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Besides enabling an enhanced mobile broadband access, fifth-generation (5G) wireless

mobile networks are envisioned to support the connectivity of massive, heterogeneous

Internet of Things (IoT) devices. Connecting these devices through 5G systems and pro-

viding them with their needed data rates require huge amounts of spectrum and power

resources, thus calling for the development and design of innovative, dynamic resource

identification, access and sharing methods that make effective use of these limited re-

sources. This thesis focuses specifically on wideband spectrum sensing, and presents

innovative techniques that enable efficient identification and recovery of unused spec-

trum opportunities in wideband dynamic spectrum access. Recent research efforts have

focused on leveraging compressive sampling (CS) theory to enable wideband spectrum

sensing recovery at sub-Nyquist rates. However, these approaches suffer from the fol-

lowing shortcomings. First, they consider homogenous wideband spectrum, where all

bands are assumed to have similar primary users (PU)s traffic characteristics whereas

in practice, the wideband spectrum occupancy is heterogeneous. Second, the number

of measurements that receiver hardware designs are able to perform is practically way

smaller than the number of measurements required by the CS-based sensing approaches.

Third, the number of measurements required by the CS-based sensing approaches de-

pends on the number of occupied bands (i.e., sparsity level), which is often unknown

in advance and changes over time. Forth, current wideband spectrum databases suffer



from scalability issues in that they incur lots of sensing overhead. This thesis proposes

a set of new, complementary techniques that overcome these aforementioned challenges.

More specifically, in this thesis,

1. We design efficient spectrum occupancy information recovery techniques for hetero-

geneous wideband spectrum access. Our proposed techniques exploit the block-like

structure of spectrum occupancy behavior observed in wideband spectrum access

networks to enable the development of compressed spectrum sensing algorithms.

Our proposed spectrum sensing algorithms achieve more stable spectrum informa-

tion recovery than that achieved by existing approaches.

2. We develop distributed CS-based spectrum sensing techniques for cooperative wide-

band spectrum access that require lesser measurements while overcoming time-

variability of spectrum occupancy and addressing hidden terminal challenges. Also,

we propose non-uniform sensing matrices design that exploits the heterogeneity in

the wideband spectrum access to further improve the spectrum sensing recovery

accuracy.

3. We develop scalable spectrum occupancy information recovery techniques for data-

base-driven wideband spectrum access networks. The novelty of our developed

techniques lies in combining the merit of compressive sampling theory with that

of low-rank matrix theory to enable scalable and accurate wideband spectrum

occupancy recovery at low sensing overhead.

4. We propose joint data and energy transfer optimization frameworks for powering

mobile cellular devices through RF energy harvesting. Our proposed framework

accounts for both the consumed power at the base station and the battery power

available at the end users to ensure that end users achieve their required data rates

with as little battery power consumption as possible. We also analytically derive

closed-form expressions of the optimal power allocations required for meeting the

data rate requirements of the downlink and uplink communications between the

base station and its mobile users.
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Chapter 1: Introduction

The increasingly growing number of wireless devices (e.g., Internet of things (IoT)s de-

vices), along with the continually rising demand for wireless bandwidth, has created a

serious shortage problem in the wireless spectrum supply [65]. This foreseen spectrum

shortage is shown to be due to the lack of efficient spectrum allocation and regulation

methods rather than the scarcity of spectrum resources [137, 108]. As a result, dy-

namic spectrum access (DSA) has been promoted as a potential candidate for address-

ing this shortage problem. This is done by authorizing access to any unused spectrum

opportunities by the non-legacy users [165, 63, 61, 78, 142, 79]. Spectrum awareness

is one of the main features crucial to enabling DSA, which allows DSA users (aka sec-

ondary users (SU )s) to locate unused portions of the spectrum in time, frequency and/or

space. For instance, one of the major challenging tasks encountered in DSA that spec-

trum awareness techniques address is protecting primary users (PU )s from interference.

Broadly speaking, spectrum awareness techniques can be categorized into two classes:

sensing-based approaches [58, 57, 68, 55, 54, 83, 127] and spectrum database-driven ap-

proaches [53, 102, 56, 59, 97, 50, 132, 120]. While the former class allows users to identify

unused spectrum portions on their own via local measurements, the latter provides users

with radio occupancy databases, which users can query to acquire spectrum occupancy

information in their vicinity.

Due to its great potential, DSA has already found its way to standardization—e.g.,

IEEE 802.22 [2] for enabling opportunistic access in the TV bands and 3GPP’s Licensed-

Assisted Access (LAA) and LTE-U [26] for enabling spectrum access in the unlicensed

5 GHz band. Spectrum sensing is vital to enabling successful DSA, and as a result, has

been studied thoroughly in the literature. Most of the sensing technique development

effort, however, has been focused on narrow band access, and not until recently, has it

attracted some attention for the wideband spectrum access case [158, 127, 64, 117].

Performing wideband spectrum sensing (WSS) through traditional methods has been

shown ineffective, by incurring excessive delays, costly hardware, and/or high energy con-

sumption; for instance, sequential sensing approaches require cheap hardware, but incur
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high sensing delays, whereas, parallel sensing approaches overcome delay issues, but re-

quire more hardware [158]. Frequency-domain analysis methods, on the other hand,

require sampling rates that are excessively high for the case of wideband, which can

be feasible only through complex hardware circuitry and processing algorithms. Mo-

tivated by the fact that only a small number of bands are occupied at a given time

(the number of occupied bands is termed sparsity level throughout [28]), and in an ef-

fort to address the high sampling rate limitation, researchers have exploited compressive

sampling (CS) theory to make wideband spectrum sensing possible at sub-Nyquist sam-

pling rates (e.g. [127, 115, 101, 103, 117, 125]). Despite the many attempts aimed to

develop CS-based approaches that require fewer sensed measurements, there remains ma-

jor challenges that need to be overcome when it comes to recovering spectrum occupancy

information in dynamic wideband spectrum access.

1.1 Wideband Spectrum Sensing Challenges

Connecting massive numbers of emerging wireless devices requires enormous amounts

of spectrum and power resources. This requires the development of new, innovative

resources sensing and sharing algorithms and frameworks that can cope with these rais-

ing demands. When it comes to wideband spectrum sensing, there have recently been

research efforts that leverage CS to enable wideband spectrum occupancy information

recovery at sub-Nyquist rates. However, these approaches fail to address the following

challenges:

• Challenge 1: Wideband spectrum occupancy is heterogenous. Existing

research efforts have focused mainly on homogenous wideband access, meaning

that the entire wideband spectrum is considered as a one single block with multi-

ple bands, and the sparsity or occupancy level is estimated across all bands and

considered to be the same for the entire wideband spectrum. However, in spectrum

assignment, applications of similar types (TV, satellite, cellular, etc.) are often as-

signed bands within the same band block, and different application types exhibit

different traffic occupancy patterns and behaviors. This suggests that wideband

spectrum is block-like heterogeneous, in that band occupancy patterns are not the

same across the different band blocks, and hence, sparsity levels may vary signif-

icantly from one block to another. This trend has also been confirmed by many
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measurement studies [31, 28, 159].

• Challenge 2: Receiver hardware is limited. The number of hardware branches

needed to enable the CS-based recovery can be high and unpractical. For example,

even when the number of occupied bands is as small as 6, the number of needed

branches for a total number of bands 50 can be as high as 16 [158]. In practice,

however, the number of branches that reasonable receiver designs have is typically

in the order of 4 to 8 [157], a number that is much smaller than the number of

measurements required by the CS-based approaches. Therefore, hardware presents

a major limitation on the applicability of such CS-based approaches.

• Challenge 3: Sparsity levels are time varying. The third challenge that

these CS-based approaches also face is that the number of occupied bands (i.e.,

the sparsity level) changes over time. Most CS-based approaches, however, assume

that the sparsity level is fixed, often done by setting it to the overall average

occupancy of the spectrum [127, 68]. Therefore, the time variability of the sparsity

of the wideband occupancy makes existing approaches either inaccurate or incur

high overhead.

In general, from a practical viewpoint, cooperative spectrum sensing approaches are

more effective than non-cooperative approaches, since they are designed with the aim

of providing spectrum availability information not only to just one SU , but to multiple

SU s, often located in different geographic locations. Clearly, having each SU perform

the CS-based spectrum sensing task on its own can be costly and redundant, as it might

suffice for one SU to perform sensing and share it with other SU s, thereby saving SU s’

energy and computation resources. Despite all the known benefits of cooperation, there

is another major challenge that needs to be addressed to enable cooperative CS-based

sensing.

• Challenge 4: Observed spectrum occupancies are not consistent across

different users. In practice, different SU s may observe different spectrum occu-

pancy due to wireless channel impairments (e.g., fading, multipath, etc.), leading

to inconsistent measurements across the different users. This presents a challenge

when it comes to using CS-based sensed measurements to collaboratively recover

spectrum occupancy information.
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As an alternative to performing spectrum sensing at the SU , spectrum database-

driven techniques have been proposed to provides SU s with the available bands. Building

Spectrum database for a wideband spectrum faces a major challenge.

• Challenge 5: Existing spectrum database-driven techniques are unsuited

for wideband spectrum access. Current spectrum database-driven approaches

are primarily designed for TV white spaces [102], which represent only a small

portion of the wideband spectrum that can potentially be shared. In addition, TV

carrier frequencies are mostly below 1 GHz, and hence, these signals can propagate

long distances, requiring only a small number of SU s to get the spectrum occupancy

in a relatively wide region. Therefore, to extend spectrum databases to cover wider

spectrum ranges, say 10 GHz bandwidth or more, a higher number of SU s must

be deployed to be able to obtain a complete radio occupancy map covering the

entire wideband spectrum, as well as to overcome the hidden terminal problem,

where due to, for example, fading, different SU s may observe different primary

signals, thereby leading to different occupancy decisions. Although collaborative

filtering [118] reduces the network overhead (spectrum occupancy matrix has a

low rank property), it fails to scale well with the number of bands. This limitation

comes from the propagation nature of signals at different spectrum frequencies, and

especially at high frequencies (e.g. millimeter waves) that is being adopted in 5G

systems [121]. Note that SU s at different locations tend to observe a completely

different spectrum occupancy, which can result in losing the low-rank property of

the spectrum occupancy matrix.

In addition to these aforementioned challenges, the need for supporting massive num-

bers of IoT devices, inherently having limited resources, gives rise to another major

challenge that ought to be overcome.

• Challenge 6: IoTs have limited energy resources. Maintaining the operation

of wireless devices (e.g., massive IoTs) through next-generation wireless networks

requires large amounts of spectrum and power resources. RF energy harvesting

has been proposed as an alternative power supply to these devices, by having a

base station powering wirelessly these distant devices while communicating with

them [45, 80]. However, existing approaches do not account for the power cost at
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the base station nor for the power levels at the devices’ batteries. Furthermore,

existing multiuser frameworks relying on dedicated RF energy harvesting do not

account for ambient RF energy.

1.2 Thesis Contributions

This thesis proposes frameworks and algorithms that overcome these challenges. Specif-

ically, it makes the following contributions:

1. It considers heterogeneous wideband spectrum access and exploits its inherent,

block-like structure of its occupancy to design efficient compressed spectrum sens-

ing techniques that are well suited for heterogeneous wideband spectrum. The

thesis proposes a weighted ℓ1−minimization occupancy information recovery algo-

rithm that achieves more stable recovery than that achieved by existing approaches

while accounting for the variations of spectrum occupancy across both the time

and frequency dimensions. In addition, the proposed algorithm is shown to require

a smaller number of sensing measurements when compared to the state-of-the-art

approaches.

2. It designs techniques that leverage supervised learning to provide accurate realtime

estimates of the spectrum occupancy levels, which are then exploited to provide

accurate recovery of spectrum occupancy. In doing so, the proposed techniques are

able to overcome the issue of time-variability of the number of occupied bands.

3. It develops a distributed compressive sampling based technique for cooperative

wideband spectrum sensing that requires lesser numbers of measurements while

overcoming time-variability of spectrum occupancy and addressing the hidden ter-

minal problem. First, the wideband spectrum occupancy information is shown to

almost surely be recovered with lesser numbers of spectrum measurements. Second,

a non-uniform sensing matrices design is proposed, which exploits the heterogeneity

in the wideband spectrum access to further improve the spectrum sensing recovery

accuracy.

4. It proposes a framework for enabling scalable database-driven dynamic spectrum

access and sharing. It brings together the merits of compressive sensing and collab-
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orative filtering to provide accurate radio occupancy map while reducing the net-

work overhead and overcoming the scalability issue that conventional approaches

suffer from. We start from an observation that close-by users have a highly cor-

related spectrum observation and we propose to recover the spectrum occupancy

matrix in the borough of each sensing node by minimizing the rank of local sub-

matrices. Then, we combine the recovered matrix entries using a similarity criterion

to get the global spectrum occupancy map. Through simulations, we show that

the proposed framework minimizes the error while reducing the network overhead.

5. It proposes joint data and energy transfer optimization frameworks for powering

mobile wireless devices through RF energy harvesting. We introduce a power

utility that captures the power consumption cost at the base station and the used

power from the users’ batteries, and determine optimal power resource allocations

that meet data rate requirements of downlink and uplink communications. Two

types of harvesting capabilities are considered at each user: harvesting only from

dedicated RF signals and hybrid harvesting from both dedicated and ambient RF

signals. The developed frameworks increase the end users’ battery lifetime at the

cost of a slight increase in the base station power consumption.
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Abstract

Besides enabling an enhanced mobile broadband, next generation of mobile networks (5G) are

envisioned for the support of massive connectivity of heterogeneous Internet of Things (IoT)s.

These IoTs are envisioned for a large number of use-cases including smart cities, environment

monitoring, smart vehicles, etc. Unfortunately, most IoTs have very limited computing and

storage capabilities and need cloud services. Hence, connecting these devices through 5G systems

requires huge spectrum resources in addition to handling the massive connectivity and improved

security. This article discusses the challenges facing the support of IoTs through 5G systems.

The focus is devoted to discussing physical layer limitations in terms of spectrum resources

and radio access channel connectivity. We show how sparsity can be exploited for addressing

these challenges especially in terms of enabling wideband spectrum management and handling

the connectivity by exploiting device-to-device communications and edge-cloud. Moreover, we

identify major open problems and research directions that need to be explored towards enabling

the support of massive heterogeneous IoTs through 5G systems.

2.1 Introduction

The foreseen success of the Internet of Things (IoT) and its applications is the result

of three major trends. First, fifth-generation (5G) systems have promises for meeting

stringent QoS requirements that legacy systems fail to meet. Examples of such require-

ments are high data rates, low energy consumption, low latency, high capacity, and

improved security. These expected improvements make 5G an ideal candidate for ensur-

ing required connectivity and services for massive and heterogenous IoT devices [1]. The
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second trend is the emergence of cloud computing services, which are believed to play a

vital role in making IoT a success by enabling diverse IoT services and applications that

were not possible before. Bringing computing and storage resources closer to the IoT

devices by means of edge computing has great promises for lowering energy consumption

by releasing the devices from the burden of having to deal with some or most of the com-

putation and energy needed for task execution [4]. The third trend is the adoption of

device-to-device (D2D) communications envisioned for public safety with the potential

for enabling more decentralized network management and local traffic offloading [10].

D2D offers 5G real-time assurances and better spectrum and resource allocation effi-

ciency [10]. These (technological) trends have jointly led to a common belief that the

success of IoT applications is rather a possible reality.

Indeed, telecom industries believe that IoT is the main driver of 5G, as the major

use-cases for 5G involve IoT devices (e.g., consumer or industrial IoTs). For instance,

IoT will shift the focus of mobile system designs from enabling traditional broadband

communications to support not only enhanced broadband communications but especially

massive IoTs with heterogeneous services requirements. However, there are major chal-

lenges that need to be addressed in order for 5G to support these massive IoTs. The first

challenge lies in the enormous amounts of spectrum and bandwidth resources that these

massive numbers of IoT devices need. We envision that dynamic spectrum access (DSA)

is to be needed now more than ever, as it is commonly viewed as a potential solution for

overcoming such resource demand challenge. Second, large numbers of newly emerging

IoT applications are desperately in need for cloud offloading services due to their limited

computation and storage capabilities, as well as to their low latency requirements. Em-

powering such IoTs with cloud offloading capabilities is therefore crucial to the successful

support of key time-critical IoT applications like virtual reality, video surveillance, and

precision healthcare, just to name a few. Third, current cellular systems are designed

for users’ profiles that are different from the services requested by IoTs. In fact, current

mobile systems are designed for limited numbers of connections and high-rate downlink

data traffic, whereas IoTs require massive numbers of connections mostly for low-rate

uplink traffic with various delay constraints [9].

In this paper, we discuss some potential solutions that can be used to overcome

these aforementioned challenges. Specifically, we leverage three key technology enablers,

D2D, compressive sensing, and edge cloud, to address bandwidth resource shortages and
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network edge traffic bottlenecks that 5G systems face. The potential of some of these

technologies has already been recognized by ongoing research efforts such as the METIS

project led by different research groups from various telecom companies. The main con-

tribution of this work lies in the exploitation of key sparsity properties that are inherent

to dynamic spectrum access and IoT traffic to develop efficient techniques that offer

better IoT connectivity, alleviate congestion bottlenecks at network edges, and enable

efficient dynamic wideband spectrum access and sharing. The paper also identifies some

open research challenges that still need to be overcome in order to enhance 5G’s support

of IoTs.

We want to mention that even though this work focuses on the support of IoTs via

cellular/5G systems, depending on the IoT application, IoT devices can also be connected

via various other means, such as WiFi, ZigBee, LoRa, etc [11]. In fact, recent studies [6]

show that by 2021, only about 7% of IoT devices will be connected via cellular systems.

The remainder of this article is organized as follows. Section 2.2 discusses IoT con-

nectivity challenges. Section 2.3 presents the different approaches that can be used to

exploit 5G sparsity to overcome these challenges. Finally, Section 2.4 presents some open

challenges and new research directions.

2.2 Challenges 5G Faces in Support of IoTs

Besides accommodating enhanced broadband mobile communications, 5G is anticipated

to support a wide range of IoT applications with various heterogeneous requirements [1].

Fig. 2.1 illustrates 5G support to diverse IoT devices, where base station is augmented

with edge cloud services. The traffic generated by such IoTs is different from that

generated by cellular systems in many aspects. First, unlike the case of broadband access,

most of the IoT traffic is in the uplink. Moreover, IoTs’ messages are typically small in

size and sparse in time. Furthermore, IoT devices are limited in energy and computation

resources. These IoT devices’ characteristics make their access to 5G systems different

from classical cellular devices. Given these traffic characteristics and resource constraints,

IoTs can be classified, as illustrated by Table 2.1, into three classes based on their

required services.
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• Massive IoTs (mIoTs): This class of IoTs includes large numbers of low-power,

low-cost devices that generate low-rate, small-sized, delay-tolerant uplink traffic.

Examples of such mIoTs are those envisioned for smart cities, smart homes, smart

parking, environmental monitoring, etc.

• Ultra-reliable, low-latency IoTs (uIoTs): These IoTs need very low latency,

high availability, and high reliability, but do not require high data rates. Examples

of uIoTs are those envisioned for vehicle-to-everything (V2E) services, emergency

management, remote healthcare, manufacturing control, smart grids, etc.

• Hybrid IoTs: These IoTs require both high data rates and low latency and are

used in applications like virtual/augmented reality, video surveillance, law enforce-

ment, etc.

Central cloud

Edge-cloud

Heterogeneous IoTs

Figure 2.1: 5G support to massive and heterogenous IoTs with different service require-
ments enabled via edge-cloud or central cloud.
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Table 2.1: Classification of heterogeneous IoTs

Type/class of IoTs Service characteristics

Massive IoTs (mIoTs) Requires scalable connectivity and generates
small-sized, delay-tolerant uplink traffic

ultra-IoTs (uIoTs) Requires reliable, low-latency, and highly
available network connections

Hybrid Includes low-latency, high-rate services

The connectivity of these heterogeneous IoTs will be ensured through heterogeneous

networks with diverse ranges and data rates including cellular systems, WiFi, Bluetooth,

Zigbee, Z-Wave, Sigfox, LoRA, Weightless, etc [11]. In particular, we focus in this work

on cellular systems as there have been significant efforts towards developing standards

relative to IoTs such as LTE-MTC, NB-LTE-M, and NB-IoT. With that being said, it is

worth acknowledging that it is anticipated that only a small portion (about 7%) of IoTs

will be connected through cellular systems by 2021 [6].

2.2.1 Wideband Dynamic Spectrum Access Challenges

Serving these diverse, massive and heterogeneous IoTs calls for the development of new

intelligent resource management approaches. Of particular importance is the need for

efficient spectrum resource usage and access at higher frequency ranges. Spectrum reg-

ulation agencies such as FCC and Ofcom have already issued notices for considering

and using millimeter wave spectrum with the aim to meet the enormous bandwidth

needs these massive IoTs are anticipated to require. Though spectrum policy makers

are taking the necessary steps towards enabling and opening up wideband spectrum for

5G access, much remains to be done when it comes to developing resource allocation

techniques. Although there is a general consensus among the researchers that dynamic

spectrum access (DSA) will be a key for enabling efficient spectrum resource sharing at

the millimeter wave range, there are key challenges that need to be addressed to be able

to enable wideband DSA. Wideband spectrum sensing is one of such challenges that we

focus on in this paper.

Spectrum sensing is the process by which unlicensed spectrum users identify unused

portions of the licensed spectrum to use opportunistically. Despite the huge research
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efforts dedicated to developing efficient sensing techniques, not much has been done when

it comes to exploiting the sparsity properties that are intrinsic to the wideband spectrum

access. As will be discussed later, intelligently extracting and exploiting the sparsity

properties inherent to the heterogenous occupancy nature of the wideband spectrum

can significantly improve the sensing efficiency of the available portions of the wideband

spectrum, and thus increase the overall spectrum utilization.

With the opening up of the wideband spectrum access recently enabled by spectrum

policy makers, and with the device characteristics and traffic heterogeneity nature of

these massive IoTs, traditional single-band spectrum sensing approaches are no longer

effective and hence, new sensing approaches need to be developed. The main reason for

why traditional approaches are not efficient for wideband DSA is that they do require

high numbers of sensing measurements; that is, in order to fully recover spectrum occu-

pancy information, high (Nyquist) sampling rates are required, which can incur signifi-

cant sensing overhead in terms of energy, computation, and communication. Motivated

by the sparsity nature of spectrum occupancy and in an effort to address the overhead

caused by these high sampling rates, researchers have recently been focusing on exploit-

ing compressed sampling theory to develop wideband spectrum sensing approaches that

can recover information at sub-Nyquist sampling rates [5]. In Section 2.3.1, we present a

novel wideband spectrum sensing technique that extracts key sparsity properties inher-

ent to the wideband spectrum occupancy heterogeneity nature [15] and exploits them

through compressive sensing theory to improve the efficiency of spectrum sensing. An

illustration of the wideband spectrum occupancy is shown in Fig. 2.2.

2.2.2 Network Edge Traffic Challenges

Cloud offloading has been adopted as a potential solution for overcoming the resource

limitation of IoT devices, as it exempts them from having to deal with the computation,

storage, and device-to-network communication burdens resulting from the running of the

IoT applications. Researchers have recently started exploring new ways to take cloud

offloading to a higher level: bring cloud computing infrastructures closer to end-users,

leading to what is commonly known today as Edge Clouds or Cloudlets. Enabling IoT

devices with edge cloud offloading capabilities is a key requirement for the 5G network

architecture, crucial to successfully supporting IoT applications at scale, characterized
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Figure 2.2: n frequency bands occupied by heterogeneous applications with different
occupancy rates. The grey bands are occupied by primary users while the white bands
are vacant. (a) is the statistical allocation while (b) is a realization of allocation in a
given region at a given time slot. (a) reveals that the wideband spectrum is stochastically
under-utilized and (b) is an instantaneous realization of this under-utilization.

with diverse and more stringent QoS requirements. In addition to relieving the device

from having to run its application locally, edge cloud offloading eliminates the need for

having to send massive amounts of IoT data through the Internet, thereby generating

lesser Internet congestions and, more importantly, improving IoT device responsiveness,

essential to the support of time-critical IoT applications, such as realtime video surveil-

lance, augmented reality, and remote health care.

With edge cloud offloading, IoT devices can replicate their memory objects (often

small-sized) and transfer them to their associated Cloudlets. Despite these apparent

resource elasticity benefits of edge cloud offloading, the massive numbers of devices

each 5G cell is expected to support will render the network edges of 5G major traffic

bottlenecks, thereby significantly limiting cloud offloading performance gains [3]. In

Section 2.3.2, we present techniques that leverage existing technologies such as D2D and
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compressive sensing theory to exploit key sparsity properties unique to IoT to alleviate

congestion bottlenecks and overcome access scalability issues at 5G network edges.

2.3 Extracting and Exploiting Sparsity for Efficient IoT Support in

5G

Having identified some key challenges facing the adoption of IoTs in 5G, we now present

potential solutions that leverage compressive sensing theory to overcome these challenges.

2.3.1 Enabling Efficient Wideband Spectrum Sensing

In order to serve the massive numbers of IoTs, spectrum sensing techniques suitable for

wideband spectrum access and sharing need to be carefully developed. We discussed

in Section 2.2.1 the shortcomings of conventional sensing approaches when applied to

wideband spectrum sensing. More specifically, the key limitations of such existing ap-

proaches lie in their high sampling rates and hardware capabilities needed to be able

to recover sensing information for wideband spectrum access. However, since (wide-

band) spectrum is heavily under-utilized [15] in that the number of occupied bands is

significantly less than the total number of bands (i.e., the vector representing spectrum

occupancy information is sparse), compressive sensing theory is an ideal candidate for

fully recovering spectrum occupancy information while using sampling rates lower than

sub-Nyquist rates [12]. In other words, the recovery of the (sparse) spectrum occupancy

vector can be done with a fewer number of sensing measurements.

With compressive sensing, the occupancy information of a spectrum consisting of

n bands can be recovered with only m = O
(
k log(n/k)

)
measurements where m < n

and k is the number of occupied bands, referred to as the sparsity level. The spectrum

occupancy information vector, xn×1, is then recovered by minimizing the ℓ0−norm of

xn×1 subject to a constraint on the error ∥ym×1−ΦΨxn×1∥2ℓ2 , where ym×1 is the vector

representing the m measurements, Φ is a full-rank sensing matrix, and Ψ is the discrete

inverse Fourier transform Matrix. Due to its NP-hardness nature, recovery heuristics

(e.g., ℓ1-norm minimization and orthogonal matching pursuit [12]) have been proposed in

the literature for solving such problems. From a practical viewpoint, the implementation

of wideband spectrum sensing requires the use of m amplifiers and then mixing the
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received amplified signals with pseudo-random waveforms at Nyquist rates. After that,

an integrator is applied followed by an analog-to-digital converter that takes samples at

sub-Nyquist rate. This architecture is known as analog-to-information converter (AIC)

sampler [12].

An observation we make by investigating the existing compressive sensing-based ap-

proaches is that they consider that the occupancy of wideband spectrum is homogenous,

meaning that the entire wideband spectrum is considered as one single block with mul-

tiple bands, and the sparsity level is estimated across all bands and considered to be

the same for the entire wideband spectrum. However, in wideband spectrum assign-

ment, applications of similar types (TV, satellite, cellular, etc.) are often assigned bands

within the same block, suggesting that wideband spectrum is heterogeneous. That is,

band occupancy patterns are not the same across the different blocks, since different ap-

plication/user types within each block can exhibit different traffic behaviors, and hence,

wideband spectrum occupancy may vary significantly from one block to another as il-

lustrated in Fig. 2.2. This trend has indeed also been confirmed by recent measurement

studies [15].

Incorporating this fine-grained sparsity structure into the formulation of wideband

spectrum occupancy recovery allows us to improve the recovery performance and enhance

the detection accuracy of wideband spectrum sensing. Specifically, such a block-like

sparsity structure allowed us to formulate the problem as a weighted ℓ1−minimization

problem, thereby resulting in an algorithm that provides faster spectrum occupancy re-

covery with lesser sensing overhead [8]. The basic idea behind our algorithm is that the

spectrum blocks that are more likely to be occupied are favored during the search. In

addition, blocks corresponding to critical applications or for which some occupancy in-

formation is known are captured through careful design of block weights [8]. In essence,

any additional knowledge about spectrum utilization behavior can be incorporated and

exploited so that faster recovery of spectrum occupancy information can be achieved.

Fig. 2.3 illustrates some of these design elements, where the blocks that are more likely

to be unoccupied are encouraged to be sparser than the blocks which are more likely to

be occupied. Since the number of occupied bands changes over time, the design of the

weightsw can be based on the average occupancy of every spectrum block i, k̄i, such that

wi = 1/k̄i [8]. Furthermore, if each block occupancy, k̂i, can be estimated through learn-

ing (e.g., using regression techniques), better performance can be achieved when setting
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wi = 1/k̂i. In Fig. 2.4, we show the performance of the proposed weighted compressive

spectrum sensing approach with band occupancy prediction (using different regression

models), and compare it to a conventional wideband spectrum sensing approach [12].

Note that in the non-cooperative case where IoTs perform wideband spectrum sensing

individually, there is no signaling overhead (information exchange with the other network

entities to perform this task). However, in the cooperative case where multiple IoTs are

involved in the sensing task, the signaling overhead becomes proportional to the number

of cooperating IoTs. Table 2.2 shows the signaling overhead associated with each of the

approaches discussed in this paper.
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Figure 2.3: Sparsity-promoting wideband spectrum sensing.

2.3.2 Overcoming Network Edge Traffic Bottlenecks

As discussed in Section 2.2.2, the massive IoT traffic that 5G cells are required to sup-

port to enable edge cloud offloading will create severe congestion bottlenecks at the 5G
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Figure 2.4: Miss-detection performance evaluation of weighted compressive sensing under
different regression techniques.

network edges. One possible solution proposed in [2] to overcome this challenge lies in

leveraging D2D and compressive sensing theory to reduce the number of connections

established between the base stations and the IoTs, and to reduce the amount of of-

floading traffic. D2D communication technology has been adopted in LTE-advanced

systems but only for public safety communications. When appropriately exploited, D2D

can offer great advantages. Higher throughput, low latency, better availability and new

services among other advantages make D2D an ideal candidate to help in the adoption

and support of IoTs by 5G.

With the use of compressive sensing, instead of having all IoTs push their data to

the base stations, the base stations can pull the data from only a subset of devices and

use compressive sensing to recover the data of all IoTs. Here the sparsity that allowed

the exploitation of compressive sensing comes from the fact/assumption that at a given

time, only a few IoT devices experience changes in their memory and hence only few will

need to upload their memory updates to the edge clouds. Specifically, considering mIoTs

with delay-tolerant requirements, every node multicasts to its neighbors a weighted value

of the updated data replica with a defined coefficient that corresponds to the coefficient

of the sensing matrix. When a node receives the weighted data replicas from other

nodes, it adds its corresponding update, if any, and multicasts it during its time slot.

After exchanging the data replicas, the nodes turn to the sleep mode for energy saving

purposes. The base station pulls the measurements from few nodes, compared to the

total number of mIoTs, where the number of these nodes should satisfy a condition that
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depends on the total number of nodes and the number of nodes that have data updates.

Since most of the mIoTs have no update, then the vector corresponding to the memory

replicas is sparse. Compressive sensing theory can accurately recover the data replicas

for each IoT and support the corresponding ones through cloud services. The proposed

protocol shows that signaling overhead is considerably reduced (only m connections are

established with BS), congestion is avoided and latency is improved by placing cloud

services at the edge. The main shortcoming of this approach is that it only works with

homogeneous IoTs and assumes a fixed sparsity level.

Potential improvements can be achieved through weighted compressive sensing as

discussed previously in the wideband spectrum sensing context. In addition, learning

and prediction approaches can also be used in conjunction with the recovery approach

to improve the performance. This has been considered in [13] where a data gathering

approach is proposed based on compressive sensing. The proposed scheme takes advan-

tage of the correlation between data and introduces an autoregressive (AR) model in

the recovery approach. IoTs can also be leveraged for performing wideband spectrum

sensing but with a focus on reducing the reported measurements’ cost [7], which can be

combined with the work of [13]. Under the assumption that the sensed signal is sparse, a

sparser basis can be found and can lead to a more compressed signal than the frequency

domain basis. The IoTs report the measurements to network nodes that perform sim-

ple addition of the measurements coming from the IoTs and report them to the base

station. This way, a constant communication cost is maintained (communication over-

head is proportional to the number of network nodes). At the base station, the different

measurements are exploited to recover the wideband spectrum occupancy.

Table 2.2 summarizes the main proposed works that exploit sparsity features to

enable the support of massive and heterogeneous IoTs.
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2.4 Open Research Problems and Directions

Despite the efforts made in exploiting the hidden sparsity structure for supporting IoTs

through cellular systems, there remains key challenges that need to be overcome. We

summarize here some of the research directions that we believe are worth investigating

in the future.

Wideband spectrum occupancy behaviors: Although some research efforts aim-

ing to exploit spectrum occupancy sparsity to reduce traffic overhead have already been

made, these approaches are either generic (not specific to wideband spectrum access) or

achieve limited performance improvements due to the assumptions made. For instance,

the spectrum occupancy heterogeneity structure inherent to dynamic wideband spec-

trum access is a feature that when exploited properly can allow for the design of more

efficient compressive sampling approaches [8]. Also, a common limitation of these exist-

ing approaches lies in the fact that the spectrum occupancy sparsity level is considered

constant and does not change over time. Therefore, designing efficient recovery algo-

rithms that exploit such features and structures in spectrum occupancy, finding bounds

on the minimum required number of sensed measurements, and deriving error bounds on

the achieved performances are some important challenges that remain open and hence

require further investigation.

Cooperative wideband spectrum sensing: As the demand for spectrum re-

sources continues to rise with the emergence of 5G, devising efficient techniques for en-

abling dynamic spectrum sharing and access of wideband spectrum resources is needed

more than ever. Of particular importance is cooperative spectrum sensing. Considering

and studying cooperative wideband spectrum sensing approaches under the observed

heterogeneous structure of the spectrum occupation has great potential for improving

spectrum sensing accuracy and reducing sensing overhead and is still an open research

problem that requires further investigation. Although this problem can be casted as a

low-rank matrix minimization, deriving theoretical performance that consider tradeoffs

between sensing overhead (delay, energy, etc.) and sensing accuracy while accounting

for the time-variability of the spectrum occupation has not been investigated.

IoT heterogeneity: Although there have been some research efforts that aim to

leverage compressive sampling to reduce traffic jams, more work remains to be done

when it comes to incorporating QoS. The heterogeneity nature of IoT devices and their
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applications mandate that different IoT types may come with different QoS requirements.

For instance, what IoTs designated for smart vehicle applications need is different from

what those designed for collecting agriculture data (e.g., air temperature, humidity, soil

moisture, etc.) need. QoS with respect to IoT is an area that has not received much

attention, and hence, there remains challenges that need to be overcome.

Energy harvesting: Energy availability and consumption continue to present a

major challenge for IoTs due to their limited energy resources. Relying on energy har-

vesting and dedicated wireless energy transfer technologies emerge as key solutions to

such challenges. Although there have recently been a research focus on developing energy

harvesting techniques for wireless systems in general, not much has been done when it

comes to developing energy harvesting techniques aimed for IoT devices and applications.

Security and privacy: Most of these compressive sampling-based data reporting

techniques that have been proposed so far do not address security and privacy concerns.

For instance, users’ privacy may not be protected in the data reporting process. Ex-

isting traditional encryption protocols cannot be applied as they are to these proposed

approaches, and hence, new privacy-preserving techniques need to be carefully designed

so that compressive sampling can be exploited to reduce traffic, yet without compromis-

ing the privacy of users involved in the data reporting process.

2.5 Conclusion

IoTs have recently gained tremendous research attention as they are the main driver for

a wide range of various applications. Of particular interest is the focus on leveraging

compressive sampling theory and D2D communication technology to exploit some spar-

sity structures inherent to the spectrum resource access and sharing in 5G to overcome

key challenges that 5G systems will face. Specifically, we focus on two key challenges

that pertain to the support of IoTs in 5G: spectrum resource availability and traffic

jams at network edges. We present some potential solutions for overcoming these two

challenges, and identify some open research problems that remain to be addressed.
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Abstract

There have recently been research efforts that leverage compressive sampling to enable wideband

spectrum sensing recovery at sub-Nyquist rates. These efforts consider homogenous wideband

spectrum, where all bands are assumed to have similar PU traffic characteristics. In practice,

however, wideband spectrum is not homogeneous, in that different bands could present different

occupancy patterns. In fact, applications of similar types are often assigned spectrum bands

within the same block, dictating that wideband spectrum is indeed heterogeneous. In this paper,

we consider heterogeneous wideband spectrum and exploit its inherent, block-like structure to

design efficient compressive spectrum sensing techniques that are well suited for heterogeneous

wideband spectrum. We propose a weighted ℓ1−minimization sensing information recovery al-

gorithm that achieves more stable recovery than that achieved by existing approaches while

accounting for the variations of spectrum occupancy across both the time and frequency dimen-

sions. In addition, we show that our proposed algorithm requires a smaller number of sensing

measurements when compared to the state-of-the-art approaches.

Index terms— Wideband spectrum sensing; compressive sampling; heterogeneous

wideband spectrum occupancy.

3.1 Introduction

Spectrum sensing is a key component of cognitive radio networks (CRNs), essential

for enabling dynamic and opportunistic spectrum access [4, 16]. It essentially allows

secondary users (SU s) to know whether and when a licensed band is available prior to

using it so as to avoid harming primary users (PU s). Due to its vital role, over the last
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decade or so, a tremendous amount of research has focused on developing techniques and

approaches that enable efficient spectrum sensing [31]. Most of the focus has, however,

been on single-band spectrum sensing, and the focus on wideband spectrum sensing has

recently received increased attention [40, 37, 32, 27].

The key advantage of wideband spectrum sensing over its single-band counterpart is

that it allows SU s to locate spectrum opportunities in wider frequency ranges by per-

forming sensing across multiple bands simultaneously. Being able to perform wideband

spectrum sensing is becoming a crucial requirement of next-generation CRNs, especially

with the emergence of IoT [5] and 5G [14]. This requirement is becoming even more

stringent with FCC’s new rules for opening up mmWave bands for wireless broadband

devices in frequencies above 24 GHz [1]. The challenge, however, with wideband sensing

lies in its high sampling rate requirement, which can incur significant sensing overhead

in terms of energy, computation, and communication. Motivated by the sparsity feature

inherent in spectrum occupancy [9] and in an effort to address the high sampling rate

limitation, researchers have exploited compressive sampling to make wideband spectrum

sensing possible at sub-Nyquist sampling rates (e.g. [37, 32, 27, 28, 33, 35]).

These research efforts have focused mainly on homogenous wideband spectrum, mean-

ing that the entire wideband spectrum is considered as one single block with multiple

bands, and the sparsity level is estimated across all bands and considered to be the

same for the entire wideband spectrum. However, in spectrum assignment, applications

of similar types (TV, satellite, cellular, etc.) are often assigned bands within the same

band block, and different application types exhibit different traffic occupancy patterns

and behaviors. This suggests that wideband spectrum is block-like heterogeneous, in that

band occupancy patterns are not the same across the different band blocks. Therefore,

sparsity levels may vary significantly from one block to another. This trend that has

also been confirmed by recent measurement studies [9, 49]. With this being said, in this

paper, we leverage compressive sampling theory [6] to exploit this spectrum occupancy

heterogeneity to design efficient wideband spectrum sensing techniques.

3.1.1 Related Work

There has recently been a growing interest in using compressive sampling theory [6]

to enable wideband spectrum sensing [42, 43, 32, 27, 35, 28, 45, 33, 38, 20, 39]. A
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common factor among these works is that the sparsity level is assumed to be fixed over

time. In an effort to relax this assumption, [47] proposes a two-step algorithm, where

at each sensing period, the sparsity level is first measured and then used to determine

the total number of measurements. The issue, however, with this approach lies in its

computational complexity. To overcome this issue, other efforts have been devoted to

developing methods that leverage existing concepts like asymptotic random matrix [38]

and stretching [25] theories to estimate these sparsity levels from measurements. There

have also been some other efforts [20] that mitigate this realtime change in sparsity levels

by proposing approaches that do not require knowledge of these sparsity levels on an

instant by instant basis. Such approaches, however, still assume that the sparsity level is

bounded and that PU ’s signal is wide-sense stationary which is not usually guaranteed

in practice.

Other efforts also aimed to exploit additional knowledge about the signal to further

improve the sensing information recovery [46, 13, 29, 48, 8, 21, 3]. For instance, the

authors in [46] propose a ℓ1−minimization-based recovery approach that exploits knowl-

edge about the support1 of the sparse signal. The authors in [13] also exploit signal

support information, but for recovering signals with noisy measurements. Their tech-

nique is shown to be more stable and robust than standard ℓ1−minimization approaches

when 50% of the support is estimated correctly. This approach has been generalized

for multiple weights in [29], addressing the case where the support is estimated with

different confidence levels. These approaches, however, work well in applications where

the support does not change much over time, like in real-time dynamic MRI [46] and

video/audio decoding [13, 29] applications. In the wideband spectrum sensing case where

the signal support changes over time, an estimate of the support is too difficult to acquire

in advance, making these approaches unsuitable. There have also been attempts that

exploit block sparsity information in signals to further improve signal recovery [21, 3].

These attempts, however, were not in the context of wideband spectrum sensing.

Unlike these previous works and as motivated by the block-like wideband spectrum

sparsity structure, our proposed framework considers time-varying and heterogeneous

wideband spectrum occupancy. We exploit this fine-grained sparsity structure to pro-

pose, which to the best of our knowledge, the first spectrum sensing information recovery

scheme for heterogeneous wideband spectrum sensing with noisymeasurements. We want

1The support corresponds to the signal components that are non-zero.
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to emphasize that the use of spectrum recovery methods as the approach for locating

spectrum vacancies has benefits over the use of detection methods (e.g., [10, 23]). They,

for instance, allow us to determine not only whether there is a signal or not in the

wideband, but also which band(s) this signal is occupying. Also, they help to identify

the type of signals/devices operating in such bands, a capability of great importance to

dynamic spectrum sharing [19]. This work focuses on spectrum recovery methods.

3.1.2 Our Key Contributions

• We develop an algorithm that exploits spectrum occupancy heterogeneity inherent

in wideband spectrum access to provide an efficient spectrum sensing information

recovery.

• We prove that our recovery algorithm is more stable and robust than existing

approaches, and reduces sensing overhead by requiring small numbers of measure-

ments.

• We derive lower bounds on the probability of spectrum occupancy and use them to

determine the sparsity levels that lead to further reduction in the sensing overhead.

It is important to mention that our proposed weighted compressive sampling frame-

work, including the derived theoretical results, is not restricted to wideband spectrum

sensing applications. It can be applied to any other application where the signal to be re-

covered possesses block-like sparsity structure. This includes applications such as sparse

target counting and localization [24] and medical imaging and DNA microarrays [21],

to name a few. We are therefore hoping that this work can be found useful for solving

problems in other disciplines and domains.

The remainder of the paper is structured as follows. In Section 3.2, we present our

system model and the PU bands’ occupancy model. Next, our proposed approach along

with its performance analysis are presented in Section 3.3. The numerical evaluations

are then presented in Section 3.4. Finally, our conclusions are given in Section 3.5.
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3.2 Wideband Spectrum Sensing Model

In this section, we begin by presenting the studied heterogeneous wideband spectrum

model. Then, we present the spectrum sensing preliminaries and setup.

3.2.1 Wideband Occupancy Model

We consider a heterogeneous wideband spectrum access system containing n frequency

bands as illustrated by Fig. 3.1(a). We assume that wideband spectrum accommodates

multiple different types of user applications, where applications of the same type are

allocated frequency bands within the same block. Therefore, we consider that wideband

spectrum has a block-like occupation structure, where each block (accommodating ap-

plications of similar type) has different occupancy behavioral characteristics. The wide-

band spectrum can then be grouped into g disjoint contiguous blocks, Gi, i = 1, ..., g,

with Gi
∩
Gj = ∅ for i ̸= j. Each block, Gi, is a set of ni contiguous bands. Like previous

works [41], the state of each band i, Hi, is modeled as Hi ∼ Bernoulli(pi) with param-

eter pi ∈ [0, 1] (pi is the probability that band i is occupied by a PU ). Assuming that

the bands’ occupancies within a block are independent of one another, then the average

number of occupied bands is k̄j
∑

i∈Gj
pi for j = 1, ..., g.

Recall that one of the things that distinguish this work from others is the fact that

we consider a heterogeneous wideband spectrum; formally, this means that the average

number k̄j of the occupied bands in block j can vary significantly from one block to

another. The average occupancies, however, of the different bands within a given block

are close to one another; i.e., pi ≈ pj for all i, j ∈ Gj . Our proposed framework exploits

such a block-like occupancy structure stemming from the wideband spectrum hetero-

geneity to design efficient compressive wideband spectrum sensing techniques. For this,

we assume that the blocks have sufficient different average sparsity levels (otherwise,

blocks with similar sparsity levels are merged into one block with a sparsity level corre-

sponding to their average). This is supported by practical observations where typically

each block of bands is assigned to a particular application, and the average occupancy

could be quite different from one block to another [49, 26, 18]. These averages are often

available via measurement studies, and can easily be estimated, or provided by spectrum

operators [26].
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Figure 3.1: n bands occupied by heterogeneous applications with different occupancy
rates. Grey bands are occupied by PU s and white bands are vacant. (a) is the statistical
allocation; (b) is a realization of allocation in a given region at a given time slot.

3.2.2 Secondary System Model

We consider a SU performing the sensing of the entire wideband spectrum as illustrated

by Fig. 3.2. The time-domain signal r(t) received by the SU can be expressed as

r(t) = h(t)⊗ s(t) + w(t) =

nsig∑
i=1

hi(t)⊗ si(t) + w(t), (3.1)

where hi(t) is the channel impulse between the primary transmitters and SU i, s(t) is

the PUs’ signal, w(t) is an additive white Gaussian noise with mean 0 and variance

σ2, ⊗ is the convolution operator, and nsig is the number of active PU s. Ideally, we

should take samples with at least twice the maximum frequency, fmax, of the signal to

recover the signal successfully. Let the sensing window be [0,mT0] with T0 = 1/(2fmax).

Assuming a normalized number of Nyquist samples per band, the vector of the taken

samples is r = [r(0), ..., r((m0 − 1)T0)]
T where r(i) = r(t)|t=iT0 , i = 0, 1, . . . , (m0 − 1)T0,

and m0 = n. The sensing window length is (reasonably) assumed to be sufficiently

small when compared to the time it takes a band state to change, so that each band’s
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Figure 3.2: A SU performing wideband spectrum sensing. Received signals are coming
from PU s with different energy levels.

occupancy remains constant during each sensing window.

We perform a discrete Fourier transform of the received signal r(t); i.e.,

rf = hfsf +wf = x+wf , (3.2)

where hf , sf , and wf are the Fourier transforms of h(t), s(t), and w(t), respectively.

The vector x contains a faded version of the PUs’ signals operating in the different bands.

Given the occupancy of the bands by their PU s (as illustrated in Fig. 3.1(b)) and in the

absence of interference, the vector x can be considered sparse, where a vector x ∈ Rn is

k-sparse if it has (with or without a basis change) at most k non-zero elements [11]; i.e.,

supp(x) = ∥x∥ℓ0 = |{i : xi ̸= 0}| ≤ k. The set of k−sparse vectors in Rn are denoted by

Σk = {x ∈ Rn : ∥x∥ℓ0 ≤ k}.
In practice, however, there will likely be interference coming from other nearby cells

and users, and hence, x could rather be nearly sparse, where a vector x ∈ Rn is nearly

sparse (or also compressible [11]) if most of its components obey a fast power law decay.

The k−sparsity index of x is then defined as σk(x, ∥.∥ℓp) = min
z∈Σk

∥x− z∥ℓp .
Since wideband spectrum is large, the number of required samples can be huge,

making the sensing operation prohibitively costly and the needed hardware capabilities

beyond possible. To overcome this issue, compressive sampling theory has been leveraged
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to reduce the number of needed measurements, as the wideband spectrum occupancy

vector is sparse or nearly sparse. After performing the compressive sampling, the resulted

signal can be written as

y = ΨF−1(x+wf ) = Ax+ η, (3.3)

where y ∈ Rm is the measurement vector, F−1 is the inverse discrete Fourier transform

since x is sparse in the Fourier basis, and Ψ is the sensing matrix assumed to have a

full rank, i.e. rank(Ψ) = m. Throughout the paper, we consider a uniform sampling

where all the coefficients of Ψ are drawn from the same distribution. Note that while

spectrum occupancy heterogeneity in this work is exploited in the recovery, it can also

be exploited to design an efficient non-uniform sampling. The sensing noise η is equal

to ΨF−1wf .

It is worth mentioning that without resorting to compressive sampling theory, wide-

band spectrum sensing requires wideband antennas and Nyquist-rate analog-to-digital

converters (ADC), which are very challenging to build [51, 17, 2, 2, 22]. Compressive

sampling overcomes this by allowing sub-Nyquist-rate sampling as illustrated by Fig. 3.3,

where the signal is first amplified bym amplifiers and mixed with a pseudo-random wave-

form at a Nyquist rate (fs = 2fmax). Then, an integrator is applied followed by an ADC

sampling at a sub-Nyquist rate (fs/n). The implementation aspects of the proposed

compressive sensing approach are beyond the scope of this paper.

Different from classical wideband compressive sensing, this paper takes advantage of

the wideband occupancy heterogeneity to design efficient spectrum occupancy recovery

approaches. Specifically, we show that exploiting band occupancy variability across the

different blocks indeed improves the recovery accuracy, and thus, the ability to locate

spectrum availability.

3.3 The Proposed Wideband Spectrum Sensing Information Recov-

ery

The sensing matrix and recovery algorithm are the main challenging components in

compressive sampling design. While the former consists of minimizing the number of

measurements, the latter consists of ensuring a stable and robust recovery. In this
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Figure 3.3: Illustration of an SU receiver architecture.

work, our proposed recovery algorithm outperforms existing approaches by 1) requiring

smaller numbers of measurements (better sensing matrix) and by 2) reducing the recovery

error (more stable and robust recovery). In this section, we start by providing some

background on signal recovery using classical compressive sampling. Then, we present

our proposed approach and analyze its performance by bounding its achievable mean

square errors and its required number of measurements.

3.3.1 Background

The spectrum recovery task can be very computationally costly, a fact that motivated

the use of direct signal processing approaches, such as detection [10, 23]. While these

approaches succeed in identifying the presence of signals in the wideband spectrum, they

fail to locate which portions/bands of the spectrum are occupied/unoccupied. In addi-

tion, being able to identify which signal types are occupying the bands is important and

can be very useful for DSA applications (e.g., spectrum access policy enforcement) [19].

Such objectives can, however, be achieved via spectrum recovery approaches, which can

indicate not only whether there is a signal in the wideband or not, but also which bands
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are occupied and which signal types are occupying them.

In wideband spectrum recovery approaches, an SU’s aim is to recover the frequency-

domain version of the received signal. Exploiting the fact that the signal is sparse, an

ideal recovery can be performed by minimizing the ℓ0−norm of the signal. This is,

however, NP-hard [7]. It turns out that minimizing the ℓ1−norm recovers the sparsest

solution with a bounded error that depends on the noise variance and the solution

structure [6]. This can be formulated as

P1 : minimize
x

∥x∥ℓ1

subject to ∥Ax− y∥ℓ2 ≤ ϵ
(3.4)

Here, ϵ is a user-defined parameter chosen such that ∥η∥ℓ2 ≤ ϵ. This formulation is

known also as Least Absolute Shrinkage and Selection Operator (LASSO) [6].

Although LASSO is shown to achieve good performance when applied for wideband

spectrum sensing recovery, it does not capture, nor exploit the block-like occupancy

structure information that is inherent to the wideband spectrum, where the occupancy

is heterogeneous across the different blocks of the spectrum. As shown later, it is the

exploitation of this block-like occupancy structure that is behind the performance again

achieved by our proposed recovery algorithm.

3.3.2 The Proposed Recovery Algorithm

Intuitively, our key idea is to incorporate and exploit the variability of sparsity levels

across the different spectrum blocks to perform intelligent solution search. We essentially

encourage more search of the non-zero elements of the signal x in the blocks that have

higher average sparsity levels. Such a variability in the block sparsity levels can be

incorporated in the formulation through carefully designed weights. More specifically,

we propose the following weighted ℓ1−minimization recovery scheme:

Pω
1 : minimize

x

g∑
l=1

ωl∥xl∥ℓ1

subject to ∥Ax− y∥ℓ2 ≤ ϵ.

(3.5)
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where x = [xT1 , ...,x
T
g ]
T , xTl is a nl×1 vector, and ωl is the weight assigned to block l for

l ∈ {1, ..., g}. The question that arises here now is how to design and select these weights.

Intuitively, the higher the average sparsity level of a block, the greater the number of

occupied bands within that block. This means that if we consider two blocks with two

different average sparsity levels, say k̄1 and k̄2, such that k̄1 < k̄2, then to encourage the

search for more occupied bands in the second block, the weight ω2 assigned to the second

block should be smaller than the weight ω1 assigned to the first block. Following this

intuition, we set the weights to be inversely proportional to the average sparsity levels.

More specifically,

ωi =
1/k̄i∑g
j=1 1/k̄j

∀ i ∈ {1, ..., g} (3.6)

Remark 1. Some insights into the proposed scheme

Consider a two-block spectrum with k̄1 > k̄2, and hence, with ω2 > ω1. For this special

case, the recovery algorithm can then be re-written as

Pω,2
1 : minimize

x
∥x∥ℓ1 + (

ω2

ω1
− 1)∥x2∥ℓ1

subject to ∥Ax− y∥ℓ2 ≤ ϵ.
(3.7)

Since we are minimizing the ℓ1−norm of x and the ℓ1−norm of x2, this can be interpreted

as ensuring that the vector x is sparse while ensuring that the portion x2 of x is also

sparse (since ω2
ω1

− 1 > 0). This means that all solutions that are sparse as a whole but

somehow dense in their second portion are eliminated.

Remark 2. Weights design

The proposed scheme exploits the per-block average occupancy to improve recovery ac-

curacy. From a practical viewpoint, the per-block average occupancy can be acquired

by monitoring the occupancy of each band within the block and averaging them over

time [49, 26]. It can also be acquired through prediction approaches, which can provide

good estimates. That is said, even when the average occupancy is not determined on a

per-block basis; i.e., the entire wideband spectrum is considered as one block, our pro-

posed algorithm becomes equivalent to the classical ℓ1-minimization approach (LASSO)

(i.e., P1). In other words, our algorithm performs similarly to LASSO when average

block occupancies are unavailable and outperforms it otherwise.

In the remaining of this section, we show that our proposed recovery algorithm out-
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performs existing approaches by 1) incurring smaller errors and 2) requiring lesser mea-

surements.

3.3.3 Mean Square Error Analysis

The following theorem shows that our algorithm incurs lesser errors than LASSO [6].

Theorem 1. Letting x♯ be the optimal solution for Pω
1 , x

† the optimal solution for P1

and y = Ax0 + η, we have

∥x♯ − x0∥ℓ2 ≤ ∥x† − x0∥ℓ2 .

with a probability exceeding

1 −
g−1∑
i=1

g∑
j=i+1

min(ni,nj)∑
k=1

k−1∑
l=0

(
ni
l

)
qli(1− qi)

ni−l

(
nj
k

)
qkj (1− qj)

nj−k (3.8)

assuming n1q1 ≥ ... ≥ ngqg.

Proof. The proof is provided in Appendix 3.6.1. �

The theorem says that the solution to the proposed Pω
1 is at least as good as the

solution to P1 (i.e., LASSO [6]). Also as done by design, the more heterogeneous the

wideband spectrum is, the higher the error gap between our proposed algorithm and

LASSO is.

Now, we assess the stability and robustness of the proposed scheme.

Definition 1. Stable and Robust Recovery [6]

For y = Ax +w such that ∥w∥ℓ2 ≤ ϵ, a recovery algorithm, ∆, and a sensing matrix,

A, are said to achieve a stable and robust recovery if there exist C0 and C1 such that

∥∆y − x∥ℓ2 ≤ C0ϵ+ C1
σk(x, ∥.∥ℓp)√

k
. (3.9)
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Note that the stability implies that small perturbations of the observation lead to a

small perturbation of the recovered signal. Robustness, on the other hand, is relative

to noise; for instance, if the measurement vector is corrupted by noise with a bounded

energy, then the error is also bounded [6]. We now state the following result, which

follows directly from Theorem 1.

Proposition 2. Our proposed algorithm, Pω
1 , achieves a stable and robust recovery.

Proof. The proof is provided in Appendix 3.6.2. �

The proposition gives a bound on the error by means of two quantities. The first is

an error of the order of the noise variance while the second is of the order of the sparsity

index of x.

Remark 3. Effect of time-variability

We want to iterate that our proposed algorithm is guaranteed to outperform existing

approaches on the average, and not on a per-sensing step basis. This is because although

the performance improvement achieved by our technique stems from the fact that blocks

with higher average sparsity levels are given lower weights—which is true on the average,

it is not unlikely that, at some sensing step, the actual sparsity level of a block with a

higher average could be smaller than that of a block with a lower average. When this

happens, our algorithm won’t be guaranteed to achieve the best performance during that

specific sensing step. The good news is that first what matters is the average over longer

periods of sensing time, and second, depending on the gap between the block sparsity

averages, this scenario happens with very low probability.

To illustrate, let us assume that the wideband spectrum contains two blocks with

average sparsity k̄1 =
∑

j∈G1
pj ≈ n1p1 and k̄2 =

∑
j∈G2

pj ≈ n2p2 with k̄2 < k̄1, where

again |G1| = n1 and |G2| = n2. Here, the occupancy probabilities of all bands in each

of these two blocks are assumed to be close to one another. Our approach encourages

to find more occupied bands in the first block than in the second block. However, since

band occupancy is time varying, then at some given time we may have a lesser number

of non-zero components in the first block than in the second. This unlikely event, in this

scenario, happens with probability

min(n1,n2)∑
k=1

k−1∑
l=0

(
n1
l

)
ql1(1− q1)

n1−l
(
n2
k

)
qk2 (1− q2)

n2−k
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For a sufficiently different average sparsity levels (e.g. having k̄1 > 2k̄2), this probabil-

ity is smaller than 0.02. Finally, it is worth mentioning that our proposed scheme can

achieve further performance improvement by adopting advanced estimation approaches,

such as those that are based on machine learning [47]. However, this additional perfor-

mance improvement comes at the price of additional computational complexity that is

accompanied with these estimators.

Having investigated the design of the recovery algorithm, now we turn our attention

to the design of the sensing matrix. The number of measurements, m, to be taken

determines the size of the sensing matrix and hence the sensing overhead of the recovery

approach. Therefore, we aim to exploit the structure of the solution to reduce the

required number of measurements as much as possible, so that the sensing overhead is

reduced as much as possible.

3.3.4 Number of Required Measurements

The sensing matrix is usually designed with two major design criteria/goals in mind:

reducing the number of measurements and satisfying the RIP property, defined as follows.

Definition 2. Restricted Isometry Property (RIP) [11]

A matrix A is said to satisfy the RIP of order k if there exists δk ∈ (0, 1) such that for

x ∈ Σk

(1− δk)∥x∥2ℓ2 ≤ ∥Ax∥2ℓ2 ≤ (1 + δk)∥x∥2ℓ2 . (3.10)

Broadly speaking, the RIP ensures that every k columns of A are nearly orthogonal.

We now present one of our main results derived in this paper, which provides a lower

bound on the number of required measurements.

Theorem 3. Let A = [A1...Ag] be the sensing matrix such that Ai satisfies the RIP

of order 2k̄i with {δ2k̄1 , ..., δ2k̄g} ∈ (0, 1/2]. Then, the number of measurements m must

satisfy

m ≥ 1

2 log
(∑g

i=1

√
2k̄i(1+δk̄i

)+maxi(
√
k̄i(1−δk̄i )/8)

mini(
√
k̄i(1−δk̄i )/8)

) k̄ log (nk̄) (3.11)

Proof. The proof is provided in Appendix 3.6.3. �
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Theorem 3 given above provides a lower bound on the required number of measure-

ments needed to recover the signal. As shown later in the result section, this bound is

tighter than existing approaches in that with the same number of measurements, our

proposed framework can recover signals with better accuracy than those obtained via ex-

isting approaches. Alternatively, we can also say that our framework can recover signals

with an accuracy equal to those obtained with existing approaches, but while requiring

lesser numbers of measurements, m. The derived lower bound exhibits an asymptotic

behavior similar to that of the classic bound (i.e., O(k̄ log(n/k̄))), but with a smaller

constant. By setting g = 1, we get the bound provided in [11, Theorem 1.4]. So our

derived bound could be viewed as a generalization of that of [11], in that it applies to

wideband spectrum with heterogeneous block occupancies; setting g = 1 corresponds to

the special case of the homogeneous wideband spectrum.

Existing approaches determine the required number of measurements by setting the

sparsity level to the average number of occupied bands (e.g., m ≥ k̄ log(n/k̄)). How-

ever, as mentioned earlier, in wideband spectrum sensing, the number of occupied bands

changes over time, and can easily exceed the average number. Every time this happens,

it leads to an inaccurate signal recovery (it yields a solution with high error). To address

this issue, in our proposed framework, we do not base the selection of the number of

measurements on the average sparsity. Instead, the sparsity level that we use in Theo-

rem 3 to determine m is chosen in such a way that the likelihood that the number of

occupied bands exceeds that number is small. The analysis needed to help us determine

such a sparsity level is provided in the next section.

3.3.5 PU Traffic Characterization

Based on the model of occupancy of the wideband provided in the system model, the

following lemma gives the probability mass distribution of the number of occupied bands.

Lemma 1. The number of occupied bands across the entire wideband has the following

probability mass function

Pr(X = k) =
∑
Λ∈Sk

[∏
i∈Λ

pi

][∏
j∈Λc

(1− pj)
]

(3.12)
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where Sk = {Λ : Λ ⊆ {1, ..., n}, |Λ| = k}, and Λc is the complementary set of Λ.

Proof. Let Λ the support such that its ith component is equal to one when there is a

PU using the ith band. Then, the probability that there is exactly k occupied bands

is
[∏
i∈Λ

pi

][∏
j∈Λc

(1 − pj)
]
such that |Λ| = k. Now, considering all the supports with a

cardinality k gives the expression of the mass distribution. �

Given this distribution, the average number of occupied bands across the entire

wideband spectrum is p̄ =
∑n

i=1 pi. In the following theorem, we provide a lower bound

on the probability that the number of occupied bands is below an arbitrary sparsity

level.

Theorem 4. The probability that the number of occupied bands is below a sparsity level

k0 is lower-bounded by

Pr(X ≤ k0) =

k0∑
k=0

∑
Λ∈Sk

[∏
i∈Λ

pi

][∏
j∈Λc

(1− pj)
]

≥ 1− ek0−
∑n

i pi

(k0/
∑n

i pi)
k0

(3.13)

Proof. The proof is provided in Appendix 3.6.4. �

Since the sparsity level is a time-varying process, this theorem gives a probabilistic

bound on how to choose a sparsity level such that the level will be exceeded only with a

certain probability. Now depending on the allowed fraction, α, of instances in which the

actual number of occupied bands exceeds the sparsity level, Theorem 4 can be used to

determine the sparsity level, k0, that can be used in Theorem 3 to determine the required

number of measurements, m. In other words, α is the probability that the actual number

of occupied bands is above the defined sparsity level k0. If α is set to 5%, then it means

that only about 5% of the time the actual number of occupied bands exceeds k0. As

expected, there is a clear tradeoff between α and k0. Smaller values of α requires higher

values of k0, and vice-versa. In our numerical evaluations given in the next section, α is

set to 4%.
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3.4 Numerical Evaluation

In this section, we evaluate our proposed wideband spectrum sensing approach and we

compare its performance to the state-of-the-art approaches. Consider a primary system

operating over a wideband consisting of n = 256 bands. We assume that the wideband

contains g = 4 blocks with equal sizes. The average probabilities of occupancy in each

block are as follows: k̄1 = 0.1×64, k̄2 = 0.01×64, k̄3 = 0.1×64, k̄4 = 0.01×64. To model

the signals coming from the active users, we generate them in the frequency domain with

random magnitudes (which captures the effect of the different channel SNRs that every

operating PU has with the SU). At the SU side, the sensing matrix Ψ is generated

according to a Bernoulli distribution with zero mean and 1/m variance. We opted for a

sub-Gaussian distribution since it guarantees the RIP with high probability [11]. Here,

the number of measurements is generated first according to m = O(k0 log(n/k0)). We fix

k0 to 25, which ensures that the probability that the actual number of occupied bands

is below k0 exceeds 0.96%, as determined by Theorem 4 and plotted in Fig. 3.4. In the

same figure, for completeness, we also show the tightness of the lower bound derived in

Theorem 4. Now assuming an RIP constant δ2ki ≤ 1/2 and replacing k0 and the RIP

constant with their values in Theorem 3 yields that the number of measurements should

be at least 29. We use CVX for the solving of the optimization problem [15].

A first performance that we look at is the mean square error ∥x♯ − x0∥ℓ2 as a func-

tion of the sensing SNR defined as SNR =
∥Ax∥2ℓ2
∥η∥2ℓ2

, where ∥Ax∥2ℓ2 = (Ax)TAx and

∥η∥2ℓ2 = ηTη. In Fig. 3.5, we compare our proposed technique to the existing approaches.

Compared to LASSO [6], CoSaMP [30], and (OMP) [44], our proposed approach achieves

a lesser error when fixing the number of measurement m to 27. This is because we ac-

count for the average sparsity levels in each block, thereby favoring the search on the

first and third block rather than the two others. Also, observe that as the sensing SNR

gets better, not only does the error of the proposed technique decrease, but also the

error gap between our technique and that of the other ones increases. This is because

the noise effect becomes limited. Furthermore, OMP has the worst performance as it

requires a higher number of measurements to perform well. In Fig. 3.6, we look at the

performance of the recovery scheme as a function of the average received SNR defined as

the ratio between the received signal power and the noise power; i.e., ∥x∥2ℓ0/∥η∥
2
ℓ2
. We

observe a similar behavior as in Fig. 3.5.
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Figure 3.4: Lower bound and exact expression of Pr(X < k0) as a function of the sparsity
level k0, as derived in Theorem 4.
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Figure 3.5: Comparison between the recovery approaches in terms of mean square error
as a function of the sensing SNR (m = 27).
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Figure 3.6: Comparison between the recovery approaches in terms of mean square error
as a function of received signal SNR (m = 27).

In Fig. 3.7, in addition to the random sensing matrix, we show the normalized mean

square error of the proposed recovery approach under the Circulant [34] and Toeplitz [36]

matrices. Here the elements of the first row of the Circulant matrix and the elements

of the first row and first column of the Toeplitz matrix are drawn from a Gaussian dis-

tribution with zero mean and 1/m variance. The figure shows that random (Bernoulli)

matrices outperform Circulant and Toeplitz matrices [50] in terms of achieved errors.

This is because Circulant/Toeplitz matrices have lesser incoherent projections than ran-

dom matrices. In other words, to achieve a robust recovery, the rows of the sensing

matrix should have low cross-correlation which is achieved more with a fully random

matrix. This superior performance gain comes, however, at the price of a slower recov-

ery compared to Circulant/Toeplitz matrices as shown in the literature [50, 36].

In Fig. 3.8, we investigate the error percentage gain (EPG) achieved by our technique

when compared to the other schemes under various different numbers of measurements.
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Figure 3.7: The proposed recovery approach in terms of mean square error for different
sensing matrices as a function of the sensing SNR (m = 27).



49

30 40 50 60 70

Number of measurements m

-50

0

50

100
E
rr
or

p
er
ce
n
ta
ge

ga
in

(%
)

Gain over LASSO
Gain over CoSaMP
Gain over OMP

Figure 3.8: Error gain comparison with LASSO [6], CoSaMP [30], and (OMP) [44] for
SNR= 20dB.

We define the error gain of our approach over an existing approach i as

EPG(%) =
∥x♯i − x0∥ℓ2 − ∥x♯Proposed − x0∥ℓ2

∥x♯i − x0∥ℓ2
100% (3.14)

Observe that when the number of measurements is low, our proposed technique outper-

forms the other three techniques. But when the number of measurements m is relatively

high, our technique still performs better than CoSaMP and LASSO, but worse than

OMP. However, OMP achieves this superior performance only under a high number of

measurements, a range that is not of interest due to its high incurred overhead.

After recovering the signal and in order to decide on the availability of the different

bands, we compare the energy of the recovered signal in every band with the thresh-

old [12], λ =
E(∥η∥2ℓ2 )

m

(
1 +

Q−1(Pf )√
1/2

)
, where Pf is a user-defined threshold for the false

alarm probability. It is defined as the probability that a vacant band is detected as
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Figure 3.9: Probability of detection as a function of the probability of false alarm with
number of measurements m = 27 and sensing SNR= 33 dB.

occupied, and is expressed as

Pf =
1∑n

i=1 (1−Hi)

n∑
i=1

Pr(|xi|2 ≥ λ|Hi = 0). (3.15)

Q−1 is the inverse of the Q−function. In Fig. 3.9, we plot this detection probability as

a function of the false probability for a fixed average sensing SNR, where the detection

probability is computed as

Pd =
1∑n

i=1Hi

n∑
i=1

Pr(|xi|2 ≥ λ|Hi = 1) (3.16)

Although the number of measurements is less than what is required, our proposed tech-

nique has the best detection capability among all other approaches. This also confirms

the result of Fig. 3.8.
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3.5 Conclusion

We proposed an efficient wideband spectrum sensing technique based on compressive

sampling. Our proposed technique is a weighted ℓ1−minimization recovery approach

that accounts for the block-like structure inherent to the heterogeneous nature of wide-

band spectrum allocation. We showed that the proposed approach outperforms existing

approaches by achieving lower mean square errors, enabling higher detection probabil-

ity, and requiring lesser numbers of measurements when compared to the-state-of-the-art

approaches.

3.6 Appendix

3.6.1 Proof of Theorem 1

Let us consider the average sparsity level in every block to be k̄i = pi.ni and define the

weights as ωi =
1
k̄i

(and then we normalize it, as in Equation (3.6), as ωi = ωi/
∑n

j=1 ωj).

Without loss of generality, we assume that ω1 ≤ ω2 ≤ ... ≤ ωg. First, let us assume to

have only knowledge of k̄1 to have the highest sparsity level in all the blocks. Then, we

can consider the recovery problem as

Pω1,1
1 : minimize

x
ω1∥x1∥ℓ1 +

g∑
l=2

∥xl∥ℓ1

subject to ∥Ax− y∥ℓ2 ≤ ϵ.

Since we have ω1 ≤ 1, this means we encourage the search of more components of x in

the first than in the second block. We know that the set of solutions are given by x0 +

Null(A). Ideally, its intersection with the ℓ1−ball gives the minimizer of P1. Now by

introducing the weight in the first block, the weighted norm ball will be pinched towards

the axis containing x1 which has, in average, lot of non-zero components. Therefore,

the recovered vector from Pω1,1
1 is going to be more accurate than the recovered vector

from P1.

Now, assume to have the knowledge of 1 ≤ i < g sparsity level of i blocks. Then, the
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optimization can be written as

Pω1,ω2,...,ωi,1
1 : minimize

x

i∑
l=1

ωl∥xl∥ℓ1 +
g∑

l=i+1

∥xl∥ℓ1

subject to ∥Ax− y∥ℓ2 ≤ ϵ.

Applying the same observation, the weighted norm ball is pinched more towards the

components of the denser blocks. Therefore, the performance should be at least the

performance of P1. Setting l = g, we get ∥x♯−x0∥ℓ2 ≤ ∥x†−x0∥ℓ2 . On the other hand,

the bands’ occupation is a random process following the bernoulli, then at some given

time we may have a lesser number of non-zero components in the ith block than in the

jth block with (j > i), the event can be quantified as

min(ni,nj)∑
k=1

k−1∑
l=0

(
ni
l

)
qli(1− qi)

ni−l
(
nj
k

)
qkj (1− qj)

nj−k. (3.17)

Examining all the cases and taking the complementary, we get Equation (3.8).

3.6.2 Proof of Proposition 2

Our proposed approach achieves a stable and robust recovery if we can find C0 and C1

such that

∥x♯ − x0∥ℓ2 ≤ C0ϵ+ C1
σk(x, ∥.∥ℓp)√

k
. (3.18)

Combining Theorem 1 and [6, Theorem 2], we get (with a probability exceeding (3.8))

∥x♯ − x0∥ℓ2 ≤ ∥x† − x0∥ℓ2

≤ C0.ϵ+ C1.
σk(x0, ∥.∥ℓ1)√

k
(3.19)

where

C0 =
2(1 + 1/

√
a)√

1− δ(a+1)k −
√
1 + δak/

√
a

(3.20)
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and

C1 =
2
√

1− δ(a+1)k +
√
1 + δak/

√
a

√
a
√
1− δ(a+1)k −

√
1 + δak

(3.21)

with a and b such that δak + aδ(a+1)k < a − 1. Therefore, our approach is stable and

robust.

3.6.3 Proof of Theorem 3

Prior to give the proof of the theorem, we start by providing the following lemma.

Lemma 2. Let k̄ =
∑g

i=1 k̄i and n =
∑g

i=1 ni with k̄i ≤ ni/2. There exists a set

X =
∪g
i=1Xi ⊂ Σk̄ such that for any x = [xT1 x

T
2 ...x

T
g ] with xi ∈ Xi for i = 1, . . . , g, we

have:

(1) ∥xi∥ℓ2 ≤
√
k̄i

(2) for any x, y ∈ X with x ̸= y, ∥xi − yi∥ℓ2 ≥
√
k̄i/2 and log |X| ≥ k

2̄
log
(
n
k̄

)
.

Proof. The proof of the lemma is similar to [11, Lemma A.1]. It is omitted here for

brevity. �

The proof of the theorem is inspired from the proof in [11] and based on Lemma 2.

First, we have x =
∑g

i=1 xi with ∥xi∥ℓ0 ≤ k̄i. Then, for any xi and yi ∈ Σ2k̄i
, we have

according to the RIP property√
1− δk̄i∥xi − yi∥ℓ2 ≤ ∥Aixi −Aiyi∥ℓ2 (3.22)

∥Aixi −Aiyi∥ℓ2 ≤
√

1 + δk̄i∥xi − yi∥ℓ2

Combining the above property with Lemma 2, we get√
k̄i(1− δk̄i)/2 ≤ ∥Aixi −Aiyi∥ℓ2 ≤

√
2k̄i(1 + δk̄i). (3.23)

By considering the balls with radius τi such that τi =
√
k̄i(1− δk̄i)/2/2 =

√
k̄i(1− δk̄i)/8

centered at Aixi, then these balls are disjoint. On the other hand, we have for any x
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and y ∈ Σk̄,

∥Ax−Ay∥ℓ2 ≤
g∑
i=1

∥Aixi −Aiyi∥ℓ2 ≤
g∑
i=1

√
2k̄i(1 + δk̄i) (3.24)

The upper bound gives an idea about the maximum distance between the centers of any

pair of balls which is dmax =
∑g

i=1

√
2k̄i(1 + δk̄i). Therefore, all the balls are contained

in the ball of radius τ = dmax +maxi(τi). Thus, we have

Vol
(
Bm(τ)

)
≥ |X|Vol

(
Bm(min

i
τi)
)
, (3.25)

where Vol(Bm(τ)) is the volume of the ball which is given by Vol(Bm(τ)) = πm/2

Γ(m/2+1)τ
m

and Γ(.) is the Euler Gamma function. This yields

(dmax +maxi(τi)

mini τi

)m
≥ |X| (3.26)

Therefore, after applying log, we get

m ≥ 1

log
(
dmax+maxi(τi)

mini τi

) log(|X|) (3.27)

Now recalling Lemma 2, we get m ≥ Cδk̄1 ,...,δk̄g
k̄ log(n/k̄) where

Cδk̄1 ,...,δk̄g
= 1

2 log

(∑g
i=1

√
2k̄i(1+δk̄i

)+maxi(
√

k̄i(1−δk̄i
)/8)

mini(
√

k̄i(1−δk̄i
)/8)

) . (3.28)

which ends the proof.

3.6.4 Proof of Theorem 4

Let Y =
∑n

i=1Hi be the random variable that contains the number of occupied bands.

Since the occupation of the band is independent, then the moment generating function

of Y is given by

MY (t) =
n∏
i=1

(etpi + 1− pi). (3.29)
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Now using the Chernoff bound, we have

Pr(Y ≥ k0) ≤ inf
t≥0

{
e−k0tMY (t)

}
= inf

t≥0

{
e−k0t

n∏
i=1

(
(et − 1)pi + 1

)}
(3.30)

Using the fact that ex ≥ 1 + x, we get

Pr(Y ≥ k0) ≤ inf
t≥0

{
e−k0t

n∏
i=1

e(e
t−1)pi

}
= inf

t≥0

{
e−k0te(e

t−1)
∑n

i=1 pi
}

= inf
t≥0

{[
e(e

t−1)e−tk0/
∑n

i=1 pi︸ ︷︷ ︸
(∗)

]∑n
i=1 pi

}
(3.31)

To optimize (∗), we take the derivative over t which yields to t∗ = log(k0/
∑n

i=1 pi). Now

substituting t∗, we get

Pr(Y ≥ k0) ≤ ek0−
∑n

i=1 pi

(k0/
∑n

i=1 pi)
k0

(3.32)

Now since Pr(Y ≥ k0) = 1− Pr(Y ≤ k0), we get

1− Pr(Y ≤ k0) ≤ ek0−
∑n

i=1 pi

(k0/
∑n

i=1 pi)
k0

(3.33)

which gives the result of the theorem.
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Abstract

This paper proposes a novel technique that exploits spectrum occupancy behaviors inherent to

wideband spectrum access to enable efficient cooperative wideband spectrum sensing. Our tech-

nique requires lesser number of sensing measurements while still recovering spectrum occupancy

information accurately. It does so by leveraging compressive sampling theory to exploit the block-

like occupancy structure of wideband spectrum access. Our technique is also adaptive in that it

accounts for the variability of spectrum occupancy over time. It exploits supervised learning to

provide and use accurate realtime estimates of the spectrum occupancy. Using simulations, we

show that our proposed technique outperforms existing approaches by making accurate spectrum

occupancy decisions with lesser sensing communication and energy overheads.

Index terms— Cooperative wideband spectrum sensing; compressive sampling;

supervised learning.

4.1 Introduction

Spectrum availability presents a major challenge that fifth-generation (5G) networks

need to overcome in order to support the massive number of emerging 5G devices. In

an effort to overcome this foreseen challenge, spectrum regulators have started to create

service rules and policies for allowing high frequency band use. For example, as recently

as July 2016, FCC established new rules for opening up mmWave band use for wireless

broadband devices in frequencies above 24 GHz [1]. With these new rules, 5G networks

will be forced to operate in a wide range of spectrum bands with diverse characteristics

and limitations (e.g. propagation condition, transmission power limits, etc.). These
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new spectrum access policies call for innovative techniques that enable the access of this

wideband spectrum in an efficient manner.

On the other hand, despite the rapidly increasing number of users, recent measure-

ment studies [33] reveal that the allocated spectrum still suffers from under-utilization.

As a result, dynamic spectrum access (DSA) has been adopted by 5G as the key solution

for addressing this spectrum access inefficiency [14, 19, 17, 16, 15]. The core idea of

DSA is to rely on spectrum sensing techniques to locate unoccupied bands that can be

exploited opportunistically by secondary users (SU s) [24, 32, 9, 10, 6, 21, 8].

Many techniques have already been proposed with the aim of improving spectrum

sensing, but mostly for single-band DSA [25, 13, 12, 11]. Wideband spectrum sensing

has, however, received lesser attention [27]. Most of wideband spectrum sensing tech-

niques leverage compressive sampling theory [5] to exploit the inherent sparsity nature

of wideband occupancy, thus allowing for spectrum occupancy information recovery at

sub-Nyquiest sampling rates. Applying compressive sampling requires the estimation

of the sparsity level which reflects the spectrum occupancy [5]. In the literature, this

sparsity level has usually been set to the average occupancy across the entire wideband

spectrum [27, 28]. However, spectrum occupancy is a time-varying process, and hence,

setting it to a fixed average makes these compressive sampling based techniques ineffi-

cient. More specifically, when the actual sparsity level is higher than this used average,

compressive spectrum sensing techniques fail to recover the spectrum occupancy infor-

mation, and when it is below the average, SU s end up taking more measurements than

needed, which leads to wasting energy and bandwidth resources.

In this paper, we propose a novel technique that enables efficient cooperative spec-

trum sensing in wideband DSA. The novelty of our proposed technique lies in the key

observations that spectrum occupancy (i) changes over time and (ii) varies considerably

from one spectrum block to another [33]. Our technique accounts for the time variability

by leveraging supervised learning [30] to provide and use estimates of the sparsity levels,

and exploits the block-like spectrum occupancy structure by leveraging compressive sam-

pling [5] to reduce the number of measurements needed to recover spectrum occupancy

information. Our technique tracks and provides a sparsity level estimate in realtime for

each spectrum block separately to exploit the observed block-like occupancy behavior

and to account for time variability of these occupancies. The tracking and incorporation

of this adaptive, fine-grained spectrum occupancy is the key behind the performance
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improvement that our proposed technique achieves. To this end, our contributions in

this paper are:

• We propose an efficient spectrum sensing technique for cooperative wideband spec-

trum access that overcomes the shortcomings of conventional approaches. It com-

bines machine learning with weighted compressive sampling to accurately estimate

wideband spectrum occupancy.

• We propose prediction approaches that rely on regression to provide accurate es-

timates of the sparsity levels, thereby allowing efficient spectrum occupancy infor-

mation recovery.

• We propose a weighted compressive sampling approach that exploits the block-like,

inherent structure of spectrum occupancy to enable efficient recovery of wideband

occupancy information.

The remainder of the paper is structured as follows. In Section 4.2, we present our

system model. In Section 4.3, we describe our proposed scheme. In Section 4.4, we

present the performance evaluation of the proposed technique. Related works are pre-

sented in Section 4.5. Finally, we present our conclusion and future works in Section 4.6.

4.2 System Model

4.2.1 Primary System Model

We consider a heterogeneous wideband spectrum access system containing n frequency

bands. We assume that wideband spectrum accommodates multiple types of user appli-

cations, where applications of the same type are allocated frequency bands within the

same block. Therefore, we consider that wideband spectrum has a block-like occupation

structure, where each block (accommodating applications of similar type) has different

occupancy behavioral characteristics (as observed in [33]). The wideband spectrum can

then be grouped into g disjoint contiguous blocks, Gi, i = 1, ..., g, with Gi
∩
Gj = ∅ for

i ̸= j. Each block, Gi, is a set of ni contiguous bands. We assume that within each

block Gi of frequency, the number of primary users (PU )s’ arrivals within a time slot T



67

and the service time/duration of each PU , each follows some probabilistic distribution.

Therefore, our system can be seen as g G/G/ni/ni independent queueing systems.

4.2.2 Secondary System Model

We consider a set of SU s co-located in the same cell as the PU s, and assume that a

subset of SU s perform the wideband spectrum sensing task cooperatively, as illustrated

by Fig. 4.1, and report their sensing measurements to a fusion center (FC ), which uses

them to determine whether the spectrum is occupied. The FC then relies on this spec-

trum occupancy information to assign spectrum to the SU s requesting spectrum access.

Further details on the cooperative sensing protocol are given in Section 4.3.

The time-domain signal ri(t) received by the ith SU can be expressed as

ri(t) = hi(t)⊗ s(t) +wi(t), (4.1)

where hi(t) is the channel impulse between the primary transmitters and the SU i, s(t)

is the PU s’ signal, ⊗ stands for the convolution operator, and wi(t) is an additive white

Gaussian noise with mean 0 and variance σ2. Ideally, the SU should take samples at

a rate of at least twice the maximum frequency, fmax, of the signal in order to ensure

complete signal recovery. Let the sensing window be [0,mT0] with T0 = 1/(2fmax).

Assuming a normalized number of wideband Nyquist samples per band, then the vector

of the taken samples is ri(t) = [ri(0), ..., ri((m0 − 1)T0)]
T where ri(j) = ri(t)|t=jT0 , for

j = 0, ...,m0, and m0 = n. Note that a reasonable assumption that we make is that the

sensing window length is assumed to be sufficiently small when compared to the time

it takes a band state to change. That is, each band’s occupancy is assumed to remain

constant during each sensing time window.

To reveal which bands are occupied, the SU performs a discrete Fourier transform

of the received signal ri(t); i.e.,

rf,i = hf,isf +wf,i = xi +wf,i, (4.2)

where hf,i, sf , and wf,i are the Fourier transforms of hi(t), s(t), and wi(t), respectively.

The vector xi contains a faded version of the PU s’ signals operating in the different

bands. Given the occupancy of the bands by their PU s and in the absence of fading
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Figure 4.1: Illustration of the cooperative spectrum sensing task.

and interference, the vector xi is sparse. Formally, a vector x ∈ Rn is said k-sparse

if it has (or after performing a basis change) at most k non-zero elements [5]. That

is, supp(x) = ∥x∥ℓ0 = |{i : xi ̸= 0}| ≤ k. But since, in practice, there will likely be

interference coming from other nearby cells and users, the vector xi could rather be

nearly sparse than sparse. Mathematically, a vector x ∈ Rn is said nearly sparse (called

also compressible [5]) if most of its components obey a fast power law decay.

Sampling the wideband signal at the Nyquist rate is prohibitively costly, and goes

beyond the hardware capabilities of the SU s. Compressive sampling has been used to

overcome this issue by reducing the number of measurements significantly given that the

signal is nearly sparse [5]. Hence, the measured signal can be written as

yi = ΨF−1(xi +wf,i)

= Axi + η, (4.3)

where yi ∈ Rm is the measurement vector, F−1 is the inverse discrete Fourier transform,

and Ψ is the sensing matrix assumed to have a full rank, i.e. rank(Ψ) = m. The sensing

noise η is equal to ΨF−1wf . These measurements yi are then sent to FC to perform
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the spectrum recovery and decide on the occupancy of each band in that given region.

4.3 The Proposed Cooperative Wideband Spectrum Sensing Scheme

In this section, we present our technique. We begin by describing the proposed sensing

protocol. Then, we investigate the different approaches used for predicting the spectrum

occupancy, and describe our prediction-based scheme proposed for enabling efficient

spectrum occupancy information recovery.

4.3.1 The Proposed Scheme

Acquiring accurate and consistent spectrum occupancy information across the entire cell

requires that all SU s perform wideband spectrum sensing and at every time slot. How-

ever, this is prohibitively costly, as it incurs excessive overhead (energy, communication,

etc.), and is not efficient either, as not all SU s will be needing access to the spectrum.

To address this, we therefore propose that the sensing task is performed only by and

within the region whose SU s need spectrum access.

The proposed cooperative sensing scheme is described as shown in Fig. 4.1. First, we

assume that FC computes over time the average occupancy k̄ of the wideband spectrum

and shares it with all SU s. Now, if a particular SU i wants to access the spectrum, it takes

m(k̄) measurements such that m(k̄) = O(k̄ log(n/k̄)) as described by Equation (4.3).

Then, SU i reports the measurement vector yi and its location to FC . After receiving

the measurements and exploiting the other features (as described later), FC predicts the

actual sparsity level in each block {k̂j}gj=1, as will be explained in Section 4.3.2. Then,

FC communicates k̂ =
∑g

j=1 k̂i to the recent neighbors of SU i, denoted as Neigh(i).

Next, each SU of Neigh(i) takes m(k̂) = O(k̂ log(n/k̂)) measurements. Then, these

measurements are reported to FC which exploits the predicted sparsity levels to per-

form an efficient recovery, as explained in Section 4.3.3. Having recovered the spectrum

occupancy information, the energy level of each band is compared to a threshold λ,

and then used to decide, using voting, on the band occupancy. This is summarized in

Algorithm 1.

Using Step 2, FC uses the measurements yi and the location to determine the features

used to predict the sparsity levels in each block, {k̂j}gj=1. In Steps 4-5, the main intuition
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Algorithm 1 Cooperative Wideband Spectrum Sensing

1: SU i performs wideband spectrum sensing using k̄.
2: SU i reports yi and its location to FC .
3: FC predicts {k̂j}gj=1.

4: FC multicasts k̂ to Neigh(i).
5: Neigh(i) performs wideband spectrum sensing.
6: Neigh(i) reports their measurements to FC .
7: FC recovers spectrum occupancy as seen by each SU .
8: FC uses voting to decide on the occupancy.
9: FC assigns some bands to SU i.

behind requesting the measurements only from the neighbors of SU i is twofold. First,

users which are near-by SU i are most likely to observe the same occupancy of the

spectrum, and therefore, combining the observations of Neigh(i) would lead to a more

accurate decision which is the benefit of the cooperation. Here, SU s which are far

from SU i are most likely to have a different observation of the spectrum occupancy,

and hence, it is better to discard their contributions. Second, reducing the number of

contributing SU s has a direct implication on reducing the total network overhead, as well

as the sensing energy at these devices. In Step 7, the spectrum recovery is performed at

FC since this entity has more computing capability and has no constraint on the energy

consumption. In Step 8, any voting technique can still be applied once the spectrum

decision is performed for every band. We use the majority voting [21].

Remark 4. During the sensing process initiated by SU i, if one of Neigh(i) requested

to access the spectrum, FC does not need to re-initiate the sensing protocol. Spectrum

bands are directly assigned to it from the set of available bands.

4.3.2 Spectrum Occupancy Prediction

Recall that having accurate, realtime estimates of the sparsity level k =
∑g

i=1 ki is vital

for determining the exact number, m = O(k log(n/k)), of measurements required to

accurately recover the spectrum occupancy information [5]. In fact, because k varies with

time, not having accurate values of k may lead to over- or under-sampling, which may in

turn result either in having inaccurate recovery or in taking unnecessary measurements.

In this work, we investigated the use of regression models, a class of supervised learning
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algorithms, to derive prediction approaches that can provide accurate estimates of the

sparsity levels. These regression models require having historical training dataset that

connects the set of observed features with the occupancy level of each spectrum block

(labels). The training per-block dataset consists of N training samples {(z(j)i , k
(j)
i )}Nj=1

where j is the sample index, i is the block index, z
(j)
i =

[
z
(j)
i [1], . . . , z

(j)
i [d]

]
is the vector of

d features with k
(j)
i representing the number of occupied bands in the ith block. For ease

of presentation, we drop the subscript i of the ith block as the prediction is performed on

a per-block basis. Next, we present the regression techniques along with the considered

features for predicting the sparsity level in each block.

4.3.2.1 Proposed Features

• PUs’ activities: Spectrum occupancy is correlated with the activities of PU s.

Therefore, PU s’ average service times and their inter-arrival rates are considered

as features in the used regression models.

• SU s’ neighbors: Our scheme leverages SU cooperation to improve spectrum oc-

cupancy detection accuracy. Hence, since FC uses voting when deciding about

spectrum availability, a greater number of neighboring SU s means a higher deci-

sion accuracy [21]. We, therefore, consider the number of neighbors as a feature.

• Correlation of spectrum occupancy over time: The sparsity level of a given block

at time slot t is dependent on (and highly correlated to) that at the previous time

slot t− 1. Therefore, we use this feature in the regression models to capture such

a dependency.

4.3.2.2 Regression Techniques

Using these proposed features, we consider different regression models to design our

prediction technique. We provide next a brief description of each of the considered

models.

Linear regression using batch gradient descent We model the spectrum occu-

pancy of each block as k = wTz =
∑d

i=0w[i]z[i] where d = m(k̄) + 4 and the parameter
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w is searched using the batch gradient descent, which consists of adaptively determining

w = [w0, ..., wd]
T that minimizes a loss function. We use as a loss function the mean

square error defined as J (w) = 1
2N

∑N
j=1

(
wTz(j) − k(j)

)2
.

Support vector regression (SVR) The objective of SVR is to find the function

g(z) that predicts k with at most ε error where g(z) = ⟨w, z⟩+ b, b ∈ R; ⟨·, ·⟩ represents
the dot product and b represents the intercept [29]. The optimal w is the solution to:

min
w

1

2
∥w∥2 + C

N∑
j=1

(ζj + ζj
∗
),

s.t. k(j) −wTz(j) − b ≤ ε+ ζj ,

wTz(j) + b− k(j) ≤ ε+ ζj
∗
,

ζj , ζj∗ ≥ 0.

(4.4)

The slack variables ζj and ζj∗ are introduced to tolerate some errors whenever the

optimization is not feasible [29].

In this work, we consider linear SVR; i.e.,

k =
N∑
j=1

(α(j) − α(j)∗)⟨z(j), z⟩+ b, (4.5)

where α(j) and α(j)∗ are the Lagrangian multipliers [29]. In general, when the data set

is linearly inseparable, linear SVR may fail to achieve the optimal regression. Hence,

kernel functions are used in this context to transform data set to high dimensional spaces

to perform the linear separation [29]. In this case, nonlinear SVR is written as

k =
N∑
j=1

(αj − α∗
j ).K(z(j), z) + b, (4.6)

where K(zi, z) = ⟨ϕ(zi), ϕ(z)⟩ and ϕi are mapping functions. In this work, we also

considered a nonlinear SVR as the regression approach, which uses the Gaussian kernel

function [29].
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Figure 4.2: Performance of the regression techniques applied to the training data.

4.3.3 Spectrum Occupancy Information Recovery Approach

The proposed recovery scheme exploits the predicted estimates of the per-block spectrum

occupancy to improve the recovery accuracy. We propose a weighted ℓ1−minimization

compressive sampling technique that favors the search in the unoccupied bands in the

blocks with higher band occupancy.

Given the occupancy is different from one block to another, we propose to set the

weights inversely proportional to the estimated block occupancy levels. Formally, the

weights can be written as

ωi =
1

k̂i
/

g∑
j=1

1

k̂j
∀ i = [1, ..., g] (4.7)

and hence, our proposed recovery approach can be formulated as

P(x;ω) min
x

g∑
l=1

ωl∥xl∥ℓ1

s.t. ∥Ax− y∥ℓ2 ≤ ϵ.

(4.8)

where x = [xT1 , ...,x
T
g ]
T , xTl is a nl × 1 vector for l ∈ {1, ..., g}. The intuition behind

this approach is to down-weigh the effect of the heavy-loaded blocks so that the search

focuses on blocks with more unoccupied bands [20].

4.4 Performance Evaluation

Our proposed technique is implemented using Matlab and python. We consider 500 SU s

randomly deployed in a region of 1 km2. The wireless transmission of SU s and PU s
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Figure 4.3: Performance of the regression techniques applied to the testing data.

is mainly impacted by the path loss defined as LdB = 20 log(dist) + 20 log(fi) − 27.55

where dist is the distance between the transmitting PU and the sensing SU and fi is

the carrier frequency over which users are operating. The used system parameters are

summarized in Table 4.1. FC stores the features defined in Section 4.3.2.1 as well as

Table 4.1: System parameters.

System Parameters

SU Transmit Power 33 dBm

PU Transmit Power 33 dBm

Coverage Area 1 km2

Number of Channels n 256

Number of Blocks g 4

Decision Threshold λ -100 dBm

Receiver Sensitivity -100 dBm

the occupancy of the blocks over a period of two hours resulting in more than 500 data

samples. The 2/3 of resulted data set is served as the training set while 1/3 as a testing

set. Then, we used scikit-learn package library in python[26] to implement the three

regression models explained in Section 4.3.2.2.

4.4.1 Evaluation of the Regression Techniques

Fig. 4.2a-4.2d show the predicted spectrum occupancy against the actual spectrum oc-

cupancy of each block using the training set. Observe that the models follow closely the

behavior of the actual data which seems to have a random behavior across the differ-

ent spectrum blocks. A second observation that we make is that the overall spectrum

occupancy is sparse, time varying, and different from one block to another. Further-
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more, we notice that the nonlinear SVR is the regression technique that achieves the

best performance. Now, we assess the performance against the testing set as shown in

Fig. 4.3a-4.3d. Overall, the regression techniques still follow the same behavior of the

actual occupancy of every block. We observe that batch linear regression has a superior

performance compared to the other in this case. We also observe that nonlinear SVR

still behaves somehow better than the linear models. This is mainly because it gives

more accurate support vectors and it deals better with data that is linearly inseparable.

4.4.2 Evaluation of the Proposed Sensing Scheme

Having assessed the performance of the prediction of the occupancy of every block, we

look at the overall performance of our proposed scheme and the effectiveness of the

recovery algorithm. We studied the false alarm and the miss-detection probabilities

as measures of the effectiveness of our scheme. We compared the results against the

traditional cooperative wideband spectrum sensing algorithm where measurements are

taken based on the average spectrum occupancy k̄. Here, a false alarm occurs when

a band is declared occupied while it is not, whereas a miss-detection occurs when an

occupied band is not detected. We take m = 1.8k log(n/k).

Fig. 4.4 shows the miss-detection performance achieved under our proposed technique

using the three studied learning approaches, and compares it to that achieved under the

conventional approach. We observe that gradient descent and linear SVR achieve supe-

rior performances when compared to that achieved under the nonlinear SVR. Surprisingly

compared to the previous results, linear regressions achieve better performance. This is

because these techniques over-predict the sparsity levels, and hence results in more taken

measurements that help achieve better accuracy. Similar conclusions can be drawn with

the false alarm results shown in Fig. 4.5.

4.5 Related Works

The application of machine learning techniques in the context of cognitive radio networks

is not new [4, 30, 3]. Authors in [4] surveyed the use of machine learning in spectrum

sensing. Authors in [30] have discussed the use of unsupervised and supervised learn-

ing techniques for cooperative spectrum sensing. The vector of energy is treated as the
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feature vector to be fed to the classifier. Although a good number of techniques has

been tested, the main shortcoming of this work is that it is designed for single band

spectrum sensing. Similar approaches using k-means and SVM are considered in [22].

Authors in [3] considered the case of multiband spectrum where the features are the

status of the bands while authors in [2] used a multi-class support vector machine for

cooperative wideband spectrum sensing. However, these approaches did not account for

the heterogeneity of spectrum allocation nor did they consider wideband spectrum sens-

ing. On the other hand, compressive sampling received recently more research attention

for cooperative wideband spectrum [28, 27]. Nevertheless, these works did not exploit

the additional knowledge about the spectrum although there has been some works that

aimed on exploiting additional knowledge about the signal in general frameworks but

not in spectrum sampling [31, 7, 23, 18]. This work aims at leveraging regression models

to improve the performance of the cooperative sensing task while not incurring excessive

energy and communication overheads.

4.6 Conclusion

We proposed an efficient cooperative wideband spectrum technique that exploits regres-

sion techniques as well compressive sampling to improve the sensing performance. We

applied supervised learning to provide accurate estimates of the wideband spectrum oc-

cupancy, and compressive sampling theory to reduce the number of needed sensing mea-

surements. We proposed an efficient spectrum occupancy information recovery scheme,

and showed that our scheme makes great performance enhancements in terms of sensing

overhead, sensing energy, and spectrum decision accuracy.
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Abstract

We propose a distributed compressive sampling technique for cooperative wideband spectrum

sensing that requires lesser numbers of measurements while overcoming time-variability of spec-

trum occupancy and the hidden terminal problem. First, we prove that the wideband spec-

trum occupancy information can almost surely be recovered with reduced numbers of spectrum

measurements. Second, we propose non-uniform sensing matrices design that exploits the het-

erogeneity in the wideband spectrum access to further improve the spectrum sensing recovery

accuracy. Using simulations, we confirm our theoretic results and show that cooperation leads

to high detection probability, even with each SU taking only a small number of measurements.

We also show that it is sufficient to consider a subset of close-by SU s to obtain comparable

performances.

Index terms— Heterogeneous wideband access; distributed compressive sampling;

cooperative spectrum sensing.

5.1 Introduction

Dynamic spectrum access (DSA) emerges as a key technology for overcoming spectrum

shortage problems [7]. Due to its great potential, DSA has already found its way to

standardization—e.g., IEEE 802.22 [5] for enabling opportunistic access in the TV bands

and 3GPP’s Licensed-Assisted Access (LAA) and LTE-U [4] for enabling spectrum access

in the unlicensed 5 GHz band. Spectrum sensing is vital to enabling successful DSA,

and as a result, has been studied thoroughly in the literature. Most of the sensing

technique development effort, however, has been focused on narrow band access, and
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not until recently, has it attracted some attention for the wideband spectrum access

case [16, 8, 15].

Performing wideband spectrum sensing (WSS) through traditional methods has been

shown ineffective, by incurring excessive delays, costly hardware, and/or high energy

consumption; for instance, sequential sensing approaches require cheap hardware, but

incur high sensing delays, whereas, parallel sensing approaches overcome delay issues,

but require more hardware [19]. Frequency-domain analysis methods, on the other hand,

require sampling rates that are excessively high for the case of wideband, which can

be feasible only through complex hardware circuitry and processing algorithms. More

insights into the limitations of traditional sensing methods when applied to WSS can be

found in [19].

Motivated by the sparsity feature inherent to spectrum occupancy and in an effort

to address the high sampling rate limitation, researchers have resorted to exploiting

compressive sampling (CS) theory to make WSS possible at reasonable sampling rates

(e.g. [16, 13, 8]). In essence, these CS-based sensing approaches require a number of

measurements that is much smaller than what traditional non-CS-based approaches re-

quire [6]. Despite the ability of these CS-based approaches to overcome the high sampling

rate limitation, there remains a number of key challenges that limit their applicability

in practice. These challenges are:

• Limited receiver hardware: The number of measurements that receiver hardware

designs are able to perform is practically way smaller than the number of measure-

ments required by the CS-based sensing approaches. Therefore, multiple sequential

sensing scans are often required to enable CS-based spectrum occupancy recovery,

which leads to excessive recovery delays, making these CS-based approaches un-

suitable for realtime applications.

• Uncertain and time-varying spectrum occupancy: The number of measurements

required by the CS-based sensing approaches depends on the number of occupied

bands (i.e., sparsity level). However, the sparsity level is often unknown in advance

and changes over time, making it more challenging for CS-based sensing approaches

to achieve accurate and robust recovery without incurring unreasonable amounts

of overhead.

• Measurement inconsistency across the different SU s: Due to impairments of the
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wireless channel, different secondary users (SU s) may observe different spectrum

occupancy, leading to inconsistent measurements across the users. This poses a

challenge when using CS-based approaches for cooperative occupancy recovery.

This paper combines user cooperation with compressive sampling to propose a prac-

tical WSS technique that overcomes these three aforementioned challenges. In addi-

tion, unlike most previous approaches in which the entire wideband is considered as

one single block with a fixed, global sparsity level, our work considers a more realistic,

non-homogeneous WSS. In practice indeed, the wideband spectrum occupancy is rather

heterogeneous, with different frequency blocks exhibiting different occupancy behaviors

and statistics [20, 12, 10]. This is mainly because applications of similar types (cellular,

TV, etc.) are often assigned spectrum bands within the same (or nearby) frequency

block, and different application types show different occupancy patterns, resulting in a

non-homogeneous wideband spectrum occupancy. Unlike previous works, our proposed

technique exploits the heterogeneity information in wideband spectrum occupancy to

provide further improvement of the spectrum recovery efficiency. To this end, the main

contributions of this paper are:

• We propose a distributed, cooperative CS-based sensing technique for wideband

access in faded environments, and prove that the proposed technique recovers the

occupancy information with fewer spectrum measurements.

• We show that the number of required measurements can be reduced even further

while maintaining a high recovery accuracy by exploiting user closeness.

• We design efficient sensing matrices that capture and leverage prior knowledge

about the spectrum occupancy heterogeneity to improve the occupancy recovery

accuracy of the CS-based sensing approaches.

The rest of this paper is organized as follows. Section 5.2 describes the system

model. Section 5.3 presents current CS-based sensing approaches along with their chal-

lenges. Section 5.4 presents the proposed techniques. Section 5.5 presents the numerical

evaluations. Section 5.6 concludes the paper.
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5.2 Wideband Spectrum Sensing Model

We consider a heterogeneous WSS system with N frequency bands and denote the sup-

port of the occupied bands by Ω. We assume that the wideband spectrum accommodates

multiple different types of user applications, where applications of the same type are al-

located frequency bands within the same block. That is, the N narrow bands are grouped

into g disjoint contiguous blocks, with each block, Gi, consisting of Ni contiguous bands,

being assigned to one application type. For simplicity, we model the state of each band

i using a Bernoulli(pi) with parameter pi ∈ [0, 1] where pi is the probability that band

i is occupied by some primary user (PU ). We assume every PU can only occupy one

band. Let K̄j =
∑

i∈Gj pi be the average number of bands occupied within block j

(assuming independence across band occupancies). As observed via real measurement

studies [20, 12, 10], the band occupancy statistics (e.g., K̄j) vary from one block to an-

other; that is, the spectrum occupancy in wideband access exhibits a block-like occupancy

behavior where the spectrum occupancy can vary significantly from one block to another.

We also consider that the WSS system has J SU s that are able and willing to perform

the sensing task. The time-domain signal r(t) received by each SU can be expressed as

r(t) =

Nsig∑
i=1

hi(t)⊗ si(t) + w(t), (5.1)

where hi(t) is the channel impulse response between the PU s and the SU , s(t) is the

primary user’s signal with power P, w(t) is an Additive White Gaussian Noise with

mean 0 and variance NN0, ⊗ is the convolution operator, and Nsig is the number of active

primary users (PU s) (for simplicity Nsig is assumed to be equal to the number of occupied

bands).

The discrete Fourier transform of the received signal r(t) can be expressed as

rf = hfsf +wf = x+wf , (5.2)

where hf , sf , and wf are the Fourier transforms of h(t), s(t), and w(t), respectively.

Here, we assume that E(s(t)) = 0. The vector x in Eq. (5.2) represents the faded version

of the PU s’ signals being sent on the different bands. Since sf is independent of hf ,

E(x) = 0. The vector rf is nearly sparse with energy levels in the unoccupied bands
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being equal to E(w2
f ) = N0.

5.3 Compressive Sampling-based Sensing: Current Approaches and

their Limitations

Recall that the number of samples needed to recover the occupancy information through

classical frequency-domain analysis methods can be excessively large, especially when

the spectrum is wideband, making such methods unpractical. To overcome this issue,

compressive sampling (CS) theory has been leveraged to take advantage of the sparsity

nature of the spectrum occupancy vector x to reduce the number of required samples [6].

More specifically, the signal resulting from applying CS theory can be written as [8]:

y = ΦF−1(x+wf ) = Ψx+ η, (5.3)

where y ∈ RM is the measurement vector, F−1 is the inverse discrete Fourier transform

(as x is sparse in the Fourier basis), Φ is the M × N sensing matrix assumed to be full

rank, i.e. rank(Φ) = M, and M = O(K log(N/K) [6]. The coefficients of Φ are drawn from a

Bernoulli distribution {±1√
M
} and the sensing noise η is equal to ΦF−1wf . From a hardware

perspective, the number of measurements M = O(K log(N/K) corresponds to the number

of hardware branches each SU device needs to have to be able to perform the CS-based

sensing, with each branch using a pseudo-random sequence mixer corresponding to a raw

of Φ [13, 19].

5.3.1 CS-Based Wideband Spectrum Sensing

Broadly speaking, there are two classes of CS-based approaches that can be used to

recover the spectrum occupancy vector x from the measurement vector y (Eq. (5.3)).

These are (i) heuristic approaches, such as BP [2] and OMP [17], which are fast and

easy to implement, but may not be very accurate, and (ii) convex relaxation approaches

which allow for more robust and accurate recovery, but require more computation. One

widely known approach of the latter class is LASSO [3, 6], which recovers the occupancy

vector x by solving

PLASSO : min
z

∥z∥ℓ1 s.t. ∥Ψz− y∥ℓ2 ≤ ϵ (5.4)
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where ϵ is a pre-defined error threshold parameter. wLASSO (or weighted LASSO) [11] is

another convex relaxation approach which exploits the spectrum occupancy variability

observed across the different frequency blocks to allow for a more efficient solution search,

thereby requiring lesser numbers of measurements and/or incurring smaller errors when

compared to LASSO [11]. Formally, by referring to PLASSO (Eq. (5.4)), re-writing the

vector variable z as z = [zT1 , z
T
2 , . . . , z

T
g ]
T where zi is the Ni × 1 vector corresponding to

block i for i = 1, 2, . . . , g, and assigning for each block i a weight ωi such that ωi > ωj

when K̄i < K̄j for all blocks i, j, wLASSO recovers x by solving

PwLASSO : min
z

g∑
i=1

ωi∥zi∥ℓ1 s.t. ∥Ψz− y∥ℓ2 ≤ ϵ (5.5)

Here, the weights are chosen such that a block with a higher sparsity level is assigned a

smaller weight; one way of meeting this requirement is to set ωi = (1/K̄i)/
∑g

j=1(1/K̄j).

5.3.2 Challenges with Current CS-Based Sensing Approaches

Recall that the number of measurements needed for the CS-based sensing approaches to

successfully recovery the occupancy is M = O(K log(N/K)) [13, 19], which depends on the

total number of bands, N, and the sparsity level of spectrum occupancy, K. This gives

rise to the following two challenges.

• Challenge 1: Hardware limitation. The number of hardware branches needed

to enable the CS-based recovery can be high and unpractical. For example, even

when the number of occupied bands is as small as K = 6, the number of needed

branches for a total number of bands N = 50 can be as high as M = 16 [19]. In

practice, however, the number of branches that reasonable receiver designs have is

typically in the order of 4 to 8 [18], a number that is much smaller than the number

of measurements, M, required by the CS-based approaches. Therefore, hardware

presents a major limitation on the applicability of such CS-based approaches.

• Challenge 2: Uncertain and time-varying sparsity. The second challenge

that these CS-based approaches also face is that the number of occupied bands (i.e.,

the sparsity level) is time-varying. Most CS-based approaches, however, assume

that the sparsity level, K, is fixed, often done by setting it to the overall average
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occupancy of the spectrum [16, 9]. Therefore, the time variability of the sparsity

of the wideband occupancy makes existing approaches either inaccurate or incur

high overhead.

In general, from a practical viewpoint, cooperative spectrum sensing approaches are

more effective than non-cooperative approaches, since they are designed with the aim

of providing spectrum availability information not only to just one SU , but to multiple

SU s, often located in different geographic locations. Clearly, having each SU perform

the CS-based spectrum sensing task on its own can be costly and redundant, as it might

suffice for one SU to perform sensing and share it with other SU s, thereby saving SU s’

energy and computation resources. Despite all the known benefits of cooperation, there

is another major challenge that needs to be addressed to enable cooperative CS-based

sensing.

• Challenge 3: Inconsistent observations. In practice, different SU s may ob-

serve different spectrum occupancy due to wireless channel impairments (e.g., fad-

ing, multipath, etc.), leading to inconsistent measurements across the different

users. This presents a challenge when it comes to using CS-based sensed measure-

ments to collaboratively recover spectrum occupancy information. This problem

captures the hidden terminal problem as a special case.

5.4 The Proposed WSS Technique

In this work, we propose a cooperative, distributed compressed sensing technique for

wideband spectrum access that overcomes the three above challenges. In addition, our

proposed technique allows exploiting any prior knowledge about the spectrum occupancy

statistics to improve the recovery accuracy further.

5.4.1 The Proposed Spectrum Recovery Approach

Although, due to fading, each SU observes a different spectrum occupancy vector x,

most SU s observe the same support of the (nearly) sparse occupancy vector. Hence, to

be able to detect the support, we propose to compute, for every SU j, the contribution

ξj,n of every column of SU j’s sensing matrix, Ψj , to yj on each band n; i.e., ξj,n =
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⟨yj , ψj,n⟩
2 = (yTj ψj,n)

2
for n = 1..N. Based on this, we define the sample mean in every

bands n as

ξn =
1

J

J∑
j=1

ξj,n =
1

J

J∑
j=1

⟨yj , ψj,n⟩
2 for n = 1..N (5.6)

Once ξn is computed, the indexes corresponding to the K highest values among the

N statistics are selected iteratively. We refer to this technique as spectrum occupancy

recovery. Although inspired by the approach proposed in [1], our proposed recovery

approach differs in the following aspects: in our work, (i) the signal occupying each band

is not Gaussian, but rather follows a mixed Rayleigh and Gaussian distribution in the

occupied bands that depends on the distance between each SU and the active PU , and

Gaussian with mean 0 and variance N0 in the unoccupied bands (nearly sparse signal);

(ii) the sensing matrices are non-uniform Bernoulli, where elements in column i have

mean 0 and variance 1
ω2
i
; and (iii) the sensing matrices contain a very small number of

measurements M, making their columns highly correlated (orthogonality between columns

is hard to meet). Algorithm 2 presents our proposed iterative approach for recovering

the occupied support. Recall that we are only interested in detecting the support rather

than actual signal values in every band.

Algorithm 2 Spectrum Occupancy Recovery

Require: yj , Ψj , rj,0 = yj , j = 1..J, k = 1
1: while ∥rj,k∥ℓ2 ≥ ϵ∥yj∥ℓ2 , j = 1..N do

2: nk = argmaxn∈{1..N}
1
J

∑J
j=1 |⟨rj,k−1, ψj,n⟩|2

3: Ω = Ω
∪

{nk}
4: rj,k = rj,k−1 −

⟨rj,k−1,ψj,nk
⟩

∥ψj,nk
∥2ℓ2

ψj,nk

5: k = k + 1
6: end while
7: return Ω

Now that we presented an algorithm that leverages cooperation to recover the occu-

pied support of a wideband spectrum from only a very small number of measurements

per SU , in the next section, we focus on studying the correctness of such an algorithm

by proving that indeed it recovers the true support Ω with an overwhelming probability.
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5.4.2 Correctness of the Proposed Spectrum Recovery Approach

The following theorem states that by considering a large number of SU s, Ω can almost

surely be recovered from only a small number of measurements per SU .

Theorem 5. Consider J SU s, and let the measurement matrix Ψj of SU j contain

independent Bernoulli elements, with column i’s elements being set to {±1
ωi

}. The vector

x is nearly sparse such that xℓ is i.i.d. Gaussian with zero mean and variance N0 if ℓ /∈ Ω

and zero mean and variance E(x2ℓ ) > N0, if ℓ ∈ Ω. With M > 1 measurements per SU ,

Algorithm 2 recovers Ω with a probability approaching one as J → ∞.

Remark 5. Observe that our proposed sensing matrix is by design chosen to non-uniformly

distributed; this is done so that to allow the exploitation of any prior knowledge about

the spectrum occupancy statistics to improve recovery accuracy. This will be shown

later in Section 5.4.4.

Proof. The proof is based on Kolmogorov’s Strong Law of Large Numbers (SLLN) [14],

following the same line of argument as in [1]. The main idea is to show that ξn in an

occupied band n when J increases is sufficiently high compared to when the band n is

not occupied. Due to space limitation, some of the details in the proof are omitted.

However, we provide all that is required to guide the reader to the complete proof.

SLLN [14] states that the sample mean X̄n = 1
n

∑n
i=1 Xi of n independent random

variables, X1, X2, · · · , Xn, with finite expectations (E(Xn) < ∞ for n ≥ 1) converges

almost surely to E(Xn); i.e., P(limn→∞ X̄n = E(Xn)) = 1,

and that SLLN holds if one of the following conditions is satisfied:

1. X1, X2, · · · , Xn are identically distributed.

2. Var[Xn] <∞ and
∑∞

n=1
Var[Xn]
n2 <∞ for all n.

Considering ξj,n = ⟨yj ,ψj,n⟩
2, first we need to prove that these ξj,n have finite expecta-

tions. Then, since ξj,n are not identically distributed (due to the presence of fading), we

have to prove the second part of Kolmogorov’s theorem. Therefore, we start by comput-

ing the mean and variance of ξj,n for every band n to show that both are finite. Without

loss of generality, we will assume that the first K bands are the ones that are occupied

and the rest are not (contain only noise). The means and variances are given by the

following proposition.
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Var(ξj,n) =



K∑
ℓ=1

E(x4ℓ )M(3M− 2)

ω4
ℓω

4
n

+ 2

K∑
ℓ=1

K∑
m=1
m ̸=ℓ

E(x2ℓ )E(x2m)
ω2
ℓω

2
mω

4
n

+
N0

2M4

ω8
n

+6

[
K∑
ℓ=1

E(x2ℓ )M
ω2
ℓω

2
n

][
N∑

ℓ=K+1
ℓ ̸=n

N0M

ω2
ℓω

2
n

+
N0M

2

ω4
n

]
+

N∑
ℓ=K+1
ℓ̸=n

N0
2M(3M− 2)

ω4
ℓω

4
n

+2
∑N

ℓ=K+1
ℓ ̸=n

∑N
m=K+1
m̸=ℓ
m ̸=n

N0
2M2

ω2
ℓω

2
mω

4
n
+ 6N0M

2

ω4
n

[∑N
ℓ=K+1
ℓ ̸=n

N0M
ω2
nω

2
ℓ
+ N0M

2

ωn

]
, if n /∈ Ω

K∑
ℓ=1
ℓ̸=n

E(x4ℓ )M(3M− 2)

ω4
nω

4
ℓ

+ 2

K∑
ℓ=1
ℓ̸=n

K∑
p=1
p̸=ℓ
p ̸=n

E(x2p)E(x2ℓ )M2

ω4
nω

4
ℓω

2
p

+6

[
K∑
ℓ=1
ℓ̸=n

E(x2ℓ )M
ω2
nω

2
ℓ

+
E(x2ℓ )M2

ω4
n

][
N∑

ℓ=K+1

E(x2ℓ )M
ω2
nω

2
ℓ

]

+4

K∑
ℓ=1
ℓ ̸=n

E(x2p)E(x2ℓ )M3

ω6
nω

2
ℓ

+
E(x4n)
ω8
n

+

N∑
ℓ=K+1

E(x4ℓ )M(3M− 2)

ω4
nω

4
ℓ

+2
N∑

ℓ=K+1

N∑
p=K+1
p ̸=ℓ

E(x2ℓ )E(x2p)M2

ω4
nω

2
pω

2
ℓ

, if n ∈ Ω

(5.7)

Proposition 6. Consider the nth band. The mean of ξj,n is

E(ξj,n) =



K∑
ℓ=1

E(x2ℓ )M
ω2
ℓω

2
n

+

N∑
ℓ=K+1
ℓ̸=n

N0M

ω2
ℓω

2
n

+
N0M

2

ω4
n

, if n /∈ Ω

E(x2n)M2

ω4
n

+

K∑
ℓ=1
ℓ ̸=n

E(x2ℓ )M
ω2
ℓω

2
n

+

N∑
ℓ=K+1

N0M

ω2
ℓω

2
n

, if n ∈ Ω

and the variance of ξj,n, Var(ξj,n), is given by Eq. (5.7).

To prove Proposition 6, we use the definitions of mean and variance and the following

Lemma. However, we did not provide the complete proofs as well as the proof of the

lemma due to space limitation.
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Lemma 3. Let ψn be the nth column of the sensing matrix Ψ whose elements are

Bernoulli with zero mean and variance 1
ω2
n
. Then, we have the following results.

E(⟨ψn, ψℓ⟩2) =
M

ω2
nω

2
ℓ

(5.8)

E(⟨ψn, ψℓ⟩4) =
M(3M− 2)

ω4
nω

4
ℓ

(5.9)

E(⟨ψn, ψℓ⟩2⟨ψn, ψp⟩2) =
M2

ω4
nω

2
pω

2
ℓ

(5.10)

E(∥ψℓ∥4⟨ψn, ψℓ⟩2) =
M3

ω2
nω

6
ℓ

(5.11)

E(∥ψℓ∥4) =
M2

ω4
ℓ

(5.12)

E(∥ψℓ∥8) =
M4

ω8
ℓ

(5.13)

First, we need to show that both the means and the variances of ξj,n for n = 1..N

are finite. It is sufficient to see that E(x2ℓ ) and E(x4ℓ ) are finite (upper bounded by the

transmit power P and P2) since in practice PU s are sending with finite powers. More-

over,
∑∞

j=1
Var(ξj,n)

j2
is finite (upper bounded by max

j
Var(ξj,n)

∞∑
j=1

1

j2
) which according to

Kolmogorov’s theorem is sufficient to prove that ξn almost surely converges to the mean

given by Proposition 6. Finally, we have 1
J

∑J
j=1 ξj,n converge to E(ξj,n) for n = 1..N. To

finish the proof, we only need to show that the two means are sufficiently different. Even

with uniform distribution for the sensing matrix, we still have a clear distinction between

the two cases. This distinction is more important with non-uniform sensing matrix. For

the sake of illustration, we show in Fig. 5.1 the ratio between the two means: when band

n is occupied and when band n is not occupied for different SNRs and different values

of M. �
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Figure 5.1: The ratio between E(ξn) when n is an occupied band and when it is not
as a function of the sensing SNR and for a different number of measurements in dB.
N = 256, K = 29, weights in the occupied bands ωin = 1/K, weights in the unoccupied
bands ωout = 1, N0 = −120dBm.

5.4.3 Exploiting User Closeness

While the previous result brings forth the power of cooperation for overcoming the

hardware limitation along with the hidden terminal problem, a large number of SU s

is needed to do so. In this section, we show that by exploiting the closeness between

SU s, the number of required SU s can be significantly reduced. To illustrate this further,

consider two SU s with measurement vectors y1 = Ψ1x1 + η1 and y2 = Ψ2x2 + η2. When

the received signals at the SU s are quite similar, say x2 = x1 + δx, y2 can be rewritten

as y2 = Ψ2x1 + η2 + Ψ2δx. This is equivalent to having one SU takes twice the number

of measurements, i.e., yc = [yT1 yT2 ]
T , Ψc = [ΨT1 ΨT2 ]

T , and η = [ηT1 ηT2 + (Ψ2δx)
T ]T . With

a higher number of measurements, conventional recovery approaches such as LASSO [2]

and OMP [17] can be used. Clearly, as the two received signals at the SU s start to differ,

it corresponds to the case of having higher noise variance, which yields a worse recovery.

This approach will be evaluated in Section 5.5.

5.4.4 Non-uniform Sensing Matrix Design

So far we discussed how cooperation could be exploited to overcome the hardware limita-

tion and the hidden terminal problem. We now propose an efficient design of the sensing
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Figure 5.2: Recovery performance under nonuniform sensing matrix and weighted recov-
ery using same parameters as in [11]. (N = 256, M = 27)

matrices that leverages prior knowledge about the spectrum occupancy to improve the

recovery accuracy. We show that capturing and exploiting the heterogeneity in spec-

trum occupancy, which is inherent to wideband spectrum access, in the sensing matrix

can indeed yield a comparable performance gain to PwLASSO. Recalling PwLASSO given

in Eq. (5.5) and letting p = Wz where W = diag(ω1, · · · , ω1︸ ︷︷ ︸
N1

, ω2, · · · , ω2︸ ︷︷ ︸
N2

, · · · , ωg, · · · , ωg︸ ︷︷ ︸
Ng

),

PwLASSO could also be reformulated as

PwSensing : min
p

∥p∥ℓ1 s.t. ∥ΨW−1p− y∥ℓ2 ≤ ϵ (5.14)

The new matrix W−1 magnifies the columns of the sensing matrix Ψ that correspond to

high average sparsity levels (low weights), and diminishes the columns that correspond

to low average sparsity levels. By doing so, the sensing energy is better allocated, and

more importantly, the error achievable under Algorithm 2 is reduced. Fig. 5.2 shows

the equivalence in terms of performance between the two formulations. To ensure fair

comparison under the two scenarios, the elements in the sensing matrix Ψ have variance
β
M
, with β = N

(M
∑N

j=1
1

ω2
j

)
. To avoid confusion, we set ωi = ωi/

√
β. The figure also shows

that the new formulation is more robust to noise (better performance at low sensing

SNR, with SNR defined as ∥Ψx∥2

∥η∥2 ).
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5.5 Performance Evaluation Results

Consider a primary system operating over a wideband consisting of N = 128 bands

grouped into g = 4 blocks with equal sizes. The average probabilities of occupancy in

each block are as follows: K̄1 = p1 × 32, K̄2 = p2 × 32, K̄3 = p3 × 32, K̄4 = p4 × 32,

where p1 = p3 = 0.1 and p2 = p4 = 0.001. The PU s are randomly deployed in a cell

and for simplicity, we assume that the number of active PU s are equal to the number

of occupied bands. We assume all PU s are transmitting with constant power P = 10

W, and the received signal in each band is affected by a Rayleigh distributed channel

impulse response with mean 1/dα/2. We also consider Gaussian noise, with each band

experiencing Gaussian signal with zero mean and variance N0 = −120dBm.

In Fig. 5.3, we plot the detection probability as a function of the number of coop-

erating SU s, J. First, we observe that as the number of cooperating SU s increases, a

high detection probability is achieved regardless of the number of measurements each

SU is taking, thus confirming our main theorem result. This is mainly because as J

increases, ξj,n converges to its expectation E(ξj,n), and hence, a better distinction be-

tween the bands is achieved. Second, we also observe that for a fixed J, a high detection

probability is achieved when each SU is talking a higher number of measurements.

Figure 5.3: The detection probability for M = 8 and N = 128.

To overcome the need for high numbers of SU s, we investigate the effect of considering

only a subset of close-by SU s when performing detection using OMP and LASSO, and

compare that to the previous approach. Fig. 5.4 shows that when considering close-by
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SU s (6 SU s), the achieved detection probability is close to the one achieved with a

high number of SU s, which confirms our observation. Second, our proposed approaches

outperform sequential sensing approach proposed in [18], mainly because of their ability

to overcome the hidden terminal problem.

Figure 5.4: The detection probability for M = 8 and N = 128.

5.6 Conclusions

We leverage user cooperation to overcome receiver hardware limitations as well as time

variability of band occupancy during wideband spectrum sensing. We show that co-

operation overcomes these issues by enabling distributed compressive sampling-based

spectrum sensing, and does so by requiring smaller numbers of measurements by each

user only. Also, we consider heterogenous wideband spectrum access environment and

design efficient non-uniform sensing matrices suitable for such an environment. Finally,

we show that when the impact of fading is not so significant (for instance by considering

close-by SU s), comparable performance can still be achieved from a smaller number of

SU s.
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Abstract

We propose AirMap, a framework for enabling scalable database-driven dynamic spectrum

access and sharing. We bring together the merits of compressive sensing and collaborative filtering

to provide accurate radio occupancy map while reducing the network overhead cost and overcome

the scalability issue with conventional approaches. We start from an observation that close-by

users have a highly correlated spectrum observation and we propose to recover the spectrum

occupancy matrix in the borough of each sensing node by minimizing the rank of local sub-

matrices. Then, we combine the recovered matrix entries using a similarity criterion to get the

global spectrum occupancy map. Through simulations, we show that the proposed framework

minimizes the error while reducing the network overhead. We also show that the proposed

framework is scalable when considering high frequencies.

Index terms— Wideband spectrum sensing; compressive sampling; local low rank

matrix completion; collaborative filtering.

6.1 Introduction

Opportunistic spectrum access has great potential for overcoming radio resource short-

age challenges that wireless systems are currently facing [12]. Broadly speaking, spec-

trum sensing techniques that have been proposed for spectrum awareness can be cate-

gorized into two classes: sensing-based approaches [9, 13, 18, 21] and database-driven

approaches [19, 7, 17, 6, 25, 22]. While the former class allows users to identify unused

spectrum portions on their own via local measurements, the latter provides users with

radio occupancy databases, which users can query to acquire spectrum occupancy infor-

mation in their vicinity. These databases can, for example, be constructed by relying on
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observations collected from sensing nodes (SN s) that are deployed specifically for this

sensing task. Database-driven approaches are more attractive due to their practical ap-

peal [19], and as a result, have recently been adopted and embraced by industries (e.g.,

Google [6], Spectrum Bridge [25], RadioSoft [22]), standard organizations (e.g., 5G), and

government agencies (e.g., FCC [4]).

However, current spectrum database-driven approaches suffer from several shortcom-

ings. For instance, they are primarily designed for TV white spaces [19], which represent

only a small portion of the wideband spectrum that can potentially be shared. In ad-

dition, TV carrier frequencies are mostly below 1 GHz, and hence, these signals can

propagate long distances, requiring only a small number of SN s to get the spectrum

occupancy in a relatively wide region. Therefore, to extend spectrum databases to cover

wider spectrum ranges, say 10 GHz bandwidth or more, a higher number of SN s must

be deployed to be able to obtain a complete radio occupancy map covering the entire

wideband spectrum, as well as to overcome the hidden terminal problem, where due to,

for example, fading, different SN s may observe different primary signals, thereby leading

to different occupancy decisions. Fortunately, by exploiting spectrum occupancy sparsity

that is inherent to spectrum usage, compressive sensing theory [9] has been leveraged

to sense widebands (e.g., 1 GHz bandwidth) at lower sensing overheads (e.g. [8]). Now

given that within the same region, the spectrum occupancy seen by the different SN s

can roughly be the same for some set of bands, the occupancy matrix1 has a low-rank

property. The aim of this work is to exploit this low rank property to construct the

occupancy matrix from smaller numbers of observations/sensors [18, 21].

Let us illustrate this further with a simple example. Consider the spectrum occu-

pancy matrix whose columns again represent the occupancy decisions taken by SN s for

each band of the wideband spectrum. If the SN s are close to each other, then they

roughly observe the same wideband spectrum occupancy, resulting in a low-rank spec-

trum occupancy matrix. Therefore, one can estimate all the entries of the spectrum

matrix by only taking and relying on a small number of measurements [2, 21]. This

can be done by means of the low-rank matrix theory which consists of formulating an

optimization problem whose objective is to minimize the rank of the matrix, as will be

detailed later. This approach is often referred to as collaborative filtering in the machine

1It is the matrix whose columns each corresponds to the occupancies of the different bands as seen
by the corresponding SN .
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learning community [16].

Although collaborative filtering reduces the network overhead, it fails to scale well

with the number of bands. This limitation comes from the propagation nature of signals

at different spectrum frequencies, and especially at high frequencies (e.g. millimeter

waves) that is being adopted in 5G systems [23]. Note that SN s at different locations

tend to observe a completely different spectrum occupancy, which can result in losing

the low-rank property of the spectrum occupancy matrix. However, close-by SN s do

observe a similar occupancy, which means if close-by SN s are re-arranged in the spectrum

occupancy matrix based on their neighborhoods, then the low-rank property is preserved

but only locally; i.e., altough the entire occupancy matrix may not be low-rank, sub-

matrices preserve their low-rank property. We will refer to this as local low-rank property.

Hence, to maintain the merits of collaborative filtering in reducing network overhead

while taking advantage of the cooperation, this local low-rank property can be exploited

to design efficient sensing techniques suitable for database-driven wideband spectrum

access.

In summary, compressive sensing and collaborative filtering are found to be useful the-

ories for enabling cooperative wideband spectrum sensing at reduced sensing overhead.

However, they suffer from a scalability issue when it comes to considering wideband spec-

trum (a few GHz). In this work, we propose a sensing framework that exploits the local

low-rank property mentioned above to enable scalable occupancy matrix construction

suitable for wideband spectrum.

Methodology and Contributions. In this paper, we present AirMap, a frame-

work that provides accurate wideband spectrum occupancy recovery for database-driven

spectrum systems. Our key motivation is to build a radio occupancy map for the wide-

band spectrum (e.g. 10 GHz or wider) to enable spectrum sharing. We propose to

combine the merits of compressive sensing and low-rank matrix theories to reduce the

sensing and network overhead while accurately acquiring the spectrum occupancy in the

borough of each SN . Unlike previous works, our work relies on local low-rank matrix

approximation to get the complete spectrum occupancy in the neighborhood of each SN .

That is, instead of completing the spectrum occupancy matrix such that it has a low-

rank property, we propose to focus on exploiting the local low-rank property. This stems

from the fact that neighboring SN s tend to observe the same spectrum occupancies.

The main contributions of this work are:
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• We propose an efficient sensing framework that enables scalable construction of

the spectrum occupancy matrix for wideband spectrum access and sharing.

• To the best of our knowledge, we are the first to use and combine local low-

rank matrix approximation theory with compressive sampling to enable scalable

wideband spectrum occupancy recovery at low overhead.

• We construct the spectrum sub-matrices using propagation models suitable for

wideband spectrum. This allows to improve the estimation of the observations

reported in edges of the regions, thereby enhancing the accuracy of the proposed

recovery approach.

The proposed framework can be combined with existing signal classification approaches

(e.g., [11]) to help identify signal types. This can be very useful in applications such as

spectrum monitoring and enforcement [11].

The rest of this paper is organized as follows. Section 6.2 describes the proposed

framework and the intuition behind it. Section 6.3 discusses the proposed local low

rank based spectrum occupancy matrix recovery as well as its performance. Section 6.4

presents the numerical evaluation. Section 6.5 reviews the related works. This work is

concluded in Section 6.6.

6.2 Wideband Spectrum Occupancy Recovery Framework

6.2.1 Framework Overview

We propose AirMap, a scalable sensing framework that is suitable for database-driven

wideband spectrum access and sharing. AirMap relies on a set of J SN s deployed on a

region of interest to construct and update the database (DB) with accurate occupancy

information of I bands in the borough of these SN s. Here, we assume that the entire

wideband spectrum is composed of I bands. The different components of AirMap are

illustrated in Fig. 6.1. First, it is important to mention that our focus in this work is on

a DB covering very wideband spectrum, e.g. more than 10 GHz. We assume that the

SN s leverage compressive sampling theory that exploits spectrum occupancy sparsity to

enable sub-Nyquist spectrum sampling rates (e.g., [14]). However, even with sub-Nyquist

sampling rates, each SN is assumed not to able to sense the entire spectrum of interest
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Figure 6.1: An overview of the different components of AirMap.

due to its wideness, but rather senses a portion of it; say 1 GHz bandwidth as done in [9].

To reduce the computation and the reporting overheads, the compressed measurements

are reported to the DB which recovers the spectrum occupancy of the portion sensed

by each SN by exploiting prior information about the spectrum occupancy. Typically,

different spectrum portions are assigned to different types of applications, each with a

different occupancy statistics [5]. The DB exploits this occupancy heterogeneity across

the different spectrum portions, as proposed in [13], to recover occupancies of the entire

spectrum.

A major problem in spectrum sensing is the hidden terminal problem, which we

address in this framework by relying on multiple SN s deployed across the entire region

of interest to provide redundant sensing of each portion of the spectrum. Now since

having each SN sense all portions of the entire spectrum is impractical, we propose to

use local low-rank approximation to efficiently recover the spectrum occupancy in the

borough of each of the J SN s.

To sum up, AirMap consists of: (i) having each SN sense a small portion of the

wideband spectrum of interest, (ii) recovery of band occupancies of all the portions at

the DB by exploiting a priori information about the spectrum occupancy statistics, and

(iii) completion of the occupancy matrix by using low-rank approximation theory to

recover the missing band occupancies. Next, we will detail each of these phases.
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6.2.2 Sub-Nyquist Wideband Spectrum Sensing and Recovery

6.2.2.1 Spectrum Occupancy Model

We consider a practical scenario where a wideband spectrum is allocated to multiple

applications; e.g., aviation, satellite communications and maritime, wireless communi-

cations, TV broadcasting, ISM, etc. [5]. Applications of the same type are typically

allocated bands within the same block. Hence, the spectrum is considered to have a

block-like occupancy structure, where each block (accommodating applications of a sim-

ilar type) has different occupancy behavioral characteristics. The wideband spectrum

can then be grouped into g disjoint contiguous blocks, Gi, i = 1, · · · , g, with Gi
∩
Gj = ∅

for i ̸= j. Each block, Gi, is a set of ni contiguous bands such that I =
∑g

i=1 ni. Now

provided that the actual spectrum occupancy has been observed to be under-utilized; i.e,

the total number of occupied bands is small, wideband spectrum sensing can be enabled

at sub-Nyquist sampling rates [8, 18]. However, even with sub-Nyquist sampling rates,

given that the spectrum of interest is wideband, it is unpractical to assume that each

SN can sense the entire spectrum. Therefore, in this work, we assume that each SN can

only sense few, gb contiguous spectrum blocks out of the g blocks.

6.2.2.2 Compressed Wideband Spectrum Sensing

Exploiting the fact that the spectrum is under-utilized, compressive sampling theory

allows to sense and recover the n bands using m < n branches [9]. After tuning to

the block of bands of interest, each branch uses an independent pseudo-random (PN)

sequence mixed with the received signal to yield a measurement vector [8]

y = ΨF−1(x+wf ) = Ax+ η, (6.1)

where y ∈ Rm is the measurement vector taken by each SN , F−1 is the inverse dis-

crete Fourier transform, and Ψ is the sensing matrix assumed to have a full rank, i.e.

rank(Ψ) = m. Here, Ψ contains the m PN sequences generated at the mixer.

After collecting the compressed measurements, and in order to reduce the reporting

overhead as well as the computation complexity at the SN s, the compressed measure-

ments are sent to the DB to recover the different bands’ occupancy as observed by each
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SN .

6.2.2.3 Heterogeneous Spectrum Occupancy Recovery

In AirMap, the DB exploits the occupancy variability across the different blocks to re-

cover the spectrum occupancy information [13]. In essence, this approach encourages the

search of the occupied bands in the blocks that have higher average sparsity levels. Such

a variability in the block sparsity levels can be incorporated in the formulation through

carefully designed weights and formulated as the following weighted ℓ1−minimization

recovery scheme

P1 : min
x

gb∑
i=1

ωi∥xi∥ℓ1 s.t. ∥Ax− y∥ℓ2 ≤ ϵ (6.2)

where x = [xT1 , · · · ,xTgb ]
T , xTl is a nl × 1 vector, and ωi, the weight assigned to block i

for i ∈ {1, · · · , gb}, can be expressed as [13] ωi =
1/k̄i∑gb

j=1 1/k̄j
.

6.2.3 Global Spectrum Occupancy Matrix Completion

Having recovered the vector x from the compressed measurement y using (6.2), the

energy in each band is compared to a threshold to decide on the occupancy of each

band, i.e., = 1
T

∑T
t=1 |xi[t]|2 ≶ λ where λ is a predefined threshold that depends on the

noise floor. Then, these spectrum decisions are updated to the spectrum occupancy

matrix R. Since each SN is sensing only a small portion of the wideband spectrum, most

entries of the spectrum occupancy matrix are missing. Conventionally, collaborative

filtering is used to recover these missing entries of R as long as the number of observed

decisions in R is at least ξ = O(α5/4r logα) with r is the rank of R and α = max(I, J) [2,

Theorem 1.1]. That is, the recovery can be formulated as a convex optimization

P2 : min
X

rank(X) s.t.
∑

(i,j)∈Ω

(
Oij −Xij

)2 ≤ ϵ (6.3)

or

P3 : min
X

∥X∥∗ s.t.
∑

(i,j)∈Ω

(
Oij −Xij

)2 ≤ ϵ (6.4)
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where ∥ · ∥∗ is the nuclear norm. Note that the main difference between both approaches

is that P3 does not require any knowledge about the rank of R.

When considering high frequencies, this approach fails as the low-rank property is not

preserved. This stems from the fact that SN s in different locations observe a completely

different spectrum occupancy when the frequencies of interest are relatively high. In this

work, we overcome this limitation by proposing an approach that relies on the fact that

low-rank property (though is not preserved in the global matrix) is still preserved at the

sub-matrix levels, and can therefore be used to complete the global occupancy matrix.

This proposed approach is described next.

6.3 AirMap: Proposed Local Low-Rank Approximation Approach

The distance between SN s is an important metric for our proposed framework. We start

from the following observation: the portion (sub-matrix) of the spectrum occupancy

matrix that contains close-by SN s possesses a low rank property, though the global

matrix does not. Therefore, each sub-matrix of the global occupancy matrix can be

efficiently completed/constructed using P2, as described next.

6.3.1 Spectrum Sub-matrices Construction

The spectrum occupancy matrix can be seen as a rating matrix containing zeros and

ones, where zeros denote that bands are unoccupied and ones denote that the bands are

occupied. First, we scale the values to make the mean equal zero by subtracting 0.5

from each entry of the observed entries in the matrix. This is to distinguish between

the observed occupancies (part of Ω) and the ones that need to be recovered (containing

zeros). Then, based on the location of the SN s, we split the region of interest into q

sub-regions, where the width of each sub-region is decided based on how far the highest

carrier frequency can be detected. This can be computed using practical propagation

models for high frequencies [23]. After deciding on the number of sub-regions, q, and

their anchor points (centers), {ck}qk=1, the SN s are clustered such that each user is

associated with the closest anchor point. Note that unlike the approaches proposed

for recommendation systems, which use local low-rank matrix approximation such as

LLORMA [16] and SLOMA [26], the anchor points are constructed independently from
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the sensing nodes. These depend only on the highest frequency and the region of interest.

6.3.2 Local Low-rank Spectrum Sub-matrices Recovery

The occupancy of each spectrum sub-matrix Mk for k = 1, . . . , q is the solution to the

optimization problem

P4 : min
X

∥X∥∗ s.t.
∑

(i,j)∈Ωk

(
Okij −Xij

)2 ≤ ϵ (6.5)

where Ωk is a subset of Ω containing observations used to complete the matrix Mk. Note

that P4 is similar to P3 except that it only considers a subset of the observed spectrum

occupancies Ω.

6.3.3 Global Recovery via Weighted Decisions

Having recovered the spectrum occupancy in each sub-matrix, a global decision, com-

bining these sub-matrices, is made. This is illustrated in Fig. 6.2. To decide on the

observations of the SN s located close to the edges of the regions covered by each of the

sub-matrices, we account for the decision of the neighboring SN s. The elements of the

global spectrum matrix R̂ is then expressed as

R̂ij =

q∑
k=1

Kkij∑q
s=1 K

s
ij

Mkij (6.6)

where Kkij is a kernel function applied to the distance, dik, between SN i and an anchor

point ck. As the distance increases, Kkij converges to zero. We opted for the following

kernel (similarity function)

Kkij(dik) =

1, if x < dth

e−βdik , otherwise
(6.7)

with dth is a distance threshold and β is a decay parameter. This similarity function

tends to give constant weight within a given neighborhood. As we get further, the
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similarity decays and goes exponentially to zero.

Finally, the final binary matrix is obtained by checking the sign of each element of

the matrix R.

Figure 6.2: The different steps of the local low rank matrix based recovery. (1) Spectrum
sub-matrices construction, (2) Local low rank matrix completion of each sub-matrix, (3)
and (4) Global matrix completion.

6.3.4 Computational and Communication Overhead

The merit of the proposed framework is that it builds an accurate radio occupancy map

to enable database-driven wideband spectrum sharing. The proposed framework does

so while ensuring scalability, in terms of network overhead. Conventionally, making

occupancy decisions of spectrum in vicinity of a SN incurs a communication overhead

that is linear in T , I, and J. When using compressive sensing without collaborative

filtering, the incurred communication overhead is linear in T , J, the number of com-

pressed samples m, and ⌊I/n⌋. AirMap incurs a communication overhead cost that is

linear in T , J, and the number of compressed samples m. Therefore, network overhead

reduction is achieved with our proposed scheme, which also results in lesser reporting

energy. In terms of computational complexity, the weighted recovery results in O(m2n3)

per SN measurement. Hence, the total computation complexity for spectrum recovery

is O(Jm2n3T ). The complexity of the recovery of the global occupancy is equivalent to
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q times the recovery of P4, or even lesser since this can be excused in parallel.

6.4 Simulation Results

We consider synthetic data to assess the efficiency of AirMap. We assume the presence

of multiple primary users operating in some of I = 250 bands (this can be in the 5− 15

GHz range with 20 MHz bandwidth each) unless specified otherwise. The deployment of

the active users follows a Poisson point process (PPP) with density 2/Km2 deployed in

the 2D plane. To mimic real-world scenario, we assume high-frequency bands are reused

more frequently than low-frequency bands. Each SN senses only one fifth of the total

bands, using sub-Nyquist sampling [13]. To define the sub-matrices, we first compute

how far a signal sent over a frequency fc with a power P = 10 W can go. We adopted

the 3GPP TR 38.901 UMa LOS path loss model [23] given by

PLdB = 32.4 + 20 log10
(
d(m)

)
+ 30 log10

(
fc(GHz)

)
(6.8)

for 0.5 < fc < 100GHz and the shadow fading standard deviation equal to 7.8 dB. We

consider the sensitivity to be −120 dBm, bellow which a signal a considered absent.

This allows defining the radii of the circles centered at the anchor points as illustrated

in Fig 6.3. The sensing nodes are deployed according to a uniform PPP with density

10/Km2 deployed in the 2D plane. The SN s are linked to the closest anchor point

forming the sub-matrices. To assess the performance of AirMap, we generate the entire

spectrum occupancy matrix to compare the final recovery matrix with it. Since our focus

is on the spectrum occupancy matrix completion, we consider the wideband spectrum

recovery of the observed portion from each SN to be error free. The spectrum matrix

completion is done using [1]. First, we observed from the generated spectrum occupancy

matrix that the low-rank property for the sub-matrices is confirmed while the global

matrix has no low-rank property (rank > 50 for the case of having 250 bands).

Fig. 6.4 shows the recovery error (computed as the Frobenius norm) as a function

of the number of frequency bands. First, observe that our proposed framework allows

to achieve a high reduction gain in the error (about 10 times) compared to classical ap-

proach. This is thanks to the observation of the local rank property (confirmed through

simulations). Second, we observe that as the number of bands increases, the error de-



115

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Sensing nodes Primary users Anchor points

Figure 6.3: Example of deployment of the sensing nodes.

creases for both classical and proposed approaches. This is because as the number of

bands increases, the global low rank property tends to hold more, and hence, a lower

matrix recovery error is achieved.

In Fig. 6.5, we study the effect of the proposed similarity function used for the global

recovery. When dth is small, the user observation is given more weight with respect to

the closest anchor point decision and lesser weight as the SN gets further. This helps

mainly build an accurate decision for users located at the edges of the sub-matrices. As

this parameter increases beyond a certain distance threshold, the performance drops and

becomes similar to that of the classical recovery, as we no longer favor the decision with

respect to the closest anchor point.

Fig. 6.6 studies the effect of the number of anchor points. Overall, we observe that

as the number of anchor points increases, a reduction in the error is achieved which

confirms the same observation made in Fig. 6.4.

6.5 Related works

Spectrum awareness. The proposed framework combines advances in both wideband
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Figure 6.5: Error: proposed approach vs traditional approach as a function of dth.

spectrum sensing [13, 9, 18, 21, 20, 19, 24, 3] and recommendation systems [16, 26].

Authors in [19] proposed SenseLess, a trustworthy database to provide the spectrum

availability of TV wideband spectrum. However, this database is only restricted to

TV bands. To be able to get the occupancy of wider bandwidth, authors in [9] made

a proof of concept for a 1 GHz wide bandwidth scanner. There are also some efforts

towards applying machine learning and compressive sampling theories for spectrum sens-

ing [27, 24, 10, 18]. Authors in [27] proposed Rxminer which uses a mixed Gaussian and

Rayleigh models to identify spectrum occupancy. Authors in [18] proposed to exploit

the low-rank property of the measurement matrix to recover the unreported measure-

ments. The proposed approach assumes that all sensing nodes use the same sensing
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Figure 6.6: Effect of the number of submatrices.

matrix, which makes the approach unpractical. Moreover, the proposed modeling fails

to capture frequency reuse, which is crucial in high-frequency bands. This has also been

extended to detect malicious users in [20].

Collaborative filtering. Collaborative filtering was introduced in recommendation

systems to handle the information overhead. The main approach uses matrix factor-

ization, which is shown to achieve great performance while being scalable [15]. This is

based on the fact that the users’ preference for a particular item is only controlled by a

small number of latent factors, which translates to a low-rank rating matrix. This as-

sumption does not hold true in real-world applications as shown by [16]. Authors in [16]

showed through experiments that when considering the global matrix having a number

of low-rank matrices, better performance is achieved, making this approach, LLROMA,

attractive to other fields such as multi-label classification, documents, etc. The main

concern with LLROMA is the construction of the sub-matrices which is done by first

randomly selecting a number of anchor points, and then, using distance metrics, points

are connected to the closest anchor point. Besides, it suffers from high computation and

storage cost. Recently, SLOMA [26] has been proposed to overcome LLORMA weak-

nesses by incorporating the social connections among users. However, the chosen number

of anchor points was not justified for both approaches.
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6.6 Conclusions

We proposed AirMap, a framework that builds an accurate spectrum occupancy map

for wideband spectrum sharing. AirMap exploits the under-utilization of the wideband

spectrum, the heterogeneity in the spectrum occupancy, and the spatial correlation be-

tween sensing nodes to achieve scalable decisions for the spectrum occupancy while

incurring small network communication overhead. The proposed framework can be ex-

tended to other applications, such as spectrum enforcement and monitoring, which can

help recognize the type of signals occupying the wideband spectrum.
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Abstract

Energy harvesting emerges as a potential solution for prolonging the lifetime of the energy-

constrained mobile wireless devices. In this paper, we focus on Radio Frequency (RF) energy

harvesting for multiuser multicarrier mobile wireless networks. Specifically, we propose joint data

and energy transfer optimization frameworks for powering mobile wireless devices through RF

energy harvesting. We introduce a power utility that captures the power consumption cost at

the base station (BS) and the used power from the users’ batteries, and determine optimal power

resource allocations that meet data rate requirements of downlink and uplink communications.

Two types of harvesting capabilities are considered at each user: harvesting only from dedicated

RF signals and hybrid harvesting from both dedicated and ambient RF signals. The developed

frameworks increase the end users’ battery lifetime at the cost of a slight increase in the BS

power consumption. Several evaluation studies are conducted in order to validate our proposed

frameworks.

Index terms— RF energy harvesting, power resource allocation, multicarrier mul-

tiuser mobile wireless networks.

7.1 Introduction

Minimizing energy consumption and prolonging network lifetime have become primal

design goals of next-generation wireless networks, merely due to limited power resources

of wireless devices. Wireless Energy Transfer (WET) technology emerges as a key

solution for addressing such issues, and has recently attracted lots of research atten-

tion [29, 26, 32, 33, 31, 28, 23]. WET technology has even greater impact when con-

sidering battery-powered wireless devices whose batteries cannot (or are difficult to) be
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replaced, as in the case of remote sensor nodes. In addition to carrying the energy, a

new paradigm, called Simultaneous Wireless Information and Power Transfer (SWIPT),

has recently emerged to allow for distant powering of devices during ongoing data com-

munications [29, 14, 16, 22].

There are three proposed SWIPT design schemes: decoupled SWIPT, closed-loop

SWIPT, and integrated SWIPT [14]. In decoupled SWIPT, the information and the

power are sent from two separate sources that could be placed at different locations:

a base station represents the information gateway and a power beacon represents the

energy gateway. The closed-loop SWIPT scheme powers the device in the downlink and

sends the data in the uplink. This scenario could be the case of data offloading in wireless

sensor networks, where the main concern is how to offload the data from the sensors [16].

In the third design scheme, both the information and power are sent by the same source

over the same signals [22]. However, the challenge lies on how to separate the data and

power streams.

Broadly speaking, there are two energy harvesting techniques in single-input single-

output systems: time switching and power splitting [21, 20, 12]. Time switching consists

of splitting the time window into two portions, where during the first portion, the re-

ceiver converts the received RF signals into power while the second portion is dedicated

to decoding the RF signals. Although simple, this technique requires a perfect synchro-

nization; otherwise, it induces some information loss [18]. Power splitting, on the other

hand, consists of splitting the received signal into two streams. The first serves for ex-

tracting power and the second for decoding the received information. The splitting ratio

balances between the amounts of harvested power and the achieved data rate.

While lots of works focused either on optimizing the power allocation at the base

station (BS) or on exploring the users’ achieved data rates, the excessive use of power

at the BS as well the available battery levels at the different users were not accounted

for. In this work, we develop SWIPT techniques that account for power costs at the BS

and battery energy available at the different users while harvesting RF energy from not

only intended signals but also all nearby ambient RF signals (i.e., interference) intended

for other users.
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7.1.1 Related Works

Varshney et al. [29] are among the first researchers that highlighted the potential of

transferring energy through RF signals. Since then, WET and SWIPT through RF

signals have attracted numerous works [29, 26, 32, 33, 31, 21, 20, 12, 18, 7, 8, 21, 11, 36,

25, 13, 34, 5]. The authors in [26, 32, 33] proposed an interesting idea for transferring

energy wirelessly to sensor network nodes. The idea is basically to have a designated

wireless charging vehicle (WCV) that periodically travels inside the network to wirelessly

charge sensors’ batteries. They formulated an optimization problem whose objective is

to maximize the ratio of the WCV’s vacation time over the cycle time, and proved that

the optimal traveling path for the WCV is the shortest Hamiltonian cycle. This idea

has been further applied to networks with mobile base stations [31]. The authors in [31]

studied the problem of whether and how the mobile BS can be co-located on the WCV

to also serve as a charging vehicle. The authors formulated the co-location problem as an

optimization problem while accounting for energy charging, WCV’s stopping behavior,

and data flow routing. Then, they proposed a formulation that depends only on location

to serve as a simpler alternative for solving the same general problem. However, WCV

can only charge a limited number of sensors at a given time, making the approach

unscalable especially when considering large areas.

There have also been some research efforts studying the performance of RF energy

harvesting [7, 34, 8, 17]. For instance, the authors in [7] investigated energy harvesting

in cooperative networks, where a number of source-destination pairs are communicating

with each other through an energy harvesting relay. This work proposed power splitting

strategies that the relay can use to distribute the harvested energy among multiple

users. In [34, 8, 17], performance tradeoffs between the power-splitting and the time-

switching methods, when used for jointly transferring energy and data in various point-

to-point systems, have been studied. For example, authors in [8] derived suboptimal

power splitting ratios for point-to-point multi-channel systems. In [17], we investigated

the minimization of the system total power while accounting for the received interference

at each user.

Energy harvesting has also been studied in the context of multiuser access [11, 16, 38],

MIMO systems [36, 25, 19], and cognitive radio networks [13, 37, 23]. In [16], the authors

tackled closed-loop SWIPT in a multiuser system, where the optimal time allocation for
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each user maximizing the sum rate is derived. OFDM access has been considered as well

in [22] with the objective of maximizing the energy efficiency.

Unlike previous works, we consider optimizing the power consumption in the downlink

and uplink of a multiuser multi-carrier system with simultaneous information and power

transfers. The power utility includes the power cost at the BS required to communicate

with the different users, as well as the amount of battery energy available at the users.

Our approach integrates SWIPT with power splitting to increase spectrum efficiency,

and allows each user to harvest not only from its dedicated signal, but also from ambient

RF signals resulting from the communication between the BS and the other users.

7.1.2 Summary of the Contributions

The main contributions of this paper are:

• We develop joint data and energy transfer optimization frameworks for wirelessly

powering mobile devices via RF energy harvesting. Unlike previous works, we

propose a weighted power cost that captures the consumed power at the BS and

the battery power available at the users.

• We analytically derive closed-form expressions of the optimal power allocations

required for meeting the data rate requirements of the downlink and uplink com-

munications between the BS and its mobile users.

• We study two system setups: (i) Users can only harvest energy from their in-

tended/dedicated RF signals; and (ii) Users can harvest energy from any ambient

RF signals intended for any user.

7.1.3 Roadmap

The rest of this paper is organized as follows. In Section 7.2, we present our system

model. We formulate and solve the studied energy harvesting optimization problem in

Section 7.3 for the case of dedicated RF signal-based energy harvesting, and in Section 7.4

for the case of hybrid dedicated and ambient RF signal-based energy harvesting. Our

results are presented in Section 7.5, and our conclusions are provided in Section 7.6.
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Figure 7.1: System model: a base station and K mobile users.

7.2 System Model

We consider a point-to-multipoint, half-duplex, OFDM network with a BS at the center of

a cell and K mobile users, as illustrated in Fig. 7.1. The BS transmits over L orthogonal

subcarriers with only N subcarriers are used to communicate with each user. We assume

that the number N is the same for all users, i.e., L = K×N . Without loss of generality,

we assume that the first N subcarriers are used to communicate with the first user, the

second N subcarriers are used to communicate with the second user and so on. In the

uplink, each user adopts SC-FDMA and communicates with the BS over N subcarriers.

The downlink and uplink channels between the BS and the kth user over the ith subcarrier

are hiBS,k and hik,BS , respectively. Note that we defined the uplink and the downlink

channels to be different so that our frameworks can fit both TDD and FDD modes. It

is also assumed that the BS has perfect knowledge of the different channel gains. We

consider that the BS uses the integrated SWIPT to power and communicate with users,

and each user relies on the power splitting technique to separate the power and the

information streams. We illustrate the high-level receiver’s architecture of each device in

Fig. 7.2. The received RF signal affected by the receiver’s noise is split into two portions:

a first portion is directed to the energy harvesting unit while the second portion is fed

to the data processing unit. This paper’s focus is on power allocation in multicarrier

energy harvesting wireless systems. Subcarrier scheduling is beyond the scope of this

work (see [2, 35] if interested).

The communication process adopts the model of [8]. During the first half of time slot

t, the BS communicates with all the users over the non-interfering subcarriers using a

total power
∑K

k=1

∑N
i=1 P

i
BS,k, where P

i
BS,k is the power used in the downlink to commu-

nicate with user k over the ith subcarrier. In the second half of time slot t, each user relies
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on the power splitting technique [20] to harvest part of the received RF signal power and

uses it, in addition to its remaining battery power P batk (t), to communicate back with the

BS. The battery power’s level changes over time as P batk (t+1) = P batk (t)+Qk(t)−P prock (t),

where P bat(t) is the available power at the beginning of time slot t, Qk(t) is the harvested

power, and P prock (t) is the power used for information processing. This model covers the

case where the users are battery-free, which corresponds to P batk (t) = 0. In the rest of

the paper, we drop the time index of the time slot as we are concerned with the optimal

power at each time slot. The signals received by user k, yiBS,k and by the BS, yik,BS can

be expressed as

yiBS,k = xik

√
P iBS,kh

i
BS,k + niBS,k, (7.1a)

yik,BS = zik

√
P ik,BSh

i
k,BS + nik,BS , (7.1b)

for i ∈ [1, ..., N ] where xik and zik are the unit-power symbols transmitted by the BS

and the kth user, respectively. P iBS,k and P ik,BS are the transmission powers at the ith

subcarrier in the downlink and the uplink, respectively. niBS,k and nik,BS are Additive

White Gaussian Noises (AWGN) with zero mean and variance σiBS,k and σik,BS . We

consider σik,BS = σiBS,k = N0B where N0 is the noise power density.

When using the power splitting approach, the amount of harvested energy at the

mobile user k is then expressed as Qk = ηρk(
∑N

i=1 P
i
BS,k|hiBS,k|2 + σiBS,k), where η,

0 < η < 1, is the energy harvesting efficiency that is characteristic of the RF circuitry.

ρk is the power splitting ratio that balances between the amount of the RF signal used for

harvesting energy and the RF signal used to decode the sent signal. The user considers

the second stream for information decoding. A noise term is added at the decoding unit

which leads to an achieved rate by the BS of RBS,k =
∑N

i=1B log2(1+
(1−ρk)P i

BS,k|h
i
BS,k|

2

σi
BS,k

),

where B is the bandwidth of each sub-band. We assume that all the sub-bands are equal.

To simplify the analysis, we assumed that σiBS,k ≈ (1 − ρk)σ
i
BS,k + σ22 where σ22 is the

power of the noise term introduced at the decoding unit. In the uplink, the mobile user

k uses the amount of the harvested power Qk, along with its remaining battery power

P batk (t), to communicate with the BS. Using Equation (7.1b), the achieved rate in the

uplink can be expressed as Rk,BS =
∑N

i=1B log2(1 +
P i
k,BS |h

i
k,BS |

2

σi
k,BS

).

Optimizing the transmit power at the BS and at the users while satisfying some
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Figure 7.2: Power splitting based receiver structure.

data rate constraints over a long-term interval has its advantages and disadvantages.

While power saving can be achieved by taking advantage of the batteries’ dynamic,

acquiring the channel CSI ahead of time can be very challenging. This is due to the

inherent time-varying nature of the wireless channel. On the other hand, optimizing

the power instantaneously allows to achieve optimal power allocation by exploiting all

the available information (channels’ gains, power cost, battery levels, etc). Therefore,

we focus on determining the optimal power levels that should be allocated by the BS

and each device so that both the BS’s and users’ data rate requirements are met. We

consider two system setups: i) each user can only harvest energy from its dedicated

RF subcarrier signals over which it is receiving its data from the BS, and ii) we extend

the harvesting capability to the case where each user can also take advantage of the

downlink channels of the other users and harvest energy from any ambient RF signals

communicated between the BS and other users. In the next section, we consider the first

system setup and in the following section, we elaborate the second setup.

7.3 Dedicated RF Signal Based Energy Harvesting

The focus of this section is to optimize a power utility for the whole system. The utility

function balances between two entities: the cost of the power that the BS will use to

communicate with all the users, and the amount of power used by each user from its

battery. We consider the BS to be equipped with multiple antennas. To serve the

different users, the BS uses a total transmission power PBS that follows the following

model [24],

PBS = θ.
K∑
k=1

N∑
i=1

P iBS,k + ε (7.2)
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The coefficient θ captures the power consumption which scales with the radiated power

due to amplifier and feeder losses. The term ε models the offset of power consumed by

the BS regardless of the radiated power due to information processing, battery backup,

and cooling. The BS is powered from a retailer. Assume π is the cost of one unit of

energy (e.g. the price of 1KWh) provided by a retailer. We consider just one time slot

∆t. Hence, the total cost of the procured energy is [10]

CBS = π.∆t.PBS . (7.3)

At the BS side, substituting the expression of the power given by Equation (7.2) in

Equation (7.3), we get

CBS = π.∆t.(θ.

K∑
k=1

N∑
i=1

P iBS,k + ε)

= π.∆t.θ.
K∑
k=1

N∑
i=1

P iBS,k + π.∆t.ε

= α

K∑
k=1

N∑
i=1

P iBS,k + ς (7.4)

where α = π.∆t.θ and ς = π.∆t.ε are parameters to characterize the BSs’ power con-

sumption cost. At each user’s side, the amount of energy required to receive packets

from the BS is (ignoring the acknowledgement) [30] Erk = P0∆t where P0 is an amount

of power used for receiving packets. This power may include the required power for

performing the channel estimation. On the other hand, to offload its data to the BS

during time slot t, the user consumes [30] Esk =
(
P ′
0 +

∑N
i=1 P

i
k,BS

)
∆t Joules where P

′
0

is the processing power required prior to sending at each user. Thus, the total transmit

and receive power required at each user is P tot
k = P0 + P ′

0 +
∑N

i=1 P
i
k,BS .

On the other hand, the cost of the power consumed by each user from its battery is

Ck = βk(P
tot
k −Qk), where βk is a weighting coefficient that captures the attitude of each

user whether to rely on its battery or harvesting from the received RF signals. Note that

typical numbers for the different parameters used to define the cost functions can be

found in [24, 10, 30]. Since some of these variables are changing over time (e.g., π) and

may change from one device to another, we instead introduce the variable κk = βk
α and
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study its effect. When κk is very small, the behavior of the system encourages the users

to consume power from their batteries first. In the other case, it encourages harvesting

from the BS’s RF signal.

We start by the case where the BS powers the devices using dedicated subcarriers

signals. Note that this scenario is appropriate for devices with limited hardware capabili-

ties [15, 4, 1] typically used for health and fitness (body sensor devices) or industrial IoTs

applications. Hardware restrictions limit devices to only tune and communicate over a

small number of channels (e.g., the N subcarriers/channels assigned to each user), but

not over a large number of channels to cover all the K ×N channels used by the BS (as

in the second system setup presented in Section 7.4).

When each user can only harvest energy from its dedicated RF subcarrier signals,

the global problem of jointly minimizing the power utility is formulated as

min
{ρk,{P i

BS,k}
N
i=1,{P i

k,BS}
N
i=1}Kk=1

CBS +

K∑
k=1

Ck (7.5a)

s.t. P tot
k − P batk ≤ Qk, (7.5b)

RBS,k ≥ rthBS,k, (7.5c)

Rk,BS ≥ rthk,BS , (7.5d)

P iBS,k ≥ 0, P ik,BS ≥ 0, (7.5e)

0 ≼ ρ ≼ 1 (7.5f)

where ρ = [ρ1, ..., ρK ]T . Equation (7.5a) expresses the global objective. Constraint (7.5b)

controls the total power budget at the kth user, so that it does not exceed the harvested

power plus the remaining battery’s power. Constraints (7.5c) and (7.5d) are used to meet

the data rates for the downlink and uplink streams, respectively. rthBS,k is the minimum

downlink rate threshold that should be achieved by the BS when communicating with

user k [39], while rthk,BS is the data rate threshold that should be achieved in the uplink

by user k. Constraints (7.5e) and (7.5f) ensure the positivity of the allocated power

levels and the splitting ratios.

Proposition 7. Under fixed splitting ratio ρ, the optimization problem (7.5) is a convex

optimization problem.

Proof. See Appendix A. �
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The original optimization problem (7.5) is not convex which makes it hard to find

optimal solution via standard optimization tools. Using Proposition 7, if we fix ρ to

the optimal splitting ratio ρopt, this optimization problem can be formulated as two

successive convex optimization problems that can be solved efficiently by feeding the

optimal solution of the first optimization to the second optimization. Therefore, we

propose to proceed as follows. We compute the amount of power to be needed in the

uplink as a first step to quantify how much power should be harvested by each user. In

a second step, we determine the downlink power levels that are to be used at the BS

to meet the downlink data rate threshold, as well as the amount of power needed by

the users for the uplink communications, as determined in the previous step. Then, we

perform an exhaustive search for the optimal splitting ratio ρoptk that minimizes the total

consumed power.

Next, we determine the amount of energy needed by user k to meet its required

uplink data rate, rthk,BS .

7.3.1 Optimal Uplink Power Allocation

In the uplink, each user minimizes its transmit power subject to meeting its required

data rate. This can be formulated as:

min
{P i

k,BS}
N
i=1

Ck, (7.6a)

s.t. Rk,BS ≥ rthk,BS (7.6b)

The solution to (7.6) is given by the following lemma

Lemma 4. (The power allocation in the uplink)

The optimal power allocation in the uplink for user k is

P i
∗
k,BS =

[
νk −

σik,BS

|hik,BS |
2

]+
0

(7.7)

where

νk =
(
2

rthk,BS
B /(

∏
j∈Uk

|hjk,BS |
2
/σjk,BS)

)1/|Uk|

(7.8)
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and Uk = {i|νk−σik,BS/|hik,BS |
2 ≥ 0}. |X | is the cardinality of X and [x]+0 = max{0, x}.

Proof. See Appendix B. �

Having determined the power level, P i
∗
k,BS , user k needs to be able to communicate

its data over subcarrier i, which allows us to set the variable, P iBS,k, in the optimization

problem (7.5) to P i
∗
k,BS , and solve for the downlink power variables, P iBS,k.

7.3.2 Optimal Downlink Power Allocation

In the downlink, the BS aims to find the optimal power level that it has to transmit in

order to meet each user k’s downlink data rate, rthBS,k, and to be able to power each user

k with enough power to allow it to meet its required uplink rate, rthk,BS . This is derived

with respect to the power utility defined earlier. In this first system setup, each user

can only harvest from its RF signal subcarriers. Given the uplink power needed at each

user, which is determined by Equation (7.7), the optimization problem at the BS is then

formulated as

min{
{P i

BS,k}
N
i=1

}K

k=1

ς̃ +

K∑
k=1

N∑
i=1

α̃ikP
i
BS,k, (7.9a)

s.t. RBS,k ≥ rthBS,k, k ∈ [1..K], (7.9b)

N∑
i=1

P iBS,k|hiBS,k|
2 ≥ P thk , k ∈ [1..K], (7.9c)

where ς̃ = ς +
∑K

k=1 βk(
∑N

i=1(P
i∗
k,BS − ηρkσ

i
BS,k) + P0 + P ′

0) and α̃
i
k = α− βηρk|hiBS,k|

2
.

The quantity P thk represents a power threshold that we deduce from the constraint (7.5b).

It depends on the amount of power needed for achieving the required uplink data rate,

the amount of power available in the battery, the splitting ratio, the conversion efficiency,

and the noise power, and is expressed as

P thk =

∑N
i=1 P

i∗
k,BS + P0 + P ′

0 − P batk

ηρk
−

N∑
i=1

σik,BS (7.10)
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Minimizing the affine objective function given by Equation (7.9a) is equivalent to min-

imizing the linear quantity
∑K

k=1

∑N
i=1 α̃

i
kP

i
BS,k. Hence, we could re-write the problem

for each k ∈ [1..K] as follows

min
{P i

BS,k}
N
i=1

N∑
i=1

α̃ikP
i
BS,k, (7.11a)

s.t. RBS,k ≥ rthBS,k, (7.11b)

N∑
i=1

P iBS,k|hiBS,k|
2 ≥ P thk (7.11c)

The optimal per-user per-subcarrier downlink power allocation is given by the following

theorem.

Theorem 8. The solution to (7.11) above is

P i
∗
BS,k =

[
λk

α̃ik − ψk|hiBS,k|
2 −

σiBS,k

(1− ρk)|hiBS,k|
2

]+
0

, (7.12)

for i ∈ [1..N ] and k ∈ [1..K], where

• λk = 2

rthBS,k
B|Sk|−

1
|Sk| log2

(∏
i∈Sk

(1− ρk)|hiBS,k|
2

(α̃ik − ψk|hiBS,k|
2
)σiBS,k

)

• Sk = {i|λk/(α̃ik − ψk|hiBS,k|
2
) > σiBS,k/(1− ρk)|hiBS,k|

2},
• ψk is the zero of the function

f(x) =

2r
th
BS,k/B|Sk|

∑
i∈Sk

|hiBS,k|
2

α̃ik − x|hiBS,k|
2

(∏
i∈Sk

(1− ρk)|hiBS,k|
2

(α̃ik − x|hiBS,k|
2
)σiBS,k

) 1
|Sk|

− P thk −
∑
i∈Sk

σiBS,k
1− ρk

(7.13)
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Proof. See Appendix C. �

The theorem provides the optimal power levels in the downlink, but requires to find

the zero of the function f . In what follows, we first prove the existence of a zero, and

then present a technique for finding it.

To examine the monotony of f , we take the derivative over x. It follows that the sign

of f ′ is the sign of

∑
i∈Sk

|hiBS,k|
4

(α̃ik − x|hiBS,k|
2
)
2 − 1

|Sk|

(∑
i∈Sk

|hiBS,k|
2

α̃ik − x|hiBS,k|
2

)2
(7.14)

Recalling Cauchy-Schwartz inequality,
(∑N

i=1 |xi|
)2 ≤ N

∑N
i=1 |xi|

2, we conclude that f

is a non-decreasing function. Since f presents some points of singularity, it is sufficient to

prove the existence of an interval where f is continuous and the signs of f at the interval

boundaries are opposite. Let ϕ0 = 0 and ϕi = α̃ik/|hiBS,k|
2
. Without loss of generality,

we assume that ϕ0 < ϕ1 < ϕ2 < ... Now, the lim
x→ϕ+0

f(x) is finite, but could be positive

or negative, depending on the numerical values of the different systems parameters. On

the other hand, lim
x→ϕ−1

f(x) goes to +∞. Hence, if lim
x→ϕ+0

f(x) is negative, then there

is a zero of f in this interval. Otherwise, we check the next interval. Note that the

search is restricted to the intervals Il =]ϕl, ϕl+1[ with l ∈ {0, 2, 4, 6, ..} to ensure the non

negativity of
(∏
i∈Sk

(1− ρk)|hiBS,k|
2

(α̃ik − ψk|hiBS,k|
2
)σiBS,k

)
in order to satisfy Equation (7.13). Since

lim
x→ϕ+2

f(x) = −∞ and lim
x→ϕ−3

f(x) = +∞, then there is a zero in this interval. Given the

presence of the intervals of singularities, we propose to use the bisection method to find

the zero of f , which essentially searches for the zero of f incrementally in each interval.

A check of the sign of their product
(

lim
x→ϕ+l

f(x). lim
x→ϕ−l+1

f(x)
)
, l = 0, 2, .. will be sufficient

to decide the search.

So far, we have analytically derived the optimal power levels that need to be allocated

by the BS to achieve its required downlink data rates (i.e., from the BS to each user),

as well as to allow each user to achieve its uplink data rates (i.e., from the users to the

BS) by giving it enough power to harvest and use for uplink communication. We now

propose an efficient and practical algorithm that finds these optimal power levels. This
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algorithm is based on the theory developed in this section.

7.3.3 An Efficient Algorithm for Solving the Joint Uplink and Down-

link Optimization Formulation

After deriving the optimal power for the uplink and downlink communications in the two

previous subsections, we now use these results to propose our Algorithm 3. Remember

that we kept the splitting ratio ρk as a design parameter in a first step to make the

problem convex. This parameter could be optimized at this level using an exhaustive

search method to derive the optimal splitting ratio ρoptk that minimizes the total power

consumption. Also, note that this parameter could be optimized for every time slot as

it depends on the channels’ quality. The numerical evaluations of our optimization are

Algorithm 3 Joint Power Allocation

Require: {rthBS,k}Kk=1, {rthk,BS}Kk=1, |hiBS,k|
2
, |hik,BS |

2
, N , and {P̄k}Kk=1

1: for k = 1 : K do
2: Compute {P jk,BS}

N
j=1 using (7.7)

3: for ρk = 0 : 1 do
4: Find ψk using bisection method applied to (7.13)
5: Compute λk using (7.13)
6: Compute {P iBS,k}Ni=1 using (7.12)
7: end for
8: Find ρoptk

9: end for
10: return {P iBS,k}Ni=1, {P ik,BS}Ni=1, ρ

opt
k ∀k ∈ [1..K]

provided in Section 7.5. It is worth mentioning that our framework considers that the BS

has enough processing capabilities to handle the computation complexity of Algorithm 3.

While our approach allows users to communicate with the BS using harvested energy,

additional power savings can further be achieved when users have sufficient hardware ca-

pabilities. For instance, when equipped with appropriate hardware, having each user also

harvest from the subcarriers used by any other user will result in harvesting more energy.

Moreover, a user can also harvest from any other RF signals sent by any neighboring

BSs, though in this case there is no guarantee that the BS is transmitting with the least

amount of power. The essence of our proposed optimization framework is to guarantee
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that the harvested amount of energy is enough for the users to meet their required rates

in the uplink, and to do so with the least possible amount of power the BS will have to

consume. Now that we considered the case of harvesting from dedicated RF signals only,

in the next section, we consider the case of minimizing the BS’s power consumption while

assuming that users are equipped with sufficient hardware capability that allows them to

harvest energy from their dedicated RF signals as well as the other users’ signals. That

is, each user can harvest energy from any ambient RF signal sent by its BS, whether

destined to it or to other users serviced by the same BS.

7.4 Hybrid Dedicated and Ambient RF Signal Based Energy Har-

vesting

In the previous section, we considered the case where a user can harvest energy only

from the RF signals that are intended for it by the BS. However, a user can still receive

RF signals, though as interference, even when the signals are not meant to be sent to it.

Therefore, a more general setup we consider here is to assume that a user can harvest

energy not only from its intended RF signals, but also from all other ambient RF signals

sent by the BS to any user. We anticipate that by doing so, the overall amount of energy

to be consumed by the system will be reduced. In this section, we solve the power

allocation optimization problem for this general setup.

The problem formulation remains the same as in (7.5) except that Qk in the Con-

straint (7.5b) needs to be replaced by

Qk = ηρk

K∑
l=1

N∑
i=1

P iBS,l|h
i,k
BS,l|

2
+ σiBS,l, (7.15)

where hi,kBS,l is the downlink channel impulse between the BS and the kth user that corre-

sponds to the (l−1)×N + i subcarrier that is normally allocated for the communication

between the BS and user l.

We use the same steps as in the previous section for solving this problem. We start

by computing the amount of power needed by each user in the uplink. Here, the optimal

power over each subcarrier is the same as the one derived in the previous section, given

by Equation (7.7). In the downlink, the BS accounts for power needed by each user k
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so that the harvested amount of power satisfies Qk+P batk ≥
∑N

i P
i∗
k,BS . In addition, the

BS should meet the downlink rate rthBS,k.

Let PBS,k =
[
P 1
BS,k, ..., P

N
BS,k

]
be the vector containing the power levels that the

BS allocates for communication with user k, and P = [PBS,1, ...,PBS,K ]
T be the vec-

tor containing the power levels used for the communication with all the users. Also,

let hlBS,k =
[
|h1,lBS,k|

2
, ..., |hN,lBS,k|

2
]
and hl = [hlBS,1, ...,h

l
BS,K ]

T
. Hence, the optimal

downlink power allocation for each user is the solution to

min
{{P i

BS,k}
N
i=1}Kk=1

ς ′ + α̃TP , (7.16a)

s.t.RBS,k ≥ rthBS,k, (7.16b)

P Thk ≥ P thk (7.16c)

P ≽ 0, (7.16d)

where ς ′ = ς +
∑K

k=1 βk

[∑N
i=1 P

i∗
k,BS + P0 + P ′

0 − ηρk
∑K

l=1

∑N
j=1 σ

j
BS,l

]
, α̃ = α1 +∑K

k=1 βkηρkhk and P thk =
∑N

i=1 P
i∗
k,BS+P0+P ′

0−P̄k

ηρk
−
∑K

l=1

∑N
i=1 σ

i
l,BS .

Our objective is to derive the optimal downlink power for each user such that the

total cost is minimized. The following theorem gives the optimal power allocation in this

scenario.

Theorem 9. The solution to the optimization problem (7.16) is

P i
∗
BS,k =

[
λ′k

α̃ik −
∑K

l=1 ψl|h
i,l
BS,k|

2 −
σiBS,k

(1− ρk)|hiBS,k|
2

]+
0

(7.17)

where λ′k and ψk are the K.K.T. multipliers to be specified later.

Proof. See Appendix D. �

Note that with comparison to the power level that we have derived in the other sec-

tion (given by Equation (7.12)), the expression accounts for the interference channels

between users. In total, we have 2K K.K.T. multipliers, {λ′k, ψk}Kk=1, that we compute

by replacing P i
∗
BS,k in the K.K.T. conditions. The following lemma provides a character-

ization of {λ′k, ψk}Kk=1.
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Lemma 5. The expression of λ′k is given by

λ′k = 2
rthBS,k
B|Ck|

(∏
i∈Ck

γik

α̃ik −
∑K

l=1 ψl|h
i,l
BS,k|

2

)− 1
|Ck|

, (7.18)

where Ck = {i|λ′k/(α̃ik −
∑K

l=1 ψl|h
i,l
BS,k|

2
) ≥ 1/γik} and ψ = [ψ1...ψK ]T is the zero of the

functions

fk(x) =

2
rthBS,k
B|Ck|

∑K
l=1

∑
i∈Cl

|hi,kBS,l|
2

α̃i
l−

∑K
m=1 xm|hi,mBS,l|

2(∏
i∈Ck

γik

α̃ik −
∑K

l=1 xl|h
i,l
BS,k|

2

) 1
|Ck|

−
K∑
l=1

∑
i∈Cl

|hi,kBS,l|
2

γil
− P thk (7.19)

Proof. See Appendix E. �

Note that in Equation (7.19), we have K unknowns {xl}Kl=1. But since we have

K equations, theoretically, we could solve for {ψl}Kl=1. To prove the existence of a

zero of the function f defined as f(ψ) = [f1(ψ)...fK(ψ)]T where fk(ψ) is given by

Equation (7.19), we proceed similarly to the proof in the case of the single variable

by considering ψj to be variable and fixing the other K − 1 variables. We end up

with the previous scenario where the bounds of the search intervals are ϕ0 = 0 and

ϕn = α̃ik/|h
i,j
BS,k|

2−
∑

l∈Ck,l ̸=j
ψl|hi,lBS,k|

2
/|hi,jBS,k| for n ∈ Ck and we restrict ψk to be positive.

Then a sign check of the limit of the continuous function fk in the bounds of the intervals

is sufficient to prove that a zero exists.

Deriving a closed-form expression of ψ is not possible due to function nonlinear-

ity. However, it could be derived iteratively using the Newton method where, at each

iteration,

ψn+1 = ψn −
(
∇f(ψn)

)−1
f(ψn) (7.20)
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where
(
∇f(ψ)

)
kj

= ∂fk(ψ)
∂ψj

= ξ′(ψ)ζ(ψ) + ξ(ψ)ζ ′(ψ), with

ξ(ψ) =
2

rthBS,k
B|Ck|(∏

i∈Ck

γi,k

α̃ik −
∑K

l=1 ψl|h
i,l
BS,k|

2

) 1
|Ck|

(7.21a)

ζ(ψ) =

K∑
l=1

∑
i∈Cl

|hi,kBS,l|
2

α̃il −
∑K

m=1 ψm|h
i,m
BS,l|

2 (7.21b)

ξ′(ψ) = − 1

|Ck|

2
rthBS,k
B|Ck|

∑
i∈Ck

|hi,jBS,k|
2

α̃ik −
∑K

m=1 ψm|h
i,m
BS,k|

2

(∏
i∈Ck

γik

α̃ik −
∑K

l=1 ψl|h
i,l
BS,k|

2

) 1
|Ck|

(7.21c)

ζ ′(ψ) =

K∑
l=1

∑
i∈Cl

|hi,kBS,l|
2
|hi,jBS,l|

2

(
α̃il −

∑K
m=1 ψm|h

i,m
BS,l|

2)2 (7.21d)

With the use of the Newton method for deriving ψ, there is a tradeoff between precision

and computational complexity. An accuracy ϵ of 10−5 is sufficient to get the Newton

method converge in a relatively small computational time.

7.5 Numerical Evaluation

We consider that the BS is placed at the center of a cell with radius d0 = 1 and that the

users are uniformly distributed within the cell. The fading of the channels is modeled as

Rayleigh with mean
√

[d0/dk]
α where α is the pathloss exponent set to 3, and dk is the

normalized distance between the mobile user k and the BS and is generated randomly

between 0 and 1. At each user, the energy harvesting conversion efficiency η is chosen

to be equal to 0.8 while the noise power density is taken equal to N0 = −174 dBm

as in [9]. The bandwidth of each sub-band is 15kHz. The number of subcarriers used

to communicate with each user, N , is taken equal to 10 unless otherwise specified.

Since, the processing time for sending and receiving packets is negligible compared to

the transmission power, then we set P0 = P ′
0 ≈ 0.
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Figure 7.3: The sum power function of the splitting ratio ρ. The system parameters are
as follows: the number of subcarriers N = 5, the downlink channel SNR= 10dB, and
rthBS,k = 15Kbit/s and rthk,BS = 30Kbit/s.

A key parameter in RF energy harvesting systems based on power splitter is the

splitting ratio ρk. We first study its impact on the total power in the system when

setting the battery power to zero. Consider the case where the BS communicates with

one user, i.e., K = 1, and we take α = β = 1 and plot the total power in the system

as a function of the splitting ratio ρk in Fig. 7.3. First, observe that the required power

varies as a function of the splitting ratio, as well as the SNR of the uplink and downlink

channels. It decreases with the increase of ρk up to ρoptk , and it starts to increase as

ρk goes beyond ρoptk . When ρk < ρoptk , more power is needed to be harvested to meet

the user’s rate threshold, rthk,BS . On the other hand, if ρk > ρoptk , then the user’s needed

power is met while the BS needs to increase its transmission power in order to meet rthBS,k.

Hence, the splitting ratio strikes a balance between the amount of harvested power and

the needed power to meet the data rate. Second, we investigate the effect of the uplink

channels’ SNR on the total power. As the uplink channels’ SNR becomes stronger, less

power consumption is needed. Third, for a strong downlink channels’ SNR (chosen to be

10 dB), the optimal splitting ratio ρoptk becomes closer to 0 as the uplink channels’ SNR

increases. This is because as the channels’ SNR becomes stronger, less power is needed

to be harvested (proportional to the splitting ratio).

In Fig. 7.4, we plot the optimal splitting ratio ρoptk , found using Algorithm 3, as a

function of the uplink channels’ SNR. Observe that the optimal splitting ratio decreases

as the uplink channels’ SNR increases. This confirms the result shown in Fig. 7.3 since
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Figure 7.4: The optimal splitting ratio ρk as a function of the uplink channels’ SNR.
The system parameters are as follows: the number of subcarriers N = 5, the downlink
channel SNR= 10dB, rthBS,k = 300Kbit/s and rthk,BS = 150Kbit/s.

if the uplink channel quality increases, less power is needed to meet the user’s rate

requirement and therefore less amount of harvested energy is required. If the downlink

channels’ quality becomes worse, the optimal splitting ratio decreases in the low SNR

regime. In fact, more power should be dedicated to meet the downlink rate requirement

rthBS,k. This is equivalent to the increase of the portion dedicated for decoding (i.e.,

1− ρk).

In Fig. 7.5, we investigate the effect of the downlink channels’ SNR for a fixed ρk

and for the optimal ρoptk under different channels’ SNR values. We plot the total power

consumption while varying the downlink channels’ SNR for a fixed splitting ratio, ρ =

0.5. Note that the total power consumption decreases as the downlink channels’ SNR

increases. As the downlink channel gains become stronger, less power is required to

achieve the required data rate, rthBS,k. Also, as the uplink channels’ SNR increases, the

total power consumption decreases. This is because the user needs less power to achieve

its required data rate, rthk,BS . Furthermore, we plot in the same figure the sum power using

the optimal splitting ratio ρoptk . Note that an additional gain in the power consumption

is obtained with the optimal splitting ratio. However, from a practical perspective, this

comes at the expense of a more sophisticated circuitry design, as the optimal ratio needs

to be found at each time slot, depending on the channels’ gains.

Having studied the impact of the splitting ratio in the case of one single user, we
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Figure 7.5: The sum power as a function of the downlink channel SNR between the BS
and one user. The system parameters are as follows: the number of subcarriers N = 5,
rthBS,k = 15Kbit/s, and rthk,BS = 30Kbit/s.

now assess the performance of our framework by considering the following metrics: the

total power cost (utility cost) and the system lifetime. Note that in the case of not

harvesting from the received RF signals and if the power at the users’ batteries is not

sufficient to meet their data rates, an outage performance occurs. That is, the users can

not offload their data. On the other hand, the system lifetime is usually maximal when

the harvesting capability enabled.

We assume that κk = κ = β/α and to ensure the non negativity of α̃ik as well as κ,

the values of κ should be picked in the interval [0.. min
k,i∈Ck

(1/(ηρ|hiBS,k|
2
))]. In Fig. 7.6, we

plot the power utility as a function of κ. Observe that relaying on harvesting results on

a higher cost compared to the case when relaying solely on the batteries at the different

users. Furthermore, we observe that the utility cost for both systems enhances as κ

increases. In fact, as κ increases, β increases as well, and hence, the cost relative to the

power used from the battery augments and affects the total cost.

The second performance metric that we consider is the lifetime. While in wireless

sensors networks problems, the lifetime is often defined as the number of transmission

time slots from the deployment up to when the first sensor’s battery dies [6], we define

it here as the overage time until the users’ battery dies. We consider that the users have

an equal initial amount of power P batk . In Fig. 7.7, we plot the lifetime as a function

of the users’ number. We define ϵ as the portion of power used from the battery, while
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Figure 7.6: The power utility as a function of κ. The system parameters are as follows:
K = 50 with N = 5 subcarriers in the uplink and N in the downlink, the uplink and
downlink channels SNR= 10dB, rthBS,k = 15Kbit/s and rthk,BS = 30Kbit/s.

(1-ϵ) is the portion of power harvested from the BS’s signal. Hence, ϵ = 1 corresponds

to the use of the total power needs from the battery. First, we notice that regardless

of the number of users in the system, as long as we harvest a portion of the power, we

achieve a higher lifetime compared to the case when we solely rely on the user’s battery.

Second, as the portion of the power taken from the battery decreases, a higher system

lifetime is achieved. When ϵ tends to zero, the lifetime goes to infinity. This is because

almost all the power is harvested from the RF signals. Third, normally the placement

of the users themselves in the cell affects the performance. However, the figure shows

that the curves are almost flat as a function of the number of users. This is because, we

average over a large number of users’ placement. Last, recalling Figure 7.6, a tradeoff

between the cost and the lifetime should be struck.

Now, we look at the BS power allocation as a function of the channels’ variations.

When accounting for harvesting from the signals intended to the other users, we antic-

ipate to achieve further power savings at the BS. Hence, we compare the total power

allocated for powering and communicating with the different users in the two system

setups: when each user harvests power only from its intended signals and when, in ad-

dition to that, each user harvests energy from the signals dedicated to the other users.

In Fig. 7.8, we plot the total power used by the BS for the two setups and for different

number of users as a function of the downlink channels’ SNR. Note that the users are

assumed to have equal average downlink channels’ SNR; however, the results are still
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Figure 7.7: The system lifetime as a function of the uniformly deployed sensors. The
system parameters are as follows: One user with N = 5 subcarriers in the uplink and N
in the downlink, the uplink and downlink channels SNR= 10dB, and rthBS,k = 100Kbit/s

and rthk,BS = 1Mbit/s.

valid for a more general system. First, remark that an increase in the number of users

results in an augmentation in the needed transmission power at the BS. On the other

hand, the second system setup allows to achieve less power consumption when compared

with the first one. This is because accounting for the received interference at each user,

which leads to increasing the amount of the harvested power, decreases the total re-

quired power at the BS to serve the users. However, this substantial gain comes at the

expense of the prior knowledge of all the channel gains between the BS and the users.

Fortunately, this is required in spectrum assignment process.

7.6 Conclusion

This paper investigates the optimal power allocation for a multiuser multicarrier com-

munication system composed of a base station and mobile users. We solved the optimal

power allocation at the base station to enable data communication as well as powering

the users using RF energy harvesting. We studied the tradeoff between the power cost

and system lifetime. Our performance analysis shows that the power consumption gain

takes advantage of the variability of channels’ gains, the splitting ratio, and the number

of subcarriers. Energy harvesting capability increases the network lifetime, however, this

comes with the expense of a higher power cost.
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Figure 7.8: Comparison of the BS’s sum power allocated to power the users and achieve
their downlink rate for the two scenarios: each user harvests only from the subcarriers
used for its communication and when each user harvests also from the interference.
The system parameters: the uplink channels’ SNR 10 dB and rthBS,k15kHz and rthk,BS =
30Kbit/s.

7.7 Appendix

7.7.1 Proof of Proposition 7

Proof. In general, the optimization problem (7.5) is not convex. While the objective and

the first constraint are affine functions, the two constraints (7.5c) and (7.5d), as function

of ρ, are not convex. By fixing its value, ρ is no longer an optimization parameter, and

hence, the problem becomes convex. �

7.7.2 Proof of lemma 7

Proof. The solution to (7.6) is straightforwardly derived by minimizing the Lagrangian

dual function. It is the classical water filling [3]. �
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7.7.3 Proof of Theorem 8

Proof. Since the optimization problem (7.11) is convex, we consider the dual problem

using the Karush-Kuhn-Tucker (K.K.T) conditions. The Lagrangian can be written as

Lk
(
{P iBS,k}Ni=1

)
=

N∑
i=1

α̃ikP
i
BS,k − λk(RBS,k − rthBS,k)

− ψk
( N∑
i=1

P iBS,k|hiBS,k|
2 − P thk

)
, (7.22)

where λk and ψk are the K.K.T. multipliers [27]. By taking the derivative of the La-

grangian Lk over P iBS,k and set it to zero, we get

α̃ik −
λk(1− ρk)|hiBS,k|

2
/σiBS,k

(1 + P iBS,k(1− ρk)|hiBS,k|
2
/σiBS,k) log(2)

− ψk|hiBS,k|
2
= 0 (7.23)

From Equation (7.23) and by letting λ′k = λk/ log(2), the power level P
i
BS,k is, therefore,

expressed as

P iBS,k =
λ′k

α̃ik − ψk|hiBS,k|
2 −

σiBS,k

(1− ρk)|hiBS,k|
2 . (7.24)

Then, we restrict the power to be positive or null to ensure the positivity of the power

levels. To find the Lagrange multipliers λ′k and ψk, we rely on the K.K.T. conditions.

Given

λ′k

(
rthBS,k
B

−
N∑
i=1

log2

(
1 +

(1− ρk)P
i∗
BS,K |hiBS,K |

2

σiBS,K

))
= 0, (7.25)

it follows that either λ′k = 0 or

rthBS,k
B

=
N∑
i=1

log2

(
1 +

(1− ρk)P
i∗
BS,K |hiBS,K |

2

σiBS,K

)
(7.26)

λ′k cannot be 0, since otherwise P i
∗
BS,k = 0 for all i ∈ [1..N ], which does not meet the

rate constraint. Now substituting the expression of the optimal power P i
∗
BS,k, given in
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Equation (7.12), into Equation (7.26) yields

|Sk| log2(λ′k) =
rthBS,k

B

− log2

(∏
i∈Sk

(1− ρk)|hiBS,k|
2

(α̃ik − ψk|hiBS,k|
2
)σiBS,k

)
(7.27)

The second K.K.T. condition gives

ψk

(
P thk −

N∑
i=1

P i
∗
BS,k|hiBS,k|

2
)

= 0 (7.28)

If ψk ̸= 0, then P thk =
∑N

i=1 P
i∗
BS,k|hiBS,k|

2
must hold. In this case, substituting P i

∗
BS,k

with its expression given in Equation (7.12), results in

P thk =
∑
i∈Sk

P i
∗
BS,k|hiBS,k|

2

= λ′k
∑
i∈Sk

|hiBS,k|
2

α̃ik − ψk|hiBS,k|
2 −

∑
i∈Sk

σiBS,k
1− ρk

(7.29)

Now combining Equations (7.27) and (7.29) yields

P thk =

2r
th
BS,k/B|Sk|

∑
i∈Sk

|hiBS,k|
2

α̃ik − ψk|hiBS,k|
2

(∏
i∈Sk

(1− ρk)|hiBS,k|
2

(α̃ik − ψk|hiBS,k|
2
)σiBS,k

) 1
|Sk|

−
∑
i∈Sk

σiBS,k
1− ρk

(7.30)

The value of ψk that satisfies Equation (7.30) is the zero of the function f . This ends the

proof of the theorem. Note that for consistency, recalling the second K.K.T. condition,

ψk = 0 remains a special case of the solution. �
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7.7.4 Proof of Theorem 9

Proof. Since the optimization problem (7.16) is convex, we rely on the Lagrangian mul-

tiplier, which can be written as

L
(
P , {λk, ψk}Kk=1

)
= ς ′ −

K∑
k=1

λk(RBS,k − rthBS,k)

−
K∑
k=1

ψk
(
P Thk − P thk

)
+ α̃TP (7.31)

For simplicity, let γik = (1− ρk)|hiBS,k|
2
/σiBS,k. By taking the derivative of L over P iBS,k,

it follows that

α̃ik −
λkγ

i
k

(1 + P iBS,kγ
i
k) log(2)

−
K∑
l=1

ψl|hi,lBS,k|
2
= 0 (7.32)

where αik = α +
∑K

l βlηρl|h
i,l
BS,k|

2
. By letting λ′k = λk/ log(2), the optimal power level

allocated at the BS to user k over the subcarrier i can be derived as

P iBS,k =
λ′k

α̃ik −
∑K

l=1 ψl|h
i,l
BS,k|

2 − 1

γik
(7.33)

Then, we restrict the power to be positive. �

7.7.5 Proof of Lemma 5

Proof. Using the K.K.T. condition,

λ′k
(
RBS,k − rthBS,k

)
= 0, (7.34)

and replacing the expression of the optimal power level given by Equation (7.33), the

expression of the K.K.T. multiplier λ′k can be written as

log2(λ
′
k) =

rthBS,k
B|Ck|

−

log2

(∏
i∈Ck

γik

α̃ik −
∑K

l=1 ψl|h
i,l
BS,k|

2

)
|Ck|

(7.35)
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Hence, we get the expression of λ′k as in Equation (7.18). Hence, getting λ′k requires

the knowledge of ψ. Now, to characterize ψ, we consider the second K.K.T condition

ψk
(∑K

l=1

∑N
i=1 P

i∗
BS,l|h

i,k
BS,l|

2
− P thk

)
= 0, if ψk ̸= 0, then we can write

P thk =

K∑
l=1

∑
i∈Cl

P i
∗
BS,l|h

i,k
BS,l|

2

= λ′k

K∑
l=1

∑
i∈Cl

|hi,kBS,l|
2

α̃il −
∑K

m=1 ψm|h
i,m
BS,l|

2 −
K∑
l=1

∑
i∈Cl

|hi,kBS,l|
2

γil

(7.36)

Now, substituting Equation (7.18) into Equation (7.36) gives

P thk =
2

rthBS,k
B|Ck|(∏

i∈Ck

γik

α̃ik −
∑K

l=1 ψl|h
i,l
BS,k|

2

) 1
|Ck|

×
K∑
l=1

∑
i∈Cl

|hi,kBS,l|
2

α̃il −
∑K

m=1 ψm|h
i,m
BS,l|

2 −
K∑
l=1

∑
i∈Cl

|hi,kBS,l|
2

γil
.

Hence, it is clear that ψ is the zero of the functions fk �
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Chapter 8: Conclusions

This dissertation presents algorithms and frameworks that we proposed to enable effi-

cient resource sensing and sharing. In particular, based on compressive sampling theory,

we proposed a weighted ℓ1−minimization recovery approach that accounts for the block-

like structure inherent to the heterogeneous nature of wideband spectrum allocation.

We showed that the proposed approach outperforms existing approaches by achieving

lower mean square errors, enabling higher detection probability, and requiring lesser

numbers of measurements when compared to the-state-of-the-art approaches. Moreover,

we applied supervised learning to provide accurate estimates of the wideband spectrum

occupancy and exploit it to help improve the spectrum recovery scheme. We showed that

our scheme makes great performance enhancements in terms of sensing overhead, sensing

energy, and spectrum decision accuracy. Furthermore, we leveraged user cooperation to

overcome receiver hardware limitations as well as time variability of band occupancy

during wideband spectrum sensing. We showed that cooperation overcomes these issues

by enabling distributed compressive sampling-based spectrum sensing, and does so by

requiring smaller numbers of measurements by each user only. Also, we designed effi-

cient non-uniform sensing matrices suitable for such an environment. The results show

that when the impact of fading is not so significant (for instance by considering close-by

SU s), comparable performance can still be achieved from a smaller number of SU s. In

addition to that, we presented a framework that builds an accurate spectrum occupancy

map for wideband spectrum sharing. The framework exploits the under-utilization of

the wideband spectrum, the heterogeneity in the spectrum occupancy, and the spatial

correlation between sensing nodes to achieve scalable decisions for the spectrum occu-

pancy while incurring small network communication overhead. Finally, we investigated

the optimal power allocation for a multiuser multicarrier communication system com-

posed of a base station and mobile users. We solved the optimal power allocation at

the base station to enable data communication as well as powering the users using RF

energy harvesting. We studied the tradeoff between the power cost and system lifetime.

Our performance analysis shows that the power consumption gain takes advantage of
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the variability of channels’ gains, the splitting ratio, and the number of subcarriers. En-

ergy harvesting capability increases the network lifetime, however, this comes with the

expense of a higher power cost.
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