 

Republic 
49.06 13.66 

Temperate 

Forest 

Model (with met. 

data) 
366 190.32 384.3 739 0.52 0.50 

Molchanov 
cited in 

Galoux et al. 

1981 

- - - Russia 50.75 42.50 

Temperate 

Deciduous 
Forests 

- 513 251.37 436.05 800 0.58 0.64 

Two studies 
by Delfs 

(1967), cited 

by 
Choudhury 

et al. 1998 

- - - Germany 51.76 10.51 Boreal Forest - 1237 235.03 556.65 675 0.42 1.83 

Hudson 

1988 

Annual 

Mean 
- - 

United 

Kingdom 
52.00 -3.50 

Temperate 

Forest 

Model (with met. 

data) 
2620 183.4 786 566 0.23 4.63 

Gash and 

Stewart 
1997 

1/1/1975 12/31/1975 364 
United 

Kingdom 
52.42 0.67 

Temperate 

Forest 

Model (with met. 

data) 
595 351.05 565.25 655 0.55 0.91 

Ladekari 

1998 
7/1/1992 12/31/1994 913 Denmark 56.41 9.35 

Temperate 

Deciduous 

Forests 

Model (with met. 

data) 
549 296.46 345.87 560 0.86 0.98 

Gibson and 
Edwards, 

2002 

1/1/1993 12/31/1994 729 Canada 63.41 
-

114.26 
Boreal Forest 

Isotope-based 

(catchment) 
340 241.4 302.6 423 0.81 0.80 
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Gibson and 

Edwards, 

2002 

1/1/1993 12/31/1994 729 Canada 64.50 
-

112.70 
Tundra 

Isotope-
based(catchment) 

310 105.4 130.2 354 0.81 0.88 

 

Table 2.1: List of field studies used to validate the remote sensing model partitions. Shown are the study location, date, duration, and 

biome type along with the precipitation, transpiration, and evapotranspiration measured by each study. The potential 

evapotranspiration (PET), T/ET ratio, and aridity index are also listed. For each study, soil evaporation was calculated as the residual 

between the total ET and transpiration estimate of each study. 
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  Wacmos Models 

Column1 
0.25o 2005-2007 

PM-MOD PT-JPL GLEAM 

r2 

Es 0.14 0.25 0.14 

Ev 0.45 0.33 0.55 

Ei 0.85 0.39 0.82 

ET 0.64 0.75 0.61 

Standard 
Error 

Es 0.19 0.17 0.05 

Ev 0.08 0.09 0.12 

Ei 0.19 0.34 0.09 

ET 0.09 0.07 0.08 

% MBD 

Es 49.4 11.0 -45.6 

Ev -66.0 -10.7 -5.4 

Ei 149.9 65.1 25.3 

ET -21.6 -2.3 -20.9 

% 
RMSD 

Es 114.2 89.8 90.6 

Ev 86.1 61.6 54.0 

Ei 181.0 157.4 62.1 

ET 45.1 35.1 48.5 

 

Table 2.2: Validation statistics for different satellite-based ET datasets.  The r2 correlation 

coefficient describes the percent variability of the field data that the models were able to 

capture.  The standard error describes the spread or standard deviation of the data.  The mean 

bias error (MBD) describes the bias of the modeled estimate to either over- or under-estimate 

the field data.  The root mean square deviation (RMSD) describes the accuracy of the model 

representing both the size and variation of the gross error. MBD and RMSD are reported as a 

percentage of the average field estimate for each partition. Blue represents good 

performance, while orange represents poor performance.   
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Abstract: 

Accurately estimating evapotranspiration (ET) at large spatial scales is essential to our 

understanding of land-atmosphere coupling and the surface balance of water, energy, and 

carbon. Comparisons between remote sensing-based ET models are difficult due to diversity 

in model formulation, parametrization, and data requirements. The constituent components of 

ET have been shown to deviate substantially among models and between models and field 

estimates. This study analyzes the sensitivity of three global ET remote sensing models in an 

attempt to isolate the error associated with input variable uncertainty and reveal the 

underlying drivers of the model components. We examine the transpiration, soil evaporation, 

interception, and total ET estimates of the Penman-Montieth model from the Moderate 

Resolution Imaging Spectroradiometer (PM-MOD), the Priestley-Taylor Jet Propulsion 

Laboratory model (PT-JPL), and the Global Land Evaporation Amsterdam Model (GLEAM). 

We analyze the sensitivity of the models based on the uncertainty of the input variables and 

as a function of the raw value of the input variables themselves. We find that, at σ=10% 

added uncertainty levels, the total ET estimates from PT-JPL, PM-MOD, and GLEAM are 

most sensitive to Normalized Difference Vegetation Index (NDVI), relative humidity, and 

net radiation, respectively. Consistently, systemic bias introduced by variable uncertainty in 

the component estimates is mitigated when components are aggregated to a total ET estimate. 

Additionally, the GLEAM model was found to have far less sensitivity to the input variables 

and is likely more sensitive to model constants and parameterization. These results suggest 

that slight changes to input variables may result in outsized variation in ET partitioning, and 

relatively smaller changes to the total ET estimates. Our results help to explain why model 
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estimates of total ET perform relatively well despite large deviations in the individual ET 

component estimates. Improving the ET partitioning within these models will help to further 

our understanding of the global relationships between water, climate, and vegetation.  

 

3.1 Introduction: 

Evapotranspiration (ET) is a critical component to the cycling of water, carbon, and 

energy throughout the land and atmosphere and represents a crucial juncture for feedbacks 

and interactions between those cycles (Fisher et al., 2017; Oki and Kanae, 2006). Future 

changes to regional and global climate are expected to significantly alter both the supply 

(precipitation, snow, and groundwater) and demand (ET) side of the hydrological cycle 

(Huntington, 2006; Y. Zhang et al., 2016). These hydrological impacts are projected to 

involve increased drought severity, frequency, and duration (Allen et al., 2010; Spinoni et al., 

2014; Zaitchik et al., 2013). Furthermore, the response of vegetation to these changes in 

climate is a large uncertainty in both climate projections and in global food security (Ciais et 

al., 2005; Friedlingstein et al., 2014; Mancosu et al., 2015).  

The atmospheric demand of water through ET controls soil moisture, agricultural 

drought, and hydrological drought and is a key variable for climate prediction, water 

resources management, and agricultural food production (Fisher et al., 2017; Goulden and 

Bales, 2014; Meng et al., 2014; Porkka et al., 2016). Due to the spatial and temporal scales at 

which estimates of ET are meaningful for climate research, remote sensing-based models 

have become the dominant means to obtain ET fluxes at the relevant spatio-temporal scales 

(Dolman et al., 2014; Fisher et al., 2017; Mccabe et al., 2017). Relatively accurate satellite-
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based estimates of ET now exist with global coverage at several spatial and temporal scales 

(Mccabe et al., 2017; Miralles et al., 2016).  

While remote sensing-based models have vastly improved our ability to estimate ET 

globally, the accurate estimation of ET components lags behind. ET is composed of three 

main fluxes: transpiration from plant stomata, soil evaporation from the top layer of soil, and 

rainfall interception. Though each of these components is often calculated within remote 

sensing-based ET models, comparisons have shown that although the total evaporative flux 

from different models agrees relatively well, the different components diverge substantially 

(Miralles et al., 2016). Furthermore, recent comparisons against in situ component data show 

large biases in remote sensing-based estimates of ET components even where total ET is 

accurate (Talsma et al., 2018). 

How ET is partitioned into transpiration, soil evaporation, and interception remains an 

important topic for remote sensing research. Transpiration represents a crucial link between 

the carbon and water cycle and is a key component in determining how the terrestrial 

biosphere will respond to a changing climate (Bonan, 2008; Lawrence et al., 2007). 

Furthermore, changes to climate and the corresponding effect on the evaporation demand are 

likely to alter the partitioning of ET in the future (Good et al., 2017; Wang et al., 2014). 

Given the large observed discrepancies between modeled and field-based components of ET, 

along with the use of such ET models in climate forecasting and non-stationary systems, the 

partitioning strategies employed by these models may be inadequate in monitoring future 

changes in total ET.  

However, comparing ET models becomes difficult to interpret as each model requires its 

specific set of forcing variables. As such, discrepancies between model estimates can be 
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attributed to assumed model formulations, parameterizations of model constants, and the 

propagation of error associated with different forcing data. Previous studies have attempted 

to use similar forcing data where possible to isolate differences in model formulations 

(Mccabe et al., 2017; Michel et al., 2016; Miralles et al., 2016), while other studies have 

forced the same model with different forcing data, attributing errors as large as 20% of the 

global mean ET to forcing data alone (Badgley et al., 2015; Vinukollu et al., 2011). Still, due 

to the large diversity of models and data requirements, it is difficult to directly compare 

model estimates, or to attribute errors to specific model variables or formulations. 

Furthermore, studies have largely focused on the total ET estimates of these models and have 

largely ignored how dataset uncertainty might affect the estimates of transpiration, soil 

evaporation, and interception separately of total ET. 

This study uses a Monte Carlo sensitivity analysis to explore how the uncertainty of 

individual variables within three remote sensing-based models introduces errors into the 

component estimates of ET. The analysis allows us to unravel how changes in variable 

uncertainty, changes to climatic and biophysical conditions, and the use of different model 

formulation influences differences in modeled estimates. To date, no study has attempted to 

assess the sensitivity of the individual components within these models to their forcing 

variables. The goal of this study is to (1) determine to which model input variables the ET 

components are most sensitive, (2) determine if non-linearity in model formulation 

introduces significant bias in the ET components due to variable uncertainty, (3) and analyze 

model sensitivity across a range of input conditions. 
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3.2 Methods: 

3.2.1 Models and Data 

 Three remote sensing-based evapotranspiration models were selected for this study: 

the Priestley-Taylor Jet Propulstion Lab (PT-JPL) model (Fisher et al., 2008), the Penman-

Monteith MODerate Resolution Imaging Spectroradiometer (PM-MOD) model (Mu et al., 

2011), and the Global Land Evaporation Amsterdam Model v3.1 (GLEAM) (Martens et al., 

2017). The outputs for each of these models have previously been compared against globally 

distributed eddy flux ET measurements (Ershadi et al., 2015; Mccabe et al., 2016; Michel et 

al., 2016), as well as ET partitioning estimates from isotopes, sap flux, and other methods 

(Talsma et al., 2018). Each model is widely used to estimate evapotranspiration and outputs 

the individual components of ET: transpiration, soil evaporation, and interception loss. Both 

PT-JPL and GLEAM rely on the Priestley-Taylor equation to estimate a potential ET value 

(Priestley and Taylor, 1972) and then constrain that potential value to an actual estimate 

using an estimate of evaporative stress based on ancillary data. A detailed description of PT-

JPL may be found in Fischer et al. (2008), while GLEAM is described in Miralles et al. 

(2011) and Martens et al. (2017, 2016). PM-MOD on the other hand uses a Penman-Monteith 

estimate of potential ET and then similarly constrains the potential value to an actual 

estimate. PM-MOD is described in depth by Mu et al. (2011).  

 We used the WACMOS-ET forcing database (http://wacmoset.estellus.eu/) to run the 

three models, which includes remote sensing-based and reanalysis meteorology and radiation 

flux products (Michel et al., 2016; Miralles et al., 2016). We also used MODIS vegetation 

and land cover products (NASA LP DAAC, Friedl et al., 2009; Didan, 2015) to force PT-JPL 

and PM-MOD. The WACMOS database does contain the vegetation products necessary to 
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force the PT-JPL and PM-MOD models, but those products are developed using a two-

stream inversion package and are dimensionally inconsistent with the MODIS products that 

PT-JPL and PM-MOD are developed to use.  

 The WACMOS forcing dataset consists of various re-analysis and remote sensing 

based products that have been aggregated to a common 0.25ο longitudinal x 0.25ο latitudinal 

grid, at 3-hourly temporal scale.  However, GLEAM no longer provides sub-daily estimates 

of ET, while PT-JPL remains sensitive to maximum daily temperature and minimum daily 

humidity estimates. Thus, the two models cannot be run on a common temporal scale. As 

such, we run the GLEAM model at a daily resolution using the mean value of the sub-daily 

dataset, and run both PT-JPL and PM-MOD at the original 3-hourly scale.  

 Due to computational power and data availability, we force each model with a dataset 

of 47 pixel locations over three years (2003-2005), rather than the global dataset.  These 

locations span a large range of ecoregions across the Earth, and have previously been used to 

compare modeled output against field based ET component estimates (Talsma et al., 2017).  

While limiting the dataset to these specific locations may neglect the model sensitivity in 

regions not represented in the data, it allows us to more directly compare the results of this 

study to the results of Talsma et al. (2017).  To further examine how our results might be 

affected by the specific locations, we also analyze the sensitivity results categorized by the 

unperturbed forcing data values.  

 While some variables within the forcing dataset are shared among all three models, 

each model also requires unique input variables. Table 3.1 shows the dynamic variables that 

force each model and lists the original source product. However, both PM-MOD and 

GLEAM require additional spatially-varying static variables. PM-MOD relies on the MODIS 
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IGBP landcover type product to determine canopy resistances, while GLEAM uses static 

variables to describe soil properties (Global Soil Task Group, 2014) and vegetation fractions 

at the sub-pixel level (MOD44B). The latter is expected to be very important for the ET 

portioning in GLEAM , as the model uses the fractional canopy covers from the MOD44B 

product to directly partition the ET flux between soil and canopy.  

 

Variable Product PT-JPL PM-MOD GLEAM 

Surface 
Radiation 
 

SRB (Stackhouse et 
al., 2004)    

Temperature  ERA-Interim (Dee et 
al., 2011)    

Relative 
Humidity 

ERA-Interim (Dee et 
al., 2011)   

 

Precipitation SFR-GPCP (Adler et 
al., 2003)  

  
 

𝒇APAR MODIS (Didan, 2015)   
 

 

LAI MODIS (Didan, 2015)  
 

 

NDVI MODIS (Didan, 2015) 
 

  

Vegetation 
Optical Depth 

LRPM (Owe et al., 
2001) 

  
 

Table 3.1: Dynamic forcing variables for each of the three models.  

 

3.2.2 Monte Carlo Sensitivity Analysis 

To assess each model’s relative sensitivity to the forcing, we use a Monte Carlo style 

simulation (Demaria et al., 2007; Hammersley and Handscomb, 1964). This approach 

involves perturbing input variables by some random uncertainty drawn from a predetermined 

probability distribution and analyzing how the final model output changes in reference to the 

perturbation. We can then compare the model sensitivity across variables, within variable 

ranges, and across models.  
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This study examines the sensitivity of the models to temporally variable input variables 

(Table 3.1). GLEAM, and, to a lesser extent, PM-MOD also use static parameters and 

constants that vary in space but do not vary in time. While these values are important to the 

partitioning within the models, this study does not consider the sensitivity of the models to 

these parameters and constants.  

Many of the products shown in Table 3.1 are re-analysis products that are the result of 

model simulations which incorporate observations from balloon soundings, satellite data, and 

in situ measurements in a data assimilation system. Furthermore, the original products have 

been manipulated further to create a common spatial and temporal scale. As such, data 

quality will change in time and space (Dee et al., 2011), and an accurate estimate of the 

product uncertainty is difficult to determine. To account for potential changes in forcing 

uncertainty, we analyzed the sensitivity to each input variable at a range of uncertainties.  

The required input variables for each model contains both naturally bounded and 

unbounded variables.  For unbounded variables such as net radiation and temperature, a 

Gaussian error distribution is assumed. We use a truncated-normal distribution to describe 

the errors of the bounded variables. Bounded variables included relative humidity (RH, 0-1), 

leaf area index (LAI, 0- m2/m2), normalized difference vegetation index (NDVI, -1.0-1.0), 

fraction of absorbed photosynthetically active radiation (𝑓APAR, 0-1), precipitation (P, 0- 

mm/day), and Vegetation Optical Depth (VOD, 0-). For both cases, the expected mean 

value is the raw data input and the standard deviation of the distribution is a predetermined 

fraction of the raw value ranging from 0.01% to 40%. At an uncertainty level of 40% many 

of the variables have collapsed to distributions in which further added uncertainty would not 
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results in significant changes. Meanwhile, the boundary effects of bounded variables could 

skew model sensitivity at large uncertainty.  

The Gaussian distribution allows us to perturb the data while conserving the original 

unperturbed value as the mean of the distribution.  Thus, any bias found in the distribution of 

the sensitivity results will reflect non-linear formulations within the model. While this 

distribution may not reflect the reality of the uncertainty contained within the data, it allows 

us to observe how the model formulation and parameterization might propagate error in a 

way that would introduce bias to the estimate.  Thus, we assume that the forcing does not 

contain any systematic error or bias.  

The truncated-normal distribution is a combination of a mean conserving distribution 

with a mean changing shift, so that bounded variables may not preserve the original mean 

(Robert, 1995). The truncated-normal distribution is advantageous over a beta or gamma 

distribution because we can specify large uncertainties without the distribution collapsing 

toward probability masses located only at one or both bounds. If a variable is bounded on one 

side or if the original mean is closer to one of the bounds, then the expected mean of the 

resulting distribution will shift away from that bound. The resulting magnitude of the shift is 

a function of the difference between the bound and the original mean and the level of added 

uncertainty. The resulting shift is therefore more likely to influence the results found here if 

the added uncertainty is high or if the original variable is closer to one of the bounds.  

Figures 3.1-3.3 shows the joint probability distribution functions for the entire study 

period over all sites. The distributions show both the raw unperturbed data and the 

distribution of data after perturbation at various uncertainty levels. Note that these figures 

show the distributions of the original and perturbed data and not the theoretical distributions 
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used to generate random error. PT-JPL and PM-MOD show identical distributions for 

common forcing variables. For forcing variables common to the GLEAM model, such as net 

radiation, the distributions are slightly different due to the difference in temporal resolution.  

 

Figure 3.1: Raw and perturbed data at varying added uncertainty for PT-JPL forcing. 
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Figure 3.2: Raw and perturbed data at varying added uncertainty for PM-MOD forcing. 
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Figure 3.3: Raw and perturbed data at varying added uncertainty for GLEAM forcing. 

 

3.2.3 Error and Bias Assessment 

As previously stated, we forced the model for three years (2003-2005) at 47 locations. 

Random error was added to each forcing variable based on the described probability 

distributions and each data point was sampled 100 times. This process was repeated at each 

assumed uncertainty level and for each variable field. This resulted in approximately 62 x 106 

data values at the 3 hourly time scale and 7.8 x 106 values at the daily time scale for each 

variable and each uncertainty level. Given that we cannot determine the exact uncertainty for 

each forcing variable, we perturb only one variable at a time. 
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We then describe the results of each model estimate using the relative error: 

(1)    𝛿 =  
𝑥𝑖−𝑥0

𝑥0
 

Where 𝑥𝑖 is the perturbed estimate and 𝑥0 is the unperturbed estimate. We then aggregate the 

results at each time and location and analyze the results as a distribution of the relative error. 

We analyze the resulting distribution of the simulations using two objective functions: root 

mean squared deviation (RMSD, Eq. (2)) and mean bias deviation (MBD, Eq. (3)). Both 

functions are calculated at an added uncertainty of σ=10%, and are normalized by the mean 

total ET estimate for the model across all data points with no added uncertainty:  

(2)    𝑅𝑀𝑆𝐷 =  
√

∑ (𝑦̇𝑖,𝑥−𝑦𝑖,𝑥)2𝑁
𝑖,𝑥

𝑁

𝐸𝑇

⁄
 , 

and 

(3)   𝑀𝐵𝐷 =  

∑ 𝑦𝑖,𝑥̇ −𝑦𝑖,𝑥
𝑁
𝑖,𝑥

𝑁

𝐸𝑇
⁄

 . 

Where 𝑦̇𝑖,𝑥 represents the estimated value after perturbation, 𝑦𝑖,𝑥 is the original estimate, N is 

the total number of estimates, 𝑥 is the specific location and 𝑖 the specific time, and 𝐸𝑇 is the 

model-specific mean ET over all locations and time.  

 

3.3 RESULTS: 

3.3.1 Model Sensitivity 

Figures 3.4-3.6 show the sensitivity of the model output to each of the forcing variables for 

different uncertainty levels. The plots show the interquartile range of the relative error 

distribution for each uncertainty level, as well as the mode of the distribution. Generally, a 

greater interquartile range signifies that the model is more sensitive to that forcing variable. 
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The deviation of the mode from a relative error 0 signifies how much bias is introduced to the 

model estimate because of variable uncertainty.  

 

Figure 3.4: The sensitivity of PT-JPL to forcing variables at a range of added random 

uncertainty. Relative error is used to measure the difference in model output before and after 

perturbing the input variable. The shaded region represents the area contained within the 25th 

and 75th percentile of resulting error distribution while the line represents the mode.  
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Figure 3.5: The sensitivity of PM-MOD to forcing variables at a range of added random 

uncertainty. Relative error is used to measure the difference in model output before and after 

perturbing the input variable. The shaded region represents the area contained within the 25th 

and 75th percentile of resulting error distribution while the line represents the mode.  
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Figure 3.6: The sensitivity of GLEAM to forcing variables at a range of added random 

uncertainty. Relative error is used to measure the difference in model output before and after 

perturbing the input variable. The shaded region represents the area contained within the 25th 

and 75th percentile of resulting error distribution while the line represents the mode.  

 

While the interquartile range and mode give us an idea of the distribution of error at each 

uncertainty, they do not represent the entire distribution. Figures 3.7-3.9 show the probability 

distributions of the relative error for each forcing variable and each modeled ET component at 

an added uncertainty of σ=10%. 10% was chosen because it represents significant added 

uncertainty while avoiding the boundary effects of larger uncertainties.  Table 3.2 shows the 

root mean squared deviations (RMSD) and mean biased deviation (MBD) for each of the 

variables and each modeled ET component at this uncertainty level. The values in table 3.2 are 

expressed as a percentage of the mean ET estimate across all data points.  
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Figure 3.7: PT-JPL model probability density of the relative error for each input variable with 

σ = 10% added uncertainty.  
 

 

Figure 3.8: PM-MOD model probability density of the relative error for each input variable 

with σ = 10% added uncertainty.  
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Figure 3.9: GLEAM model probability density of the relative error for each input variable 

with σ = 10% added uncertainty. 

 

  



67 

 

 

 

Table 3.2: Root mean squared deviation (RMSD) and mean bias deviation (MBD) of the 

distribution of deviation in model estimates due to variable perturbations. Each value is 

normalized by the mean ET estimate across the raw dataset for that model. Blank cells 

represent instances where the input variable for a model is not an input of the specific model 

component.  

 

PT-JPL takes four input variables: net radiation, NDVI, temperature, and RH. Each of the 

modeled ET components varies linearly with net radiation. Figure 3.4 shows that the relative 

error also increases linearly with increasing uncertainty in the net radiation term. Due to this 

linear relationship, there is little to no bias in the model output associated with uncertainty in 

net radiation evidenced by a MBD of 1% for all ET components. Similarly, the sensitivity of 

the model is unbiased to uncertainties in temperature. For RH and NDVI, however, the 

model shows strong bias in relative error due to forcing uncertainty. The transpiration 

component of PT-JPL shows a strong negative bias (MBD = -51%) due to uncertainty in 

NDVI, while showing a positive bias (MBD = 42%) due to uncertainty in RH. The soil 
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evaporation and interception components show a strong negative bias (MBD = -26%, -59%, 

respectively) due to uncertainty in RH. Interestingly, the contrasting biases in the ET 

components due to uncertainty in the RH term only result in a slight negative bias (MBD = -

13%) in the total ET term and a much smaller RMSD (33%) compared to the components 

RMSD, wich typically ranges between61 and151%. Figure 3.7 also helps to illustrate the 

biases in the distribution of error associated with NDVI and RH, while the net radiation and 

temperature distributions tend to be much more unbiased and symmetrical.  

PM-MOD has five temporally variable forcings: net radiation, RH, temperature, fraction 

of absorbed photosynthetically active radiation (FAPAR), and leaf are index (LAI). 

Additionally, PM-MOD uses IGBP land cover type to determine look up table values for 

aerodynamic and stomatal resistances. Each of the ET components estimated by PM-MOD is 

exceedingly sensitive to RH and has negative bias associated with RH. Figure 3.5 shows that 

as uncertainty increases, the RH, and the FVC term to a lesser extent, the component 

estimates tend to collapse in either direction. The total ET estimate is similarly sensitive to 

RH (RMSD = 122%), while the bias becomes somewhat mitigated when the components are 

aggregated (MBD = -3%). Figure 3.8 shows that large masses of probabilities associated with 

RH aggregate in the transpiration and interception terms at a relative error of -1, signifying 

that a change to RH caused the new model estimate to collapse to 0 flux. The soil 

evaporation estimate appears to be particularly sensitive to changes in the input variables, as 

perturbations to RH (RMSD = 174%), temperature (RMSD = 132%), net radiation (RMSD = 

50%), and FAPAR (RMSD = 84%) each exhibit their largest MBD and RMSD in the soil 

evaporation term.  
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GLEAM has five temporally variable forcings: net radiation, temperature, precipitation, 

vegetation optical depth (VOD), and shortwave outgoing radiation (Ku).  Additionally, 

GLEAM has several static variables including MOD44B canopy fraction which is the 

primary value used to partition the total ET flux into separate ET components. GLEAM, 

among the three models, shows the least sensitivity to its inputs, as evidenced by the low 

RMSD and MBD. Each of the inputs show a slight negative bias in the transpiration estimate, 

and precipitation shows a negative bias in the total ET estimate. Figure 3.9 shows a curious 

distribution of error associated with precipitation in the soil evaporation term with a large 

positive tail. The interquartile range for several variables look quite skewed in figure 3.6, 

including VOD, Ku, and precipitation in many cases. While the skew appears quite severe, 

the mode remains near zero and the MBD remains quite small. Precipitation is the only 

variable influencing the GLEAM interception estimate while soil evaporation, transpiration, 

and the overall ET estimates are primarily influenced by net radiation (RMSD = 8.2, 8.2, and 

7.6% respectively).  

PM-MOD and PT-JPL share many similarities in their results from this analysis. Both 

models show large biases and uncertainty in their components associated with RH. However, 

in both models these biases do not manifest to the same extent in the total ET estimate. A 

similar pattern is also evident for both models in their vegetation inputs. Both NDVI in PT-

JPL and FAPAR in PM-MOD show large uncertainties with some bias in their component 

terms, while the total ET term exhibits far less sensitivity. Perhaps expectedly, temperature 

and radiation also show similar sensitivity for each model. Both models show an increased 

sensitivity to temperature in the soil evaporation term and both have similar ranges of RMSD 

associated with net radiation.  
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 Figures 3.10-3.12 show the sensitivity of each model to perturbations in the forcing 

categorized as a function of the forcing (without perturbation) itself. The figures show the 

interquartile range and mode of the relative error associated with an uncertainty of 10%. 

These figures allow us to analyze how the model sensitivity changes based on the physical 

conditions at a given location. The figures shows trends in both the bias of the percentile 

values and in the interquartile range as well. 

 

Figure 3.10: Relative error due to added uncertainty (σ = 10%) for each input variable of PT-

JPL categorized by the raw value of the variable itself. The colored box represents the 

interquartile range of the distribution with the mode plotted as a line within the box.  
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Figure 3.11: Relative error due to added uncertainty (σ = 10%) for each input variable of 

PM-MOD categorized by the raw value of the variable itself. The colored box represents the 

interquartile range of the distribution with the mode plotted as a line within the box.  
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Figure 3.12: Relative error due to added uncertainty (σ = 10%) for each input variable of 

GLEAM categorized by the raw value of the variable itself. The colored box represents the 

interquartile range of the distribution with the mode plotted as a line within the box.  

 

PT-JPL shows a steady distribution with changing net radiation and temperature, while 

both the bias and range of the error distribution changes with RH and NDVI. However, the 

changes to uncertainty in the estimated ET components again contrast each other and as such 

limit the uncertainty in the total ET estimate at each of the ranges in input values. Both PM-

MOD and PT-JPL exhibit the same increasing uncertainty with increasing RH in their 

transpiration component and again show similar increasing uncertainty in soil evaporation 

with increasing vegetation indices. PM-MOD, shown in figure 3.11, appears to be more 

sensitive to changes at extreme temperatures than to changes at more moderate temperatures. 

Interestingly, PM-MOD soil evaporation appears to be more sensitive to lower LAI values, 

but also more sensitive to higher values of FAPAR. GLEAM, shown in figure 3.12, is 

overwhelmingly more sensitive to changes in low precipitation events than larger events. Net 



73 

 

 

radiation and temperature show relatively unbiased and consistent distributions in error as 

those variables change, while VOD and Ku show somewhat more asymmetric distributions 

with an unbiased mode.  

 

3.4 Discussion: 

Because the uncertainty of the re-analysis products used to force the models is often 

difficult to determine, it is difficult to quantify the absolute error that forcing uncertainty 

might have on the estimates of ET and its components. The models also rely on temporally 

static parameters and constants that are not analyzed here. Despite these limitations, we are 

still able to offer insights into how the temporally variable inputs influence the model 

estimates. Of particular interest are the differences in how the forcing affects the component 

estimates as compared to the total ET estimate, and how uncertainty in the input variables 

can introduce bias into estimates.  

The bias in relative error due to uncertainty in RH in both PT-JPL and PM-MOD is 

expected due to the non-linear dependence of the ET components to RH within these models. 

In both models, the model parameter fwet - parameterized as a function of RH4- is used to 

approximate surface wetness. It is important to consider that the relationship between 

humidity and a given ET component is very likely to be non-linear, making non-linear 

parameterizations, as in PT-JPL and PM-MOD, appropriate (Fisher et al., 2008; Stone et al., 

1977). However, large forcing uncertainties in non-linear models can introduce large biases 

to the model estimate, and thus might debilitate the usefulness of the model. Figure 3.4 

shows how increasing uncertainty in the RH introduces growing bias in the component 

estimates of PT-JPL and PM-MOD. The point at which this bias becomes detrimental is 
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determined by the uncertainty of the input variable. It should be noted that bias could also be 

introduced to RH by the use of the truncated-normal distribution, although only near the 

upper bound.  

Despite the similar use of RH in PT-JPL and PM-MOD, both models do have slightly 

different error distributions. PM-MOD filters RH values less than 0.70 and masks them with 

a value of 0, while PT-JPL does not. This filter is likely responsible for the large probability 

mass in the interception component shown in figure 3.8 at a relative error of -1 where added 

uncertainty has RH values greater than 0.70 to become filtered. Both models are also 

dependent on vapor pressure deficit (VPD), a function of RH and temperature. PM-MOD is 

dependent on VPD as part of the Penman-Monteith equation and both models incorporate 

VPD into their soil evaporation estimates. Notice that both PT-JPL and PM-MOD soil 

evaporation estimates are very sensitive to both RH and temperature, and PM-MOD is 

generally more sensitive than PT-JPL to both RH and temperature, likely due to the 

employment of VPD.  

The soil evaporation term of PT-JPL and PM-MOD when compared to field estimates 

shows very little agreement (Talsma et al., 2018). Here, we find soil evaporation for those 

models to be generally quite sensitive to uncertainty in the inputs of RH, temperature, NDVI, 

and FAPAR. Furthermore, the sensitivity of the soil evaporation estimate appears to vary 

depending on the value of the input variable itself. These factors could explain the large 

variance in their agreement with the field studies.   

 Given the high sensitivity of soil evaporation to forcing uncertainty in each of the 

models, this component could be responsible for a large portion of the partitioning 

divergence between models. Improvement of the soil evaporation term, therefore, offers a 
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potential area in which to focus efforts in order to improve model partitioning. Similarly, a 

study of North American Land Data Assimaltion System (NLDAS) ET models shows that 

soil evaporation contributes relatively more to the uncertainty in the partitioning of the ET 

flux, than it does to the ET flux itself (Kumar et al., 2018). Those results also demonstrate 

that the ability of the model to estimate transpiration is largely responsible for its ability to 

estimate the total flux. Despite the inability to estimate soil evaporation or correctly partition 

the flux, the total ET estimate remained reasonably accurate. Furthermore, counteracting 

biases in the ET components from PT-JPL and PM-MOD show a decreased sensitivity of the 

total ET estimate to forcing as compared to the component estimates.  

Interestingly, in many of the instances where bias is exhibited in the modeled 

components, the biases counteract each other in the aggregate total ET estimate. This is 

especially true for the terms used to partition the available water or radiation between ET 

components (RH, NDVI, FAPAR). This could help to explain some of the divergences in 

partitioning between models as well as the negative bias previously found in the PT-JPL and 

PM-MOD transpiration estimates when compared to field estimates of transpiration. This 

also suggests that uncertainty in the estimated ET components is likely larger than in the total 

ET estimates. Our results suggest that, in the cases of PT-JPL and PM-MOD, slight changes 

in input variables have the potential to vastly change the partitioning of ET while resulting in 

only modest changes to the overall ET estimate.  

GLEAM, however, appears to be much more reliant on the underlying formulation of the 

model and model constants than on its input variables. The RMSD and MBD exhibited by 

GLEAM is roughly an order of magnitude smaller than that of PM-MOD and PT-JPL. Given 

the complexity of GLEAM compared to the other two models, it might be expected that 
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GLEAM would be more sensitive to model formulations and constants. This complexity also 

makes interpreting the biases of the error distributions in the model more difficult. 

Precipitation, Ku, and VOD exhibit very asymmetric distributions in both figures 3.6 and 3.9. 

The complexity of GLEAM results in very few truly linear relationships, as the model relies 

on water balances, storage capacities, and stress factors to account for the water available to 

various evaporative pathways. Here it results in somewhat skewed distributions in estimates, 

but the various parameterizations within the model can likely be adjusted to accommodate 

those errors. The distribution of precipitation is also characterized by a large frequency of 

very small events, which may be prone to biases introduced by the truncated-normal 

distribution. When perturbed by an increasing level of uncertainty, the distribution collapses 

so that these small events become less frequent. Given the greater sensitivity to these smaller 

events shown in figure 3.12, the distribution of error then becomes skewed for the various 

components.  

Despite similar underlying formulations, each model exhibits large sensitivity to different 

forcings. GLEAM interception is exclusively sensitive to precipitation, while the remainder 

of the GLEAM components are largely sensitive to net radiation. While PT-JPL and PM-

MOD are also sensitive to net radiation, they are far more sensitive in each of their 

component estimates to RH and vegetation forcings. The PT-JPL ET estimate appears to be 

very sensitive to changes in NDVI (RMSD = 1.01), suggesting that changes to vegetation 

patterns due to climate change could coincide with large changes to the ET estimate.  

Similarly, the PM-MOD ET estimate is most sensitive to changes in RH (RMSD = 1.22) 

largely driven by the soil evaporation term.  
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Furthermore, models may be more sensitive to forcing errors at various extremes of that 

variable. The GLEAM model’s sensitivity to low precipitation events opposed to larger 

events is likely due to various water storage factors and the large frequency of low rainfall 

events.  Both PM-MOD and PT-JPL transpiration components are more sensitive at high RH 

values than at lower values. This is due to the fwet term, which exhibits a much higher slope 

as a function of humidity at high RH values and due to the negative bias introduced by the 

truncated-normal distribution. PM-MOD ET also shows increasing uncertainty at increasing 

values of both LAI and FVC. In case of FVC, the relationship appears to be driven by the soil 

evaporation term, which is substantially more uncertain at high FVC values. PT-JPL exhibits 

a similar trend in soil evaporation, but in the NDVI term.  

Where trends exist in the uncertainty of the model with changing ambient conditions 

informs where these model estimates may be vulnerable to large uncertainties. The 

partitioning of both PM-MOD and PT-JPL seems particularly sensitive to extremes in 

vegetation and RH forcing, although RH could be influenced by the distributions used in this 

analysis. Again, the trends in component uncertainty tend to mitigate one another when 

aggregated in the total ET estimate of PT-JPL. However, PM-MOD exhibits larger 

uncertainty in its total ET estimate at elevated values of radiation, vegetation indices, and 

temperature. This is somewhat worrisome considering that the largest fluxes coincide with 

large values of these variables and represent areas where accurate estimates of ET are 

exceedingly important to climate forecasts. The utility of global scale ET models is 

predicated on their ability to measure large fluxes and, ideally, the model would exhibit 

higher certainty in its estimation at elevated fluxes.  
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3.5 Conclusion:  

The demand for research and data concerning ET and ET components will continue to 

fuel efforts into various remote sensing-based models (Fisher et al., 2017; Zhang et al., 

2017). However, changes in climate and its related feedbacks will require models to show 

correct sensitivity to many input variables (Friedlingstein et al., 2014; Lawrence et al., 2007). 

Furthermore, the rapid expansion in remote sensing products, data, and techniques (Marshall 

et al., 2016; McCabe et al., 2017; Sun et al., 2017) presents challenges in understanding and 

quantifying how errors and uncertainty within the forcing data will propagate to model 

estimates (Badgley et al., 2015; Vinukollu et al., 2011). As large datasets and modeled 

products become ubiquitous, so will the need to thoroughly validate, test, and explore those 

products.  

 While ET based science has progressed to the point of offering relatively accurate 

estimates of total ET at a global extent and various scales, the various components of ET, 

transpiration, soil evaporation, and interception, remain difficult to evaluate. The existence of 

strong divergences in modeled ET components suggests that some models’ total ET estimates 

may be prone to future inaccuracies as climate and the observed partitioning of ET chagnes. 

The results found here offer further evidence that estimates of the ET components are subject 

to greater uncertainty than the total ET estimate. The partitioning of ET remains a key 

question in both climate and ET research and further examination of modeled components is 

needed.  

While some studies have attempted to intercompare models using a similar forcing 

dataset (McCabe et al., 2016; Michel et al., 2016; Mueller et al., 2011; Vinukollu et al., 

2011), others have compared a single model output using multiple data sources (Badgley et 
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al., 2015). We instead intercompare models at a range of forcing uncertainties. This approach 

ignores systematic errors in the forcing products, but allows for a conceptual framework to 

assess how improvements to forcing products might improve model performance. The 

sensitivity analyses in this study allow us to determine what variables drive the individual 

component estimates and helps to explain why the models achieve vastly different ET 

partitioning strategies. We can also assess if the uncertainty of the forcing data introduces 

significant bias into the ET estimate based on the non-linearity of the model formulation. The 

results of the study present a means to assess the strategies of each model, and to compare 

those strategies against our theoretical understanding of ET and its components.  

Some of the main findings of this study are: 

- GLEAM is primarily sensitive to net radiation, except for the interception component, 

which is exclusively driven by precipitation.  

- GLEAM is much more sensitive to variability in low precipitation events as 

compared to larger events.  

- GLEAM is comparatively less sensitive to changes in its input variables than PM-

MOD and PT-JPL. The complexity of the GLEAM model likely means that it is 

much more sensitive to the model formulations and parameterizations.  

- The non-linear use of RH in both PT-JPL and PM-MOD results in large biases in the 

component estimates associated with the uncertainty of the RH product.  

- Both PT-JPL and PM-MOD soil evaporation show large sensitivity to inputs, perhaps 

creating greater overall uncertainty in the soil evaporation estimate.  

- Variables associated with large biases in component estimates often counteract each 

other to limit bias and uncertainty in the total ET estimate. Changes to forcing could 
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cause large changes to ET partitioning within the model with comparatively smaller 

changes to the overall ET estimate.  

- Both PM-MOD and PT-JPL soil evaporation are much more sensitive to changes in 

vegetation when vegetation indices are high. This suggests larger uncertainties in the 

soil evaporation estimate in forests. PM-MOD’s ET estimate is also more sensitive to 

larger values of net radiation, vegetation indices, and temperature.  

 

 

 

 

Data Availability 
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Observation and Science (EROS) Center, Sioux Falls, South Dakota, 

https://lpdaac.usgs.gov/data_access/data_pool 

 

The MOD15A2 data product was retrieved from the AppEEARS data page, courtesy of the 
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IV. Conclusion: 

 
  

 Remote sensing efforts into estimating ET are increasing, as is the amount of remote 

sensing data available.  Recent advances in thermal infrared, microwave, hyperspectral, as 

well as the spatial and temporal scale of remote sensing products will undoubtedly serve to 

improve ET estimates (Hulley et al., 2017; Marshall et al., 2014; Martens et al., 2016; Sun et 

al., 2017).  However, some of the key questions remaining in ET science involve the 

partitioning of ET into transpiration, soil evaporation, and interception (Fisher et al., 2017; 

Lawrence et al., 2007).  Limited field data confines our understanding of those processes and 

the challenge for ET scientists will be in connecting the burgeoning amount of remote 

sensing data with the relative scarcity of field partitioning data.  

 Efforts have begun, including in this study, to coordinate field data into a larger 

dataset that would allow us to compare partitioning studies across various ecological 

parameters and remote sensing-based metrics (Schlesinger and Jasechko, 2014; Talsma et al., 

2018).  The SAPFLUXnet project is in the process of combining hundreds of sap flux 

measurements across different species and biomes (Poyatos et al., 2016).  Still, remote 

sensing products will continue to outpace the field products and are much better suited for 

global long term monitoring of ET (Glenn et al., 2007; K. Zhang et al., 2016). Inferences 

regarding patterns and trends observed in remote sensing data may inform research with little 

field validation to back it.  

 Here, we attempt to reconcile differences found between modeled and field derived 

estimates of ET components.  Several challenges arise in making these comparisons and 

multiple sources of error are discussed and explored.  We use a Monte Carlo sensitivity 
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analysis to determine how dataset error might influence model estimates and to further 

explore which parameters might be responsible for partitioning errors. While some potential 

sources of error remain unaccounted for, the two studies found here are able to explore the 

role of both model formulation and dataset uncertainty in previously observed model 

divergences.  The main findings of this study are that… 

 

- Relatively large deviations from field methods exist in the component estimates of the 

ET models while showing relative agreement in total ET estimates.   

- Large biases and deviations emerge as a result of the uncertainty of the forcing data.  

Bias found due to parameter uncertainty in the opposite direction of the observed bias 

with field estimates suggests that model formulation or systemic dataset error is 

responsible for significant error.  

- The soil evaporation term of both PM-MOD and PT-JPL shows large variance in its 

agreement with the field estimates.  Both model components also show large 

sensitivity to the input parameters including RH and temperature.    

- Soil evaporation appears to be the worst performing component across each of the 

models.  The mis-parameterization of the soil evaporation term is likely driving a 

proportionally large amount of the partitioning error.  

  

  



91 

 

 

V. Bibliography: 
 

Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., 

Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., Nelkin, E., 

Adler, R.F., Huffman, G.J., Chang, A., Ferraro, R., Xie, P.-P., Janowiak, J., Rudolf, B., 

Schneider, U., Curtis, S., Bolvin, D., Gruber, A., Susskind, J., Arkin, P., Nelkin, E., 

2003. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly 

Precipitation Analysis (1979–Present). J. Hydrometeorol. 4, 1147–1167. 

doi:10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2 

Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., 

Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (Ted), Gonzalez, P., Fensham, 

R., Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, 

A., Cobb, N., 2010. A global overview of drought and heat-induced tree mortality 

reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684. 

doi:10.1016/J.FORECO.2009.09.001 

Aminzadeh, M., Or, D., 2017. Pore-scale study of thermal fields during evaporation from 

drying porous surfaces. Int. J. Heat Mass Transf. 104, 1189–1201. 

doi:10.1016/J.IJHEATMASSTRANSFER.2016.09.039 

Anderson, M.C., Norman, J.M., Mecikalski, J.R., Otkin, J.A., Kustas, W.P., 2007. A 

climatological study of evapotranspiration and moisture stress across the continental 

United States based on thermal remote sensing: 1. Model formulation. J. Geophys. Res. 

112, D10117. doi:10.1029/2006JD007506 

Badgley, G., Fisher, J.B., Jiménez, C., Tu, K.P., Vinukollu, R., Badgley, G., Fisher, J.B., 

Jiménez, C., Tu, K.P., Vinukollu, R., 2015. On Uncertainty in Global Terrestrial 

Evapotranspiration Estimates from Choice of Input Forcing Datasets*. J. 

Hydrometeorol. 16, 1449–1455. doi:10.1175/JHM-D-14-0040.1 

Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., 

Bernhofer, C., Davis, K., Evans, R., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, 

X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, K.T., Pilegaard, K., Schmid, 

H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K., Wofsy, S., Hall, R., 2001. 

FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-

Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities 82. 

Bonan, G.B., 2008. Forests and climate change: forcings, feedbacks, and the climate benefits 

of forests. Science 320, 1444–9. doi:10.1126/science.1155121 

Brunel, J.P., Walker, G.R., Dighton, J.C., Montenya, B., 1997. Use of stable isotopes of 

water to determine the origin of water used by the vegetation and to partition 

evapotranspiration. A case study from HAPEX-Sahel. J. Hydrol. 188–189, 466–481. 

doi:10.1016/S0022-1694(96)03188-5 

Carlyle-Moses, D.E., Gash, J.H.C., 2011. Rainfall Interception Loss by Forest Canopies. 

Springer, Dordrecht, pp. 407–423. doi:10.1007/978-94-007-1363-5_20 

Cavanaugh, M.L., Kurc, S.A., Scott, R.L., 2011. Evapotranspiration partitioning in semiarid 

shrubland ecosystems: a two-site evaluation of soil moisture control on transpiration. 

Ecohydrology 4, 671–681. doi:10.1002/eco.157 

Ciais, P., Reichstein, M., Viovy, N., Granier, A., Ogée, J., Allard, V., Aubinet, M., 

Buchmann, N., Bernhofer, C., Carrara, A., Chevallier, F., De Noblet, N., Friend, A.D., 

Friedlingstein, P., Grünwald, T., Heinesch, B., Keronen, P., Knohl, A., Krinner, G., 



92 

 

 

Loustau, D., Manca, G., Matteucci, G., Miglietta, F., Ourcival, J.M., Papale, D., 

Pilegaard, K., Rambal, S., Seufert, G., Soussana, J.F., Sanz, M.J., Schulze, E.D., Vesala, 

T., Valentini, R., 2005. Europe-wide reduction in primary productivity caused by the 

heat and drought in 2003. Nature 437, 529–533. doi:10.1038/nature03972 

Crockford, R.H., Richardson, D.P., 2000. Partitioning of rainfall into throughfall, stemflow 

and interception: effect of forest type, ground cover and climate. Hydrol. Process. 14, 

2903–2920. doi:10.1002/1099-1085(200011/12)14:16/17<2903::AID-

HYP126>3.0.CO;2-6 

David, J.S., Valente, F., Gash, J.H., 2005. Evaporation of Intercepted Rainfall, in: 

Encyclopedia of Hydrological Sciences. John Wiley & Sons, Ltd, Chichester, UK. 

doi:10.1002/0470848944.hsa046 

Decker, M., Or, D., Pitman, A., Ukkola, A., 2017. New turbulent resistance parameterization 

for soil evaporation based on a pore-scale model: Impact on surface fluxes in CABLE. J. 

Adv. Model. Earth Syst. 9, 220–238. doi:10.1002/2016MS000832 

Dee, D., Uppala, M.S., Simmons, J.A., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., 

Balmaseda, A.M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, M.A.C., van de Berg, 

L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, J.A., 

Haimberger, L., Healy, B.S., Hersbach, H., Holm, V.E., Isaksen, L., Kallberg, P., 

Khaler, M., Matricardi, M., McNally, P.A., Monge-Sanz, M.B., Morcrette, .J., Park, 

B.K., Peubey, C., de Rosnay, P., Tovolato, C., Thapaut, J.N., Vitart, F., 2011. The ERA-

Interim reanalysis: configuration and performance of the data assimilation system. R. 

Meteorol. Soc. 137, 553–597. doi:10.1002/qj.828 

Demaria, E.M., Nijssen, B., Wagener, T., 2007. Monte Carlo sensitivity analysis of land 

surface parameters using the Variable Infiltration Capacity model. J. Geophys. Res. 112, 

D11113. doi:10.1029/2006JD007534 

Didan, K., 2015. MOD13A2 MODIS/Terra Vegetation Indices 16-Day L3 Global 1km SIN 

GRID V006 [Dataset]. doi:10.5067/MODIS/MOD13A2.006 

Dolman, A.J., Miralles, D.G., de Jeu, R.A.M., 2014. Fifty years since Monteith’s 1965 

seminal paper: the emergence of global ecohydrology. Ecohydrology 7, 897–902. 

doi:10.1002/eco.1505 

Dye, P.J., Olbrich, B.W., Poulter, A.G., 1991. The Influence of Growth Rings in Pinus patula 

on Heat Pulse Velocity and Sap Flow Measurement. J. Exp. Bot. 42, 867–870. 

doi:10.1093/jxb/42.7.867 

Ek, M.B., Holtslag, A.A.M., 2004. Influence of Soil Moisture on Boundary Layer Cloud 

Development. J. Hydrometeorol. 5, 86–99. doi:10.1175/1525-

7541(2004)005<0086:IOSMOB>2.0.CO;2 

Ershadi, A., Mccabe, M.F., Evans, J.P., Wood, E.F., 2015. Impact of model structure and 

parameterization on Penman-Monteith type evaporation models. J. Hydrol. 525, 521–

535. doi:10.1016/j.jhydrol.2015.04.008 

Fernández, J.E., Durán, P.J., Palomo, M.J., Diaz-Espejo, A., Chamorro, V., Girón, I.F., 2006. 

Calibration of sap flow estimated by the compensation heat pulse method in olive, plum 

and orange trees: relationships with xylem anatomy. Tree Physiol. 26, 719–28. 

Fisher, J.B., Melton, F., Middleton, E., Hain, C., Anderson, M., Allen, R., McCabe, M.F., 

Hook, S., Baldocchi, D., Townsend, P.A., Kilic, A., Tu, K., Miralles, D.D., Perret, J., 

Lagouarde, J.-P., Waliser, D., Purdy, A.J., French, A., Schimel, D., Famiglietti, J.S., 

Stephens, G., Wood, E.F., 2017. The future of evapotranspiration: Global requirements 



93 

 

 

for ecosystem functioning, carbon and climate feedbacks, agricultural management, and 

water resources. Water Resour. Res. 53, 2618–2626. doi:10.1002/2016WR020175 

Fisher, J.B., Tu, K.P., Baldocchi, D.D., 2008. Global estimates of the land–atmosphere water 

flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. 

Remote Sens. Environ. 112, 901–919. doi:10.1016/J.RSE.2007.06.025 

Friedl, M.A., Sulla-Menashe, D., Tan, B., Schneider, A., Ramankutty, N., Sibley, A., Huang, 

X., 2009. MODIS Collection 5 global land cover: Algorithm refinements and 

characterization of new datasets. doi:10.1016/j.rse.2009.08.016 

Friedlingstein, P., Meinshausen, M., Arora, V.K., Jones, C.D., Anav, A., Liddicoat, S.K., 

Knutti, R., Friedlingstein, P., Meinshausen, M., Arora, V.K., Jones, C.D., Anav, A., 

Liddicoat, S.K., Knutti, R., 2014. Uncertainties in CMIP5 Climate Projections due to 

Carbon Cycle Feedbacks. J. Clim. 27, 511–526. doi:10.1175/JCLI-D-12-00579.1 

Gash, J.H.C., 1979. An analytical model of rainfall interception by forests. Q. J. R. Meteorol. 

Soc. 105, 43–55. doi:10.1002/qj.49710544304 

Gibson, J.J., Edwards, T.W.D., 2002. Regional water balance trends and evaporation-

transpiration partitioning from a stable isotope survey of lakes in northern Canada. 

Global Biogeochem. Cycles 16, 10-1-10–14. doi:10.1029/2001GB001839 

Glenn, E.P., Huete, A.R., Nagler, P.L., Hirschboeck, K.K., Brown, P., 2007. Integrating 

Remote Sensing and Ground Methods to Estimate Evapotranspiration. CRC. Crit. Rev. 

Plant Sci. 26, 139–168. doi:10.1080/07352680701402503 

Glenn, E.P., Huete, A.R., Nagler, P.L., Nelson, S.G., 2008. Relationship Between Remotely-

sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What 

Vegetation Indices Can and Cannot Tell Us About the Landscape. Sensors 8, 2136–

2160. doi:10.3390/s8042136 

Good, S.P., Moore, G.W., Miralles, D.G., 2017. A mesic maximum in biological water use 

demarcates biome sensitivity to aridity shifts. Nat. Ecol. Evol. 1, 1883–1888. 

doi:10.1038/s41559-017-0371-8 

Good, S.P., Noone, D., Bowen, G., 2015. Hydrologic connectivity constrains partitioning of 

global terrestrial water fluxes. Science 349, 175–7. doi:10.1126/science.aaa5931 

Goulden, M.L., Bales, R.C., 2014. Mountain runoff vulnerability to increased 

evapotranspiration with vegetation expansion. Proc. Natl. Acad. Sci. U. S. A. 111, 

14071–5. doi:10.1073/pnas.1319316111 

Grayson, R.B., Western, A.W., Chiew, F.H.S., Bloschl, G., 1997. Preferred states in spatial 

soil moisture patterns: Local and nonlocal controls. Water Resour. Res. 33, 2897–2908. 

Haghighi, E., Or, D., 2013. Evaporation from porous surfaces into turbulent airflows: 

Coupling eddy characteristics with pore scale vapor diffusion. Water Resour. Res. 49, 

8432–8442. doi:10.1002/2012WR013324 

Hammersley, J.M., Handscomb, D.C., 1964. General Principles of the Monte Carlo Method, 

in: Monte Carlo Methods. Springer Netherlands, Dordrecht, pp. 50–75. 

doi:10.1007/978-94-009-5819-7_5 

Hobbins, M.T., Ramírez, J.A., Brown, T.C., 2004. Trends in pan evaporation and actual 

evapotranspiration across the conterminous U.S.: Paradoxical or complementary? 

Geophys. Res. Lett. doi:10.1029/2004GL019846 

Holwerda, F., Bruijnzeel, L.A., Scatena, F.N., 2011. Comparison of passive fog gauges for 

determining fog duration and fog interception by a Puerto Rican elfin cloud forest. 

Hydrol. Process. 25, 367–373. doi:10.1002/hyp.7641 



94 

 

 

Hu, Z., Yu, G., Zhou, Y., Sun, X., Li, Y., Shi, P., Wang, Y., Song, X., Zheng, Z., Zhang, L., 

Li, S., 2009. Partitioning of evapotranspiration and its controls in four grassland 

ecosystems: Application of a two-source model. Agric. For. Meteorol. 149, 1410–1420. 

doi:10.1016/J.AGRFORMET.2009.03.014 

Hulley, G., Hook, S., Fisher, J., Lee, C., 2017. ECOSTRESS, A NASA Earth-Ventures 

Instrument for studying links between the water cycle and plant health over the diurnal 

cycle, in: 2017 IEEE International Geoscience and Remote Sensing Symposium 

(IGARSS). IEEE, pp. 5494–5496. doi:10.1109/IGARSS.2017.8128248 

Huntington, T.G., 2006. Evidence for intensification of the global water cycle: Review and 

synthesis. J. Hydrol. 319, 83–95. doi:10.1016/J.JHYDROL.2005.07.003 

Jasechko, S., Sharp, Z.D., Gibson, J.J., Birks, S.J., Yi, Y., Fawcett, P.J., 2013. Terrestrial 

water fluxes dominated by transpiration. Nature 496, 347–350. doi:10.1038/nature11983 

Komatsu, H., 2005. Forest categorization according to dry-canopy evaporation rates in the 

growing season: comparison of the Priestley-Taylor coefficient values from various 

observation sites. Hydrol. Process. 19, 3873–3896. doi:10.1002/hyp.5987 

Kumar, S., Holmes, T., Mocko, D.M., Wang, S., Peters-Lidard, C., 2018. Attribution of Flux 

Partitioning Variations between Land Surface Models over the Continental U.S. Remote 

Sens. 10. doi:10.3390/rs10050751 

Lautz, L.K., 2008. Estimating groundwater evapotranspiration rates using diurnal water-table 

fluctuations in a semi-arid riparian zone. Hydrogeol. J. 16, 483–497. 

doi:10.1007/s10040-007-0239-0 

Lawrence, D.M., Thornton, P.E., Oleson, K.W., Bonan, G.B., Lawrence, D.M., Thornton, 

P.E., Oleson, K.W., Bonan, G.B., 2007. The Partitioning of Evapotranspiration into 

Transpiration, Soil Evaporation, and Canopy Evaporation in a GCM: Impacts on Land–

Atmosphere Interaction. J. Hydrometeorol. 8, 862–880. doi:10.1175/JHM596.1 

Levia, D.F., Frost, E.E., 2006. Variability of throughfall volume and solute inputs in wooded 

ecosystems. Prog. Phys. Geogr. 30, 605–632. doi:10.1177/0309133306071145 

Littell, J.S., Peterson, D.L., Riley, K.L., Liu, Y., Luce, C.H., 2016. A review of the 

relationships between drought and forest fire in the United States. Glob. Chang. Biol. 

22, 2353–2369. doi:10.1111/gcb.13275 

Mancosu, N., Snyder, R., Kyriakakis, G., Spano, D., 2015. Water Scarcity and Future 

Challenges for Food Production. Water 7, 975–992. doi:10.3390/w7030975 

Marshall, K.N., Cooper, D.J., Hobbs, N.T., 2014. Interactions among herbivory, climate, 

topography and plant age shape riparian willow dynamics in northern Yellowstone 

National Park, USA. J. Ecol. 102, 667–677. doi:10.1111/1365-2745.12225 

Marshall, M., Thenkabail, P., Biggs, T., Post, K., 2016. Hyperspectral narrowband and 

multispectral broadband indices for remote sensing of crop evapotranspiration and its 

components (transpiration and soil evaporation). Agric. For. Meteorol. 218219, 122–

134. doi:10.1016/j.agrformet.2015.12.025 

Martens, B., Miralles, D., Lievens, H., Fernández-Prieto, D., Verhoest, N.E.C., 2016. 

Improving terrestrial evaporation estimates over continental Australia through 

assimilation of SMOS soil moisture. Int. J. Appl. Earth Obs. Geoinf. 48, 146–162. 

doi:10.1016/J.JAG.2015.09.012 

Martens, B., Miralles, D.G., Lievens, H., van der Schalie, R., de Jeu, R.A.M., Fernández-

Prieto, D., Beck, H.E., Dorigo, W.A., Verhoest, N.E.C., 2017. GLEAM v3: satellite-

based land evaporation and root-zone soil moisture. Geosci. Model Dev. 10, 1903–1925. 



95 

 

 

doi:10.5194/gmd-10-1903-2017 

McCabe, M.F., Aragon, B., Houborg, R., Mascaro, J., 2017. CubeSats in Hydrology: 

Ultrahigh-Resolution Insights Into Vegetation Dynamics and Terrestrial Evaporation. 

Water Resour. Res. 53, 10017–10024. doi:10.1002/2017WR022240 

Mccabe, M.F., Ershadi, A., Jimenez, C., Miralles, D.G., Michel, D., Wood, E.F., 2016. The 

GEWEX LandFlux project: evaluation of model evaporation using tower-based and 

globally gridded forcing data. Geosci. Model Dev 9, 283–305. doi:10.5194/gmd-9-283-

2016 

Mccabe, M.F., Rodell, M., Alsdorf, D.E., Miralles, D.G., Uijlenhoet, R., Wagner, W., 

Lucieer, A., Houborg, R., Verhoest, N.E.C., Franz, T.E., Shi, J., Gao, H., Wood, E.F., 

2017. The future of Earth observation in hydrology. Earth Syst. Sci 215194, 3879–3914. 

doi:10.5194/hess-21-3879-2017 

McJannet, D., Fitch, P., Disher, M., Wallace, J., 2007. Measurements of transpiration in four 

tropical rainforest types of north Queensland, Australia. Hydrol. Process. 21, 3549–

3564. doi:10.1002/hyp.6576 

Meng, X.H., Evans, J.P., McCabe, M.F., Meng, X.H., Evans, J.P., McCabe, M.F., 2014. The 

Impact of Observed Vegetation Changes on Land–Atmosphere Feedbacks During 

Drought. J. Hydrometeorol. 15, 759–776. doi:10.1175/JHM-D-13-0130.1 

Merlin, O., Stefan, V.G., Amazirh, A., Chanzy, A., Ceschia, E., Er-Raki, S., Gentine, P., 

Tallec, T., Ezzahar, J., Bircher, S., Beringer, J., Khabba, S., 2016. Modeling soil 

evaporation efficiency in a range of soil and atmospheric conditions using a meta-

analysis approach. Water Resour. Res. doi:10.1002/2015WR018233 

Michel, D., Jiménez, C., Miralles, D.G., Jung, M., Hirschi, M., Ershadi, A., Martens, B., 

Mccabe, M.F., Fisher, J.B., Mu, Q., Seneviratne, S.I., Wood, E.F., Fernández-Prieto, D., 

2016. The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-

sensing-based evapotranspiration algorithms. Hydrol. Earth Syst. Sci 20, 803–822. 

doi:10.5194/hess-20-803-2016 

Miralles, D.G., Gash, J.H., Holmes, T.R.H., De Jeu, R.A.M., Dolman, A.J., 2010. Global 

canopy interception from satellite observations. J. Geophys. Res 115. 

doi:10.1029/2009JD013530 

Miralles, D.G., Holmes, T.R.H., De Jeu, R.A.M., Gash, J.H., Meesters, A.G.C.A., Dolman, 

A.J., 2011. Global land-surface evaporation estimated from satellite-based observations. 

Hydrol. Earth Syst. Sci 15, 453–469. doi:10.5194/hess-15-453-2011 

Miralles, D.G., Jiménez, C., Jung, M., Michel, D., Ershadi, A., McCabe, M.F., Hirschi, M., 

Martens, B., Dolman, A.J., Fisher, J.B., Mu, Q., Seneviratne, S.I., Wood, E.F., 

Fernaìndez-Prieto, D., 2016. The WACMOS-ET project – Part 2: Evaluation of global 

terrestrial evaporation data sets. Hydrol. Earth Syst. Sci. Discuss. 12, 10651–10700. 

doi:10.5194/hessd-12-10651-2015 

Molden, D., Oweis, T., Steduto, P., Bindraban, P., Hanjra, M.A., Kijne, J., 2010. Improving 

agricultural water productivity: Between optimism and caution. Agric. Water Manag. 

97, 528–535. doi:10.1016/J.AGWAT.2009.03.023 

Mu, Q., Zhao, M., Running, S.W., 2011. Improvements to a MODIS global terrestrial 

evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800. 

doi:10.1016/j.rse.2011.02.019 

Mueller, B., Seneviratne, S.I., Jimenez, C., Corti, T., Hirschi, M., Balsamo, G., Ciais, P., 

Dirmeyer, P., Fisher, J.B., Guo, Z., Jung, M., Maignan, F., McCabe, M.F., Reichle, R., 



96 

 

 

Reichstein, M., Rodell, M., Sheffield, J., Teuling, A.J., Wang, K., Wood, E.F., Zhang, 

Y., 2011. Evaluation of global observations-based evapotranspiration datasets and IPCC 

AR4 simulations. Geophys. Res. Lett. 38, n/a-n/a. doi:10.1029/2010GL046230 

Muzylo, A., Llorens, P., Valente, F., Keizer, J.J., Domingo, F., Gash, J.H.C., 2009. A review 

of rainfall interception modelling. J. Hydrol. 370, 191–206. 

doi:10.1016/J.JHYDROL.2009.02.058 

Nizinski, J.J., Galat, G., Galat-Luong, A., 2011. Water balance and sustainability of 

eucalyptus plantations in the Kouilou basin (Congo-Brazzaville). Russ. J. Ecol. 42, 305–

314. doi:10.1134/S1067413611040126 

Norman Ay, J.M., Kustas, W.P., Humes, K.S., 1995. Source approach for estimating soil and 

vegetation energy fluxes in observations of directional radiometric surface temperature. 

Agric. For. Meteorol. 77, 263–293. 

Novick, K.A., Ficklin, D.L., Stoy, P.C., Williams, C.A., Bohrer, G., Oishi, A.C., Papuga, 

S.A., Blanken, P.D., Noormets, A., Sulman, B.N., Scott, R.L., Wang, L., Phillips, R.P., 

2016. The increasing importance of atmospheric demand for ecosystem water and 

carbon fluxes. Nat. Clim. Chang. 6, 1023–1027. doi:10.1038/nclimate3114 

Oki, T., Kanae, S., 2006. Global hydrological cycles and world water resources. Science 313, 

1068–72. doi:10.1126/science.1128845 

Or, D., Lehmann, P., Shahraeeni, E., Shokri, N., 2013. Advances in Soil Evaporation 

Physics—A Review. Vadose Zo. J. 12, 0. doi:10.2136/vzj2012.0163 

Owe, M., de Jeu, R., Walker, J., 2001. A methodology for surface soil moisture and 

vegetation optical depth retrieval using the microwave polarization difference index. 

IEEE Trans. Geosci. Remote Sens. 39, 1643–1654. doi:10.1109/36.942542 

Pielke, R.A., Sr, ., Avissar, R., Raupach, M., Dolman, A.J., Zeng, X., Denning, A.S., 1998. 

Interactions between the atmosphere and terrestrial ecosystems: influence on weather 

and climate. Glob. Chang. Biol. 4, 461–475. doi:10.1046/j.1365-2486.1998.t01-1-

00176.x 

Pieruschka, R., Huber, G., Berry, J.A., 2010. Control of transpiration by radiation. Proc. Natl. 

Acad. Sci. U. S. A. 107, 13372–7. doi:10.1073/pnas.0913177107 

Porkka, M., Gerten, D., Schaphoff, S., Siebert, S., Kummu, M., 2016. Causes and trends of 

water scarcity in food production. Environ. Res. Lett. 11, 15001. doi:10.1088/1748-

9326/11/1/015001 

Poyatos, R., Granda, V., Molowny-Horas, R., Mencuccini, M., Steppe, K., Martínez-Vilalta, 

J., 2016. SAPFLUXNET: towards a global database of sap flow measurements. Tree 

Physiol. 36, 1449–1455. doi:10.1093/treephys/tpw110 

Priestley, C.H.B., Taylor, R.J., 1972. On the assessment of sruface heat flux and evaporation 

using large scale parameters. Mon. Weather Rev. 81–92. 

Purdy, A.J., Fisher, J.B., Goulden, M.L., Famiglietti, J.S., 2016. Ground heat flux: An 

analytical review of 6 models evaluated at 88 sites and globally. J. Geophys. Res. 

Biogeosciences 121, 3045–3059. doi:10.1002/2016JG003591 

Pypker, T.G., Bond, B.J., Link, T.E., Marks, D., Unsworth, M.H., 2005. The importance of 

canopy structure in controlling the interception loss of rainfall: Examples from a young 

and an old-growth Douglas-fir forest. Agric. For. Meteorol. 130, 113–129. 

doi:10.1016/J.AGRFORMET.2005.03.003 

R. Myneni, Y.K., n.d. MOD15A2H MODIS/Terra Leaf Area Index/FPAR 8-Day L4 Global 

500m SIN Grid V006. doi.org. doi:10.5067/modis/mod15a2h.006 



97 

 

 

Rana, G., Katerji, N., 2000. Measurement and estimation of actual evapotranspiration in the 

field under Mediterranean climate: a review. Eur. J. Agron. 13, 125–153. 

doi:10.1016/S1161-0301(00)00070-8 

Robert, C.P., 1995. Simulation of truncated normal variables. Stat. Comput. 5, 121–125. 

doi:10.1007/BF00143942 

Schlesinger, W.H., Jasechko, S., 2014. Transpiration in the global water cycle. Agric. For. 

Meteorol. 189–190, 115–117. doi:10.1016/j.agrformet.2014.01.011 

Schmugge, T.J., Kustas, W.P., Ritchie, J.C., Jackson, T.J., Rango, A., 2002. Remote sensing 

in hydrology. Adv. Water Resour. 25, 1367–1385. doi:10.1016/S0309-1708(02)00065-9 

Seneviratne, S.I., Corti, T., Davin, E.L., Hirschi, M., Jaeger, E.B., Lehner, I., Orlowsky, B., 

Teuling, A.J., 2010. Investigating soil moisture–climate interactions in a changing 

climate: A review. Earth-Science Rev. 99, 125–161. 

doi:10.1016/J.EARSCIREV.2010.02.004 

Shukla, J., Mintz, Y., 1982. Influence of Land-Surface Evapotranspiration on the Earth’s 

Climate. Science 215, 1498–501. doi:10.1126/science.215.4539.1498 

Spinoni, J., Naumann, G., Carrao, H., Barbosa, P., Vogt, J., 2014. World drought frequency, 

duration, and severity for 1951-2010. Int. J. Climatol. 34, 2792–2804. 

doi:10.1002/joc.3875 

Stackhouse, P., Gupts, S., Cox, S., Mikovits, J., Zhang, T., Chiachiio, M., 2004. 12-year 

surface radiation budget data set. GEWEX News 14, 10–12. 

Stone, P.H., Chow, S., Quirr, W.J., Stone, P.H., Chow, S., Quirr, W.J., 1977. The July 

Climate and a Comparison of the January and July Climates Simulated by the GISS 

General Circulation Model. Mon. Weather Rev. 105, 170–194. doi:10.1175/1520-

0493(1977)105<0170:TJCAAC>2.0.CO;2 

Sun, L., Anderson, M.C., Gao, F., Hain, C., Alfieri, J.G., Sharifi, A., McCarty, G.W., Yang, 

Y., Yang, Y., Kustas, W.P., McKee, L., 2017. Investigating water use over the 

Choptank River Watershed using a multisatellite data fusion approach. Water Resour. 

Res. 53, 5298–5319. doi:10.1002/2017WR020700 

Talsma, C., Good, S.P., Jimenez, C., Martens, B., Fisher, J., 2017. Evaluation of 

Evapotranspiration Partitioning in Remote Sensing Models. Am. Geophys. Union, Fall 

Meet. 2017, Abstr. #H11M-08. 

Talsma, C.J., Good, S.P., Jimenez, C., Martens, B., Fisher, J.B., Miralles, D.G., McCabe, 

M.F., Purdy, A.J., 2018. Partitioning of evapotranspiration in remote sensing-based 

models. Agric. For. Meteorol. doi:10.1016/j.agrformet.2018.05.010 

Teuling, A.J., Hirschi, M., Ohmura, A., Wild, M., Reichstein, M., Ciais, P., Buchmann, N., 

Ammann, C., Montagnani, L., Richardson, A.D., Wohlfahrt, G., Seneviratne, S.I., 2009. 

A regional perspective on trends in continental evaporation. Geophys. Res. Lett. 36, n/a-

n/a. doi:10.1029/2008GL036584 

Trenberth, K.E., 2011. Changes in precipitation with climate change. Clim. Res. 

doi:10.2307/24872346 

Valente, F., David, J.S., Gash, J.H.C., 1997. Modelling interception loss for two sparse 

eucalypt and pine forests in central Portugal using reformulated Rutter and Gash 

analytical models. J. Hydrol. 190, 141–162. doi:10.1016/S0022-1694(96)03066-1 

Vinukollu, R.K., Meynadier, R., Sheffield, J., Wood, E.F., 2011. Multi-model, multi-sensor 

estimates of global evapotranspiration: climatology, uncertainties and trends. Hydrol. 

Process. 25, 3993–4010. doi:10.1002/hyp.8393 



98 

 

 

Wallace, J.., 2000. Increasing agricultural water use efficiency to meet future food 

production. Agric. Ecosyst. Environ. 82, 105–119. doi:10.1016/S0167-8809(00)00220-6 

Wang, K., Dickinson, R.E., 2012. A review of global terrestrial evapotranspiration: 

Observation, modeling, climatology, and climatic variability. Rev. Geophys. 50. 

doi:10.1029/2011RG000373 

Wang, L., Good, S.P., Caylor, K.K., 2014. Global synthesis of vegetation control on 

evapotranspiration partitioning. Geophys. Res. Lett. 41, 6753–6757. 

doi:10.1002/2014GL061439 

Williams, D.G., Cable, W., Hultine, K., Hoedjes, J.C.B., Yepez, E.A., Simonneaux, V., Er-

Raki, S., Boulet, G., de Bruin, H.A.R., Chehbouni, A., Hartogensis, O.K., Timouk, F., 

2004. Evapotranspiration components determined by stable isotope, sap flow and eddy 

covariance techniques. Agric. For. Meteorol. 125, 241–258. 

doi:10.1016/J.AGRFORMET.2004.04.008 

Yepez, E.A., Huxman, T.E., Ignace, D.D., English, N.B., Weltzin, J.F., Castellanos, A.E., 

Williams, D.G., 2005. Dynamics of transpiration and evaporation following a moisture 

pulse in semiarid grassland: A chamber-based isotope method for partitioning flux 

components. Agric. For. Meteorol. 132, 359–376. doi:10.1016/j.agrformet.2005.09.006 

Zaitchik, B.F., Santanello, J.A., Kumar, S. V., Peters-Lidard, C.D., Zaitchik, B.F., 

Santanello, J.A., Kumar, S. V., Peters-Lidard, C.D., 2013. Representation of Soil 

Moisture Feedbacks during Drought in NASA Unified WRF (NU-WRF). J. 

Hydrometeorol. 14, 360–367. doi:10.1175/JHM-D-12-069.1 

Zhang, K., Kimball, J.S., Running, S.W., 2016. A review of remote sensing based actual 

evapotranspiration estimation. Wiley Interdiscip. Rev. Water 3, 834–853. 

doi:10.1002/wat2.1168 

Zhang, Y., Chiew, F.H.S., Peña-Arancibia, J., Sun, F., Li, H., Leuning, R., 2017. Global 

variation of transpiration and soil evaporation and the role of their major climate drivers. 

J. Geophys. Res. Atmos. 122, 6868–6881. doi:10.1002/2017JD027025 

Zhang, Y., Peña-Arancibia, J.L., McVicar, T.R., Chiew, F.H.S., Vaze, J., Liu, C., Lu, X., 

Zheng, H., Wang, Y., Liu, Y.Y., Miralles, D.G., Pan, M., 2016. Multi-decadal trends in 

global terrestrial evapotranspiration and its components. Sci. Rep. 6, 19124. 

doi:10.1038/srep19124 

 

 

 


