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Chapter 1: Introduction

Planarity has been used to design faster algorithms for many polynomial time solvable

problems and to design more accurate approximation algorithms for many NP-hard

optimization problems. Several representative examples are shortest path [49], network

flow [19], maximum matching [77], TSP [60] and independent set [72]. We can think of

planar graphs as graphs that can be drawn on a plane (or equivalently on the surface of

a 3D sphere) without edge crossings. This definition of planar graphs can be extended

to a more general class of graphs, called bounded-genus graphs, where we can draw the

graphs on a surface of bounded genus without edge crossings. The non-crossing drawing

allows us to generalize many algorithmic results in planar graphs to bounded-genus

graphs [25, 18].

Kuratowski [66] characterized planar graphs in terms of their excluded minors; a

graph is planar if it excludes K5 and K3,3 as minors.1 We can characterize bounded-

genus graphs in the same way, but the set of excluded minors are typically large. The

minor-exclusion characterization allows us to define a more general class of graphs, called

H-minor-free graphs, that exclude a fixed graph H as a minor. H-minor-free graphs are

much broader than bounded-genus graphs: one representative example is K3,`; when `

is the part of the input, K3,` cannot be embedded in any bounded-genus surface [81] but

excludes K5 as a minor. Figure 1.1 illustrates the containment between different classes

of graphs.2

A natural research question is: can we generalize known algorithmic results in planar

graphs and bounded-genus graphs to H-minor-free graphs? There have been several

successful efforts toward answering this question. The deletion decomposition and con-

traction decomposition frameworks by Demaine, Hajiaghayi and Kawarabayashi [37, 38]

extend PTASes for many unweighted graph problems in planar graphs to H-minor-free

graphs. However, there has been little progress on extending PTASes for the most in-

teresting edge-weighted connectivity problems, including: TSP, subset TSP, Steiner tree

1The definition of minor is given in Section 1.1.
2Bounded treewidth and bounded pathwidth graphs are defined in Section 1.1.
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Figure 1.1: Relationship between different classes of of graphs

and survivable network design. In planar graphs, PTASes depend on the construction of

spanners which depend heavily on planar embedding. However, in H-minor-free graphs,

such non-crossing embeddings are unavailable. The Robertson and Seymour decompo-

sition theorem only provides a weak embedding where we allow crossing on some part

of the embedding of graphs. Toward addressing this difficulty, we present in Chapter 2

spanner constructions for TSP and subset TSP problems that does not depend on such

weak embeddings of the input graph. Our result implies an efficient PTAS for TSP prob-

lem and the first PTAS for the subset TSP problem in H-minor-free graphs and opens

a new possibility to construct embedding-free spanners for other connectivity problems

in H-minor-free graphs.

Another emerging research direction for designing PTASes for H-minor-free graphs is

local search. Previous PTASes for H-minor-free graphs use the deletion and contraction

decomposition frameworks of Demaine, Hajiaghayi and Kawarabayashi [37, 38] that

in turn, rely on the Robertson and Seymour decomposition algorithm. However, the

running time to obtain this decomposition has an enormous dependency3 [55] on the size

of the minor. Local search PTASes [78, 26] are conceptually simple and the algorithms

3Even when |V (H)| = 5, the constant is bigger than the size of the universe.
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do not require a Robertson-Seymour decomposition or indeed any property of the input

graphs; only the analysis does. However, the PTASes obtained by local search are non-

efficient in the theoretical sense; making local search PTASes efficient is an intersting

research direction. In Chapter 3, we present local search PTASes for the r-dominating set

problem, even when r is part of the input, and for the feedback vertex set (FVS) problem.

Previous local search PTASes only apply to problems that have “local properties” [26, 46]

while FVS has a global constraint. Thus, to analyze the local search algorithm for FVS,

we introduce several new ideas and we believe our ideas could be useful elsewhere.

In Chapter 4, we present our work concerning the existence of a large induced forest

in planar graphs. Albertson and Berman [4] conjectured that any planar graph has an

induced forest of at least half of the vertices. The conjecture, if true, would provide an

alternate proof for the fact that any planar graph has an independent set containing

at least a quarter of vertices; this fact is only known by the four color theorem whose

proof is computer-assisted. The Albertson-Berman Conjecture is known to be true in

the case of outer-planar graphs [54] and very sparse planar graphs [5]. We prove the

Albertson-Berman Conjecture for two-outerplanar graphs. In the same vein, we study

the Akiyama and Watanabe conjecture: any bipartite planar graph has an induced forest

containing at least 5
8 of its vertices. We present our results on a stronger version of the

Akiyama-Watanabe Conjecture in Section 4.2.

1.1 Preliminaries

Standard graph terminologies Let G be a finite, simple graph. We denote the

vertex set and the edge set of G by V (G) and E(G), respectively. We use n and m to

denote the number of vertices and edges of G. The order of G is the number of vertices,

denoted by |G|. Let X be a subset of vertices of G. We define G[X] to be the subgraph

of G induced by X. Two special graphs we consider in this proposal are K`, the complete

graph on ` vertices, and Kp,q, the complete bipartite graph with p vertices on one side

and q vertices on the other side.

A walk W of length d in G is an alternating sequence of vertices and edges {v1, e1, v2,

. . . , ed, vd+1} such that vi, vi+1 are the endpoints of ei, 1 ≤ i ≤ d. We call W a closed

walk if v1 = vd+1. If no vertex of W is repeated twice, we call W a path. In this case,

we denote the subpath of W between u and v by W [u, v]. Let W1,W2 be two walks of
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G such that the last vertex of W1 is the first vertex of W2. We define the composition of

W1 and W2, denoted by W1 ◦W2, to be the walk obtained by identifying the last vertex

of W1 and the first vertex of W2.

Let S be a connected subgraph of G. By wG(S), we denote the total edge weight of

S. We define the diameter of S, denoted by diam(S), to be diam(S)
def
= maxu,v∈S dS(u, v).

A shortest path D in S where wG(D) = diam(S) is called a diameter path of S.

Polynomial time approximation scheme A polynomial time approximation scheme

(PTAS) is an algorithm, which is given a fixed error parameter ε, can find a (1 ± ε)-
approximate solution for an optimization problem in polynomial time. A PTAS is ef-

ficient (an EPTAS) if its running time is 2f(ε)nO(1) for some function f(·) of ε that is

independent of n.

Tree decomposition A tree decomposition of a graph G is a pair (T ,X ) where X is

a family of subsets of V , called bags, and T is a tree whose nodes are bags in X such

that:

(i) ∪X∈XX = V (G).

(ii) For every edge uv ∈ E, there is a bag X ∈ X that contains both u and v.

(iii) For every u ∈ V , the set of bags containing u induces a (connected) subtree of T .

The width of (T ,X ) is maxX∈X (|X| − 1) and the treewidth of G is the minimum

width over all possible tree decompositions of G.

A path decomposition is a tree decomposition where the underlying tree is a path.

Pathwidth of G is the minimum width over all possible path decompositions of G

Graph minors We define the contraction of an edge e, denoted by G/e, as the graph

obtained from G by identifying endpoints of e and removing e from the graph. We can

naturally extend the contraction to a set of edges, say X, to be the graph, denoted by

G/X, obtained by contracting every edge in X. A graph H is called a minor of G if

H can be obtained from G by a sequence of edge deletion, vertex deletion and edge

contraction operations. A graph is called H-minor-free if it excludes a fixed graph H as

a minor. Graph G is planar if we can draw G on a plane (or equivalently on a surface

of a sphere) without edge crossing. Kuratowski [66] showed the following relationship

between planarity and excluded minors:
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Theorem 1.1.1 (Kuratowski [66]). A graph is planar if and only if it excludes K5 and

K3,3 as minors.

A family of graphs G is minor-closed if for every graph K ∈ G, every minor of K is

also in G. Wagner’s conjecture said that any minor-closed family excludes a finite set

of minors. The conjecture was proved by the work of Robertson and Seymour [83] that

spanned over 20 years.

Theorem 1.1.2 (Robertson and Seymour [83]). Any minor-closed family of graphs ex-

cludes a finite set of minors.

Over the course of proving the Wagner’s conjecture, Robertson and Seymour [82]

proved a structural decomposition of H-minor-free graphs. Such a decomposition has nu-

merous algorithmic consequences [38]. However, the constant involved in the Robertson-

Seymour decomposition is galactic [71, 55] in the size of the minor. In some cases, we

can avoid such a dependency by relying the sparsity of minor-free graphs.

Lemma 1.1.3. (Mader [75]) An H-minor-free graph of n vertices has O(σHn) edges

where σH = |V (H)|
√

log |V (H)|.

We note that Mader’s bound is tight as shown by Thomason [88].

1.2 Bibliography

Results presented in Section 2.2 of Chapter 2 are based on the joint work with Glencora

Borradaile and Christian Wulff-Nilsen [24]. Results presented in Section 2.3 of Chapter 2

are based on a manuscript in submission at the time of writing [69]. Results presented

in Chapter 3 are from a joint work with Baigong Zheng [70]. Results presented in

Section 4.2 of Chapter 4 are from a joint work with Glencora Borradaile and Melissa

Sherman-Bennett [67]. Results in Section 4.3 of Chapter 4 are based on [68].
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Chapter 2: The Traveling Salesperson Problem

The Traveling Salesperson Problem (TSP) is a classic combinatorial optimization that

has been studies since 1930s. TSP problem has found numerous practical applications

such as vehicle routing, scheduling, computer wiring [76]. It is in Karp’s list of NP-

hard problems [56] and remains NP-hard even in planar graphs [50]. In this chapter, we

consider the TSP problem in H-minor-free graphs and its subset version. We state the

problems here:

TSP problem Given an edge-weighted graph G, find a shortest tour that goes through

every vertex of G.

Subset TSP problem Given an edge-weighted graph G and a set of terminal T , find

a shortest tour that goes through every vertex of T .

Before going into details of each problem, we describe a general framework to design

PTAS for these problems in H-minor-free graphs.

2.1 A framework for designing PTASes for connectivity problems

in H-minor-free graphs

Graphs in this section are edge-weighted and H-minor-free. Klein [60] was the first to

design a linear time PTAS for the TSP problem in planar graphs. His algorithm then

becomes a general framework for designing a PTAS for many connectivity problems in

planar graphs such as subset TSP [61], Steiner tree [21], survivable network design [19],

Steiner forest [13] and in H-minor-free graphs [24, 69]. Let P be the connectivity

minimization problem. The framework consists of four steps.

Spanner step: Find a light spanner for P. (The definition of light spanners will be

given below.)

Contraction decomposition step: Partition edges of the spanner into k sets S1, S2, . . . , Sk

such that contracting any set would result in a graphs of treewidth at most OH(k)
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where k is a constant depending on ε. Let Smin be the set of edges of minimum

weight.

Dynamic programming step: Solve P optimally on graph G/Smin (of treewidth at

most OH(k)) by dynamic programming.

Lifting step: Lift the the solution found in the dynamic programming step to a solution

in the original graph G. Some edges in Smin may be added to the solution of G in

this step.

In most cases, the lifting step is straightforward. We now describes other steps in

more details.

Light spanners: A light spanner for P is a subgraph K of G that can be found in

polynomial time and satisfies two properties:

Near-optimality property: K must contain a feasible solution for P of length at most

(1 + ε)OPT where OPT is the weight of the optimal solution for P in G. Shortness

property: the weight of H must be bounded by f(ε) where f(ε) is a constant that depends

on ε only.

Contraction decomposition: A contraction decomposition, given any integer k, par-

titions the edge set of G into k subsets such that contracting any subset would result

in a graph of treewidth at most OH(k). A contraction decomposition algorithm for

planar graphs was found by Klein [60]. Klein’s result was generalized to bounded genus

graphs by Demaine, Hajiaghayi and Mohar [39] and to H-minor-free graphs by Demaine,

Hajiaghayi and Kawarabayashi [37].

Dynamic programming: Dynamic programming is a standard tool for solving many

optimization problems in bounded treewdith graphs optimally [15]. Many connectivity

problems, such as TSP, subset TSP, Steiner tree can be solved optimally in treewidth-tw

graphs in time 2O(tw log tw)nO(1) times using standard dynamic programming. However,

in some case, we need to design an algorithm with running time at most 2O(tw)nO(1).

Fortunately, there are several advanced techniques for general graphs [34, 16, 48] and H-

minor-free graphs [41] that helps us achieve this goal. We will use one of these techniques

in designing PTAS for the susbet TSP problem in Section 2.3.
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GreedySpanner(G(V,E), t)
S ← (V, ∅).
Sort edges of E in non-decreasing order of weights.
For each edge xy ∈ E in sorted order

if t · w(xy) < dS(x, y)
E(S)← E(S) ∪ {e}

return S

Figure 2.1: The greedy spanner algorithm.

2.2 The Traveling Salesperson Problem

In this section, we present an EPTAS for the TSP problem in H-minor-free graphs.

Among four steps in the PTAS framework, we already describe three last steps in Sec-

tion 2.1. Thus, we only discuss the spanner step in this section.

Let MST be the minimum spanning tree of G. We use dG(x, y) to denote the shortest

path distance between two vertices x and y. We drop the subscript when the graph is

clear from the context. A subgraph S of G is a (1+ ε)-spanner, or simply called spanner,

if dS(x, y) ≤ (1 + ε)dG(x, y). The lightness of S is the ratio w(S)
w(MST) . S is light if

w(S) ≤ f(ε)w(MST) where f(ε) is a function depending on ε only.

Peleg and Schäffer [79] introduced t-spanners of graphs as a way to sparsify the graphs

while approximately preserving the pairwise distances between vertices. A t-spanner can

be found by the greedy algorithm in Figure 2.1

We refer to t-spanners obtained by the greedy algorithm when t = 1 + ε greedy

spanners. Light spanners are obtained by Althöfer, Das, Dobkin, Joseph and Soares [7]

for planar graphs and by Grigni [51] for bounded-genus graphs. But light spanners for H-

minor-free graphs are unknown. In 2002, Grigni and Sissokho [53] showed that the greedy

algorithm gives a spanner of lightness O(σH logn
ε )1 and left the problem of removing the

log n factor in the lightness as an open problem. (Recall that σH = |V (H)|
√

log |V (H)|.)
Ten years later, Grigni and Hung [52] show that it is possible to remove log n factor

if the input graph has bounded pathwidth, a special case of H-minor-free graphs (see

Figure 1.1), and conjectured that it is possible to do so for H-minor-free graphs.

Since the analysis of greedy spanners for planar graphs and bounded-genus graphs

heavily uses the non-crossing embedding of graphs, it is natural to expect that a similar

1Grigni and Sissokho’s spanner, though is not light, was used with the contraction decomposition
framework of Demaine, Hajiaghayi and Kawarabayashi to give a (non-efficient) PTAS for TSP.



9

analysis works for H-minor-free graphs. The main difficulty is that H-minor-free graphs

don’t have such non-crossing embedding. Robertson and Seymour [82] decomposition

theorem only provides a weak embedding: one can decompose an H-minor-free graph

into a collection of nearly embeddable subgraphs glued together in a tree-like way.

In a joint work Glencora Borradaile [23], we use Robertson and Seymour’s decom-

position theorem to show that if bounded-treewidth graphs have light spanners, then

H-minor-free graphs also have light spanners(see the relationship between two classes of

graphs in Figure 1.1). In the algorithmic world, bounded-treewidth graphs are much eas-

ier to deal with than H-minor-free graphs since many NP-hard problems can be solved

in polynomial time [15] in bounded treewidth graphs. Thus, our result conceptually re-

duces the difficulty of Grigni and Hung Conjecture significantly. However, the conjecture

remains open for bounded treewidth graphs. In this section, we present a proof of Grigni

and Hung Conjecture.

Theorem 2.2.1. Any H-minor-free graph G has an (1+ε)-spanner of lightness O
(
σH
ε3

log 1
ε

)
.

Using the PTAS framework in Section 2.1, we obtain the following theorem from

Theorem 2.2.1:

Theorem 2.2.2. The TSP problem in H-minor-free graphs admits a PTAS with running

time 2O(poly( 1
ε
))nO(1).

Theorem 2.2.2 generalizes Klein’s EPTAS for TSP in planar graphs [60] and Bor-

radaile, Demaine and Tazari’s EPTAS for TSP in bounded genus graphs [18]. It im-

proves the previous result by Demaine, Hajiaghayi and Kawarabayashi [38] who used

Grigni and Sissokho’s spanner to give a PTAS for TSP in H-minor-free graphs with

running time nO(poly( 1
ε
)).

2.2.1 Overview of the proof of Theorem 2.2.1

We will show that greedy spanner has lightness O
(
σH
ε3

log 1
ε

)
. Our approach is based on

the iterative clustering approach and does not require Robertson and Seymour decompo-

sition. Iterative clustering was first used by Awerbuch, Luby, Goldberg and Plotkin [9]

to decompose a graph into subgraphs of low-diameter and low-chromatic number and

then, by Elkin and Peleg [45] to find hybrid spanners of graphs. Recently, Chechick and
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Wulff-Nilsen [30] used iterative clustering to construct light (1 + 2k)(1 + ε)-spanners for

general graphs. We tailor the construction of Chechick and Wulff-Nilsen to our setting.

We first partition spanner edges into log 1
ε sets2, and then the total weight of each

set is bounded separately; this induces the log 1
ε factor in the lightness. Each set consists

of spanner edges in an exponential scale of many levels.

First, a non-negative credit c(ε) is assigned to each MST edge of unit weight; c(ε) log 1
ε

is also the lightness of the spanner. In each level, clusters are constructed iteratively from

clusters of the previous level; level-1 clusters are constructed directly from the MST. An

invariant is maintained that each cluster must have some amount of credit to pay for

spanner edges in their level. Credits of level-1 clusters are taken directly from MST

edges. Credits of level-i clusters are taken from credits of clusters of level i − 1 and

MST edges connecting those lower-level clusters. However, to pay for the spanner edges,

level-i clusters cannot take all credits from level-(i−1) clusters. Instead, it is guaranteed

that on average, each level-(i− 1) cluster has a non-trivial amount of credit left to pay

for level-i spanner edges. Since the input graph is H-minor-free, each level i− 1 cluster

on average must pay for only a constant number of level-i spanner edges.

2.2.2 Assigning credits to MST edges

Let w0 = w(MST)
n−1 be the average weight of an MST edge. We first bound the total weight

of edges that have weight at most w0.

Claim 2.2.3. Let LS be the set of edges of S of weight at most w0. Then, w(LS) ≤
2σHw(MST).

Proof. w(LS) ≤ w0|LS | ≤ w0σH · n = w(MST)
n−1 σH · n ≤ 2σHw(MST).

We now focus on bounding the total weight of edges of weight at least w0 in S. We

subdivide and allocate credits to MST edges such that every MST edge has weight at

most w0 and at least c(ε)w0 credits where c(ε) is a constant that only depends on ε and

will be specified later. We will guarantee that the total allocated credit is O(c(ε))w(MST)

where O(c(ε)) is also the lightness of the spanner. First, we subdivide every MST edge

e of weight more than w0 into dw(e)
w0
e new edges with equal weights summing up to w(e);

2Here, log denotes the base 2 logarithm.
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note that each new edge has weight at most w0. Letting S′ be the new graph, we have

w(MST(S′)) = w(MST). We then allocate c(ε)w0 credits to each MST edge of S′.

Claim 2.2.4. The total credit allocated to the MST edges of S′ is at most 2c(ε)w(MST).

Proof. The total credits assigned to MST edges of S′ is:

c(ε)w0|E(MST(S′))| ≤ c(ε)w0

∑
e∈MST

dw(e)

w0
e ≤ c(ε)w0

( ∑
e∈MST

(
w(e)

w0
+ 1)

)
= c(ε)w(MST) + c(ε)w0(n− 1) = 2c(ε)w(MST)

(2.1)

2.2.3 Iterative Clustering

Let J0 = {e ∈ S′, w0 < w(e) ≤ 2w0
ε }. We first bound the weight of J0 and pay for edges

in J0 separately. The purpose is to simplify the base case in the inductive amortized

argument that we present below.

Claim 2.2.5. w(J0) ≤ 4σH
ε w(MST).

Proof.

w(J0) =
∑

e∈J0,w(e)>w0

w(e) ≤ σH · n
2w0

ε
≤ 4σH

ε
w(MST)

Let Iε = dlog 1
ε e and In = dlog ne. Note that the longest distance between any two

vertices in S′ is at most n · w0. We partition the spanner edges (of weight at least w0)

of S′ into In · Iε sets {Πj
i , 0 ≤ i ≤ In − 1, 0 ≤ j ≤ Iε − 1} where each edge e ∈ Πj

i has

weight in the range (2j

εi
w0,

2j+1

εi
w0]. For each 0 ≤ j ≤ Iε − 1, let

Sj =

In−1⋃
i=0

Πj
i (2.2)

Lemma 2.2.6. For each 0 ≤ j ≤ Iε − 1, there is a set of spanner edges B such that

w(B) = O( 1
ε2
w(MST)) and w(Sj \B) ≤ σH

ε3
w(MST).

It is not hard to see that Lemma 2.2.6 directly imply Theorem 2.2.1. Thus, we only

focus on proving Lemma 2.2.6 for a fixed j. We refer to edges of Πj
i as edges in level i

(Equation 2.2). Let `i = 2j+1

εi
w0. We construct a set of clusters, which are subgraphs of

S′, for each level and guarantee inductively two diameter-credits invariants:
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DC1 A cluster of level i of diameter k has at least c(ε) ·max{k, `i2 } credits.

DC2 A cluster of level i has diameter at most g`i for some constant g > 2 (specified

later).

A cluster of level i, say Ci, is the union of a subset of clusters in level i−1 connected

by MST and level-i spanner edges. Clusters of level i−1 are referred to as ε-clusters. To

satisfy DC1, we assign the credits from ε-clusters in Ci and the MST edges connecting

the ε-clusters to Ci. However, we need to group ε-clusters in such a way that there are

some extra ε-clusters whose credits are not needed to maintain DC1 for Ci. We will use

credits of these extra ε-clusters to pay for level-i spanner edges incident to every ε-cluster

in Ci. The credit lower bound c`i/2 (DC1) helps us achieve the goal.

To guarantee the diameter-credit invariants for level 0, we greedily break the MST

into components (level-0 clusters) of diameter at least `0 and at most 4`0. Recall `0 =

2j+1w0 ≤ 2w0
ε . To guarantee DC1, we use the credits of MST edges in the longest

path of each cluster. Since the credit of each MST edge is at least its length, DC1

is satisfied. Invariant DC2 follows directly from the construction. Note that we have

already accounted for the weight of spanner edges of E0 in Claim 2.2.5.

2.2.3.1 Constructing higher level clusters

We construct clusters of level i from the ε-clusters of level i − 1. We assume that the

stretch of the spanner is 1 + sε for some constant s (independent of ε) that we will pick

sufficiently big to make our claims below hold. Furthermore, we assume that ε is bounded

from above by a sufficiently small positive constant. We call vertices of V (S′) \ V (S)

virtual vertices. We call a cluster virtual of it only contains virtual vertices and non-

virtual otherwise. Let K(Cε, Ei) be the multigraph obtained by taking the subgraph of

G consisting of ε-clusters and spanner edges in Ei and contracting each ε-cluster into a

single vertex. Let ` = `i.

Lemma 2.2.7. K(Cε, Ei) is a simple graph.

Proof. Recall ε-clusters have diameter at most gε` by the diameter-credit invariants.

Recall edges in Ei have weight in range (`/2, `]. Thus, when ε is sufficiently small, K
has no self-loops. To show that K has no parallel edges, we assume there are such two

xy and uv where w(xy) < w(uv). Let Cu, Cv be two ε-clusters that contain u and v,
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respectively. We further assume, w.l.o.g, that x ∈ Cu, y ∈ Cv. Then the u-to-v path Puv

from u to x inside Cu, edge xy and then y to v inside Cv has length at most w(xy)+2gε`,

which is at most (1 + 4gε)w(uv) since w(uv) ≥ `/2. Thus, by choosing s ≥ 4g, edge uv

is not added to the spanner by the greedy algorithm. Thus, K is simple.

We say an ε-cluster high-degree if it is incident to at least ∆g,ε = 3g
ε ε-clusters in

K(Cε, Ei). We construct clusters in five phases:

Phase 1: High-degree ε-clusters This phase has three steps. The main purpose is

to guarantee that every high-degree ε-cluster and its neighbors are grouped into clusters.

Initially, every ε-cluster of Cε is unmarked.

(Step 1) Let X ∈ Cε be a high-degree ε-cluster such that all of its neighbor ε-clusters

in K(Cε, Ei) are unmarked. We form a new level-i cluster from X, its neighbors and its

incident level-i spanner edges. We then mark X, its neighbors and repeat this step.

(Step 2) For each unmarked high-degree ε-cluster Y , there must be another ε-cluster,

say Z, that is marked in Step 1. Let C be the level-i cluster formed in Step 1 that

contains Z. We augment C by Y , its neighbors and its corresponding level-i spanner

edges. We then mark Y and its neighbors and repeat this step.

(Step 3) Let Y be an unmarked low-degree ε-cluster that has a (marked) high-degree

neighbor, say Z. By construction in Step 2, Z must be marked in Step 1. Let C be the

level-i cluster that contains Z. We augment C by Y and its incident level-i spanner edge

between Y and Z.

See Figure 2.2 for an illustration of a level-i cluster constructed in Phase 1.

Phase 2: Low-degree, branching ε-clusters Let F be a maximal forest whose

nodes are the ε-clusters that remain unmarked after Phase 1 and whose edges are MST

edges between pairs of such ε-clusters. Let T be a subtree of F . We say an ε-cluster X

T -branching if it has degree at least 3 in T .

Let P be a path of ε-clusters connected by MST edges. We define the diameter of P,

denoted by diam(P), to be the diameter of the subgraph of S′ formed by edges inside

ε-clusters and MST edges connecting ε-clusters of P. We define effective diameter of

P, denoted by ediam(P), to be the diameters of ε-clusters in P. We define the effective

diameter of a subtree T of F to be the effective diameter of the diameter path of T .
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Figure 2.2: A cluster C formed in Phase 1 is enclosed in the dotted blue curve. Round
vertices, square vertices and triangular vertices are grouped in Step 1, Step 2 and Step
3, respectively. The diameter path D is highlighted by the dashed red curve.

This phase has two steps. The purpose is to group every F-branching vertices of

high-diameter trees into clusters. By construction in Phase 1, vertices in this phase are

low-degree.

(Step 1) Let T be a minimal subtree of F of effective diameter at least 2` and at

most 4` that has a T -branching ε-cluster, say X. We form a new level-i cluster from

ε-clusters and MST edges of T . We repeat this step until it no longer applies. After Step

1, every component of F is tree of effective diameter most 2` or is a path of effective

diameter at least 4`.

(Step 2) We call a path of F high-diameter if it has effective diameter at least 4`. Let

Y be an ε-cluster in a high-diameter path which is F-branching before Step 1. That is,

all but at most two neighbors of Y are removed from F in Step 1. Let Z be a removed

neighbor of Y (in F) and e be the MST edge between Y and Z. Let C be the level-i

cluster in Step 1 that contains Z. We augment C with Y and e. We then remove Y

from F and repeat. (See Figure 2.3.)

Phase 3: ε-clusters in high diameter paths. Let e be a spanner edge in Ei whose

endpoints, x and y are in high-diameter cluster paths, P and Q, respectively, where it

may be that P = Q. Let X and Y be the ε-clusters containing x and y, respectively.
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Figure 2.3: A cluster C formed in Phase 2 is enclosed in the dotted blue curve. Round
vertices and square vertices are grouped in Step 1 and Step 2, respectively. The diameter
path D is highlighted by the dashed red curve.

P
xy

(a) (c)
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12

Q 2
Q= =Y

X Y X Y

Figure 2.4: Three different forms that a cluster (enclosed in the dotted red curves) in
Phase 2 can take. The solid blue line is the spanner edge e. (a) e connects ε-clusters
in different clusters paths, (b) e connects ε-cluster in the same path and P1 and Q1 are
disjoint and (c) e connects ε-cluster in the same path and P1 and Q1 are overlapped. In
case (c), we redefine P1 = Q1 = Pxy.

We only proceed with this phase if the two affix cluster subpaths of P ending at X

have effective diameter at least 2` (likewise for Q). Let P1 and P2 be the two minimal

subpaths of P ending at X that have effective diameter at least 2`. Likewise define Q1

and Q2. We group ε-clusters and MST edges of P1 ∪Q1 ∪P2 ∪Q2 and e as a new level-i

cluster. See Figure 2.4 for an illustration of the different forms this cluster can take.

Phase 4: Low diameter components. Let F be the set of trees (and paths) re-

maining of effective diameter at most 4`. By construction, each component T ′ of F has a

MST edge, say e, to a level-i cluster constructed in previous phases, say C. We augment

C by T ′ and e.
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Phase 5: Remaining high diameter paths. Let P be a cluster path of effective

diameter at least 4`. We greedily break P into subpaths of effective diameter at least

2` and at most 4`. If any affix of P, say P ′, has a MST edge, say e, to a level-i cluster

constructed in previous phases, say C, we augment C with P ′ and e. We then make each

remaining cluster subpath of P into a new level-i cluster.

This completes the cluster construction for level i.

2.2.3.2 Showing diameter-credit invariant DC2

Observation 2.2.8. For any cluster path P, diam(P) ≤ 2ediam(P).

Proof. The observation follows from the fact that ε-clusters have diameter at least w0

(by construction of the base case) which is at least the weight of edges connecting them

in P.

By construction, each level-i cluster constructed in Phase 4 is a cluster path of

effective diameter at most 2`. By Observation 2.2.8, we have:

Claim 2.2.9. Level-i clusters constructed in Phase 5 have diameter at most 4`.

Claim 2.2.10. Level-i clusters have diameter at most 53` when ε is smaller than 1
g .

Proof. Let C be a level-i cluster that is initially formed in Phase 1,2 or 3. By construc-

tion, C may be augmented in Phases 4 and 5. Let C ′ and C ′′ be the augmented clusters

of C after Phase 4 and Phase 5, respectively. It could be that C = C ′ = C ′′. C ′ is

obtained from C by attaching trees of effective diameter at most 4` via MST edges. C ′′

is obtained from C ′ by attaching paths of effective diameter at most 2` via MST edges.

Recall each MST edge has length at most w0. By Observation 2.2.8, we have:

diam(C ′) ≤ diam(C) + 16`+ 2w0 and diam(C ′′) ≤ diam(C ′) + 8`+ 2w0 (2.3)

By invariant (DC2) for level i − 1, ε-clusters have diameter at most gε`. Thus, if

C is constructed in Phase 1, diam(C) ≤ 6` + 7εg` ≤ 13` when ε is smaller than 1
g (see

Figure 2.2).

If C is constructed in Phase 2, by Observation 2.2.8, after Step 1, diam(C) ≤ 8`.

Since in Step 2, C is augmented by ε-clusters via MST edges, after Step 2, diam(C) ≤
8`+ 2w0 + 2gε` ≤ 12` (` ≥ w0 by construction of the base case).
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If C is constructed in Phase 3, we have:

diam(C) ≤ diam(P1) + diam(P2) + diam(Q1) + diam(Q2) + `(e)

Since P1,P2,Q1,Q2 are minimal, each has effective diameter at most 2` + gε`. Thus,

diam(C) ≤ 4(4`+ 2gε`) + ` = 17`+ 8gε` ≤ 25`.

Thus, in any case, diam(C) ≤ 25`. By Equation (2.3), diam(C ′′) ≤ 49` + 4w0 ≤
53`.

Thus, by Claim 2.2.10, we can choose g = 53.

2.2.3.3 Showing diameter-credit invariant DC1

We define cr(X ) to be the total credits of a set of ε-clusters X . Recall all high-degree

ε-clusters are grouped in Phase 1. Thus, ε-clusters involved in later phases have at most

∆g,ε (∆g,ε = 3g
ε ) incident level-i spanner edges.

Clusters originating in Phase 5: Let C be a level-i cluster formed in Phase 5. We

call C a long cluster if it has at least 2g
ε + 1 ε-clusters and a short cluster otherwise. We

have:

Claim 2.2.11. A long cluster can both maintain invariant DC1 and pay for its incident

spanner edges when c(ε) = Ω(g
2

ε3
).

Proof. Let X be a set of any 2g
ε ε-clusters of C. By invariant DC1 for level i − 1, we

have:

cr(X ) ≥ 2g

ε
c(ε)`/2 = c(ε)g`

which is at least c(ε) · max(diam(C), `/2) since diam(C) ≤ g` as shown in Claim 2.2.9

(since g = 53). Thus, credits of X are enough to maintain DC1 for C.

Since C is a long cluster, there is at least one ε-cluster, say Y , not in X . By DC1 for

level i− 1, Y has at least c(ε)`/2 credits. Since there are at most:

∆g,ε ·
(

2g

ε
+ 1

)
= O(

g2

ε2
)
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level-i spanner edges incident to ε-clusters in X ∪{Y }, Y ’s credits are enough to pay for

those spanner edges when c(ε) = Ω(g
2

ε3
).

For each ε-cluster z ∈ C \ (X ∪ {Y }), we use z’s credit to pay for the spanner edges

incident to z. Since z is incident to at most ∆g,ε level-i spanner edges, this amount of

credit is sufficient when c(ε) = Ω(
∆g,ε

ε ) = Ω( g
ε2

) by invariant DC1 for level i− 1,.

Claim 2.2.12. The credits of ε-clusters and MST edges connecting ε-clusters of each

short cluster C are enough to maintain invariant DC1 for C.

Proof. We abuse notation by letting MST(C) be the set of MST edges in C that connects

its ε-clusters. Since C is a cluster path, we have:

diam(C) ≤
∑
Xε∈C

diam(Xε) +
∑

e∈MST(C)

w(e)

By invariant DC1 for level i− 1, cr(Xε) ≥ c(ε) · diam(Xε) and since each MST edge has

credit at least c(ε) times its length, the claim follows.

A short cluster may need to use all the credits of ε-clusters and MST edges to maintain

DC1, hence, it many not have extra credit to pay for any incident level-i spanner edges.

In this case, we need to use credits of other level-i clusters to pay for those spanner

edges. We call a short cluster internal if it is not an affix of a long path P in Phase 5.

Observation 2.2.13. There is no level-i spanner edge e that has both endpoints in

internally short clusters.

Proof. If there is such an edge e, it would be grouped into a level-i cluster in Phase

3.

Thus, a level-i spanner edge incident to an internally short cluster can be paid by the

level-i cluster that contains the other endpoint of e. However, if a short cluster is not

internal, we must find a way to pay for its incident spanner edges. Recall after Phase 2,

every cluster path of effective diameter at least 4` must have an MST edge from one of

its endpoint ε-clusters to a level-i cluster. By construction in Phase 5, if a short cluster is

an affix of P, called a short affix cluster, the other affix of P, called the sibling affix, must

have an MST edge to a cluster originating in the first three phases and thus augments

it. (The only exception is when there is no level-i clusters after the first three phases



19

and we will handle this case at the end of this paper.) Thus, we can use the credit of

ε-clusters of the sibling affices to pay for incident spanner edges of affix short clusters.

To that end, we analyze clusters originally constructed in the first three phases.

Clusters originating in Phase 1: Consider the induced subgraph H of K(Cε, Ei)
on the set of ε-clusters involved in Phase 1. Since G is H-minor-free, then H is also

H-minor-free. Thus |E(H)| ≤ O(|V (H)|
√

log |V (H)|)|V (H)|.
Let C be a level-i cluster constructed in Phase 1 and C ′, C ′′ be the augmentation of

C in Phase 4 and 5, respectively. By construction, C has at least 3g
ε ε-clusters. Let Z,Z ′

be two disjoint subsets of ε-custers of C such that |Z| = 2g
ε and |Z ′| = g

ε . By invariant

(DC1) for level i− 1, we have:

cr(Z) ≥ 2g

ε

c(ε)ε`

2
= c(ε)g`

which is at least c(ε) ·max{diam(C ′′), `/2}. Thus, credits of ε-clusters in Z are sufficient

to maintain invariant (DC1). We then redistribute credits of ε-clusters in Z ′ to ε-clusters

in Z ∪ Z ′. On average, each has at least :

(
g

ε

c(ε)ε`

2
)/(

3g

ε
) = c(ε)ε`/6

credits. Note that other ε-clusters in C ′′′ \ (Z1 ∪ Z2) have at least c(ε)ε`/2 credits each.

Let R be a short affix cluster in Phase 5, that has the sibling S in C ′′. Let X be an

ε-cluster in S. Note that X is low-degree. We use credits of X to pay for level-i spanner

edges incident to ε-clusters in R∪ {X}. Since R is short, there are at most:

∆g,ε(
2g

ε
+ 1) = Ω(

g2

ε2
)

Thus, credits of X (at least c(ε)ε`/2) is sufficient when c(ε) = g2

ε3
.

For remaining ε-clusters, say Y , of C ′′, if Y is in C ′′ \ C, we use its credit to pay for

its incident edges. Y ’s credit is sufficient when c(ε) = Ω( g
ε2

). If Y is in C, we use its

credits to pay for spanner edges in H. Thus Y ’s credit is sufficient when c(ε) = Ω(σHε )

since on average, Y is incident to at most σH level-i spanner edges. We have:

Claim 2.2.14. Clusters originating in Phase 1 can maintain invariant (DC1) and pay

for incident level-i spanner edges if c(ε) = Ω(max(σHε ,
g2

ε3
)).
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Clusters originating in Phase 2+3 Let C be a level-i cluster constructed in Phase

2 or 3. Let C ′ and C ′′ be the augmentations of C in Phase 4 and 5, respectively. Let

D be the diameter path of the spanner given by edges and vertices in C ′′. Let D be

the walk obtained from D by contracting each maximal subpath of D that is inside an

ε-cluster of C ′′ to a single vertex.

Definition 2.2.15 (Canonical pair). Let S ⊆ C ∪D be a subset of ε-clusters of C ′′ such

that |S| ≤ 2g
ε and the credits of ε-clusters in S and MST edges of C ′′ are sufficient to

maintain invariant DC1 for C ′′. Let Y be an ε-cluster of C that is not in S. We call

(S, Y ) a canonical pair of C ′′.

Note that we do not claim the existence of canonical pairs. Indeed, the main goal of

this subsection is to prove that a canonical pair exists for C ′′ since its existence implies

that C ′′ \S 6= ∅. Thus, we can use credits of ε-clusters in C ′′ \S to pay for level-i spanner

edges incident to ε-clusters of C ′′ and ε-clusters of short affix clusters hat have sibling

affices in C ′′.

Claim 2.2.16. If C ′′ has a canonical pair (S, Y ), we then can pay for every level-i

spanner edge that is incident to ε-clusters of C ′′ and ε-clusters of short affix clusters that

have sibling affices in C ′′ using credits of ε-clusters in C ′′ \ S when c(ε) = Ω(g
2

ε3
).

Proof. Let R be a set of ε-clusters that contains every ε-cluster in S ∪ {Y } and affix

short clusters in Phase 5 whose sibling affices contain an ε-cluster of D. Recall that C ′

is augmented by attaching paths of ε-clusters via MST edges. Thus, R contains at most

two short clusters as a result of Phase 5 (see Figure 2.5).

Since |S| ≤ 2g
ε and each short cluster has at most 2g

ε ε-clusters, |R| = O(gε ). Since

each ε-cluster is incident to at most ∆g,ε level-i spanner edges, ε-clusters inR are incident

to at most O(g
2

ε2
) level-i spanner edges. Recall that each level-i spanner edge has length

at most `. By invariant DC1 for level i − 1, Y has at least c(ε)ε`/2 credits. Thus, by

choosing c(ε) = Ω(g
2

ε3
), Y ’s credit is sufficient to pay for every spanner edge incident to

ε-clusters in R.

For each ε-cluster z in C ′′ \ R, the credit of z is sufficient to pay for incident level-i

spanner edges incident to z. However, we also need to pay for short affix clusters in

Phase 5, whose siblings augment C ′ in Phase 5. To afford this, we use half the credit of

each ε-cluster in C \R (of value at least c(ε)ε`/4 by invariant DC1 for level i− 1) to pay
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XQ

Figure 2.5: Clusters C,C ′ and C ′′ are enclosed by yellow-shaded, cyan-shaded and green-
shaded regions, respectively. Round vertices, square vertices and triangular vertices are
in C,C ′, C ′′ respectively. The red path is the cluster walk D. Shaded ε-clusters are in S
and Y marked with double-circle ε-cluster. Short affix clusters in Phase 5 are enclosed
by dotted blue curves. R contains S ∪{Y } and two (annotated) short affix clusters that
have two corresponding sibling affices in D.

for level-i spanner edges incident to it. Since each ε-cluster is incident to at most ∆g,ε

level-i spanner edges, this credit is sufficient when c(ε) ≥ 4∆g,ε

ε = Ω( g
ε2

).

Since C ′ is augmented by attaching cluster paths via MST edges, an affix cluster not

in R has its sibling in a subset of C ′′ \R. For each short affix cluster X (see Figure 2.5)

whose sibling affix, say Q, is in C ′′, we use the remaining half of the credits of the ε-

clusters of Q to pay for the level-i spanner edges incident to X . Note that X is incident

to at most 2g
ε ∆g,ε level-i spanner edges. Since ediam(Q) ≥ `, cr(Q) ≥ c(ε)` by invariant

DC1 for level i− 1. Thus, half the credit of Q is sufficient when c(ε) ≥ 2g
ε ∆g,ε = g2

ε2
.

By Claim 2.2.16, it remains to show that C ′′ has a canonical pair (S, Y ). Let X be

a set of ε-clusters. We define a subset of X as follows:

bXc2g/ε =

X if |X | ≤ 2g/ε

any subset of 2g/εε-clusters of X otherwise

Claim 2.2.17. If C is constructed in Phase 2, then C ′′ has a canonical pair.

Proof. Recall C is a tree of ε-clusters. That implies C ′′ is also a tree of ε-clusters that

are connected by MST edges. Thus, D is a simple path. Since C contains a branching

ε-cluster X, there must be at least one neighbor ε-cluster of X that is not in D. Let Y

be an arbitrary neighbor ε-cluster in C of X and S = bDc2g/ε . By definition, |S| ≤ 2g
ε .
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It remains to show that credits of ε-clusters of S and MST edges of D is sufficient

to guarantee invariant DC1 for C ′′. Suppose that S contains at least 2g
ε ε-clusters. By

invariant DC1 for level i− 1, cr(S) ≥ c(ε)g` ≥ c(ε) max(diam(C ′′), `/2) which is enough

to maintain invariant DC1. Thus, we can assume that S contains every ε-cluster of D.

Since D consists of ε-clusters and MST edges only, we have:

diam(D) ≤
∑
Xε∈D

diam(Xε) +
∑

e∈MST(D)

w(e)

Thus, credits of ε-clusters of S and MST edges of D are sufficient to maintain DC1.

We now consider the case when C is constructed in Phase 3. Recall C consists of

four paths P1,P2,Q1,Q2 that are not necessarily distinct and a single spanner edge e

(see Figure 2.4).

Claim 2.2.18. If the four paths P1,P2,Q1,Q2 are distinct, then C ′′ has a canonical

pair.

Proof. Let F = {P1,P2,Q1,Q2}. By construction in Phase 3, C is an acyclic graph of

ε-clusters connected by MST edges and a single spanner edge e. Thus, D is a simple

path. That implies at most two paths, say P ′ and Q′, among four paths in F share

ε-clusters with D. Let other two paths of F be P ′′ and Q′′. Let Y be an arbitrary

ε-cluster of Q′′ and

S = bD ∪ P ′ ∪Q′ ∪ P ′′c2g/ε

If S = 2g
ε , then cr(S) ≥ c(ε)g` by invariant DC1 for level i − 1. Hence, credits of ε-

clusters in S are sufficient to maintain DC1 for C ′′ since diam(C ′′) ≤ g` as shown in the

previous section.

Thus, we can assume that S < 2g
ε . In this case, S = D ∪P ′ ∪Q′ ∪P ′′. If D does not

contain the spanner edge e, using the same argument in Claim 2.2.17, we can show that

credits of ε-clusters and MST edges of D are sufficient to maintain invariant DC1 for C ′′.

Otherwise, we assign credits of P ′′ to e. Since ediam(P ′′) ≥ ` ≥ w(e), by invariant DC1

for level i− 1, cr(P ′′) ≥ c(ε)ediam(P ′′) ≥ c(ε)w(e). Thus e is assigned credit of at least

c(ε) times its length. We then use credits of ε-clusters and edges of D to maintain DC1.

The rest of the proof is similar to Claim 2.2.17.
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We assume that P1 = Q1 = Pxy. In this case, C contains a unique cycle, which is

{e} ∪ Pxy. We first prove that D is a path when ε is sufficiently small.

Claim 2.2.19. D is a path if ε is smaller than 1
2g .

Proof. If D is not simple, it contains a cycle Cxy. Let u and v be two vertices of the same

ε-cluster, say Xε, such that D enters and leaves Cxy at u and v, respectively. Then, the

subpath Duv between u and v of D must contain edge e of length at least `/2. However,

we can shortcut Duv through Xε by a path of length at most diam(Xε) ≤ gε` by DC2.

For ε < 1
2g , the shortcut has length smaller than w(Duv), contradicting that D is a

shortest path.

Observation 2.2.20. Pxy 6⊆ D.

Proof. For otherwise, D could be shortcut through e at a cost of

≤ diam(Cx) + diam(Cy) + w(e)︸ ︷︷ ︸
cost of shortcut

− (diam(Pxy)− diam(Cx)− diam(Cy))︸ ︷︷ ︸
lower bound on diameter

≤ w(e) + 4gε`− (1 + sε)w(e) (by the stretch condition for e)

≤ 4gε`− sε`/2 (since w(e) ≥ `/2)

This change in cost is negative for s ≥ 8g + 1.

Claim 2.2.21. C ′′ has a canonical pair.

Proof. Let Y be an ε-cluster of Pxy \ D. Y exists by Observation 2.2.20. We define:

S = bD ∪ P2 ∪Q2 ∪ Pxy \ {Y }c2g/ε

If |S| = 2g
ε , then the total credit of ε-clusters in S is at least c(ε)g` by invariant DC1 for

level i− 1. Thus credits of ε-clusters in S is sufficient to maintain invariant DC1 for C ′′.

That implies C ′′ has a canonical pair.

Otherwise, S = D ∪ P2 ∪Q2 ∪ Pxy \ {Y }. If D does not contain the spanner edge e,

then by the same argument in Claim 2.2.17, we can argue that credits of ε-clusters and

MST edges in D is enough to maintain invariant DC1 for C ′′. Thus, we can assume that

D contains e. We consider two cases:
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1. D contains an internal ε-cluster of Pxy. Since D is a path by Claim 2.2.19, its

does not contain any internal ε-cluster of at least one of two paths P2,Q2, w.l.o.g.,

say P2. Since ediam(P2) ≥ `, by invariant DC1 for level i − 1, the total credit

of ε-clusters in P2 is at least c(ε)` which is at least c(ε)w(e). Thus, by assigning

credits of P2 to e, every edge of D has credit at least c(ε) times it length. Thus,

credits of ε-clusters and edges of D are enough to maintain DC1 for C ′′.

2. D does not contain any internal ε-cluster of Pxy. We have:

diam(Pxy \ {Cx, Cy})

≥ diam(Pxy)− diam(Cx)− diam(Cy)

≥ (1 + sε)w(e)− diam(Cx)− diam(Cy) (by the stretch condition)

≥ w(e) + sε`/2− 2gε` (by bounds on w(e) and DC2)

≥ w(e) + gε` (for s ≥ 8g + 1, as previously required)

(2.4)

The credit of the MST edges and ε-clusters of Pxy \ {Cx, Cy} is at least:

c(ε) · (MST(Pxy \ {Cx, Cy}) + ediam(Pxy \ {Cx, Cy}))

≥ c(ε) · diam(Pxy \ {Cx, Cy})

≥ c(ε)(w(e) + gε`)

Since diam(Y ) ≤ gε` by invariant DC2 for level i− 1, the total credit of ε-clusters

of Pxy \ {Cx, Cy, Y } and MST edges of Pxy \ {Cx, Cy} is at least c(ε) ·w(e). Thus,

by assigning this credit to e, we can argue that credits of ε-clusters and edges of D
are enough to maintain DC1 for C ′′.

2.2.3.4 No Phase 1,2 or 3 clusters

We now deal with the case when there are no level-i clusters formed in Phase 1,2 and 3.

Observation 2.2.22. There is no level-i cluster formed in Phase 1, 2 and 3 if and only

if (i) the tree T of ε-clusters is a path and (ii) every spanner edge is incident to an

ε-cluster in an affix of T having effective diameter at most 2`.

By Claim 2.2.11, we only need to pay for spanner edges incident to short affix clusters

of T . Since short clusters have at most 2g
ε ε-clusters, there are at most

4g∆g,ε

ε such
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spanner edges, that we assign to set B (Lemma 2.2.6). Below, we show that w(B) ≤
O(g

2

ε2
) · w(MST) across all levels, implying Lemma 2.2.6.

Claim 2.2.23. w(B) = O(g
2

ε2
) · w(MST).

Proof. We have:

4g∆g,ε

ε

∑
i

`i ≤
4g∆g,ε

ε
`max

∑
i

εi, where `max = maxe∈S{w(e)}

≤ 4g∆g,ε

ε
w(MST)

∑
i

εi

≤ 4g∆g,ε

ε
w(MST)

1

1− ε
=

12g2

ε2
· w(MST)

(2.5)

2.3 The Subset Traveling Salesperson Problem

In this section, we give the first polynomial time approximation scheme for the subset

Traveling Salesperson Problem (subset TSP) in H-minor-free graphs. Our main techni-

cal contribution is a polynomial time algorithm that, given an edge-weighted H-minor-

free graph G and a set of k terminals T , finds a subgraph of G with weight at most

OH(poly(1
ε ) log k) times the weight of the minimum Steiner tree for T that preserves

pairwise distances between terminals up to (1 + ε) factor. This is the first such spanner

for H-minor-free graphs. Given this spanner, we use the PTAS framework in Section 2.1

to obtain a PTAS for the subset TSP problem. Our PTAS generalizes PTASes for the

same problem by Klein [61] for planar graphs and by Borradaile, Demaine and Tazari [18]

for bounded genus graphs.

Theorem 2.3.1. For any fixed ε > 0, there is a polynomial time algorithm that, given

an edge-weighted H-minor-free graph G and a set of k terminals T in G, finds a tour

that visits every terminal of T at least once whose length is at most (1 + ε) times the

length of the optimal tour.

The precise running time of our algorithm in Theorem 2.3.1 is nOH(poly( 1
ε
)). .
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Light spanners A light spanner for subset TSP, called a light subset spanner, is a

subgraph S that satisfies two conditions: (i) dG(x, y) ≤ dS(x, y) ≤ (1 + ε)dS(x, y) for

every x, y ∈ T and (ii) w(S) ≤ f(ε)w(ST) where ST is an optimal Steiner tree that

spans T and f(ε) is a constant, called lightness, that depends on ε only.

Klein [61] was the first to give a polynomial time construction of light subset span-

ners for planar graphs. Klein’s construction can be generalized to bounded genus graphs

via the cutting technique, as noted by Borradaile, Demaine and Tazari [18]. Borradaile,

Demaine and Tazari [18] conjectured that by using Robertson and Seymour’s decompo-

sition [82], it is possible to extend Klein’s construction to minor-free graphs. However,

this direction has not been fruitful. The main difficulty is that known subset spanner

constructions rely on a charging argument based on non-crossing embeddings of input

graphs. It is unclear how the charging argument can be modified at the presence of

crossings. Thus, even in bounded treewidth graphs, which are normally regarded as easy

instances of minor-free graphs, it is unknown whether light subset spanners exist.

In this thesis, we present a different path toward constructing a subset spanner

with small weight. First, we introduce the `-close spanner problem that captures the

difficulty of constructing light subset spanners. An `-close spanner for a terminal set T

is a subgraph that almost preserves distances between terminal pairs whose shortest

paths have weight at most `. We show how to construct `-close spanners of small

weight based on two ingredients: (1) single-source spanners for general graphs that

generalize Klein’s planar single-source spanners [61] and (2) shortest path separators [1]

for H-minor-free graphs. Our `-close spanner construction is inspired by the terminal

path cover construction for planar graphs of Cheung, Goranci and Henzinger [31]. An

OH(log k) factor is introduced into the lightness of `-close spanners. Second, we show

a lightness-preserving reduction from constructing light subset spanners to constructing

light `-close spanners. Our reduction is inspired by the analysis of greedy spanners

presented in Section 2.2. Since an O(log k) factor is introduced in the first step, the

overall lightness of our spanner is OH(log k poly(1
ε )). For bounded treewidth graphs, we

are able to remove O(log k) factor based on the recent work of Krauthgamer, Nguy˜̂en,

and Zondiner [65] in constructing terminal distance preserving minors.

Theorem 2.3.2. Let T be a subset of k vertices of an H-minor-free graph G. Let ST

be a minimum Steiner tree of G for T . There is a polynomial time algorithm that can
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find a subgraph S of G such that:

1. dG(x, y) ≤ dH(x, y) ≤ (1 + ε)dG(x, y) for every two distinct terminals x, y ∈ T .

2. w(S) = OH(poly(1
ε ) log k)w(ST).

where OH(.) hides the dependency of the constant on |H|. Furthermore, if G has treewidth

tw, then w(S) = O(poly(1
ε )tw

5)w(ST).

Using the standard dynamic program for bounded treewidth graphs [15], we can

find an optimal solution for subset TSP in treewidth-tw graphs in 2O(tw log tw)nO(1) time.

Since our spanner has a O(log k) factor in the lightness is not a light spanner as in

the description of the PTAS framework in Section 2.1, we need a dynamic program of

running time 2O(tw)nO(1). We apply the rank based method [16] to achieve this result.

Theorem 2.3.3. There is a 2O(tw)nO(1)-time algorithm that can solve subset TSP opti-

mally in graphs of treewidth at most tw.

We present the proof of Theorem 2.3.3 in Section 2.3.5.

2.3.1 Subset spanners

Let wG : E(G) 7→ R+ be the weight function on edges of G. When the graph is clear from

context, we would drop the subscript in the weight function. We say an edge-weighted

graph H is a strict minor of G if (i) H is a minor of G, (ii) V (H) ⊆ V (G) and (iii) for

every edge e ∈ H with two endpoints x, y, wH(e) = dG(x, y).

Given a terminal set T of a graph G, Krauthgamer, Nguy˜̂en, and Zondiner [65]

showed that G can be compressed by applying the minor transformation such that the

distance between every pair of terminals is preserved.

Lemma 2.3.4 (Theorem 2.1 [65]). Let T be a set of k terminals in a graph G. There is

a strict minor G′ of G such that (i) T ⊆ V (G′), (ii) V (G′) = O(k4) and E(G′) = O(k4)

and (iii) dG′(x, y) = dG(x, y) for every two distinct terminals x, y ∈ T . Furthermore, G′

can be found in polynomial time.

If G has bounded treewidth, Krauthgamer, Nguy˜̂en, and Zondiner [65] showed a

stronger version of Lemma 2.3.4.
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Lemma 2.3.5. Let T be a set of k terminals in a graph G of treewidth at most tw.

There is a strict minor G′ of G such that (i) T ⊆ V (G′), (ii) V (G′) = O(tw3k) and (iii)

dG′(x, y) = dG(x, y) for every two distinct terminals x, y ∈ T . Furthermore, we can find

G′ in polynomial time.

Lemma 2.3.5 allows us to obtain a stronger bound on the weight of the subset spanner

in bounded treewidth graphs as stated in Theorem 2.3.2.

2.3.2 Subset spanner construction overview

By Lemma 2.3.4, we can assume w.l.o.g that G only has O(k4) vertices since we can find

a subset spanner for terminals in the compressed graph of G and then decompress the

subset spanner by replacing each edge by a shortest path between the edge’s endpoints

in G. Thus, the log n factor incurred in the weight of our subset spanner construction

below can be reduced to log k. We say two terminals x, y are `-close if dG(x, y) ≤ `.

Definition 2.3.6 (`-close spanners). Given a graph G and a set of terminals T , a

subgraph S of G is an `-close spanner for T if for every two distinct `-close terminals

x, y ∈ T , dG(x, y) ≤ dS(x, y) ≤ (1 + ε)dG(x, y).

Our first major contribution is to show that one can obtain an `-close spanner of

small weight in H-minor-free graphs. Since there are at most O(k2) terminal pairs, one

can trivially obtain a spanner of weight at most O(k2`) by adding in a shortest path

for each `-close terminal pair. However, in our problem, we need an `-close spanner of

smaller weight. By exploiting H-minor-freeness, we can replace a factor k by a factor

log n. We also show a stronger result for graphs of treewidth at most tw.

Theorem 2.3.7. Given an H-minor-free graph G of n vertices, a terminal set T of

size k and a positive parameter `, there is a polynomial time algorithm that can find an

`-close spanner S for T with weight at most OH(`k log n poly(1
ε )). Furthermore, if G has

treewidth at most tw, then w(S) = O(tw5`k).

When G has treewidth at most tw, Lemma 2.3.5 tells us that shortest paths between

terminals in bounded treewidth graphs share many edges. Thus, by carefully choosing a

set of shortest paths between terminal pairs, we can obtain an `-close spanner of weight

at most O(k`) from such paths. One may ask whether we can apply Lemma 2.3.4 to
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obtain an `-close spanner with small weight for minor-free graphs. In our construction,

to obtain an `-close spanner with (nearly) constant lightness, we need a strict minor of

(nearly) linear size. Lemma 2.3.4 only gives us an `-close spanner of lightness O(k3),

which is worst than the trivial spanner that includes all pairwise shortest paths.

A natural idea to deal with H-minor-free graphs is extending Lemma 2.3.5 to H-

minor-free graphs. However, a negative result by Krauthgamer, Nguy˜̂en, and Zondiner [65]

showed that it is impossible to do so, even in planar graphs. Formally, they showed that

any minor must have at least Ω(k2) Steiner vertices3 to preserve pairwise distances of

k terminals exactly. Even in the approximate setting where one seeks to approximately

preserve terminal distances up to (1+ε) factor, the best known approximate terminal dis-

tance preserving minors for planar graphs have Ω(k2 poly(log k)/ε2) Steiner vertices [31].

Inspired by the construction of the terminal path cover for planar graphs by Cheung,

Goranci and Henzinger [31] that was in turn inspired by the construction of distance

oracles for H-minor-free graphs by Kawarabayashi, Klein and Sommer [57], we propose

an `-close spanner construction based on single-source spanners. Instead of bounding

the number of Steiner vertices as in previous papers [57, 31], we bound the weight of the

spanner.

Our second major contribution is a reduction from the problem of constructing a

subset spanner to that of constructing an `-close spanner.

Theorem 2.3.8. Given an H-minor-free graph G of n vertices and a terminal set T

of size k. If for any given ` and any subset T ′ ⊆ T , there is an `-close spanner for T ′

with weight at most O(τ(ε, k, n)|T |′`), then G has a subset spanner with weight at most

O(poly(1
ε )τ(ε, k, n))w(ST) where τ(ε, k, n) is a function of ε, k, n.

Theorem 2.3.2 follows from Theorem 2.3.8 since τ(ε, k, n) = O(log n poly(1
ε )) when

G is H-minor-free and τ(ε, k, n) = O(tw5) when G has treewidth at most tw (Theo-

rem 2.3.7). By Lemma 2.3.4, we can further improve the log n factor to log k.

Our reduction is based on the iterative super-clustering technique that we use to

show that greedy (1 + ε)-spanners in H-minor-free graphs are light in Section 2.2.

3Vertices in V (G) \ T are called Steiner vertices.
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2.3.3 Constructing `-close spanners

In this section, we prove Theorem 2.3.7. We first show how to construct `-close spanners

for bounded treewidth graphs.

2.3.3.1 Proof of Theorem 2.3.7 for bounded treewidth graphs

Suppose that G has treewidth at most tw. Let G′ be a strict minor of G as stated

in Lemma 2.3.5. We remove from E(G′) every edge e that has wG′(e) > ` since no

shortest paths between terminals in G′ of weight at most ` can use e. Since G′ has

treewidth at most tw (it is a minor of G), |E(G′)| ≤ tw|V (G′)| (see Kloks [63]). Since

|V (G′)| = O(tw3k), |E(G′)| = O(tw4k). Thus, wG′(E(G′)) = O(tw4`k). Let S be the

subgraph of G obtained by replacing every edge of E(G′) by a shortest path in G between

its endpoints. We have wG(S) ≤ wG′(E(G′)) = O(tw4`k).

We now show that dG(x, y) = dS(x, y) for every two distinct `-close terminals x, y ∈
T . Let P ′ be a shortest path between x and y in G′. Let {e1, e2, . . . , et} be the set

of edges in P ′, where t is the number of edges of P ′. Since dG′(x, y) = dG(x, y) ≤ `,

no edges in P ′ are removed. Replace each edge ei in P ′ by a shortest path Pi in G

between its endpoints. Let P = P1 ◦ P2 ◦ . . . ◦ Pt. Since P is a walk between x, y in

S, we have wS(P ) ≥ dS(x, y). By construction of S, wS(P ) = wG′(P
′) = dG′(x, y)

and by Lemma 2.3.5, dG(x, y) = dG′(x, y). Thus, wS(P ) = dG(x, y). That implies

dS(x, y) = dG(x, y).

2.3.3.2 Proof of Theorem 2.3.7 for H-minor-free graphs

Our starting point is the construction of single-source spanners for planar graphs by

Klein (Theorem 4.1 [61]). We show that Klein’s single source-spanner has small weight

even without planarity.

Lemma 2.3.9. Let p be a vertex and P be a shortest path in a graph G. Let y0 ∈ P
be such that dG(p, y0) = dG(p, P ). Let R = dG(p, P ). Fix an endpoint of P to be its

left-most vertex. Let {y1, . . . , yI} ⊆ V (P ) be a maximal set of vertices such that yi is the

closest point to the right of yi−1 such that:

(1 + ε)dG(p, yi) < dG(p, yi−1) + dP (yi−1, yi) 1 ≤ i ≤ I (2.6)
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Figure 2.6: A single-source spanner constructed by Klein’s algorithm. The thick path is
R.

We symmetrically define a maximal set of points (y−1, y−2, . . . , y−J) to the left of y0 on

P . Let Q = {Q−J , Q−J+1, . . . , Q−1, Q0, Q1, . . . , QI} be a set of shortest paths where Qi

is a shortest p-to-yi path in G, −J ≤ i ≤ I. Then, we have:

(1) dQ∪P (p, q) ≤ (1 + ε)dG(p, q) for every q ∈ P .

(2) w(Q) ≤ 8ε−2R.

(3) I ≤ 8ε−2 and J ≤ 8ε−2.

(4) dP (y0, yI) ≤ 4ε−1R and dP (y−J , y0) ≤ 4ε−1R.

Proof. See Figure 2.6 for an illustration. Property (1) follows directly from the maxi-

mality of the set of points y−J , . . . , y0, . . . , yI . We now show property (4). By symmetry,

it is sufficient to show that:

dP (y0, yI) ≤ 4ε−1R (2.7)

Suppose otherwise. Then, there exists ` ∈ {0, . . . , I − 1} such that dP (y0, y`) ≤ 4ε−1R

and dP (y0, y`+1) > 4ε−1R. We have:

(1 + ε)dG(p, y`+1) ≥ (1 + ε)(dG(y0, y`+1)− dG(p, y0)) (by triangle inequality)

= (1 + ε)(dG(y0, y`+1) + dG(p, y0))− 2(1 + ε)dG(p, y0)

≥ (dG(y0, y`+1) + dG(p, y0)) + εdG(y0, y`+1)− 2(1 + ε)dG(p, y0)

= (dG(y0, y`) + dG(p, y0)) + dP (y`, y`+1) + εdG(y0, y`+1)− 2(1 + ε)dG(p, y0)

≥ dG(p, y`) + dP (y`, y`+1) + εdG(y0, y`+1)− 2(1 + ε)dG(p, y0)

> dG(p, y`) + dP (y`, y`+1) + 4R− 2(1 + ε)R (since εdP (y0, y`+1) > 4R)

≥ dG(p, y`) + dP (y`, y`+1) (since ε < 1)
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contradicting Equation (2.6). Thus, no such ` exists.

To prove (3), we use the argument in the proof of Theorem 4.1 of Klein [61], that we

elaborate here for completeness.

w(QI) < (1 + ε)−1(w(QI−1) + dP (yI−1, yI))

≤ (1 + ε)−1w(QI−1) + dP (yI−1, yI)

< (1− ε/2)w(QI−1) + dP (yI−1, yI) (since ε < 1)

≤ w(QI−1)− εR

2
+ dP (yI−1, yI)

≤ w(Q0)− I εR
2

+ dP (y0, yI)

= (1− εI/2)R+ dP (y0, yI)

≤ (1− εI/2)R+ 4ε−1R (by Equation (2.7))

(2.8)

Since w(QI) ≥ R, by Equation (2.8), we have I < 8ε−2. By a similar argument, we can

show that J < 8ε−2.

To prove (2), we sum both sides of Equation (2.6) for every 1 ≤ i ≤ I.

(1 + ε)(w(Q0) + . . .+ w(QI)) ≤ (w(Q0) + . . .+ w(QI))− w(QI) + dP (y0, yI)

≤ (w(Q0) + . . .+ w(QI)) + 4ε−1R (by (2.7))
(2.9)

That implies w(Q0) + . . . + w(QI) ≤ 4ε−2R. By a symmetric argument, we can show

that w(Q−J) + . . .+ w(Q0) ≤ 4ε−2R.

Let SSSpanner(G,P, p, ε) be the subgraph of Lemma 2.3.9. We can also obtain a

generalization of Klein’s bipartite spanner (Theorem 5.1 [61]) for non-planar graphs from

Lemma 2.3.9.

Corollary 2.3.10. Let W be a walk and P be a shortest path in a graph G. We denote

by R the distance between W and P . That is R = minv∈W dG(v, P ). Then, there is a

subgraph H of G such that:

1. For every p ∈W, q ∈ P , dH∪P (p, q) ≤ (1 + ε)dG(p, q).

2. w(H) ≤ O(ε−3)w(W ) +O(ε−2)R.
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Proof. Let W = {v0, v1, . . . , vr} where r is the length of W . Note that there may

be a vertex that appears multiple times along W . We define a sequence of vertices

Y = {y0 = v0, y1, . . . , yI} along W as follows: (i) y0 = v0 and (ii) yi is a closet vertex

after yi−1 such that:

dW (yi, yi−1) > εdG(yi, P ) (2.10)

For each yi, letQi ← SSSpanner(G,P, yi, ε). Qi is a collection of shortest paths with

source yi. Let H = Q0 ∪ . . . ∪ QI . We first bound the weight of H. Let Ri = dG(yi, P ).

By Equation (2.10), we have:

I∑
i=1

Ri ≤ ε−1dW (y0, yI) = ε−1w(W )

Since R0 ≤ w(W ) +R, we have:

I∑
i=0

Ri ≤ (ε−1 + 1)w(W ) +R (2.11)

By (2) of Lemma 2.3.9, we have:

w(H) ≤
I∑
i=0

w(Qi) ≤ 8ε−2
I∑
i=0

Ri (2.12)

From Equation (2.11) and Equation (2.12), we obtain the desired upper bound on the

weight of H.

We now show property (1). If p ∈ Y , then property (1) is satisfied by construction and

Lemma 2.3.9. Thus, we can assume that p 6∈ Y . Let ` be such that p ∈ W [y`, y`+1]. (If

` = I, we define y`+1 to be the endpoint of W after y`). Since p 6∈ Y , by Equation (2.10),

dW (p, y`) < εdG(p, P ) which is at most εdG(p, q). Let M be a path from p to q that

consists of W [p, y`] and a shortest y`-to-q path in H ∪ P . We have:
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w(M) ≤ w(dW (p, y`)) + dH∪P (y`, q)

≤ w(dW (p, y`)) + (1 + ε)dG(y`, q)

≤ w(dW (p, y`)) + (1 + ε)(dG(y`, p) + dG(p, q)) (by triangle inequailty)

≤ (2 + ε)dW (y`, p) + (1 + ε)dG(p, q) (dG(p, y`) ≤ dW (p, y`))

< (2 + ε)εdG(p, q) + (1 + ε)dG(p, q) (dW (p, y`) < εdG(p, q))

≤ (1 + 4ε)dG(p, q) (since ε < 1)

(2.13)

By setting ε′ = 4ε we have property (1).

Claim 2.3.11. Let P be a shortest path of an edge-weighted graph G. Let Q = {Q1, . . . , Qr}
be a set of shortest paths in G such that Qi ∩P 6= ∅ and w(Qi) ≤ `, for every 1 ≤ i ≤ r.
We denote the endpoints of each Qi by si and ti. Let k be the number of distinct

endpoints of Q. There is a subgraph H of G with weight at most O(kε−2`) such that

dH(si, ti) ≤ (1 + ε)dG(si, ti) for every 1 ≤ i ≤ r.

Proof. We first delete every edge of G of length more than ` since no path in Q can

contain such an edge. Let X = {x1, x2, . . . , xk} be the set of endpoints of all paths

in Q. Let Rj = dG(xj , P ) and yj be the closet vertex of xj in P . Since Qi ∩ P 6= ∅
and w(Qi) ≤ ` for every i, dG(xj , P ) ≤ ` for every 1 ≤ j ≤ k. For each j, let Qj ←
SSSpanner(G,P, xj , ε). Let Pj be a minimal subpath of P that contains every vertex

of distance (in P ) at most 4ε−1` from yj . Since Pj has no edge of length more than `,

w(Pj) ≤ (8ε−1 + 2)`. Since |Rj | ≤ `, by (4) of Lemma 2.3.9, we have:

Observation 2.3.12. Pj contains all endpoints on P of paths in Qj.

Recall paths in Qj share endpoint xj . Let:

H =
k⋃
j=1

(Qj ∪ Pj) (2.14)

We first bound the weight of H. For any j, 1 ≤ j ≤ k, by (2) of Lemma 2.3.9,

w(Qj) ≤ O(ε−2)Rj ≤ O(ε−2`)
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Figure 2.7: Shortest path P is the thin black curve and shortest path Qi between two
terminals si, ti is the thick black curve. Pa and Pb are highlighted red and blue, respec-
tively.

Thus, w(H) ≤ O(kε−2)`.

We now show that dH(si) ≤ (1 + ε)dG(si, ti) for any 1 ≤ i ≤ r. Let u and v be the

first vertex and the last vertex (from si) in Qi ∩ P , respectively. Suppose that xa = si

and xb = ti for some a, b, 1 ≤ a, b ≤ k (see Figure 2.7). Since dP (ya, u) = dG(ya, u) ≤
dG(si, ya) + dG(ya, u) ≤ 2` which is at most (4ε−1 + 1)` when ε < 1. Thus, u ∈ Pa.

Similarly, we can show that v ∈ Pa. That implies:

Observation 2.3.13. Subpath P [u, v] of P is a subgraph of H.

By a similar argument, we can show that u, v both are in Pb (see Figure 2.7). By (1)

of Lemma 2.3.9 and Observation 2.3.12, we have:

dH(si, u) ≤ (1 + ε)dG(si, u) dH(v, ti) ≤ dG(v, ti) (2.15)

Since P is a shortest path of G, w(P [u, v]) = w(Qi)[u, v] and both have length at most

`. Thus, we have:

dH(si, ti) ≤ dH(si, u) + dH(u, v) + dH(v, ti)

= dH(si, u) + w(Qi[u, v]) + dH(v, ti) (by Observation 2.3.13)

≤ (1 + ε)dG(si, u) + w(Qi[u, v]) + (1 + ε)dG(v, ti) (by Equation (2.15))

= (1 + ε)w(Qi[si, u]) + w(Qi[u, v]) + (1 + ε)w(Qi[v, ti])

≤ (1 + ε)w(Qi[si, ti]) = (1 + ε)dG(si, ti)
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For any two paths P and Q, we say P crosses Q if P ∩ Q 6= ∅. We say P crosses a

set of paths Q if there exists a path Q ∈ Q such that P crosses Q. By Claim 2.3.11, we

have:

Lemma 2.3.14. Let P be a set of shortest paths in an edge-weighted graph G. Let

Q = {Q1, Q2, . . . , Qr} be another set of shortest paths in G such that Qi crosses P and

w(Qi) ≤ `, for every 1 ≤ i ≤ r. We denote the endpoints of each Qi by si and ti. Let k

be the number of distinct endpoints of Q. There is a subgraph H of G with weight at most

O(kε−2`|P|) such that dH(si, ti) ≤ (1 + ε)dG(si, ti) for every 1 ≤ i ≤ r. Furthermore, H

can be found in polynomial time.

Proof. Fix an ordering of paths P1, P2, . . . , Ph in P where h = |P|. For each path

Pj , 1 ≤ j ≤ h, let Qj be the set of paths in Q such that each path in Q crosses Pj

and does not cross any Pi for all i < j. Let Hj be the subgraph of G obtained by

applying Claim 2.3.11 with parameters G,Pj ,Qj , ε and `. Let H = ∪hj=1Hj . Then,

w(H) ≤
∑h

i=1w(Hi) = O(kε−2`|P|). The stretch guarantee of H follows directly from

Claim 2.3.11.

Let PTPSpanner(G,P,Q, `, ε) (PTP means path-to-path.) be the subgraph of

Lemma 2.3.14. We use this to construct an `-close spanner S as stated in Theorem 2.3.7.

(See Figure 2.8.) The input to EllCloseSpanner(G,T,Q, `, ε) consists of an edge-

weighted H-minor-free graph G, a set of terminals T , a set of shortest paths Q =

{Q1, . . . , Qh} between `-close terminals in T and the stretch parameter ε. The algorithm

makes use of the following shortest path separator for H-minor-free graphs by Abraham

and Gavoille [1].

Lemma 2.3.15 (Theorem 1 [1]). For every connected H-minor-free graph G of n ver-

tices, there is a family of γ sets of paths Ω = {P1,P2, . . . ,Pγ} of G such that:

1.
∑γ

i=1 |Pi| = OH(1).

2. P1 is a set of shortest paths of G and Pi is a set of shortest paths of G\V (∪j<iPi)
for i ≥ 2.

3. Connected components of G \ V (Ω) have size at most n/2.

We represent the execution of EllCloseSpanner(G,T,Q, `, ε) by a recursion tree

T where each node represents a recursive call on a subgraph, say K of G, and its child
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EllCloseSpanner(G,T,Q, `, ε)
if |T | ≤ 1 return ∅
S ← ∅
P0 ← ∅; Ω← {P1, . . . ,Pγ} as in Lemma 2.3.15
for i← 1 to γ

Gi ← G \ (∪i−1
j=0Pj)

Qi ← the set of paths in Q that cross Pi
S ← S∪ PTPSpanner(Gi,Pi,Qi, `, ε)
Q ← Q \Qi

for each component G′ of G \ V (Ω)
T ′ ← T ∩ V (G′)
Q′ ← remaining paths in Q with both endpoints in T ′

S ← S∪ EllCloseSpanner(G′, T ′,Q′, `, ε)
return S

Figure 2.8: An `-spanner construction algorithm.

nodes are recursive calls on connected components of K \ΩK . Here ΩK is a shortest-path

separator of K as in Lemma 2.3.15. The root node of T is a call on G. Since the size of

child graphs in recursive calls is at most half the size of the parent graph, T has depth

O(log n).

We note that in each recursive call EllCloseSpanner(G′, T ′,Q′, `, ε) in the algo-

rithm in Figure 2.8, paths in Q′ are shortest paths of G′ since they are shortest paths

in G. Observe that none of the paths in Q′ of the second for loop contains a vertex of

V (Ω) since any path of Q that crosses at least one set of paths in Ω will be removed in

the first for loop.

We now bound the total weight of S
def
= EllCloseSpanner(G,T,Q, `, ε). Consider

i-th iteration in the first for loop in the algorithm in Figure 2.8. We have:

Observation 2.3.16. Qi is a set of shortest paths in Gi.

By Lemma 2.3.14 and (1) of Lemma 2.3.15, the total weight of S after the first for

loop is at most:

O(kε−2`

γ∑
i=1

|Pi|) = OH(kε−2`)

That implies at each level of T , the weight of the returned subgraph of each node

is OH(kε−2`) plus the weight of the subgraphs returned from recursive calls. Since the
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depth of T is O(log n), w(S) ≤ OH(kε−2` log n).

To complete the proof of Theorem 2.3.7, we need to show that dS(x, y) ≤ (1 +

ε)dG(x, y) for every two distinct `-close terminals x, y ∈ T . Let Qx,y be the shortest

path between x, y in Q. By triangle inequality, we can assume that Qx,y contains no

other terminals except x and y. Since the algorithm only stops after each component of

G contains at most one terminal, Qx,y must be removed from Q at some node of T , say

τ . More precisely, Qx,y is removed in some iteration, say i, in the first for loop of τ . By

Observation 2.3.16 and Lemma 2.3.14, we have:

dS(x, y) ≤ (1 + ε)dGi(x, y) = (1 + ε)dG(x, y)

That implies at each level of T , the weight of the returned subgraph of each node

is OH(kε−2`) plus the weight of the subgraphs returned from recursive calls. Since the

depth of T is O(log n), w(S) ≤ OH(kε−2` log n).

To complete the proof of Theorem 2.3.7, we need to show that dS(x, y) ≤ (1 +

ε)dG(x, y) for every two distinct `-close terminals x, y ∈ T . Let Qx,y be the shortest

path between x, y in Q. By triangle inequality, we can assume that Qx,y contains no

other terminals except x and y. Since the algorithm only stops after each component of

G contains at most one terminal, Qx,y must be removed from Q at some node of T , say

τ . More precisely, Qx,y is removed in some iteration, say i, in the first for loop of τ . By

Observation 2.3.16 and Lemma 2.3.14, we have:

dS(x, y) ≤ (1 + ε)dGi(x, y) = (1 + ε)dG(x, y)

2.3.4 A lightness-preserving reduction to constructing `-close span-

ners

In this section, we give a proof of Theorem 2.3.8.

2.3.4.1 Setup

We first find a constant approximation (in linear time [87]) of the optimal Steiner tree

(ST) of G for terminal set T . LetQ be the set of shortest paths between all terminal pairs

of T such that none of them contains a terminal except its endpoints. By the triangle
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inequality, it suffices to construct a spanner for paths in Q. Note that |Q| ≤ k(k−1)
2 . Let

n0 = max(n, k(k−1)
2 ) and w0 = w(ST)

n0
. We construct a subset spanner S in multiple steps.

Firstly, we add to S every path in Q of length at most w0. The total weight of added

paths is at most: ∑
Q∈Q,w(Q)≤w0

w(Q) ≤ k(k − 1)

2

w(ST)

n0
≤ w(ST) (2.16)

Thus, we can assume that paths in Q have length at least w0. Recall paths in Q have

length at most w(ST). Let J = dlog(1/ε)e and I = dlog1/ε n0e.

Path hierarchies For a fixed i, j where 1 ≤ j ≤ J, 0 ≤ i ≤ I, we define:

Πj
i =

{
Q ∈ Q :

2j−1

εi
w0 < w(Q) ≤ 2j

εi
w0

}
For a fixed j, 1 ≤ j ≤ J , we define a hierarchy of paths:

Hj = ∪Ii=0Πj
i (2.17)

We refer to paths in Πi
j as level-i paths of hierarchy Hj . We will find a low weight

spanner for shortest paths in each hierarchy separately.

Assigning credits to ST edges We guarantee that every edge of ST has weight at

most w0 and has at least c(ε)w0 credits while the total allocated credit is small. We first

subdivide every edge e of weight at least w0 into dw(e)
w0
e edges of equal weight. We call

subdividing vertices virtual vertices. We then allocate c(ε)w0 credits to each edge (now

of weight at most w0) of ST. The total allocated credit is:∑
e∈ST

(
w(e)

w0
+ 1)c(ε)w0 = c(ε)w(ST) + c(ε)w0|E(ST)|

≤ c(ε)w(ST) + c(ε)
w(ST)

max(n, k(k − 1)/2)
(n− 1)

≤ 2c(ε)w(ST)

(2.18)

Thus, we can think of c(ε) as an asymptotic upper bound on the weight of the spanner

S that we are going to build. The total number of virtual vertices of ST is at most:
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∑
e∈ST

(
w(e)

w0
+ 1) ≤ w(ST)

w0
+ |V (ST)− 1| = O(max(n, k(k − 1)/2)) (2.19)

Thus, after subdividing long edges of ST, the total number of vertices of the graph is

still polynomial. The main result of this section is showing that with a reasonable choice

of c(ε), credits of ST edges are enough to pay for a low-weight spanner of paths in each

hierarchy.

Theorem 2.3.17. Let τ(ε, k, n) be the parameter in the assumption of Theorem 2.3.8.

Let c(ε) = Θ(poly(1
ε )τ(ε, k, n)). For a fixed j, 1 ≤ j ≤ J , there is a set of shortest paths

Bj ⊆ Hj and a subgraph Sj of G such that:

1.
∑

Q∈Bj w(Q) ≤ O(ε−2)w(ST).

2. w(Sj) ≤ O(c(ε))w(ST).

3. For every path Q ∈ Hj, w(Q) ≤ dSj∪Bj (x, y) ≤ (1 + ε)w(Q) where x, y are Q’s

endpoints.

Both Si and Bj can be found in polynomial time.

Theorem 2.3.17 immediately implies Theorem 2.3.8 since we only have J = O(log 1
ε )

hierarchies. Herein, we focus on proving Theorem 2.3.17. For simplicity of presentation,

we drop the index j and refer to Hj , Sj , Bj and Πj
i as H, S, B and Πi, respectively. We

call B the holding bag. We will use the iterative clustering technique which is described

in Section 2.2.

We first add all edges of ST to S. We will build a hierarchy of clusters corresponding

to the hierarchy of paths H where each cluster is a connected subgraph of S. That is,

for each level i of H, we construct a set of clusters Ci. Level-0 clusters are subtrees of

ST and level-i clusters are constructed from level-(i− 1) clusters and ST edges.

Recall paths in Πi have length at most `i
def
= 2j

εi
w0. Let T ′ be the set of terminals

that are endpoints of paths in Πi. For each cluster C ∈ Ci−1 that contains at least one

terminal in T ′, we designate one terminal to be its centers. Let T ′′ be the set of centers.

We construct an O(`i)-close spanner, say K, for T ′′ and add all edges of K to S. We

can show that K is an (1 + ε)-spanner for paths in Πi.

To pay for edges of K, we will inductively maintain an invariant that each level-

(i− 1) cluster has credits proportional to its diameter. (Level-0 clusters take credits of
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ST edges and higher-level clusters take credits of lower-level clusters and unused credits

of some ST edges connecting them.) Our cluster construction will guarantee that after

maintaining credit invariant of level-i clusters, each level-(i − 1) cluster will have some

credits left that are sufficient to pay for edges of K.

2.3.4.2 Cluster invariants

Recall that `i = 2j

εi
w0 is the maximum length of level-i paths. We maintain the following

invariants for level-i clusters:

(I1) Each level-i cluster has diameter at most g`i where g = 125.

(I2) Each level-i cluster of diameter d has at least c(ε) max(d, `i/2) credits.

Unlike clusters used in the spanner setting, clusters in this setting are not necessarily

vertex-disjoint. That introduces various technical complications in the cluster construc-

tion. Specifically, we use credits of ST edges in each cluster to both maintain invariant

(I2) and pay for spanner edges. However, one ST edge can be shared by multiple clusters

and credits of each ST edge can only be used at most once. To resolve this issue, after

cluster construction for each level, we will maintain a set of ST edges whose credits have

not been used so far. Specifically, we maintain a cluster tree ST i(Vi, Ei) whose vertices

are level-i clusters and whose edges are ST edges connecting two vertices in the two

corresponding clusters. ST i(Vi, Ei) satisfies the following invariant:

(I3) Credits of edges of ST i(Vi, Ei) have not been used in the construction of level-i or

lower level clusters.

To simplify the argument for the base case, we add ST to S and add every level-0

path to the holding bag B. The total weight of paths added to B is at most:∑
Q∈Πj0

w(Q) ≤ (2ε−1)
k(k − 1)

2

w(ST)

n0
≤ O(ε−1)w(ST) (2.20)

To construct level-0 clusters, we break ST into subtrees of diameter at least `0 and

at most 6`0 as follows: breaking a longest path of ST, say P , into subpaths of diameter

at least `0 and at most 2`0, removing vertices of P from ST and repeat. Let Γ0 be the

collection of the paths. Remaining components of ST \V (Γ0) are trees of diameter at
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most `0. Let T ′ be such a tree. By construction, T ′ has an ST edge, say e, to a path,

say P of Γ0. We then augment T ′ and e to P . Since w(e) ≤ w0, after this step, Γ0

contains trees of diameter at most 4`0 + 2w0 ≤ 6`0. Then, each tree in Γ0 serves as a

level-0 cluster. Note that clusters in Γ0 are vertex-disjoint subgraphs of S.

We now show that clusters in C0 satisfy three invariants. Invariants (I1) is directly

implied by the construction. To maintain invariant (I2), we take credits of ST edges in

the diameter path of each tree in Γ0. Let ST 0(V0, E0) be the cluster tree obtained from

ST by contracting each tree of Γ0 into a single vertex. Since credits of ST edges outside

level-0 clusters are unused, ST 0(V0, E0) satisfies invariant (I3).

For simplicity of presentation, we would guarantee that the spanner that we are going

to construct has (1 + s · ε) stretch where s
def
= 16g + 1 = 2001. We can obtain a stretch

(1 + ε′) by simply setting ε′ = s · ε. We also assume ε is sufficiently smaller than 1 since

a subset spanner of stretch (1 + ε) is also a subset spanner of stretch (1 + 2ε) with the

same asymptotic weight.

2.3.4.3 Constructing higher level clusters and spanners

In this section, we show how to construct level-i clusters, for i ≥ 1, from level-(i − 1)

clusters. To simplify the presentation, we will drop the index i. That is, Π = Πi and

` = `i. We refer to clusters in level (i − 1) as ε-clusters since their diameter is an ε-

fraction of the diameter of level-i clusters. By invariant (I1) for level i − 1, ε-clusters

have diameter at most gε`. Recall that ` = 2j

εi
w0. Let Q be a path in Π, that we call a

Π-path. We observe that:

Observation 2.3.18. There is no Π-path that has both endpoints in the same ε-cluster

when ε < 1
g .

Proof. Let Q be a Π-path with both endpoints, say x and y, in the same ε-cluster. By

invariant (I1) for level i− 1, there is a path between x and y of length at most gε` < `;

contradicting that Q is a shortest path.

Π-path removal: We say two Π-paths are parallel if their endpoints are both in the

same two ε-clusters. For each maximal set of parallel Π-paths, we only keep one Π-path

of minimum length and remove other paths from Π. We apply this removal process to
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all maximal subsets of parallel paths of Π. We then remove every Π-path Q from Π

such that the distance between two endpoints of Q in S (constructed so far) is at most

(1 + s · ε)w(Q), since there is already an (1 + ε)-stretch path between Q’s endpoints in S.

Constructing a spanner for Π

Note that paths in Π have length at least `/2 and at most `. Since ε-clusters are non-

disjoint, a terminal can be contained in many different ε-clusters. For each terminal

t ∈ T , we designate an (arbitrary) ε-cluster containing t to be its primary ε-cluster. We

say that an ε-cluster C is incident to Q if C is a primary ε-cluster of at least one of Q’s

endpoints. By Observation 2.3.18, Q has exactly two incident ε-clusters.

We call an ε-cluster X a Π-neighbor of an ε-cluster Y if X and Y are incident to the

same Π-path. We say an ε-cluster has high-degree if it has at least 3g
ε Π-neighbors and

low-degree otherwise. For each low-degree ε-cluster X, we add to spanner S all Π-paths

incident to X.

Let Cε be the set of all high-degree ε-clusters. For each X ∈ Cε, we designate a

terminal to be its center. Note that X must have a terminal since it is incident to a

Π-path. Let T ′ be the set of centers of ε-clusters in Cε. Since each terminal has exactly

one primary ε-cluster, T ′ = |Cε|. Let K ← EllCloseSpanner(G,T ′,Q′, 3`, ε) where Q′

is the maximal set of shortest paths of length at most 3` between terminals in T ′. K is

a (3`)-close spanner for T ′. By the assumption of Theorem 2.3.8, we have:

w(K) = O(τ(ε, k, n)`|T ′|) = O(τ(ε, k, n)`|Cε|) (2.21)

We then add every edge of K to S. It remains to show the stretch guarantee for

paths in Π.

Claim 2.3.19. For every Π-path P , there is a path between two endpoints of P in S of

length at most (1 + s · ε)w(P ) when ε < 1
g .

Proof. We first assume that P survives after the Π-path removal step. If P is incident

to a low-degree ε-cluster, then, it is added to S; the lemma trivially holds. Otherwise,

P is incident to two high-degree ε-clusters, say Cx and Cy. Let x ∈ Cx, y ∈ Cy be

P ’s endpoints. Let x1, y1 be two centers of Cx, Cy, respectively. Let R be the x1-to-y1
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Figure 2.9: Two circles represents ε-clusters Cx and Cy with centers x and y, respectively.
R(R′) is a shortest x1-to-y1 path in G (S).

shortest path in G. Let Px be a shortest x-to-x1 path in Cx and Py be a shortest y-to-y1

path in Cy (see Figure 2.9). We have:

w(R) ≤ w(Px) + w(Py) + w(P ) ≤ 2gε`+ ` ≤ 3` (2.22)

Since K is a (3`)-close spanner of T ′, there is a shortest path, say R′, between x1

and y1 in K such that w(R′) ≤ (1 + ε)w(R). Furthermore, we have:

w(R) ≤ w(P ) + w(Px) + w(Py)

≤ w(P ) + 2gε` (by (I1) for level i− 1)

≤ (1 + 4gε)w(P ) (since w(P ) ≥ `/2)

(2.23)

Thus, by Equation (2.23), we have:

w(R′) ≤ (1 + ε)(1 + 4gε)w(P )

≤ (1 + (8g + 1)ε)w(P ) (since ε < 1)
(2.24)

Let P ′
def
= Px ◦R′ ◦ Py be an x-to-y walk in S. We have:

w(P ′) ≤ w(R′) + w(Px) + w(Py)

≤ w(R′) + 2gε` (by (I1) for level i− 1)

≤ (1 + (8g + 1)ε)w(P ) + 2gε` (by Equation (2.24))

≤ (1 + (12g + 1)ε)w(P ) (since w(P ) ≥ `/2)

≤ (1 + s · ε)w(P ) (since s > 12g + 1)

(2.25)

It remains to consider the case P is removed during the Π-path removal step. There

are two subcases: (1) P is removed because there is another Π-path parallel to P and
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has smaller weight or (2) the stretch between two endpoints of P is already smaller than

(1 + s · ε). The latter case immediately implies the lemma. In the former case, let x, y

be P ’s endpoints. Let P0 be the path parallel to P that survives after Π-path removal

step. Note that w(P0) ≤ w(P ).

As shown in the second-last line of Equation (2.25), that there is a path P ′0 in S of

length at most (1 + (12g+ 1)ε)w(P0) between P0’s endpoints, say x0, y0. Let Cx (Cy) be

the ε-cluster that contains x (y) and x0 (y0). Then, an x-to-y walk in S consisting of a

shortest x-to-x0 path in Cx, P ′0, and a shortest y0-to-y path in Cy has length at most:

(1 + (12g + 1)ε)w(P0) + 2gε` ≤ (1 + (12g + 1)w(P ) + 2gε`

≤ (1 + (16g + 1)ε)w(P ) (since w(P ) ≥ `/2)

≤ (1 + s · ε)w(P ) (since s = 16g + 1)

Constructing clusters

To simplify the notation, we use ST (V, E) to denote the cluster tree of level i−1, that is,

vertices of V correspond to ε-clusters and edges in E are ST edges connecting ε-clusters.

Recall that in the spanner construction step, every Π-path incident to low-degree ε-

clusters is added to S and every Π-path incident to two high-degree ε-clusters has an

(1 + ε)-approximate shortest path in S. Let E ′ be the set of edges between vertices in

V where each edge in E ′ corresponds to a Π-path Q connecting its incident ε-clusters or

Q’s approximate shortest path in S if both endpoint ε-clusters of Q have high degree.

We call edges of E ′ Π-edges. We denote the graph, called cluster graph, with vertex set

V and edge set E ∪ E ′ by G(V, E ∪ E ′). Observe that ST (V, E) is a spanning tree of

G(V, E ∪ E ′). We use bold lowercase letters to denote vertices and edges of G(V, E ∪ E ′).
Let κ(.) be the function that maps each vertex v ∈ V to the corresponding ε-cluster

and each edge e ∈ E ∪ E ′ to the corresponding ST edge or paths. For each subgraph S
of G(V, E ∪ E ′), we denote the corresponding subgraph of S by κ(S), where:

κ(S) = (∪v∈Sκ(v))
⋃

(∪e∈Sκ(e))

Observation 2.3.20. G(V, E ∪ E ′) is a simple graph when ε < 1
4g+2
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Proof. Suppose otherwise. We first observe that there are no two parallel Π-edges in

G(V, E ∪ E ′) since otherwise, one of them would be removed during the Π-path removal

process. Thus, the only possibility left is a Π-edge e′ parallel to an ST edge e. Let x, y

be the endpoints of e. Let x and x′ (y and y′) be the endpoints of κ(e) and κ(e′) in κ(x)

(κ(y)), respectively. Recall ` = `i = 2j

εi
w0 >

w0
ε since i ≥ 1. Thus, an x-to-y walk W in

S that consists of a shortest x′-to-x in κ(x), κ(e), a shortest y-to-y′ in κ(y) has length

at most:

2gε`+ w0 ≤ (2g + 1)ε` < `/2

when ε < 1
4g+2 . Thus, w(W ) ≤ w(κ(e′)); contradicting that κ(e′) is a shortest path

between x and y in S.

We define a weight function ω : V ∪ E ∪ E ′ → R where ω(v) = diam(κ(v)) for each

vertex v ∈ V and ω(e) = w(κ(e)) for each edge e ∈ E∪E ′. Let P be a path of G(V, E∪E ′).
We define P’s weight, denoted by ω(P), to be its total vertex and edge weights.

Recall that high-degree ε-cluster is incident to at least 3g
ε Π-paths. We call the

corresponding vertex κ−1(X) ∈ V of a high-degree ε-cluster X a high-degree vertex.

Instead of constructing level-i clusters directly, we will construct a set of connected

subgraphs Γ of G(V, E ∪E ′). Each subgraph S ∈ Γ will then define a level-i cluster κ(S).

The construction proceeds in four phases. The construction is similar to the cluster

construction in Section 2.2.

Phase 1: High-degree vertices This phase has three steps. The main purpose is to

guarantee that every high-degree vertex and its Π-neighbors are grouped into subgraphs.

Initially, every vertex of V is unmarked.

(Step 1) Let x ∈ V be a high-degree vertex such that all of its Π-neighbors are

unmarked. We form a new subgraph S from x, its Π-neighbors and the connecting

Π-edges. We then mark every vertex of S, add S to Γ and repeat this step.

(Step 2) For each unmarked high-degree vertex y, there must be a Π-neighbor, say z

that is marked in Step 1. Let S ∈ Γ be the subgraph formed in Step 1 that contains z.

We augment S by y, its unmarked Π-neighbors and the connecting Π-edges. We then

mark y, its Π-neighbors and repeat this step.

(Step 3) Let y′ be an unmarked low-degree vertex that has a high-degree Π-neighbor

z′. By construction in Step 2, z′ must be marked in Step 1. Let S be the subgraph in Γ
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(a) (b)

Figure 2.10: (a) A Phase-1 subgraph in Γ is enclosed in dotted blue curve. Round
vertices, square vertices and triangular vertices are grouped in Step 1, Step 2 and Step
3, respectively. The diameter path D is highlighted by a dashed red curve. (b) A Phase-2
subgraph in Γ is enclosed by the dotted blue curve. Round vertices are grouped in Step
1 and square vertices are added in Step 2. The diameter path D of T is highlighted by
a dashed red curve.

that contains z′. We augment S by y′ and its incident Π-edge between y′ and z′.

See Figure 2.10(a) for an illustration of subgraphs constructed in Phase 1.

Phase 2: Low-degree, branching vertices Let F be the forest of ST (V, E) obtained

by removing vertices marked in Phase 1. We say a vertex v F-branching if it has degree

at least 3 in F . Let P be a path of F . We define effective diameter of P to be the

total vertex weight of P. We then define effective diameter of a subtree of F to be the

maximum effective diameter over all paths of the tree. This phase has two steps. The

purpose is to group every F-branching vertices of high-diameter trees into clusters. By

construction in Phase 1, vertices in this phase are low-degree.

(Step 1) Let T be a minimal subtree of F of effective diameter at least 2` and at

most 4` that has a T -branching vertex, say x. We add T to Γ, remove it from F and

repeat. After Step 1, every component of F is a tree of effective diameter most 2` or is

a path of effective diameter at least 4`.
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Figure 2.11: Subgraphs in Phase 3 are edges and vertices enclosed in dotted blue curves.
There are three different forms that a subgraph in Phase 3 can take. The blue thick edge
is Π-edge e with two endpoints x,y.

(Step 2) We call a path of F high-diameter if it has effective diameter at least 4`.

Let y be a vertex in a high-diameter path which is F-branching before Step 1. That

is, all but at most two neighbors of y in F are removed from F in Step 1. Let z be a

removed neighbor of y and e ∈ E be the ST edge between y and z. Let T be the tree

in Step 1 that contains z. We augment T with y and e. We then remove y from F and

repeat. (See Figure 2.10(b).)

Phase 3: High-diameter paths of F We say a vertex v in a high-diameter path P
deep if it is not an endpoint of P and the two subpaths of P − {v} each has effective

diameter at least 2`. Let e be a Π-edge with two endpoints, say x,y, that are deep

vertices. Let X ,Y be two cluster paths of F that contain x,y, respectively. It may

be that X ≡ Y. Let Px,Qx be two minimal subpaths of X − {x} incident to x that

have effective diameter at least 2`. Px,Qx exist since x is deep. We define two minimal

subpaths Py,Qy of Y similarly. We then group e, Px,Py,Qx,Qy into a new subgraph of

Γ. We then remove Px,Py,Qx,Qy,x,y from X ∪Y and update the set of high-diameter

paths of F . We repeat until this phase no longer applies.

See Figure 2.11 for an illustration of subgraphs formed in this step. Note that there

could be two paths in {Px,Py,Qx,Qy}, say Px,Py, that are overlap. In this case, we

redefine Px = Py = Pxy where Pxy = P[x,y].

Phase 4: Remaining high-diameter paths of F Let P be a high-diameter path

of F after Phase 3. We break P into segments of effective diameter at least 2` and at

most 4`. Let X be a segment of P. If X has an ST edge to an existing subgraph in Γ

(formed in previous phases), we defer the processing of X to Phase 5. (By construction
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in Step 2 of Phase 2, X must be an affix of P.) Otherwise, we form a new subgraph of

Γ from X .

Phase 5: Remaining low-diameter trees of F Remaining components of F are

trees (and paths) of effective diameter at most 4`. Since ST (V, E) is a spanning tree of

G(V, E ∪ E ′), each tree in F , say T , must has at least one ST edge, say e, to an existing

subgraph in Γ, say S, that is originated in the first three phases. We augment F with

T and e. We apply the augmentation to every tree of F .

This completes the construction of Γ.

2.3.4.4 Maintaining cluster invariants and paying for spanner edges

In this section, we show how to maintain invariants (I1)-I(3) for level-i clusters con-

structed in the previous section. Recall that there are two types of Π-edges in E ′: (first

type) a Π-edge e where κ(e) is a Π-path incident to a low-degree ε-cluster and (second

type) a Π-edge e where κ(e) is a shortest path (in K) that approximates a Π-path in-

cident to two high-degree ε-clusters. The only difference is that first type Π-edges have

length at most ` while the second type Π-edges have length at most (1 + sε)`. Since the

second type of Π-path is only involved in Phase 1, we abuse notation by saying Π-edges

to refer to first type Π-edges. When there is possible confusion, we would clearly indicate

which type of Π-edge we are referring to.

The observation below allows us to work with subgraphs in Γ instead of level-i clus-

ters. The reason is that subgraphs in Γ are vertex-disjoint, that makes the amortized

argument easier. Recall weight of a path P in G(V, E ∪ E ′) is the total weight of vertices

and edges of P.

Observation 2.3.21. Let S be a subgraph in Γ and D be a diameter path of κ(S). Let x

and y be two vertices of S such that the corresponding ε-clusters κ(x) and κ(y) contain

the two endpoints of D. Let P be a shortest x-to-y path in S. Then, w(D) ≤ ω(P).

Proof. Let x, y be D’s endpoints where x ∈ κ(x) and y ∈ κ(y). Write

P = {x1, e1,x2, e2, . . . , eq−1,xq}

where x = x1, y = xq and ej is the edge between xj and xj+1 in S, 1 ≤ j ≤ q − 1.
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For each j, 2 ≤ j ≤ q − 1, we define Pj to be a shortest path in κ(xj) between the

endpoints of κ(ej−1) and κ(ej) in κ(xj). Let P1 (Pq) be the shortest path in κ(x) (κ(y))

between x (y) and the endpoint of κ(e1) (κ(eq−1)) in κ(x) (κ(y)). Let W be the walk:

W
def
= P1 ◦ κ(e1) ◦ P2 ◦ κ(e2) ◦ . . . ◦ κ(ep−1) ◦ Pq (2.26)

We call W an x-to-y walk tracing P. By Equation (2.26), we have w(W ) ≤ ω(P).

Since w(D) ≤ w(W ), w(D) ≤ ω(P).

Claim 2.3.22. Let e be a first type Π-edge between two vertices x,y and P be the x-to-y

path in ST (V, E). Then, ω(P) ≥ (1 + s · ε)`(e).

Proof. Suppose otherwise. Let x, y be κ(e)’s endpoints in S and W be an x-to-y walk

tracing P. Since κ(ST ) is a subgraph of S, W is a walk in S. Since w(W ) ≤ ω(P), we

have:

w(W ) ≤ (1 + s · ε)ω(e) = (1 + s · ε)w(κ(e))

However, that implies there is already an (1 + ε)-stretch path between the two endpoints

of κ(e) and hence Π-path κ(e) is removed in the Π-path removal process.

Invariant (I1)

Observation 2.3.21 allows us to derive an upper bound on the diameter of level-i clusters

by upper-bounding the diameter of subgraphs in Γ with weight function ω(.). Recall

each ST edge has length at most w0. we use S to denote a subgraph of Γ that is initiated

before Phase 5 and S ′ to denote the augmentation of S after Phase 5. Since in Phase 5,

we only augment existing subgraphs in Γ (originating in Phase 1,2 and 3) by attaching

trees of diameter at most 4` via ST edges, we have:

Observation 2.3.23. diam(S ′) ≤ diam(S) + 8`+ 2w0.

Observation 2.3.24. For every path P in ST (V, E), diam(P) ≤ 2ediam(P).

Proof. P contains ST-edges only and each ST-edge has weight at most w0 while each

vertex in P has weight at least `/2. Recall `/2 = 2j−1

εi
w0 ≥ w0 since i, j ≥ 1.

Lemma 2.3.25. Level-i clusters have diameter at most 125` when ε is sufficiently

smaller than 1/g.
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Proof. We consider four cases:

Case 1: S is formed in Phase 1 Observe from the construction of Phase 1 that S is

a tree whose edges are Π-edge. In Step 1, S is a star centered at a vertex x and

its incident edges are Π-edges. In Step 2, S is further augmented by attaching

high-degree vertices and their unmarked Π-neighbors via Π-edges. In Step 3, if a

low-degree vertex y and its incident Π-edge is added to S via its neighbor z, z

is also a neighbor of x. Thus, any diameter path of S in Phase 1 has at most 7

vertices and 6 Π-edges. By invariant (I1) for level i− 1, each vertex has weight at

most gε`. Since all 6 Π-edges could be of second type, we have:

diam(C) ≤ 6(1 + sε)`+ 7gε` = 6(1 + (16g + 1)ε)`+ 7gε` ≤ 12`+ 103gε`

Case 2: S is formed in Phase 2 By Observation 2.3.24, subgraphs in Step 1 have

diameter at most 8`. By construction in Step 2, subgraphs in Step 1 are augmented

by attaching vertices via ST edges. Thus, the augmentation in Step 2 blows up

the diameter by at most 2w0 + 2gε` which is at most 2`+ 2gε`. Hence, diam(S) ≤
10`+ 2gε`.

Case 3: S is formed in Phase 3 Let P ′x (P ′y) be a minimal segment of X (Y) that

spans Px,Qx and x (Py,Qy and y). By minimality, segments in {Px,Qx,Py,Qy}
have effective diameter at most (2 + gε)`. Thus, the effective diameter of P ′x
and P ′y are at most (4 + 3gε)`. Since diam(S) ≤ diam(P ′x) + diam(P ′y) + `, by

Observation 2.3.24, we have:

diam(S) ≤ 2(4 + 3gε)`+ ` = 9`+ 6ε`.

Case 4: S is formed in Phase 4 By construction, S has effective diameter at most

4`. By Observation 2.3.24, diam(S) ≤ 8`.

Thus, in any case, diam(S) ≤ 12` + 103εg`. By Observation 2.3.23, diam(S ′) ≤
20`+2w0+103εg` which is at most 125` since ε < 1/g and w0 ≤ `. By Observation 2.3.21,

level-i cluster κ(S ′) has diameter at most 125`.

Since g = 125, invariant (I1) is satisfied.
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Invariant (I2) and Invariant (I3)

We would argue that credits of vertices and edges inside subgraphs of Γ are sufficient to

both maintain invariant (I2) and pay for spanner edges added in this level. That is, we

would not use credits of ST edges in S(V, E) \ Γ. Recall Γ is a collection of connected,

vertex-disjoint subgraphs of G(V, E ∪ E ′). Thus, by contracting each subgraph in Γ into

a vertex, we obtain a multigraph G′ from G(V, E ∪ E ′). Since ST (V, E) is a spanning

tree of G(V, E ∪ E ′), there is a spanning tree, say ST i(Vi, Ei), of G′ that contains only

ST edges. Since we never use credits of ST edges outside subgraphs in Γ to maintain

invariant (I2), ST i(Vi, Ei) satisfies invariant (I3).

Recall for each low-degree ε-cluster, we add all of its incident Π-paths to the spanner.

There are at most 3g
ε such paths incident to each low-degree ε-cluster. For high-degree

ε-clusters, we construct a 3`-close spanner K and argue that (Claim 2.3.19) for each Π-

path incident to both high-degree ε-clusters, there is an (1 + s · ε)-approximate shortest

path for Q in K. The weight of K is given in Equation (2.21).

Let S be a subgraph of G(V, E) created before Phase 5 and S ′ be the augmentation

of S after Phase 5. Let D′ be the diameter path of S ′. By construction, S is augmented

by attaching trees via ST edges. Thus, D′ ∩S has only one connected component which

is a path. Let D = D′ ∩ S.

Recall each ε-cluster, say X, has at least c(ε) max(diam(X), ε`/2) by invariant (I2)

for level i − 1. We assign credits of X to its corresponding vertex κ−1(X) ∈ V. Since

ω(κ−1(X)) = diam(X), each vertex in V has credit at least c(ε) times its weight. Recall

the effective diameter of a path P is the total weight of its vertices. Thus, we have:

Observation 2.3.26. If P is a path in ST (V, E), then total credit of its vertices is at

least c(ε) · ediam(P).

Recall each ST edge, say e, has credit at least c(ε) times its length. We assign

credit of e to its corresponding edge κ−1(e) ∈ E . Thus, to maintain invariant (I2), by

Observation 2.3.21, it suffices to guarantee that S ′ is assigned credits of value at least:

c(ε) max(ω(D′), `/2)

Subgraphs originating in Phase 4 By construction in Phase 4, S is a path whose

edges are ST edges. S would not be augmented in Phase 5. Thus, S = S ′. We say S
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long if it has at least 2g
ε +1 vertices and short otherwise. We first consider the case when

S is a long path.

Claim 2.3.27. A long path can both maintain invariant (I2) and pay for its incident

Π-edges when c(ε) = Ω(g
2

ε3
).

Proof. Recall that every vertex in S has at least Ω(c(ε)ε`/2) credits and is incident to

at most 3g/ε Π-edges, each of weight at most `. Let X be a set of any 2g
ε vertices of S

and v be a vertex in S \ X . Total credit of vertices in X is at least 2g
ε c(ε)ε`/2 = gc(ε)`

which is at least c(ε) ·max(diam(S), `/2) since diam(S) ≤ g`. Thus, we can use credits

of X to maintain invariant (I2) for S.

We use credit of v to pay for Π-edges incident to vertices in X ∪ {v}. Since vertices

involved in Phase 4 are low-degree, there are at most:

(
2g

ε
+ 1)

3g

ε
= O(

g2

ε2
)

such Π-edges. Credit of v (of value at least c(ε)ε`/2) is sufficient when c(ε) = Ω(g
2

ε3
).

For every other vertex x ∈ S \ (X ∪ {v}), we use its credit to pay for its incident

Π-edges. Since x is incident to at most 3g
ε Π-edges and has at least c(ε)ε`/2 credits, x’s

credit is sufficient when c(ε) = Ω( g
ε2

).

We now consider the case when S is a short path.

Claim 2.3.28. A short path can maintain invariant (I2) using credits of its vertices and

ST edges.

Proof. Since ediam(S) ≥ 2`, by Observation 2.3.26, its total vertex credit is at least

c(ε)2`. Since diam(S) ≤
∑

v∈S ω(v) +
∑

e∈S ω(e) and each vertex or ST edge has

more credits than its weight, the total vertex and edge credit of S is at least c(ε) ·
max(diam(S), `/2).

By Claim 2.3.28, credits of a short path are only sufficient for maintaining (I2). We

say a short path S internal if it is not an affix of a high-diameter path P in Phase 4.

Observation 2.3.29. There is no Π-edge that has both endpoints in internally short

subpaths.
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Figure 2.12: Hollow vertices are in a cluster path P that is broken into three subpaths
(enclosed by dashed blue squares) in Phase 4. X and S2 are affices of P and S1 is an
internally short subpath of P. Two short subpaths S1 and S2 are grouped into two
subgraphs of Γ while X is augmented to an existing subgraph of Γ in Phase 5. Two
Π-edges e and e′ are incident to S1 whose vertex and edge credits are only sufficient to
maintain invariant (I2). To pay for e′, we use credits of e′’s endpoint in X . However, to
pay for e, we need a different way since S2 is also short. X and S2 are siblings of each
other.

Proof. If there is such an edge e, both of its endpoints are deep and thus, would be in

Phase-3 subgraphs.

Intuitively, Observation 2.3.29 said that for each Π-edge e that is incident to an

internally short subpath, we can use credits of another endpoint of e, say v, to pay for

e. However, if v is in an affix short subpath, say S, then we need a different way to pay

for e (see Figure 2.12).

Observation 2.3.30. Let P be a high-diameter path after Phase 3. Then at least one

affix of P is deferred to Phase 5 for augmentation, except when Γ = ∅ after Phase 3.

Proof. Assume that Γ 6= ∅ after Phase 3. Recall that ST (V, E) is a spanning tree of

G(V, E ∪ E ′) and by construction in Step 2 of Phase 2, every vertex of P has degree 2

in ST (V, E). Thus, P must has an ST edge connecting one of its endpoint, say v, to

a subgraph formed in previous phases (there must be at least one such subgraph since

Γ 6= ∅.). That implies the observation.

Assume that Γ 6= ∅ after Phase 3 (the case when Γ = ∅ would be handled at the end

of this section.). If S is an affix of a long path P, we would use credits of ε-clusters in

another affix of P, say X , to pay for Π-edges incident to S. This is possible because by

Observation 2.3.30, X would be merged to other subgraphs in Γ during Phase 5. We say

X is a sibling affix of S, and vice versa (see Figure 2.12).
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Subgraphs originating in Phase 1 By construction, each Phase-1 subgraph has at

least 3g
ε vertices. Let Z1 and Z2 be any two disjoint subsets of vertices of S such that

|Z1| = 2g
ε , |Z2| = g

ε . Recall each vertex has at least c(ε)ε`/2 credits. Thus, the total credit

of vertices in Z1 is at least 2g
ε (c(ε)ε`/2) = c(ε)g` which is at least c(ε) max(diam(S ′), `/2)

since diam(S ′) ≤ g` by invariant (I1). We can use vertex credit of Z1 to maintain

invariant (I2) of S ′. We then redistribute vertex credit of Z2 to every vertex in Z1 ∪Z2.

On average, each vertex has at least (gε c(ε)ε`/2)/(3g
ε ) = c(ε)ε`/6 credits.

Note that other vertices in S ′ \ (Z1 ∪ Z2) have c(ε)ε`/2 credits each. Thus, after

maintaining invariant (I2), every vertex in Phase-1 subgraphs has at least c(ε)ε`/6 credits

left. Let x be a low-degree vertex of S ′. We consider two cases:

1. If x is in an affix, say X , of a long cluster path of Phase 4 (that is added to S ′ in

Phase 5), we use x’s remaining credits to pay for its incident Π-edges and Π-edges

incident to vertices of X ’s sibling short affix, if any. X has at most 2g
ε vertices since

it is short and every vertex of X is low-degree. Thus, the total number of Π-edges

paid by x is at most 3g
ε +(2g

ε ) 3g
ε = O(g

2

ε2
). Credit of x is sufficient if c(ε) = Ω(g

2

ε3
).

2. Otherwise, we use x’s remaining credits to pay for its incident Π-edges only. Since

x is incident to at most 3g
ε Π-edges, its credit is sufficient when c(ε) = Ω( g

ε2
).

Let C be the set of high-degree vertices of G(V, E ∪ E ′). The total remaining vertex

credit of C is at least |C|c(ε)`/6. Recall in the spanner construction step, we construct

a 3`-close spanner K to approximate Π-paths incident to both high-degree ε-clusters.

By Equation (2.21), remaining vertex credit of C is sufficient to pay for K when c(ε) =

Ω(poly(1
ε ) τ(ε, k, n)). Note that |C| = |Cε|. Thus, we have:

Claim 2.3.31. If c(ε) = Ω(poly(1
ε ) τ(ε, k, n)), subgraphs originated in Phase 1 can main-

tain invariant (I2) and pay for (i) edges of 3`-close spanner K, (ii) their incident Π-edges

and (iii) Π-edges incident to short affix subpaths whose sibling affices are augmented to

Phase-1 subgraphs in Phase 5.

Subgraphs originating in Phase 2+3 We first define a canonical pair of S ′ that

reflects how we use credits to maintain invariant (I2) and pay for spanner edges.
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Definition 2.3.32 (Canonical pair). Let Z be a subset of vertices of S ∪ D′ of size at

most 2g
ε and z is a vertex in S \ Z. If credits of vertices in Z and ST edges in S ′ are

sufficient to maintain invariant (I2) for S ′, we call (Z, z) a canonical pair of S ′.

We show that maintaining invariant (I2) and paying for spanner edges can be reduced

to showing the existence of a canonical pair.

Claim 2.3.33. If c(ε) = Ω(g
2

ε3
) and S ′ has a canonical pair (Z, z), then vertex credit of

S ′ \ Z is sufficient to pay for all Π-edges incident to vertices of S ′ and Π-edges of short

affices that have sibling affices in S ′.

Proof. See Figure 2.13 for an illustration. Recall z has at least c(ε)ε`/2 credits. Since

S is augmented in Phase 5 by attaching trees of F via ST edges, there are at most two

short affices, say Z1,Z2, in Phase 4 whose sibling affices in S ′, say Z ′1,Z ′2, respectively,

both have vertices in diameter path D′. Let R = Z ∪ Z1 ∪ Z2 ∪ {z}. Since Z1 and Z2

are short and Z has at most 2g
ε vertices, there are at most:

(1 + 3
2g

ε
)

3g

ε
= O(

g2

ε2
)

Π-edges incident to vertices of R. Thus, credit of z is sufficient to pay for R’s incident

Π-edges when c(ε) = Ω(g
2

ε3
).

Each vertex in S \ (Z ∪ {z}) has at least c(ε)ε`/2 credits that can be used to pay

for its incident Π-edges edges. However, we need to pay for Π-edges incident to other

short affices in Phase 4 (Z3 in Figure 2.13 for example). To do this, we only use half

the credit of each vertex in S \ (Z ∪ {z}) to pay for its Π-edges edges. This is sufficient

when c(ε) = Ω( g
ε2

).

Let Z3 be a short affix cluster in Phase 4, Z3 6∈ {Z1,Z2}, where its sibling affix, say

Z ′3, is in S ′. There are at most 2g
ε ·

3g
ε = O(g

2

ε2
) Π-edges incident to vertices of Z3. Since

Z ′3 has effective diameter at least 2`, by Observation 2.3.26, half the total credit of its

vertices is at least c(ε)`. This credit is sufficient to pay for Π-edges incident to vertices

of Z3 if c(ε) = Ω(g
2

ε2
).

By Claim 2.3.33, it remains to show that canonical pairs exist for subgraphs formed

in Phase 2+3.

Claim 2.3.34. If S ∪ D′ has at least 2g
ε + 1 vertices, then S ′ has a canonical pair.
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Z

D

1

Z2Z1' Z2'

z

Z3Z3'
Z

Figure 2.13: A subgraph S formed in Phase 3 (round vertices) augmented in Phase 5
(square and triangular vertices) is enclosed the dotted blue curve. Triangular vertices
are in short affices in Phase 4 that are deferred to Phase 5. Dashed blue curves enclose
short affix subgraphs of Γ in Phase 4 (Z1,Z2,Z3) whose sibling affices (Z ′1,Z ′2,Z ′3) are
augmented to S in Phase 5. Z contains red-filled vertices. Vertex z is marked by double
cycles. The red path is the diameter path D′ of S ′.

Proof. Let Z be any subset of 2g
ε vertices of S ∪ D′ and z be a vertex in (S ∪ D′) \

Z. Since the total vertex credit of Z is at least 2g
ε c(ε)ε`/2 = c(ε)g` which is at least

c(ε) max(diam(S′), `/2) by invariant (I1), Z’s credit is sufficient to maintain invariant

(I2). Hence, (Z, z) is a canonical pair of S ′.

By Claim 2.3.34, we can assume that |S ∪ D′| ≤ 2g
ε . We consider subgraphs formed

in Phase 2 first.

Claim 2.3.35. If S is constructed in Phase 2, then S ′ has a canonical pair.

Proof. By construction in Phase 2, S is a tree and thus, S ′ is also a tree whose edges are

ST edges only. Since S has a S-branching vertex x, there must be a neighbor of x, say

z, that is not in D′.
Since D′ contains ST edges only, credit of its vertices and edges is at least c(ε)ω(D′).

Since |S ∪ D′| ≤ 2g
ε , D′ has at most 2g

ε vertices. Thus, by letting Z to be the set of all

vertices in D′, we obtain a canonical pair for S ′.

Claim 2.3.36. If S is constructed in Phase 3, then S ′ has a canonical pair.

Proof. We reuse notation in Phase 3 here. As noted in Phase 3, there are three different

forms that S can have (see Figure 2.11). We first consider the case when four subpaths
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Px,Qx,Py,Qy are pairwise disjoint. In this case, S is an acyclic subgraph of G(V, E∪E ′).
That implies at most two subpaths in {Px,Qx,Py,Qy} contain vertices of D′. We denote

such two paths by P0,P1 and two other paths that do not contain vertices ofD′ byQ0,Q1.

Let z be a vertex in Q1. Let Z be the set of vertices of D′ ∪ P0 ∪ P1 ∪ Q0. Since

|S ∪ D′| ≤ 2g
ε , |Z| ≤ 2g

ε . If D′ does not contain e, then credits of vertices and ST edges

in D′ are sufficient to maintain invariant (I2). Otherwise, we assign credits of vertices

in Q0 to e. Since ediam(Q0) ≥ 2`, by Observation 2.3.26, the total assigned credit is at

least 2c(ε)` which is at least c(ε)ω(e) (recall ω(e) ≤ `.). Thus, credits of vertices in Z
and ST edges in D′ suffice to maintain invariant (I2). Hence, (Z, z) is a canonical pair

of S ′.
It remains to consider the case when two of four paths, say Px,Py, are not disjoint.

In this case, Px = Py = P[x,y] (see Figure 2.11(c)). Observe that Pxy ∪ {e} is the only

cycle in S. We consider two cases:

(i) If one of two paths Qx,Qy, say Qy, does not contain any vertex of D′. Let z by

any vertex of Qy and Z be the set of vertices of (Qx∪Qy∪Pxy∪D′)\{z}. |Z| ≤ 2g
ε

since Z ⊆ S ∪D′. If D′ does not contain e, then its vertex and edge credits suffice

to maintain invariant (I2). Thus, (Z, z) is a canonical pair of S ′.

If D′ contains e, we assign credits of Qy \ {z} to e. Since ediam(Qy) ≥ 2`,

ediam(Qy \ {z}) ≥ 2`− gε`. By Observation 2.3.26, the total assigned credit is at

least c(ε)2` − c(ε)gε` which is at least c(ε)` since ε < 1
g . Thus, e receives at least

c(ε)ω(e) credits. Hence, vertex credit Z and credit of ST edges in D′ suffice to

maintain invariant (I2). That implies (Z, z) is a canonical pair.

(ii) If bothQx,Qy contain vertices of D′. We first show that e ∈ D′. Assume otherwise.

Then, we can shortcut D′ through Pxy at a cost of:

ω(e)− ω(Pxy) + ω(x) + ω(y)

≤ ω(e)− (1 + s · ε)ω(e) + ω(x) + ω(y) (by Claim 2.3.22)

≤ −sε`/2 + 2εg` (since w(e) ≥ `/2)

= (4g − s)ε`/2

which is negative since s > 4g. Thus, e ∈ D′ and hence, there is a vertex z ∈
Pxy\D. We assign all vertex and edge credits of Pxy, excluding credits of {x,y, z},



59

to e. Since ω(Pxy) ≥ (1 + s · ε)ω(e), the total credit assigned to e is at least:

c(ε)(1 + s · ε)ω(e)− 3c(ε)gε`

≥ c(ε)ω(e) + s · εc(ε)`/2− 3c(ε)gε` (since w(e) ≥ `/2)

≥ c(ε)ω(e) + c(ε)(s− 6g)ε`/2

> c(ε)ω(e) (since s > 6g)

Thus, credits of vertices in Z and ST edges in S ′ suffice to maintain invariant (I2).

Hence, (Z, z) is a canonical pair.

We now handling the exception in Observation 2.3.30. That is, Γ = ∅ after Phase 3.

No subgraphs in Phase 1+2+3 Since there are no subgraphs in Phase 1, every

vertex is low-degree. Since there are no subgraphs in Phase 2, ST (V, E) is a path and/or

ediam(ST (V, E)) < 2`. We consider two cases:

1. If ediam(ST (V, E)) < 2`, by Observation 2.3.24, diam(ST (V, E)) < 4`. Our cluster

construction stops at this level. We then use credits of each vertex to pay for its

incident Π-edges. Since each vertex is low-degree, its vertex credit is sufficient

when c(ε) = Ω( g
ε2

). Note that there is no path in level i + 1 or higher in H since

such a path, say Q, would have length at least `
2ε which is at least diam(ST (V, E))

when ε < 1
8 ; contradicting that Q is a shortest path.

2. If ediam(ST (V, E)) is a path of effective diameter at least 2`. Since there are no

subgraphs in Phase 3, every Π-path must be incident to a vertex in an affix of

ST of effective diameter at most 2`. Since only short affix subpaths cannot pay

for its incident Π-edges (Claim 2.3.27), we put all the Π-paths corresponding to

Π-edges incident to short affix subpaths to the holding bag Bj (in the statement of

Theorem 2.3.17). There are at most 22g
ε

3g
ε = O(g

2

ε2
) such Π-paths. Thus, over all

levels, the total weight of B is at most:

O(
g2

ε2
)
∑
i

`i ≤ O(
g2

ε2
)`max

∑
i

εi ≤ O(
g2

ε2
)w(ST)

∑
i

εi

≤ O(
g2

ε2
)w(ST)

1

1− ε
= O(ε−2) · w(ST)

(2.27)

where `max is the maximum length of shortest paths in H, which is at most w(ST).
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Proof of Theorem 2.3.17. By Equation (2.27), the holding bag Bj has weight at most

O(ε−2) · w(ST). By Claim 2.3.27, 2.3.31 and 2.3.33, we have:

w(Sj) ≤ max(O(poly(
1

ε
)τ(ε, k, n)), O(

g

ε3
)) = O(poly(

1

ε
)τ(ε, k, n))

The stretch guarantee in (3) of Theorem 2.3.17 follows directly from Claim 2.3.19.

2.3.5 A singly exponential time algorithm for the subset TSP prob-

lem in bounded treewidth graphs

In this section, we give a dynamic program that can solve subset TSP in 2O(tw)nO(1) as

stated in Theorem 2.3.3. Our algorithm is based on a method introduced by Bodlaender,

Cygan, Kratsch, Nederlof [16] to design deterministic singly exponential time algorithms

for connectivity problems in bounded treewidth graphs.

2.3.5.1 Representing partitions

Let U = [n] be a ground set of n elements and Π(U) be the set of all partitions of U .

We abuse notation by denoting U to be the partition {U} ∈ Π(U), i.e, the partition that

has U as the only set. For each partition π ∈ Π(U), define a partition graph Gπ where

V (Gπ) = U and there is an edge between u and v in Gπ if they are both in the same set

of π. Thus, there is a bijection between sets in π and cliques in Gπ. For two elements

u, v ∈ U , we denote by U [ab] the partition of U that has {u, v} as a set and other sets are

singletons. By π \ {v}, we denote the partition of U \ {v} obtained from π by removing

v from π.

Let α, β be two partitions of Π(U) and Gα, Gβ be two corresponding partition graphs.

We define a join operation t as follows: αtβ is a partition Π(U) where each set of αtβ
is a connected component of the graph with vertex set U and edge set E(Gα) ∪ E(Gβ).

We say partition β is an extension of partition α if αt β = U . Note that a partition

can have many different extensions.

Let Γ ⊆ Π(U) be a set of partitions of U . We say Γ̂ is a representative set of Γ if

(i) Γ̂ ⊆ Γ and (ii) for any partition α ∈ Γ and any extension, say β, of α, then there

is a partition α̂ ∈ Γ̂ such that β is also an extension of α̂ (α̂ t β = U). We say α̂ is a

β-representation of α in Γ̂.
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Suppose every partition α ∈ Γ has a weight w(α). We say Γ̂ is a min representative

set of Γ, denoted by Γ̂⊆min Γ if (i) Γ̂ is a representative set of Γ and (ii) for every α ∈ Γ

and any extension β of α, there is a β-representation α̂ of α in Γ̂ such that w(α̂) ≤ w(α).

The key idea in speeding up dynamic programs [16] is the following representation

theorem.

Theorem 2.3.37 (Theorem 3.7 [16]). Any set of weighted partitions Γ of U has a min

representative set Γ̂ of size at most 2n−1 that can be found in time |Γ|2(ω−1)nnO(1) where

|U | = n and ω is the matrix multiplication exponent.

We note that size of Γ can be up to 2Ω(n logn) but the representation theorem said

that it has a min representative set of size at most 2n−1.

2.3.5.2 Tree decompositions

Let (T ,X ) be a tree decomposition of G. For each node t ∈ T , we denote its corre-

sponding bag by Xt. Traditionally, each bag Xt is a set of vertices of G. However, for

simplifying presentation of the dynamic program, we think of Xt as a bag of vertices and

edges of G. That is, Xt is a subgraph of G. A tree decomposition (T ,X ) is nice if it is

rooted at a node r where |Xr| = ∅ and other nodes are one of five following types:

Leaf node A leaf node t of T has |Xt| = ∅.

Introduce vertex node An introduce vertex node t ∈ T has only one child t′ such

that Xt′ is a subgraph of Xt, |V (Xt)| = |V (Xt′)|+ 1 and E(Xt) = E(Xt′).

Introduce edge node An introduce edge node t ∈ T has only one child t′ such that

Xt′ is a subgraph of Xt. V (Xt′) = V (Xt) and |E(Xt)| = |E(Xt′)|+ 1.

Forget node A forget node t ∈ T has only one child t′ such that Xt is an induced

subgraph of Xt′ and |V (Xt)| = |V (Xt′)| − 1.

Join node A join node t has two children t1, t2 such that V (Xt) = V (Xt1) = V (Xt2),

E(Xt1) ∩ E(Xt2) = ∅ and E(Xt) = E(Xt1) ∪ E(Xt2).

A nice tree decomposition has O(n) nodes and can be obtained from any tree de-

composition of the same width of G in O(n) time (see Proposition 2.2 [16]).
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2.3.5.3 A dynamic programming algorithm for subset TSP

Recall T is a set of terminals in a treewidth-tw graph G. Let k = |T |. We modify G

by adding k − 1 parallel edges to each edge e ∈ G and subdividing each new edge by a

single vertex. Weight of each edge is splitted equally in the two new edges. The resulting

graph is simple and has treewidth max(tw, 2). This modification of G would guarantee

that there is an optimal tour W that visits every edge at most once. (W is an Eulerian

subgraph of G.)

For simplicity of presentation, we assume that the optimal solution W is unique.

This assumption can also be technically enforced by imposing a lexicographic order on

optimal solutions or by perturbation using Isolation Lemma [89].

For two edge sets E1, E2 of E. We use E1 ]E2 to be the multiset addition of E1 and

E2. That is, we keep two copies of an edge in E1 ] E2 if it appears in both E1 and E2.

Let t be a node in T . If t′ is a descendant of t, we write t′ � t. Note that t is a

descendant of itself. Let Gt = ∪t′�tXt′ . We regard the optimal solution W as a graph

of G with vertex set spans by edges of W . Let Wt = Gt ∩W . Note that there could be

connected components of Wt that are isolated vertices. We call Wt a partial solution. It

is straightforward to see that Wt satisfies one of the following two conditions for every

node t:

1. Wt is a feasible solution. That is, Wt is an Eulerian subgraph of G and spans T .

2. Every vertex of T in Gt \ Xt is in Wt, every vertex of (Wt ∩Gt) \ Xt has even

degree and every connected component of Wt contains at least one vertex of Xt.

For each vertex v ∈ Xt, we assign a label ct(v) ∈ {0, 1, 2}, where ct(v) = 0 if v is not

in Wt, ct(v) = 1 if v has odd degree in Wt and ct(v) = 2 if v has even degree in Wt. We

denote the labeling restricted to a subset Y of Xt by ct(Y ).

Let Yt = V (Wt ∩Xt). Let αt be the partition of Yt induced by Wt. That is, vertices in

the same connected component of Wt are in the same set of αt. Let Rt = E(W)\E(Wt)

be a subset edges of W not in Gt. Let βt be the partition of Yt induced by Rt. Since W

is connected, αt t βt = Yt. We define the weight of αt to be wt(αt) = w(Wt).

We call tuple (ct(Yt), αt, Yt) the encoding of Wt, denoted by Enc(Wt). By definition

of Yt, any vertex v ∈ Xt \ Yt is not in W , hence, ct(v) = 0. Thus, the labeling of vertices

Xt is implicitly defined by labeling of vertices in Yt. A encoding is valid if it encodes

at least one partial solution. We only keep track of valid encodings during dynamic
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programming. There could be many partial solutions that have the same encoding.

However, we only keep track of one partial solution, denoted by Dec(ct(Y ), αt, Yt) for

each each encoding (ct(Yt), αt, Yt), that has smallest w(αt). The correctness follows from

the following observation.

Observation 2.3.38. Let Wt and W ′t be two partial solutions that have the same encod-

ing (ct(Yt), αt, Yt) such that w(Wt) < w(Wt)
′. If Rt is the set of edges such that Rt ]Wt

is a feasible solution, then Rt ]W ′t is also a feasible solution with smaller weight.

Claim 2.3.39. If (ct(Yt), αt, Yt) is the encoding of the partial solution Wt of the optimal

solution W in Gt, then Dec(ct(Yt), αt, Yt) = Wt.

Proof. Let Ŵt = Dec(ct, αt, Yt) and Ŵ = E(Ŵt)]Rt. By definition of decoding, w(Ŵt) ≤
w(Wt). Since Ŵt ∩Xt = Wt ∩Xt (both are equal to Yt) and labels of vertices in Yt are

the same in both Ŵt and Wt, every vertex in Ŵ has even degree. Since Ŵt is a partial

solution, Ŵ spans all terminals. Since Rt has no edge in Gt, there are no parallel edges

in Ŵt. Thus, Ŵ is a feasible solution of subset TSP problem.

However, w(Ŵ ) = w(Rt) + w(Ŵt) ≤ w(Rt) + w(Wt) = w(W ). By the uniqueness

assumption, Wt = Ŵt; the claim follows.

For each node t ∈ T , we would inductively maintain a set of encodings η̂t that satisfies

the following correctness invariant:

Correctness invariant: η̂t contains the encoding of the partial solution Wt

of W .

By Claim 2.3.39, the correctness invariant implies that we are keeping track of W

via encodings and their decodings. The key idea of an efficient dynamic program is to

guarantee that |η̂t| ≤ 2O(tw) for every node t. We do that by applying size reduction

based on the representation theorem (Theorem 2.3.37).

Size reduction: We guarantee that |η̂t| ≤ 12tw for every node t as follows.

For a fixed labeling ct of Xt and a fixed susbet Y ⊆ Xt, let ηt(ct, Y ) =

{(ct(Y ′), α, Y ′) : (ct(Y
′), α, Y ′) ∈ η̂t, Y ′ = Y } be the set of all encodings in η̂t

with the same set Y and vertex labeling ct but different partitions of Y . Let

Γ be the set of partitions of Yt associated with encodings in ηt(ct, Y ). Let
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Γ̂ ⊆min Γ. By Theorem 2.3.37, |Γ̂| ≤ 2tw−1. We now construct a new set of

encodings η̂t(ct, Y ) from ηt(ct, Y ) as follows: for each partition α̂ ∈ Γ̂, we add

the encoding (ct(Y ), α̂, Y ) to η̂t(ct, Y ). Then, we set η̂t ← (η̂t \ ηt(ct, Y )) ∪
η̂t(ct, Y ). We repeat the reduction for every fixed Y and ct. Since there are

at most 2tw different subsets Y and 3tw different labelings ct, η̂t ≤ 12tw. We

denote by SR(η̂t) the set of encodings obtained by applying size reduction to

η̂t.

To see the correctness invariant of η̂t after size reduction, consider encoding (ct(Yt), αt, Yt)

of Wt. Before reduction, (ct(Yt), αt, Yt) ∈ η̂t. Recall βt is the partition of Yt induced by

Rt. By Theorem 2.3.37, there is an encoding (ct(Yt), α̂t, Yt) ∈ η̂t after reduction such

that α̂ttβt = Yt and w(α̂t) ≤ w(αt). Let Ŵt = Dec(ct(Yt), α̂t, Yt). Since labels of vertces

in Yt are the same for Ŵt and Wt, every vertex of Rt ] Ŵt has even degree. Recall Rt

has no edge in Gt, thus, Rt ] Ŵt is an Eulerian subgraph of G that spans T . However,

w(Rt ] Ŵt) ≤ w(Rt ]Wt) since w(Ŵt) ≤ w(Wt). By the uniqueness of W , Ŵt = Wt.

Hence, Dec(ct(Yt), α̂t, Yt) ∈ η̂t. Thus, η̂t satisfies correctness invariant.

We denote the empty encoding (∅, {∅}, ∅) by ∅. If Gt has a feasible solution, then

Dec(∅) is the smallest weight feasible solution, say St, in Gt and the weight of the

corresponding empty partition is w(St). Otherwise, Dec(∅) = ∅ and the weight of the

corresponding empty partition is +∞.

Since the root node r has Xr = ∅, Gr = G. Thus, the feasible solution Dec(∅) is the

optimal solution W .

Leaf node For each leaf node t, η̂t only contains the empty encoding ∅.

Introduce vertex node Let t be an introduce vertex node and t′ be a child of t. Let

v = Xt \ Xt′ . By the definition of introduce vertex nodes, v is an isolated vertex in

Gt. For each encoding (ct′(Y
′), α′, Y ′) of η̂t′ , we construct a new encoding (ct(Y ), α, Y )

where:

(i) Y = Y ′ ∪ {v}.
(ii) ct(v) = 0 and ct(u) = ct′(u) for every u ∈ Y ′.
(iii) α = α′ ∪ {{v}} (add v as a singleton to α′).

Let Dec(ct(Y ), α, Y ) = Dec(ct′(Y
′), α′, Y ′) ∪ {v}. Let ηnewt be the set of new encodings.

Let ηt = ηnewt ∪ η̂t′ . We now show the correctness invariant for ηt.
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Recall Wt and Wt′ are the partial solutions of W in Gt and Gt′ , respectively. Since

V (Gt) = V (Gt′) ∪ {v} and E(Gt) = E(Gt′), either (a) Wt = Wt′ or (b) Wt = Wt′ ∪ {v}
(v is added to Wt′ as an isolated vertex). In case (a), (ct(Yt), αt, Yt) = (ct′(Yt′), αt′ , Yt′).

Thus, encoding of Wt is in ηt′ . In case (b), v is an isolated vertex of Wt, thus has

ct(v) = 0. Since we add (ct(Yt), αt, Yt) to ηnewt where Yt = Yt′ ∪{v} and αt = αt′ ∪{{v}},
ηt contains the encoding of Wt.

Let η̂t = SR(ηt). Since |ηnewt | ≤ |η̂t′ | ≤ 12tw, |ηt| ≤ |ηnewt |+ |η̂t′ | ≤ 2 · 12tw = 2O(tw).

Thus, by Theorem 2.3.37, the running time of size reduction is at most 2O(tw)twO(1).

Introduce edge node Let t be an introduce edge node where an edge uv is introduced.

Let t′ be the only child of t. By the definition of introduce edge nodes, V (Ht) = V (Ht′)

and E(Ht) = E(Ht′) ∪ {uv}.
Let g(x) = ((x+1) mod 2)+1. Function g(x) has following properties: g(x+1) = 1

when x = 0 or x = 2 and g(x+ 1) = 2 when x = 1.

For each encoding (ct′(Y
′), α′, Y ′) of η̂t′ , we construct a new encoding (ct(Y ), α, Y )

where:

(i) Y = Y ′.

(ii) ct(u) = g(ct′(u)+1), ct(v) = g(ct′(v)+1) and ct(w) = ct′(w) for every w ∈ Y ′\{u, v}.
(iii) αt = αt′ t Y ′[uv]. We the assign w(αt) = w(αt′) + w(uv).

Let Dec(ct(Y ), α, Y ) = Dec(ct′(Y
′), α′, Y ′) ∪ {uv}. Let ηnewt be the set of new encod-

ings. We then remove duplicates from ηnewt : if there are two encodings (ct(Y ), α, Y ),

(ct(Y ), β, Y ) in ηnewt where α = β but w(α) < w(β) or (ct(Y ), β, Y ) is just another

version of the same encoding (ct(Y ), α, Y ), ct(Y )) (two versions are constructed from

different encodings in η̂t.), we remove Dec(ct(Y ), β, Y ) from ηnewt . Let ηt = ηnewt ∪ ηt′ .
We now show the correctness invariant for ηt.

Since V (Gt) = V (Gt′) and E(Gt) = E(Gt′) ∪ {uv}, either (a) Wt = Wt′ or (b)

Wt = Wt′ ∪ {uv}. In case (a), (ct(Yt), αt, Yt) = (ct′(Yt′), αt′ , Yt′). Thus, the encoding

of Wt is in ηt′ . In case (b), adding edge uv change the label of u and v in Wt′ to

g(ct′(u)+1) and g(ct′(v)+1), respectively. If u, v are in two different components of Wt′ ,

say C ′u, C
′
v, respectively, adding uv merges C ′u and C ′v into one connected component.

Thus, αt = αt ∪ Yt′ [uv]. That implies the encoding (ct(Yt), αt, Yt) of Wt is in ηnewt . By

Observation 2.3.38, (ct(Yt), αt, Yt) is not removed in ηnewt during the duplicate removal;

the correctness invariant of ηt follows.
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Let η̂t = SR(ηt). Since |ηnewt | ≤ |η̂t′ | ≤ 12tw, |ηt| ≤ 2 · 12tw = 2O(tw). Thus, the

running time of size reduction is at most 2O(tw)twO(1).

Forget node Let t be a forget node and t′ be the only child of t. Let v = Xt′ \ Xt.

We first discard any encoding (ct′(Y
′), α′, Y ) in η̂t′ that satisfies one of three following

conditions:

1. ct′(v) = 1.

2. ct′(v) = 0 and v ∈ T .

3. ct′(v) = 2, v is a singleton in the partition α′ and Dec(ct′(Y
′), α′, Y ′) is not a

feasible solution.

For each remaining encoding, say (ct′(Y
′), α′, Y ′), of η̂t′ , we construct a new encoding

(ct(Y ), α, Y ) where:

(i) Y = Y ′ \ {v}.
(ii) ct(u) = ct′(u) for every u ∈ Y
(iii) α = α′ \ {v} and w(α) = w(α′).

Let Dec(ct(Y ), α, Y ) = Dec(ct′(Y
′), α′, Y ′). Let ηnewt be the set of new encodings. Let

ηt = ηnewt ∪ η̂t′ . We then remove duplicates from ηt. We now show the correctness

invariant for ηt.

Observe that if v ∈ Wt′ , it must have label 2 in the encoding of Wt′ since V (Gt) =

V (Gt′ \{v}). Furthermore, if v is a singleton in αt′ , Wt′ = W . Thus, Dec(ct′(Yt′), αt′ , Yt′)

is a feasible solution. That implies Dec(ct′(Yt′), αt′ , Yt′) is not discarded at the beginning

(the new encoding constructed from Dec(ct′(Yt′), αt′ , Yt′) is empty.).

We consider two cases: (a) Wt′ does not contain v and (b) Wt′ contains v. In case

(a), (ct(Yt), αt, Yt) = (ct′(Yt′), αt′ , Yt′). Thus, the encoding of Wt is in η̂t′ . In case (b),

Yt = Yt′ \ {v}, ct(Yt) = ct′(Yt′ \ {v}) and αt = αt′ \ {v}. Thus, (ct(Yt), αt, Yt) is in ηnewt ;

the correctness invariant of ηt follows.

Let η̂t = SR(ηt). Since |ηnewt | ≤ |η̂t′ | ≤ 12tw, |ηt| ≤ 2 · 12tw = 2O(tw). Thus, the

running time of size reduction is at most 2O(tw)twO(1).
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Join node Let t be a join node with two children t1, t2. Note that Xt = Xt1 = Xt2 .

Let h(x, y) be a function where:

h(x, y) =


0, if x = y = 0

1, if x+ y is odd

2, otherwise

For each encoding (ct1(Y1), α1), Y1 of η̂t1 and (ct2(Y2), α2, Y2) of η̂t1 such that Y1 = Y2,

we construct a new encoding (ct(Y ), α, Y ) where:

(i) Y = Y1 = Y2.

(ii) ct(u) = h(ct1(u), ct2(u)) for every u ∈ Y
(iii) α = α1 t α2 and w(α) = w(α1) + w(α2).

Since E(Xt1) ∩ E(Xt2) = ∅, E(Dec(ct1(Y1), α1, Y1)) ∩ E(Dec(ct2(Y2), α2, Y2)) = ∅. Let

Dec(ct(Y ), α, Y ) = Dec(ct1(Y1), α1, Y1) ∪ Dec(ct2(Y2), α2, Y2). Let ηt be the set of new

encodings. We then remove duplicates from ηt. We now show the correctness invariant

for ηt.

Recall Wt1 ,Wt2 are the partial solutions of W in Gt1 and Gt2 , respectively. We

consider the relationship between the encoding (ct(Yt), αt, Yt) of Wt and the encodings

of its two children (ct1(Yt1), αt1 , Yt1) and (ct2(Yt2), αt2 , Yt2).

Since E(Gt1) ∩ E(Gt2) = ∅, E(Wt1) ∩ E(Wt2) = ∅. Since Xt = Xt1 = Xt2 , we have

Yt = Yt1 = Yt2 . Since degree in Wt of a vertex v ∈ Yt is the sum of its degrees in Yt1

and Yt2 , ct(v) = h(ct1(v), ct2(v)). Since Wt = Wt1 ∪Wt2 , we have αt = αt1 t αt2 . That

implies (ct(Yt), αt, Yt) is in ηt.

Let η̂t = SR(ηt). Since |ηt| ≤ |η̂t1 ||η̂t2 | ≤ 122tw = 2O(tw), size reduction can be done

in 2O(tw)twO(1) time.

Claim 2.3.40. The dynamic programming table of each node can be constructed in time

2O(tw)twO(1)n.

The n factor in Claim 2.3.40 is for maintaining decodings in each step. This factor can

be removed, but it is not the purpose of our paper. Thus, the total running time of the

dynamic programming algorithm is 2O(tw)twO(1)n2, thereby implying Theorem 2.3.3.
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Chapter 3: Local Search PTASes

Local search is a widely used heuristic for solving optimization problems. It has been

successfully applied to the traveling salesperson problem [33], k-median [8], facility loca-

tion [8] problems. A striking property of local search is simplicity: repeatedly changing

a constant number of vertices or edges to improve the current solution until no such

changes possible. In this chapter, we show that local search yields PTASes for two

problems:

r-dominating set Given a graph G, find a subset of vertices D of minimum size such

that every vertex in V \D is in distance at most r from at least one vertex in D.

Feedback vertex set Given a graph G, find a subset of vertices S of minimum size

such that G \ S is acyclic.

3.1 Local search PTASes

The first PTASes by local search were discovered independently for geometric prob-

lems by Chan and Har-Peled [27] and Mustafa and Ray [78]. The algorithm, shown in

Figure 3.1, is conceptually simple and can be applied to any problem. Intuitively, the

algorithm checks whether a better solution can be obtained from the current solution by

exchanging a constant number of vertices. We show below that for most problems, the

constant c in Figure 3.1 is O( 1
ε2

). Thus, one can search for a set of vertices to exchange in

nO( 1
ε2

) time. Since the algorithm terminates after at most n exchanges, the total running

time is nO( 1
ε2

).

The main technical challenge is the analysis: showing that local search gives a (1+ε)-

approximation upon termination. There have been several results on the analysis of

local search for problems in H-minor-free graphs. Cabello and Gajser [26] showed that

local search gives PTASes for maximum independent set, vertex cover and dominating

set problems. Cohen-Addad, Klein and Mathieu [32] showed that local search yields

PTASes for k-means, k-median and uniform facility location problems. Chaplick, De,
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LocalSearch(G, ε)
S ← an arbitrary feasible solution of G.
c← a constant depending on ε.
while there is a solution S′ such that |S \ S′| ≤ c, |S′ \ S| ≤ c and |S′| < |S|

S ← S′

return S

Figure 3.1: The local search algorithm.

Ravsky and Spoerhase [28] showed the same result for maximum k-coverage problems.

A key ingredient in the analysis are δ-divisions of H-minor-free graphs. We say a vertex

v is a boundary vertex of a subgraph K of G if v is incident to an edge in E(G) \E(K).

Definition 3.1.1. For an integer δ, an δ-division of a graph G is a collection of edge-

disjoint subgraphs of G, called regions, with the following properties.

1. Each region contains at most δ vertices.

2. The number of regions is at most cd
n
δ .

3. The number of boundary vertices, summed over all regions, is at most cd
n√
δ
.

where cd is a constant.

Frederickson [49] introduced δ-divisions of planar graphs to speed up planar shortest

path computation. A similar division was obtained earlier by Lipton and Tarjan [73]

to approximate independent set in planar graphs. Since δ-divisions in planar graphs

only rely on the separator theorem by Lipton and Tarjan [73], we can extend δ-division

naturally to H-minor-free graphs using the separator theorem by Alon, Seymour and

Thomas [6] or a similar theorem by Kawarabayashi and Reed [58].

3.2 Domination problems

When r is a fixed parameter for the r-domination problem, the bidimensionality frame-

work by Demain and Hajiaghayi [36] gives an EPTAS where the running time depends

exponentially on r. The essential part of the bidimensionality framework is to reduce

the original problem to the same problem in a bounded treewidth graph where dynamic

programming can be used to solve the problem optimally.
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In joint work with Glencora Borradaile [22], we show that unless the Exponential

Time Hypothesis fails, there is no subexponential algorithm for r-dominating set prob-

lem in bounded treewidth graphs. In that sense, the exponential dependency of r is

unavoidable, and that means it is hard obtain a PTAS for r-dominating set when r is

beyond O(log n). When r is a part of the input, Eisenstat, Klein and Mathieu [44] de-

signed a bicritera PTAS that approximates both the size of the optimal solution and the

domination distance r. We show that local search gives a PTAS for this problem for all

possible values of r, even on edge-weighted graphs. Our analysis is simple and similar

to the analysis of Cabello and Gajser [26].

Theorem 3.2.1. Local search gives a PTAS for r-dominating set problem in H-minor-

free graphs with non-negative edge-weights.

Let O be the set of vertices in an optimal solution. Let L be the local search solution

(Figure 3.1). Let Ex(VEx, EEx) be a graph, called the exchange graph, with vertex set

VEx = L∪O obtained by contracting every vertex of G not in VEx to its nearest vertex in

VEx (breaking ties by lexicographic order). We make Ex(VEx, EEx) simple by removing

self-loops and parallel edges. We say a vertex v is r-dominated by a vertex u ∈ VEx if

dG(u, v) ≤ r (a vertex r-dominates itself).

Lemma 3.2.2 (Exchange property). For every vertex v of G, either v is r-dominated

by a vertex in L ∩O or there is an edge uw ∈ EEx where u ∈ L \O and w ∈ O \ L and

v is r-dominated by both u and w in G.

Proof. For each vertex v ∈ G, we use VEx(v) to denote the vertex in VEx that v is

contracted to. If v is in VEx, we let VEx(v) = v.

Consider any vertex v of g. If v is contracted to a vertex, say x ∈ L ∩ O, then

v is r-dominated by x. Thus, the lemma holds. Hence, we can assume that v is not

contracted to a vertex L ∩ O. We suppose w.l.o.g. that VEx(v) ∈ L. Let v′ be a vertex

in O that r-dominates v. Let v = v0, v1, . . . , vk = v′ be vertices on a shortest v-to-v′

path, say P , in G. Let PS = {s1, s2, . . . , s`} be the corresponding path in Ex such that:

s1 = VEx(v), s` = v′ (recall VEx(v′) = v′) and for any j, sj = VEx(vi) for some i.

Claim 3.2.3. Vertex v is r-dominated by every vertex in PS.
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Proof. Let sj be a vertex in PS and vi be a vertex in P such that VEx(vi) = sj . Since vi

is contracted to sj , dG(vi, sj) ≤ dG(vi, s`). Thus, we have:

dG(v, sj) ≤ dG(v, vi) + dG(vi, sj)

≤ dG(v, vi) + dG(vi, s`)

= d(v, s`) (since vi is on the shortest path P )

= d(v, v′) ≤ r

If any vertex of PS is in L ∩ O, then by Claim 3.2.3, v is r-dominated by a vertex

in L ∩ O; the lemma holds. Thus, we can assume that V (PS) ∩ L ∩ O = ∅. Since path

PS starts with a vertex in L and ends with a vertex in O, there must be two adjacent

vertices u and w such that u ∈ L \ O and w ∈ O \ L. By Claim 3.2.3, u and w both

r-dominate v; the lemma follows.

Proof of Theorem 3.2.1. By construction, Ex(VEx, EEx) is H-minor-free. Thus, there

exists an δ-division of Ex(VEx, EEx). Let c = δ = 1
ε2

(c is the constant in the algorithm

in Figure 3.1). Let R1, R2, . . . , Rk be the set of regions in the δ-division of G. Let Bi be

the set of vertices on the boundary of Ri and int(Ri) = Ri \ Bi, 1 ≤ i ≤ k. By (ii) of

Definition 3.1.1, we have:

k∑
i=1

|Bi| = cd

(
|O ∪ L|√

δ

)
≤ cdε(|O|+ |L|) (3.1)

Let Oi = O ∩ int(Ri) and Li = L ∩ int(Ri). Let Mi = (L \Ri) ∪Bi ∪Oi.

Claim 3.2.4. Mi is an r-dominating set.

Proof. Suppose otherwise; there is a vertex v ∈ G that is not r-dominated by Mi. Since

L is an r-dominating set, v must be r-dominated by a vertex u in Li\O. By Lemma 3.2.2,

there exists a vertex w ∈ O that r-dominates v and uw ∈ Ex. That implies w ∈ Bi∪Oi;
contradicting that v is not r-dominated by Mi.

Since |Mi \L| < |Ri| and |L \Mi| < |Ri| and |Ri| ≤ δ = c, it must be that |Mi| > L.

That implies:

|Li| < |Bi|+ |Oi| (3.2)
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Thus, we have:

|L| =
k∑
i=1

|L ∩Ri| ≤
k∑
i=1

|Li|+ |Bi|

<
k∑
i=1

|Oi|+ 2
k∑
i=1

|Bi| (by Equation 3.2)

≤ |O|+ 2
k∑
i=1

|Bi|

≤ |O|+ 2cdε(|O|+ |L|) (by Equation 3.1)

Thus, |L| < 1+2cdε
1−2cdε

|O| = (1 +O(ε))|O| when ε is sufficiently small.

3.3 The feedback vertex set problem

FVS problem is in Karp’s list of 21 NP-complete problems [56] and has many real-

world applications: deadlock recover in operating systems [86], VLSI design [47], wireless

networks [91]. In general graphs, the first approximation algorithm guaranteed O(log n)-

approximate solution by Bar-Yehuda, Geiger, Naor and Roth [12] and the best known

approximation algorithm guarantes a 2-approximate solution [10, 14]. FVS is also one of

the central problems in parameterized complexity [42] and there was a PACE challenge

in 2016 [35] on this problem.

In planar graphs, the FVS problem has played an important role as motivation for

new PTASes. Baker’s technique [11] is a powerful technique that gives PTASes for

various optimization problems. However, as said by Demaine and Hajiaghayi [36],

“[...] all applications of Baker’s approach so far are to optimization prob-

lems arising from “local” properties (such as those definable in first-order

logic). Intuitively, such local properties can be decided by locally checking

every constant-size neighborhood. In particular, this restriction has lim-

ited attempts at characterizing the complexity class of problems admitting

PTASs.”

Prominent representatives of problems that have “local” properties are vertex cover and

dominating set. However, the FVS problem does not have such local properties and
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Baker’s technique [11] does not apply to this problem. In fact, the FVS problem is one

of two motivating problems (the other being connected dominating set) for Demaine and

Hajiaghayi [36] to develop the bidimensionality PTAS framework. We note that the first

PTAS for the FVS problem in planar graphs was obtained earlier by Kleignberg and

Kumar [62], but their algorithm is quite complicated.

Though a PTAS for FVS in H-minor-free graphs is known by the bidimentionality

framework of Demaine and Hajiaghayi, it was not known whether local search admits

a PTAS for FVS. Known local search PTASes in H-minor-free graphs are for problems

that as for Baker’s technique, have “local” properties. Such locality is also reflected in

the analysis where exchange graphs are built by taking a subgraph of the input graph on

O∪L, such as in the analysis of vertex cover and independent set [26], or by contracting

vertices outside VEx to nearest vertices in O ∪ L, such as in the analysis of dominating

set [26], k-means, k-median, uniform facility location [32] and the maximum coverage

problem [28]. However, FVS doesn’t have such locality and simply taking a subgraph or

taking a contraction of the input graph is not enough to guarantee the exchange property

of the resulting graph, that is, for any cycle of G, there must be a vertex in L∩O or an

edge between a vertex of O and a vertex of L.

Thus, constructing an exchange graph, say Ex(VEx, EEx), for analysis is the ma-

jor technical hurdle. Instead of limiting VEx = L ∪ O as previous work, we add to

Ex(VEx, EEx) vertices in V \ (O ∪ L), called Steiner vertices. However, for the analysis

to work, we need to guarantee that the number of Steiner vertices is O(|L|+ |O|).

Theorem 3.3.1. There is an H-minor-free graph Ex(VEx, EEx) such that:

(1) L ∪O ⊆ V (Ex) ⊆ V (G).

(2) |V (Ex)| ≤ ce(|L|+ |O|) for ce = poly(|V (H)|).

(3) For every cycle C of G, there is (3a) a vertex of C in O ∩ L or (3b) an edge

uv ∈ EEx between a vertex u ∈ L and a vertex v ∈ O in C or (3c) a cycle C ′ of

Ex such that V (C ′) ⊆ V (C) and C ∩ (O ∪ L) = C ′ ∩ (O ∪ L).

Given Theorem 3.3.1, we can show the following theorem.

Theorem 3.3.2. For any fixed ε > 0, local search algorithm finds a (1 + ε)-approximate

solution for the FVS problem in H-minor-free graphs with running time O(nc) where

c = poly(|V (H)|)
ε2

.
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Proof. The proof is similar to the proof of Theorem 3.2.1. The only difference is that

we have Steiner vertices in the exchange graph. We set the constant c in the algorithm

in Figure 3.1 as 1/τ2 where τ = ε
2cdce(2+ε) = O( ε

cdce
). Note that cd is the constant in

Definition 3.1.1. Since both cd and ce are polynomial in |V (H)|, c is also polynomial in

|V (H)| which implies the claimed running time.

Let Ex(VEx, EEx) be the exchange graph for O and L as in Theorem 3.3.1. Since

Ex is H-minor-free, we can find a δ-division of Ex for δ = c = d1/τ2e. Let B be the

multi-set containing all the boundary vertices in the r-division. By the third property of

δ-division, |B| is at most cd
|V (Ex)|√

σ
. By the second property of exchange graph, |V (Ex)| ≤

ce(|O|+ |L|). Thus, we have:

|B| ≤ cdceτ(|O|+ |L|) (3.3)

Below, we will show that:

|L| ≤ |O|+ 2|B| (3.4)

Then by Equation 3.3, we have:

|L| ≤ |O|+ 2cdceτ(|O|+ |L|) = |O|+ ε

2 + ε
(|O|+ |L|)

which implies |L| ≤ (1 + ε)|O|.
To prove Equation (3.4), we need to study some properties of Ex. For any region Ri

of the δ-division, let Bi be the boundary of Ri and Mi be the union of L \ Ri, O ∩ Ri
and Bi.

Claim 3.3.3. Mi is a feedback vertex set of G.

Proof. For a contradiction, assume that there is a cycle C of G that is not covered by

Mi. Then C does not contain any vertex of L \ Ri, O ∩ Ri and Bi. So C can only

be covered by vertices of (L \ O) ∩ int(Ri) and vertices of O \ (L ∪ Ri). This implies

that C does not contain any vertex of O ∩ L and there is no edge in Ex between C ∩O
and C ∩ L. By the third property of the exchange graph, there must be a cycle C ′ in

Ex such that V (C ′) ⊆ V (C) and C ∩ (O ∪ L) = C ′ ∩ (O ∪ L). Let u be the vertex of

(L \O) ∩ int(Ri) in C and v be the vertex of O \ (L ∪Ri) in C. Then cycle C ′ contains

both u and v, which implies C ′ crosses the boundary of Ri, that is C ′ ∩ Bi 6= ∅. Let w
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be a vertex in C ′ ∩Bi, then w also belongs to C in G. This implies Mi contains a vertex

of C, a contradiction.

By the construction of Mi, we know the difference between L and Mi is bounded by

the size of the region Ri, which is δ. Recall that c = δ = 1/τ2. Since L is the output

of the local search algorithm, we know L cannot be improved by changing at most δ

vertices. So we have |L| ≤ |Mi|. By the construction of Mi, this implies

|L ∩Ri| ≤ |Mi ∩Ri| ≤ |O ∩ int(Ri)|+ |Bi|.

which in turn implies

|L ∩ int(Ri)| ≤ |L ∩Ri| ≤ |O ∩ int(Ri)|+ |Bi|.

Since int(Ri) and int(Rj) are vertex-disjoint for any two distinct i and j, by summing

over all regions in the δ-division, we can have

|L| − |B| ≤
∑
i

|L ∩ int(Ri)| ≤
∑
i

(|O ∩ int(Ri)|+ |Bi|) ≤ |O|+ |B|.

This proves Equation (3.4) and so, Theorem 3.3.2.

3.3.1 Exchange Graph Construction

Recall that σH = |V (H)|
√

log |V (H)| is the sparsity of H-minor-free graphs. We will

show that the constant ce in Theorem 3.3.1 is O(σH). We construct the exchange graph

in three steps:

Step 1 We delete all edges in G that are incident to vertices of O ∩L. We then remove

all components that do not contain any vertex O ∪ L. Note that the removed

components are acyclic.

Step 2 We contract edges that have an endpoint that is not a solution vertex and has

degree at most two until there is no such edge left. Since L and O are both feedback

vertex sets of G, every cycle after the contraction must contain a vertex from L

and a vertex from O. Since edges incident to vertices of O ∩ L are removed, there

is no self-loop after this step.
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Step 3 We keep the graph simple by removing parallel edges.

Let K be the resulting graph. We now show that K satisfies three properties in

Theorem 3.3.1. Property (1) is obvious because we never delete a vertex in L ∪O from

K. To show property (3), let C be a cycle of G. If any edge of C is removed in Step 1, C

must contain a vertex in O ∩ L; implying (3a). Thus, we can assume that no edge of C

is deleted after Step 1. Since contraction does not destroy cycles, after the contraction

in Step 2, there is a cycle C ′ such that V (C ′) ⊆ V (C). If |V (C ′)| = 2 (C ′ is a cycle of

two parallel edges), then (3b) holds. Thus, we can assume that every edge of C ′ remains

intact after removing parallel edges. But that implies (3c) since we never remove solution

vertices from G. Thus, K satisfies property (3).

It remains to show K satisfies property (2) in Theorem 3.3.1, that is, |V (K)| ≤
O(σH)(|L|+ |O|). By Step 2 we have the following observation.

Observation 3.3.4. Every Steiner vertex of K has degree at least 3.

Since O ∪ L is a feedback vertex set of K, K \ (O ∪ L) is a forest F containing only

Steiner vertices. For each tree T in F , we define the degree of T , denoted by degK(T ),

as the number of edges in K between T and O ∪ L. Let `(T ) be the number of leaves

of T . By Observation 3.3.4, every internal vertex of T has degree at least 3. Thus,

|V (T )| ≤ 2`(T ). That implies:

|V (T )| ≤ 2 degK(T ). (3.5)

We contract each tree T of F into a single Steiner vertex sT . Let K ′ be the resulting

graph. Then we have the following observation.

Observation 3.3.5. Graph K ′ is simple.

Proof. Since every cycle of K must contain a vertex from L and a vertex from O, there

cannot be any solution vertex in K that is incident to more than one vertex of a tree T

of F . So there cannot be parallel edges in K ′.

To bound the size of K ′, we need the following structural lemma. We remark that

this lemma holds for general graphs.
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Lemma 3.3.6. For a graph G and two disjoint nonempty vertex subsets A and B, let

D = V (G) \ (A∪B). If (i) D is an independent set, (ii) every vertex in V (G) \ (A∪B)

has degree at least 3 in G and (iii) for every cycle C in G, we have C ∩ A 6= ∅ and

C ∩B 6= ∅, then we have |V (G)| ≤ 2(|A|+ |B|).

Proof. We remove every edge that only has endpoints in A ∪ B and let the resulting

graph be G′. Then G′ is a bipartite graph with A∪B in one side and D in the other side

since D is an independent set. Let DA (resp. DB) be the subset of D only containing

the vertices that have at least two neighbors in A (resp. B). Since every vertex of D has

degree at least 3, we have DA ∪DB = D.

Let HA be the subgraph of G′ induced by A∪DA. Then HA is acyclic since otherwise

every cycle of HA would correspond to a cycle in G that does not contain any vertex

in B. We now construct a graph H∗A on vertex set A. For each vertex v ∈ DA, we

arbitrarily choose its two neighbors x and y in A and add an edge between x and y in

H∗A. By construction, there is a one-to-one mapping between edges of H∗A and vertices

of DA.

Since HA is acyclic, H∗A is also acyclic. Thus, |E(H∗A)| ≤ V (H∗A) = |A|. This

implies |DA| ≤ |A|. By a similar argument, we can show that |DB| ≤ |B|. Thus,

|D| = |DA ∪DB| ≤ |A|+ |B|, and the lemma follows.

Let Z be an arbitrary component of K ′ that contains at least one Steiner vertex.

Then the two sets V (Z) ∩ O and V (Z) ∩ L must be disjoint since any vertex in O ∩ L
is isolated in K ′. And each of the two sets cannot be empty since there must be a cycle

in Z through the Steiner vertex which also contains a vertex of O and a vertex of L

respectively. Let X be the set of Steiner vertices in Z. By the construction of K ′, vertex

set X is an independent set of Z. By Observation 3.3.4, every vertex of X has degree

at least 3. So we can apply Lemma 3.3.6 for Z, V (Z) ∩ O and V (Z) ∩ L, and obtain

|V (Z)| ≤ 2(|V (Z)∩O|+ |V (Z)∩L|) = 2(|V (Z)∩O|+ |V (Z)∩ (L \O)|). Note that this

bound holds trivially if Z does not contain any Steiner vertex. Thus, summing over all

components of K ′, we have |V (K ′)| ≤ 2(|V (K ′)∩O|+ |V (K ′)∩ (L \O)|) ≤ 2(|O|+ |L|).
Since K ′ is a minor of G , it is also H-minor-free. By Lemma 1.1.3, we have

|E(K ′)| = O(σH |V (K ′)|)
= O(σH)(|O|+ |L|)

(3.6)
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We now ready to bound the size of V (K). Recall each tree T of F is contracted into

a single Steiner vertex sT in K ′. We have:

|V (K) \ (O ∪ L)| =
∑

T∈F |V (T )|
≤ 2

∑
T∈F degK(T ) (Equation (3.5))

= 2
∑

T∈F degK′(sT )

≤ 2|E(K ′)| ({sT |T ∈ F} is an independent set)

= O(σH)(|O|+ |L|) (Equation (3.6))

This implies V (K) ≤ O(σH)(|O|+ |L|). Thus K satisfies property (2) in Theorem 3.3.1.

3.3.2 Negative Results

In this section, we show some negative results for the FVS problem and its variants.

A graph is 1-planar if it can be drawn in the Euclidean plane such that every edge

has at most one crossing, where it crosses a single additional edge. We first show that

FVS is APX-hard in 1-planar graphs. Then for the two variants, odd cycle transversal

and subset feedback vertex set, we construct examples where local search with con-

stant exchanges cannot give a constant approximation in planar graphs. The odd cycle

transversal problem (also called bipartization) asks for a minimum set of vertices in an

undirected graph whose removal results in a bipartite graph. Given an undirected graph

and a subset U of vertices, the subset feedback vertex set problem asks for a minimum

set S of vertices such that after removing S the resulting graph contains no cycle that

passes through any vertex of U .

Theorem 3.3.7. Given a general graph G, we can construct a 1-planar graph H in

polynomial time, such that G has a feedback vertex set of size at most k if and only if H

has a feedback vertex set of size at most k.

Proof. Consider a drawing of G on the plane where each pair of edges can cross at most

once. For each crossed edge e in G, we subdivide e into edges so that there is exactly

one crossing per new edge. Let H be the resulting graph. By construction, graph H is

1-planar.

Let n be the size of G. Since there are at most O(n2) crossings per edge in the

drawing, the size of H is at most O(n4). Sine we only subdivide edges, there is a one-
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to-one mapping between cycles of G and cycles of H. It is straightforward to see that

any feedback vertex set of G is also a feedback vertex set of H.

Let S be a feedback vertex set of H. If S ⊆ V (H) ∩ V (G), then it is also a feedback

vertex set for G. Otherwise, let v ∈ V (H) \ V (G) be a vertex in S. Then v must be

added to subdivide an edge, say e, in G. We remove v from S and add an arbitrary

endpoint of e in G to S. Then S is still a feedback vertex set for H. We repeat this

process until S is a subset of V (H) ∩ V (G). Observe that S is a feedback vertex set of

size at most k for G. Thus, the lemma holds.

Since the FVS problem is APX-hard in general graphs (by an approximation preserv-

ing reduction [56] from vertex cover problem, which is APX-hard [40]), Theorem 3.3.7

implies that FVS is APX-hard in 1-planar graphs.

To show that simple local search cannot give a constant approximation for the odd

cycle transversal problem and the subset feedback vertex set problem, we construct a

counter-example from a k × k grid as shown in Figure 3.2.
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Figure 3.2: Counterexamples for local search on odd cycle transversal and subset feed-
back vertex set. Circle vertices represent vertices of the optimal solution, and triangle
vertices represent vertices of the local search solution. The grid could be arbitrarily
large. We add one edge in some diagonal cells of the grid. Left: counterexample for odd
cycle transversal. Since any grid is bipartite and does not contain any odd cycle, any
odd cycle in the example must contain an edge in the diagonal cell. All the vertices in
the diagonal, represented by triangles, give a solution that is locally optimal, that is, we
cannot improve this solution by changing a small number of vertices. This is because
each triangle vertex and each new edge, together with some other edges, can form at
least one odd cycle in the graph. For a constant c that is smaller than the size of optimal
solution, if we remove c triangle vertices, say V ′, in the locally optimal solution, there
will be c vertex-disjoint odd cycles in the resulting graph, each of which contains one
removed triangle. Thus, there is no subset of size less than c that can replace V ′. Then
the ratio between the two solutions could be arbitrarily big if the gird is arbitrarily big
and the number of added diagonal edges is super-constant and sublinear to the size of
the diagonal. Right: counterexample for subset feedback vertex set. The diamonds rep-
resent the vertices in the given set U . Similarly, any cycle through a given vertex must
contain the two edges in the diagonal cell. By the same reason, the local search solution
cannot be improved.
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Chapter 4: Large Induced Forests in Planar Graphs

A subset of verties S of a graph G induces a forest if the graph obtained from G by

removing every vertex in V (G) \ V (S) has no cycle. In this chapter, we explore two

related questions concerning the existence of large induced forests in planar graphs. The

first question is the conjecture proposed by Albertson and Berman [4].

Conjecture 4.0.1 (Albertson and Berman [4]). Any planar graph of n vertices has an

induced forest of size at least n
2 .

We show in Section 4.2 that the Albertson-Berman Conjecture holds for 2-outerplanar

graphs. The second question is the conjecture proposed by Akiyama and Watanabe [3].

Conjecture 4.0.2 (Akiyama and Watanabe [3]). Any bipartite planar graph of n vertices

has an induced forest of size at least 5n
8 .

The best result toward the Akiyama-Watanabe Conjecture is by Wang, Xie and

Yu [90], who show the existence of an induced forest of size d(4n + 3)/7e. However, a

stronger version of Akiyama-Watanabe Conjecture that has attracted attention recently

is studied in this thesis. Its proof would immediately imply the Akiyama-Watanabe

Conjecture.

Conjecture 4.0.3 (Strong Akiyama-Watanabe Conjecture). Any triangle-free planar

graph of n vertices has an induced forest of size at least 5n
8 .

In Section 4.3, we show that triangle-free planar graph of n vertices has an induced

forest of size at least 5n
9 , coming very close to proving the Strong Akiyama-Watanabe

Conjecture

4.1 Definitions

We will assume that we are given a fixed embedding of a connected planar graph. A face

of a planar graph is a connected region of the complement of the image of the drawing.
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There is one infinite face, which we denote by f∞. We denote the boundary of f∞, which

is the boundary of G, by ∂G. We say that a vertex v is enclosed by a cycle C if every

curve from the image of v to an infinite point must cross the image of C. Every planar

graph G has a corresponding dual planar graph G∗: the vertices of G∗ correspond to the

faces of G and the faces of G∗ correspond to the vertices of G; an edge of G∗ connects

two vertices of G∗ if the corresponding faces of G share an edge. (In this way the edges

of the two graphs are in bijection.) We use dH(v) to denote the degree of vertex v in

graph H and |H| to denote the number of vertices of graph H.

Block-Cut Tree A block of a graph G is a maximal two-connected component of G.

A block-cut tree T of a connected graph G is a tree where each vertex of T corresponds

to a block and there is an edge between two vertices X,Y of T if two blocks X and Y

share a common vertex or are incident to a common edge.

Outerplanarity A non-empty planar graph G with a given embedding is outerplanar

(or 1-outerplanar) if all vertices are in ∂G. A planar graph is k-outerplanar for k > 1 if

deleting the vertices in ∂G results in a (k−1)-outerplanar graph. A k-outerplanar graph

has a natural partition of the vertices into k layers: L1 is the set of vertices in ∂G; Li is

the set of vertices in the boundary of G\∪j<iLj . We denote G(V,E) by G(L1, . . . , Lk;E)

if G is k-outerplanar. For a 2-outerplanar graph, we define the between degree of a vertex

v ∈ Li to be the number of adjacent vertices in Lj , j 6= i.

Facial Block Let C be the set of facial cycles bounding finite faces of G[L1]. For each

C ∈ C, let SC be the set of vertices enclosed by C in G. Then we call the graph G[C∪SC ]

a facial block of G.

4.2 Albertson-Berman Conjecture

Albertson and Berman conjectured that every planar graph has an induced forest on

at least half of its vertices [4]; K4 illustrates that this would be the best possible lower

bound. A proof of the Albertson-Berman Conjecture would, among other things, provide

an alternative proof, avoiding the 4-Color Theorem, that every planar graph has an

independent set with at least one-quarter of the vertices.
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The best-known lower bound toward the Albertson-Berman Conjecture has stood

for 40 years: Borodin showed that planar graphs are acyclically 5-colorable (i.e. have a

5-coloring, every two classes of which induce a forest), thus showing that every planar

graph has an induced forest on at least two-fifths of its vertices [17]. This is the best

lower bound achievable toward the Albertson-Berman Conjecture via acyclic colorings

as there are planar graphs which do not have an acyclic 4-coloring (for example K2,2,2

or the octahedron).

The Albertson-Berman Conjecture has been proven for certain subclasses of planar

graphs. Shi and Xu [85] showed that the Albertson-Berman Conjecture holds when m <

b7n/4c where m and n are the number of edges and vertices of the graphs, respectively.

Hosono showed that outerplanar graphs have induced forests on at least two-thirds of

the vertices [54].

One direction toward proving the Albertson-Berman Conjecture is to partition the

vertices of graph G into sets such that each set induces a forest; the minimum number,

a(G), of such sets is the vertex arboricity of G. This implies that G has an induced forest

with at least 1/a(G) of its vertices. Chartran and Kronk first proved that all planar

graphs have vertex arboricity at most 3 [29]. Raspaud and Wang proved that a(G) ≤ 2

if G is planar and either G has no 4-cycles, any two triangles of G are at distance at

least 3, or G has at most 20 vertices; they also illustrated a 3-outerplanar graph on 21

vertices with vertex arboricity 3 [80]. Yang and Yuan [2] proved that a(G) ≤ 2 if G is

planar and has diameter at most 2. In this section, we show that:

Theorem 4.2.1. If G is a 2-outerplanar graph, then the vertex arboricity of G is at

most 2: a(G) ≤ 2.

4.2.1 Proof of Theorem 4.2.1

We call a set of vertex-disjoint induced forests of G induced p-forests if their vertices

partition the vertex set of G. We consider a counterexample graph G of minimal order.

By studying the structure of this minimal counterexample, we will derive a contradiction.

Let e be an edge that is not in G. We observe:

Observation 4.2.2. If a(G ∪ {e}) ≤ 2, then a(G) ≤ 2.

Observation 4.2.2 allows us to assume w.l.o.g. that G is connected (by adding edges
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between components while maintaining 2-outerplanarity) and that G is a disk triangula-

tion, i.e., that every face except the outer face of G is a triangle (by adding edges inside

non-triangular faces while maintaining 2-outerplanarity). Let L1, L2 be the bipartition

of the vertices of G into layers.

Observation 4.2.3. G[L1] is two-connected.

Proof. Suppose otherwise. Let v be a cut vertex of G[L1]. Then v is also a cut vertex

of G since L1 is the outermost layer. Let B1, B2 be two induced subgraphs of G that

share the cut vertex v and V (B1) ∪ V (B2) = V . Since G is minimal, we can partition

each Bi into two induced forests F1i and F2i, 1 ≤ i ≤ 2. W.l.o.g, we assume that

V (F11) ∩ V (F12) = {v}. Then, F11 ∪ F12 and F21 ∪ F22 are two induced p-forests of G,

contradicting that G is a counter-example.

Claim 4.2.4. Every vertex in G has degree at least 4.

Proof. Suppose G has a vertex v of degree at most 3. Since G is a minimal order

counterexample and G − v is a 2-outerplanar graph, a(G − v) ≤ 2. Let F0 and F1 be

two induced p-forests of G − v. Since v has at most 3 neighbors in G, one of F0 or

F1, w.l.o.g. say F0, contains at most one of these neighbors. Therefore F0 ∪ {v} is a

forest of G and F0 ∪ {v}, F1 are two induced p-forests of G, contradicting that G is a

counterexample.

By Observation 4.2.3, ∂G[L1] is a simple cycle. Thus, the graph, say H∗1 , of G[L1]

obtained from the dual graph of G[L1] by removing the dual vertex corresponding to

the infinite face of G[L1] is a tree. Let B be a facial block of G that has the boundary

cycle corresponding to a leaf of H∗1 . Then, either ∂B has exactly one edge not in ∂G or

B ≡ G. In the former case, let eB be the shared edge; in the later case, let eB be any

edge of B. Denote LB2 = L2 ∩ V (B). We have:

Claim 4.2.5. |LB2 | ≥ 2.

Proof. If |LB2 | = 0, then B is a triangle since G is a disk-triangulation and vertices have

degree at least 4. Then, the vertex of B that is not an endpoint of eB has degree 2 in

G, contradicting Claim 4.2.4. If LB2 = {v}, by Claim 4.2.4, v has at least four neighbors

in L1 and thus, at least one neighbor u of v in L1 is not an endpoint of eB. Then the

degree of u in G is 3, contradicting Claim 4.2.4.
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Claim 4.2.6. Let v be a vertex in LB2 that has between degree at least 3. Then, either v

is a cut vertex of G[LB2 ] or v is adjacent to both endpoints of eB.

Proof. Let v1, v2, v3 be neighbors of v in ∂B in clockwise order around v. Let ∂B[vi, vj ] be

the clockwise segment of ∂B from vi to vj , i 6= j. We define Cij = ∂B[vi, vj ]∪{vvi, vvj},
which is a cycle of B. Assume v is not a cut vertex, at most one cycle of {C12, C23, C31}
encloses a vertex of LB2 , say C31. Thus, v2 is only adjacent to v and two other neighbors,

say v′1, v
′
3, of ∂B. Since C12 and C23 enclose no vertex of LB2 , vv′1v2 and vv2v

′
3 are faces of

G. If neither v′1v2 = eB nor v2v
′
3 = eB, then dG(v2) = 3, contradicting Claim 4.2.4.

Suppose v ∈ LB2 is such that dG[LB2 ](v) = 1. By Claim 4.2.4, dG(v) ≥ 4 so v has

between degree at least 3. Thus, by Claim 4.2.6, we have:

Observation 4.2.7. If there exists v ∈ LB2 such that dG[LB2 ](v) = 1, then v must be

adjacent to both endpoints of eB.

Let xB, yB be the endpoints of eB. Since G is a triangulation, there is a vertex v ∈ LB2
such that vxByB is a face of G. We call v the separating vertex of B.

Claim 4.2.8. If v′ 6= v is a vertex in LB2 that is adjacent to both endpoints of eB, then,

v′ is a cut vertex of LB2 .

Proof. We will prove that v′ has at least one neighbor in LB2 inside the triangle v′xByB

and at least one neighbor in LB2 outside the triangle v′xByB; thus v′ is a cut vertex of

LB2 .

By planarity, the triangle v′xByB encloses v. Let Cvv′ = {v, xB, v′, yB} which is a

cycle of G. Since G is a disk triangulation and the edge xB, yB is embedded outside Cvv′ ,

there must be an edge or a path inside Cvv′ connecting v and v′. Thus, v′ has at least

one neighbor in LB2 inside the triangle v′xByB.

Suppose that the cycle Cv′ = {∂B \eB}∪{v′xB, v′yB} does not enclose any vertex of

LB2 . Since B is a facial block that only has eB as a possible edge not in ∂G, every vertex

in Cv′ \ {v′} must have v′ as a neighbor and has degree 3, contradicting Claim 4.2.4.

Thus, Cv′ must enclose at least one vertex of LB2 . That implies v′ has at least one

neighbor in L2
B outside the triangle v′xByB as desired.

Since every cut vertex of LB2 has degree at least 2 in G[LB2 ], by Claim 4.2.8 and

Observation 4.2.7, we have:
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Observation 4.2.9. Only the separating vertex v of B can have dG[L2](v) = 1.

If the block-cut tree of G[LB2 ] has at least two vertices, let K be a leaf block of G[LB2 ]

that does not contain the separating vertex of B. In this case, by Observation 4.2.9,

|K| ≥ 3. Otherwise, let K = G[LB2 ]. We refer to the cut vertex of K in the former

case and the separating vertex of B in the latter case as the separating vertex of K. By

Claim 4.2.6, we have:

Observation 4.2.10. Non-separating vertices of K have between degree at most 2.

We call a triangle abc of K a critical triangle with top c if dK(c) = 2 and c is non-

separating. By Observation 4.2.10 and Claim 4.2.4, c has exactly two neighbors in L1,

that we denote by d, e (see Figure 4.1). Since G is a disk triangulation, two edges da

and eb are edges of G.

bcd ef a
Figure 4.1: The critical triangle abc and two neighbors d, e of c in L1. Hollow vertices
are in L2.

Claim 4.2.11. Vertices d and e have degree at least 5.

Proof. Neither d nor e has degree less than 4 by Claim 4.2.4. For contradiction, w.l.o.g,

we assume that dG(d) = 4. Recall a, c, e are three neighbors of d. Let f be the only

other neighbor of d. Since a, c ∈ L2 and ∂G is a simple cycle (Observation 4.2.3), f must

be in L1 (see Figure 4.1). Since G is a disk triangulation, af ∈ E(G). Let G′ be the

graph obtained from G by contracting fd and dc and removing parallel edges. Then G′

is a minor of G (and so is 2-outerplanar) with fewer vertices. Let F0, F1 be two induced

p-forests of G′ that exist by the minimality of G. Without loss of generality, we assume

that f ∈ F0. We have two cases:
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1. If b ∈ F0, then a, e ∈ F1. If bf 6∈ G, adding c, d to F0 does not destroy the acyclicity

of F0 in G. Thus, F0 ∪ {c, d}, F1 are two induced p-forests of G. If bf ∈ G, the

cycle {b, f, d, c} separates a from e so a and e are in different trees in F1. Thus,

F0 ∪ {c}, F1 ∪ {d} are two induced p-forests of G.

2. Otherwise, b ∈ F1. We have three subcases:

(a) If a, e are both in F0, then F0, F1 ∪ {c, d} are two induced p-forests of G.

(b) If a, e ∈ F1, then, F0 ∪ {c, d}, F1 are two induced p-forests of G.

(c) If a, e are in different induced p-forests of G′, then, F0 ∪ {c}, F1 ∪ {d} are two

induced p-forests of G.

In each case, the resulting p-forests contradict that G is a minimal order counter example.

Claim 4.2.12. |K| ≥ 4.

Proof. If K 6= G[LB2 ], as noted in the definition of K, |K| ≥ 3. If K = G[LB2 ], then by

Claim 4.2.5, |K| ≥ 2 and by Observation 4.2.9, |K| ≥ 3. Suppose that |K| = 3. Then,

K is a triangle. Let u,w be two neighbors of the separating vertex v in K. Then, wuv

is a critical triangle with top u (or w). By Claim 4.2.4 and Observation 4.2.10, u and

w both have between degree 2. Thus, u and w have a common neighbor on L1 which

therefore has degree 4, contradicting Claim 4.2.11.

Suppose that a and b of a critical triangle abc with top c of K have a common

neighbor f in L2. We have:

Claim 4.2.13. If fa (resp. fb) is in ∂G[LB2 ], then a (resp. b) must be the separating

vertex.

Proof. For a contradiction (and w.l.o.g), we assume that fa ∈ ∂G[LB2 ] and a is non-

separating. See Figure 4.2. Let G′ be the graph obtained from G by contracting ac and

ce and removing parallel edges. Then, G′ is a minor of G (and so is 2-outerplanar) with

fewer vertices. Let F0, F1 be two induced p-forests of G′, which are guaranteed to exist

by the minimality of G. Without loss of generality, we assume that f ∈ F0. We consider

two cases:
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1. If e ∈ F0, then d, b are in F1. If edge fe 6∈ G, then, F0 ∪ {a, c}, F1 are two induced

p-forests of G. If fe ∈ G, cycle {f, a, c, e} separates d from b so d and b are in

different trees of F1. Thus, F1 ∪ {c}, F0 ∪ {a} are two induced p-forests of G.

2. Otherwise, e ∈ F1. We have three subcases:

(a) If b, d are both in F0, then F0, F1 ∪ {a, c} are two induced p-forests of G.

(b) If b, d are both in F1, then F0 ∪ {a, c}, F1 are two induced p-forests of G.

(c) If b, d are in different forests of G′, then, F0 ∪ {c}, F1 ∪ {a} are two induced

p-forests of G.

In each case, the resulting p-forests contradicts that G is a minimal order counter exam-

ple.

bcd e
f a

Figure 4.2: The critical triangle abc with edge fa ∈ ∂G[L2]. Hollow vertices are in L2.

If the edge fb is shared with another critical triangle fbg with top g, then we call

{abc, bfg} a pair of critical triangles. See Figure 4.3. Note that we are assuming that f

is a common neighbor of a and b in L2.

bcd e
fa g h

Figure 4.3: A pair of critical triangles abc and bfg. Hollow vertices are in L2
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Claim 4.2.14. If there exists a pair of critical triangles abc and bfg in K, then b must

be the separating vertex of K.

Proof. Note that neither c nor g can be the separating vertex by definition of critical

triangles. Suppose for contradiction that b is non-separating. Let d, e be two neighbors

of c as defined above and i and h be the neighbors of g in L1. We first argue that i ≡ e.
Suppose otherwise. Since G is a disk triangulation, ec, eb, ig, ih, ib are edges of G. Let P

be the subpath of ∂G between e and i that does not contain d and h. Note that P could

simply be edge ei. Since B is a facial block that shares at most one edge with other

facial blocks and b is non-separating, e has exactly one neighbor on P . That implies e

would have degree 4, contradicting Claim 4.2.11.

We also note that h 6= d (for otherwise, e would not be in L1) and hf ∈ E(G). See

Figure 4.3. Let G′ be the graph obtained from G by contracting ec, eb, eg and eh and

removing parallel edges. Thus, G′ is a minor of G with fewer vertices. By minimality,

G′ has two induced p-forests F0, F1. Without loss of generality, we assume that a ∈ F0.

We will reconstruct two induced p-forests of G by considering two cases:

1. If h ∈ F0, then d, f ∈ F1. If edge ah ∈ G, then, by planarity, d and f are in

different trees of F1. Thus, F1 ∪ {e, b} has no cycle which implies F1 ∪ {e, b}, F0 ∪
{c, g} are two induced p-forests in G. Otherwise, F0 ∪ {b, e} has no cycle. Thus,

F0 ∪ {b, e}, F1 ∪ {c, g} are two induced p-forests in G.

2. Otherwise, h ∈ F1. We have four subcases:

(a) If d, f are both in F1, then F0 ∪{c, e, g}, F1 ∪{b} are two induced p-forests of

G.

(b) If d, f are both in F0, then F0 ∪{e}, F1 ∪{b, c, g} are two induced p-forests of

G.

(c) If d ∈ F0, f ∈ F1, then F0 ∪ {e, g}, F1 ∪ {b, c} are two induced p-forests of G.

(d) If d ∈ F1, f ∈ F0, then F0 ∪ {c, g}, F1 ∪ {b, e} are two induced p-forests of G.

Thus, in all cases, the resulting induced p-forests contradict that G is a counterexample.
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We are now ready to complete the proof of Theorem 4.2.1 by considering a triangle

of K of G[LB2 ], say uvw, containing the separating vertex v of K and has the most edges

in common with ∂K. Since v is separating, uvw contains at least one edge in ∂K. We

note that K∗ \ (∂K)∗ where (∂K)∗ is the dual vertex of the infinite face of K, is a tree

that we denote by T ∗K . Recall that K is a block of G[LB2 ]. We root T ∗K at the vertex

corresponding to the triangle uvw. Consider the deepest leaf x∗ ∈ T ∗K and its parent y∗.

Let abc be the triangle corresponding to x∗ such that the dual edge of ab is x∗y∗. Then

dK(c) = 2. Since K ≥ 4, abc 6≡ uvw and thus, it is a critical triangle with top c. Let abf

be the triangle that corresponds to y∗. Note here it may be that abf ≡ uvw. We have

three cases:

1. If dT ∗K (y∗) = 1, then abf ≡ uvw. Thus, two edges fa, fb are both in ∂K but only

one of the two vertices a, b can be the separating vertex of K. This contradicts

Claim 4.2.13.

2. If dT ∗K (y∗) = 2, then exactly one of two edges af, bf ∈ ∂K; w.l.o.g, we assume that

bf ∈ ∂K. Then, by Claim 4.2.13, b must be the separating vertex of K. Thus, only

two triangles abc and abf contain the separating vertex. Since uvw is the triangle

containing the separating vertex with most edges in ∂K, uvw ≡ abc, contradicting

our choice of triangle abc.

3. Otherwise, we have dT ∗K (y∗) = 3. Then, none of {ab, bf, af} is in ∂K, so abf 6≡ uvw.

Let z∗ and t∗ be the other two neighbors of y∗ in T ∗K with t∗ as the parent of y∗.

Then, x∗ and z∗ have the same depth. By our choice of x∗, z∗ must also be a leaf.

Thus, the triangle, say bfg, corresponding to z∗ is critical. Thus {abc, bfg} is a

pair of critical triangles. Since t∗ is the parent of y∗, b cannot be the separating

vertex of K, contradicting Claim 4.2.14.

This completes the proof of Theorem 4.2.1.

4.3 Strong Akiyama-Watanabe Conjecture

Salavatipour [84] was the first to make significant progress toward the strong Akiyama-

Watanabe Conjecture. He showed that a triangle-free planar graph of order n has an
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induced forest of order at least 17n+24
32 , which is approximately 5n

9.41 (we ignore the ad-

ditive constant factor as it is insignificant when n is big). Dross, Montassier and Pin-

lou [43] improved this bound to 6n+7
11 which is approximately 5n

9.17 . In this section, we

further improve this bound to 5n
9 (Theorem 4.3.1). We note that Kowalik, Lužar and

Škrekovski [64] claimed a 5n
9.01 bound, but there is a serious flaw in their proof, as pointed

out by Dross, Montassier and Pinlou [43]. We also note that the example by Akiyama

and Watanabe [3] for bipartite planar graphs implies that there exists triangle-free pla-

nar graphs of order n that have induced forests of order at most d5n
8 e. We believe the

bound of 5n
8 would be a tight bound, as evidenced by the work of Alon, Mubayi and

Thomas [5], who showed that if a triangle-free graph planar graph is cubic, its largest

induced forest has order at least 5n
8 .

Theorem 4.3.1. Every triangle-free planar graph of n vertices contains an induced forest

of order at least 5n
9 .

4.3.1 Previous techniques

Here in, we assume that our graph in question, denoted by G, is triangle-free. Let n(G)

and m(G) be the number of vertices and edges of G, respectively. Let ϕ(G) be the order

of the largest induced forest in G. Previous techniques use discharging to prove:

ϕ(G) ≥ an(G)− bm(G) for some appropriate constants a and b (4.1)

Since m(G) ≤ 2n(G) − 4 when G is triangle-free planar and n(G) ≥ 3, Inequality (4.1)

implies the existence of an induced forest of order at least (a − 2b)n(G) + 4b. (When

n(G) ≤ 2, the Akiyama-Watanabe conjecture becomes trivial.) Salavatipour [84] proved

that Inequality (4.1) holds when (a, b) is (29
32 ,

6
32), thereby, obtained the bound 17n(G)+24

32 .

Dross, Montassier and Pinlou [43] proved that Inequality (4.1) holds when (a, b) is (38
44 ,

7
44)

and obtained the bound 6n(G)+7
11 . Kowalik, Lužar and Škrekovski [64] tried to modify

Inequality (4.1) by adding an additive constant to the right-hand side, but that makes

their proof erroneous as noted by Dross, Montassier and Pinlou [43].

To get a good bound on the order of the largest induced forest, one should choose a

and b that maximize (a − 2b). However, a and b are constrained by how many vertices

one can add to the final induced forest after deleting a subset of vertices and edges of

the graph. Roughly speaking, if we delete a set of α vertices, β edges from G to obtain
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a subgraph G′ and we can add γ vertices from α deleted vertices to the largest induced

forest of G′ to get an induced forest in G, we should choose a and b such that:

aα− bβ ≤ γ (4.2)

If so, we can apply the inductive proof to show that Inequality (4.1) is satisfied as follows:

ϕ(G) ≥ ϕ(G′) + γ ≥ a(n(G)− α)− b(m(G)− β) + γ

≥ an(G) + bm(G)
(4.3)

This process is repeated until we get down to base cases. As a result, we get a linear

program. We then solve the linear program for a and b that maximize a − 2b. For

example, Linear Program (4.4) is from the work of Dross, Montassier and Pinlou [43].

b ≥ 0 (4.4a)

0 ≤ a ≤ 1 (4.4b)

8a− 12b ≤ 5 (4.4c)

a− 6b ≤ 0 (4.4d)

3a− 10b ≤ 1 (4.4e)

We will not try to go into details of Linear Program (4.4), but we would like to make

a few points that motivate our technique. To get a better bound, one could manage to

relax one or more constraints in the linear program. For technical reasons, the first two

constraints and the last constraint seems unavoidable. The fourth constraint allows us

to only consider graphs of maximum degree at most 5. Thus, one can relax the fourth

constraint by considering graphs of higher maximum degree, say 6. But this makes the

number of configurations unmanageable. The third constraint, called the planar cube

constraint, is due to the planar cube. Specifically, by deleting a planar cube component

from G, we remove 8 vertices, 12 edges and we can only add 5 vertices back to the forest

since the largest induced forest of the planar cube contains 5 vertices. It turns out that

we can relax the planar cube constraint in a different way by introducing two other terms

to the right-hand side of Inequality (4.1). Our idea is inspired by the ideas of Lukot’ka,

Mazák and Zhu [74].
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4.3.2 Our technique

We use V (G) and E(G) to denote the set of vertices and set of edges, respectively, of

G. Let H be an induced subgraph of G. The degree of H, denoted by degG(H), is

the number of edges of G with exactly one endpoint in V (H). We use Hd, Hd+ and

Hd− to denote an induced subgraph H of degree exactly d, at least d and at most d,

respectively, of G. Two special graphs of interest in this paper are the planar cube,

denoted by Q3, and K3,3 minus an edge, denoted by T6 (see Figure 4.4(b)). The planar

cube is a 3-regular planar graph that has 8 vertices and 12 edges (see Figure 4.4(a)).

(a) (b)

u4

u1 u2

u3

u5 u6

u7u8

v1

v2 v3v5

v4

v6

Figure 4.4: Two special graphs (a) Q3 and (b) T6.

Let p(G) and q(G) be the maximum number of Q1−
3 vertex-disjoint subgraphs and

T6 components of G, respectively. We will use discharging technique to prove:

ϕ(G) ≥ an(G)− bm(G)− cp(G)− dq(G) (4.5)

for appropriate constants a, b, c, d. Essentially, we add two terms depending on p(G) and

q(G) to the right-hand side of Inequality (4.1). That would give us more room to find a

and b that maximize a− 2b. Since m(G) ≤ 2n(G) for every triangle-free planar graphs,

Inequality (4.5) gives us:

ϕ(G) ≥ (a− 2b)n(G)− cp(G)− dq(G) (4.6)

However, we need a bound that is independent of p(G), q(G). This forces us to introduce

another technical layer. In the ideal case, both p(G) and q(G) are 0, Inequality (4.6)

gives us a good bound on ϕ(G). When p(G) + q(G) is at least 1, Lemma 4.3.4 and

Lemma 4.3.5 allow us to reduce to the ideal case by adding a large portion of vertices

from Q1−
3 subgraphs and T6 components to the large induced forest.
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While the introduction of Q3 is natural, it is not clear why there is a term involving

T6 in Inequality (4.5). Indeed, our original attempt only introduces Q3. But the bound

we get is 6n(G)
11 which is the same as the bound by obtained by Dross, Montassier and

Pinlou [43]. However, when looking at the linear program carefully, we realize that T6

is another obstruction to obtain a better bound. Thus, we further introduce T6 into the

linear program.

The main tool in our proof is Theorem 4.3.2 whose proof is deferred to Section 4.3.4.

Theorem 4.3.2. If a, b, c, d are constants that satisfy all constraints in the Linear Pro-

gram (4.7), then every triangle-free planar graph G has an induced forest of order at

least an(G)− bm(G)− cp(G)− dq(G).

a ≥ 0 (4.7a)

1− a ≥ 0 (4.7b)

b ≥ 0 (4.7c)

c ≥ 0 (4.7d)

d ≥ 0 (4.7e)

1− a+ b− c ≥ 0 (4.7f)

1− a+ b− d ≥ 0 (4.7g)

5b− a ≥ 0 (4.7h)

5− 8a+ 12b+ c ≥ 0 (4.7i)

4− 6a+ 8b+ d ≥ 0 (4.7j)

5− 8a+ 13b ≥ 0 (4.7k)

5 + 13b− 8a+ c− d ≥ 0 (4.7l)

4 + 9b− 6a− d ≥ 0 (4.7m)

5− 8a+ 14b− d ≥ 0 (4.7n)

5− 8a+ 14b− c ≥ 0 (4.7o)

5− 8a+ 15b− c− d ≥ 0 (4.7p)

3− 5a+ 10b− c ≥ 0 (4.7q)

3− 5a+ 10b− d ≥ 0 (4.7r)

3− 4a+ 4b ≥ 0 (4.7s)
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Corollary 4.3.3. If a, b, c, d are constants that satisfy all constraints in the Linear Pro-

gram (4.7), then every triangle-free planar graph G that contains no Q1−
3 subgraph and

T6 component has an induced forest of order at least (a− 2b)n(G).

Proof. Since p(G) and q(G) are both 0, Theorem 4.3.2 implies that G has an induced

forest of order at least an(G) − bm(G). Thus, the corollary follows from the fact that

m(G) ≤ 2n(G).

4.3.3 Proof of Theorem 4.3.1

Lemma 4.3.4. If H is a Q3−
3 subgraph of a planar graph G, then any induced forest F

in G \H can be extended to an induced forest of G of order |F |+ 5.

Proof. Let a, b, c ∈ {u1, u2, . . . , u8} be three highest-degree vertices of H in G. If a, b

and c are pairwise non-adjacent. By symmetry of Q3, we can assume w.l.o.g that a, b, c

are u1, u3, u6, respectively. Then, F ∪{u2, u4, u5, u7, u8} is an induced forest in G. Thus,

we can suppose that two vertices, say a, b, are adjacent. We consider two cases:

Case 1 Three vertices a, b, c induce a connected subgraph of H. Then, there is a face

in any planar embedding of Q3 that contains all a, b and c. By symmetry of Q3,

we can assume that a, b, c are u1, u2, u3, respectively. Since degG(H) ≤ 3, at least

one vertex in {u1, u3} is a 4−-vertex of G. Let x be a 4−-vertex in {u1, u3}. Then,

F ∪ {x, u4, u5, u6, u7} is an induced forest in G.

Case 2 Three vertices a, b, c induce a dis-connected subgraph of H. By symmetry of Q3,

we can assume that a, b, c are u1, u2, u7, respectively. Then, F ∪{u3, u4, u5, u6, u8}
is an induced forest in G.

Lemma 4.3.5. If K is a T 3−
6 subgraph of G, then any forest F in G\K can be extended

to an induced forest of G of order |F |+ 4.

Proof. By symmetry of T6, we can assume w.l.o.g that cycle C = v1v2v5v3 has the highest

degree among cycles inducing faces of K. Let X = {v1, v6, v4, v5}. Suppose K has a

between vertex, say v, that has at least two non-K edges in G. By the degree assumption
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of C, v must be a vertex in C. If v 6∈ X, then F ∪X is an induced forest of G of order

|F |+ 4. If v ∈ X, then F ∪ {v2, v4, v6, v3} is an induced forest of G.

Thus, we can assume that every vertex of K has at most one non-K edge. If at most

one vertex in X is a between vertex of K, then F ∪X is an induced forest of G. Thus,

we can assume that at least two vertices in X are between. Since degG(K) ≤ 3, at most

one of two vertices v2 and v3 is a between vertex. Let x be the non-between vertex in

{v2, v3}. By the degree assumption of C, at most one vertex among {v4, v6} is between.

We have two cases:

Case 1 No vertex in {v4, v6} is between. Then, F ∪ {v2, v4, v6, v3} is an induced forest

of G.

Case 2 Exactly one vertex in {v4, v6} is between. Let y be the non-between vertex in

{v4, v6}. If both v1 and v5 are between, then v2 and v3 have no non-K edge since

degG(K) ≤ 3. Thus, F ∪ {v2, v4, v6, v3} is an induced forest of G. If v1 is between

and v5 is non-between, then F ∪{v5, v4, v6, x} is an induced forest of G. Otherwise,

v5 is between and v1 is non-between. Then, F ∪ {v1, x, y, v5} is an induced forest

of G.

Observation 4.3.6. Any two Q2−
3 subgraphs of G must be vertex-disjoint.

Proof. We observe that any non-trivial edge cut of Q3 has at least 3 edges. Let H

and K be two Q2−
3 subgraphs of G that share a subset of vertices X. Then, the cut

(V (H) \X,X) has at least 3 edges. Thus, degG(K) ≥ 3, contradicting that K is a Q2−
3

subgraph.

Proof of Theorem 4.3.1. Let ρ(G) = p(G) + q(G) + n(G). We prove Theorem 4.3.1

by induction on ρ(G). The base case is when ρ(G) = 0, Theorem 4.3.1 trivially holds.

We consider three cases:

Case 1 G has no Q1−
3 subgraph or T6 component. Then, p(G) + q(G) = 0. Using a

linear programming solver 1 to solve Linear Program 4.7, we found that a − 2b is

1We use lp solve package. The full implementation can be found at http://web.engr.oregonstate.
edu/~lehu/res/lp_final.lp

http://lpsolve.sourceforge.net/5.5/index.htm
http://web.engr.oregonstate.edu/~lehu/res/lp_final.lp
http://web.engr.oregonstate.edu/~lehu/res/lp_final.lp
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maximized when a = 25
27 , b = c = 5

27 , d = 2
27 . Corollary 4.3.3 implies that if G has

an induced forest F of order at least 5n(G)
9 .

Case 2 G contains a T6 component, then p(G \ T6) ≤ p(G) and q(G \ T6) < q(G).

Thus, ρ(G \ T6) < ρ(G). By induction, ϕ(G \ T6) ≥ 5n(G\T6)
9 = 5(n(G)−6)

9 . By

Lemma 4.3.5, we can collect 4 vertices from T6. That implies:

ϕ(G) ≥ ϕ(G \ T6) + 4 ≥ 5(n(G)− 6)

9
+ 4 >

5n(G)

9

Case 3 G contains a Q1−
3 subgraph, say H. Since H has degree at most 1 in G, removing

H fromG can create at most one T6 component and at most one newQ1−
3 subgraph.

Thus, p(G \ H) ≤ p(G) and q(G \ H) ≤ q(G) + 1. Since n(G \ H) ≤ n(G) − 8,

we have ρ(G \ H) < ρ(G). By induction, we have ϕ(G \ H) ≥ 5(n(G)−8)
9 . By

Lemma 4.3.4, we can collect 5 vertices from H. That implies:

ϕ(G) ≥ ϕ(G \H) + 5 ≥ 5(n(G)− 8)

9
+ 5 >

5n(G)

9

4.3.4 Proof of Theorem 4.3.2

LetG be a counter-example of minimal order. We begin our proof with Observation 4.3.7,

that we will frequently make use of in deriving a contradiction.

Observation 4.3.7. Let L be a subgraph of G. Let α, β, γ, η ≥ 0 be such that:

α = n(G)− n(G \ L)

β ≤ m(G)−m(G \ L)

γ ≤ p(G)− p(G \ L)

η ≤ q(G)− q(G \ L)

(4.8)

If we can collect λ vertices from L, then, λ− αa+ βb+ cγ + dη must be negative.

Proof. Suppose that λ−αa+βb+cγ+dη is non-negative. Since G is a minimal counter-

example, G \ L has an induced forest of order at least an(G \ L)− bm(G \ L)− cp(G \
L)− dq(G \ L) which is at least:

an(G)− bm(G)− cp(G)− dq(G) + βb+ cγ + dη − αa.
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By collecting λ vertices from L, we get an induced forest in G of order at least:

an(G)− bm(G)− cp(G)− dq(G) + λ+ βb+ cγ + dη − αa

Since λ − αa + βb + cγ + dη is non-negative, ϕ(G) ≥ an(G) − bm(G) − cp(G) − dq(G),

contradicting that G is a counter-example.

Overview of the proof. Our proof of Theorem 4.3.2 relies on the following structural

theorem that was proved by Salavatipour [84].

Theorem 4.3.8. If G is a two-edge connected triangle-free planar graph, then, G con-

tains (1) a 2−-vertex, or (2) a 4-face with at least one 3-vertex, or (3) a 5-face with at

least four 3-vertices.

At high level, we build a linear program, called LP, that initially contains trivial

constraints (4.7a), (4.7b), (4.7c), (4.7d) and (4.7e). We then consider a finite set of

subgraphs, say L, that a triangle-free planar graph can have. For each subgraph, say H,

in L, by removing H from G, we reduce the number of vertices, edges, Q1−
3 subgraphs and

T6 components of G by at least, say, α, β, γ and η, respectively. Then, we show that we

can add λ vertices from H to a large induced forest of G\H to get an induced forest of G.

Observation 4.3.7 tells us that if we choose a, b, c and d such that λ−αa+βb+cγ+dη ≥ 0,

then G cannot be a counter-example. Thus, a counter-example graph G cannot contain

the subgraph H. In other words, by adding the constraint λ − αa + βb + cγ + dη ≥ 0

to LP, we exclude H from G. We repeat this argument for every subgraph in L and

keep adding linear constraints along the way to LP. Finally, we get a linear program

represented by LP and we show that LP is equivalent to Linear Program (4.7) after

removing redundant constraints. Thus, by choosing a, b, c and d that satisfy Linear

Program (4.7), the counter-example G does not exist, thereby, proving Theorem 4.3.2.

In Subsection 4.3.4.2, we prove that G is two-edge connected and δ(G) ≥ 3. In

Subsection 4.3.4.6, we prove that G has no 4-face with at least one 3-vertex. In Sub-

section 4.3.4.7, we prove that G has no 5-face with at least four 3-vertices. This is a

contradiction by Theorem 4.3.8.
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4.3.4.1 Excluding Qd
3 and T d

6 subgraphs

In this section, by adding more constraints to LP, we will prove that the minimal counter

example G cannot contain any Qd3 or T d6 subgraph for d ≤ 5 if LP is satisfied.

Claim 4.3.9. G has no Q3 component.

Proof. Let H be a Q3 component of G. By Lemma 4.3.4, we can collect 5 vertices

from H. Since Q3 has 8 vertices, 12 edges, by Observation 4.3.7 with L = Q3 and

(α, β, γ, η, λ) = (8, 12, 1, 0, 5), 5 − 8a + 12b + c must be negative. Thus, we obtain a

contradiction by adding Inequality (4.9) to LP.

5− 8a+ 12b+ c ≥ 0 (4.9)

Claim 4.3.10. G has no T6 component.

Proof. Let H be a T6 component of G. By Lemma 4.3.5, we can collect 4 vertices from

H. By Observation 4.3.7 with L = T6 and (α, β, γ, η, λ) = (6, 8, 0, 1, 4), 4− 6a + 8b + d

must be negative. Thus, we obtain a contradiction by adding Inequality (4.10) to LP.

4− 6a+ 8b+ d ≥ 0 (4.10)

Claim 4.3.10 implies that if LP is satisfied, the counter-example G has no T6 component.

Claim 4.3.11. G excludes Q1−
3 as a subgraph.

Proof. By Claim 4.3.9, we only need to exclude Q1
3 from G. Let H be a Q1

3 subgraph

of G. Let G′ = G \ H. If H is adjacent to a Q2
3 subgraph of G, then p(G′) = p(G)

and q(G′) = q(G) = 0. By Lemma 4.3.4, we can collect 5 vertices from H. By applying

Observation 4.3.7 with L = H and (α, β, γ, η, λ) = (8, 13, 0, 0, 5), 5 − 8a + 13b must be

negative. Thus, we obtain a contradiction by adding Inequality (4.11) to LP.

5− 8a+ 13b ≥ 0 (4.11)

If H is not adjacent to a Q2
3 subgraph, then p(G′) = p(G) − 1. Note that G′ can has a

T6 component if H is adjacent to a T 1
6 subgraph in G. By Observation 4.3.7 with L = H
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and (α, β, γ, η, λ) = (8, 13, 1,−1, 5), 5 − 8a + 13b + c − d must be negative. Thus, we

obtain a contradiction by adding Inequality (4.12) to LP.

5− 8a+ 13b+ c− d ≥ 0 (4.12)

Claim 4.3.9 and 4.3.11 imply that if LP is satisfied, G has no Q1−
3 subgraph. Herein, we

can assume that the counter-example graph G has p(G) = q(G) = 0.

Claim 4.3.12. G excludes T 1−
6 as a subgraph.

Proof. By Claim 4.3.10, we only need to exclude T 1
6 from G. Let K be a T 1

6 subgraph

of G. Let H1, . . . ,Ht be the subgraphs of G such that Hj is a Q1
3 subgraph of G \ {K ∪

{H1, . . . ,Hj−1}} and Hj is adjacent to Hj−1 in G. Let t be the maximum index such

that G\{K ∪H1∪ . . .∪Ht}} contains no Q1
3 subgraph. It may be that none of Hj exists

and we define t = 0 in this case. Let KH = K ∪{H1, . . . ,Ht}. We have degG(KH) = 1.

Thus, G \ KH cannot contain any Q3 component, since otherwise, it would be Q1
3 in

G, contradicting Claim 4.3.11. Since degG(KH) = 1, G \KH contains at most one T6

component. By Lemma 4.3.4 and Lemma 4.3.5, we can collect 5t+ 4 vertices from KH.

By Observation 4.3.7 with L = KH and (α, β, γ, η, λ) = (8t + 6, 13t + 9, 0,−1, 5t + 4),

(5t+ 4)− (8t+ 6)a+ (13t+ 9)b− d must be negative. Thus, we obtain a contradiction

by adding Inequality (4.13) to LP.

(5t+ 4)− (8t+ 6)a+ (13t+ 9)b− d ≥ 0 (4.13)

Claim 4.3.13. G excludes Q2−
3 as a subgraph.

Proof. By Claim 4.3.11, we only need to exclude Q2
3 from G. Let H be a Q2

3 subgraph of

G. Suppose thatG\H contains a T6 component, sayK. By Claim 4.3.12, K is the only T6

component ofG\H. SinceG excludes T 1−
6 by Claim 4.3.12, K must be T 2

6 inG and hence,

two edges incident to H are between H and K. Thus, by Claim 4.3.11, p(G \H) = 0.

By Observation 4.3.7 with L = H and (α, β, γ, η, λ) = (8, 14, 0,−1, 5), 5 − 8a + 14b − d
must be negative. Thus, we obtain a contradiction by adding Inequality (4.14) to LP.

5− 8a+ 14b− d ≥ 0 (4.14)
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Thus, we may assume that G \Q2
3 has no T6 component for any Q2

3 subgraph of G.

Without loss of generality, we choose H to be a Q2
3 subgraph such that G \H has the

least number of Q1−
3 subgraphs. By Claim 4.3.11, G\H has at most two Q1−

3 subgraphs.

If G \ H has exactly one Q1−
3 subgraph, say M , then M must be adjacent to H. By

Observation 4.3.7 with L = H and (α, β, γ, η, λ) = (8, 14,−1, 0, 5), 5− 8a+ 14b− c must

be negative. Thus, we obtain a contradiction by adding Inequality (4.15) to LP.

5− 8a+ 14b− c ≥ 0 (4.15)

If G \H has two Q1−
3 subgraphs. By Claim 4.3.11, two Q1−

3 subgraphs must be Q1
3

subgraphs in G \H. By our choice of H, we conclude that, for any Q2
3 subgraph of G,

G \Q2
3 must have exactly two Q1

3 subgraphs. Since G excludes Q1
3 by Claim 4.3.11, any

Q2
3 subgraph of G must adjacent to two other Q2

3 subgraphs. Let H be a graph such that

each vertex of H corresponds to a Q2
3 subgraph of G and each edge of H connects two

corresponding adjacent Q2
3 subgraphs of G. Then, H is a 2-regular graph. In other words,

H is a collection of cycles. By Lemma 4.3.4, we can collect 5|V (H)| vertices from Q2
3

subgraphs of G. Let L be the subgraph of G induced by the vertices in all Q2
3 subgraphs.

By Observation 4.3.7 with L and (α, β, γ, η, λ) = (8|V (H)|, 13|V (H)|, 0, 0, 5|V (H)|),
|V (H)|(5− 8a+ 13b) must be negative, this contradicts Inequality (4.11).

Claim 4.3.14. G excludes Q3−
3 as a subgraph.

Proof. By Claim 4.3.13, we only need to exclude Q3
3 from G. Let H be a Q3

3 subgraph

in G. Observe that G \H contains at most one Q1−
3 subgraph since otherwise, G has a

Q2−
3 subgraph, contradicting Claim 4.3.13. Similarly, by Claim 4.3.12, G \ H contains

at most one T6 component. By Observation 4.3.7 with L = H and (α, β, γ, η, λ) =

(8, 15,−1,−1, 5), 5− 8a+ 15b− c− d must be negative. Thus, we obtain a contradiction

by adding Inequality (4.16) to LP.

5− 8a+ 15b− c− d ≥ 0 (4.16)

We obtain the following corollary of Claim 4.3.14.

Corollary 4.3.15. If H is a subgraph of degree 2 of G and LP is satisfied, then G \H
has no Q1−

3 subgraph.
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Claim 4.3.16. G excludes T 2−
6 as a subgraph.

Proof. By Claim 4.3.12, we only need to exclude T 2
6 from G. Let H be a T 2

6 subgraph

of G. By Corollary 4.3.15, G \ H has no Q1−
3 subgraph. By Claim 4.3.12, G \ H has

at most one T6 component. By Observation 4.3.7 with L = H and (α, β, γ, η, λ) =

(6, 10, 0,−1, 4), 4 − 6a + 10b − d must be negative. Thus, we obtain a contradiction by

adding Inequality (4.17) to LP.

4− 6a+ 10b− d ≥ 0 (4.17)

Claim 4.3.17. G has no 5+-vertex.

Proof. Let v be a 5+ vertex in G and G′ = G−{v}. Suppose that G′ has a Q1−
3 subgraph

H. By planarity, v must be embedded in one face of H. Since faces of H has length 4 and

G is triangle-free, v has at most two neighbors in H. That implies H is a Q3−
3 subgraph

of G, contradicting Claim 4.3.14. Thus p(G′) = 0. Suppose that G′ has a T6 component

K. By planarity, v must be embedded in one face of K. Since G is triangle-free, v has

at most two neighbors in K. That implies K is T 2−
6 , contradicting Claim 4.3.16. Thus

q(G′) = 0. By Observation 4.3.7 with L = v and (α, β, γ, η, λ) = (1, 5, 0, 0, 0), 5b − a
must be negative. Thus, we obtain a contradiction by adding Inequality (4.18) to LP.

5b− a ≥ 0 (4.18)

Lemma 4.3.18. If H is a Q5−
3 subgraph of G and every vertex of H has degree at most

4 in G, then any induced forest F of G \ H can be extended to an induced forest of G

with order |F |+ 5.

Proof. By Lemma 4.3.4, we can assume that H is Q4
3 or Q5

3. By symmetry of Q3, we

can choose an embedding of G such that the inner-most face u1u2u3u4, denoted by f , of

H has the most number of 3-vertices. We have three cases:

Case 1 f has at least three 3-vertices, say u1, u2, u3, then F ∪ {u1, u2, u3, u6, u8} is an

induced forest of G.
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Case 2 f has only one 3-vertex, say u1, then every face that contains u1 on the boundary

must has at least three 4-vertices by the choice of the inner-most face of H. That

implies degG(H) ≥ 6, contradicting that H is a Q5−
3 subgraph of G.

Case 3 f has exactly two 3-vertices. By the choice of f , every face of H has at most

two 3-vertices. Suppose that H has two adjacent 3-vertices. By symmetry of Q3,

we can choose an embedding of G such that two 3-vertices of f are adjacent. We

can assume w.l.o.g they are u1 and u2. Thus, u5 and u6 must be 4-vertices. Since

degG(H) ≤ 5, at most one vertex in {u7, u8} is a 4-vertex. Let u∗ be a 3-vertex

in {u7, u8}. Since non-H edges of u6 and u4 are embedded in different faces of

G, F ∪ {u6, u1, u2, u4, u
∗} is an induced forest of G. If H has no two adjacent

3-vertices, we can assume w.l.o.g that u1 and u3 are two 3-vertices of H. Thus,

u2, u4, u5, u7 are 4-vertices. Since degG(H) ≤ 5, at least one vertex in {u6, u8} is

a 3-vertex. We define u∗ = u2 if u8 is a 4-vertex and u∗ = u4 if u6 is a 4-vertex.

Then, F ∪ {u1, u3, u6, u8, u
∗} is an induced forest of G.

Claim 4.3.19. G excludes Q4−
3 as a subgraph.

Proof. By Claim 4.3.14, we only need to exclude Q4
3 from G. Let H be a Q4

3 subgraph

of G. By Claim 4.3.17, between vertices of H are 4-vertices. Observe that G \ H
contains at most one Q1−

3 subgraph since otherwise, G has a Q3−
3 subgraph, contradicting

Claim 4.3.14. Similarly, by Claim 4.3.16, G \ H has at most one T6 component. By

Lemma 4.3.18, we can collect 5 vertices from H. By Observation 4.3.7 with L = H and

(α, β, γ, η, λ) = (8, 16,−1,−1, 5), 5− 8a+ 16b− c− d must be negative. Thus, we obtain

a contradiction by adding Inequality (4.19) to LP.

5− 8a+ 16b− c− d ≥ 0 (4.19)

Claim 4.3.20. G excludes T 3−
6 as a subgraph.

Proof. By Claim 4.3.16, we only need to exclude T 3
6 from G. Let H be a T 3

6 subgraph of

G. Observe that G \H has no Q1−
3 subgraph since such a subgraph would have degree
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at most 4 in G, contradicting Claim 4.3.19. By Claim 4.3.16, G \H has at most one T6

component. By Lemma 4.3.5, we can collect 4 vertices from H. By Observation 4.3.7

with L = H and (α, β, γ, η, λ) = (6, 11, 0,−1, 4), 4−6a+11b−d must be negative. Thus,

we obtain a contradiction by adding Inequality (4.20) to LP.

4− 6a+ 11b− d ≥ 0 (4.20)

Claim 4.3.21. G excludes any T 5−
6 subgraph that has all between vertices on the same

face.

Proof. Suppose that G contains a T 5−
6 subgraph H as in the claim. By Claim 4.3.20,

degG(H) ≥ 4. By symmetry ofH, we can assume w.l.o.g that the outer face v1v2v5v3 ofH

contains all between vertices. Let K be the subgraph of G induced by {v1, v2, v3, v4, v6}.
By Claim 4.3.17, v1 has at most one non-H incident edge. Thus, we can collect {v1, v4, v6}
from K. Since degG(K) ≤ 5, by Claim 4.3.19, G \ K has at most one Q1−

3 subgraph.

If G \K has exactly one Q1−
3 subgraph, the Q1−

3 subgraph in G \K must has at least

three edges to K in G. That implies G\K has no T6 component since such a component

would have degree at most 2 in G, contradicting Claim 4.3.20. Since degG(H) is at least

4 and v5 has degree at most 4, m(G)−m(G\K) ≥ 10. By Observation 4.3.7 with L = K

and (α, β, γ, η, λ) = (5, 10, 0,−1, 3), 3− 5a+ 10b− c must be negative. Thus, we obtain

a contradiction by adding Inequality (4.21) to LP.

3− 5a+ 10b− c ≥ 0 (4.21)

If G\K has no Q1−
3 subgraph, by Claim 4.3.20, G\K has at most one T6 component.

By Observation 4.3.7 with L = K and (α, β, γ, η, λ) = (5, 10,−1, 0, 3), 3 − 5a + 10b − d
must be negative. Thus, we obtain a contradiction by adding Inequality (4.22) to LP.

3− 5a+ 10b− d ≥ 0 (4.22)

Claim 4.3.22. G excludes Q5−
3 as a subgraph.
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Proof. By Claim 4.3.19, we only need to exclude Q5
3 from G. Let H be a Q5

3 subgraph of

G. By Claim 4.3.17, between vertices of H has degree exactly 4. G\H must have at most

one Q1−
3 subgraph since otherwise, there would be a Q4−

3 subgraph in G, contradicting

Claim 4.3.19. Similarly, by Claim 4.3.20, G \ H has at most one T6 component. By

Lemma 4.3.18, we can collect 5 vertices from H. By Observation 4.3.7 with L = K and

(α, β, γ, η, λ) = (8, 17,−1,−1, 5), 5− 8a+ 17b− c− d must be negative. Thus, we obtain

a contradiction by adding Inequality (4.23) to LP.

5− 8a+ 17b− c− d ≥ 0 (4.23)

Claim 4.3.23. If H is a connected subgraph of G, then G \H has no Q1−
3 subgraph and

T6 component.

Proof. Suppose that G\H contains a Q1−
3 subgraph K. Since H is connected, its vertices

are embedded in on face of K, say the infinite face. Thus, by Claim 4.3.17, G has at

most 4 edges connecting vertices of H and vertices of K. Since K has degree at most

one in G \H, K has degree at most 5 in G, contradicting Claim 4.3.22. Suppose that

G \H contains a T6 component M . Since H is connected, their vertices are embedded

inside one face of M . Thus, there exists one face of M contains all between vertices.

Since G only has 4−-vertices, degG(M) ≤ 5, contradicting Claim 4.3.21.

4.3.4.2 Excluding low degree vertices

As shown in Section 4.3.4.1, if LP is satisfied, G has p(G) = 0 and q(G) = 0. Thus, we

only need to prove ϕ(G) ≥ an(G)− bm(G) to obtain a contradiction.

Claim 4.3.24. G is two-edge connected.

Proof. Suppose that the claim fails, then either G is disconnected or G is connected

and has a bridge e. If G is disconnected, let G1 be any connected component of G and

G2 = G \ G1. If G is connected and has a bridge e, let G1, G2 be the two components

of G \ {e}. Since degG(G1) ≤ 1, by Claim 4.3.22, p(G1) = p(G2) = 0. By Claim 4.3.20,

q(G1) = q(G2) = 0. Since G1, G2 has strictly smaller order than G, they have two
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induced forests F1, F2 of order at least an(G1)− bm(G1), an(G2)− bm(G2), respectively.

Thus, F1 ∪ F1 is an induced forest of G of order at least:

a(n(G1) + n(G2))− b(m(G1) +m(G2)) ≥ an(G)− bm(G)

This contradicts that G is a counter-example.

A direct corollary of Claim 4.3.24 is that δ(G) ≥ 2.

Claim 4.3.25. If v is a 2-vertex, then its two neighbors must have another common

neighbor.

Proof. Let G′ be the graph obtained from G by contracting an incident edge of v. Sup-

pose that v is the only common neighbor of its neighbors, then, G′ is triangle-free. Let

u be the neighbor that v is contracted to. Any Q1−
3 subgraph and T6 component of G′

must contain u. Thus, p(G′) + q(G′) ≤ 1. Since G′ has strictly smaller order than G,

G′ has a forest F ′ of order at least an(G′) − bm(G′) − cp(G′) − dq(G′). We note that

n′(G) = n(G)− 1 and m(G′) = m(G)− 1. If p(G′) = 1, F ′ ∪ {v} is an induced forest in

G of order at least:

1 + a(n(G)− 1)− b(m(G)− 1)− c = an(G)− bm(G) + 1− a+ b− c

Thus, by adding Inequality (4.24) to LP, we deduce that ϕ(G) ≥ an(G) − bm(G),

contradicting that G is a counter-example.

1− a+ b− c ≥ 0 (4.24)

If q(G′) = 1, F ′ ∪ {v} is an induced forest in G of order at least:

1 + a(n(G)− 1)− b(m(G)− 1)− d = an(G)− bm(G) + 1− a+ b− d

Thus, by adding Inequality (4.25) to LP, we obtain a contradiction.

1− a+ b− d ≥ 0 (4.25)

Claim 4.3.26. None neighbor of a 2-vertex is a 4-vertex.
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Proof. Suppose that a neighbor u of a 2-vertex v is a 4-vertex. Let G′ = G − {u, v}.
By Claim 4.3.23, p(G′) = q(G′) = 0. Observe that we can add v to any induced

forest of G′ to get an induced forest of G. By Observation 4.3.7 with L = uv and

(α, β, γ, η, λ) = (2, 5, 0, 0, 1), 1−2a+5bmust be negative. Thus, we obtain a contradiction

by adding Inequality (4.26) to LP.

1− 2a+ 5b ≥ 0 (4.26)

Claim 4.3.27. None neighbor of a 2-vertex is a 2-vertex.

Proof. Let u and v be two adjacent 2-vertices. Let w and w′ be other neighbors of u and

v, respectively. By Claim 4.3.26, w and w′ are 3−-vertices. By Claim 4.3.25, w and w′

must be adjacent. If both w and w′are 2-vertices, then G is a cycle of 4 vertices. Since G

has a forest of order 3, by Observation 4.3.7 with L = G and (α, β, γ, η, λ) = (4, 4, 0, 0, 3),

3−4a+4b must be negative. Thus, we obtain a contradiction by adding Inequality (4.27)

to LP.

3− 4a+ 4b ≥ 0 (4.27)

Thus, we may assume w has degree exactly 3. By Claim 4.3.23, G−{u, v, w} has no

Q1−
3 subgraph or T6 component. Since we can collect {u, v}, by Observation 4.3.7 with

L = G[{u, v, w}] and (α, β, γ, η, λ) = (3, 5, 0, 0, 2), 2 − 3a + 5b must be negative. Thus,

we obtain a contradiction by adding Inequality (4.28) to LP.

2− 3a+ 5b ≥ 0 (4.28)

Claim 4.3.28. Any 3-vertex in G is adjacent to at most one 2-vertex.

Proof. Suppose otherwise. Let w be a 3-vertex that is adjacent to two 2-vertices u and v.

Let G′ = G−{u, v, w}. By Claim 4.3.23, p(G′) = q(G′) = 0. Since we can collect {u, v},
by Observation 4.3.7 with L = {u, v, w} and (α, β, γ, η, λ) = (3, 5, 0, 0, 2), 2 − 3a + 5b

must be negative, contradicting Inequality (4.28).

Lemma 4.3.29. δ(G) ≥ 3.
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Proof. Let w1 be a 2-vertex of G with two neigbors w2, w4. By Claim 4.3.25, w2 and

w4 must have another common neighbor, say w3. Let C be the cycle w1w2w3w4. By

Claim 4.3.27 and 4.3.26, w2 and w4 are 3-vertices. Let u be the non-C neighbor of w2.

By Claim 4.3.28, u and w3 are a 3+-vertices. Since G is triangle free, u cannot be a

neighbor of w3. Let H be the induced subgraph of G induced by {w1, w2, w3, w4, u}. We

can collect 3 vertices w4, w1, w2 from H. By Claim 4.3.23, p(G \H) = q(G \H) = 0. If

m(G) −m(G \ H) is at least 9, by Observation 4.3.7 with L = H and (α, β, γ, η, λ) =

(5, 9, 0, 0, 3), 3 − 5a + 9b must be negative. Thus, we obtain a contradiction by adding

Inequality (4.29) to LP.

3− 5a+ 9b ≥ 0 (4.29)

Thus, we can assume m(G)−m(G\H) ≤ 8. That implies u must be a neighbor of w4 and

both u and w3 are a 3-vertices (see Figure 4.5(a)). Since G is two connected, the non-H

neighbor of u must be embedded in the same side with the non-H neighbor of w3 with

respect to the cycle uw4w3w2. Let v be the non-H neighbor of w3. Let K be the subgraph

of G induced by {w1, w2, w3, w4, u, v}. If u and v are adjacent, K is T 3−
6 , contradicting

Claim 4.3.16. Thus, u and v are not adjacent. Hence, m(G \ K) ≥ 9. Observe that

we can collect {u,w1, w2, w3} from K. By Claim 4.3.23, p(G \K) = q(G \K) = 0. By

Observation 4.3.7 with L = K and (α, β, γ, η, λ) = (6, 9, 0, 0, 4), 4 − 6a + 9b must be

negative. Thus, we obtain a contradiction by adding Inequality (4.30) to LP.

4− 6a+ 9b ≥ 0 (4.30)

u

w2 w4

w1

w3

v

(a)

u4

u1 u2

u3

u5 u6

u7u8

v
u

(b)

Figure 4.5: (a) A configuration in the proof of Lemma 4.3.29 (b) A configuration in the
proof of Claim 4.3.30
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4.3.4.3 Avoiding small vertex cut

A separating cycle is a cycle that separates the plane into two regions, each contains at

least one vertex of G that is not on its boundary.

Claim 4.3.30. Let v be a 3-vertex that is adjacent to a 4-vertex u. Then two neighbors

of v other than u must share a neighbor other than v.

Proof. Let x, y be neighbors of v such that x, y 6= u. Let G′ be the graph obtained from

G by deleting u, v and adding an edge between x and y. Suppose that the claim fails.

Then G is triangle-free.

We first show that q(G′) = 0. By Claim 4.3.23, G−{u, v} contains no T6 component.

If G′ contains a T6 component K, then K must contain edge xy. Since δ(G) ≥ 3, x

and y must be 3-vertices in K. By symmetry of T6, we can assume w.l.o.g that x ≡ v4

and y ≡ v2. If u is embedded inside the cycle v1v2v4v3, then v5 must be a 2-vertex in

G. Otherwise, v6 must be a 2-vertex in G. Both cases contradict that δ(G) ≥ 3. Thus,

q(G) = 0.

Suppose that G′ contains a Q1−
3 component H. Then, edge xy must belong to H. By

symmetry of Q3, We assume w.l.o.g that x ≡ u1 and y ≡ u2. Let M be the subgraph of

G induced by {u1, u2, u3, u4, u5, u6, u7, u8, v}. By Claim 4.3.23, p(G\M) = q(G\M) = 0.

By the symmetry of H, we can assume that u is embedded inside the cycle u1vu2u3u4

(see Figure 4.5(b)). Since degG′(H) ≤ 1, at most one vertex in {u1, u2} is a 4-vertex. Let

z be a 3-vertex in {u1, u2}. Since G is triangle-free, u can have at most one neighbor in

{u3, u4}. If u3 is a 3-vertex, then we can collect {v, z, u3, u5, u7, u8} from M . If u4 is a 3-

vertex, then we can collect {v, z, u4, u6, u7, u8} from M . Thus, in any case, we can collect

6 vertices from M . By Observation 4.3.7 with L = M and (α, β, γ, η, λ) = (9, 14, 0, 0, 6),

6− 9a+ 14b must be negative. We obtain a contradiction by adding Inequality (4.31) to

LP.

6− 9a+ 14b ≥ 0 (4.31)

Thus, we can assume p(G′) = 0. Hence, G′ has an induced forest F ′ of order at least

an(G′)− bm(G′). Since xy is not an edge of G, V (F ′)∪ {v} induces a forest in G. Since

n(G′) = n(G)− 2 and m(G′) = m(G)− 5, G has an induced forest of order at least:

a(n(G)− 2)− b(m(G)− 5) + 1 = an(G)− bm(G) + 1 + 5b− 2a
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Thus, we obtain a contradiction by adding Inequality (4.32) to LP.

1 + 5b− 2a ≥ 0 (4.32)

Claim 4.3.31. Let C be a 4-cycle of G that has at least one 3-vertex and at most two

3-vertices. Then, (i) any two 3-vertices of C must be adjacent and two non-C edges

adjacent to two 3-vertices must be embedded in the same side of C and (ii) two non-C

edges of a 4-vertex, say v, must be embedded in the same side of C if C has a 3-vertex

that is not adjacent to v.

Proof. Let {w1, w2, w3, w4} be clockwise ordered vertices of C. Without loss of generality,

we assume w1 is a 3-vertex of C and its non-C edge is embedded outside C. Suppose

that the claim fails. We show that we can collect 2 vertices from C. If (i) fails, the

other 3-vertex of C, denoted by x, is w3 or a neighbor of w1 such that its non-C edge

is embedded inside C. Then, we can collect {x,w1} from C. If (ii) fails, let wi and

wj be two non-adjacent vertices of C such that wi is a 3-vertex and wj is a 4 vertex

that has two non-C edges that are embedded in different sides of C. Then, we can

collect {wi, wj} from C. By Claim 4.3.23, p(G \ C) = q(G \ C) = 0. Since C has at

most two 3-vertices and δ(G) ≥ 3, m(G \ C) ≤ m(C) − 10. By Observation 4.3.7 with

L = C and (α, β, γ, η, λ) = (4, 10, 0, 0, 2), 2 − 4a + 10b must be negative, contradicting

Inequality (4.32).

Claim 4.3.32. G excludes any separating 4-cycle that has four 3-vertices.

Proof. Let w1, w2, w3, w4 be 3-vertices of a separating 4-cycle C. Since C is separating

and G is two-edge connected, two non-C edges of C must be embedded inside C and

two other non-C edges must be embedded outside C. We assume w.l.o.g that the non-

C edge of w1 is embedded outside C. Let u be the non-C neighbor of w1. Let wi,

i 6= 1, be a vertex of C that has its non-C edge embedded outside C and wj be a

vertex of C that has its non-C edge embedded inside C. Let H be the subgraph of G

induced by {w1, w2, w3, w4, u}. We can collect {w1, wi, wj} from H. We now argue that

m(G \H) ≤ m(G) − 10. Since G is triangle-free, u has at most two neighbors in C. If

u has only one neighbor in G which is w1, then m(G \H) ≤ m(G)− 10 since δ(G) ≥ 3.

If u has exactly two neighbors in G, they must be w1 and w3. That means the non-C
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edge of w3 is embedded outside C. Since C is separating, two non-C edges incident to

w2 and w4 must be embedded inside C. Thus, u must have two non-H incident edges

since G is two-edge connected and δ(G) ≥ 3. That implies m(G \H) ≤ m(G)− 10.

By Observation 4.3.7 with L = H and (α, β, γ, η, λ) = (5, 10, 0, 0, 3), 3 − 5a + 10b

must be negative, contradicting Inequality (4.29) since b is non-negative.

Claim 4.3.33. Any separating 4-cycle of G must have at most two 3-vertices.

Proof. Let C be a separating 4-cycle ofG that has at least three 3-vertices. By Claim 4.3.32,

C must have exactly three 3-vertices. Let w1, w2, w3, w4 be vertices in the clock-wise or-

der of C such that w1, w2, w3 are three 3-vertices. By Claim 4.3.17, w4 is a 4-vertex. Let

x, y, z be the non-C neighbors of w1, w2, w3, respectively. Note that x and z may be the

same vertex. We assume that x is embedded outside C. By Claim 4.3.30, two vertices

w2 and x must have a non-C common neighbor and two vertices w2 and z must also

have a non-C common neighbor. That implies xy and yz are edges of G. By planarity,

y and z must also be embedded outside C. Since C is separating and G is two-edge con-

nected, two edges of w4 must be embedded inside C. If x and z are the same vertex (see

Figure 4.6(a)), then we can collect {w1, w2, w3} from the subgraph H that is induced by

{w1, w2, w3, w4, x}. By Observation 4.3.7 with L = H and (α, β, γ, η, λ) = (5, 10, 0, 0, 3),

3− 5a+ 10b must be negative, contradicting Inequality (4.29) since b ≥ 0.

Thus, we can assume that x and z are two different vertices (see Figure 4.6(b)).

If x, y, z are 3-vetices, then we can collect {w2, w3, x, y} from the subgraph K of G

induced by {w1, w2, w3, x, y, z}. Since m(G\K) = m(G)−11, by Observation 4.3.7 with

L = K and (α, β, γ, η, λ) = (6, 11, 0, 0, 4), 4 − 6a + 11b must be negative, contradicting

Inequality 4.30. Thus, at least one vertex in {x, y, z} is a 4-vertex. LetM be the subgraph

of G induced by {w1, w2, w3, w4, x, y, z}. Observe that we can collect {y, w1, w2, w3} from

M . Since m(G\M) ≤ m(G)−14, by Observation 4.3.7 with L = M and (α, β, γ, η, λ) =

(7, 14, 0, 0, 4), 4− 7a+ 14b must be negative. Thus, we obtain a contradiction by adding

Inequality (4.33) to LP.

4− 7a+ 14b ≥ 0 (4.33)

Claim 4.3.34. Any separating 4-cycle of G must have at most one 3-vertex.
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Figure 4.6: (a) A configuration in the proof of Claim 4.3.33 when x = z (b) A con-
figuration in the proof of Claim 4.3.33 when x 6= z (c) A configuration in the proof of
Lemma 4.3.38 (d) A configuration in the proof of Lemma 4.3.40

Proof. Let w1w2w3w4 be a separating 4-cycle, denoted by C, of G that has at least two

3-vertices. By Claim 4.3.33, C has exactly two 3-vertices. By (i) of Claim 4.3.31, we

assume that w1, w2 are two 3-vertices of C and their non-C edges are embedded outside

C. Since C is separating and G is two-edge connected, at least two non-C edges of C

must be embedded inside C. By (ii) of Claim 4.3.31, two non-C edges of any 4-vertex of

C must be embedded in the same side of C. We assume w.l.o.g that two non-C edges of

w3 are embedded inside C. Let u and v be non-C neighbors of w1 and w2, respectively.

By Claim 4.3.30, v must be a common neighbor of u and w2. If v is a 4-vertex, let H

be the subgraph of G induced by {w1, w2, v, w4}. Observe that we can collect {w1, w2}
from H. Since v and w4 can share at most one incident edge, m(G \H) ≤ m(G) − 10.

By Observation 4.3.7 with L = H and (α, β, γ, η, λ) = (4, 10, 0, 0, 2), 2 − 4a + 10b must

be negative, contradicting Inequality (4.26). Thus, we can assume that v is a 3-vertex.

Let K be a subgraph of G induced by {u, v, w1, w2, w4}. We can collect {v, w2, w1} from

K. Since v and w4 can share at most one incident edge, m(G \ K) ≤ m(G) − 10. By

Observation 4.3.7 with L = K and (α, β, γ, η, λ) = (5, 10, 0, 0, 3), 3 − 5a + 10b must be

negative, contradicting Inequality (4.29).

4.3.4.4 Excluding a 4-face with exactly four 3-vertices

In this subsection, we denote C = w0w1w2w3 to be a 4-face of G such that each wi is a

3-vertex, 0 ≤ i ≤ 3. Let X = {x0, x1, x2, x3} where each xi is the non-C neighbor of wi.

All indices in this subsection are mod 4 and to simplify the presentation, we write wj

(xj) instead of writing wj mod 4 (xj mod 4).
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Claim 4.3.35. Vertices in X are pairwise distinct and xj is not adjacent to xj+2 for

any j ∈ {0, 1}.

Proof. To prove that vertices in X are pairwise distinct, we only need to prove that

xj 6= xj+2 since G is triangle-free. If x0 = x2, then w0w1w2x0 is a separating 4-cycle

with at least three 3-vertices. If x1 = x3, then w0w1x1w3 is a separating 4-cycle with at

least three 3-vertices. Both cases contradict Claim 4.3.34.

We now show that xj and xj+2 are non-adjacent. By symmetry, it suffices to show

the non-adjacency of x0 and x2. Suppose otherwise. By planarity, x1 and x3 cannot

be adjacent and if they have a common neighbor, it must be x0 and/or x2. Since G is

triangle-free, at most one of x0 and x2 can be a common neighbor of x1 and x3. We

assume w.l.o.g that x2 is a non-common neighbor of x1 and x3. We consider two cases:

Case 1 x0 is a 3-vertex. Then removing x2, w2, w0 disconnects x3 and x1. Let H be

the subgraph induced by {w0, w1, w2, w3, x2}. We can collect {w1, w2, w3} from H.

By Claim 4.3.23, p(G \ K) = q(G \ K) = 0. Since m(G \ K) ≤ m(G) − 10, by

Observation 4.3.7 with L = K and (α, β, γ, η, λ) = (5, 10, 0, 0, 3), 3−5a+ 10b must

be negative, contradicting Inequality (4.29).

Case 2 x0 is a 4-vertex. Let G′ be the graph obtained by removing {x0, w0, w1, w2, w3}
from G and adding edge x1x3. G′ is triangle-free since common neighbors of x1

and x3 are all removed. By Claim 4.3.23, G \C contains no Q1−
3 subgraph and T6

component. Thus, p(G′) + q(G′) ≤ 1. Let F ′ be the largest induced forest in G′.

Observe that we can add {w0, w1, w3} to F ′ to get an induced forest in G. Since G′

has strictly smaller order than G, F ′ has order at least an(G′)− bm(G′)− cp(G′)−
dq(G′). Since n(G′) = n(G) − 5 and m(G′) ≤ m(G) − 10, by adding {w0, w1, w3}
to F ′, we get an induced forest in G of order at least:

an(G′)− bm(G′)− cp(G′)− dq(G′) ≥an(G)− bm(G) + 3

− 5a+ 10b− cp(G′)− dq(G′)

By Inequality (4.21) and Inequality (4.22), 3− 5a + 10b− c and 3− 5a + 10b− d
are both non-negative. Since p(G′) + q(G′) ≤ 1, 3 − 5a + 10b − cp(G′) − dq(G′)
is non-negative. Thus, G has an induced forest of order at least an(G) − bm(G),

contradicting that G is a counter-example.
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Claim 4.3.36. At least one of two edges wjwj+1 and wj+1wj+2, for any j in {0, 1, 2, 3},
is not on the boundary of a 5+-face.

Proof. Suppose that there exists j ∈ {0, 1, 2, 3} such that wjwj+1 and wj+1wj+2 are on

the boundaries of 5+-faces. We assume w.l.o.g that j = 0. Let G′ be the graph obtained

from G by removing {w0, w2, w3} and adding two edges x0w1, w1x2. By Claim 4.3.35,

x0 and x2 are not adjacent. Thus, G′ is triangle-free. Since δ(G) ≥ 3, x3 is the only

possible 2-vertex of G′. Thus, G′ contains no T6 component. We consider two cases:

Case 1 G′ contains no Q1−
3 subgraph. Then G′ has an induced forest F ′ of order at

least an(G′)− bm(G′). Since n(G′) = n(G)− 3 and m(G′) = m(G)− 5, by adding

{w0, w2} to F ′, wet get an induced forest of G of order at least:

a(n(G)− 3)− b(m(G)− 5) + 2 = an(G)− bm(G) + 2− 3a+ 5b

Since 2−3a+5b ≥ 0 by Inequality (4.28), G has an induced forest of order at least

an(G)− bm(G), contradicting that G is a counter-example.

Case 2 G′ contains at least one Q1−
3 subgraph. By Claim 4.3.23, G − {w0, w2, w3}

contains no Q1−
3 subgraph. Thus, any Q1−

3 subgraph of G must contain w1. By

Observation 4.3.6, G′ has exactly one Q1−
3 subgraph. If G′ contains a Q3 compo-

nent, then the subgraph of G induced by V (Q3) ∪ {w0, w2, w3} has degree 1 in G,

contradicting that G is two-edge connected. Thus, we can assume that G′ contains

a Q1
3 subgraph K. Let G′′ = G′ \ K. We observe that G′′ can also be obtained

from G by removing V (K)∪{w0, w2, w3}. Since V (K)∪{w0, w2, w3} induces a con-

nected subgraph of G, p(G′′) = q(G′′) = 0 by Claim 4.3.23. Thus, G′′ has a forest

F ′′ of order at least an(G′′)− bm(G′′). By Lemma 4.3.4, we can collect 5 vertices

from K to obtain an induced forest F ′ of G′ of order at least an(G′′)− bm(G′′)+5.

By adding {w0, w2} to F ′, we get an induced forest F of G of order at least

an(G′′)− bm(G′′) + 7. Since n(G′′) = n(G)− 11 and m(G′′) = m(G)− 18, F has

order at least:

an(G)− bm(G) + 7− 11a+ 18b

We obtain a contradiction by adding Inequality (4.34) to LP.

7− 11a+ 18b ≥ 0 (4.34)
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Claim 4.3.37. At least one of two vertices xj , xj+2 is a 3-vertex, for any j in {0, 1}.

Proof. Suppose that xj and xj+2 are two 4-vertices for some j ∈ {0, 1}. Let H be the

graph induced by V (C)∪ {xj , xj+2}. Observe that we can collect {wj , wj+1, wj+2} from

H. By Claim 4.3.35, xj and xj+1 are non-adjacent. Thus, m(G \H) ≤ m(G)− 14. By

Observation 4.3.7 with L = H and (α, β, γ, η, λ) = (6, 14, 0, 0, 3), 3 − 6a + 14b must be

negative. Thus, we obtain a contradiction by adding Inequality (4.35) to LP.

3− 6a+ 14b ≥ 0 (4.35)

Lemma 4.3.38. G has no 4-face with four 3-vertices.

Proof. Let H be the subgraph of G induced by V (C) ∪ X. If no edge of C is on the

boundary of a 5+-face, then H is a Q4−
3 subgraph of G, contradicting Claim 4.3.19. Thus,

we can assume at least one edge of C is on the boundary of a 5+-face. By Claim 4.3.36,

C has at most two edges on the boundaries of 5+-faces and they cannot be incident to

the same vertex of C. Thus, there exists j ∈ {0, 1} such that two edges wjwj+1 and

wj+2wj+3 are on the boundary of 4-faces. Without loss of generality, we assume that

j = 0. Thus, x0x1 and x2x3 are edges of G (see Figure 4.6(c)). By symmetry, we can

assume that x0 is the highest degree vertex of X. By Claim 4.3.37, x2 is a 3-vertex.

We claim that (i) x1 is a 4-vertex and (ii) x1x2 and x3x0 are non-edges of G. Suppose

that at least one of two claims fails, we show that we can collect 5 vertices from H. If

x1x2 is an edge of G, then we can collect {x1, w1, w0, w3, x2} from H. If x0x3 is an edge of

G, then we can collect {x0, w0, w1, w3, x2} from H. If x1 is a 3-vertex, then we can collect

{w0, w2, w3, x2, x1} from H. Since m(G \ H) ≤ m(G) − 13, by Observation 4.3.7 with

L = H and (α, β, γ, η, λ) = (8, 13, 0, 0, 5), 5 − 8a + 13b must be negative, contradicting

Inequality (4.11). Thus, both claims hold.

Let K be the subgraph induced by V (C) ∪ {x0, x2, x3}. By Claim 4.3.37, x3 is a

3-vertex. Thus, we can collect {x3, w0, w2, w3} from K. Since x0 is the highest degree

vertex of C, x0 is a 4-vertex. Thus, m(G \K) ≤ m(G)− 14. By Observation 4.3.7 with

L = K and (α, β, γ, η, λ) = (7, 14, 0, 0, 4), 4 − 7a + 14b must be negative, contradicting

Inequality (4.33).
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By combining Lemma 4.3.38 and Claim 4.3.34, we get:

Corollary 4.3.39. G has no 4-cycle with four 3-vertices.

4.3.4.5 Excluding a 4-face with at least two 3-vertices

Lemma 4.3.40. G has no 4-face with three 3-vertices.

Proof. Let C = w0w1w2w3 be a 4-face of G that has three 3-vertices, say w0, w1, w2.

Suppose that wi and wi+2 share a neighbor, say x, for some i in {0, 1}. Then, the

cycle xwiwi+1wi+2 is a separating 4-cycle that has at least two 3-vertices, contradicting

Claim 4.3.34. Thus, wi and wi+2 have no common neighbor for any i in {0, 1}. Let

x0, x1, x2 be the neighbors of w0, w1, w2, respectively. By Claim 4.3.30, x0x1 and x1x2 are

edges ofG (see Figure 4.6(d)). LetH be the subgraph ofG induced by V (C)∪{x0, x1, x2}.
By Corollary 4.3.39, at least one vertex in {x0, x1, x2} is a 4-vertex. Since G is triangle-

free, x0 and x2 are non-adjacent. Since w1 and w3 do not have a common neighbor,

w3 and x1 are non-adjacent. Thus, m(G \ H) ≤ m(G) − 14. Observe that we can

collect {x1, w0, w1, w2} from H. By Observation 4.3.7 with L = H and (α, β, γ, η, λ) =

(7, 14, 0, 0, 4), 4− 7a+ 14b must be negative, contradicting Inequality (4.33).

By Lemma 4.3.40 and Claim 4.3.34, we have:

Corollary 4.3.41. G has no 4-cycle with at least three 3-vertices.

Lemma 4.3.42. G has no 4-face with exactly two 3-vertices.

Proof. Let w0, w1, w2, w3 be vertices in clock-wise order of a 4-face C ofG that has exactly

two 3-vertices. By Claim 4.3.31 two 3-vertices of C must be adjacent. Without loss of

generality, we assume that two 3-vertices are w0 and w1. Let x0, x1 be the neighbors of

w0, w1, respectively. By Claim 4.3.30, x0x1 is an edge of G. By Corollary 4.3.41, x0 and

x1 are 4-vertices. We now show that xj and wj+2 are non-adjacent for any j in {0, 1}.
If x0 and w2 are adjacent, then the cycle x0w0w1w2 is a separating 4-cycle that has at

least two 3-vertices. If x1 and w3 are adjacent, then the cycle x1w1w0w3 is a separating

4-cycle that has at least two 3-vertices. Both cases contradict Claim 4.3.34. Thus, xj

and wj+2 are non-adjacent.
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If x0 and w2 share a common neighbor and x1 and w3 also share a common neighbor,

by planarity, they all share a common neighbor, contradicting that G is triangle-free.

Thus, by symmetry (see Figure 4.7(a)), we can assume that x0 and w2 share no common

neighbor. Let G′ be the graph obtained by removing {x1, w0, w1, w3} from G and adding

edge x0w2. Then, G′ is a triangle-free planar graph. By Claim 4.3.23, the graph obtained

by removing {x1, w0, w1, w3} from G has no T6 component and Q1−
3 subgraph. Thus,

any T6 component or Q1−
3 subgraph of G′ must contain edge x0w2. That implies p(G′)+

q(G′) = 1. We consider three cases:

Case 1 p(G′) = q(G′) = 0. Then G′ has an induced forest F ′ of order at least an(G′)−
bm(G′). By adding {w0, w1} to F ′, we obtain an induced forest of order at least

an(G′)− bm(G′) + 2. Since n(G′) = n(G)− 4 and m(G′) = m(G)− 10, we have:

an(G′)− bm(G′) + 2 = an(G)− bm(G) + 2− 4a+ 10b

Since 2− 4a+ 10b is non-negative by Inequality (4.26), G has an induced forest of

order at least an(G)− bm(G), contradicting that G is a counter-example.

Case 2 p(G′) = 1 and q(G′) = 0. Let G′′ be the graph obtained from G′ by removing

the T6 component of G′. Since G′′ can also be obtained from G by removing

V (T6)∪{x1, w0, w1, w3} which induces a connected subgraph of G, by Claim 4.3.23,

p(G′′) = q(G′′) = 0. Thus, G′′ has a forest F ′′ of order at least an(G′′)− bm(G′′).

By Lemma 4.3.5, we can add 4 vertices from the T6 component to F ′′ to get an

induced forest F̂ of G′ of order at least an(G′′)− bm(G′′) + 4. By adding w0 and

w1 to F̂ , we get an induced forest of order at least an(G′′) − bm(G′′) + 6 in G.

Since n(G′′) = n(G)− 10 and m(G′′) = m(G)− 18, we have:

an(G′′)− bm(G′′) + 6 = an(G)− bm(G) + 6− 10a+ 18b

Since 6 − 10a + 18b is non-negative by Inequality (4.29), G has an induced forest

of order at least an(G)− bm(G), contradicting that G is a counter-example.

Case 3 p(G′) = 0 and q(G′) = 1. Let M be the Q1−
3 subgraph of G′. We consider two

subcases:

Subcase 1 M is Q1
3 in G′. Let G′′′ = G′\M . Then, G′′′ can also be obtained from

G by removing V (M) ∪ {x1, w0, w1, w3} which induces a connected subgraph
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of G. Thus, by Claim 4.3.23, p(G′′′) = q(G′′′) = 0. Let F ′′′ be a forest

of G′′′ of order at least an(G′′′) − bm(G′′′). By Lemma 4.3.4, we can add

5 vertices of M to F ′′′ to get an induced forest F in G′ of order at least

an(G′′′)− bm(G′′′) + 5. By adding w0 and w1 to F , we get an induced forest

of order at least an(G′′′)− bm(G′′′) + 7 in G. Since n(G′′′) = n(G)− 12 and

m(G′′) = m(G)− 23, we have:

an(G′′′)− bm(G′′′) + 6 = an(G)− bm(G) + 7− 12a+ 23b

Thus, we obtain a contradiction by adding Inequality (4.36) to LP.

7− 12a+ 23b ≥ 0 (4.36)

Subcase 2 M is Q3 in G′. Recall that x0w2 must be an edge of M . By symmetry

of Q3, we can assume w.l.o.g that x0 = u1 and w2 = u2 (see Figure 4.7(b)).

We will argue that 4-cycle u5u6u7u8 has at least 3-vertices in G. Consider

the cycle Ĉ = x0u5u6w2u3u4 of G. Since edge x0w2 is embedded inside Ĉ,

x1, w0, w1, w3 is embedded inside Ĉ. That implies u7 and u8 are 3-vertices

in G. Observe that the path x0w0w1w2 separate the internal part of Ĉ into

two parts, one contains x1 and another contains w3. Let C ′ = x0w0w1w2u6u5

and y ∈ {x1, w3} be the vertex inside C ′. If u5 is adjacent to y, then u5x0y

is a triangle in G, contradicting that G is triangle-free. Thus, u5 is also a

3-vertex in G. Hence, we can conclude that 4-cycle u5u6u7u8 has at least

three 3-vertices in G, contradicting Corollary 4.3.41.

(a)

w3

w0 w1

w2

x x0 1

(b)

x0 w2

u5
u6

u7
u8

x1
w1

w0 w3

u4 u3

Figure 4.7: (a) A configuration in the proof of Lemma 4.3.42 (b) A configuration in the
proof of Subcase 2 in Lemma 4.3.42.
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4.3.4.6 Excluding a 4-face with at least one 3-vertex

In this subsection, we denote C = w0w1w2w3 to be a 4-face of G such that w0 is a 3-vertex

and w1, w2, w3 are 4-vertices. From Lemma 4.3.38, 4.3.40 and 4.3.42 and Claim 4.3.34,

we have:

Corollary 4.3.43. Any 4-cycle of G has at most one 3-vertex.

Claim 4.3.44. G has no 3-vertex that has a 3-vertex and a 4-vertex as neighbors.

Proof. Suppose that G has a 3-vertex u that has a 3-vertex v and a 4-vertex w as

neighbors. Let x be a neighbor of u such that x 6∈ {v, w}. By Claim 4.3.30, x and v has

a neighbor y 6= u. Thus, 4-cycle uxyv has two 3-vertices, contradicting Corollary 4.3.43.

Let x0 be the non-C neighbor of w0. By Claim 4.3.30, x0 and w1 have a common

neighbor, say x1, and x0 and w3 have a common neighbor, say x3. By Corollary 4.3.43,

x0, x1, x3 are 4-vertices. Note that x1 and x3 could be the same vertex, or even x1 =

x3 = w2.

Claim 4.3.45. x0 and w2 are non-adjacent.

Proof. Suppose otherwise. Let x2 be the non-C neighbor of w2 such that x2 6= x0.

Let C1 = x0w0w3w2 and C2 = x0w0w1w2 be two 4-cycles of G. By applying (ii) of

Claim 4.3.31 to C1, two edges w2x2 and w2w1 must be embedded in the same side

of C1. That implies two edges w2x2 and w2w3 are embedded in different sides of C2,

contradicting (ii) of Claim 4.3.31 for C2.

Claim 4.3.46. w1 and w3 have no non-C common neighbors.

Proof. We note that w1 and w3 can have up to 4 common neighbors. Let x be a non-

C common neighbor of w1 and w3. Since w0 is a 3-vertex in 4-cycle w1w0w3x, by

Corollary 4.3.43, x must be a 4-vertex. We consider two cases:

Case 1 Three vertices x0, w1, w3 share a common neighbor, that we, w.l.o.g, assume to

be x (see Figure 4.8(a)). Let C3 = x0w0w1x, C4 = x0w0w3x and C5 = xw3w0w1.

By applying (ii) of Claim 4.3.31 to C3 and to C4, two non-C3 edges incident to x

must be embedded in the same side of C3 and two non-C4 edges incident to x must
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be embedded in the same side of C4. That implies two non-C5 edges incident to x

are embedded in different side of C5, contradicting (ii) of Claim 4.3.31 for C5.

Case 2 Three vertices x0, w1, w3 do not share a common neighbor. Then, x, x1 and x3

are pairwise distinct(see Figure 4.8(b)). Let H be the subgraph of G induced by

V (C)∪ {x, x0, x1, x3}. Observe that we can collect {x0, w0, w1, w3} from H. Since

G is triangle-free, xw2, xx3, xx1, x1x3 are non-edges of G. Thus, n(H) = n(G)− 8

and m(H) = m(G) − 20. By Observation 4.3.7 with L = H and (α, β, γ, η, λ) =

(8, 20, 0, 0, 4), 4− 8a+ 20b must be negative, contradicting Inequality (4.26).

(a)

w3

w0 w1

w2

x0

(b)

x

w3

w0 w1

w2

x0x x1

x3

(c)

w3

w0 w1

w2

x0 x1

x3

y0

Figure 4.8: (a) A configuration in the proof of Case 1 of Claim 4.3.46 (b) A configuration
in the proof of Case 2 Claim 4.3.46 (c) A configuration in the proof of Claim 4.3.48

Let y1 and y3 be the non-C neighbors of w1 and w3, respectively, such that y1 6= x1

and y3 6= x3. Let y0 be the remaining neighbor of x0 that is not in {x1, w0, x3}. Let

Z = V (C) ∪ {x0, x1, x3, y0, y1, y3}.

Claim 4.3.47. Vertices in Z are pairwise distinct.

Proof. By Claim 4.3.46, two vertices x1 and x3 are distinct and two vertices y1 and y3

are distinct. By Claim 4.3.45, y0 6= w2. It remains to prove that y0 6= y1 and y0 6= y3.

By symmetry, it suffices to prove y0 6= y1. Suppose otherwise. Let H be the subgraph

of G induced by V (C) ∪ {x0, x1, x3, y0} (see Figure 4.8(c)). Since G is triangle-free, y0

and x3 are non-adjacent and y0 and w2 are non-adjacent. By Claim 4.3.46, y0 and w3

are non-adjacent. Thus, m(G \H) = m(G) − 20. Since we can collect {x0, w0, w1, w3}
from H, by Observation 4.3.7 with L = H and (α, β, γ, η, λ) = (8, 20, 0, 0, 4), 4−8a+20b

must be negative, contradicting Inequality (4.26).
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Claim 4.3.48. At least one of y0y1, y1y3, y0y3 is an edge of G.

Proof. Suppose that y0y1, y1y3, y0y3 are non-edges of G. Let N = {x0, x1, x3, w1, w2, w3}.
Let G′ be the graph obtained from G by removing vertices in N and adding edges

{w0y0, w0y1, w0y3} (see Figure 4.9(a)). By Claim 4.3.23, the graph obtained from G

by removing vertices in N has no T6 component and Q1−
3 subgraph. Thus, any T6

component and Q1−
3 subgraph of G′ must contain w0. That implies p(G′)+ q(G′) ≤ 1. If

q(G′) = 1, let H be a T6 component of G. Then w0 must be a 3-vertex of H. Since any

3-vertex of a T6 component is adjacent to a 2-vertex, at least one neighbor of w0 must

be a 2-vertex in G′. However, w0’s neighbors all are 3+-vertices in G′. Thus, q(G′) = 0.

Since G is a counter-example of minimal order, G′ has an induced forest F ′ of order at

least an(G′)− bm(G′)− cp(G′). By adding x0, w1, w3 to F ′, we obtain an induced forest

F of order at least an(G′) − bm(G′) − cp(G′) + 3 in G. Since n(G′) = n(G) − 6 and

m(G′) = m(G)− 15, we have:

an(G′)− bm(G′)− cp(G′) + 3 ≥ an(G)− bm(G) + 3− 6a+ 15b− c

Thus, we obtain a contradiction by adding Inequality (4.37) to LP.

3− 6a+ 15b− c ≥ 0 (4.37)

(a) (b) (c)

w0

w1

w2
w3

x0
x1

x3

y0

y1

y3

w0

w1

w2
w3

x0
x1

x3

y0

y1

y3

w0

w1

w2
w3

x0
x1

x3

y0

y1

y3

(d)

w0

w1

w2
w3

x0
x1

x3

y0

y1

y3

Figure 4.9: (a) A configuration in the proof of Claim 4.3.48 (b) A configuration in the
proof of Claim 4.3.49 (c) A configuration in the proof of Claim 4.3.50 (d) A configuration
in the proof of Lemma 4.3.51

Herein, we regard 4-face C as a 4-cycle so that we can speak of the symmetry of neighbors

of w0 in G (see Figure 4.9(a)). By symmetry, we can assume w.l.o.g that y1y3 is an edge

of G.
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Claim 4.3.49. y1 and y3 are 4-vertices.

Proof. Suppose otherwise. We can assume w.l.o.g that y1 is a 3-vertex. By Claim 4.3.44,

y3 must be a 4-vertex (see Figure 4.9(b)). Let H be the subgraph of G induced by

{w0, w1, w3, x0, x1, x3, y1, y3}. By planarity, if y1x3 is an edge of G, then x1y3 is non-edge

of G and vice versa. Thus, m(G \H) ≤ m(G)− 19. Since we can collect {y1, x0, w0, w3}
from H, by Observation 4.3.7 with L = H and (α, β, γ, η, λ) = (8, 19, 0, 0, 4), 4−8a+19b

must be negative. Thus, we obtain a contradiction by adding Inequality (4.38) to LP.

4− 8a+ 19b ≥ 0 (4.38)

Claim 4.3.50. Two vertices y3, x1 are non-adjacent and two vertices x3, y1 are non-

adjacent.

Proof. By symmetry, we only need to prove y3 and x1 are non-adjacent. Suppose that

y3x1 is an edge of G(see Figure 4.9(c)). Let C6 be cycle x1w1w2w3y3. Let H be the

subgraph induced by {w0, w1, w2, w3, x0, x1, x3, y3}. Since y1 and y0 are embedded in

different sides of C6, we can collect x0, w0, w1, w3 from H. Since m(G\H) ≤ m(G)−20,

by Observation 4.3.7 with L = H and (α, β, γ, η, λ) = (8, 20, 0, 0, 4), 4 − 8a + 20b must

be negative, contradicting Inequality (4.26).

Lemma 4.3.51. G has no 4-face with exactly one 3-vertex.

Proof. Since G is triangle-free, at most one of y0y1, y0y3 is an edge of G. By symmetry, we

can assume w.l.o.g that y0 and y1 are non-adjacent. Let J = {w0, w1, w2, w3, x1, x3, y3}.
Let G′ be the graph obtained from G by removing vertices in J and adding edge x0y1

(see Figure 4.9(d)). Since two vertices y0, y1 are non-adjacent, G′ is triangle-free. By

Claim 4.3.23, the graph obtained by removing J from G has no T6 component and Q1−
3

subgraph. Thus, any T6 and Q1−
3 subgraph of G′ must contain both x0 and y1. Since x0

is a 2-vertex of G′ and every vertex in a Q1−
3 subgraph has degree at least 3, G′ has no

Q1−
3 subgraph. We now argue that G′ contains no T6 component.

Suppose that G′ contains a T6 component. Then, x0 must be one of two 2-vertices

of T6. By symmetry of T6, we can assume w.l.o.g that x0 is v5. Thus, edge x0y1 is v2v5

or v5v3. Let C7 be cycle v1v2v4v3. C7 separates v6 and v5 in both G′ and G. Thus, C7
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also separates v6 from every vertex reachable from v5 in G \ C7. That implies v6 is also

a 2-vertex in G, contradicting Lemma 4.3.29. Thus, G contains no T6 component.

Since G is a minimal counter-example, G′ has an induced forest F ′ of order at least

an(G′) − bm(G′). Let F = F ′ ∪ {w0, w1, w3}. F is an induced forest of G of order at

least an(G′) − bm(G′) + 3. Since x1 and y3 are not adjacent by Claim 4.3.50, m(G′) =

m(G)− 19. Since n(G′) = n(G)− 7, we have:

|F | ≥ an(G)− bm(G) + 3− 7a+ 19b

Thus, we obtain a contradiction by adding Inequality (4.39) to LP.

3− 7a+ 19b ≥ 0 (4.39)

4.3.4.7 Excluding a 5-face with at least four 3-vertices

Let w0, w1, w2, w3, w4 be vertices in clock-wise order of a 5-face C of G such that C has

at most one 4-vertex. Let X = {x0, x1, x2, x3, x4} be a set of vertices such that xi is a

non-C neighbor of wi for all 0 ≤ i ≤ 4.

Claim 4.3.52. C has no 4-vertex.

Proof. Suppose that wi is a 4-vertex in G. Recall that C has at least four 3-vertices.

Thus, wi+1 is a 3-vertex that has a 3-vertex and a 4-vertex as neighbors, contradicting

Claim 4.3.44.

Observation 4.3.53. Vertices in X are and pairwise distinct and have degree 3.

Proof. Suppose that xi = xi+2 for some i ∈ {0, 1, 2, 3, 4} (indices are mod 5). Then,

wiwi+1wi+2xi is a 4-cycle that has at least three 3-vertices, contradicting Corollary 4.3.43.

If xi is a 4-vertex, then wi is a 3-vertex that has a 3-vertex and a 4-vertex as neighbors,

contradicting Claim 4.3.44.

Lemma 4.3.54. Any 5-face of G has at least two 4-vertices.
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Proof. By Claim 4.3.52, a 5-face C that has at most one 4-vertex actually has no 4-

vertex. By Corollary 4.3.43, xi and xi+1 are non-adjacent, for any i such that 0 ≤ i ≤ 4.

Let G′ be the graph obtained from G by removing {w0, w3, w4} and adding two edges

x0w1, x3w2. We first show that p(G′) = q(G′) = 0.

G′ has no T6 component since x4 is the only 2-vertex in G′. Suppose that G′ contains

a Q1−
3 subgraph, say H, of G. Since the graph obtained from G by removing {w0, w3, w4}

has no Q1−
3 subgraph, H must contain at least one of two new edges x0w1, x3w2. Since

H has six 4-faces, there is at least one 4-face, say C0, of H that contains no new edge.

Thus, C0 is also a 4-cycle in G. Except x4, all vertices in G′ has the same degree as in

G. Thus, C0 has at least two 3-vertices, contradicting Corollary 4.3.43.

Hence, G′ has an induced forest F ′ of order at least an(G′) − bm(G′). Let F =

F ′ ∪ {w0, w3}. F is an induced forest of G of order at least an(G′)− bm(G′) + 2. Since

n(G′) = n(G)− 3 and m(G′) = m(G)− 5, we have:

|F | ≥ an(G)− bm(G) + 2− 3a+ 5b

Since 2−3a+5b is non-negative by Inequality (4.28), |F | ≥ an(G)−bm(G), contradicting

that G is a counter-example.

Proof of Theorem 4.3.2 We have shown that if a, b, c, d satisfy all constraints in

LP, a counter-example graph G must be two-connected, have δ(G) ≥ 3, have no 4-face

with at least one 3-vertex and have no 5-face with at least four 3-vertices, contradicting

Theorem 4.3.8. To finish the proof of Theorem 4.3.2, we only need to show that Linear

Program LP that consists of constraints from (4.9) to (4.39) is equivalent to Linear

Program (4.7). We observe that the set of constraints in Linear Program (4.7) is a

subset of constraints in LP since:

(4.7f) = (4.24), (4.7g) = (4.25), (4.7h) = (4.18), (4.7i) = (4.9), (4.7j) = (4.10)

(4.7k) = (4.11), (4.7l) = (4.12)(4.7m) = (4.13), (4.7n) = (4.14), (4.7o) = (4.15)

(4.7p) = (4.16), (4.7q) = (4.21), (4.7r) = (4.22), (4.7s) = (4.27)

Here we note that Inequality (4.7m) is equivalent to Inequality (4.13) when t = 0.

We express remaining constraints of LP as linear combinations of constraints in Linear

Program (4.7) as follows:
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(5t+ 4)− (8t+ 6)a+ (13t+ 9)b− d (4.13) = (4.7m) + t(4.7k)

4− 6a+ 10b− d (4.17) = (4.7m) + (4.7c)

5− 6a+ 16b− c− d (4.19) = (4.7p) + (4.7c)

4− 6a+ 11b− d (4.20) = (4.7m) + 2(4.7c)

5− 8a+ 17b− c− d (4.23) = (4.7p) + 2(4.7c)

1− 2a+ 5b (4.26) = (4.7h) + (4.7b)

2− 3a+ 5b (4.28) = 2(4.7b) + (4.7h)

3− 5a+ 9b (4.29) = (4.7s) + (4.7h)

4− 6a+ 9b (4.30) = (4.7m) + (4.7e)

6− 9a+ 14b (4.31) = (4.7k) + (4.7c) + (4.7b)

1 + 5b− 2a (4.32) = (4.7h) + (4.7b)

4− 7a+ 14b (4.33) = (4.7b) + 2(4.7h) + (4.7s)

7− 11a+ 18b (4.34) = (4.7b) + 2(4.7h) + 2(4.7s)

3− 6a+ 14b (4.35) = (4.7s) + 2(4.7h)

7− 12a+ 23b (4.36) = 2(4.7s) + 3(4.7h) + (4.7b)

3− 6a+ 15b− c (4.37) = (4.7h) + (4.7q)

4− 8a+ 19b (4.38) = 3(4.7h) + (4.7s) + (4.7b)

3− 7a+ 19b (4.39) = (4.7s) + 3(4.7h)
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Chapter 5: Conclusion

Our work in Chapter 2 gives the first EPTAS for TSP and the first PTAS for subset TSP

in H-minor-free graphs. This is the first step toward designing PTASes for other con-

nectivity problems. Steiner tree [21], Steiner forest [13], surivivable network design [20]

are connectivity problems that have EPTASes in planar and bounded genus graphs.

Their planar PTASes also share two ingredients with TSP: the contraction decomposi-

tion framework and light spanners. The main difficulty is that, like TSP and subset

TSP, the spanners for other connectivity problems in surface-embedded graphs heavily

use non-crossing embedding. We have shown that embedding is not necessary to obtain

light spanners for TSP and subset TSP and that could be true for other connectivity

problems as well. The most natural next problem that we believe to have such spanners

is the Steiner tree problem.

In Section 2.3 of Chapter 2, we presented an algorithm that constructs a subset

spanner of weight at most OH(log k poly(1
ε )) times the weight of a minimum Steiner tree

ST. We conjecture that it is possible to remove the log k factor. That is, there exists a

subset spanner of weight at most OH(poly(1
ε ))w(ST). Such a spanner would imply an

efficient PTAS for subset TSP in minor-free graphs. By Theorem 2.3.8, it suffices to

construct an `-close spanner of weight at most OH(poly(1
ε ) k`). A possible direction to

construct such a light `-close spanner is to extend Lemma 2.3.5 to H-minor-free graphs.

In Section 2.3.2, we point out that a terminal preserving minor that preserves pairwise

distances exactly is not possible due to the lower bound by Krauthgamer, Nguy˜̂en, and

Zondiner [65]. However, it is open to obtain an approximate version of Lemma 2.3.5 for

H-minor-free graphs. The lower bound for approximate terminal preserving minors in

planar graphs by Krauthgamer, Nguy˜̂en, and Zondiner [65] (Theorem 3.3 in [65]) can be

translated to a lower bound of Ω( n
ε2

) on the number of Steiner vertices. It does not rule

out the existence of an approximate terminal preserving minor of size O( nεc ) for some

constant c ≥ 3.

In Chapter 3, we have seen that the PTAS from local search is not efficient and the

bottleneck lies in the local exchange that has running time nc(ε) where c(ε) is a function
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depending on ε only. A natural research question is: can we do the local exchange

in 2c(ε)nO(1) time? This would make the local search PTAS efficient. Fellows, Fomin,

Lokshtanov, Rosamond, Saurabh and Villanger [46] showed that it is possible to make

local exchange efficient for several problems in apex-minor-free graphs, including: vertex

cover, dominating set and odd cycle transversal. However, it is still open whether the

same result can be archived for the FVS problem. It also would be interesting to have

a meta theorem that characterizes the set of problems admitting efficient local search

PTAS in H-minor-free graphs.

Bidimensionality is a powerful framework for obtaining a PTAS for many problems in

H-minor-free graphs. One prominent property of a bidimensional problem is that the size

of the solution in a t× t planar grid must be Ω(t2). Subset feedback vertex set and the r-

dominating set problem when r is a part of the input do not have such properties. Thus,

no PTASes based on the bidimentionality framework are known for the two problems. We

have seen that local search can give a PTAS for the r-dominating set problem. Chaplick,

De, Ravsky, Spoerhase [28] also presented local search PTAS for several other non-

bidimensional problems. In a certain sense, local search does offer advantages over the

bidimensional framework. However, a wide range of bidimensional problems, especially

contraction-bidimensional problems, are not known to have local search PTASes. We

note that FVS problem is a contraction-bidimensional problem. Thus, our result puts

the first contraction-bidimensional problem in the class of problems having local search

PTAS. A natural question is: are there problems that have bidimensional PTAS but do

not have a local search PTAS?

In Section 4.3 of Chapter 4, we have introduced a new approach that can handle

special graphs of small order separately to find an induced forest of order at least 5n
9 in

triangle-free planar graphs of order n. It would be very interesting to see whether our

method can be employed to give a better bound on the order of the largest induced forest

in girth-5 planar graphs [43] and the order of the induced forest in subcubic (non-planar)

graphs of girth at least four and five [59]. Another direction is to improve our analysis

to obtained a bound of 4n
7 . This would match the bound obtained by Wang, Xie and

Yu [90] for bipartite planar graphs and would possibly give a simpler and more general

proof than the proof by Wang, Xie and Yu. The ultimate goal is to resolve the conjecture

of Akiyama and Watanabe and we would like to see if our method can be extended to

resolve this conjecture as well.
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