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Changes in the global climate and forest management practices have given rise to 

increasing numbers and severity of wildfires. More than five million acres burned in the 

United States in 2017, while in Canada 7.4 million acres burned. In particular, an increasing 

amount of dead woody biomass is a key factor in forest fire hazards. The call for mitigating 

the effects of climate change, specifically focusing on reducing the risk of wildfires, has 

attracted considerable global attention toward renewable energy sources. The objective of 

this research is to provide decision makers in private industry and governmental agencies 

the ability to reliably assess economic, environmental, and social criteria simultaneously 

while optimizing bio-oil supply chains in managing the land and forests to decrease 

wildfire risks. An optimized biomass to bio oil supply chain is presented by using a 

mathematical problem considering economic, environmental, and social criteria. The focus 

of the application of this work is on northwest Oregon forests. The production of bio-oil is 

not only able to help mitigate climate change impacts such as forest fire hazards, but it can 



also improve energy independence, employment opportunities, and economic 

development.   

To extend prior related research, a single-objective mathematical model is first presented, 

which relaxes a limitation of prior mathematical models for bio-oil supply chain problems 

by considering carbon cost as a part of the total supply chain cost. Since the model is a 

mixed integer linear programming problem, a metaheuristic optimization approach 

(genetic algorithm) is designed to obtain an optimized solution. The proposed 

mathematical model can be applied in the design of a biomass to bio-oil supply chain 

including mobile refineries, in which total cost consists of logistics cost and carbon cost. 

Decision makers will be able to apply the proposed genetic algorithm for large scale 

problems to overcome restrictions of exact methods.  

As the demand for sustainable supply chains continues, logistics problems must be 

designed to balance solutions across the three pillars of sustainability: the economy, 

environment, and society. Thus, a multi-objective mathematical model is next developed 

for a bio-oil supply chain, which includes six levels: harvesting sites, collection sites, 

mobile refineries, fixed refineries, distribution centers, and residential areas. The branch-

and-cut search in CPLEX software solves the proposed model using data from northwest 

Oregon forests. The model obtains optimal values for three decision variables, i.e., mass of 

biomass to be transported, mass of bio-oil to be transported, and the facility locations, to 

simultaneously optimize total cost, carbon footprint, and number of jobs created. From 

evaluation of the model, it is found that supplementing a traditional bio-oil supply chain 

with mobile refineries has the potential to significantly reduce the cost of bio-oil. 

Sensitivity analysis is performed to evaluate the effect of key parameters on supply chain 



objectives under different scenarios. It was also found that the percentage yield parameter 

and mobile refinery capacity have a more significant effect on the selected objectives than 

the other parameters tested. Based on the supply chain modeling, the behavior of the 

predicted cost of bio-oil, carbon footprint, and number of jobs created is intuitive with 

respect to the changes in the model parameters. Further, the sensitivity analysis results 

show that the cost of bio-oil predicted by the mathematical model falls in the cost interval 

found in the market and research literature. 

In addition to reducing wildfire risks and energy dependence by collecting combustible 

forest biomass, the research result shows that consideration of societal aspects in bio-oil 

supply chains can provide a competitive cost of bio-oil. Exploration of mobile refineries is 

a focus here to elucidate bio-oil supply chain sustainability performance through 

mathematical modeling, and has not been previously reported in literature. The lack of 

access to the conversion processes prevented a more accurate estimation of the cost of bio-

oil. To improve this limitation, modeling the parameters of bio-oil supply chains using 

stochastic approaches in future research would allow for a more in-depth investigation of 

tradeoffs between objectives. 
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CHAPTER 1: INTRODUCTION 

This chapter presents an introduction for the research developed herein. An overview of 

the research domain and background of the specific research topic area are presented. 

Moreover, the research objective, research tasks, and outline of the thesis are presented. 

1.1 Overview 

Due to recent lengthening of wildfire seasons worldwide (Jolly et al., 2015), a call has been 

made by society to assist private and governmental organizations in managing the land and 

forests to decrease wildfire risks. Over the last three decades, the US experienced no 

significant change in the number of wildfires, while the total acreage burned has been 

significantly increasing (Landis et al., 2017). Around five million acres of forests burned 

in the US in 2017 (Pierre-Louis, 2017); and fires in Oregon accounted for one half million 

of these acres. The wildfire problem is highlighted by the destruction of homes and loss of 

other property, but it has other significant direct and indirect impacts on the society and 

environment, e.g., human injury or death, and damage to infrastructure, wildlife habitats, 

and water quality (Edgeley & Paveglio, 2017). Wildfire damage has been estimated to cost 

the US economy tens to hundreds of billions of dollars, annually (Fann et al., 2018). The 

ubiquity of wildfires demands societal attention to find a solution for mitigating this 

problem (Landis et al., 2017).  

How then can we decrease wildfire hazards? One answer is to address the presence of dried 

woody forest biomass, which is a key contributor to fire hazards (Madrigal et al., 2017). 

As a potential viable solution to reducing wildfire risks, combustible forest biomass can be 
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collected and removed for generating renewable energy sources, such as bio-oil (Madrigal 

et al., 2017). In addition to decreasing environmental impacts of fire hazards, value creation 

from underutilized woody forest biomass benefits society and the economy (Hubbard, 

Biles, Mayfield, & Ashton, 2007), which align with the three pillars of sustainability.  

Conceptually, the three pillars of sustainability involves the integration of the economic, 

environmental, and social aspects (Hansmann, Mieg, & Frischknecht, 2012). The 

economic aspect considers financial performance of human systems, the environmental 

aspect focuses on the effects of human activities on the natural environment, and the social 

aspect investigates the well-being of people. Many methods have been introduced to assess 

these three aspects individually or jointly. It is widely agreed that all three must be 

simultaneously considered to provide the sustainable performance of a product (Giddings, 

Hopwood, & O’Brien, 2002; Lozano, 2008).  

1.2 Background 

As a result of the industrial revolution, human activities have created harmful effects on 

the environment and society to the point that human extinction is plausible (Pearson, 2001). 

Sustainable supply chain management (SCM) is presented as an innovative solution to 

curtail these negative effects (Seuring, 2013). Seuring and Müller (2008) defined 

sustainable SCM as:  

[T]he management of material, information and capital flows as well as cooperation 
among companies along the supply chain while taking goals from all three 
dimensions of sustainable development, i.e., economic, environmental and social, 
into account which are derived from customer and stakeholder requirements.  

This definition by Seuring and Müller is innovative in that it goes beyond typical single 
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and two-factor combinations, and considers the economic, environmental, and social 

factors in SCM decisions. However, their definition is not without issues. For instance, 

Carbo et al. (2014) posited that it is difficult to apply the theory of sustainability to 

industrial problems because capitalism is dependent upon continuous economic growth, 

often at the expense of the environment and social stability. Thus, they suggested that our 

economic system should be reformed to reduce the focus on monetary costs. Decision 

makers must be able to trade between economic, environmental, and social factors to 

address these issues simultaneously. In particular, a multi-objective sustainable SCM 

approach is suited to separately optimizing the economic, environmental, and the social 

aspects, using three different objectives. 

1.3 Problem Overview 

In sum, US forests are experiencing an increasing risk of forest fires, while bio-oil supply 

chains have the potential to reduce wildfire risks by removing dried woody forest biomass. 

However, due to market and policy uncertainties, bio-oil supply chains have undergone 

protracted development (Hong, How, & Lam, 2016). In particular, it has been suggested 

that existing supply chain analysis methods are not able to sufficiently consider meeting 

economic, environmental, societal goals, simultaneously (Seuring, 2013). Current bio-oil 

supply chain analysis approaches focus on only minimizing monetary costs, which may 

lead to negative impacts on the environment and society. The research herein is motivated 

to mitigate this problem. 

1.4 Research Objective 

The objective of this research is to provide decision makers in private industry and 
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governmental agencies the ability to reliably assess economic, environmental, and social 

criteria simultaneously while optimizing bio-oil supply chains in managing the land and 

forests to decrease wildfire risks. 

1.5 Research Tasks 

In response to decrease wildfire risks by collecting of combustible forest biomass, the 

overall purpose of this research is to support optimization of biomass to bio-oil supply 

chains. This will be accomplished by using a multi-objective mathematical problem that 

considers economic, environmental, and social criteria. Several research tasks are 

undertaken to fulfill the objective of this research.  

The first task is to develop a single-objective mathematical model for bio-oil supply chain 

optimization that incorporates environmental impacts. Subtasks include reviewing prior 

studies to understand bio-oil supply chain model functionality, developing a mathematical 

model to quantify total cost of bio-oil production, and designing a genetic algorithm for 

optimizing mixed supply chain problems.  

The second task is to develop a multi-objective mathematical model to assist the 

simultaneous optimization of a set of sustainability metrics for bio-oil supply chains. 

Subtasks include conducting background research for understanding biomass to bio-oil 

logistics functionality, collecting model-supporting data, applying theoretical equations to 

quantify sustainability metrics, using an optimization approach to solve the developed 

mathematical model, and analyzing the assessment results. 
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1.6 Thesis Outline 

This research is reported in the manuscript format and includes five chapters. Chapter 1 

provides the overview, motivation, objective, and tasks of this research. Chapter 2 reviews 

the literature on multi-objective models in sustainable supply chains.  

Chapter 3 is a journal article submitted to the Journal of Operations Research & Decision 

Theory and titled “Optimizing a Sustainable Logistics Problem in a Renewable Energy 

Network Using a Genetic Algorithm.” This article develops a mathematical model that can 

be used to simultaneously optimize renewable energy supply chain logistics costs and 

carbon footprint. The proposed model considers a biomass to bio-oil supply chain, 

including harvesting and collection sites, bio refineries, and distribution centers.  

Chapter 4 is a journal article to be submitted to the Journal of Transportation Research Part 

E: Logistics and Transportation Review, and titled “A Three-Objective Mathematical 

Logistics Model for Integrating a Mobile Facility into a Sustainable Bio-Oil Supply 

Chain.” This article develops the methodology presented in Chapter 3 to model a multi-

objective problem for bio-oil supply chains based on data derived from a case study of bio-

oil production for forest biomass in northwest Oregon.  

Chapter 5 presents the summary, conclusions, and contributions of this research, and 

proposes opportunities for future work. Finally, Appendix A and Appendix B report the 

MATLAB and CPLEX source codes, respectively, for solving the mathematical models.   
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CHAPTER 2: LITERATURE REVIEW 

This section considers the prior research in sustainable supply chain models to presents the 

limitation and gaps of bio-oil problem studies. 

2.1 Sustainability and Supply Chain Management 

Two sets of activities form the bio-oil production network: the conversion process and 

logistics activities. The work presented herein focuses on logistics activities undertaken in 

the bio-oil supply chain. Prior research (published after 2008) exploring quantitative 

problems in sustainable supply chain management were identified by searching the Web 

of Science, comprised of multiple scientific databases (Web of Science, 2018). For 

interested readers, five prior studies (Abbasi & Nilsson, 2016; Guo, Shen, Choi, & Jung, 

2017; Gupta & Palsule-Desai, 2011; Ilgin & Gupta, 2010; Seuring, 2013) provide a 

comprehensive review of supply chain management through 2017. 

The first researchers to consider the societal effects of sustainable SCM were Pérez-Fortes 

et al. (2012). They used a mathematical model for sustainability analysis that accounts for 

the number of jobs created in the supply chain. To measure the environmental effects 

discussed in their case study, they used life-cycle assessment (LCA). They evaluated the 

tradeoffs between sustainability criteria using a multi-objective mathematical model in a 

biomass-to-rural electrification supply chain, which includes sourcing, pre-treatment, 

electricity generation, and distribution. The considered storage used in their model altered 

the biomass characteristic (e.g., heating value, dry matter, and moisture content). They 

employed an ε-constraint method using GAMS software to provide an optimal solution, 
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which included biomass utilization, matter transportation, biomass storage periods, 

connectivity between the supply entities, and the location and capacity of gasification. In 

their recommendations for further research, they mentioned two possibilities: (1) The 

addition of mathematical models of pre-treatment and storage processes to extend their 

sustainable SCM approach; and (2) A decomposition approach to improve the solution 

algorithm. 

In addition to focusing on job creation, wealth can serve as another indicator of societal 

effects in sustainability analysis. In fact, Boukherroub et al. (2015) suggested job creation 

and wealth as indicators of societal effects in a study of the Canadian lumber industry. In 

logistics modeling, they assumed that third-party logistics providers transported the 

products. They used a weighted goal-programming algorithm to optimize a mathematical 

model that included raw materials utilization, inventory levels, and the number of 

employees. 

Improving economic development ─ calculated by regional economic value and regional 

development factor ─ is another societal consideration that has been explored alongside 

job creation. For example, in a sustainable pharmaceutical case study, Zahiri et al. (2017) 

employed a multi-objective evolutionary algorithm to optimize a sustainable SCM 

including manufacturers, distribution centers, and demand zones. Their total cost included 

selling and buying technology products, carbon credits, transportation, and capital, as well 

as inventory holding costs. The second objective considered the societal impact in terms of 

job creation and economic development. The environmental objective was to minimize the 

carbon footprint of the supply chain. Based on their case study, they suggested that 
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improving the supply chain optimization algorithm from a sustainability perspective and 

developing a mathematical model to consider perishable products should be pursued as 

future research. 

Job creation, wealth, and economic development are not the only indicators that have been 

considered to define societal impact. Ramos et al. (2014), for example, explored maximum 

working hours as an indicator of societal impact in a recyclable waste collection chain. 

They used carbon footprint to consider the environmental effects. For mathematical 

modeling of the supply chain, they utilized the vehicle-routing approach with different 

delivery patterns for customers. They also employed an augmented ε-constraint method 

using CPLEX to provide the optimal solution to the decision maker. For future work, they 

suggested performing a sensitivity analysis to study the behavior of parameters. 

Another societal effect that has been considered in sustainability analysis is the total lead-

time indicator (the sum of transportation and processing times). Zhang et al. (2014) focused 

on minimizing total lead time in a chemical product supply chain. For the supply chain, 

which included production plants and suppliers, the researchers developed a mathematical 

model to find an optimal solution for improving the three pillars of sustainability. The 

optimal solution included allocation and material flows between supply chain echelons for 

cost, lead time, and greenhouse gas emissions. To extend their proposed model, they 

suggested future research consider multi-period sustainable SCM with regard to inventory 

management and time-dependent demand. 

Researchers have drawn upon the foundational work done by Pérez-Fortes et al. (2012) by 
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applying their indicators to different case studies. In a biomass case study in British 

Columbia, Canada, Cambero and Sowlati (2016) proposed a multi-objective sustainable 

SCM, in which there were different types of raw materials from a set of supply sources for 

a set of locations to produce a product. To provide a set of solutions for the mathematical 

model, they used an augmented ε-constraint method in AIMMS software. As future work, 

they suggested developing the model using stochastic programming. 

Based on the future research directions suggested by Cambero and Sowlati (2016) and 

Pérez-Fortes et al. (2012), Osmani and Zhang (2017) extended a biomass supply chain 

model to include stochastic parameters and the Benders decomposition algorithm for a 

three-echelon sustainable supply chain. Different types of raw materials were transferred 

from a set of sources to a set of locations to produce a final product. To overcome the 

uncertainties in a case study for Wisconsin, USA, they assumed the amount raw materials, 

demand for the final product, and the sale price to be probability parameters with known 

statistical distributions. To extend their research, they suggested investigating more 

indicators for evaluating societal impacts. 

2.2 Limitations of Prior Research and Research Question 

In addition to the sustainability supply chains discussed above (consolidated in Table 1), 

several studies have considered the relationships between logistics costs and production 

costs (e.g., (Mirkouei, Haapala, Sessions, & Murthy, 2017; Yue, You, & Snyder, 2014a)). 

In particular, facility cost has seen much attention in recent publications, and bio-refinery 

costs have been identified as the primary cost driver in bio-energy supply chains (Mirkouei 

et al., 2017). Another key supply chain cost is due to transportation, which is directly linked 
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to facility locations. An extensive body of literature in multi-objective sustainable SCM 

focuses on networks with fixed facility locations. However, a limitation that has received 

little attention is the inability of a fixed facility-based supply chain to deal with fluctuating 

demand and raw materials, e.g., due to seasonal variation. Relying on fixed facilities often 

will not generate a reliable solution. This motivates the need for research to examine the 

effect of mobile facilities, e.g., mobile refineries, on supply chain costs.  

Table 2.1: Studies in multi-objective sustainable supply chains 
Authors The Model Application Contribution 

Pérez-Fortes et al. (2012) 
Biomass; rural 

electrification 

Storage conditions change biomass 

properties 

Zhang et al. (2014) 
Chemical products in 

Michigan, USA 

Lead time objective 

Ramos et al. (2014) 
Recyclable waste 

collection 

A new solution approach, balanced 

workload 

Boukherroub et al. (2015) Canadian lumber industry  Wealth, climate change 

Cambero and Sowlati 

(2016) 

Biomass; electricity, heat, 

bio-oil, pellets 

An indicator to assess the overall job-related 

social benefit 

Osmani and Zhang (2017) 
Biomass in Wisconsin, 

USA 

Decomposition approach, stochastic 

programming 

Zahiri et al. (2017) 
Pharmaceutical case study 

in France 

Fuzzy-stochastic programming, hybrid 

algorithm 

Model proposed in chapter 4 
Biomass in Oregon, USA Mobile-facility, carbon footprint, operating 

costs 

 

In multi-objective sustainable SCM problems, previous studies focusing on modeling 

sustainability indicators through mathematical models have failed to address the following 

question. How can a decision support tool be designed to aid facility location and 

production decisions with regard to three sustainability objectives (i.e., total supply chain 
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cost, carbon footprint, and number of jobs created) for a supply chain using a mix of mobile 

and fixed facilities? 

The work presented herein tries to answer this question by proposing a three-objective 

mathematical model based on data derived from a case study of bio-oil production for 

forest biomass in northwest Oregon. This data allows us pose three specific questions: 

What is the predicted cost of bio-oil based on total supply chain cost? How do bio-oil 

supply chain decisions affect the number of employees working in refineries? What is the 

carbon footprint of a bio-oil supply chain? 
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CHAPTER 3: OPTIMIZING A SUSTAINABLE LOGISTICS PROBLEM IN A 

RENEWABLE ENERGY NETWORK USING A GENETIC ALGORITHM 

3.1 Abstract 

Renewable energy sources, including bio-energy technologies, have been introduced to 

overcome sustainability challenges, such as negative environmental impacts and energy 

insecurity due to reliance on fossil fuels. Logistics activities have a significant effect on 

the cost and environmental impacts of renewable energy supply chains. Understanding and 

reducing the carbon footprint of renewable energy supply chains can aid in mitigating 

environmental impacts. Thus, this research presents a mathematical model that can be used 

to optimize renewable energy supply chain logistics costs and carbon footprint. The 

proposed model considers a biomass to bio-oil supply chain, including harvesting and 

collection sites, bio refineries, and distribution centers. It is assumed that mobile and fixed 

refineries will be used to produce bio-oil. The model considers the mass of biomass and 

bio-oil, number of mobile and fixed refineries, and number of truck trips to minimize total 

cost, where a carbon tax is used to represent carbon footprint in the mathematical cost 

model. A genetic algorithm is designed to obtain a near optimal solution. Six scenarios for 

mobile and fixed refinery capacity are tested in performing sensitivity analysis of the 

model. The results indicate that the mathematical model of the bio-oil supply chain has 

reasonable relationships between input and output variables. The model is able to 

incorporate the impact of carbon emissions in a mixed-refinery bio-oil supply chain as a 

cost parameter. It was also found that increasing mobile refinery capacity has the greater 

effect on reducing total cost and carbon emissions than increasing fixed refinery capacity. 
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3.2 Introduction 

In recent years, supply chain management (SCM) principles have been applied to reduce 

total production system cost. SCM integrates several parts of a logistics-manufacturing 

network to obtain an optimal or near-optimal decision. It is vital for decision makers to 

simultaneously consider all parts of a network due to trade-offs that may occur when 

considering parts of the system independently. Warehousing, for example, desires to hold 

lower product inventory levels to reduce holding costs, while sales attempts to have higher 

inventory levels to avoid losses of sales. SCM aids in managing the flow of goods in a 

system by assisting in decisions about production, inventory, location, logistics, and 

delivery with respect to constraints on the system. 

With a growing call for sustainable industrial development, which is as an approach to 

provide society with responsible products, SCM principles have been applied to address 

existing barriers, such as resource constraints and competing industrial demands. A surge 

of interest can be seen in assessing the sustainability performance of supply chain activities 

(Alsaffar, Raoufi, Kim, Okudan Kremer, & Haapala, 2016). As a part of sustainable 

industrial development, sustainable manufacturing has been described by the U.S. 

Department of Commerce as, “creation of a manufactured product with processes that have 

minimal negative impact on the environment, conserve energy and natural resources, are 

safe for employees and communities, and are economically sound” (Garretson, Mani, 

Leong, Lyons, & Haapala, 2016). A particular area of interest over the past half century 

has been in reducing the use of fossil fuel-based energy, due to concerns over energy 

security and environmental impacts of extraction, processing, and use, among other reasons 
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(Coram & Katzner, 2018). 

The burning of fossil fuels by humans has a critical role in changing the proportions of 

atmosphere gases leading to global warming. Renewable energy sources (e.g., bioenergy, 

solar energy, and wind energy) have been explored as alternatives to fossil-based energy 

for the past several decades (No, 2014). According to the REN21 Renewables Global Status 

Report, little progress has been made, with renewable energy only comprising 19.3% of 

global energy consumption in 2017 (REN21, 2017). While a limited number of countries 

have readily accessible fossil fuel energy sources, many regions are able to provide 

renewable energy resources. Thus, the need for efficient, low-cost, and environmentally-

responsible production of renewable energy has attracted considerable attention globally. 

Bio-oil is considered a source of clean, renewable energy (Pantone et al., 2017). Bio-oil, a 

dark brown organic liquid, also called bio-fuel oil, pyrolytic oil, liquid wood, and pyrolysis 

oil, is produced by pyrolysis of biomass (Isahak, Hisham, Yarmo, & Hin, 2012). Pyrolysis 

involves the high thermal decomposition of organic material in the absence of oxygen (or 

any halogen). Chemical, biochemical, and thermal methods can be used to produce bio-oil 

from biomass. Woody biomass is often used to produce bio-oil. Traditional biomass (e.g., 

forest harvest residues, energy crops, and agricultural residues) comprises a high 

proportion (47%) of the renewable energy consumption (REN21, 2017). Forest residue is 

one of the most geographically distributed biomass energy resources (Ng’andwe, Mwitwa, 

& Muimba-Kankolongo, 2015), and is attracting the attention of companies to produce bio-

oil. One advantage of bio-oil is that it can be directly used in boilers as fuel (Isahak et al., 

2012). In addition, utilizing dead woody materials from forests to produce bio-oil offers a 
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low-cost solution that can help bioenergy industries to grow, while also reducing forest fire 

risks (Woodall et al., 2013). According to the Oregon Department of Forestry, more than 

500,000 acres burned in Oregon in 2017 (Lehman, 2017).  

The biomass-to-bio-oil supply chain (BTBSC) consists of two sets of operations: 

conversion and logistics. The first set of operations involves all decisions relevant to 

activities for efficient conversion of biomass to bio-oil (e.g., process settings and 

production scheduling). The second set of operations, which we focus on here, focuses on 

improving decisions relevant to transportation and warehousing. 

Recent growing interest within society over the use of renewable resources for bioenergy 

has stimulated research efforts in improving biomass processing solutions (Cutz, Haro, 

Santana, & Johnsson, 2016) and balancing the sustainability dimensions in logistics 

(Osmani & Zhang, 2017). Mobile refineries have been proposed to overcome logistics 

challenges in BTBSCs, such as high handling and transportation costs due to biomass 

properties (bulky and low energy density). Mobile bio-refineries can enable more efficient 

transport systems. Instead of trucking biomass to a fixed bio-refinery, mobile bio-refinery 

units are transferred to the forest or farms to convert biomass feedstocks to intermediate 

products (e.g., bio-oil and bio-char). There are three main advantages of employing mobile 

refineries in BTBSCs (Mirkouei, Mirzaie, Haapala, Sessions, & Murthy, 2016): (i) 

decreasing the total cost including fixed, variable, and labor costs; (ii) reducing the required 

storage capacity for biomass; (iii) reducing transportation costs. In particular, four factors 

have been identified that influence the benefits of employing mobile refineries: 

transportation distances, biomass type, policies and regulations, and time of the year. 
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Due to the challenges related to the use of fossil fuels noted above, it seems reasonable to 

understand the potential of alternative energy sources to reduce energy costs and carbon 

footprint. Prior research has investigated the effect of introducing mobile refineries into a 

conventional BTBSC by optimizing the supply chain based on logistics costs. However, 

research has not considered the impact of the cost of carbon on the structure and cost of 

mixed BTBSCs (employing fixed and mobile refineries). The research presented herein 

proposes a mathematical modeling approach to simultaneously consider the factors of 

logistics and energy policy (carbon price) in the cost optimization of a mixed BTBSC. To 

complete such an optimization, the structure of the supply chain and its associated carbon 

footprint need to be understood. 

In a BTBSC, there are three main sources contributing to carbon footprint: logistics, 

conversion processes, and employee commuting (Boukherroub et al., 2015). In addition to 

logistics costs, the cost of associated carbon emissions are considered here by extending 

prior research (Mirkouei et al., 2016). Specifically, this research builds on the prior work 

by integrating the cost of a carbon into the mathematical cost model as a decision variable 

in the objective function. In addition, this work employs a metaheuristic method (a genetic 

algorithm) for the optimization of the proposed BTBSC, while the prior work used an exact 

optimization solver (Gurobi). 

The remainder of this paper is structured as follows: Section 3.3 provides a brief review of 

related work; Section 3.4 presents the assumptions required for modeling, as well as a 

description of the problem to be formulated. The solution algorithm is given in Section 3.5. 

Section 3.6 presents an application of the model. Finally, conclusions based on this work 
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and opportunities for future research are given in Section 3.7. 

3.3 Prior Research 

 Two prior papers have reported comprehensive literature reviews on biomass-to-

bioenergy supply chain optimization through 2016. Yue et al. (2014b) evaluated 

opportunities and key issues of BTBSCs with regard to sustainability factors, optimization 

methods, and mathematical models. Thereafter, Mirkouei et al. (2017) carried out a 

fundamental review to examine approaches and methodologies used in BTBSC. For 

example, Zhu et al. (2011) proposed a mixed integer linear programming (MILP) model 

for a numerical problem derived from the literature for the production of biofuel from 

biomass. Their problem involved two potential refinery locations, three potential storage 

locations, and ten biomass production fields. They solved the proposed mathematical 

model using CPLEX software. They considered one harvesting season (one year of 

operation) in managing a four-echelon supply chain, which included biomass production, 

harvesting, biofuel production, and storage. With regard to the importance of using mobile 

refineries in BTBSCs, Mirkouei et al. (2016) proposed a quantitative decision making 

approach. They presented an MILP model, solved by exact software (Gurobi), to obtain an 

optimal solution including the location of refineries, quantity of biomass and bio-oil, and a 

number of trips using a set of forest data from northwest Oregon. They showed that using 

mobile refineries leads to the reduction of system costs when transportations costs are high. 

In recent studies, while multi-objective problems have attracted much attention, use of 

mobile refineries has been ignored. Osmani and Zhang (2017), for example, presented a 

multi-objective mathematical model with data derived from Wisconsin, in which the sale 
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price, demand, and the amount raw materials were assumed to be probability parameters 

with known statistical distributions. Table 3.1 compares the research reported herein and 

the approached used in prior work. No prior studies were identified in the literature that 

designed a genetic algorithm for solving mobile refinery problems with carbon cost 

included in the total cost of BTBSCs. The next section presents a mathematical model to 

optimize logistics costs and environmental impacts in a renewable energy supply chain. 

Table 3.1: Relevant studies 

Studies Model CO2 e Solution Algorithm 
Mobile 

Refinery 

Carbon 

Cost 

Zhu et al. (2011) MILP - 
Optimizer solver: 

CPLEX 
- - 

Mirkouei et al. (2016) MILP - Optimizer solver: Gurobi Yes - 

Osmani and Zhang 

(2017) 

Stochastic 

MILP 
Objective Optimizer solver: GAMS - - 

Present Study MILP Variable 
Metaheuristic Approach: 

Genetic Algorithm 
Yes Yes 

 

3.4 The Proposed Mathematical Model 

Most mathematical models used in transportation and logistics problems are formulated as 

mixed integer linear programming (MILP) problems. This section presents an MILP for a 

five-echelon BTBSC, including harvesting and collection sites, mobile and fixed refineries, 

and warehouses or distribution centers. 

3.4.1 The Problem Statement 

The five-echelon biomass-to-bioenergy network considered is shown in Figure 3.1. To 

produce the final product (bio-oil) from woody biomass, the total cost includes logistics 
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and carbon costs. Four truck types are assumed to be used in the network due to road 

restrictions: small tractor-trailers, large tractor-trailers, small tanker trucks, and large tanker 

trucks. Small tractor-trailers are used to transport biomass from harvesting sites to 

collection sites. They are also used to transport material from harvesting sites to mobile 

refineries. Biomass is sent from collection sites to mobile and fixed refineries using large 

tractor-trailers. Small tanker trucks are used to transport bio-oil from mobile refineries to 

fixed refineries, while bio-oil is transferred from fixed refineries to warehouses using large 

tanker trucks. Notably, this research considers the upstream and midstream segments in 

BTBSC, while the downstream segment, including distribution and demand activities, is 

left to future work. Since the problem was formulated in a deterministic environment, 

stochastic parameters such as demand should also be considered in the future models. 

Several other factors must be considered in formulating the mathematical model. Biomass 

type, moisture content, and ash content, for example, affect production yield in biomass-

to-bio-oil conversion. In addition, costs of refinery operation consist of transport and setup 

costs (mobile refineries only), feedstock handling cost, purchased energy cost, and repair 

and maintenance costs. The variable, fixed, and labor costs of harvesting, collection, and 

pre-processing activities consist of the associated costs of employing a harvester, 

forwarder, and grinder, respectively (Mirkouei et al., 2016). A third-party transportation 

business is assumed to be used. Further, the type of truck for each route and the available 

amount of biomass at each site are known. The time horizon is assumed to be one year.  
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Figure 3.1: Five-echelon biomass-to-bioenergy network 

 
3.4.2 The Mathematical Model 

The mathematical model is presented below with regard to the BTBSC problem defined in 

Section 3.4.1. In this model, all parameters and variables are assumed to be deterministic. 

The notations of indices, parameters, and variables used in the mathematical model are as 

follows. 

 

Indices: 

i   Set of harvesting sites,   1, ,  i I= … , 

j   Set of collection sites,   1, ,  j J= … , 

k   Set of mobile bio-refinery sites,   1, ,  k K= … , 

l   Set of fixed bio-refinery sites,   1, ,  l L= … , 
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t   Set of time periods,   1, ,  ,t T= …   

w   Set of warehousing sites,   1, ,  ,w W= …   

 

Parameters: 

a   The lowest allowable level of biomass utilization, 

A   Capacity of sites (j, k, l, and w) to store biomass or bio-oil, 

lc   Capacity of large tractor-trailer, 

sc   Capacity of small tractor-trailer, 

tlc   Capacity of large tanker truck, 

tsc   Capacity of small tanker truck, 

tC   Total operation cost at time t for sites for j, k, l, and w, 

D   Distance between locations, e.g., Dij indicates distance between site i and j, 

le   The full-load fuel consumption rate of large tractor-trailer, 

se   The full-load fuel consumption rate of small tractor-trailer, 

tle   The full-load fuel consumption rate of large tanker truck, 

tse   The full-load fuel consumption rate of small tanker truck, 

t
ijf   The fuel consumption from the thi  node to the jth node in the tht  period, 

M Large positive constant (Big M), 

P Percentage yield of converting biomass to bio-oil, 

lp   Cost per mile for large tractor-trailer, 

sp   Cost per mile for small tractor-trailer, 
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tlp   Cost per mile for large tanker truck, 

tsp   Cost per mile for small tanker truck, 

u Carbon tax/price, 

 

Binary Decision Variables: 

jtL   Binary variable to select the location of collection sites at time t, 1 indicates the 

location is selected, and 0 indicates the location is not selected, 

ktL   Binary variable to select the location of mobile refinery sites at time t, 

ltL   Binary variable to select the location of fixed refinery sites at time t, 

wtL   Binary variable to select the location of collection sites at time t, 

 

Decision Variables: 

ijtX   Amount of biomass transported from site i to site j at time t, 

iktX   Amount of biomass transported from site i to site k at time t, 

jltX   Amount of biomass transported from site j to site l at time t, 

jktX   Amount of biomass transported from site j to site k at time t, 

kltY   Amount of bio-oil transported from site k to site l at time t, 

lwtY   Amount of bio-oil transported from site l to site w at time t, 
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Cost Functions: 

FC The facility costs, 

TC The transportation costs, 

TCC The total carbon cost. 

 

The objective function includes two types of costs: logistics costs and carbon cost (Eq. 

(3.6)). Logistics costs include facility costs (Eq. (3.1)) and transportation costs (shown in 

Eq. (3.2)). The cost function is presented below in a piecewise manner. 

The five primary activities considered (i.e., harvesting, collection, mobile refinery 

production, fixed refinery production, and warehousing) are completed in five different 

locations. The locations of harvesting sites and the mass of available raw material are 

known. However, the optimal locations for biomass collection, mobile refining, fixed 

refining, and warehousing are unknown. Thus, a set of four binary decision variables is 

used to determine the optimal location of each activity from the potential locations 

provided. To show the status of a location, a binary variable (L) is defined, where 1L =  

indicates the location is active, while 0L =  indicates the location is inactive. With regard 

to total cost at time t (Ct) for each location, the facility costs (FC) are as follows (Eq. (3.1)): 

FC = ( )1 1 1 1 1

T J K L W
jt jt kt kt lt lt wt wtt j k l w

C L C L C L C L
= = = = =

+ + +∑ ∑ ∑ ∑ ∑    (3.1) 

In order to calculate the transportation cost, the routes and number of trips between 

locations must be known. The number of truck trips is calculated by rounding up the total 

amount (mass or volume) of the product (biomass, X, and bio-oil, Y) being transported 
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divided by the capacity of the truck (c) transporting the product between each location. 

With regard to distance between locations (D), cost per mile for trucks (p), and the amount 

of product being transported, the transportation cost (TC) is given as (Eq. (3.2)): 

TC = TC of biomass + TC of bio-oil  (3.2) 

in which,  

TC of bio-oil = 
T K L L W

ts tlklt lwt
kl lwts tl

t k l l w

Y Yp D p D
c c

    +        
∑ ∑∑ ∑∑   (3.3) 

TC of biomass = 
T I J I K J K

ijt jkts s likt
ij ik jks s l

t i j i k j k

X XXp D p D p D
c c c

     + + +         
∑ ∑∑ ∑∑ ∑∑   

J L
jltl

jl l
j l

X
p D

c
 
 

  
∑∑   (3.4) 

In this model, carbon cost is calculated assuming a carbon tax rate ($/kg CO2) multiplied 

by the mass of CO2 emissions generated by the trucks. It can be noted, “A carbon tax is a 

fee for making users of fossil fuels pay for climate damage their fuel use imposes by 

releasing carbon dioxide into the atmosphere, and for motivating switches to clean energy” 

(Carbon Tax Center, 2016). Total CO2 emissions caused by the transportation network are 

calculated using a constant-speed approach (Cheng, Qi, Wang, & Zhang, 2016; Dilek, 

Karaer, & Nadar, 2018). Generally, three parameters are used to define a truck’s fuel 

consumption: speed, mass of load, and travel distance (Cheng et al., 2016). If the truck 

speed is constant, the fuel consumption from the thi  node to the thj  node in the tht  period, 

t
ijf , without considering the return route can be estimated as follows (Cheng et al., 2016; 
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Dilek et al., 2018): 

t s s
ij ij ijtf D e X c=    (3.5) 

in which, se  indicates the full-load fuel consumption rate of a small tractor-trailer. 

If u  indicates the carbon tax, the total carbon cost (TCC) is predicted as: 

TCC = 
T I J I J I J I J I J I J

t t t t t t
ij ik jk jl kl lw

t i j i j i j i j i j i j
u f f f f f f

 
+ + + + + 

 
∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑ ∑∑     (3.6) 

According to the aforementioned equations related to costs, the objective function to 

minimize total cost is: 

Min  TC FC TC TCC= + +    (3.7) 

Subject to (Eqs. (3.8-3.21)): 

jlt jkt ijt
l L k K i I

X X X
∈ ∈ ∈

+ =∑ ∑ ∑   ,j J t T∀ ∈ ∈   (3.8) 

klt ikt
i I i I

Y P X
∈ ∈

= ×∑ ∑   ,k K t T∀ ∈ ∈   (3.9) 

lwt jlt
w W j J

Y P X
∈ ∈

= ×∑ ∑   ,l L t T∀ ∈ ∈   (3.10) 

ijt jt
i I

X M L
∈

≤ ×∑   ,j J t T∀ ∈ ∈   (3.11) 

ikt jkt kt
i I j J

X X M L
∈ ∈

+ ≤ ×∑ ∑  ,k K t T∀ ∈ ∈  (3.12) 

jlt klt lt
j J k K

X Y M L
∈ ∈

+ ≤ ×∑ ∑  ,l L t T∀ ∈ ∈  (3.13) 

lwt wt
l L

Y M L
∈

≤ ×∑   ,w W t T∀ ∈ ∈   (3.14) 
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ijt j
i I

X A
∈

≤∑   ,j J t T∀ ∈ ∈   (3.15) 

ikt jkt k
i I j J

X X A
∈ ∈

+ ≤∑ ∑   ,k K t T∀ ∈ ∈   (3.16) 

jlt l
j J

X A
∈

≤∑   ,l L t T∀ ∈ ∈   (3.17) 

lwt klt w
l L k K

Y Y A
∈ ∈

 + ≤ 
 

∑ ∑   ,w W t T∀ ∈ ∈   (3.18) 

ijt ikt
t T i I j J i I k K

X X a
∈ ∈ ∈ ∈ ∈

 
+ ≥ 

 
∑ ∑∑ ∑∑   t T∀ ∈   (3.19) 

, , ,  , 0,ijt ikt jkt jlt klt lwtX X X X Y Y ≥   , , , , ,i I j J l L k K w W t T∀ ∈ ∈ ∈ ∈ ∈ ∈   (3.20) 

1    if location is open,
0    otherwise

, , ,
.

  jt kt lt wtL L L L 
= 


  , , , ,j J k K l L w W t T∀ ∈ ∈ ∈ ∈ ∈   (3.21) 

 

Eq. (3.8) represents the conservation of flow in and out of node j. Eqs. (3.9-3.10) present 

the conversion rate of biomass to bio-oil. Eqs. (3.11-3.14) show the status of locations 

(active or inactive) (M is a large positive constant). Eqs. (3.15-3.18) show the capacity 

constraint for each location. Eq. (3.19) indicates that the available amount of biomass in 

all harvesting sites should be used. Eqs. (3.20-3.21) present the decision variables. Section 

3.5 proposes a genetic algorithm to find the decision variables Xijt, Xikt, Xjkt, Xjlt, Yklt, Ylwt, 

Ljt, Lkt, Llt, and Lwt for optimizing the objective function presented in Eq. (3.7) with regard 

to the model constraints. 
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3.5 Solution Algorithm: Meta-heuristic Optimization 

MILP models for large scale problems are unable to be solved by exact methods or solver 

software due to their complexity, which is NP hard (Tian, Ma, & Zhang, 1998). 

Metaheuristic approaches, which are also called approximate algorithms (Blum, Puchinger, 

Raidl, & Roli, 2011), are the most powerful for optimizing MILP models (El-ghazali Talbi, 

2009). Metaheuristic algorithms are classified as single-based search, which start with a 

single candidate solution, and population-based search, which start with a population of 

candidate solutions (El-ghazali Talbi, 2009). Population-based methods usually 

outperform single-based search methods in speed and accuracy (Blum et al., 2011). To 

solve the mathematical model presented here, therefore, a genetic algorithm (GA) is 

employed. GA is the most powerful population-based method for solving MILP models 

(Yokota, Gen, & Li, 1996). 

In GA terminology, a chromosome, which is a set of genes, a candidate for the solution is 

called. A chromosome consists of the decision variables. The genetic algorithm creates a 

random chromosome in a population as the solution of the problem, and then improves the 

solution with operators named “crossover” and “mutation” in a defined iteration (El-

ghazali Talbi, 2009). In this research, the GA parameters are the probability of “two-point 

crossover” and “random mutation”, population size, and the number of iteration steps. The 

chromosome of this problem is designed as a matrix, including the decision variables. The 

GA is developed by language programming of MATLAB 2017b (see Appendix A), and 

solved using a Windows 10 64-bit Operation System with Intel Core i5 processor (CPU 

3.40GHz) and 16GB RAM. 
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11 12 13 14 15

21 22 23 24 25

31 32 33 34 35

41 42 43 44 45
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ijt

tt
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X
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X X X X X

   
   
   = =
   
   

  

   (3.22) 

The chromosome matrix includes the following decision variables: Xijt, Xikt, Xjkt, Xjlt, Yklt, 

Ylwt, Ljt, Lkt, Llt, and Lwt, which utilize direct values, rather than being coded. Eq. (3.22) 

shows the Xijt chromosome for four harvesting sites (rows) and five collection sites 

(columns).  

 
Figure 3.2: Schematic of the single-point crossover method 

 
As noted above, the process of creating two parent solutions and then producing a child 

solution using both is called crossover. There are several methods to perform crossover: 

single-point crossover, two-point crossover, uniform crossover, half uniform crossover, 

and three-parent crossover, to name a few. In this research, one-point crossover is used to 

create new generations, as shown in Figure 3.2. The vertical lines in the parent matrices 

represent the points of crossover. The selected genes, which are to the right of the vertical 
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lines and indicated using underlined and boxed text, are swapped between the parents, 

creating the two children. 

13 63 12 0 9
25 43 23 63 22

Initial matrix
13 122 212 434 545

123 20 40 100 500
mutation

0 63 12 0 9

25 43 50 63 22
Mutated matrix

13 101 212 434 545

123 20 40 300 500

 
 
 =
 
 
 

↓

 
 
 

=  
 
 
 

 

Figure 3.3: Schematic of the uniform mutation method 

 
To select chromosomes from among the population as parents for crossover or as 

candidates for mutation, there are several selection methods, including “simplex 

crossover”, “tournament”, and “rank” selection (Gen & Cheng, 1997). This research uses 

tournament selection to choose an individual chromosome from the population, due to 

suitable coding efficiency (Miller & Goldberg, 1995). Pseudo code for tournament 

selection method is as follows:  

• Randomly select g  individuals (the tournament size) from the population, 

• Select the best individual from the pool, with probability q  (between 0 and 1), 

• Select the second best individual, with probability q×(1-q),  

• Select the third best individual, with probability q×(1-q)2.  

A constrained optimization problem, such as used herein, can be solved with GA using 

penalty methods. Penalty methods convert constrained problems into unconstrained 
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problems, and the provided solutions are valid for the original constrained problem. This 

research uses the death penalty method to obtain feasible solutions for the constrained 

problem. The death penalty method does not discard solutions, rather it introduces a penalty 

into the objective function when the solution obtained does not satisfy the constraints. The 

obtained solution is penalized by multiplying the constraint violations by penalty 

parameters.  

3.6 Application of the Model 

In this section, small and large test problems are first presented to demonstrate the 

convergence of the model, and then a sensitivity analysis of bio-refinery capacity is 

conducted to test the behavior model. 

3.6.1 Small and Large Test Cases 

In this section, two test problems (small and large) are solved with regard to the designed 

chromosome to be used in the GA. The test problems are used to evaluate the ability of the 

GA to repeatably converge to a near-optimal solution. The small test problem includes 

three harvesting sites, five collection sites, seven potential mobile refinery sites, eight 

potential fixed refinery sites, and two distribution sites. The large test problem includes 

twenty harvesting sites, eight collection sites, six potential mobile refinery sites, four 

potential fixed refinery sites, and two distribution sites. The latitude and longitude values 

for the potential locations were randomly generated. It is assumed that the four types of 

trucks noted above are available for transporting biomass and bio-oil. The mathematical 

model employs six sets of continuous decision variables, four sets of binary decision 

variables, and 14 sets of constraints for a set of locations (i, j, k, l, w), as defined by the 
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general formulation provided above.  

   
Figure 3.4: Lowest total cost obtained for each iteration (indicating convergence of the GA): Small test 

problem (left) and large test problem (right) 

 
The technical parameter values used in metaheuristic algorithms affect the solver 

performance and the solution obtained. For the test problems, the values of the four 

parameters used, population, probability of crossover, probability of mutation, and number 

of iterations are 100, 0.8, 0.05, and 1000, respectively. These values were tuned by trial 

and error, which was more appropriate for the test problems than using published values. 

For the small and large test problems, the lowest total cost (“best cost”) for each iteration 

is presented in Figure 3.4. It can be concluded that the GA converges to provide a near-

optimal solution for the model presented in Eq. (3.7). There is not a significant reduction 

in the total cost obtained after the 140th iteration. 

Figure 3.5 shows the lowest cost network found by the GA for the small bio-oil supply 

chain, which includes three collection sites, one mobile-refinery, three fixed-refineries, and 

one warehouse.  
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Figure 3.5: The identified optimal network (other potential locations for the small test problem also 

indicated) 

 

 
Figure 3.6: The optimal solution presented by GA with the potential locations for the large test problem 
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These optimal locations were selected from the set of potential locations (three harvesting 

sites, five collection sites, seven potential mobile refinery sites, eight potential fixed 

refinery sites, and two distribution sites), which are also indicated in the figure. Figure 3.6 

shows the lowest cost network found by the GA for the large bio-oil supply chain, which 

is comprised of four collection sites, four mobile-refinery, three fixed-refineries, and one 

warehouse. These locations were optimally selected from the set of potential locations 

(twenty harvesting sites, eight collection sites, six potential mobile refinery sites, four 

potential fixed refinery sites, and two distribution sites), which are also indicated in the 

figure.  

3.6.2 Sensitivity Analysis 

Sensitivity analysis is performed to study the effect of the selected mathematical model 

inputs, which can vary, on the output of the model. Different scenarios are considered by 

varying model parameter values to observe the behavior of model. In general, when no 

constraints are placed on the capacities of harvesting and collection sites, mobile and fixed 

refineries, and warehouses, only one location will be selected from each set of collection, 

fixed refinery, mobile refinery, and warehouse locations. This result shows the expected 

behavior of the proposed mathematical model to optimize total cost by reducing the cost 

of active centers (selecting one location for processing and one location for storage). When 

we increase facility cost, fewer facilities will be selected. The total cost increases as a result 

of increasing cost parameters, e.g., transportation costs, carbon tax, and operating costs. 

Table 3.2 and Table 3.3 report the different scenarios for the capacity of refineries. Scenario 

1 in Table 3.2 indicates a case in which a refinery has a capacity such that is able to store 
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all of the incoming biomass from the harvesting and collection sites. In Scenario 2, the total 

cost and the number of active mobile refineries increase when mobile refinery capacity 

decreases by 35%. The same characteristic is seen for Scenario 3 and Scenario 4. 

Table 3.2: Four scenarios exploring the effect of mobile refinery capacity on supply chain cost and active 
entities 

Scenario Capacity 
Variability in 

capacity 
Variability in costs AMR AFR ACS AWS 

1 850 0% 0% 1 1 1 1 

2 550 -35% 14% 2 1 1 1 

3 300 -65% 36% 3 1 2 1 

4 200 -76% 77% 5 1 3 1 

AMR (active mobile-refinery); AFR (active fixed-refinery); ACS (active collection site); AWS (active 

warehouse site) 

 

With regard to the original case (Scenario 1) in Table 3.3, Scenario 5 indicates the total 

cost and the number of fixed refineries increase when fixed refinery capacity decreases by 

76%. When one fixed refinery does not have sufficient capacity to process all biomass, the 

bio-oil supply chain will require additional fixed refineries until the capacity is met, 

resulting in a cost increase (35% increase in Scenario 1). The same characteristic is seen 

for Scenario 2 (57% cost increase for a decrease in capacity of 85%). 

Table 3.3: Three scenarios for the capacity of fixed refineries 

Scenario Capacity 
Variability in 

capacity 
Variability in costs AMR AFR ACS AWS 

0 850 0% 0% 1 1 1 1 

1 200 -76% 35% 1 2 2 1 

2 130 -85% 57% 2 2 3 1 

AMR (active mobile-refinery); AFR (active fixed-refinery); ACS (active collection site); AWS (active 

warehouse site) 
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According to the results of the sensitivity analysis, it can be said that the mathematical 

model presented in Eq. (3.7) has reasonable relationships between input and output 

variables. No errors with the model were identified, as no unexpected behaviors were 

revealed during the sensitivity analysis.  

3.7 Conclusions 

More than 500,000 acres of forests burned in Oregon in 2017, presumed to be due to 

changes in climate and forest management practices. Increased collection of dying and 

dead woody biomass from forests could help reduce fire hazards. This research drew 

inspiration from this impactful problem. A mathematical modeling approach was presented 

for optimizing the total cost of a biomass to bio-oil supply chain. The mathematical model 

was based on a five-echelon supply chain comprised of harvesting sites, collection sites, 

mobile refineries, fixed refineries, and warehouses. To extend prior related research, the 

model presented here relaxed a limitation of mathematical models for bio-oil supply chain 

problems by considering carbon cost as a part of the total supply chain cost. The aim of 

mathematical cost modeling was to find a near-optimal solution, including the number of 

truck trips, mass of biomass processed, mass of bio-oil produced, number of mobile and 

fixed refineries, and number of warehouses. Since the proposed model is a mixed integer 

linear programming problem, a meta-heuristic optimization approach (genetic algorithm) 

was designed to find an optimized solution.  

By evaluating two test cases (small and large) and conducting a sensitivity analysis, it was 

shown that the proposed mathematical model can be applied in the design of a biomass to 

bio-oil supply chain including mobile refineries. Decision makers will be able to select the 
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optimal number of mobile and fixed refineries with regard to total cost, which consists of 

logistics cost and carbon cost. Based on the presented approach, the mass of carbon 

emissions is first estimated to calculate the related carbon tax. Since the proposed 

methodology uses a genetic algorithm, it can be applied for large scale problems to 

overcome restrictions of exact methods.  

Several limitations of mathematical modeling for biomass to bio-oil supply chains should 

be addressed by future research. The model presented herein was formulated in a 

deterministic environment. As shown in the sensitivity analysis, the proposed model does 

not have robustness in the presence of uncertainty. To address this limitation, stochastic 

parameters could be included in the mathematical model. Alternatively, design of 

experiments approaches, such as the Taguchi method, would aid in better calibrating the 

genetic algorithm parameters than tuning through trial and error. Although the GA 

converged to provide a near-optimal solution, exact methods by using CPLEX software 

can be applied to verify the provided solution in future research. As a key limitation of this 

research to perform more comprehensive sustainability assessment, only economic (supply 

chain cost) and environmental (carbon emissions) were included in the model, both 

represented as costs. The solution obtained by the genetic algorithm was optimized without 

considering broader economic, environmental, and social effects. Future research should 

address extensions of the mathematical model to simultaneously improve economic, 

environmental, and social performance of bioenergy supply chains. 
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Chapter 4: A Three-Objective Mathematical Logistics Model for Integrating a Mobile 
Facility into a Sustainable Bio-Oil Supply Chain 
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CHAPTER 4: A THREE-OBJECTIVE MATHEMATICAL LOGISTICS MODEL FOR 

INTEGRATING A MOBILE FACILITY INTO A SUSTAINABLE BIO-OIL 

SUPPLY CHAIN 

4.1 Abstract 

In addition to mitigating fire hazards and climate change, improving forest biomass 

logistics can support energy independence and social quality by promoting renewable 

energy and creating jobs. A three-objective mathematical model is proposed for a six-level 

supply chain for the production of bio-oil from woody biomass in the northwestern United 

States. The logistics problem considers the three pillars of sustainability by modeling total 

cost, carbon footprint, and number of jobs created. Results indicate that the mobile facility 

approach can significantly reduce final product cost. Sensitivity analysis of selected model 

parameters was performed to determine their effect on chosen supply chain indicators. 

4.2 Introduction 

The increasing cost and detrimental effects of continued fossil fuel usage requires us to 

focus on renewable energies such as bio-oil (Pantone et al., 2017). In addition to reducing 

wildfire risk by removing excess biomass from forests, the resulting bio-oil from biomass 

conversion can be a potential alternative for fossil fuels. Bio-oil production involves two 

sets of activities: conversion processes (thermochemical activities including pyrolysis, 

gasification, and liquefaction (Demirbas, 2009)) and logistics (managing the flow of 

materials and goods). To optimally manage material flows in a renewable energy network, 

supply chain management (SCM) offers innovative approaches. A biomass to bio-oil 

supply chain (BTBSC) model considers all different parts of a system simultaneously with 
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a wide-view throughout the chain.  

Further focusing on sustainable development encourages decision makers to improve 

society (e.g., reducing both unemployment and crime rates, while improving education and 

training) in addition to improving the environment and the economy. This focus highlights 

sustainable supply chains as a globally urgent need. In particular, improving the economic 

sector (e.g., maximizing supply chain profitability) without considering other social 

aspects can give rise to negative societal effects. For example, in the documentary Roger 

& Me (Moore, 1989) the decision by General Motors executives to reduce 30,000 jobs with 

the purpose of increasing corporate profits, caused societal problems such as crime and 

poverty. Increases in unemployment rate negatively (Soler, Sanz, Caselles, & Micó, 2018) 

impacts education (Lavrinovicha, Lavrinenko, & Teivans-Treinovskis, 2015), crime and 

safety (Fallahi & Rodríguez, 2014). Studies found that the societal costs of unemployment 

include an increase in the number of unmarried people (Sasaki, 2017) and an increase in  

divorce rates (Amato & Beattie, 2011). A combination of intrinsic (such as opening/closing 

plants within the US) and extrinsic (such as fossil fuel prices dictated by global markets) 

factors have an effect on the unemployment rate. For example, a tradeoff has been shown 

between the unemployment rate and fossil fuel price, such that the natural rate of 

unemployment increases with increasing oil prices (Cuestas & Gil-Alana, 2018). 

Therefore, a solution should be proposed to reduce dependence on oil imports, while 

enabling the creation of new jobs. Renewable and alternative energy sources offer a 

potential for reducing energy dependency, harmful environmental impacts, and new 

economic development. Development of bio-oil supply chains, integral to the development 
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of renewable energy, is a solution to reducing the unemployment rate by creating direct 

(e.g., machine operators, truck drivers, and production facility personnel) and indirect jobs 

(e.g., retail, financial services, real estate). 

Improving the economy is a consistent ultimate common goal of all nations. The state’s 

wealth has a significant effect on being able to address and mitigate societal problems. It 

is well known that a strong correlation exists between the economy, environment, and 

society. Scholarly critics claim that societal and environmental aspects are always 

considered under the purview and priority of cost (Carbo et al., 2014). This view may 

overlook the negative effects of a myopic cost focus on society and the environment. To 

address this problem, various approaches have been introduced. One, in particular, focuses 

on investments in renewable energy using multi-objective models (Fazlollahi, Mandel, 

Becker, & Maréchal, 2012). This can be a solution to alleviate the aforementioned problem, 

so that objectives (environment, society and economy) will be optimized separately 

without considering other objectives. 

The research herein is motivated by the need to optimize biomass to bio-oil supply chains 

including mobile refineries using a multi-objective mathematical problem in regard to the 

three pillars of sustainability: environment, society, and economy. Current bio-oil supply 

chains are not sufficiently considered in meeting sustainability goals. Previous research, 

such as reported by Mirkouei et al. (2016), presented methods to reduce the cost and 

environmental impacts of bio-oil supply chains, by integrating mobile and fixed refineries 

and by optimizing total supply chain cost from harvesting sites to distribution centers. 

However, the societal effect of bio-oil supply chains utilizing fixed and mobile refineries 
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and the environmental effect of carbon emissions during the conversion process have 

remained unanswered. Thus, these are a focus of the research reported in this paper. 

The remainder of this paper is structured as follows: Section 4.3 provides the problem 

statement and mathematical model. Case study and data are given in Section 4.4. Section 

4.5 presents the results and sensitivity analysis. Finally, opportunities for future research 

and conclusions are presented in Section 4.6. 

4.3 Methodology  

In mathematical optimization, mixed integer linear programming is usually employed to 

consider sustainable SCM problems. To simultaneously optimize the three objectives 

posed above, a multi-objective model is presented here. There are three dependent 

variables: total cost, carbon footprint, and number of jobs created, as well three 

independent variables: amount of biomass to be transported, amount of bio-oil to be 

transported, and facility locations.  

To verify the mathematical model, real data is collected for northwest Oregon’s forests 

from the literature and ArcGIS software using databases provided by the US Forest 

Service, Oregon Department of Transportation, and State of Oregon Geospatial Enterprise 

Office. The shortest routes are calculated using an application programming interface 

(API) provided by Google using R-studio language programming. By using CPLEX 

software, the branch and cut method is able to provide optimized values (a set of Pareto 

solutions) for selected variables. Using sensitivity analysis, 32 scenarios are explored to 

show the performance of this decision-making method for producing bio-oil from biomass 
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in northwest Oregon forests. The following sub-sections describe the formulation of the 

objectives, variables, and constraints in detail. 

Assuming a deterministic environment, we consider a bio-energy supply chain in which 

bio-oil is produced from woody biomass collected from Oregon forests. In the considered 

biomass to bio-oil supply chain with a heterogeneous fleet (involving four types of trucks, 

V=4), there are six sets of locations, as shown in Figure 4.1 (harvesting sites i, collection 

sites k, mobile refineries j, fixed refineries l, warehouses w, and employee residential areas 

a). The distance between each pair of locations (D) is defined.  

Available biomass at the harvesting sites (Xi) can be delivered to collection sites or mobile 

refineries with small tractor-trailers. Collection sites play the role of biomass depots. 

Therefore, a large volume of woody biomass can be delivered to fixed refineries with large 

tractor-trailers. Mobile and fixed refineries produce bio-oil from the received biomass. The 

production rate of bio-oil depends on the percentage yield and the capacity of refineries. 

Small tanker trucks move bio-oil from mobile refinery sites to warehouses. Large tanker 

trucks move bio-oil from fixed refinery sites to warehouses. There is a constraint on the 

capacity of vehicles to transfer material/product and a constraint on the capacity of sites to 

hold material/product. In addition, each employee must commute from their residence to 

their job site. 

There are three decision variables (called independent variables in statistical terminology) 

and three objectives (called dependent variables in statistical terminology). Decision 

variables are mass of biomass to be transported, mass of bio-oil to be transported, and the 
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locations of refineries and warehouses. The optimized values of decision variables are 

obtained using a multi-objective mathematical model for improving three objectives in this 

work: total cost, carbon footprint, and number of jobs created. 

 
Figure 4.1: The considered biomass to bio oil supply chain 

 

 
Figure 4.2: Overview of the problem objectives, approach, and expected results for bio-oil supply chain 

under study 
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Since the aim of the proposed multi-objective problem herein is based on a logistics and 

location approach, a supply side, rather than demand side, situation is formulated in the 

mathematical model. All of the bio-oil produced is assumed to be sold in the market. Figure 

4.2 presents the scheme of the problem presented. 

4.3.1 The Mathematical Model 

This section presents a multi-objective mathematical model of the bio-oil supply chain 

introduced above, and uses mixed-integer variables with deterministic parameters. The 

mathematical notation used for the sets, parameters, variables, and objective functions is 

presented below. 

Sets: 

a set of employee residential areas, a=1,…,A, 

i set of harvesting sites, i=1,…,I, 

j set of mobile refineries,  j=1,…,J, 

k set of collection sites, k=1,…,K, 

l set of fixed refineries, l=1,…,L, 

v set of vehicles, v=1,…,V, 

w set of warehouse sites, w=1,…,W, 

 

Parameters: 

B Capacity; e.g., Bjt: storage capacity site j in period t, 

b  Working capacity of an employee (the number of hours per day), 

c  Total cost of establishing a location; e.g., ckt: total cost of establishing site k in 
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period t, 

Cs/l/st/lt  Transportation cost for a vehicle (s: small tractor-trailer, l: large tractor-trailer, st: 

small tanker trailer, and lt: large tanker trailer), 

D  Distance between sites; e.g., Dijt: distance between site i and site j in period t, 

F The lowest level of utilization of woody biomass, 

Gs/l/st/lt  Emission factor for vehicles (kg of carbon dioxide equivalent CO2e per mile), 

G Emission factor (kg CO2e) per one employee per one mile traveled, 

GB  Emission factor for producing bio-oil (kg of CO2e per ton), 

gl   Production capacity of a fixed refinery, 

gj   Production capacity of a mobile refinery, 

H Number of labor hours required; e.g., Hlt: number of labor hours required for 

producing one ton of biomass at site l in period t, 

M Big M (large positive constant), 

o Operating cost of a refinery, 

O Number of available employees, 

p Raw material price, 

Qs/l/st/lt  Capacity of vehicles 

S Percentage yield 

 

Decision Variables: 

X Mass of biomass; e.g., Xklt: mass of biomass transferred from site k to site l in 

period t, 
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Y Mass of bio-oil; e.g., Ylwt: mass of bio-oil transferred from site l to site w in period 

t, 

z 

1 if site is open
0 otherwise


 , e.g., zkt = 1 if site k period t is open; otherwise zkt = 0, 

 

Dependent Variables: 

E Number of fixed employees for each refinery, 

N Number of vehicle trips; e.g., Nijt: number of trips from site i to site j in period t, 

P Number of employees in each residential area; e.g., Palt: number of employees 

living in residential area a and working at site l, 

TC  Total cost, 

TCF  The total carbon footprint 

PC  The predicted cost of bio-oil 

 

Objective Functions: The mathematical model presented herein includes three objective 

functions: an economic function, an environmental function, and a societal function, which 

are formulated below. 

Economic Function: The economic function is considered by investigating the total cost 

of the proposed bio-oil supply chain, which consists of raw material cost (RMC), 

transportation cost (TrC), and facility location cost (FLC). 

Total Cost = RMC + TrC + FLC        (4.1) 
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Total raw material cost (RMC) is calculated by multiplying the total mass of biomass (X) 

by the unit raw material price (p).  

RMC = ( )ijt ikt
t i j k

p X X+∑∑∑∑         (4.2) 

Biomass and bio-oil are transported between five locations (harvesting and collection sites, 

mobile and fixed refineries, and warehouses) using four types of trucks (small and large 

tractor-trailers and small and large tanker trucks). Transportation cost (TrC) is given as, 

TrC = TrC of biomass + TrC of bio-oil      (4.3) 

where, 

TrC of biomass = s s l
ijt ijt ijt ikt ikt ikt klt klt klt

t i j i k k l
D C N D C N D C N

 
+ + 

 
∑ ∑∑ ∑∑ ∑∑  (4.3a) 

TrC of bio-oil = st sl
jwt jwt jwt lwt lwt lwt

t j w l w
D C N D C N

 
+ 

 
∑ ∑∑ ∑∑    (4.3b) 

The first term of Eq. (4.3a) indicates the transportation cost between harvesting sites and 

mobile refineries, which is the summation of the product of Dijt (the shortest distance 

between sites), Cs
ijt (operational cost of a small tractor-trailer), and Nijt (the required 

number of truck-trips). The number of truck trips is calculated as the mass of biomass or 

bio-oil divided by truck or tanker capacity, respectively. The other terms are developed in 

a similar manner. 

The facility location cost (FLC), shown in Eq. (4.4), focuses on the primary cost drivers. 

Thus, FLC consists of costs such as installation costs and fixed operating and maintenance 
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costs.  

FLC = FLCa + FLCb         (4.4) 

where FLCa represents the fixed costs of operation, 

kt kt lt lt jt jt wt wt
t k l j

a
w

FL c z c z c z c zC
 

+


= + + 


∑ ∑ ∑ ∑ ∑
     (4.4a) 

and FLCb are the variable operating costs, 

kt kt kt lt lt lt jt jt jt wt wt wt
t k l j

b
w

X o z Y o z Y o z Y o zFLC
 

+ + +


= 


∑ ∑ ∑ ∑ ∑    (4.4b) 

The first term of Eq. (4.4a) indicates the capital/equipment costs associated with collection 

sites, calculated as the summation of establishment costs (ckt) for the selected collection 

sites (zkt = 1). 

Note that the predicted cost (PC) of the final product, bio-oil, is calculated by dividing the 

total cost (Eq. (4.1)) by the total amount of bio-oil produced. 

Environmental Function: The environmental objective is investigated by calculating the 

total carbon footprint (CF) of the bio-oil supply chain. The total carbon footprint includes 

employee commuting (Boukherroub et al., 2015), conversion processes (Mirkouei et al., 

2016), and transportation activities (Rezaei & Kheirkhah, 2018), and considers the relevant 

emission factors for each activity. Therefore, the total carbon footprint is calculated as 

follows (Eq. (4.5)). 

Total CF = CF of commuting + CF of conversion processes + CF of transportation (4.5) 
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The carbon footprint of commuting is Eq. (4.5a), 

CF of commuting =  ajt ajt alt alt
t a j a l

G D P D P
 

+ 


×


×∑ ∑∑ ∑∑     (4.5a) 

The total CF of commuting is the summation of the product of distance between each 

employee’s home and their assigned work site (D), the number of employees at each 

worksite who commute from their home (P), and the carbon emission factor for commuting 

per one employee per one mile traveled (kg of CO2e/mile). 

The carbon footprint of conversion processes is (Eq. (4.5b)), 

CF of conversion processes = ( )  B
lwt jwt

t l j w
G Y Y+∑∑∑∑     (4.5b) 

in which the total CF of all conversion processes is the sum of multiplication products of 

produced bio-oil and the carbon emission factor for producing bio-oil (kg of  CO2e/ton). 

The carbon footprint of transportation is (Eq. (4.5c)), 

CF of transportation =    s l
ijt ijt ikt ikt klt klt

k lt j k ti i
G D N D N G D N

   +   
 

× + ×


×∑∑ ∑∑ ∑∑∑ ∑  

   st lt
jwt jwt lwt lwt

j t wt w l
G D N G D N

   +   + × ×
  

∑∑ ∑∑∑ ∑     (4.5c) 

in which, total CF of transportation is the summation of the products of distances between 

locations (D), the number of vehicle trips (N), and the carbon emission factor for vehicles 

(kg of CO2e /mile). 
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Societal Function: The research presented herein uses two indicators, local employment 

(Boukherroub et al., 2015) and the number of jobs created (Pérez-Fortes et al., 2012; 

Pishvaee, Razmi, & Torabi, 2014; Rezaei & Kheirkhah, 2018), to represent societal 

functional performance. The proximity of employees living near work sites leads to local 

employment. Thus, the total distance traveled can be minimized to increase local 

employment (Boukherroub et al., 2015). Since the carbon footprint of commuting is 

considered in the environmental function, this objective will be satisfied by minimizing 

carbon emissions. As shown in Eq. (4.6), the number of jobs created in the bio-oil supply 

chain is calculated as a summation of the number of fixed and variable employees who 

work in each refinery, 

Max Jobs = ( ) ( )ajt alt j l
t a j l j l

P P E z z+ + +∑∑∑∑ ∑∑      (4.6) 

in which the first term indicates the variable employees and the second term shows the 

fixed employees. The number of jobs created includes several limitations presented in the 

constraints below.  

In general, the three objective functions of the mathematical model are: 

 Minimize the Economic Function shown in Eq. (4.1)  

Minimize the Environmental Function shown in Eq. (4.5) 

Maximize the Societal Function shown in Eq. (4.6) 

Subject to the following constraints: 
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s
ijt ijtN X Q =    , ,i j tI J T∀ ∈ ∀ ∈ ∀ ∈  (The number of truck trips) (4.7) 

s
ikt iktN X Q =    , ,i k tI K T∀ ∈ ∀ ∈ ∀ ∈  (The number of truck trips) (4.8) 

l
klt kltN X Q =    , ,k l tK L T∀ ∈ ∀ ∈ ∀ ∈  (The number of truck trips) (4.9) 

st
jwt jwtN Y Q =    , ,j w tJ W T∀ ∈ ∀ ∈ ∀ ∈  (The number of truck trips) (4.10) 

lt
lwt lwtN Y Q =    , ,l w tL W T∀ ∈ ∀ ∈ ∀ ∈  (The number of truck trips) (4.11) 

ikt klt
i l

X X=∑ ∑   ,k tK T∀ ∈ ∀ ∈  (Inputs and outputs) (4.12) 

jwt lwt wt
j l

Y Y Y+ =∑ ∑  ,w tW T∀ ∈ ∀ ∈   (Inputs and outputs) (4.13) 

ikt kt
i

X Mz≤∑  ,k tK T∀ ∈ ∀ ∈  (Site status: Open or closed) (4.14) 

ijt jt
i

X Mz≤∑  ,j tJ T∀ ∈ ∀ ∈  (Site status: Open or closed) (4.15) 

klt lt
k

X Mz≤∑  ,l tL T∀ ∈ ∀ ∈  (Site status: Open or closed) (4.16) 

jwt wt
j

Y Mz≤∑   ,w tW T∀ ∈ ∀ ∈   (Site status: Open or closed) (4.17) 

lwt wt
l

Y Mz≤∑   ,w tW T∀ ∈ ∀ ∈  (Site status: Open or closed) (4.18) 

ajt jt
a

P Mz≤∑  ,j tJ T∀ ∈ ∀ ∈   (Site status: Open or closed) (4.19) 
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alt lt
a

P Mz≤∑  ,l tL T∀ ∈ ∀ ∈  (Site status: Open or closed) (4.20) 

ajt jt jwt
a w

P H Y b
  = ×  
  

∑ ∑  ,j tJ T∀ ∈ ∀ ∈  (The number of employees) (4.21) 

alt lt lwt
a w

P H Y b
  = ×  
  

∑ ∑  ,l tL T∀ ∈ ∀ ∈  (The number of employees) (4.22) 

ajt alt a
j l

P P O+ =∑ ∑  ,a A t T∀ ∈ ∀ ∈  (Employees available) (4.23) 

ikt kt
i

X B≤∑  ,k tK T∀ ∈ ∀ ∈  (Storage capacity for biomass) (4.24) 

ijt jt
i

X B≤∑  ,j tJ T∀ ∈ ∀ ∈  (Storage capacity for biomass) (4.25) 

klt lt
k

X B≤∑  ,l tL T∀ ∈ ∀ ∈  (Storage capacity for biomass) (4.26) 

jwt lwt wt
j l

Y Y B+ ≤∑ ∑  ,w tW T∀ ∈ ∀ ∈   (Storage capacity for bio-oil) (4.27) 

j
jtY g≤  ,j tJ T∀ ∈ ∀ ∈  (Production capacity for bio-oil) (4.28) 

l
ltY g≤  ,l tL T∀ ∈ ∀ ∈  (Production capacity for bio-oil) (4.29) 

ijt jwt
i w

S X Y× =∑ ∑  ,j tJ T∀ ∈ ∀ ∈  (Biomass converted to bio-oil) (4.30) 

klt lwt
k w

S X Y× =∑ ∑  ,l tL T∀ ∈ ∀ ∈  (Biomass converted to bio-oil)  (4.31) 
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ijt ikt
i j k

X X F
 

+ ≥ 
 

∑ ∑ ∑  t T∀ ∈  (Available woody biomass) (4.32) 

, , , , 0ijt ikt klt jwt lwtX X X Y Y ≥  (Continuous decision variables) (4.33) 

, , , , 0, intijt ikt klt jwt lwtN N N N N ≥  (Integer decision variables) (4.34) 

1    if location is open,
, , ,

0    otherwise.jt kt lt wtz z z z 
= 


 (Binary decision variables) (4.35) 

Pajt, Palt ≥ 0, int  (Integer decision variables) (4.36) 

 

The number of vehicle trips is calculated by rounding up the amount of transferred product 

and dividing by vehicle capacity, as shown in Eqs. (4.7-4.11). As there are four types of 

vehicles, four types of vehicle trips are provided. Eq. (4.12) guarantees that the input and 

output masses of biomass at the collection sites are equal. Similarly, Eq. (4.13) shows that 

the total mass of bio-oil produced by the refineries is equal to the mass of stored bio-oil in 

warehouses. Eqs. (4.14-4.18) indicate the site status (open or closed); materials will be sent 

only to those sites that are open (working). Similarly, as shown in Eqs. (4.19-4.20), 

employees commute to those refineries that are open (working). Eq. (4.21) shows the 

number of employees who work at mobile refinery j. The number of employees is 

calculated by dividing the number of person-hours required to produce bio-oil in a refinery 

by an employee’s working capacity. The person-hours required to produce bio-oil in a 

refinery is calculated by multiplying a person-hour factor per ton of bio-oil (H) by the mass 
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of bio-oil produced in a refinery. Each employee has a working capacity (b), (e.g., 8 hours 

per day). Eq. (4.22) calculates the total number of employees working at fixed refineries. 

The number of employees living in residential area (city) a during period t, is equal to the 

number of employees working in mobile and fixed refineries during period t that are served 

by city a. In other words, the number of employees hired from a given region should not 

exceed the total number of potential employees available in that region, which is presented 

in Eq. (4.23). Eqs. (4.24-4.27) indicate the storage capacity for collection sites, mobile 

refineries, fixed refineries, and warehouses, respectively. Eqs. (4.28-4.29) represent the 

production capacity of mobile and fixed refineries, respectively. The biomass is converted 

to bio-oil by the refineries with some losses, as captured by a percentage yield parameter 

S. Eq. (4.30) calculates the amount of bio-oil produced in mobile refineries, and similarly, 

Eq. (4.31) calculates the amount of bio-oil produced in fixed refineries. Eq. (4.32) enforces 

refineries (mobile, fixed, or both) to consume all the available woody biomass at harvesting 

and collection sites. The decision variables are defined in Eqs. (4.33-4.36). In the next 

section, the mathematical model is further developed using a demonstration for a 

representative biomass to bioenergy supply chain in the northwestern United States. 

4.4 Application of the Model 

The foregoing mathematical model is developed for optimizing the sustainability 

performance of a biomass to bio-oil supply chain utilizing a mix of fixed and mobile 

refineries and a heterogeneous fleet. The multi-objective optimization problem considers 

total cost, carbon footprint, and number of jobs created. To demonstrate the application of 

the model, actual data (e.g., biomass availability and cost, unemployment rate, and vehicle 
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fuel consumption) is derived from research literature and governmental reports. Costs are 

adjusted for inflation to 2017. 

The raw material is woody biomass, which is $25/ton (U.S. EPA, 2017), and the final 

product is bio-oil with an estimated price interval of between $0.78/gal. and $1.76/gal. 

Based on reported values for 2013-2016 (Mirkouei et al., 2017). The considered bio-oil has 

an approximate density of 10 lb./gal. at 59 °F (1.20 kg/L at 15 °C) with higher heating 

value energy content of approximately 18 MJ/kg (Steele, Puettmann, Penmetsa, & Cooper, 

2012). The research presented here considers four counties in northwest Oregon: Clatsop, 

Columbia, Tillamook, and Washington, which are assumed to have 11.5, 6.1, 13.2, and 6.1 

millions of bone dry tons (BDT) of net biomass available, respectively, based on 2002 data 

(Technical Report by Oregon State University, 2017). As seen in Figure 4.3, which shows 

US Forest Service data from May 2017 (Arcgis, 2017), northwest Oregon is part of one of 

the highest producing regions of woody biomass in the US (U.S. Forest Service, 2017). 

In this demonstration, forty-three harvesting sites, nine collection sites, seven mobile 

refineries, four fixed refineries, and four warehouses are selected as potential locations. 

Potential locations near main roads are selected using ArcGIS software (version 10.5.1) 

with regard to databases provided by the US Forest Service, Oregon Department of 

Transportation, and State of Oregon Geospatial Enterprise Office. Potential refinery sites 

are located in flat treeless zones to mitigate in-forest bio-oil transportation challenges. Four 

cities, Astoria, St. Helens, Tillamook, and Portland, are considered as employee residential 

areas.  
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Figure 4.3: The distribution of woody biomass across the contiguous US (ArcGIS, 2017) 

 

Potential existing warehouses in Oregon are selected based on the storage cost and the 

distance to mobile and fixed refineries. Since warehouses are assumed to be provided by a 

third party, storage costs include employee costs and all other costs related to warehousing. 

In addition to their location, two other warehouse characteristics ─ capacity and rental rate 

─ are needed to develop the proposed model. 

The number of available employees is calculated using the average U.S. unemployment 

rate for 2017 (4.14% (U.S. Bureau of Labor Statistics, 2018b)) and population in each city 

given by the 2010 census (U.S. Department of Commerce, 2010). It is assumed that 

employees have the required skills for the positions. The classification of employee type is 

left for future research. The number of fixed employees in each refinery is assumed to be 

nine people (Mullaney, Farag, LaClaire, & Barrett, 2002). The person-hour factor for 
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producing one ton of bio-oil is 0.218 person-hours per ton-year (Mullaney et al., 2002). 

The employee’s work capacity is assumed to be eight hours per day. Thus, for three work 

shifts, the person-year factor for producing one ton of bio-oil is 0.027 persons per ton-year. 

The cradle-to-grave environmental impact of producing bio-oil, which includes collection 

and pyrolysis of biomass, is 0.0323 kg of CO2e per MJ of bio-oil (Mirkouei et al., 2016). 

The carbon equivalent emission factor for a 12-passenger van (for commuting) is 0.485 of 

CO2e kg/vehicle-mile (U.S. EPA, 2015). The emission factor for a medium/heavy-duty 

truck is 0.146 CO2e kg/ton-mile. These emissions factors are assumed to hold for loaded 

and unloaded vehicles. 

The capacity of a wheel-mounted mobile refinery is 1,650 thousand liters per year 

(Mirkouei et al., 2016). Fixed refineries have a capacity of 43,930 thousand liters per year. 

The total cost of establishing a refinery includes fixed cost (capital cost divided expected 

life-years) and variable cost per ton of bio-oil produced (Mirkouei et al., 2016). These costs 

include insurance, utilities, maintenance, taxes, and chemicals. To avoid inventory cost, a 

just-in-time approach is assumed for the production of bio-oil and the flow of biomass in 

the bio-oil supply chain. The total truck transportation cost is $4.98 ton/hour, adjusting for 

inflation to 2017, based on the value presented by Mason et al. (2008).  

4.5 Results and Sensitivity Analysis 

This section shows how the mathematical model presented herein can be used as a decision 

support tool. The data described in the previous section is applied in the model developed 

using IBM ILOG CPLEX 12.7.1 software on a Windows 10 64-bit Operation System with 
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Intel Core i5 processor (CPU 3.40GHz) and 16GB RAM. 

The objectives are normalized and then the weighted goal programming technique 

(Boukherroub et al., 2015) is employed to generate a set of optimal Pareto solutions. The 

Pareto-efficient frontier illustrates the different tradeoffs between the societal, 

environmental, and economic objectives. 

Before using the weighting method, the three objectives in the proposed model are 

normalized, since each objective has a different value scale. For example, the number of 

employees required in a bio-oil supply chain might range from 10 to 1000, while the total 

cost would be on the order of a million dollars. The objectives are normalized by dividing 

the value of each objective (Z) by the best value for each objective (Z*). To obtain the best 

value for each objective, each is optimized without considering the other two objectives. 

The maximization function (Z3) is changed to a minimization function as shown in Eq. 

(4.37).  
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     (4.37) 

Also, as shown in Eq. (4.37), after normalizing the objectives, we merge the three 

objectives into a single objective by using weighting factors w. Note that the sum of the 

three weights is equal to one. To provide the Pareto optimal solutions, decision makers can 

vary the weights. 

CPLEX solves the problem with 1,045 constraints and 1,690 variables after 10,577 
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iterations. Table 4.1 shows each optimized objective obtained without considering other 

the two objectives. The first column represents the optimal solution based on the economic 

aspect while the second and the third columns present the optimal solutions based on the 

environmental and societal aspects, respectively. The first column presents a solution 

requiring three mobile refineries and one warehouse, in which the actual cost of bio-oil is 

predicted to be $1.34/gal ($0.35/L). This cost falls in the cost interval found in the market 

and research literature (between $0.78/gal and $1.76/gal (Mirkouei et al., 2017)). The 

related supply chain would require ninety employees to produce 2,306,250 liters of bio-oil, 

while the supply chain activities would add 5,369 kg CO2e of emissions into the 

environment. These emissions would consist of 175 kg, 1,609 kg, and 3,585 kg CO2e of 

emissions due to commuting, conversion processes, and logistics activities, respectively.  

Table 4.1: Three optimal solutions based on individually weighting three aspects: economic, environment, 
and society 

Weighting*: 
Objective: 

(1,0,0) 
Min. Total Cost 

(0,1,0) 
Min. Carbon Footprint 

(0,0,1) 
Max. jobs created 

Economic $819,756 $5,586,835 $7,476,347  

Environmental 5,369 kg CO2e 3,507 kg CO2e 46,699 kg CO2e 

Societal 90 126 347  

Cost of bio-oil $1.34/gal $9.17/gal $3.11/gal 

* The parenthetical indicates weighting factors for economic, environmental, and societal objectives, 
respectively. 
 

In Table 4.1, each column provides the best value (underlined), based on each objective. 

For example, the first column is optimized based on the economic aspect and represents 

the lowest total cost ($816,756), which is significantly lower than that for minimizing 

carbon footprint ($5,586,835) and maximizing the number of jobs created ($7,476,347). 
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Similarly, the second column represents the solution with the lowest carbon footprint 

(3,507 kg CO2e), compared to 5,369 kg CO2e (lowest cost) and 46,699 kg CO2e (most jobs 

created). The third column represents a solution with the most jobs created (347 person-

years), compared to 90 person-years (lowest cost) and 126 person-years (lowest carbon 

footprint). 

 
Figure 4.4: Optimized values for normalized objectives based on Table 4.1 

 

Figure 4.4 presents a radar graph for the three optimal normalized solutions presented in 

Table 4.1. Each triangle indicates the normalized values of the three indicators for the 

related optimal solution, where the optimized objective is reported to have a normalized 

value of one. As shown in Figure 4.4, the three optimal solutions (each triangle) are non-

dominated. A solution is non-dominated if it outperforms the other solution sets for any 

indicator. All near-optimal solutions, provided by varying weights, must be non-dominated 

in the set of optimal solutions that will be used by the decision maker. This is shown in 

Figure 4.5 for a hypothetical example, which shows one dominated solution in a set of 
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three feasible solutions, i.e., the smaller triangle, shown with circular vertices is dominated 

by the other two solutions in each category. This smaller triangle is dominated by the larger 

triangle shown with triangular vertices, and will be removed from the set of solutions.  

 
Figure 4.5: A dominated optimal solution (indicated with circles at the vertices) 

 

The results of the bio-oil supply chain presented herein were compared with those for a 

traditional supply chain using only fixed refineries. As shown in Table 4.2, use of mobile 

refineries are predicted to reduce the cost of bio-oil (decreasing from $4.48/gal to 

$1.34/gal). By taking into account the predicted cost of bio-oil, it can be see that 

incorporating mobile refineries would give bio-oil supply chains a distinct advantage over 

traditional supply chains using only fixed refineries. Use of mobile refineries also reduces 

the commuting-related carbon footprint, while the emissions due to conversion processes 

remain the same. Since fixed refineries use larger tanker trucks and require fewer trips to 

transport bio-oil to warehouses, the transportation carbon footprint in the traditional supply 

chain is less than in the mixed bio-oil supply chain. Both supply chains are predicted to 
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create the same number of jobs. 

Table 4.2: Comparison between traditional and mixed bio-oil supply chain 

Variables 
Mixed bio-oil supply chain 
including mobile and fixed 
refineries 

Bio-oil supply chain 
including fixed 
refineries 

Cost of bio-oil $1.34/gal $4.48/gal 

CF* of commuting 175 kg CO2e 271 kg CO2e 

CF of conversion processes 1609 kg CO2e 1609 kg CO2e 

CF of transportation  3585 kg CO2e 2009 kg CO2e 

The number of jobs created 90 people 90 people 

*CF = Carbon footprint 
 

4.5.1 Sensitivity Analysis 

The bio-oil supply chain parameters impact the model dependent variables. This section 

considers the effect of five parameters on economic, environmental, and societal 

performance by running 32 scenarios. The five parameters studied include mobile refinery 

capital cost, refinery operating cost, total available woody biomass, mobile refinery storage 

capacity, and percentage yield. Increasing and decreasing values scenarios are considered 

for each parameter, which are then compared with the base scenario with regard to total 

cost, carbon footprint, and the number of jobs created. The following sections discuss the 

sensitivity analysis of each of the parameters. Note that objectives have the same weighting 

factor (1/3) in all cases considered, and the value of variables for the base case are shown 

in Table 4.3. 
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Table 4.3: The values of model outputs for the base case with equal weighting of objectives (0.33, 0.33, 
0.33) 

Model Output Value 

Total cost ($) 868,140  

Total carbon footprint (kg CO2e) 4,239  

The number of jobs created (people) 90 

Predicted cost of bio-oil ($/gal.) 1.42 

Total facility location cost ($) 719,070  

Total transportation cost ($) 33,760  

Total carbon footprint of commuting (kg CO2e) 114 

Total carbon footprint of conversion processes (kg CO2e) 1,609  

Total carbon footprint of transportation (kg CO2e) 2,516  

The number of truck trips 459 

Total biomass available (ton) 4,613  

Number of active mobile refineries 3 

Number of active fixed refineries 0 

Number of active collection sites 0 

Number of active warehouses 1 

 

4.5.1.1 Effect of Mobile Refinery Capital Cost 

Six scenarios for the parameter of mobile refinery capital cost are investigated to consider 

its effect on the performance of the proposed bio-oil supply chain. In the first three 

scenarios, the mobile refinery capital cost is increased by 10%, 20%, and 30%. In the 

second three scenarios, the mobile refinery capital cost is decreased by 10%, 20%, and 

30%. In all six scenarios, three variables, facility location cost, total cost, and predicted 

cost of bio-oil, are affected. Figure 4.6 illustrates a positive linear relationship exists 

between mobile refinery capital cost and the three objectives considered. It can be seen that 

a 30% increase in mobile refinery capital cost causes an increase in facility location cost 

of 21%. The total supply chain cost and, consequently, the cost of bio-oil increase by 17%. 
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The sensitivity analysis found that mobile refinery capital cost impacts total cost, while the 

two other objectives (carbon footprint and number of jobs created) remain unchanged 

compared to the base scenario. Therefore, as expected, optimizing the mobile refinery 

capital cost by improving technological performance would allow bio-oil supply chains to 

reduce the cost of bio-oil.  

 
Figure 4.6: Effect of mobile refinery capital cost on costs for the proposed bio-oil supply chain  

4.5.1.2 Effect of Operating Cost 

Six scenarios are used to evaluate the effect of operating cost on the considered objectives 

for the proposed bio-oil supply chain. Operating cost impacts the same variables considered 

in evaluating the effect of mobile refinery capital cost (i.e., facility location cost, total cost, 

and predicted cost of bio-oil). Values for all three objectives increase linearly with an 

increase in operating cost. However, this effect is not significant. For example, when 

operating cost increases by 30% (Figure 4.7), the predicted cost of bio-oil increases by only 

4% ($1.42/gal to $1.47/gal). As predicted for increases in mobile refinery cost, when 
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varying operating cost the carbon footprint and the number of jobs created would remain 

unchanged compared to the base case. 

 
Figure 4.7: Effect of operating cost on the proposed bio-oil supply chain 

4.5.1.3 Effect of Percentage Yield 

Figure 4.8 demonstrates the behavior of the three selected objectives – total cost, carbon 

footprint, and number of jobs created – when the percentage yield varies from a decrease 

of 30% to an increase of 30%. All three objectives increase when the percentage yield is 

improved. The improvement in percentage yield leads to more bio-oil production, 

necessitating additional logistics activities and increasing the number of jobs created. In 

addition, the increase in logistics activities leads to increase in transportation-related 

carbon emissions. Improving the percentage yield has the effect of reducing the predicted 

cost of bio-oil. For example, a 30% improvement in percentage yield increases total cost 

by 4% and leads to 30% more bio-oil. Thus, the overall effect is that the unit cost of bio-

oil drops by 20%. This demonstrates a crucial point: both economic and societal aspects 
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will be improved by increasing bio-oil conversion process yields. 

 
Figure 4.8: Effect of percentage yield on the objective functions 

4.5.1.4 Effect of Storage Capacity of Mobile Refinery 

The capacity of storage available at mobile refinery locations is a key parameter impacting 

total cost. Optimizing biomass and bio-oil storage capacity to minimize total cost could 

have the effect of reducing the number of refineries required to achieve the same output. 

To evaluate the effect of mobile refinery capacity on the selected bio-oil supply chain, 

seven scenarios were created. As shown in Figure 4.9, decreasing storage capacity by 10% 

increases the number of active mobile refineries from three to four. Conversely, when 

storage capacity is increased by 40%, the number of active mobile refineries decreases 

from three to two. These changes also impact other bio-oil supply chain objectives, as 

shown in Figure 4.10. For example, a 40% increase in storage capacity reduces the number 

of jobs created (10%), increases the total carbon footprint (9%), and reduces the predicted 

cost of bio-oil (19%). Since fewer active mobile refineries are required, fewer refinery 
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workers are needed. Although reducing bio-oil and biomass storage capacity at mobile 

refinery locations improves societal aspects by increasing the number of jobs created, it 

has a significant negative effect on the environment and economy by increasing the carbon 

footprint and predicted cost of bio-oil, respectively. Increasing storage capacity by 40% 

leads to a reduction in the predicted cost of bio-oil by 18% (from $1.42/gal to $1.16/gal). 

 
Figure 4.9: Effect of capacity of mobile refinery storage on the number of active mobile refineries 

 

 
Figure 4.10: Effect of mobile refinery capacity on output variables 
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4.5.1.5 Effect of Available Woody Biomass 

The effect of available woody biomass on the bio-oil supply chain is evaluated using seven 

scenarios. As shown in Figure 4.11, all three objectives increase fairly linearly with 

increases in the available woody biomass. While increasing available woody biomass 

increases the total cost, bio-oil production is increased, decreasing the predicted unit cost 

of bio-oil. In Figure 4.11, the number of jobs created increases by 38.8% (from 90 to 125 

people) when the available woody biomass is increased 40%. Meanwhile, the predicted 

cost of bio-oil would decrease from $1.42/gal to $1.33/gal (6%). Due to the increase in the 

number of active mobile refineries, the carbon footprint increases by 43% when the 

available woody biomass is increased by 40% (see Figure 4.12). Overall, it appears that 

increasing available woody biomass has a positive impacts society and the economy, while 

it a negatively effects the environment, when only considering production-related carbon 

emissions.  

 
Figure 4.11: Effect of available woody biomass on the objective functions 
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Figure 4.12: Effect of available woody biomass on the output variables 

 
Note that the net effects of bio-oil production on environment (e.g., considering fossil fuel 

savings) is left for future research. 

4.6 Conclusion 

Forest management practices and climate change have been attributed to the recent 

lengthening of wildfire seasons across the globe. Collection of combustible forest biomass 

for generating renewable energy sources, such as bio-oil, can potentially mitigate wildfire 

risks. In addition, development of renewable energy industries can aid economic 

development through job creation, while bioenergy sources can benefit the environment by 

reducing net carbon emissions. However, the cost of bioenergy today is not competitive 

with conventional energy, which limits its development and adoption. Further, land 

managers are unable to make robust decisions due to the existence of many uncertainties, 

including energy and construction market fluctuations, changes in governmental policies, 

and weather and climate variation. 
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The research presented herein developed a three objective mathematical model of a mobile-

facility supply chain in which bio oil is produced from woody forest biomass. The three 

pillars of sustainability, i.e., the economy, environment, and society, were modeled as three 

independent objectives: total cost, total carbon footprint, and number of jobs created, 

respectively.  Data collected from research literature and governmental reports was used in 

the mathematical model to estimate the objectives. The weighted goal programming 

technique was employed for solving the mathematical model to find the set of Pareto 

solutions.  

The model-predicted cost of bio-oil fell within a cost interval found in the market and 

research literature. The comparison of a mobile-facility supply chain with a traditional bio-

oil supply chain using only fixed refineries showed that mobile refineries can significantly 

reduce the cost of bio oil (from $4.475/gal to $1.34/gal). Therefore, mobile refineries could 

give bio-oil supply chains a distinct economic advantage. Moreover, the sensitivity analysis 

of five main model parameters was performed by using 32 scenarios to investigate their 

effects on the objectives. The results showed that changes in the percentage yield and 

mobile refinery capacity had a greater effect on the selected objectives than the other 

parameters tested. It was found that increasing the percentage yield by 10-30% reduces the 

predicted cost of bio-oil and the number of jobs created by 7-20% and 8-21%, respectively. 

Moreover, increasing mobile refinery capacity by 10-40% leads to a reduction in the 

predicted cost of bio-oil (up to 19% from $1.42/gal to $1.16/gal).  

The proposed mathematical model enables us to make decisions in bio-oil supply chains 

using a mix of mobile and fixed facilities to improve various sustainability performance 
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metrics. The model presented reduces the focus on monetary costs in bio oil mobile-facility 

supply chains such that decision makers can trade between economic, environmental, and 

societal factors, simultaneously. In the application of the model explored, it is shown that 

in addition to reducing wildfire risks and energy dependence by collecting combustible 

forest biomass, consideration of societal aspects in bio-oil supply chains can provide a 

competitive cost of bio-oil. 

The focus of this work was developing a multi-objective mathematical model in a bio-oil 

supply chain with mobile facilities regarding sustainability criteria. While a majority of the 

research and modeling efforts for bio-oil supply chains has considered fixed facilities, 

using mobile refineries, has received little attention. Exploration of mobile refineries is a 

focus here to elucidate bio-oil supply chain sustainability performance through multi-

objective mathematical modeling, and has not been previously reported in literature. 

In closing, it should be noted that the mathematical model presented considered societal 

effects using two indicators: the number of jobs created and the local employment. To more 

clearly indicate the societal aspects of supply chain sustainability performance, other 

metrics should be considered in future research. Appropriate societal metrics can be 

defined and quantified in support of measuring and managing bioenergy supply chain 

efforts. For example, the United Nations has defined “proportion of people under 25 

without employment” in support of its sustainable development goal to “promote sustained, 

inclusive and sustainable economic growth and decent work for all.”  
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

5.1 Summary 

More than 500,000 acres of forests burned in Oregon in 2017, presumed to be due to 

changes in climate and forest management practices. Increasing the collection of dying and 

dead woody biomass from forests could help reduce fire hazards. The work focuses on 

using sustainability criteria to develop mathematical models of bio-oil supply chains with 

mobile facilities. Academic studies and industrial practices for improving supply chain 

sustainability performance are on the rise as policies and regulations continue to emerge, 

and as demand for sustainable products continues to grow. Thus, the bioenergy production 

industry is beginning to make decisions informed by sustainability principles. To make 

better logistics network and bio-oil supplier decisions in this regard, managers will benefit 

from developing supply chain problems to include sustainability criteria. The work 

presented herein developed two mathematical models for supply chains in which 

combustible forest biomass can be collected and removed to generate renewable energy, 

such as bio-oil (Madrigal et al., 2017).  

In addition to decreasing fire hazards, value creation from underutilized woody forest 

biomass benefits the environment, society, and economy in other ways (Hubbard et al., 

2007). In Chapter 3, for example, a single-objective mathematical modeling approach was 

presented for optimizing the total cost of a bio-oil supply chain. The mathematical model 

was based on a multi-echelon supply chain with five levels comprised of harvesting sites, 

collection sites, mobile refineries, fixed refineries, and warehouses. A genetic algorithm 

was designed to find an optimized solution for the proposed mixed integer linear 
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programming problem.  

In Chapter 4, the mathematical model was developed into a multi-objective problem based 

on data collected from northwest Oregon forests to simultaneously improve the economic, 

environmental, and social performance of bioenergy supply chains. The effect of bio-oil 

supply chain parameters on the three pillars of sustainability (by considering total cost, 

carbon footprint, number of jobs created) was considered by performing 32 scenarios. 

5.2 Conclusions 

The mathematical models developed and demonstrated in this research were able to 

quantify and aggregate sustainability performance metrics for bio-oil supply chains across 

economic, environmental, and social aspects. The results from Chapter 3 showed that 

decision makers will be able to select the optimal number of mobile and fixed refineries 

with regard to total cost. In this case total cost consists of logistics cost and carbon cost, 

which was obtained using the mathematical model optimized by a genetic algorithm (GA). 

The GA can be applied for large scale problems to overcome restrictions of exact methods.  

As shown in Chapter 4, the application of the mathematical model developed was able to 

quantify the selected economic, environmental, and social metrics associated with bio-oil 

supply chains. It was found that the predicted cost of bio-oil was in the interval of bio-oil 

prices reported by the market and literature. In comparing the bio-oil supply chain proposed 

in this work with traditional bio-oil supply chains using only fixed refineries, it was found 

that mobile refineries could significantly reduce the cost of bio-oil. Thus, mobile refineries 

can give bio-oil supply chains a distinct cost advantage over traditional supply chains. 
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Further, the results given by sensitivity analysis of five key parameters (mobile refinery 

capital cost, refinery operating cost, total available woody biomass, mobile refinery storage 

capacity, and percentage yield) showed that percentage yield and mobile refinery capacity 

were the two parameters that had the greatest effect on the selected objectives. Increasing 

percentage yield was found to improve both economic and social aspects by reducing the 

cost of bio-oil and increasing the number of jobs created, respectively. 

In addition to reducing wildfire risks and energy dependence by collecting combustible 

forest biomass, the research found that consideration of societal aspects in bio-oil supply 

chains can provide a competitive cost of bio-oil. This result is a direct response to critiques 

of the theory of sustainability, which claim that capitalistic practices in sustainability 

cannot be challenged. 

5.3 Motivations and Contributions 

The research presented herein uses a case study focusing on forests in northwest Oregon. 

There are three issues of focus in this study: 1) Environmental issues: In 2017, more than 

five million acres of forests burned in the US (Pierre-Louis, 2017), with a half million alone 

burning in Oregon; 2) Social issues: In terms of unemployment, Oregon is ranked 27th, and 

has an unemployment rate of 2% higher than the national average (U.S. Bureau of Labor 

Statistics, 2018a). Oregon’s unemployment rate impacts both its public education (ranked 

38rd (Hammond, 2016)) and personal safety (ranked 39th (Bernardo, 2017)); and 3) 

Economic issues: Oregon’s GDP (gross domestic product) is ranked 25th in the US (U.S. 

Department of Commerce, 2018). In addition, $340 million was spent to deal with 2017 

forest fires (Loew, 2017). Bio-oil production can benefit environment, society, and the 
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economy (Hubbard, Biles, Mayfield, & Ashton, 2007). For example, bio-oil production 

can reduce wildfire risks by collecting combustible forest biomass (Madrigal et al., 2017). 

In addition to the economic growth, bio-oil production can reduce the unemployment rate 

by creating jobs. 

The focus of this work is developing a multi-objective mathematical model in a bio-oil 

supply chain with mobile facilities regarding sustainability criteria. A majority of the 

research and modeling efforts for bio-oil supply chains is considering fixed facilities, while 

using mobile facilities, e.g., mobile refineries, has received little attention. Research for 

developing a multi-objective mathematical model for bio-oil supply chains with mobile 

facilities to measure sustainability performance has not yet been reported in literature. 

In addition to unavailable studies in the literature to design a genetic algorithm for solving 

mobile refinery problems with carbon cost included in the total cost, previous mathematical 

models in bio-oil supply chains with mobile-refineries were unable to answer the research 

question posed in Section 2.2 with regard to four aspects: 1) The number of jobs created 

has not been considered as a variable for decision makers; 2) Carbon footprint has not been 

optimized as a variable in mixed-refinery bio-oil supply chains; 3) Operating costs per 

product have not been considered in mixed bio-oil problems; and 4) Multiple objectives 

(e.g., total cost, carbon footprint, and the number of jobs created as dependent variables) 

have not been simultaneously optimized for these types of problems.  

The aim of the multi-objective mixed-integer linear programming (MO-MILP) model 

developed in this research is to obtain logistics decisions for a multi-echelon supply chain 
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with six levels. The first objective in the MO-MILP model focuses on the economic aspect 

by considering total cost, which is used to estimate the cost of the final product. The second 

objective focuses on the environmental impact of the supply chain, which is predicted using 

carbon footprint analysis. The third objective considers the societal effects by considering 

at the number of jobs created in the supply chain. 

5.4 Research Limitations 

Several activities in bio-oil supply chains were studied and modeled as part of this research. 

However, the lack of access to the conversion processes prevented providing a more 

accurate estimation of the cost of bio-oil. To improve this limitation, sensitivity analysis 

was performed by varying the percentage yield to discern the effect of conversion processes 

on the outputs of bio-oil supply chains. In modeling the bio-oil supply chain presented 

herein, all parameters were assumed to be defined and deterministic. In reality though, 

parameters are fuzzy and stochastic. For example, it was found that the percentage yield 

parameter significantly impacts bio-oil supply chain performance. These parameters need 

to be better understood and more accurately quantified. 

However, percentage yield itself is not a stable parameter. Since weather conditions are 

unpredictable, and impact biomass feedstock quality, the expected yield is not 

deterministic. Similarly, the available woody biomass depends on weather and market 

conditions, and could be modeled using a stochastic parameters rather than the 

deterministic parameter used in this work to enhance the robustness of the model. 

The just-in-time approach is an innovative method to avoid inventory costs in supply 
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chains, as applied in this research. In reality, however, maintaining an inventory of raw 

materials is often necessary to optimize the total cost of transportation. For example, the 

bio-oil produced may be stored in a large tanker to be transported later, rather than using a 

small tanker truck, to reduce the number of truck trips and associated labor and fuel costs.  

Regarding data collected from northwest Oregon, data for only four counties are considered 

for a short time period. This dearth of data can lead to a poor prediction of the cost of bio-

oil, number of jobs created, and carbon footprint. This leads to decision maker hesitation 

and inaction, as has been evidenced by the protracted development of forest bioenergy 

supply chains. 

5.5 Opportunities for Future Research 

Due to the limitations above, several opportunities for future research have been identified. 

They include improving the accuracy of the sustainability assessment methodology, 

incorporating a more efficient multi-objective mathematical models for decision making, 

and optimizing input parameters to achieve greater sustainability performance. These 

opportunities are discussed below. 

To help managers in bio-oil supply chains make better and more informed decisions, values 

of supply chain parameters, e.g., percentage yield and refinery capacity, need to be more 

well-defined quantitatively. Alternatively, modeling the parameters of bio-oil supply 

chains using stochastic approach would allow for a more quantitative investigation of 

tradeoffs between objectives such as the total cost, carbon footprint, and number of jobs 

created. 
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In reality, maintaining an inventory of biomass or bio-oil is often necessary to optimize the 

total cost of transportation, while the just-in-time approach is used in supply chains to avoid 

inventory costs. If the assumption of the just-in-time approach in the inventory 

management of the bio-oil supply chain is relaxed, inventory costs should be included in 

the total cost of bio-oil supply chains. Then, the total cost objective should include ordering 

cost, holding cost, backorder and lost sales in the mathematical model. 

To assist managers of bio-oil supply chains in decision making when considering all forests 

in a state or region, the design decision support tool presented herein needs to be solved 

with powerful solving methods, e.g., decomposition methods, due to the high complexity 

of the mathematical model created by large-scale data. The mathematical model presented 

herein was solved using the branch and cut method with CPLEX software. The solution 

method presented in this work cannot be used to optimize a large-scale bio-oil problem. A 

new solution algorithm, such as hybrid meta-heuristic algorithms and decomposition 

methods, could be developed to solve large-scale bio-oil problems. 

To more accurately evaluate the indicator of number of jobs used in the societal objective 

function, other employment positions, such as loggers, forestry machine operators, and 

truck drivers, in addition to refinery employees, should be considered in future research.   

Finally, while the mathematical models were developed to enable supply chain decision 

making over multiple harvesting cycles occurring over a longer period of time (years or 

decades), the model was demonstrated for a single time period (one harvesting season). To 

accommodate evaluation of larger harvest regions and longer time periods (e.g., facilitating 
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more accurate modeling of mobile refinery transport, utilization, and production), future 

work should investigate the mathematical model can be employed within an approximate 

dynamic programming problem. 
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APPENDICES 

Appendix A: MATLAB source code 

clc; 
clear; 
close all; 
 global NFE; 
%% Problem Definition 
load('model_3_5_7_8_2.mat')  % small 
% load('model_20_8_6_4_2.mat') %large 
 % model=SelectModel(); 
CostFunction=@(sol) MyCost(sol,model); 
 tic; 
%% GA Settings 
nPop=50;                    % Population Size 
 MaxIt=1000;                  % Maximum Number of Iterations 
 MaxStallIt=round(MaxIt/1);      
 pCrossver=0.5;                         % Crossover Percentage 
nCrossover=round(pCrossover*nPop/2)*2;  % Number of Parents (Offsprings) 
 pMutation=0.8;                          % Mutation Precentage 
nMutation=round(pMutation*nPop);        % Number of Mutatnts 
 SelectionPressure=10;       % Selection Pressure 
TournamentSelectionSize=3; 
 %% Initialization 
NFE=0; 
% An Empty Individual Structure 
Individual.Position=[]; 
Individual.Cost=[]; 
Individual.Sol=[]; 
 % An Array of Individuals 
pop=repmat(Individual,nPop,1); 
 % Initialization 
for i=1:nPop 
pop(i).Position=CreateRandomSolution(model);  
[pop(i).Cost pop(i).Sol]=CostFunction(pop(i).Position); 
 end 
 BestSol=[];                 % Best Solution Ever Found 
 BestCost=zeros(MaxIt,1);    % Array of Best Costs at each Iteration 
MeanCost=zeros(MaxIt,1);    % Array of Mean Cost at each Iteration 
 MaxCost=-inf;               % Maximum Cost Ever Found 
 nfe=zeros(MaxIt,1); 
 StallIt=0;   
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 for it=1:MaxIt 
 % Sort Population 
costs=[pop.Cost]; 
[costs sort_order]=sort(costs); 
pop=pop(sort_order); 
 % Update Maximum Cost 
MaxCost=max(MaxCost,costs(end)); 
 % Delete Extra Members 
pop=pop(1:nPop); 
costs=costs(1:nPop); 
 % Save Results 
BestSol=pop(1); 
BestCost(it)=costs(1); 
MeanCost(it)=mean(costs); 
 nfe(it)=NFE; 
 % Show Results 
penalty=Penalty(BestSol.Sol.sol,model); 
disp(['Iteration ' num2str(it) ... 
':  Best Cost = ' num2str(BestCost(it)-max(0,penalty)) ... 
':  Penalty = ' num2str(penalty) ... 
', Mean Cost = ' num2str(MeanCost(it))  ]); 
 % dynamic figure 
figure(1); 
clf(figure(1)) 
sol=BestSol.Sol.sol; 
PlotSolution(sol,model); 
  % At Last Iteration 
if it==MaxIt 
break; 
end 
 % Calculate Selection Probabilities 
P=exp(-SelectionPressure * costs / MaxCost); 
P=P/sum(P); 
 %% selection Crossover 
pop2=repmat(Individual,nCrossover/2,2); 
for k=1:nCrossover/2 
 %         i1=RouletteWheelSelection(P);   %randi([1 nPop]); 
%         i2=RouletteWheelSelection(P);   %randi([1 nPop]); 
 i1=TournamentSelection(pop,TournamentSelectionSize); 
i2=TournamentSelection(pop,TournamentSelectionSize); 
 p1=pop(i1); 
p2=pop(i2); 
 ch1.Position = p1.Position; 
ch2.Position = p2.Position; 
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[ch1.Position.BXij,ch2.Position.BXij]=CrossoverTwoPoint(p1.Position.BXij,p2.Position.
BXij); 
[ch1.Position.BXik,ch2.Position.BXik]=CrossoverTwoPoint(ch1.Position.BXik,ch2.Posit
ion.BXik); 
 ch1.Position=repairSOL(ch1.Position,model); 
ch2.Position=repairSOL(ch2.Position,model);      
 [ch1.Cost ch1.Sol]=CostFunction(ch1.Position); 
[ch2.Cost ch2.Sol]=CostFunction(ch2.Position); 
 pop2(k,1)=ch1; 
pop2(k,2)=ch2; 
 end 
pop2=pop2(:);  % pop2=reshape(pop2,[],1); 
 %% Mutation 
pop3=repmat(Individual,nMutation,1); 
for k=1:nMutation 
 i=randi([1 nPop]);   %randi([1 nPop]); 
 %  q.Position=CreateRandomSolution(model); 
 q=pop(i); 
 q.Position.BXij(2:end,:)=Mutate(pop(i).Position.BXij(2:end,:)); 
q.Position.BXik(2:end,:)=Mutate(pop(i).Position.BXik(2:end,:)); 
 q.Position=repairSOL(q.Position,model); 
 end 
 %% 
%% Mutation 
pop4=repmat(Individual,nMutation,1); 
for k=1:nMutation/2 
 i=randi([1 nPop]);   %randi([1 nPop]); 
 q.Position=CreateRandomSolution(model); 
[q.Cost q.Sol]=CostFunction(q.Position); 
 end  
 %% Merge Main, Offspring, and Mutant Populations 
pop=[pop 
pop2 
pop3 
pop4]; %#ok 
 if it>1                                         % add for other stop 
if BestCost(it-1)==BestCost(it)      
StallIt=StallIt+1;       
else 
StallIt=0; 
end 
end     
 if StallIt>=MaxStallIt 
break; 
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end 
 end 
 BestCost=BestCost(1:it);    % add for other stop 
MeanCost=MeanCost(1:it);    % add for other stop 
nfe=nfe(1:it);    % add for other stop 
 %% Results 
sol=BestSol.Sol.sol 
figure(2); 
PlotSolution(sol,model); 
PlotSolutionNotOptimal(sol,model) 
 figure(3); 
% subplot(2,1,1); 
loglog(BestCost,'b ','LineWidth',2); 
hold on; 
%loglog(MeanCost,'r:','LineWidth',2); 
legend('The Best Cost'); 
xlabel('Iteration of GA'); 
ylabel('Cost Function'); 
 xlim([0 it(end)+10]); 
ylim([0 BestCost(1)+5000]); 
 figure(4); 
PlotSolution(sol,model); 
 CPU_Time=toc 
The_Cost_Function=BestCost(it); 
 % the decision variables 
BXij=sol.BXij; 
BXik=sol.BXik; 
BXjk=sol.BXjk; 
BXjl=sol.BXjl; 
%   BYkl=sol.BYkl; 
%   BYls=sol.BYls; 
 Xij=BXij(2:end,:);    
Xik=BXik(2:end,:); 
Xjk = BXjk(2:end,:);    
Xjl=BXjl(2:end,:);   
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Appendix B: CPLEX source code 

/********************************************* 
 * OPL 12.5 Model 
 * Author: Sadeghi 
 * Creation Date: Aug 31, 2017 at 5:21:43 PM 
 *********************************************/ 
// Parameters 
int I=...; // number of harvesting sites 
int J=...; // number of Mobile Refineries (MR) 
int K=...; // number of Junctions of main road 
int L=...; // number of Fixed refineries 
int A=...; // Employees' area 
int W=...; // number of warehouses 
int V=...; // number of Vehicles 
int NumberHarvestingSitesInClatsop=...; 
int NumberHarvestingSitesInColumbia=...; 
int NumberHarvestingSitesInTillamook=...; 
int NumberHarvestingSitesInWashington=...; 
float BiomassInClatsop=...; 
float BiomassInColumbia=...; 
float BiomassInTillamook=...; 
float BiomassInWashington=...; 
range harvesting = 1..I; 
range Junc = 1..K; 
range MRef = 1..J; 
range Ref = 1..L; 
range Warehouse = 1..W; 
range Vehicles = 1..V; 
range OpenCloseLocation = 1..4; 
range Area = 1..A; 
range JobSite = 1..5; // i, j, k, l, w 
float VarCostPerTon[1..4]=...; 
float CostOfForestResidue=...; 
float ProductionCapacity[1..2]=...; 
float Dij[harvesting][MRef]=...; 
float Dik[harvesting][Junc]=...; 
float Dkl[Junc][Ref]=...; 
float Dlw[Ref][Warehouse]=...; 
float Djw[MRef][Warehouse]=...; 
float Daj[Area][MRef]=...; 
float Dal[Area][Ref]=...; 
float Daw[Area][Warehouse]=...; 
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float Cv[Vehicles]=...; 
float Vc[Vehicles]=...; 
float FacilityLocationCost[OpenCloseLocation]=...; // k, j, l, w 
int FacilityLocationWarehouseCost[Warehouse]=...; 
int WarehouseStorageCapacity[Warehouse]=...; 
float ce[JobSite]=...; 
float salary=...; 
float S=...; 
float StorageCapacity[1..5]=...; 
int bb=...; 
float HH[1..3]=...; 
float EmpCap[Area]=...; 
float GHGe=...; 
float GHGB=...; 
float G_CO2_Truck[Vehicles] = ...; 
 // variables 
 dvar float+ xij[harvesting][MRef]; 
 dvar float+ xik[harvesting][Junc]; 
 dvar float+ xkl[Junc][Ref]; 
// dvar float+ Yjl[MRef][Ref]; 
 dvar float+ Yjw[MRef][Warehouse]; 
 dvar float+ Ylw[Ref][Warehouse]; 
 // dependent variables 
 dvar float+ xi[harvesting]; 
 dvar float+ x_all; 
 dvar float+ xj_all; 
 dvar float+ xk_all; 
 dvar float+ xk[Junc]; 
// dvar float+ xj[MRef]; 
 dvar float+ Yj[MRef]; 
 dvar float+ Yj_all; 
 dvar float+ Yw_all; 
 dvar float+ Yw[Warehouse]; 
 dvar int+ zk[Junc]; 
 dvar int+ zj[MRef]; 
 dvar int+ zl[Ref]; 
 dvar int+ zw[Warehouse]; 
 dvar float+ Labaj[Area][MRef]; 
 dvar float+ Labal[Area][Ref]; 
 // dependent variables 
 dvar float+ Lab_a_all[Area]; 
 dvar float+ Lab_all; 
 // number of empoyees working in i 
 dvar float+ NEMj[MRef]; 
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 dvar float+ NEMl[Ref]; 
 // dependent variables 
 dvar float+ NEMj_all; 
 dvar float+ NEMl_all; 
 // variables # trips 
 dvar int+ Nij[harvesting][MRef]; 
 dvar int+ Nik[harvesting][Junc]; 
 dvar int+ Nkl[Junc][Ref]; 
 dvar int+ Njw[MRef][Warehouse]; 
 dvar int+ Nlw[Ref][Warehouse]; 
 //---------- Expressions -- 
 dexpr float Cost_ForestResidue = CostOfForestResidue*x_all ; 
 dexpr float Cost_Transportation = 
 sum(i in harvesting, j in MRef) Dij[i][j]*Cv[1]* Nij[i][j] +  
 sum(i in harvesting, k in Junc) Dik[i][k]*Cv[1]* Nik[i][k] + 
 sum(k in Junc, l in Ref) Dkl[k][l]*Cv[2]* Nkl[k][l] + 
 sum(j in MRef, w in Warehouse) Djw[j][w]*Cv[3]* Njw[j][w] +  
 sum(l in Ref, w in Warehouse) Dlw[l][w]*Cv[4]* Nlw[l][w] ; // TR 
 dexpr float Cost_TotalFacilityLocation =  
 sum(k in Junc) zk[k] * FacilityLocationCost[1] + VarCostPerTon[1]*(sum(i in 
harvesting,k in Junc) xik[i][k]) + 
 sum(j in MRef) zj[j] * FacilityLocationCost[2] + VarCostPerTon[2]*(sum(j in MRef,w 
in Warehouse) Yjw[j][w]) +  
 sum(l in Ref) zl[l] * FacilityLocationCost[3] + VarCostPerTon[3]*(sum(l in Ref, w in 
Warehouse) Ylw[l][w]) + 
 sum(w in Warehouse) zw[w] * FacilityLocationWarehouseCost[w] + 
VarCostPerTon[4]*(sum(w in Warehouse) Yw[w]) ; 
 dexpr float CostFunction_Total = Cost_TotalFacilityLocation + Cost_Transportation + 
Cost_ForestResidue ; 
 dexpr float SocialEffects =  
 (((sum(j in MRef, w in Warehouse) HH[1] * Yjw[j][w] ) / bb + 
 (sum(l in Ref, w in Warehouse) HH[2] * Ylw[l][w] ) / bb ) +  
 (9*(sum(j in MRef) zj[j] +sum(l in Ref) zl[l] ))) ; 
 dexpr float GHG_by_Employees_Transportation =  
 GHGe * ( 
 sum(a in Area, j in MRef)Daj[a][j] * Labaj[a][j] + 
 sum(a in Area, l in Ref)Dal[a][l] * Labal[a][l] ); 
dexpr float GHG_by_ProducingBiooil = GHGB * Yw_all; 
dexpr float GHG_by_Product_Transportation =  
 G_CO2_Truck[1] * (sum(i in harvesting, j in MRef) Dij[i][j]* Nij[i][j] +  
 sum(i in harvesting, k in Junc) Dik[i][k]* Nik[i][k] )+  
  G_CO2_Truck[2] * (sum(k in Junc, l in Ref) Dkl[k][l]* Nkl[k][l] )+  
 G_CO2_Truck[3] * (sum(j in MRef, w in Warehouse) Djw[j][w]* Njw[j][w] )+ 
 G_CO2_Truck[4] * (sum(l in Ref, w in Warehouse) Dlw[l][w]* Nlw[l][w] ); 
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 dexpr float Carbon_Dioxide_Equivalent_CO2e = 
 GHG_by_Employees_Transportation + 
 GHG_by_ProducingBiooil + 
 GHG_by_Product_Transportation ;  
 dexpr float Price = CostFunction_Total/ (0.26417205235815*1000*Yw_all); 
 dexpr float PriceLit = CostFunction_Total/ (1000*Yw_all); 
dexpr float The_Number_Of_Truck_Trip = sum(i in harvesting, k in Junc) Nik[i][k] + (i 
in harvesting, j in MRef) Nij[i][j] +sum(k in Junc, l in Ref) Nkl[k][l] +sum(j in MRef,w 
in Warehouse) Njw[j][w] +sum(l in Ref, w in Warehouse) Nlw[l][w] ; 
 dexpr float Active_Mobile_Refineries = sum(j in MRef) zj[j]; 
 dexpr float Active_Fixed_Refineries = sum(l in Ref) zl[l];  
 dexpr float Active_Collection_sites = sum(k in Junc) zk[k];  
 dexpr float Active_Warehouses = sum(w in Warehouse) zw[w];  
// --------------------------------------------------Model---------------------------------------------- 
minimize (1/3)*(CostFunction_Total/819769) + 
(1/3)*(Carbon_Dioxide_Equivalent_CO2e/3507) - (1/3)*(SocialEffects/347); 
// ----------------------------------------Constraints------------------------------------------------ 
 subject to { 
  // ------------------------------Number Of Truck-------------------------------------- 
 forall(i in harvesting, j in MRef)Constraint001:Nij[i][j] >= (xij[i][j] / Vc[1]) ; 
 forall(i in harvesting, k in Junc)Constraint002:Nik[i][k] >= (xik[i][k] / Vc[1]) ; 
 forall(k in Junc, l in Ref)Constraint003:Nkl[k][l] >= (xkl[k][l] / Vc[2]) ; 
 forall(j in MRef,w in Warehouse)Constraint004:Njw[j][w] >= (Yjw[j][w] / Vc[3]) ; 
 forall(l in Ref, w in Warehouse)Constraint005:Nlw[l][w] >= (Ylw[l][w] / Vc[4]) ;  
 // ------------------------------Percentage yield--------------------------------------  
 forall(j in MRef)Constraint006:sum(i in harvesting) S*xij[i][j] == sum(w in Warehouse) 
Yjw[j][w]; //-bio-oil from bio-mass regarding percentage yield i-j 
 forall(k in Junc) Constraint009:sum(i in harvesting) xik[i][k] == sum(l in Ref) xkl[k][l]; 
//-input and output- 
 forall(l in Ref)Constraint077:sum(k in Junc) S*xkl[k][l] == sum(w in Warehouse) 
Ylw[l][w]; //-bio-oil from bio-mass regarding percentage yield k-l 
 forall(w in Warehouse)Constraint007: sum(j in MRef) Yjw[j][w] + sum(l in Ref) 
Ylw[l][w] == Yw[w]; 
 // forall(l in Ref)Constraint008:sum(k in Junc) S*xkl[k][l] == Yl[l]; //-bio-oil from bio-
mass regarding percentage yield k-l  
 // -------------------------------Open/Close Sites-------------------------------------- 
 forall(j in MRef)Constraint010:sum(i in harvesting) xij[i][j] <= zj[j]*10000000000;  
 forall(k in Junc)Constraint011: sum(i in harvesting) xik[i][k] <= zk[k]*10000000000; // 
Open/Close Sites: Junctions  
 forall(w in Warehouse)Constraint012:sum(j in MRef) Yjw[j][w] <= 
zw[w]*10000000000;// Open/Close Sites: Ref  
 forall(l in Ref)Constraint013:sum(k in Junc) xkl[k][l] <= zl[l]*10000000000;// 
Open/Close Sites: Ref  
 forall(w in Warehouse)Constraint014: sum(l in Ref) Ylw[l][w] <= 
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zw[w]*10000000000;// Open/Close Sites: Ref 
 // -------------------------------Open/Close Sites & Number of Employees----------------------
---------------- 
 forall(j in MRef)Constraint0141: sum(a in Area) Labaj[a][j] <= zj[j]*10000000000; 
 forall(l in Ref)Constraint0142: sum(a in Area) Labal[a][l] <= zl[l]*10000000000;  
// -------------------------------Capacity Storage-------------------------------------- 
 forall(k in Junc)Constraint016:sum(i in harvesting) xik[i][k] <= StorageCapacity[1];// k  
 forall(j in MRef)Constraint015:sum(i in harvesting) xij[i][j] <= StorageCapacity[2]; // j 
 forall(l in Ref)Constraint017:sum(k in Junc) xkl[k][l] <= StorageCapacity[3];// l for bio-
mass 
 forall(j in MRef)Constraint818:sum(w in Warehouse) Yjw[j][w] <= 
StorageCapacity[4];// l for bio-oil  
 forall(l in Ref)Constraint018:sum(w in Warehouse) Ylw[l][w] <= StorageCapacity[5];// l 
for bio-oil  
 forall(w in Warehouse)Constraint0182:sum(j in MRef) Yjw[j][w] <= 
WarehouseStorageCapacity[w];  
 forall(w in Warehouse)Constraint019:sum(l in Ref) Ylw[l][w] <= 
WarehouseStorageCapacity[w];// w  
  // -------------------------------Production Capacity--------------------------------------  
 forall(j in MRef)Constraint091:sum(w in Warehouse) Yjw[j][w] <= 
1*ProductionCapacity[1]; 
 forall(l in Ref)Constraint0181:sum(w in Warehouse) Ylw[l][w]<= 
1*ProductionCapacity[2];  
// we used integer instead of bulian as it was faster 
 forall(j in MRef)Constraint0101:zj[j] <=1;  
 forall(k in Junc)Constraint0111: zk[k] <=1; 
 forall(w in Warehouse)Constraint0121:zw[w] <=1; 
 forall(l in Ref)Constraint0131:zl[l] <=1;  
 forall(i in harvesting) Constraint02701: xi[i] == .0005* 9.225*1000000/(43); // (11.5 + 
6.1 + 13.2 + 6.1)/4 = 9.225 
 forall(i in harvesting)sum(k in Junc) xik[i][k] + sum(j in MRef) xij[i][j] >= xi[i]; 
 forall(j in MRef)Constraint021: sum(a in Area) Labaj[a][j] == 9*zj[j] +(sum(w in 
Warehouse) HH[1] * Yjw[j][w]) / bb;  
 forall(l in Ref)Constraint022: sum(a in Area) Labal[a][l] == 9*zl[l] + (sum(w in 
Warehouse) HH[2] * Ylw[l][w]) / bb;  
 forall(a in Area) Constraint024: sum(j in MRef) Labaj[a][j] <= EmpCap[a]; 
 forall(a in Area) Constraint025: sum(l in Ref) Labal[a][l] <= EmpCap[a]; 
 // ------------------------------Dependent Constraints--- 
 forall(j in MRef) DependentConstraint001: NEMj[j] == sum(a in Area) Labaj[a][j];// CE 
changed to b 
 forall(l in Ref) DependentConstraint002: NEMl[l] == sum(a in Area) Labal[a][l];  
 DependentConstraint006: xj_all == sum(i in harvesting, j in MRef) xij[i][j]; 
 DependentConstraint007: xk_all == sum(i in harvesting, k in Junc) xik[i][k]; 
 forall(k in Junc)DependentConstraint008: xk[k] == sum(i in harvesting) xik[i][k]; 
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 DependentConstraint009: x_all == xj_all + xk_all;  
 forall(j in MRef)DependentConstraint010: Yj[j] == sum(w in Warehouse) Yjw[j][w]; 
 DependentConstraint013: Yj_all == sum(j in MRef, w in Warehouse) Yjw[j][w]; 
 DependentConstraint015: Yw_all == sum(w in Warehouse)Yw[w]; 
DependentConstraint017: Lab_all == sum(a in Area) Lab_a_all[a]; 
DependentConstraint018: NEMj_all == sum(j in MRef) NEMj[j]; 
DependentConstraint019: NEMl_all == sum(l in Ref)NEMl[l];  
 } /#################################################### 
 execute { 
 writeln("Objectives: " ) 
 writeln("Total Cost $:" , Math.round(CostFunction_Total)) 
 writeln("Total Carbon footprint Kg:" , Math.round(Carbon_Dioxide_Equivalent_CO2e)) 
 writeln("The Number of Employees #:" , SocialEffects) 
 writeln() 
 writeln("Actual Cost of Bio-oil $ per Lit.: ", PriceLit); 
 writeln("Actual Cost of Bio-oil $ per Gallon: ", Price) 
  writeln() 
 writeln("Costs: " ) 
 writeln("Facility Location Cost: " , Math.round(Cost_TotalFacilityLocation)) 
 writeln("Transportation Cost: " , Math.round(Cost_Transportation)) 
 writeln("ForestResidue Cost: " , Math.round(Cost_ForestResidue)) 
  writeln() 
 writeln("The CO2 eq. of Empl. Trans.(kg):", 
Math.round(GHG_by_Employees_Transportation)) 
 writeln("The CO2 eq. of Bio-oil: ", Math.round(GHG_by_ProducingBiooil)) 
 writeln("The CO2 eq. of Transportation: ", 
Math.round(GHG_by_Product_Transportation)) 
  writeln() 
 writeln("The Number Of Truck Trip: ", The_Number_Of_Truck_Trip) 
  writeln() 
 writeln("Details: " ) 
 writeln("The Total Biomass (ton): ", Math.round(x_all)) 
 writeln("The Total Bio-oil (Lit.): ", Math.round(Yw_all*1000)) 
  writeln() 
 writeln("Active Locations: " ) 
 writeln("Active_Mobile_Refineries: " , Active_Mobile_Refineries)  
 writeln("Active_Fixed_Refineries: " , Active_Fixed_Refineries)  
 writeln("Active_Collection_sites: " , Active_Collection_sites)  
 writeln("Active_Warehouses: " , Active_Warehouses )  
 } 
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