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Powder Bed Fusion (PBF) techniques are additive manufacturing (AM) technologies 

with paradigm-shifting potential for the production industry. However, before they can 

become viable production solutions for quality critical industries, issues with process 

consistency and repeatability need to be addressed. There is a need for in-situ sensing 

systems that characterize process variation and analytical methods that relate sensor 

data back to input parameters and final part quality. This dissertation describes an in-situ 

stereovision-based metrology technique for characterizing 3D build surface variation in 

metal PBF AM. The natural optical characteristics of metal powders and fused metal 

regions are leveraged to extract high-precision 3D surface measurements from 

stereoscopic images of the powder bed. Measurement results are shown to detect 

spreader blade wear, broad powder surface height variations, powder spread interactions 

with part geometry, and powder bed surface irregularities linked to a focal part defect. 

Build surface measurements are also used to calculate layer-wise measures of powder 

layer thickness, material densification, and incremental build height which provide the 

information necessary to perform localized in-process parameter optimization with 



 

 

closed-loop control. Finally, layer-wise stereoscopic surface measurement data are 

rendered volumetrically to produce quasi-tomographic representations of build process 

variation that may assist with final part qualification. This dissertation provides a 

foundation of knowledge for applying in-situ stereo vision metrology to metal PBF, but 

work remains to fully realize its potential. 
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Introduction 

Additive Manufacturing (AM) technologies construct 3D objects through the 

incremental addition of material. Early adopters utilized polymer-based systems as 

convenient rapid prototyping solutions because their layer-by-layer build process enabled 

streamlined fabrication of geometrically complex structures without the need for custom 

tooling. Advancements in technology have since delivered systems capable of producing 

functional metal components with shorter lead times and lower direct costs than traditional 

manufacturing methods [1]. Nevertheless, modern metal AM is not yet viable as an 

industry production solution. Although high quality potential has been demonstrated, 

improvements to the consistency and repeatability of additive systems are required before 

they can be reliably applied to manufacture parts for quality critical industries [2-4].  

For all of the potential advantages of speed and flexibility offered by AM, there is one 

profound difficulty: a single large step in traditional manufacturing (e.g. casting or injection 

molding) effectively becomes thousands of small steps (each individual layer of a build). 

Since validation throughout production is a basic premise of quality assured 

manufacturing, this dramatic increase in the number of steps presents a significant 

challenge to quality assurance. Each step introduces additional unknowns that must be 

understood and accounted for to ensure part quality and reproducibility. Compounding 

the difficulty of layer-wise inspection is the variation and obscurity in how process 

inconsistencies manifest themselves within 3D printed components [1-3]. To address the 

quality assurance problem, and learn more about these relatively new technologies, 

industry researchers have turned to developing in-situ sensing systems that monitor the 

metal AM process [5]. 
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Real-time monitoring and process control for reducing variability in metal AM has 

undergone initial investigation, but there is still much to be learned [1,3]. Most 

contemporary literature focuses on understanding a subset of AM technologies called 

Powder Bed Fusion (PBF) techniques, such as Selective Laser Melting (SLM), because 

they produce high-strength parts with higher feature resolution and tighter dimensional 

accuracy than wire or powder feed systems [4]. These techniques achieve their high 

performance by implementing a layer-by-layer process of sequentially spreading then 

fusing thin layers of metal powder. In metal powder bed methods there are three distinct 

opportunities being leveraged to gather information regarding the state of each 

manufacturing step: (1) after the recoat process but before laser scanning, (2) during laser 

scanning, and (3) after laser scanning but before the next recoat process.  

Sensing and controlling powder bed uniformity in PBF is critical to process 

performance and overall part quality. The time after the recoat process but before laser 

scanning occurs has offered an excellent opportunity to either validate the recoat process 

or identify issues with the powder bed that require attention; monitoring the temperature 

of the fresh powder bed has also been performed. Craeghs et al. coupled a single camera 

with additional lighting sources to identify regions of sunken or elevated powder created 

by a damaged coater blade [6]. With this technique, changes in powder elevation are 

discernable because elevated powder will cast shadows on sunken powder. Concept 

Laser, a leading additive manufacturing systems vendor, uses a similar single-camera 

approach to monitor powder bed uniformity in their QMcoating Module [7]. Wegner et al. 

successfully integrated a single IR camera to measure temperature distributions on the 

post-spread powder surface [8]. While single camera techniques can be used to monitor 
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temperature field or identify streaking in the powder bed, they are unable to provide actual 

measurements of build surface variation in the out-of-plane direction [9]. Additionally, due 

to the nature of detecting anomalies using shadows, single camera methods have limited 

effectiveness for capturing subtle variations in surface height that can potentially impact 

final build quality. Implementation of a 3D surface profiling technique would enable direct 

measurement of these subtle variations in layer height, while providing additional 

understanding of significant anomalies and how to correct them.  

Many researchers believe that temperature field is an excellent proxy for part quality 

because it has direct impact on the resulting microstructure, density, and mechanical 

properties of the part [1]. The best opportunity to understand the temperature field is 

during the process of laser scanning. A large portion of literature to date focuses on 

monitoring during laser scanning with a motivation to understand the characteristics of 

the melt pool and surrounding heat affected zone.  Bi et al. initially showed that integration 

of a suitable photodiode into a processing head can provide a coaxial measurement of 

average melt pool temperature [10-11]. Later, Lott et al. [12] designed a single-camera 

imaging system to monitor the size and shape of the melt pool, and prove its capabilities 

at high scanning velocities. Craeghs et al. [13-14] then used a similar single-optical-

camera system in combination with a photodiode to demonstrate that melt pool size is 

roughly proportional to photodiode signal. Concept Laser’s patented QMmeltpool Module 

also uses a CMOS camera in combination with a photodiode to control the temperature 

and size of the melt pool by adjusting laser power [7-8]. Doubenskaia et al. utilized a 

pyrometer to monitor the heat affected zone during SLM as a function of hatch spacing 

[15]. They showed that for thin powder layers (50 µm), pyrometer signal generally 
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increases with increasing hatch spacing since the thermal conductivity of the powder bed 

is approximately 20-times lower than bulk material. For thick powder layers (1 mm), when 

there is no metallurgical contact with the substrate, the opposite trend was observed [15]. 

Krauss et al. took a slightly different approach by mounting an IR camera to the outside 

of an SLM system to monitor the heat affected zone from a fixed reference frame [16]. 

This method enabled them to monitor a 50 mm objective at 50 Hz with a spatial resolution 

of 250 µm/pixel. However, the downside of in-situ sensing and control systems that 

leverage this opportunity is they require significant data acquisition and processing rates 

due to the dynamic nature of the laser scanning process. These requirements contribute 

to the overwhelming data volumes that monitoring the AM process is notorious for 

producing, thus providing another barrier to adoption [17]. If an alternative method for 

intelligently controlling laser power can be established, such as creating a laser power 

map based on a predictive model of how the melt pool behaves as a function of cross-

sectional geometry and local layer thickness, then it may be possible to avoid data-

intensive melt pool monitoring and control altogether.  

In addition to thermal signatures, geometric fidelity is a key component of final part 

quality. By monitoring each section after scanning, its fidelity can be validated, or 

unacceptable geometric variation can be identified to provide tremendous benefit. 

Abandoning a faulty build early in the process can save a significant amount of time and 

money. Additionally, understanding how the build is progressing enables the potential for 

part-saving corrective action. The time after laser scanning but before the next recoat 

process has provided an opportunity to evaluate the fidelity of each scanned section and 

reassess the state of the powder bed before recoating occurs. Cooke et al. mounted a 
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single-camera vision system to the outside of the build chamber to monitor the planar 

geometry of scanned sections [18]. They used edge detection algorithms to identify the 

profile of each scanned section after the images were corrected for perspective 

distortions. Kleszczynski et al. integrated a 29 MP CCD camera into a Laser Beam Melting 

system and attempted to identify errors by imaging printed sections after scanning and 

again after recoating [19]. Their results showed that high resolution images (~24 µm/pixel) 

are attainable for reasonable sized working areas (100 mm x 100 mm). However, the 

information gathered from their setup is essentially the same as what Craeghs et al. 

accomplished earlier [6]: relative identification of variations in layer height, but no way to 

measure these variations quantitatively. As previously established, single camera 

techniques are unable to measure out-of-plane variation. Although evaluating planar 

geometric fidelity is useful, it does not provide complete understanding of the situation. 

Fidelity in the out-of-plane direction (adherence to layer height) is a parameter that must 

be evaluated to fully validate scanned sections. Additionally, it is necessary to measure 

surface height after scanning to calculate a “true” powder layer thickness after recoating 

occurs. Measurement of surface height before and after laser scanning can be achieved 

by implementing a 3D surface profiling technique. 

Based on the gaps in state of the art sensing and control systems described above, a 

technique that monitors and characterizes out-of-plane (z-height) variation would greatly 

benefit metal PBF technologies. Many researchers are fixated on monitoring the melt pool 

as the primary means for controlling build quality. However, this method produces 

unwieldy data volumes and requires high data processing rates to be effective. It is 

possible that the need for data-intensive monitoring of the melt pool during laser scanning 
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can be mitigated by gaining more information from the quasi-static monitoring 

opportunities before and after laser scanning occurs [17].  

Dissertation Content 

The manuscripts in this dissertation relate to the development of a stereovision-based 

metrology technique for monitoring, characterizing, and presenting 3D build surface 

variation in metal PBF. Chapter 2 details the implementation of an in-situ stereoscopic 

measurement system to monitor 3D build surface variation in a production SLM machine. 

Chapter 3 extends in-situ build surface measurements to calculate layer-wise measures 

of powder layer thickness, material densification, and incremental build height which 

provide the information necessary to perform localized in-process parameter optimization 

with closed-loop control. Chapter 4 casts layer-wise stereoscopic surface measurement 

data into a rich volumetric form to produce a quasi-tomographic representation of build 

process variation in the context of as-built part geometry. Chapter 5 identifies potential 

directions for future work based on the individual manuscript findings. 
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Abstract 

Metal Powder Bed Fusion (PBF) techniques are Additive Manufacturing (AM) 

technologies with paradigm-shifting potential for the production industry. However, 

production PBF systems continue to treat each build layer as though it is flat and 

consistent, which perpetuates the gap in understanding between process inputs and 

outputs while contributing to repeatability issues. This work details the development and 

application of an in-situ stereoscopic 3D surface measurement system for metal PBF AM. 

We first describe the optical characteristics of metal powders and lighting conditions used 

to extract 3D surface measurements from stereoscopic images of the powder bed. We 

then propose and experimentally verify a closed-form approximation for stereoscopic 

depth measurement error as a function of vision system geometry and calibration 

reprojection error. Finally, the monitoring system is installed on a commercial SLM system 

and used to monitor 3D surface variation during the fabrication of a metal turbine. 

Measurement results show numerous effects during the build: spreader bar wiper blade 

wear, broad powder surface height variations, interaction of powder surface spread with 

part geometry, and powder irregularities linked to a focal build defect. 

 

Introduction  

Metal Powder Bed Fusion (PBF) techniques, such as Selective Laser Melting (SLM), 

are Additive Manufacturing (AM) technologies with paradigm-shifting potential for the 

production industry. By coupling a layer-by-layer build process with the ability to read 

profile information directly from a 3D CAD file, these methods are capable of fabricating 

geometrically complex, functional metal components without the need for custom tooling. 
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The approach offers an unprecedented freedom of design with shorter lead times and 

lower direct costs than traditional manufacturing methods [1]. Yet these technologies are 

struggling to gain traction as viable production solutions for quality-critical industries, such 

as the medical and aerospace sectors, because significant uncertainty remains regarding 

process repeatability and quality of the final product [1-3].  

For all of the advantages offered by layer-wise manufacturing, there is one profound 

difficulty: a single large step in traditional manufacturing (e.g. casting or injection molding) 

effectively becomes thousands of small steps (each individual layer). This dramatic 

increase in the number of steps creates significant challenges with regard to quality 

assurance because each new step provides an opportunity for the build process to go 

awry. Since validation throughout production is a basic premise of quality assured 

manufacturing, complete validation of 3D printed parts will ultimately require thousands 

of individual inspections. Compounding the difficulty of layer-wise inspection is the 

variation and obscurity in how process inconsistencies manifest themselves within 3D 

printed components [1-3]. 

To address the quality assurance problem and learn more about these relatively new 

technologies, industry researchers have turned to developing in-situ sensing systems that 

monitor the build process. Countless systems have been implemented with objectives 

ranging from monitoring characteristics of the melt pool with various sensors [4-11] to 

assessing the uniformity [12] and temperature [13] of the powder bed with a single camera 

setup. The planar fidelity of scanned sections has also been evaluated using a single 

optical camera with additional lighting sources [14-17]. The limitation of single-camera 2D 

imaging techniques is that they are incapable of providing quantitative out-of-plane (z-
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height) information, rendering them inadequate for characterizing build surface variation 

[16,18]. A recent publication described the application of 3D Digital Image Correlation 

(3D-DIC) to perform in-situ defect detection in a part printed via Fused Deposition 

Modeling (FDM) [19]. Although similar in principal to our method, the FDM study required 

introduction of a contrast agent (visible particles added to the base polymer material) in 

order to support the stereovision process.  

We sought to achieve a monitoring system suitable for powder systems that did not 

interfere in any way with the basic process, required no modification of the material 

system, and generated quantitative information of high precision relative to desired levels 

of process control. We also sought information for the entire build region, covering both 

unfused powder and fused material, in a form relevant to powder spreading and fusion 

operations. This was motivated by an interest in treating the process zone in a more 

realistic and detailed manner. Production powder systems continue to treat the thickness 

of the process zone (i.e. powder layer thickness and fused layer thickness) as a nominal 

parameter, despite the known impact of variations in these parameters on final part quality 

[3]. The assumption that each build layer is flat and consistent perpetuates the gap in 

understanding between process inputs and outputs while contributing to poor repeatability 

being associated with powder fusion technologies [3]. Our process satisfies these 

requirements by leveraging the natural optical characteristics of metal powders and fused 

metal regions within a stereovision-based digital image correlation environment. 

This manuscript details the application of a stereo vision system to make accuracy-

verified measurements of the in-situ 3D build surface variation in metal powder additive 

manufacturing. We describe how the optical characteristics of metal powder are 
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leveraged to extract high-precision 3D surface measurements from stereoscopic images 

of the powder bed. We then propose and experimentally verify a closed-form 

approximation for stereoscopic depth measurement (z-height) error as a function of vision 

system geometry and calibration reprojection error. Finally, the prototype system is 

implemented to monitor layer-wise 3D surface variation during the fabrication of a metal 

turbine in a ProX 320 production SLM machine. 

 

Materials & Methods 

Optical Configuration 

The stereo vision system used for this study employed two Grasshopper3 12MP USB 

3.0 cameras with 4240 x 2824 pixel resolution (3.1 µm pixel size) on a 1” format 

monochromatic CCD sensor (Point Grey). The cameras imaged the build platform of a 

ProX 320 (3D Systems) production SLM machine through custom viewing windows 

designed to interface with pre-existing access ports (Figure 2.1). In this configuration, with 

the cameras located outside of the vacuum chamber to avoid extreme environmental 

conditions, the optical working distance was constrained to approximately 600 mm. The 

precise baseline distance between cameras and their relative orientation were 

determined from the extrinsic parameters of the stereo camera calibration process, which 

is described subsequently. Cameras were angled roughly 27º from vertical. 
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Figure 2.1: Stereo vision system and custom viewing windows integrated into ProX 320 
SLM machine. Cameras image through optical ports on the top of the vacuum chamber, 
adjacent to the laser system. 

Two different lens combinations were utilized during the study to adjust spatial 

resolution by controlling field of view. First, the maximum focusable lens equivalent, 100 

mm lens with a 15 mm extension tube was configured to perform experimental verification 

of stereoscopic z-height measurement accuracy at the spatial resolution limit of the optical 

configuration (63 mm x 42 mm field of view, 15 µm/pixel). Then 35 mm lenses were 

equipped to accommodate the entire build platform during in-situ inspection of a turbine 

build (203 mm x 135 mm field of view, 48 µm/pixel).  

Lighting and Polarization 

Lighting is a critical component of vision systems used as measurement devices, 

especially when the objective surface contrast is sub-optimal (e.g. metal powder). To 

improve the surface contrast in metal powder images, and enable the use of a minimum 
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lens f-stop for maximum depth of field, two LED light panels (Polaroid 350) were mounted 

inside the ProX 320 build chamber (Figure 2.2). The light panels provided sufficient 

illumination, but also produced reflections that interfered with stereo correlation. Reliable 

image correlation was restored after cross-polarization was implemented between the 

light sources and lenses to suppress these reflections. 

 

Figure 2.2: Polarized LED light panels were employed in tandem with adjustable lens 
polarization filters to improve the contrast of metal powder surfaces and suppress 
reflections that inhibited the stereo correlation process. 

Metal Powder Texture as a Tracking Mechanism for Optical Surface Measurement 

The basis for high-precision optical surface measurement techniques, such as 3D 

Digital Image Correlation (DIC) [20], is a locally unique surface pattern that supports the 

use of template matching algorithms to locate common features within stereo image pairs. 

In standard DIC applications, a white light speckle pattern is applied to the surface of 

objects to attain sufficient distinguishability for reliable tracking from image-to-image 

(Figure 2.3). In this particular application, the optical similarity of metal powder to white 

light speckle provides a natural tracking mechanism that can be leveraged for the stereo 

correlation process. This project utilized Inconel 718 powder with a 45 +/- 15 micron 
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particle size distribution. The metal powder particles are under-resolved in comparison 

with ideal speckle for DIC [20], but useable images were generated in both large and 

small field of view configurations. 

 

Figure 2.3: (top) Stereovision requires co-locating equivalent points, 𝑃(𝑋, 𝑌, 𝑍), in two 
cameras viewing a scene from different angles. In classic Digital Image Correlation, an 
applied speckle pattern (a) provides the local features supporting this co-location. 
Although not ideal, metal powder at both low and high magnification produced suitable 
images. (b) 203 mm x 135 mm field of view, 48 µm/pixel (c) 63 mm x 42 mm field of view, 
15 µm/pixel. 

Image Acquisition and Processing 

The vision system was controlled by custom LabVIEW (National Instruments) software 

that supported both manual and automated image capture (Figure 2.4). Manual capture 
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was used to characterize, tune, and calibrate the vision system parameters pre-build. The 

automated capture functionality was utilized during the build to acquire layer-wise 

stereoscopic images of the powder bed. The SLM system sweeps powder back-and-forth 

from reservoirs, filling space left after controlled drop of the build platform. Automated 

capture was achieved by monitoring the position of the spreader bar via externally located 

LEDs that indicated spreader bar motion. A photodiode was used to generate a voltage 

whenever the spreader bar began to move. The voltage information was converted to a 

Boolean “on/off” signal that triggered image capture before and after each new powder 

layer was deposited. 

 

Figure 2.4: Experimental setup utilized to support automated imaging during the build 
process. Custom LabView software was developed to monitor externally located LEDs 
that indicate spreader bar motion. Automation was achieved by triggereing image capture 
before and after each new powder layer was deposited. 

3D surface measurements were extracted from stereo images using the commercial 

DIC software Vic-3D (Correlated Solutions). Vic-3D measures pointwise disparities 
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between features in stereo image pairs using subset tracking algorithms then uses the 

disparity information to reconstruct 3D surfaces based on a model of the two-camera 

system geometry. Therefore, stereo calibration was required to reconstruct 3D surfaces 

using the Vic-3D software. 

Stereo Camera Calibration and Depth Extraction 

Stereo camera calibration is used to estimate the optical parameters of a two-camera 

vision system required to extract quantifiable and accurate depth information from stereo 

image pairs. The parameters include camera intrinsics, camera extrinsics, and distortion 

coefficients. Intrinsic parameters are the camera-specific operating characteristics (i.e. 

the equivalent lens focal length measured in pixels, the coordinates of the true optical 

center, the pixel skew coefficient, and the distortion parameters). Extrinsic parameters 

detail the relative position and orientation of both cameras in 3D world coordinates (i.e. 

the rigid body translation and rotation vectors). Together the intrinsic and extrinsic 

parameters are used to determine the relationship between measured pixel disparity 

values and quantifiable z-height. For the simplest case of a calibrated stereo system with 

parallel optical axes, the geometry looks like Figure 2.5. However, in reality the system 

can be arbitrarily general. 
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Figure 2.5: Idealized stereo vision geometry used to relate depth to disparity for a rectified 
system; where 𝑍 is the perpendicular distance from the camera system to the target 
(meters), 𝑓 is the lens focal length (pixels), 𝐵 is the baseline distance between cameras 
(meters), and 𝐷 is the disparity between common features in stereo images (pixels). The 
lens focal length and baseline distance parameters are determined from the stereo 
calibration process. 

Stereo camera parameters are estimated algorithmically by analyzing a sequence of 

calibration images. The images depict a planar calibration target containing a known 

regular grid pattern positioned at different orientations and tilts within the shared field of 

view of the two-camera system. The analysis is based on the pinhole camera model that 

has been modified to account for Seidel lens distortions [20]. The model sets up a 

parametric fitting process to solve the correspondence problem between 3D world 

coordinates and their analogous 2D image points. Moving the target around the field of 
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view, specifically introducing extreme amounts of out-of-plane tilt, improves the 

parametric fitting process by providing additional correspondence information between 

3D world coordinates and 2D image points [20]. The outputs of the pinhole 

correspondence problem are the intrinsic and extrinsic system parameters. The Seidel 

modification leverages the constraint that the planar grid pattern should appear uniform 

in corrected calibration images to calculate the coefficients required to remove lens 

distortions from subsequent images taken with the camera system. For this study, 

calibration was performed with two different standard Vic-3D calibration targets: 17 x 14 

dots with 2 mm spacing (high-magnification) and 17 x 14 dots with 6 mm spacing (low-

magnification). During each calibration, the targets were positioned at 40 different 

locations, orientations, and tilts within the shared camera field of view. 

Due to the nature of the parametric fitting process, calibration results will inherently 

contain errors that impact the depth measurement accuracy of stereo systems. Extremely 

thorough approaches for evaluating the sources of measurement error in generic stereo-

based systems have been demonstrated [21-22]. These methods would ultimately 

provide the most comprehensive characterization of system performance, and they 

should be applied when detailed system understanding is required. However, they are 

time-consuming and frankly excessive for the level of characterization we desire.  

We seek a simplified closed-form alternative that enables us to conservatively 

approximate the overall stereoscopic measurement uncertainty of a potential system 

based on hardware, configuration, and calibration error. If we wish to come up with a 

reasonable approximation for stereoscopic measurement uncertainty, then we need a 

numerical description of the error associated with the calibration results. Calibration 
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reprojection error describes the average pointwise deviation from the ideal pinhole 

camera model in pixels and it can be used to estimate point correspondence errors 

between stereo images [23]. Calibration of the high-magnification setup yielded a 

reprojection error of 0.073 pixels. The calibration process for the low-magnification 

configuration had a reprojection error of 0.064 pixels.  

Stereoscopic Z-Height Measurement Uncertainty 

The goal of this section is to provide a convenient closed-form approximation for 

stereoscopic depth measurement uncertainty as a function of vision system hardware, 

configuration, and calibration reprojection error. We start from the simple parallel optical 

axes system geometry, then reintroduce uncertainties associated with realistic 

implementation to arrive at a convenient equation for estimating stereo depth extraction 

performance. To be clear, the methods described in [21-22] will still provide the most 

comprehensive understanding of stereo system performance, and should be applied 

when detailed characterization of error sources is required for specific system 

instantiations. However, as shown through subsequent experimental validation, the 

closed-form approximation presented herein can be useful for broadly estimating 

stereoscopic depth measurement performance and applying confidence intervals to z-

height measurements made with generically configured stereo systems.  

From the geometry shown in Figure 2.5, it is straightforward to determine the 

relationship between a measured stereo pixel disparity 𝐷 and the corresponding distance 

𝑍 for an idealized stereo vision system, without misalignment, relative rotations, or lens 

distortions, such that resulting stereo image pairs are rectified [23]: 

𝑍 =
𝐵𝑓

𝐷
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where 𝐵 is the baseline distance between cameras and 𝑓 is the lens focal length. While 

this rectified geometry does not directly reflect the angled system implemented in this 

study, it also does not misinform the relationship between depth and disparity for the 

purposes evaluating uncertainty associated with stereo depth extraction. Image 

rectification is an established method in computer vision for simplifying the stereo depth 

extraction process in which stereo image pairs are projected onto a common image plane 

[20, 23]. In the present case, we are effectively performing a virtual system rectification 

as an alternative to subsequently rectifying stereo image pairs during post-processing. 

Therefore, errors associated with calibration and image interpolation will need to be 

included in our estimate for disparity measurement uncertainty to accurately reflect the 

equivalent post-processing rectification procedure [20].  

From the above result, the difference in any two z-height measurements taken with 

the same stereo vision system can be written as follows: 

𝛥𝑍 = 𝑍2 − 𝑍1 =
𝐵𝑓

𝐷2
−

𝐵𝑓

𝐷1
= 𝐵𝑓 (

𝛥𝐷

𝐷1𝐷2
) 

We can obtain the theoretical z-height measurement resolution by minimizing this 

result: 

𝑚𝑖𝑛(𝛥𝑍) = 𝐵𝑓 (
𝑚𝑖𝑛(𝛥𝐷)

𝐷2
) 

where min(Δ𝑍) is the theoretical resolution of stereoscopic z-height measurements, 

min(Δ𝐷) is the level of sub-pixel interpolation error associated with measuring pixel 

disparity between common features in stereo image pairs, and 𝐷1𝐷2 becomes 𝐷2 

because the two disparity values are virtually identical. This result considers the 

limitations of measuring pixel disparity from discrete digital data for a generalized stereo 
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vision system when subset size and stereo angle are properly considered in the 

estimation of 𝑚𝑖𝑛(𝛥𝐷). However, to realistically model the error associated with 

stereoscopic depth measurements, the error associated with the calibration process must 

also be incorporated in the estimate for disparity measurement uncertainty [20]. 

We can thus add the potential random variation described by the calibration 

reprojection error to the level of sub-pixel interpolation error to yield the following closed-

form approximation for stereoscopic z-height measurement error: 

𝑍𝑒𝑟𝑟𝑜𝑟 = 𝐵𝑓 (
𝑚𝑖𝑛(𝛥𝐷) + 𝜀

𝐷2
) 

where 𝜀 is the calibration reprojection error term. An alternative form of the above 

equation, more suitable for experimentation, can be written as follows: 

𝑍𝑒𝑟𝑟𝑜𝑟 = 𝑍2 (
𝑚𝑖𝑛(𝛥𝐷) + 𝜀

𝐵𝑓
) 

where 𝑍 is the distance from the stereo vision system to the measurement plane (optical 

working distance), which was measured as 600 mm during experimentation. A 

conservative estimate of 1/16th of a pixel for 𝑚𝑖𝑛(𝛥𝐷) is obtained by evaluating factors 

that contribute to sub-pixel interpolation error [20], including subset size, stereo angle, 

and the sub-optimal nature of the texture in images of metal powder surfaces being 

leveraged to perform template matching. The other variables were determined during 

stereo camera calibration, and the error associated with the virtual rectification process is 

contained in the reprojection error term. The average focal length of both cameras was 

used to calculate the stereoscopic z-height error in this study.  

Table 2.1 outlines the projected z-height measurement error for both instantiations of 

the prototype vision system used in this study. According to the results, the system was 
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projected to measure z-height variation within ±1.4 µm at high magnification and within 

±6.0 µm at low magnification.  For standard fixed focal length lenses, the focal length in 

pixels can be approximated by dividing the lens focal length by the sensor pixel size. 

However, for the high-magnification configuration, the use of 100 mm lenses in 

combination with 15 mm extension tubes altered the magnification properties such that 

the actual equivalent focal length was 158 mm according to calibration results. 

Consideration of this nonlinearity should be made when applying the approximation to a 

system with extension tubes in the future. 

Table 2.1: Projected z-height measurement error for both instantiations of the prototype 
vision system and the relevant stereo camera parameters used to perform the 
approximation.  

𝑳𝒆𝒏𝒔𝒆𝒔 𝒁𝒆𝒓𝒓𝒐𝒓 𝒁 𝒎𝒊𝒏(𝚫𝑫) 𝜺 𝑩 𝒇 

115 mm ±1.4 µm 600 mm 0.063 pixel 0.073 pixel 687 mm 51521 pixels 

35 mm ±6.0 µm 600 mm 0.063 pixel 0.064 pixel 676 mm 11328 pixels 

Figure 2.6 illustrates the sensitivity of these approximations to imprecise 

measurement of the optical working distance. It would take an error of over 50 mm to alter 

the projected measurement accuracy of the 35 mm instantiation by ±1 µm; the same error 

would only alter the projected measurement accuracy of the 115 mm instantiation by ±0.3 

µm. The result also demonstrates that the z-height measurement accuracy of this 
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technique is not significantly affected by out-of-plane variations in the powder bed, which 

typically do not exceed a few hundred microns.  

 

Figure 2.6: Sensitivity of the closed-form approximation to mismeasurements of working 
distance for both instantiations of the stereo vision system used in this study. 

 

Results 

Experimental Verification of Stereoscopic Z-Height Measurement Accuracy 

Among the goals of this study was to (1) verify the z-height measurement accuracy of 

the prototype stereo vision system and (2) provide experimental validation for the closed-

form approximation for z-height measurement accuracy derived in the previous section. 

A straightforward method for verifying the accuracy of a measurement system is to 

compare experimental measurement results against established known values. If the 

experimental results can also be corroborated with predicted performance, then we can 

justify validation of the closed-form approximation. In the case of the ProX 320, 
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adjustment of the build platform is highly controlled and known within a typical accuracy 

of ±0.2% the adjusted distance. Therefore, the build platform was utilized to create known 

changes in z-height that could be compared to the experimental values measured by the 

stereo vision system (Figure 2.7).  

 

Figure 2.7: (a) Strategy for experimental verification of stereoscopic z-height 
measurement accuracy (b) Diagram of the error associated with measuring changes in 
z-height created by adjusting the build platform position in the ProX 320. 

Three repeat stereo image pairs were initially acquired with the platform at a nominal 

position (Z = 0). Subsequent triads of stereo images were then acquired after the platform 

was dropped 30 µm below the nominal position (Z = 1) and again at 60 µm below the 

nominal position (Z = 2). After calibration (ε = 0.073 pixel), Vic-3D was used to measure 

the platform drops at nearly 9,000 locations within the field of view using 55-pixel subsets. 

Data for each platform position was obtained by correlating stereoscopic images taken at 

the dropped position with stereoscopic images from the nominal platform position. 

Multiple experimental trials were performed with no significant change in measurement 

results. Figure 2.8 shows representative results from a single trial plotted alongside the 

upper and lower theoretical bounds predicted by the closed-form approximation for 
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stereoscopic z-height measurement error. The code for generating this plot can be found 

in Appendix A. 

 

Figure 2.8: Plot of experimental ΔZ data with corresponding maximum and minimum 
bounds provided by the theory (ε = 0.073 pixel, min(ΔD) = 0.063 pixel, B = 687 mm, Z = 
600 mm). The 8,892 measurements made at each platform position are displayed as 
boxplots for convenience (yellow “+” indicates outliers). 

The primary reason for developing an approximation of the extreme limits of a 

stereoscopic measurement system is to establish a confidence interval that can be 

applied to all measurement results. In reality, it can be seen that the z-height 

measurement data is normally distributed, with a mean and standard deviation of -0.09 ± 

0.33 µm, 29.81 ± 0.56 µm, 59.46 ± 0.72 µm for platform drops of 0 µm, 30 µm, and 60 
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µm, respectively (where 0 µm indicates correlation with a repeat image pair at the nominal 

platform position). This means most measurements were accurate within ±Ze/2. However, 

the critical observation is that all measurement data, including outliers, falls within the 

range predicted by the closed-form approximation. Based on this result, it is logical to 

conclude that we have developed a valid model for predicting the extent of stereoscopic 

z-height measurement error for a particular vision system. It should be noted that failure 

to include the calibration reprojection error term would cause approximately 25% of the 

z-height measurement data to fall outside of the predicted range.  

In-Situ Layer-Wise 3D Surface Measurements in Metal SLM 

The accuracy-verified prototype system was applied to monitor layer-wise 3D surface 

variation during the SLM fabrication of a turbine from Inconel 718. For this analysis, the 

cameras were equipped with 35 mm lenses to accommodate the entire 203 mm x 135 

mm build platform in the ProX 320. With a spatial resolution of 48 µm/pixel, surface 

measurements were made every 3 pixels (144 µm) using 55-pixel subsets. According to 

the validated closed-form approximation for stereoscopic measurement accuracy, 

pointwise z-height measurements are reliable within ±6.0 µm.  

The layer-wise z-height data obtained from monitoring the turbine build exposed a 

significant amount of inherent variation within the SLM build process. This becomes 

immediately apparent when looking at a side-by-side comparison of powder spread 

surface variation from the beginning and end of the build (Figure 2.9). The ProX 320 

utilizes a silicone spreader blade to distribute powder onto the build platform. Over the 

course of a build, the edge of the silicone material accumulates damage from repetitively 

encountering sharp metal surfaces during the spreading process. The result is that by the 
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end of this particular build, the z-height variation within the spread powder surface was 

nearly three-times greater than the 30 µm layer thickness used to construct the turbine. 

On a layer-by-layer basis, there is even more to be learned about the SLM process. 

 

Figure 2.9: Side-by-side comparison of powder spread surface variation from before and 
after the build over the same 70 mm x 90 mm area. 

Figure 2.10 shows a side-by-side comparison of z-height data from typical build layers 

with right and left spread directions. The first noteworthy phenomenon is that powder 

accumulates near part edges as a function of spread direction. More specifically, the 

silicone spreader blade tended to deposit isolated mounds of powder immediately after 

passing over the fused part geometry. Although it is not clear why this behavior occurs, it 

is possible that lifted part edges impart mechanical forces on the blade that persist due 

to the visco-elastic properties of the silicone material.  
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Figure 2.10: Side-by-side comparison of build layers with right and left spread directions; 
observations include directional powder accumulation, fused material densification, and 
a broad band of depressed powder across the span of the fused region due to thermal 
expansion of the silicone spreader blade. 

The second phenomenon illustrated in Figure 2.10 is that the fused material region is 

considerably depressed compared to the surrounding unfused powder, with a typical 

difference in elevation between 50 and 200 µm. The elevation disparity is clearly a 

function of material densification during the fusing process, when powder particles are 

melted and bonded to the solid structure below. While the concept of layer-wise material 

densification in PBF AM is not necessarily novel, it is revealing to observe systematic 

powder bed variations over six-times greater than the 30 µm layer thickness used in this 

build. These deep valleys result in subsequent powder layers that are significantly thicker 
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than expected, which contributes to insufficient material fusion and porosity in the final 

part. 

Finally, Figure 2.10 reveals a broad band of depressed powder that developed parallel 

to the spread direction across the span of the fused material region. The unfused powder 

within this band is up to 60 µm lower than powder outside of the fused material region. A 

possible explanation for this phenomenon is that the silicone blade is picking up heat from 

the fused material and thermally expanding, thus pushing down into the powder bed as 

spreading occurs.  

In addition to the powder surface observations described above, the layer-wise z-

height data produced by the stereo measurement system uncovered anomalous process 

behavior that ultimately resulted in a noticeable surface defect in the final part (Figure 

2.11). A deep gouge formed parallel to the spread direction and persisted over several 

layers due to a large particle sweeping back-and-forth across the powder bed. The 

particle eventually adhered to the part surface and the anomalous behavior disappeared. 

The disconcerting fact that this irregularity did not cause the build to abort emphasizes 

the need for in-situ monitoring in PBF AM. If not located on a visible surface, the defect 

would have gone undetected without this technique. 
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Figure 2.11: Anamolous process behavior showing a deep gouge in the powder bed and 
the resulting surface defect in the final part. 

 

Conclusions 

In this manuscript, we have demonstrated an accuracy-verified technique for 

monitoring the 3D build surface variation in metal SLM. The technique leverages a stereo 

vision system along with concepts and algorithms utilized in established high-precision 

optical surface measurement techniques, such as 3D DIC, to achieve z-height 

measurement accuracy on the order of one-tenth the spatial resolution of the camera 

system. Optimizations to optical configuration, lighting, and camera calibration can be 

made to further improve measurement capabilities in future system instantiations. With 

this level of measurement precision, it is possible to observe the subtle layer-wise build 

surface variations that contribute to anomalous behavior and consistency issues 
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associated with PBF systems. Documented observations include broad powder surface 

height variations, spreader bar wiper blade wear, interactions between powder spreading 

and part geometry, and powder irregularities linked to a focal build defect.  

Future work will involve extending stereoscopic surface measurements into a set of 

build variance metrics that describe the PBF process zone. Applied powder layer 

thickness, material densification, and incremental build height can be calculated from 

layer-wise z-height when proper datum concepts are applied. Theoretically, these metrics 

are also useful for determining real-time parameter adjustments that address the inherent 

process variations exposed herein.  
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Abstract 

Powder Bed Fusion (PBF) techniques are Additive Manufacturing (AM) technologies 

that construct parts through the process of sequentially spreading and fusing thin layers 

of powder. Although high quality potential has been demonstrated in the realm of metal 

AM, improvements to the consistency and repeatability of these techniques is required 

before they can be reliably used as production solutions for quality critical industries. As 

the industry moves towards in-process control to reduce variability, there is a need for in-

situ sensing systems that characterize process variation and analytical techniques for 

relating sensor data back to input parameters. This work extends in-situ stereoscopic 

measurement data to into layer-wise Build Variance Metrics (BVM) that describe the 

process zone permutations in PBF. We also describe how the resulting information can 

be used to perform in-process parameter adjustment with closed-loop feedback. The 

pointwise uncertainty associated with sample stereoscopic BVMs is estimated to be ±12.0 

µm, while accurate x-y spatial reconstruction is observed for features above 480 µm in 

size through numerical simulation of spatial convolution effects. Improved performance 

can be achieved by increasing the effective spatial resolution of the camera system, 

enhancing image contrast, or both. 

 

Introduction 

Additive Manufacturing (AM) is the process of constructing parts through the 

incremental addition of material. Powder Bed Fusion (PBF) techniques, such as Selecting 

Laser Melting (SLM), are a subset of AM technologies that perform this task by 

sequentially spreading and fusing thin layers of powder. These techniques have recently 
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seen an increase in popularity, especially in the realm of metal AM, because they produce 

high-strength parts with higher feature resolution and tighter dimensional accuracy than 

wire or powder feed systems [1]. State of the art systems are even capable of fabricating 

functional metal components with shorter lead times and lower direct costs than traditional 

manufacturing methods [2]. However, the same layer-by-layer build process that gives 

metal PBF technologies their unprecedented speed and flexibility also creates 

tremendous challenges regarding quality assurance [2-4]. Although high quality potential 

has been demonstrated, improvements to the consistency and repeatability of these 

techniques is required before they can be reliably used as production solutions for quality 

critical industries [2-4]. Furthermore, for AM to really thrive in these industries, it has to 

be able to produce parts with less effort and in fewer iterations than traditional 

manufacturing methods. 

Repeatability issues in PBF are due in part to a fundamentally variable layer 

construction process. Spreading and fusion layering operations have been shown to 

produce significant out-of-plane surface variation that can evolve throughout the course 

of a build [5-6]. Despite known variability, critical input parameters such as layer 

thickness, laser energy, scan speed, and scan pattern are held fixed over the entire build 

process [2]. A conceivably better approach would be to adjust the process in response to 

observed variations in layer thickness, which is known to directly impact final part 

properties [4]. For this to be realized, there is a need for in-situ sensing systems that 

characterize the complex and interdependent layering operations [7] and analytical 

methods that relate sensor data back to input parameters [8].  
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Researchers have recently demonstrated the use of in-situ metrology techniques to 

monitor 3D build surface variation in AM. Land et al. implemented a fringe projection 

system to monitor post-fuse powder surface variation in metal SLM with a relatively high 

vertical noise floor of 20 µm over a 100 mm2 area [9]. Holzmond et al. showed that in-situ 

stereo vision could be used to identify defects in fused deposition modeling when a 

texturing agent is added [10]. However, neither of these approaches address the problem 

of characterizing powder bed system process variation in the context of the 

interdependent layering operations they employ. Additionally, the out-of-plane accuracy 

demonstrated by fringe projection techniques [9] would likely be insufficient for this work 

considering that characterizing the layer construction operations will require calculations 

that compound inherent measurement system error. 

Sufficient description of the layer construction process requires the measurement and 

subsequent comparison of post-spread and post-fuse surface variation. For example, the 

thickness of an applied powder layer is determined not only by the variation of the post-

spread powder surface, but also by the underlying variation in the fused surface from the 

prior layer. By the same logic, the material densification experienced during layer fusion 

will be a function of build surface variation measured before and after fusing occurs. 

These incremental build volume changes occur in what we are calling the PBF process 

zone, the interface between successive build surfaces. This work seeks the extraction of 

quantitative information that describes all permutations of the process zone (Figure 3.1), 

meaningful metrics that can be related to input parameters in powder bed systems. 



41 
 

 

 

Figure 3.1: Illustration showing successive build surfaces, process zone permutations 
and corresponding build variance metrics. (a) Successive fused and unfused surfaces 
describe powder layer thickness (b) Successive unfused and fused surfaces describe 
material densification (c) Successive fused surfaces describe incremental build height. 

In this manuscript, we extend in-situ stereoscopic build surface measurements in 

metal SLM to calculate local measures of powder layer thickness, material densification, 

and incremental build height. We are calling these measures Build Variance Metrics 

(BVMs). If appropriately applied, these metrics can be used to determine necessary real-

time parameter adjustments to correct for observed in-process variation. Observations 

include spread-direction and geometry-dependent variation in powder layer thickness, 

inconsistent material densification, and discrepancies between measured and assumed 

build height based on nominal layer thickness values. A root of the sum of the squares 

(RSS) uncertainty analysis [11] is conducted to estimate the pointwise uncertainty in the 
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BVMs presented, and a numerical simulation is used to determine the spatial feature 

resolution limitations associated with stereoscopic surface reconstruction. 

Materials & Methods 

Experimental Setup 

For this study, a stereo vision system was integrated into a ProX 320 (3D Systems) 

production metal SLM machine and used to acquire in-situ images of the build surface 

after spreading and again after fusing (Figure 3.2). The ProX 320 utilizes a silicone 

spreader bar to distribute powder onto a build platform before selectively fusing it with a 

laser energy source.  

 

Figure 3.2: ProX 320 SLM machine and conceptual stereo integration plan. 

The vision system employed two Grasshopper3 12MP USB 3.0 cameras with 4240 

pixel x 2824 pixel resolution (3.1 µm pixel size) on a 1” format monochromatic CCD sensor 

(Point Grey). The cameras examined the build platform from above, through custom 

viewing windows designed to interface with pre-existing access ports (Figure 3.3). Inside 

of the chamber, a cross-polarized lighting scheme was implemented to adequately 

illuminate the powder bed and suppress reflections. With the cameras located outside of 
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the vacuum chamber to avoid extreme environmental conditions, the optical working 

distance was measured to be 600 mm. The precise baseline distance and relative camera 

angles were determined from the extrinsic calibration parameters. However, the distance 

between cameras was roughly 687 mm and the cameras were approximately 27º from 

vertical. In this configuration, the cameras were equipped with 35 mm lenses to 

accommodate the entire 203 mm x 135 mm build platform at a spatial resolution of 48 

µm/pixel. At this resolution, images of metal powder and fused surfaces exhibit a locally 

unique surface pattern that supports the use of stereo image correlation to reconstruct 

3D surface geometry.  

 

Figure 3.3: Actual vision system implementation with custom viewing windows (left) and 
polarized internal chamber lighting (right). 

Figure 3.4 shows example images of the 102 mm x 76 mm sub-region of the build 

platform analyzed in this study. The extrusion-type geometry was constructed from 

stainless steel 316L with a particle size distribution (PSD) of 45 ± 15 µm. The nominal 

layer thickness for the build was set to 60 µm.  
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Figure 3.4: Example high-resolution images of unfused and fused stainless steel 316L 
powder surfaces (102 mm x 76 mm). 

Stereoscopic Depth Extraction using 3D Digital Image Correlation 

3D surface measurements were extracted from stereoscopic images of the build 

platform using 3D Digital Image Correlation (DIC) [12]. In traditional DIC applications, a 

white light speckle pattern is applied to the surface of the specimen to provide a locally 

distinguishable pattern for reliable tracking from image-to-image (Figure 3.5). In this 

application, the optical similarity of metal powder surfaces to white light speckle patterns 

is leveraged as a tracking mechanism to locate common features in stereo image pairs.  
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Figure 3.5: The optical similarity between illuminated metal powder and white light 
speckle is leveraged to extract 3D surface measurements from stereoscopic images of 
the SLM powder bed. 

The commercial DIC measurement software Vic-3D (Correlated Solutions) was 

employed to perform stereo correlation and reconstruct 3D surfaces for both unfused and 

fused powder surfaces. Surface measurements were extracted within the analysis region 

at control points spaced by 5 pixels (~240 µm) using 55-pixel subsets. Stereo camera 

calibration is required to reconstruct 3D surfaces using Vic-3D. The system used in this 

study was calibrated using a standard Vic-3D dot grid target (17 x 14 dots with 6 mm 

spacing). The target was imaged at 40 different locations, orientations, and tilts within the 

shared camera field of view. Calibration of the prototype system for this study yielded a 

reprojection error (epipolar error) of 0.064 pixels. Reprojection error describes the 

average pointwise deviation from the ideal pinhole camera model in pixels, which can be 

used to estimate point correspondence errors between two images [13]. 

The output of the Vic-3D analysis is 3D point cloud information of the form [𝑋, 𝑌, 𝑍] in 

world metric coordinates. However, since the measurements were made according to a 

regularly spaced pixel grid (control points), the planar sampling location in world 
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coordinates will vary slightly from surface-to-surface due to platform drops and general 

build surface height variations. To address this discrepancy, the z-height data associated 

with each surface was resampled onto a consistent spatial grid using cubic spline 

interpolation at a spacing of 240 µm (code found in Appendix B). Registering the data in 

this way yields a comprehensive set of layer-wise z-height data of the form: 

𝑍(𝑋, 𝑌)𝑁,𝑢𝑛𝑓𝑢𝑠𝑒𝑑 

and 

𝑍(𝑋, 𝑌)𝑁,𝑓𝑢𝑠𝑒𝑑 

where 𝑁 is used to denote the build layer number. For visualization purposes, it is 

convenient to display the data as contour maps (Figure 3.6), which we refer to as “z-

height maps”. The registered z-height data can also be extended to calculate layer-wise 

variance measures that relate directly to Powder Bed Fusion (PBF) process parameters.  

 



47 
 

 

 

Figure 3.6: Z-height maps showing out-of-plane build surface variation in SLM as a color 
map; unfused maps display measured variation in post-spread surfaces and fused maps 
display measured variation in post-fusion surfaces (102 mm x 76 mm). 

 

Build Variance Metrics (BVMs) 

This section demonstrates the extension of in-situ stereoscopic z-height data to 

calculated layer-wise measures of powder layer thickness, material densification, and 

incremental build height. We also discuss potential ways the measures could be used to 

perform in-process parameter adjustments in PBF. We are calling these measures BVMs. 

Each BVM describes one permutation of powder bed process zone and thus assists in 

describing the layer construction operations (Figure 3.7).  
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Figure 3.7: Illustration showing cross-section view of the powder bed and developing 
part, where successive build surfaces define the process zone. We seek accurate 
characterization of all process zone permutations to fully describe PBF AM.  

Powder Layer Thickness 

Powder layer thickness is a critical process parameter in PBF. The thickness of an 

unfused powder layer impacts requirements for laser power, scan speed, and scan 

pattern [4]. Due to known surface variations in PBF (5-6, 9), powder layer thickness is 

unlikely to remain consistent and uniform throughout the course of a build. When 

unaccounted for, deviations in layer thickness significantly impact the mechanical 

properties of parts in metal SLM [14]. With in-process measurements of powder layer 

thickness, dependent input parameters could be adjusted as a function of observed 

variations to mitigate these effects. In this section, we show how layer-wise 

measurements of powder layer thickness can be extracted from in-situ stereoscopic z-

height data. 

The thickness of applied powder at layer N can be calculated using z-height data 

acquired before and after the powder spreading operation. Mathematically, the definition 

for extracting powder layer thickness from z-height data is written as follows: 

𝑇(𝑋, 𝑌)𝑁 = 𝑍(𝑋, 𝑌)𝑁, 𝑢𝑛𝑓𝑢𝑠𝑒𝑑 − 𝑍(𝑋, 𝑌)𝑁−1,𝑓𝑢𝑠𝑒𝑑 + Δ𝑍𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 
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where 𝑇(𝑋, 𝑌)𝑁 is the thickness of applied powder at layer 𝑁, 𝑍(𝑋, 𝑌)𝑁, 𝑢𝑛𝑓𝑢𝑠𝑒𝑑 is the 

measured variation in the post-spread powder surface at layer 𝑁, 𝑍(𝑋, 𝑌)𝑁−1,𝑓𝑢𝑠𝑒𝑑 is the 

z-height variation in the fused powder surface at layer 𝑁 − 1, and Δ𝑍𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 is the 

distance the platform drops before spreading occurs. Figure 3.8 illustrates the concept of 

using the fused powder surface profile from the previous layer as an updating datum for 

calculating the actual thickness of a freshly applied powder layer. Depending on the 

accuracy and repeatability of the build platform in the printer, Δ𝑍𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 can either be 

determined from system specifications or measured experimentally. In the case of the 

ProX 320 SLM machine used in our study, adjustment of the build platform is highly 

controlled and known within a typical accuracy of ±0.2% of the adjusted distance. 

Therefore, the assumption for this study was that the build platform consistently dropped 

by the nominal 60 µm layer thickness. 

 

Figure 3.8: Datum relationships used to calculate a measure of spatially resolved powder 
layer thickness from stereoscopic z-height data measured before and after the PBF 
spreading operation. 

Figure 3.9 shows example powder layer thickness maps calculated from SLM build 

data for each spread direction. In these maps, colors indicate the measured thickness of 

applied powder at specific locations across the build platform. The first thing we notice 

when analyzing the maps is that applied layer thickness varies considerably over the 
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analysis region. Measured values range from 20 µm to 200 µm, or one-third to over triple 

the intended 60 µm nominal thickness. We can also deduce that thick powder regions 

generally correspond to areas above fused part surfaces. This is likely a function of 

material densification experienced during the previous fusion operation, which is 

corroborated by the fact that the approximate fused part geometry is outlined in the 

thickness map. In contrast to the regions of thick powder seen in Figure 3.9, there are 

clear pockets of undercoating that occur in several locations across the powder bed. 

Further, the locations where undercoating occurs tend to shift as a function of spread 

direction and part geometry. 

 

Figure 3.9: Powder layer thickness maps extracted from sample SLM build data for both 
spread directions (102 mm x 76 mm). 
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Based on this information, the optimization of input parameters, such as laser energy, 

based on an assumed layer thickness seems decidedly sub-optimal. The information 

provided by powder layer thickness maps could instead be used to spatially adjust laser 

power, scan speed, and scan pattern as a function of available fusible material. Localized 

optimization of these parameters could theoretically improve mechanical properties [14], 

reduce porosity [15] and improve surface roughness [16] in PBF parts.  

Material Densification 

Material densification in PBF is a function of laser power, scan speed, scan pattern, 

layer thickness, and spread density [4]. Since we now have the ability to measure local 

layer thickness values, material densification information could be used to provide 

feedback to parameter adjustments we make according to powder layer thickness maps. 

It can also provide insight into difficult to measure characteristics, such as spread density 

[17]. In this section, we show how layer-wise measures of material densification can be 

extracted from in-situ stereoscopic z-height data. 

The change in build surface height due to material densification at layer N can be 

calculated by taking the mathematical difference between z-height data measured before 

and after the fusing operation occurs: 

𝐷(𝑋, 𝑌)𝑁 = 𝑍(𝑋, 𝑌)𝑁, 𝑢𝑛𝑓𝑢𝑠𝑒𝑑 − 𝑍(𝑋, 𝑌)𝑁,𝑓𝑢𝑠𝑒𝑑 

where 𝐷(𝑋, 𝑌)𝑁 is the out-of-plane material densification due to fusion at layer 𝑁, 

𝑍(𝑋, 𝑌)𝑁, 𝑢𝑛𝑓𝑢𝑠𝑒𝑑 is the measured variation in the post-spread powder surface at layer 𝑁, 

and 𝑍(𝑋, 𝑌)𝑁,𝑓𝑢𝑠𝑒𝑑 is the measured variation in the post-fusion powder surface at layer 𝑁.  

Figure 3.10 shows example material densification maps calculated from SLM build 

data for each spread direction. In these maps, colors indicate the change in build surface 
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height due to material densification at specific locations across the build platform. As 

expected, larger amounts of densification occur within the vicinity of the scanned section 

geometry. However, it is less expected that densification in these regions varies 

parabolically from 120 µm at the center to 60 µm near the edges. Depending on whether 

the profile extends beyond the part boundary, this parabolic densification behavior could 

introduce systematic porosity gradients within fused part geometries [15] or contribute to 

surface roughness issues commonly associated with PBF parts [16]. In either case, 

accounting for this variation during parameter optimization would likely improve final part 

quality. 

 

Figure 3.10: Material densification maps extracted from sample SLM data for both spread 
directions (102 mm x 76 mm). Evidence of part curl due to residual stress buildup can be 
seen in near the bottom right-corner of the map.   
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Figure 3.10 also displays evidence of part curl associated with the build-up of residual 

stresses [18]. In the bottom right-corner of the densification map, we can see that the 

build surface height changes are in the opposite direction as expected. From the raw 

images in Figure 3.3, it becomes apparent that there is an elevated mound of powder that 

has formed within this vicinity.  

In addition to identifying irregular process behavior, the information in material 

densification maps could be used to iteratively optimize the adjustments made to input 

parameters according to powder layer thickness maps. The feedback provided by 

densification maps could be used to determine if particular parameter adjustments were 

insufficient, excessive, or on target. In this theoretical control system, powder layer 

thickness and material densification maps would effectively function as opposite ends of 

a feedback loop to control the PBF process. The configuration could be used to vastly 

decrease the number of iterations required to optimize process parameters and provide 

the foundation for a machine learning approach to PBF process control.  

Incremental Build Height 

Incremental build height combines layer-wise measurements of powder layer 

thickness and material densification to provide a high-level evaluation of build 

performance. While localized optimization of process parameters is being conducted at 

the layer level, incremental build height measurements can be used to assure the build 

is progressing towards a successful finish. In this section, we describe a method for 

extracting a layer-wise measure of incremental build height from in-situ stereoscopic z-

height data. 



54 
 

 

We can calculate a measure of incremental build height by considering the effect of 

material densification in combination with measured powder layer thickness. For 

conceptual purposes, we can mathematically define a so-called fused layer thickness that 

represents the incremental addition of material to the build volume following both layering 

operations (spreading and fusing): 

𝐹(𝑋, 𝑌)𝑁 = 𝑇(𝑋, 𝑌)𝑁 − 𝐷(𝑋, 𝑌)𝑁 

where 𝐹(𝑋, 𝑌)𝑁 represents the thickness of fused and unfused material added to the build 

volume during the creation of layer 𝑁, 𝑇(𝑋, 𝑌)𝑁 is the thickness of applied powder at layer 

𝑁, and 𝐷(𝑋, 𝑌)𝑁 is the out-of-plane material densification experienced during fusion at 

layer 𝑁. From this result, we can construct a measure of the incremental build height at 

layer 𝑁 by summing all fused layer thicknesses occurring up to that point: 

𝐻(𝑋, 𝑌)𝑁 = ∑ 𝐹(𝑋, 𝑌)𝑖

𝑁

𝑖=1

 

where 𝐻(𝑋, 𝑌)𝑁 is the measured incremental build height at layer 𝑁. Through substitution 

and simplification, the above result can be written conveniently in terms of measured z-

height data: 

𝐻(𝑋, 𝑌)𝑁 = ∑[𝑍(𝑋, 𝑌)𝑖,𝑓𝑢𝑠𝑒𝑑 − 𝑍(𝑋, 𝑌)𝑖−1,𝑓𝑢𝑠𝑒𝑑 + Δ𝑍𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚]

𝑁

𝑖=1

 

where 𝑍(𝑋, 𝑌)𝑖,𝑓𝑢𝑠𝑒𝑑 and 𝑍(𝑋, 𝑌)𝑖−1,𝑓𝑢𝑠𝑒𝑑 are the measured variation for each post-fusion 

powder surface from layer 1 to 𝑁, 𝑍(𝑋, 𝑌)0,𝑓𝑢𝑠𝑒𝑑 is the platform surface variation, and 

Δ𝑍𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 is the distance the platform drops before spreading occurs. For this study, 

platform variation is assumed to be negligible, so 𝑍(𝑋, 𝑌)0,𝑓𝑢𝑠𝑒𝑑 becomes an array 

populated with zero values. 
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Figure 3.11 shows incremental build height measurements according to the above 

equation juxtaposed against the incremental build height resulting from a perfect process 

producing nominal 60 µm layers. The side-by-side comparison exposes significant 

discrepancies between assumed and measured values both on a layer-by-layer basis and 

over the course of several layers. After seven layers, the height of the as-built geometry 

is lower than expected by approximately 100 µm. Depending on tolerance requirements, 

the accumulation of these deviations could quickly cause a part to go out of specification.  

 

Figure 3.11: Incremental build height measurements provide a high-level indication of 
process performance. When not accounted for, deviations from expected build height 
perpetuate the knowledge gap between process inputs and outputs, and contribute to 
repeatability issues in PBF AM. 

In a passive application, incremental build height measurements can be used to 

monitor long-term trends, evaluate the fidelity of as-built layers compared to design 

geometry, and accurately document the 3D location of observed defects within the build 

volume. However, they could also be used to determine real-time adjustments to nominal 

layer thickness values that account for discrepancies in build height throughout the course 

of the build.  
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Stereoscopic Z-Height Measurements and Metric Uncertainty 

The z-height data and related BVMs metrics presented in this manuscript will contain 

error due to uncertainties in both the stereo correlation and calibration processes. 

Rigorous methods for comprehensively evaluating the sources of measurement error 

associated with generic stereo-based systems have been demonstrated [19-20], however 

they require extensive characterization and Monte Carlo experimentation to evaluate 

individual system configurations at a level of detail which is both unnecessary for this 

application and impractical for the streamlined environment of AM. What we desire is a 

convenient design tool that will enable the specification of appropriate system 

components as a function of desired performance and constraints. Therefore, this section 

aims to demonstrate an alternative method for conservatively estimating the z-height 

measurement performance of a stereo system according to the primary design variables. 

We perform an uncertainty analysis on the stereoscopic depth extraction process using 

a standard root of the sum of the squares (RSS) approach [11]. Then we use the approach 

to approximate the error associated with the z-height data and related BVMs presented 

in this work. The derived closed-form result can also be applied to specify system 

components and configurations according to desired performance.  

In the RSS approach, an estimation of the total uncertainty associated with the 

calculated result 𝑅 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) can be obtained from the uncertainties of the 

individual variables: 

𝜔𝑅 = (∑ [𝜔𝑥𝑖

𝜕𝑅

𝜕𝑥𝑖
]

𝑛

𝑖=1

2

)

1/2
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where 𝜔𝑅 is the estimate of the total uncertainty in the calculated result 𝑅, 𝜔𝑥𝑖
 is the 

estimate of the uncertainty in variable 𝑥𝑖, and 𝜕𝑅/ 𝜕𝑥𝑖 is the sensitivity coefficient for the 

variable 𝑥𝑖. From the geometry in Figure 3.12, we can determine the relationship between 

a measured stereo pixel disparity 𝐷 and the corresponding distance 𝑍 for an idealized 

stereo vision system without misalignment, relative rotations, or lens distortions, such that 

resulting stereo image pairs are rectified: 

𝑍 =
𝐵𝑓

𝐷
 

where 𝐵 is the baseline distance between cameras and 𝑓 is the lens focal length. While 

this rectified geometry does not directly reflect the angled system implemented in this 

study, it also does not misinform the relationship between depth and disparity for the 

purposes evaluating uncertainty associated with stereo depth extraction. Image 

rectification is an established method in computer vision for simplifying the stereo depth 

extraction process in which stereo calibration and image interpolation errors contribute to 

disparity measurement uncertainty [12]. In the present case, we are effectively performing 

a virtual system rectification as an alternative to subsequently rectifying stereo image 

pairs during post-processing. Therefore, the errors associated with stereo calibration and 

image interpolation will need to be included in our estimate for disparity measurement 

uncertainty as would be the case with an equivalent post-processing rectification 

procedure [12].  



58 
 

 

 

Figure 3.12: Idealized parallel optical axes stereo system geometry; where 𝑍 is the 
perpendicular distance from the camera system to the target (meters), 𝑓 is the lens focal 
length (meters), 𝐵 is the baseline distance between cameras (meters), and 𝐷 is the 
disparity between common features in stereo images (pixels). 

Plugging the depth-to-disparity relationship into the RSS yields the factors that 

contribute to z-height measurement uncertainty for a rectified stereo vision system:  

𝜔𝑍 = ([𝜔𝑍𝐷

𝐵𝑓

𝐷2
]

2

+ [𝜔𝑍𝐵

𝑓

𝐷
]

2
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]

2

)

1/2

 

where 𝜔𝑍 is the estimate for z-height measurement uncertainty, 𝜔𝑍𝐷
 is the estimate of the 

uncertainty in the stereo pixel disparity 𝐷, 𝜔𝑍𝐵
 is the estimate of the uncertainty in the 

baseline distance 𝐵, and 𝜔𝑍𝑓
 is the estimate of the uncertainty in the camera focal length 

𝑓. While this formulation is useful for isolating the sensitivity associated with absolute 
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stereo pixel disparity, it is difficult to interpret in a physical sense. A more practical 

arrangement would replace 𝐷 with relevant system design variables. An equivalent 

version of the above equation can be written as follows: 

𝜔𝑍 = ([𝜔𝑍𝐷

𝑍2

𝐵𝑓
]

2

+ [𝜔𝑍𝐵

𝑍

𝐵
]

2

+ [𝜔𝑍𝑓

𝑓

𝐵
]

2

)

1/2

 

where 𝑍 is the distance from the stereo vision system to the measurement plane (optical 

working distance). In this more intuitive form, we can see that the first term contains all of 

the relevant design variables. Also, since a rectified system geometry was used, 

uncertainties associated with determining 𝐵 and 𝑓 through stereo calibration will 

ultimately contribute to disparity measurement uncertainty as well [12]. Furthermore, we 

see that the second and third terms have relatively low sensitivity coefficients compared 

to the first, which means including the calibration uncertainty in the first term will actually 

produce a conservative estimate. Therefore, we disregard the contribution of the final two 

terms and arrive at the following approximation for stereoscopic z-height measurement 

uncertainty: 

𝜔𝑍 = [𝜔𝑍𝐷

𝑍2

𝐵𝑓
] 

To realistically approximate stereoscopic depth extraction error for angled systems 

using our rectified system geometry, the uncertainty variable 𝜔𝑍𝐷
 must include errors 

associated with both sub-pixel interpolation and stereo camera calibration [12]. The 

combined result also needs to be converted to consistent units, which can be done by 

multiplying the uncertainty estimates by the sensor pixel size scaling factor: 

𝜔𝑍𝐷
= (𝜔𝑖 + 𝜔𝜀)𝑠𝑝 
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where 𝜔𝑖 is the uncertainty in sub-pixel interpolation of discrete digital image data for 

stereo matching, 𝜔𝜀 is the uncertainty in calibration given by the reprojection error, and 

𝑠𝑝 is the sensor pixel size. A conservative estimate of 1/16th of a pixel is obtained for 𝜔𝑖 

by evaluating factors that contribute to sub-pixel interpolation error [12], including subset 

size, stereo angle, and the sub-optimal nature of the texture in images of metal powder 

surfaces being leveraged to perform template matching. The remaining values used to 

approximate stereoscopic z-height measurement uncertainty for the system used in this 

study are found in Table 3.1. 

Table 3.1: Predicted z-height measurement uncertainty for the stereo vision system and 
the relevant stereo camera parameters to perform the approximation.  

𝝎𝒁 𝒁 𝑩 𝒇 𝝎𝒊 𝝎𝜺 𝒔𝒑 

±6.0 µm 600 mm 676 mm 35 mm 0.063 pixel 0.064 pixel 3.1 µm/pixel 

The result indicates a total uncertainty of ±6.0 µm for the z-height measurements 

extracted from each stereo image pair. In other words, the out-of-plane measurement 

uncertainty associated with each z-height map is ±6.0 µm. To determine how this impacts 

the accuracy of the presented BVMs, we will conservatively assume the worst-case 

pointwise error for each z-height measurement. In this case, the uncertainty in each BVMs 

would be equal to the product of the z-height measurement uncertainty and the number 

of z-height maps used to perform the calculation. By this logic, since each BVMs is 

calculated using data from two z-height maps, the worst-case uncertainty associated with 

the results is ±12.0 µm. If we also consider the 0.2% typical uncertainty in ProX 320 build 

platform adjustments, then the uncertainty in both powder layer thickness and fused layer 

thickness would include an additional ±0.1 µm. Although the contribution from platform 

position is not significant in this study, it is still recommended that the effect of platform 
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accuracy is considered when determining the uncertainty of BVMs. This is particularly 

relevant in cases where platform position is less reliable or unknown and needs to be 

measured experimentally.  

Considerations Regarding Spatial Feature Resolution in Reconstructed Surfaces  

The process of using template (subset) matching to measure pointwise disparities in 

stereoscopic images will ultimately cause the resulting 3D surface data to experience a 

spatial smoothing effect during reconstruction similar to convolution [21] in image 

processing. In DIC, spatial convolution is commonly described as the loss of feature 

resolution in reconstructed surfaces incurred as a function of increasing subset size and 

measurement spacing [12]. In the previous section, the absolute pointwise error due to 

subset-based stereoscopic depth extraction was evaluated, then used to define an 

uncertainty interval for the BVMs presented in this study. Here we consider practical 

limitations associated with the feature resolution of stereoscopically reconstructed 

powder surfaces.  

In addition to subset size and measurement spacing, the impact of feature smoothing 

in DIC will also depend on characteristics of the actual surface being measured. For this 

reason, it is difficult to directly quantify the error associated with spatial smoothing for 

generalized surface reconstruction. Therefore, we will utilize a numerical simulation to 

demonstrate what the effect of spatial convolution looks like for various scales of surface 

features encountered in AM powder beds. For simplicity, the simulation is performed 

along one planar dimension under the justification that convolution effects can be 

extrapolated dimensionally without loss of meaning [21].  
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To create the simulated surface shown in Figure 3.13, we first constructed a 

reasonable 2D representation of unfused powder surface height according to the PSD 

used in this study (45 ± 15 µm). This was done by generating a random vector of numbers 

in the range ±0.030 mm over a span of 2,125 pixels (equivalent to the analysis dimension 

perpendicular to the spread direction at a spatial resolution of 0.048 mm/pixel). Step 

functions of -0.100 mm were subsequently added to represent fused material regions of 

width 2.40 mm (50 pixels), 1.20 mm (25 pixels), 0.480 mm, and 0.240 mm (5 pixels) 

labeled A-D. The reconstructed surface shown in Figure 3.13 was generated by 

convolving the simulated surface with a gaussian window of 55 pixels and sample spacing 

of 5 pixels, representative of the stereo search parameters used in this study. The code 

for this simulation can be found in Appendix C. 

 

Figure 3.13: Simulated 2D representation of powder bed surface height and the resulting 
effect of spatial convolution during reconstruction for a Gaussian window of 55 pixels 
sampled every 5 pixels. High frequency random variation represents individual unfused 
particles and step functions represent fused powder regions of various widths (50, 25, 10, 
and 5 pixels: labeled A-D). 
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From the analysis, we can see that the results presented in this study are not suitable 

for evaluating surface roughness at the particle level. The high frequency particle-level 

variation is reconstructed with significant aliasing in the convolved surface. This is to be 

expected considering that our sampling rate of 5 pixels (240 µm) is 10-times below the 

Nyquist frequency of the variation representing individual unfused particle height (0.5 

pixels or 24 µm). Therefore, we turn our attention to reconstruction of the individual step 

functions to determine spatial feature resolution limitations of the stereoscopic technique 

applied in this study.  

The applied spatial convolution parameters had little effect on the reconstruction of 

the two largest fused regions (50-pixel and 25-pixel widths). Both features experienced 

only subtle smoothing in their bottom left corners and maintained consistent magnitudes 

and widths throughout the simulation. The 10-pixel region was reconstructed with 

accurate magnitude, but the thickness of the convolved feature decreased to a singularity 

at its base. This is not the case, however, for the smallest region (5-pixel width). For this 

region, we are beginning to significantly under-predict the densification. If the feature were 

any smaller, we would run the risk of not capturing it with these parameters. Based on 

these observations, it is reasonable to expect accurate detection of x-y surface features 

on the order of twice the measurement spacing, which corresponds to features of 480 um 

for the results presented in this work. Improving upon this performance can be 

accomplished by increasing the spatial resolution of the system, enhancing image 

contrast, or reducing measurement spacing. The first two implements will also benefit z-

height measurement accuracy.  
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Conclusions 

This manuscript demonstrated the extension of in-situ stereoscopic build surface 

measurements into local measures of powder layer thickness, material densification, and 

incremental build height in metal SLM. Furthermore, we described a strategy for using 

layer-wise BVMs to perform in-process parameter optimization with closed-loop control. 

Tools for evaluating BVM uncertainty and specifying appropriate system components as 

a function of desired performance and constraints were presented. The spatial limitations 

of the stereo measurement technique and suggestions for improving performance were 

also described. Furthermore, considering that only one-quarter of the field of view was 

analyzed in this work indicates that the 12 MP system is capable of higher performance 

over the same area.  

Future work will involve implementation of the closed-loop process control strategy 

described in this manuscript. There is also value in volumetrically rendering in-situ 

stereoscopic surface data to produce a holistic snapshot representation of build variation. 

This quasi-tomographic stereovision-based approach to evaluation has the potential to 

assist with real-time quality assurance and part certification. Despite being demonstrated 

on stainless steel, the methods described herein are applicable to any powder material 

exhibiting sufficient surface contrast to perform stereoscopic image correlation. 
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Abstract 

Metal Additive Manufacturing (AM) has the potential to revolutionize customized low-

volume industries, but quality assurance issues continue to limit its widespread 

application. Due to high process variability, parts need to be individually assessed for the 

presence of defects that contribute to mechanical deficiencies. Current part-by-part 

inspection solutions are costly, time-consuming, and antithetical to the fundamental 

benefits of metal AM. This work investigates a streamlined alternative method for part 

evaluation that uses in-situ process variation as a proxy for defect formation. A stereo 

vision system is employed to monitor 3D build surface variation in a production Selective 

Laser Melting machine, then the stereoscopic data is used to produce quasi-tomographic 

representations of unfused surface variation, fused surface variation, and powder layer 

thickness. The volumetric stereo-CT data is shown to capture part lifting associated with 

residual stress formation and layer uniformity deviations linked to typical defects resulting 

from the PBF build process. Upon development of deterministic models that reliably 

correlate process variation observations to build outcomes, the stereo-CT approach can 

be useful as a real-time qualification tool for metal AM parts.  

 

Introduction 

Powder Bed Fusion (PBF) techniques, such as Selective Laser Melting (SLM), are 

Additive Manufacturing (AM) technologies that construct 3D parts through the sequential 

process of spreading and fusing thin layers of powder. This layer-by-layer approach to 

manufacturing offers tremendous advantages in terms of speed and flexibility compared 

to traditional manufacturing methods. One of the primary advantages is that AM requires 
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no custom tooling during fabrication, which enables streamlined production of complex 

geometries at an unprecedented rate. Current production powder bed systems are 

capable of producing functional metal components with shorter lead times and lower 

direct costs than traditional manufacturing methods [1]. However, the same layer-by-layer 

build process that provides AM with its unique advantages also creates tremendous 

challenges with regard to quality assurance [1-3]. Given that each individual layer 

presents an opportunity for the process to deviate from an expected outcome, it is nearly 

impossible to blindly predict how parts will perform from build-to-build, let alone from 

machine-to-machine. Additionally, it can be equally difficult to identify problematic parts 

during visual post-processing inspection. While some parts will contain clear focal 

defects, others will be rendered inadequate for their intended application due to 

inconspicuous mechanical deficiencies that also need to be recognized. 

For AM to be successful in quality critical industries, mechanically insufficient parts 

cannot not be permitted to reach circulation. Mechanical deficiencies in AM parts are 

strongly correlated with the presence of porosity [4-6], surface roughness [6], and residual 

stresses [6-7]. While there are currently no consensus standards for non-destructive 

evaluation of AM parts, one of the tools universally involved in qualification efforts is x-

ray computed tomography (XCT) for its ability to detect and document the location of 

common AM defects including porosity, voids, and high-density inclusions or 

contaminations [8]. Unfortunately, the slow speeds and high costs associated with XCT 

are antithetical to the fundamental benefits of AM [4]. As a result, these methods are 

generally limited in their applicability as a long-term solution for metal AM part 
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qualification. Ideally, there would be a qualification tool for identifying problematic parts 

more suited for the streamlined landscape of AM.  

A potential alternative to post-production inspection using XCT is to evaluate in-situ 

build surface variation as a proxy for defect formation. Layer uniformity deviations caused 

by build surface variation are known to directly impact porosity [5, 9], surface roughness 

[10], and the mechanical performance of PBF parts [3, 5, 9]. Furthermore, extreme build 

surface variations, and the tendency of surfaces to lift and curl over time, have been linked 

to the formation of residual stresses in PBF parts [11]. Therefore, it is conceivable that all 

of the typical causes of mechanical deficiencies in AM parts can be identified by 

evaluating build variations and their effect on layer uniformity. Although robust 

deterministic models for how sensor data relates to defect formation will be required 

eventually, the first step is to establish tools and methodologies for measuring and 

visualizing process variation holistically throughout the build volume. Moreover, a method 

capable of providing the measurement information in real time is desirable.   

In this manuscript, we describe the implementation of an in-situ stereo vision system 

to measure 3D build surface variation in a production SLM machine. We then describe a 

methodology for rendering stereoscopic surface measurement data volumetrically to 

produce a quasi-tomographic representation of process variation for both unfused and 

fused surfaces. In a similar fashion, stereoscopic data is used to produce a result that 

shows how powder layer thickness varies throughout the build volume (Figure 4.1). If 

appropriate models are developed to deterministically relate process variation to defect 

formation in powder bed systems, it is possible that this so-called stereo-CT method can 
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eventually supplant XCT as a faster and less-expensive alternative for AM part 

qualification.  

 

Figure 4.1: Data processing path from images to volumes used to produce quasi-
tomographic representation of process variation in metal SLM. 

 

Materials & Methods 

Experimental Setup 

This study utilized a stereo vision system (Figure 4.2) to monitor build surface variation 

in a ProX 320 (3D Systems) production SLM machine. The system employed two 

Grasshopper3 12MP USB 3.0 cameras with 4240 pixel x 2824 pixel resolution (3.1 µm 

pixel size) on a 1” format monochromatic CCD sensor (Point Grey). While mounted 

outside of the vacuum chamber to avoid extreme environmental conditions, the cameras 

examined the build platform through custom viewing windows designed to interface with 

pre-existing access ports. From this position, the optical working distance was measured 

to be 600 mm. Although precise values were determined from the extrinsic calibration 
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parameters, the distance between cameras was roughly 687 mm and the cameras were 

approximately 27º from vertical.  

 

Figure 4.2: Conceptual experimental setup (left) actual implementation with custom 
viewing windows designed to interface with the production SLM machine (right). 

The cameras were equipped with 35 mm lenses (Kowa) to accommodate the entire 

203 mm x 135 mm build platform at a spatial resolution of 48 µm/pixel. However, this 

project only utilized the 102 mm x 76 mm sub-region of the build platform pictured in 

Figure 4.3. The extrusion-type geometry illustrated in the fused surface images was built 

from stainless steel 316L powder with a particle size distribution of 45 ± 15 µm, and a 

nominal layer thickness of 60 µm. Inside the chamber, two LED light panels (Polaroid 

350) were employed to improve the contrast of metal powder surfaces for imaging. A 

cross-polarization scheme was implemented between the light panels and lenses to 

suppress specular reflections. 



73 
 

 

 

Figure 4.3: Example high-resolution images of metal powder surfaces within the sub-
region of the build platform analyzed in this work (102 mm x 76 mm). 

Stereoscopic 3D Surface Measurement using 3D Digital Image Correlation 

3D Digital Image Correlation (DIC) is an established optical measurement technique 

most commonly employed in experimental mechanics applications to measure high-

precision deformation and strain fields in specimens under loading [12]. The technique 

employs template matching algorithms to measure pointwise disparity values then uses 

stereo calibration information to reconstruct 3D surfaces. Consequently, one of the 

prerequisites for viable application of DIC is a locally unique surface pattern that supports 

the use of template matching for disparity measurement. In standard applications, a white 

light speckle pattern is applied to the surface of objects to attain sufficient 

distinguishability for reliable tracking from image-to-image (Figure 4.4). In this application, 

the optical similarity of metal powder to white light speckle provides a natural tracking 

mechanism that can be leveraged to measure disparity between stereoscopic images of 

the powder bed. The 316L stainless steel powder particles are sub-optimal compared to 
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ideal speckle for DIC (13), but the 48 µm/pixel camera resolution produced serviceable 

image texture for stereo correlation. 

 

Figure 4.4: The optical similarity of illuminated metal powder to white light speckle is 
leveraged to extract 3D surface measurements from stereoscopic images of the powder 
bed using 3D DIC. 

The commercial DIC measurement software Vic-3D (Correlated Solutions) was used 

for stereoscopic surface reconstruction. As mentioned before, stereo calibration is 

required to reconstruct 3D surfaces using DIC. Stereo camera parameters are estimated 

algorithmically by analyzing a sequence of calibration images. The images depict a planar 

calibration target containing a known regular grid pattern, positioned at different locations 

within the shared field of view (FoV) of the two-camera system. The system used in this 

work was calibrated with a standard Vic-3D dot grid target, containing 17 x 14 dots with 

6 mm spacing. During calibration, 40 images were taken with the target at various 

positions, orientations, and tilts. Considerations were made to introduce extreme tilts, 

which improve out-of-plane calibration accuracy by providing maximum triangulation 

angles for solving the correspondence problem between 3D world coordinates and 2D 

image points [12]. 
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The accuracy of surface reconstruction using DIC will ultimately depend on a variety 

of factors, including stereo calibration, camera resolution, FoV, lens distortion, system 

alignment, and surface pattern contrast [12]. Depending on setup, it is possible to achieve 

a wide-range of measurement accuracies using DIC. Systems with small stereo angles 

have been shown to achieve in-plane measurement accuracies of 1/340,000*FoV and 

out-of-plane accuracies of 1/19,000*FoV [14]. In general, a wide stereo angle can be used 

to optimize out-of-plane performance at the cost of in-plane measurement resolution [15]. 

The system employed in this study was decidedly wide-angle to benefit from maximum 

out-of-plane performance. It should also be noted that since only one-fourth of the camera 

FoV was utilized for this work, improved performance could have been attained by 

applying the entire sensor to monitor the area of interest.    

In this study, 3D surfaces were reconstructed from stereo images taken both after the 

spread operation (unfused) and after the fusion operation (fused) for 100 layers. For each 

stereo pair, the Vic-3D analysis was performed with respect to the left-camera “reference 

image” at control points spaced every 5 pixels (240 µm) using 55-pixel subsets. The 

output of the Vic-3D analysis is 3D point cloud information of the form [𝑋, 𝑌, 𝑍] in world 

metric coordinates. However, since the measurements were made according to a 

regularly spaced pixel grid (control points), the planar sampling location in world 

coordinates will vary from layer-to-layer depending on relative surface height. To address 

this discrepancy, the z-height data associated with each surface was resampled onto a 

consistent spatial grid using cubic spline interpolation at a spacing of 240 µm (code found 

in Appendix B). Registering the data in this way creates sets of 4D data of the form: 
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𝑍(𝑋, 𝑌)𝑁,𝑢𝑛𝑓𝑢𝑠𝑒𝑑 

and 

𝑍(𝑋, 𝑌)𝑁,𝑓𝑢𝑠𝑒𝑑 

where 𝑁 is the build layer number. Plotting this layer-wise surface variation data as a 

contour map produces the “z-height maps” shown in Figure 4.5. Z-height maps represent 

layer-by-layer build surface measurements needed to understand process variation, layer 

uniformity, and by extension the formation of defects and their location in metal AM [5-6, 

9]. However, for the data to be properly utilized for the purposes of evaluating deviations 

in typical process behavior, stereoscopic surface measurements need to be shown in the 

context the entire build volume. The volume data will provide a tool for highlighting 

performance trends and exposing anomalous behavior regions that are indicative of 

defect formation in AM [11]. There is a fortuitous similarity between layer-wise z-height 

maps and slices of image data produced during XCT that can be leveraged to create 

these contextualized data sets. By treating z-height maps as analogous to slices of XCT 

data, we can produce a volumetric representation of in-situ measurement data with little 

additional effort. The first step in this effort is to convert individual z-height maps into 

equivalent grayscale images.  
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Figure 4.5: Example z-height maps showing SLM surface height over the 102 mm x 76 
mm analysis region; unfused maps describe variation in post-spread surfaces and fused 
maps describe variation in post-fusion surfaces. 

Converting Z-Height Maps to Grayscale Images 

The primary difference between z-height maps and XCT image slices is their voxel 

content. Z-height maps contain floating point values, whereas XCT image slices are 

comprised of integer grayscale intensities. Converting z-height maps into grayscale 

images would be advantageous because they are convenient, require less memory, and 

enable the use of established and optimized tools for volume rendering. However, it is 

important for future evaluation that the conversion is performed in a way that preserves 

the quantitative nature of the measurement data. We also want to assure that all layer-

wise z-height maps are converted consistently, such that grayscale values indicate the 
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same measurement value in each image. We can accomplish both by linearly mapping 

z-height values to grayscale intensities according to the following: 

[𝑍𝑚𝑖𝑛 𝑍𝑚𝑎𝑥] → [0 255] 

where 𝑍𝑚𝑖𝑛 and 𝑍𝑚𝑎𝑥 are chosen to include all measurement data. For this project, 𝑍𝑚𝑖𝑛 

was selected to be -0.200 mm (black) and 𝑍𝑚𝑎𝑥 was set to 0.200 mm (white). Therefore, 

each grayscale intensity value represents roughly 1.6 µm of elevation change between 

black and white. Figure 4.6 shows converted “grayscale maps” plotted on a regular 

integer pixel grid (𝑅, 𝐶), where the size of grayscale maps 𝐺(𝑅, 𝐶) remains equal to the 

size of z-height maps 𝑍(𝑋, 𝑌). 

 

Figure 4.6: Example grayscale images representing in-situ surface measurement data in 
SLM. The size of grayscale maps is equal to the size of z-height maps. 
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Volumetric Rendering of Stereoscopic Build Surface Data 

The procedure described in the previous section was used to convert 100 layers of 

unfused and fused surface z-height data into grayscale images. The resulting image 

stacks were imported into the open-source volume exploration and presentation tool 

Drishti (ANU Vizlab), where grayscale image volumes were generated and rendered for 

both unfused and fused surface data (Figure 4.7). Non-cubic voxels of 240 µm x 240 µm 

x 60 µm were used to accurately represent the spatial relationship between planar 

measurements and layer thickness. 

 

Figure 4.7: Image stacks representing measured surface variation are used to generate 
volumetric representations of stereoscopic data. The grayscale image volumes on the 
right comprise in-situ measurement data for 100 unfused and fused surfaces. 

The first thing we notice about these initial renderings is that visualizing measured 

surface variation throughout the volume is nearly impossible. There is simply too much 
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poorly distinguished data to be useful. What we really want is a representation of the 

extreme occurrences of measured surface height. These regions are more likely to 

correspond to build surface issues [10, 16] associated with defect formation or at least 

behavior of interest. With this in mind, thresholding techniques were used to remove data 

that fell within the range of ±30 µm (one nominal layer thickness). The remaining data 

corresponding to extreme regions of measured surface height were then color-coded to 

improve distinguishability such that low values are displayed in blue and high values are 

displayed in red. These new “enhanced z-height volumes” deliver the contextual 

visualizations we were seeking (Figure 4.8).  

 

Figure 4.8: Z-height values falling within one nominal layer thickness are removed via 
thresholding. The remaining extreme regions are then color-coded to distinguish between 
high and low surface heights.   
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Both the unfused and fused surface volumes expose several noteworthy trends in a 

single glance. Parallel to spread direction, there is evidence of an elevated ridge that 

persists through the volume. In the unfused volume, we see low surface regions tending 

to systematically accumulate into four groupings perpendicular to the spread direction. 

These groupings also seem to coincide with locations of deeply depressed surfaces in 

the fused surface volume. Although these observations are interesting, it is difficult to 

draw conclusions regarding root cause or impact on part performance without seeing how 

surface variation manifests itself with respect to the constructed part geometry. We are 

therefore motivated to further contextualize these data sets with a visualization of as-built 

geometry.  

Visualizing As-Built Geometry 

The previous section ended with snapshot representations of unfused and fused 

surface variation over the course of 100 layers during the SLM test build. The volumetric 

views are useful independently for trend identification, but there is still ambiguity regarding 

how these variations relate to part geometry. Ideally, we would also have a way to 

reference part location within the build volume so that process behavior could be 

evaluated in the context of nominal build geometry, and vice versa. Fortunately, a 

byproduct of the stereoscopic measurement process is a set of grayscale images that 

depict a planar representation of each as-built cross-section. Casting the layer images 

into the same volumetric form as the surface variation images will yield a nominal 

depiction of the as-build part geometry that corresponds to the stereoscopic surface data 

being evaluated. However, for the geometry to be useful, we first need to register the raw 

camera images with the layer variation images generated earlier.  
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Due to conventions in DIC, it is standard for Vic-3D to output the pixel-wise control 

points (𝑥, 𝑦) and their associated world metric coordinates [𝑋, 𝑌] with respect to the left-

camera images. Therefore, these images were used for the visualization. With the 

aforementioned information, the registration process was accomplished in three 

straightforward steps (code in Appendix D): (1) the images were scaled to the size of z-

height maps by creating a mask that extracted grayscale intensity values at the control 

points (𝑥, 𝑦), (2) the intensity values were mapped from control points to their respective 

world coordinate positions [𝑋, 𝑌], and (3) the intensity values were resampled from 

[𝑋, 𝑌] onto the same consistent spatial grid as the z-height data (240 µm spacing) using 

cubic spline interpolation. The registered images were then rendered in Drishti, where 

intensity thresholding was used to remove unfused powder regions, producing the 

reference geometry shown in Figure 4.9. 

 

Figure 4.9: Left camera images were registered with grayscale metric images, then 
rendered in Drishti to produce a nominal representation of the as-built part geometry; 
unfused powder regions were removed via intensity thresholding. 

Z-height volumes were superimposed onto the depiction of nominal part geometry 

(Figure 4.10) to create contextualized quasi-tomographic representations of SLM process 

variation measured using the in-situ stereo vision system. The addition of as-built 
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geometry allows us to identify where process deviations interact with the printed part. 

Pockets of extremely low z-height in the unfused surface volume accumulate near 

geometries that are perpendicular to the spread direction, indicating a potential 

systematic interaction between part and spreader. In the fused volume, low surface 

regions expectedly correspond with as-built part geometry. However, it is now also clear 

that an extreme source of process variation for the example build originates from the finer 

geometry constructed in the bottom right-corner of the build volume.  

 

Figure 4.10: Superimposing z-height volumes on depiction of nominal build geometry 
creates contextualized quasi-tomographic representations of SLM process variation.   
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Results 

Example Defect Detection using Volumetric Build Surface Stereo-CT Data 

Although there are several instances of extreme process variation in the volume maps 

presented in Figure 4.10 that would ultimately need to be evaluated for part qualification, 

one particularly interesting area is the elevated ridge that appears and persists throughout 

the course of the build volume. In this region, we can see what appears to be 

characteristic part lifting associated with the formation of residual stresses in AM parts. 

This theory is corroborated by the presence of elevated surface areas in raw images of 

the unfused powder bed (Figure 4.11). Not only does this behavior indicate the probable 

formation of residual stresses [11] that contribute to mechanical deficiencies in final part 

properties, there is also a likelihood that the issue has a prevailing effect on layer 

uniformity and the manifestation of associated defects [5, 9-10] within the afflicted 

regions. For stereo-CT to provide sufficient understanding of AM part performance, 

volumetric layer uniformity trends will also need to be evaluated.  



85 
 

 

 

 

Figure 4.11: Unfused stereo-CT volume and raw image of apparent part lifting believed 
to be the source of persistent anomalous process behavior. 

Volumetric Powder Layer Uniformity Evaluation using Stereo-CT Data 

In addition to evaluating build surface variation independently at each stage of the 

process, the interactions between successive surfaces that describe layer uniformity need 

to be characterized. In this section, we investigate how measured surface variations (z-

height maps) influence powder layer thickness. Deviations in powder layer thickness are 

closely linked to the formation of most typical defects in metal AM [5-6, 9]. Therefore, 

measuring and documenting the location of extreme occurrences of powder layer 

thickness throughout the build volume will enable local evaluation of mechanical 

properties with the appropriate deterministic models.  
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The thickness of applied powder at layer N can be calculated using z-height data 

acquired before and after the powder spreading operation. Mathematically, the definition 

for extracting powder layer thickness from z-height data is written as follows: 

𝑇(𝑋, 𝑌)𝑁 = 𝑍(𝑋, 𝑌)𝑁, 𝑢𝑛𝑓𝑢𝑠𝑒𝑑 − 𝑍(𝑋, 𝑌)𝑁−1,𝑓𝑢𝑠𝑒𝑑 + Δ𝑍𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 

where 𝑇(𝑋, 𝑌)𝑁 is the thickness of applied powder at layer 𝑁, 𝑍(𝑋, 𝑌)𝑁, 𝑢𝑛𝑓𝑢𝑠𝑒𝑑 is the 

measured variation in the post-spread powder surface at layer 𝑁, 𝑍(𝑋, 𝑌)𝑁−1,𝑓𝑢𝑠𝑒𝑑 is the 

z-height variation in the fused powder surface at layer 𝑁 − 1, and Δ𝑍𝑝𝑙𝑎𝑡𝑓𝑜𝑟𝑚 is the 

distance the platform drops before spreading occurs. The assumption for this study was 

that the build platform consistently dropped by the nominal 60 µm layer thickness.  

Figure 4.12 shows a powder layer thickness volume map resulting from the data 

processing path shown in Figure 4.1. Powder thickness slice maps were calculated from 

z-height maps according to the equation above then converted to a volume map using 

the methods described in this manuscript. Thresholding techniques were used to remove 

thickness data that fell within the range of 60 ± 30 µm, then the remaining data was color-

coded to enhance distinguishability. The accentuated map shows where extreme regions 

of powder layer thickness occur within the build volume as a result of the SLM layer 

construction operations. It also provides context for where these variations occur with 

respect to printed part geometry. Based on where layer uniformity deviations coincide 

with part geometry, there is likely to be a correlation between thick or thin powder regions 

and the occurrence of porosity [5, 9], surface roughness [10], residual stresses [7, 11], 

and ultimately final part properties [3, 5, 9]. By empirically determining thresholds for 

acceptable layer deviation as a function of resulting mechanical performance, it is 
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possible that stereo-CT can be used as a tool for rapidly identifying defective parts in 

metal powder bed AM processes.  

 

Figure 4.12: Powder layer thickness volume map produced by the stereo-CT method for 
metal SLM build. 

 

Conclusions 

This manuscript presented a methodology for producing quasi-tomographic 

representations of process variation in metal SLM using in-situ stereoscopic build surface 

data. Stereo-CT data was shown to be useful for identifying anomalous surface behavior 

likely associated with residual stress formation; corresponding damage afflicted on the 

silicone spreader bar by the lifted part was also distinguishable as an elevated surface 
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ridge that impacted both unfused and fused powder surfaces. Powder layer thickness 

volume maps were then created to show how individual surface variation accumulates to 

cause deviations in layer uniformity. Based on the process variations exposed by the 

stereo-CT data presented in this manuscript, it is likely that final part quality will depend 

on where it was printed within the build volume. Although the stereo-CT method is capable 

of providing the requisite volumetric build variance information needed to feed empirically-

driven deterministic models for defect formation in metal PBF, the relationships between 

process variability and part quality are not yet fully formed. Future work should therefore 

be focused on developing suitable defect models and establishing databases of results 

that consistently link measurement observations with build outcomes. If reliable, 

quantifiable connections can be established between measured process variation and 

final part performance, then stereo-CT has the potential to be a valuable tool for 

streamlined part qualification in metal AM.  
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Conclusions 

The manuscripts in this dissertation focused on the development of an in-situ 

stereovision-based metrology solution to address the gaps identified in Chapter 1 in state 

of the art metrology systems for metal Additive Manufacturing (AM). Many noteworthy 

contributions were made with regard to monitoring, characterizing, and presenting 

process variation in metal Powder Bed Fusion (PBF) AM technologies. 

Chapter 2 described the implementation of a high-resolution stereo vision system to 

make accuracy-verified 3D build surface measurements in a production Selective Laser 

Melting (SLM) machine. The naturally occurring texture in metal powders and fused 

surfaces was demonstrated as a viable tracking mechanism for 3D surface reconstruction 

using Digital Image Correlation (DIC) [1]. At a spatial resolution of 48 µm/pixel, powder 

surface texture was used to achieve an out-of-plane measurement accuracy of ±6.0 µm. 

With this level of accuracy, stereo measurement data was shown to capture broad powder 

surface height variations, spreader bar wiper blade wear, interactions between powder 

spreading and part geometry, and powder irregularities linked to a focal build defect.  

Chapter 3 extended in-situ stereoscopic build surface measurements into layer-wise 

measures of powder layer thickness, material densification, and incremental build height. 

These so-called Build Variance Metrics (BVMs) exposed significant process zone 

variability that undoubtedly contributes to the consistency issues associated with metal 

PBF. Tools for evaluating BVM uncertainty and specifying appropriate system 

components as a function of desired performance and constraints were presented along 

with suggestions for improving stereoscopic measurement performance. The spatial 

limitations of the stereo measurement technique were also described. Observations 
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included spread-direction and geometry-dependent variation in powder layer thickness, 

inconsistent material densification, and discrepancies between measured and assumed 

build height based on nominal layer thickness values. Based on these observations, a 

method was suggested for locally optimizing critical process parameters as a function of 

powder layer thickness maps with closed-loop feedback control from subsequent material 

densification measurements. The incremental build height metric was shown to provide 

information that enables high-level process control through adjustment of nominal layer 

thickness values to compensate for observed deviations from expected progress. 

Chapter 4 presented a methodology for volumetrically rendering stereoscopic 

measurement data to produce quasi-tomographic representations of process variation for 

both unfused and fused surfaces in metal SLM. In a similar fashion, in-situ build surface 

data was used to produce a result that shows how powder layer thickness varies 

throughout the build volume. The volumetric stereo data was also superimposed onto a 

nominal depiction of the as-built geometry to provide context between build variations and 

the local properties of printed parts. This so-called stereo computed tomography (stereo-

CT) approach was shown to be useful for identifying part lifting associated with residual 

stress formation [2-3] and layer uniformity deviations known to directly impact porosity [4-

5], surface roughness [6], and the mechanical performance of PBF parts [4, 7-8]. If 

reliable, quantifiable connections can be established between measured process 

variation and final part performance, then stereo-CT has the potential to be a valuable 

tool for streamlined part qualification in metal AM.  
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Suggested Future Work 

While the accomplishments above have provided a foundation of knowledge and 

novel learnings related to the application of stereo vision metrology to monitor, 

characterize, and present variability in metal powder bed AM processes, some priority 

areas of research remain before the potential of the technique can be fully realized. This 

section briefly describes these future work opportunities. 

Feature-Informed Stereo Search Parameter Optimization for PBF Applications 

The first area of research that will greatly benefit this technology is the development 

of optimized DIC algorithms for measuring 3D powder bed surface variation. Although 

metal powder and fused metal regions have been effectively used as a tracking 

mechanism for surface reconstruction using DIC, traditional methods for the selection of 

stereo search parameters are not ideal for the present application. In standard 

applications, where trackable surface texture is sufficiently homogenous, the use of a 

constant square subset size and consistent measurement spacing is adequate (Figure 

5.1). However, for the case of powder bed surfaces, the quality of locally available texture 

will vary significantly depending on whether the surface is comprised of unfused powder, 

fused material, or a boundary between the two. As a result, the requirements for 

optimizing measurement accuracy and reliability will also change as a function of planar 

measurement location. The best results are achieved when these local requirements are 

met algorithmically. Strategies for locally adjusting subset size have been demonstrated 

for addressing variable density speckle patterns [9], but shape, orientation, and spacing 

adjustments remain largely unstudied due to a lack of need in common DIC applications. 

Therefore, investigation into methods for feature-informed adjustment of subset size, 
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shape, orientation, and spacing are a worthwhile endeavor for the application of stereo 

vision metrology to monitor powder beds. A critical advantage to consider for this effort is 

that CAD files offer knowledge of bed layout which can be used to effectively 

predetermine large portions of the stereo search strategy. This will alleviate some of the 

real-time computational requirements for localized parameter optimization. 

 

Figure 5.1: Constant square subset size and consistent spacing is sufficient for stereo 
correlation when using applied speckle patterns in traditional DIC, but powder bed 
surfaces require a more sophisticated approach to search parameter selection to optimize 
measurement performance. 

Closed-Loop PBF Process Control System using BVMs 

Another important area of research involves developing a closed-loop control system 

based on the BVMs presented in Chapter 3 to reduce the inherent process variability in 

metal PBF. In theory, layer-wise measures of powder layer thickness and material 

densification enable local optimization of laser power, scan speed, and scan pattern to 

reduce porosity [4-5], surface roughness [6], and the formation of residual stresses [2-3] 

in PBF parts. However, developing a successful closed-loop control strategy will likely be 
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a non-trivial task. Once a system is implemented, the process of drawing correlations 

between BVMs, parameter adjustments, and build outcomes can begin. At that point, the 

challenges associated with practical deployment of this solution will need to be 

reassessed which may also lead to further research opportunities.  

Deterministic Models for Stereo-CT Defect Detection in PBF Parts 

The stereo-CT method described in chapter 4 needs to be coupled with deterministic 

models for relating measured process variation to the formation of defects and the quality 

of final parts. While there are known correlations between build surface height, layer 

uniformity deviations, and the formation of typical defects [2-8] that contribute to 

mechanical performance issues in PBF parts, these connections are not well enough 

understood to be reliably applied for part qualification in an industry setting. Driving these 

documented relationships toward quantifiable, empirically-driven thresholds for 

acceptable process variation is a logical next step in this effort. End-to-end metrology 

experiments, where stereo-CT process monitoring is combined with typical AM post-

production inspection, are recommended to validate defect causation and provide 

confidence in deterministic models. The development of a database infrastructure for 

housing, organizing, and comparing volumetric stereo-CT data should also be 

considered. Ultimately, due to the theoretically unlimited possibilities for AM part 

construction, a statistically-based, machine learning approach to part qualification would 

likely be an ideal solution to pursue for the stereo-CT method. A database of prior build 

outcomes organized according to build material, geometry, input parameters, and 

documented stereo-CT trends could be an extremely powerful tool for advancing current 

system knowledge and streamlining part qualification in metal AM. 
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APPENDIX A: MATLAB Code – Plotting Platform Drop Data 
 

clear all 

close all 

  

%% Theory 

D = 0.063;    %pixel 

e = 0.073;   %pixel 

B = 687e3;   %microns 

f = 51521;   %pixel from vic-3d 

Z = 600e3;   %microns 

ZerrorMean = 2*(D + e)*Z^2/(B*f) 

deltaZ = [0 30 60]; 

Zerror = zeros(1,length(deltaZ)); 

for i = 1:length(deltaZ) 

Zerror(i) = 2*(D + e)*(Z+deltaZ(i))^2/(B*f); %microns 

end 

 

%% Import and plot experimental data 

filename = 'Platform Drop Experiment Data.xlsx'; 

xlRange = 'A2:A8893'; 

Datum = -1000*xlsread(filename,'Datum',xlRange); 

Drop30 = -1000*xlsread(filename,'Drop 30',xlRange); 

Drop60 = -1000*xlsread(filename,'Drop 60',xlRange); 

Data = [Datum, Drop30, Drop60]; 

Labels = {'0 microns','30 microns','60 microns'}; 

maxTheory = deltaZ+Zerror; 

minTheory = deltaZ-Zerror; 

figure 

h1 = plot(deltaZ,maxTheory,'r-','LineWidth',1.05) 

hold on 

h2 = plot(deltaZ,minTheory,'b-','LineWidth',1.05) 

h3 = plot(deltaZ,deltaZ,'g--') 

legend([h1 h2],{'Upper Theoretical Bound (+2Z_e)','Lower 

Theoretical Bound (-2Z_e)'},'location','northwest') 

boxplot(Data,'Labels',Labels,'positions',deltaZ,'Widths',2,'Symb

ol','y+') 

title('Stereo Vision Measured Z-Height Results (Z_e = 1.4 

microns)') 

xlabel('Platform Drop \DeltaZ \pm 0.2%') 

ylabel('Measured \DeltaZ (microns)') 

xlim([-5 70]) 

ylim([-5 70]) 

hold off 

grid on 
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APPENDIX B: MATLAB Code – Plotting Z-Height Maps 
 

close all 

clear all 

 

spacing = 0.240; 

 

%% Import floating point z-height data 

dpost = csvread('089-postspread_0.csv'); 

x = dpost(:,1); 

y = dpost(:,2); 

z = dpost(:,3); 

[X,Y] = meshgrid(min(x):spacing:max(x),min(y):spacing:max(y));  

Zpost = griddata(x,y,z,X,Y,'cubic'); 

 

dpre = csvread('089-prespread_0.csv');  

x = dpre(:,1); 

y = dpre(:,2); 

z = dpre(:,3); 

Zpre = griddata(x,y,z,X,Y,'cubic'); 

  

figure(1) 

subplot(1,2,1) 

surf(Zpre) 

subplot(1,2,2) 

surf(Zpost) 

shading interp 

grid off 

colormap(jet) 

set(gca,'Ydir','Normal') 

pbaspect([76/102 1 1]) 

title('Z-Height Maps') 

az = 0; 

el = 90; 

view(az, el); 
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APPENDIX C: MATLAB Code – Spatial Convolution Simulation 

 
close all 

clear all 

 

max = 2125; 

A = 0.045; 

x = [0:max]; 

z = A*rand(1,length(x)); % Simulated unfused powder surface  

z = z - mean(z); 

 

%% Adding step functions to simulate fused regions 

for i = 252:302 

z(i) = 0.00*rand(1) - 0.1; 

end 

 

for i = 802:827 

z(i) = 0.00*rand(1) - 0.1; 

end 

 

for i = 1352:1362 

z(i) = 0.00*rand(1) - 0.1; 

end 

 

for i = 1852:1857 

z(i) = 0.00*rand(1) - 0.1; 

end 

  

%% Creating representative 1D gaussian window and spacing  

subSize = 55; 

spacing = 5; 

subHW = floor(subSize/2); 

subset = [-subHW:subHW]; 

gauss = normpdf(subset); 

  

%% Convolving to create reconstructed surface 

for i = subHW+1:spacing:length(x)-subHW-1 

    xz(i) = i; 

  Zs(i) = dot(z(i-subHW:i+subHW),gauss); 

end 

 

count = 1; 

for i = 1:length(Zs) 

    if abs(Zs(i))>0 

        Zstep(count) = Zs(i); 
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        count = count + 1; 

    end 

end 

  

spaceVec = [0:spacing:max]; 

 

%% Plotting simulated and reconstructed surfaces  

figure(1) 

plot(x,z) 

title('Simulated 1-D Surface Height') 

xlim([0 max]) 

ylim([-0.12 0.05]) 

grid on 

hold off 

 

xvec = [subHW:spacing:max-subHW]; 

  

figure(2) 

Zstep = spline(xvec,Zstep,xvec); 

plot(xvec,Zstep) 

title('Reconstructed 1-D Surface Height') 

xlim([0 max]) 

ylim([-0.12 0.05]) 

grid on 
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APPENDIX D: MATLAB Code – Geometry Image Registration 
 

clear all 

close all 

  

path = 'C:\Stainless Steel Build\’; 

fileType = '.csv'; % original data file type 

imageType = '.tif'; % grayscale image type 

 

dirData = dir(strcat(path,'*.csv')); 

fileNames = {dirData.name}; 

fileName = string(fileNames(1)); 

csvData = csvread(strcat(path,fileNames(1))); % read in .csv 

files 

  

x = csvData(:,1); % X data 

y = csvData(:,2); % Y data 

z = csvData(:,3); % Z data 

 

spacing = 0.240; 

[X,Y] = meshgrid(min(x):spacing:max(x),min(y):spacing:max(y)); 

  

for i = 1:length(fileNames) 

    fileName = fileNames(i); % .csv file name 

    csvData = csvread(strcat(path,string(fileName))); % read in 

.csv file 

  

    x = csvData(:,1); % X data(world coordinates X) 

    y = csvData(:,2); % Y data (world coordinates Y) 

    z = csvData(:,3); % Z data (world coordinates Z) 

    c = csvData(:,4); % x data (control points C) 

    r = csvData(:,5); % y data (control points R) 

 

    % read in grayscale geometry image  

    buildImage = 

imread(strcat(path,strrep(string(fileName),fileType,imgType))); 

 

    scaledImage = buildImage(r,c); % scale to z-height map size 

 

    registeredImage = griddata(x,y,scaledImage,X,Y,'cubic'); % 

interpolate intensities to same regular pixel grid as z-height 

    geometryImageName = 

char(strcat(path,'geometry\','geometry',fileNumber,imageType)) % 

grayscale image name 

    imwrite(I,geometryImageName) % save image     

end 


