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Most climate change predictions focus on the response of individual species to 

changing local conditions and ignore species interactions, largely due to the lack of a 

sound theoretical foundation for how interactions are expected to change with climate 

and how to incorporate them into climate change models. Much of the variability in 

species interaction strengths may be governed by fundamental constraints on 

physiological rates, possibly providing a framework for including species interactions 

into climate change models. Metabolic rates, ingestion rates and many other 

physiological rates are relatively predictable from body size and body temperature due to 

constraints imposed by the physical and chemical laws that govern fluid dynamics and 

the kinetics of biochemical reaction times. My dissertation assesses the usefulness of this 

framework by exploring the community-level consequences of physiological constraints.  

In Chapter 2, I incorporated temperature and body size scaling into the biological 

rate parameters of a series of realistically structured trophic network models. The relative 

magnitude of the temperature scaling parameters affecting consumer energetic costs 

(metabolic rates) and energetic gains (ingestion rates) determined how consumer 

energetic efficiency changed with temperature. I systematically changed consumer 

energetic efficiency and examined the sensitivity of network stability and species 

persistence to various temperatures. I found that a species’ probability of extinction 



depended primarily on the effects of organismal physiology (body size and energetic 

efficiency with respect to temperature) and secondarily on the effects of local food web 

structure (trophic level and consumer generality). This suggests that physiology is highly 

influential on the structure and dynamics of ecological communities.  

If consumer energetic efficiency declined as temperature increased, that is, 

species did best at lower temperatures, then the simulated networks had greater stability 

at lower temperatures. The opposite scenario resulted in greater stability at higher 

temperatures. Thus, much of the community-level response depends on what species 

energetic efficiencies at the organismal-level really are, which formed the research 

question for Chapter 3: How does consumer energetic efficiency change with 

temperature? Existing evidence is scarce but suggestive of decreasing consumer energetic 

efficiency with increasing temperature. I tested this hypothesis on seven rocky intertidal 

invertebrate species by measuring the relative temperature scaling of their metabolic and 

ingestion rates as well as consumer interaction strength under lab conditions. Energetic 

efficiencies of these rocky intertidal invertebrates declined and species interaction 

strengths tended to increase with temperature. Thus, in the rocky intertidal, the 

mechanistic effect of temperature would be to lower community stability at higher 

temperatures. 

Chapter 4 tests if the mechanistic effects of temperature on ingestion rates and 

species interaction strengths seen in the lab are apparent under field conditions. Bruce 

Menge and I related bio-mimetic estimates of body temperatures to estimates of per 

capita mussel ingestion rates and species interaction strengths by the ochre sea star 

Pisaster ochraceus, a keystone predator of the rocky intertidal. We found a strong, 

positive effect of body temperature on both per capita ingestion rates and interaction 

strengths. However, the effects of season and the unique way in which P. ochraceus 

regulates body temperatures were also apparent, leaving room for adaptation and 

acclimation to partially compensate for the mechanistic constraint of body temperature.  

Community structure of the rocky intertidal is associated with environmental 

forcing due to upwelling, which delivers cold, nutrient rich water to the nearshore 

environment. As upwelling is driven by large-scale atmospheric pressure gradients, 

climate change has the potential to affect a wide range of significant ecological processes 



through changes in water temperature. In Chapter 5, my coauthors and I identified long-

term trends in the phenology of upwelling events that are consistent with climate change 

predictions: upwelling events are becoming stronger and longer. As expected, longer 

upwelling events were related to lower average water temperatures in the rocky intertidal. 

Furthermore, recruitment rates of barnacles and mussels were associated with the 

phenology of upwelling events. Thus climate change is altering the mode and the tempo 

of environmental forcing in nearshore ecosystems, with ramifications for community 

structure and function. 

Ongoing, long-term changes in environmental forcing in rocky intertidal 

ecosystems provide an opportunity to understand how temperature shapes community 

structure and the ramifications of climate change. My dissertation research demonstrates 

that the effect of temperature on organismal performance is an important force structuring 

ecological communities and has potential as a tractable framework for predicting the 

community level effects of climate change.  
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Bridging Environmental Physiology and Community Ecology: 
Temperature Effects at the Community Level 

 
CHAPTER 1: General Introduction 

 

Earth’s average surface temperature is currently increasing at 0.2 °C per decade 

with the rate of warming projected to increase, resulting in a 2-4 °C rise over the next 

century (IPCC 2007). Extensive and consistent evidence shows that climate change 

effects already permeate many aspects of terrestrial and aquatic ecological communities, 

causing shifts in species ranges, phenology, morphology, reproduction, population sizes, 

and extinction risks (reviewed in Walther et al. 2002; Parmesan 2006; IPCC 2007). The 

scope of the majority of these studies is at the species-level and most climate change 

predictions also focus on the response of individual species to changing local conditions. 

This approach has been repeatedly criticized for considering species in isolation and 

ignoring species interactions, which can have striking consequences for species 

abundances (Davis et al. 1998a; Davis et al. 1998b; Tylianakis et al. 2008; Gilman et al. 

2010; Walther 2010; Woodward et al. 2010; Zarnetske et al. 2012). Experimental 

manipulations in which entire communities were slowly warmed suggest that 

community-level effects of temperature have strong influences on population dynamics, 

population persistence and ecosystem functioning. In these systems, communities became 

less stable at higher temperatures and differential survival of trophic levels altered the 

balance between producers and consumers (Petchey et al. 1999; Voigt et al. 2003; 

Hawkins et al. 2009; Beveridge et al. 2010a; Beveridge et al. 2010b). 

Understandably, the reason why species interactions have been ignored comes 

from the fact that ecological networks are complex, with hundreds of species interacting 

in many different ways (Walther et al. 2002), and from the lack of a strong, tested 

theoretical foundation for incorporating the myriad of species interactions into climate 

change models (Gilman et al. 2010). However, a great deal of the variability in 

community structure and dynamics may be governed by relatively predictable 

bioenergetic constraints affecting the strength of species interactions and the flows of 
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energy through food webs (Berlow et al. 2009; Woodward et al. 2010). Many 

physiological rates are predictable from body size and body temperature due to 

constraints imposed by the physical and chemical laws that govern rates of resource 

uptake and distribution and the kinetics of biochemical reaction times. Examples include 

body size and temperature effects on metabolism (Gillooly et al. 2001), larval 

development (O'Connor et al. 2007), autotroph production and respiration (Lopez-Urrutia 

et al. 2006), and many more (see reviews by Dell et al. 2011; Somero 2011). Community-

level processes, including ingestion rates and the per capita strength of species 

interactions, are the end result of a series of physiological processes occurring at the 

organismal-level (Woodward et al. 2010). These include foraging activity levels, prey 

handling times and digestion rates, all of which are influenced by temperature and body 

size (Sanford 1999, 2002a, b; Yee & Murray 2004; Pincebourde et al. 2008a, b; Yamane 

& Gilman 2009; Rall et al. 2010; Englund et al. 2011; Vucic-Pestic et al. 2011). If 

bioenergetic constraints account for a large amount of the variation in species interaction 

strength, then they could form the basis of a simplified framework for including species 

interactions in climate change models based solely on body size and body temperature 

information (Berlow et al. 2009; Woodward et al. 2010). However, the community-level 

influences of these bioenergetic constraints are only starting to be explored. 

My dissertation bridges the fields of environmental physiology and theoretical 

ecology by exploring the community-level consequences of bioenergetic constraints on 

species interactions due to body size and temperature. I initially used dynamic modeling 

of food webs to explore how these bioenergetic constraints might manifest at the 

community level (Chapter 2). Here I incorporated temperature and body size scaling into 

the biological rate parameters (including metabolic rate, ingestion rate and autotroph 

production rate) of a series of realistically structured trophic networks of 30 interacting 

species. For each network, I systematically changed the ambient temperature of the 

model and the temperature scaling parameters affecting consumer metabolic rate and 

ingestion rate and analyzed effects at the species level and at the network level.  
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At the species level, I used statistical models to characterize a species’ probability 

of extinction as a function of several species attributes, such as energetic efficiency, body 

mass, trophic level, vulnerability (the number of consumers), generality (the number of 

resources), Hill exponent (the shape of the functional response), and predator interference 

coefficient (the degree to which individuals of that species interfere with each other’s 

consumption activities). The results indicate that the relative effects of physiology (body 

size and energetic efficiency) are more important than the effect of local food web 

structure (trophic level and generality) and both of these were overwhelmingly more 

influential than the random effects of the network structure. Thus, the bioenergetic effects 

of body size and temperature were highly influential on species persistence. However, 

local community structure also influenced the effect of temperature. Community structure 

could either limit the flow of energy up the food web and imposing additional energetic 

constraints on higher trophic species, or it could mitigate the negative effects of 

temperature by stabilizing species interactions.  

At the network level, the results show that the relative scaling of consumer 

metabolic rates (energetic losses) and ingestion rates (energetic gains) had implications 

for network stability. If consumer energetic efficiency declined with temperature (the 

consumer’s energetic costs increased faster with temperature than its energetic gains), 

then the community was more stable at lower ambient temperatures. If ambient 

temperatures were increased, then more species would go extinct and average community 

stability would decline. The opposite scenario of increasing consumer energetic 

efficiency with temperature resulted in greater average community stability at higher 

temperatures.  

This inverted response begs the question: How does consumer energetic 

efficiency change with temperature? Existing measurements of the relative temperature 

scaling of metabolic and ingestion rates have only been published from one forest floor 

invertebrate community of spiders and beetles, in which consumer energetic efficiencies 

decline with temperature (Rall et al. 2010; Vucic-Pestic et al. 2011). Thus, according to 

the model results of Chapter 2, the community level consequences of warming in this 
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forest floor community would be a loss of species from the system. A loss of species at 

warmer temperatures has also been observed in freshwater microcosm communities of 

bacteria and protists and grassland mesocosm communities of invertebrates that have 

been experimentally warmed (Petchey et al. 1999; Voigt et al. 2003; Beveridge et al. 

2010a; Beveridge et al. 2010b), suggesting that other ecological communities may also 

have species whose energetic efficiencies decline with temperature.  

In Chapter 3, I tested this prediction on a suite of species from Oregon’s rocky 

intertidal invertebrate community. The rocky intertidal is an ideal system to test 

bioenergetic constraints on community structure and dynamics because all the species are 

ectotherms, they are easily accessible and manipulated at low tide and are relatively easy 

to maintain in a lab environment. I measured the relative temperature and body size 

scaling of metabolic rates (using oxygen consumption as a proxy) and ingestion rates on 

preferred prey under controlled lab conditions. The results show that consumer basal 

metabolic rates (energetic costs) were more sensitive to temperature than ingestion rates 

(energetic gains). As predicted from the model results of Chapter 2, and in concordance 

with measurements on terrestrial invertebrates, rocky intertidal invertebrates exhibited 

declining energetic efficiency with temperature.  

Many exothermic species have the capacity to compensate for these bioenergetic 

constraints by behaviorally adapting to abiotic conditions. For example, snakes bask in 

the sun to increase their body temperatures and speed digestion or mobility. If such 

idiosyncratic behavioral adaptations are strong, they would limit the usefulness of the 

general constraints of environmental temperature for predicting the community-level 

effects of climate change. In Chapter 4, Bruce A. Menge and I used long term predation 

rate data to test if the bioenergetic effects of temperature and body size observed in the 

lab are apparent under field conditions. We related field measurements of per capita 

mussel predation rates by several populations of the ochre sea star Pisaster ochraceus, a 

keystone predator of the rocky intertidal, to temperature and body size. We used two 

different estimates of temperature: mean daily water temperatures and a bio-mimetic 

estimate of P. ochraceus body temperatures. Whereas mean daily water temperature is 
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only an accurate estimate of P. ochraceus body temperature at high tide, the bio-mimetic 

temperature logger approximates both high and low tide body temperatures. The results 

supported the mechanistic effect of body temperature on per capita ingestion rates and 

species interaction strengths. However, seasonal effects and the effects of the unique 

method in which P. ochraceus regulates its body temperature were also apparent, leaving 

some room for adaptation and acclimation to compensate for this bioenergetic constraint.  

Another reason why the rocky intertidal is an ideal system for testing the 

usefulness of this simplified, bioenergetic framework for including species interactions 

into climate changes models is because the community structure has been repeatedly 

associated with environmental forcing due to ocean upwelling currents (Menge & Olson 

1990; Menge et al. 1997a; Menge et al. 1997b; Menge et al. 2003; Menge et al. 2011b). 

Upwelling is the main factor driving water temperatures by delivering deep, cold, nutrient 

rich water to the nearshore environment (Huyer 1983).  As upwelling is driven by large-

scale atmospheric pressure gradients, climate change has the potential to affect a wide 

range of significant ecological processes through changes in water temperature. Chapter 5 

(Iles et al. 2012) examines how the upwelling regime has changed over the last half 

century in relation to climate change predictions and how these changes may influence 

the community structure of the rocky intertidal. My coauthors and I identified long-term 

trends in the frequency, duration, and strength of upwelling events and related the trends 

to water temperature and mussel and barnacle recruitment rates. Our results showed that 

upwelling events have become less frequent, stronger, and longer in duration, changes 

which are consistent with climate change predictions (Bakun 1990; Bakun et al. 2010). 

As expected, longer upwelling events were related to lower average water temperatures 

in the rocky intertidal. However, upwelled water is not only low in temperature, but is 

also high in nutrients and low in dissolved oxygen, which contributes to the hypoxia 

observed along the Oregon coast over the last ten years (Grantham et al. 2004; Chan et al. 

2008). Furthermore, these upwelled waters are high in dissolved carbon dioxide and low 

in pH, which is physiologically stressful for the many intertidal species with carbonate 

body parts (Feely et al. 2008). Thus climate change is altering the mode and the tempo of 



6 
 

 

environmental forcing in nearshore upwelling ecosystems in many ways beyond 

temperature effects, with potentially severe and discontinuous ramifications for 

ecosystem structure and function. 

My dissertation research demonstrates that the mechanistic effect of body 

temperature and body size on organismal performance is an important force structuring 

ecological communities and may be a useful generalization for modeling the community 

level effects of climate change. My results largely provide support for the influence of 

temperature as a dominant abiotic force structuring ecological communities, including 1) 

that a suite of species from the same environment exhibited a similar change in energetic 

efficiencies with changing temperature, 2) that the effects of body temperature on 

ingestion rates and species interactions strengths were apparent from field data, and 3) 

that organismal-level attributes, including how a species energetic efficiency scaled with 

body size, accounted for most of the variability in simulated community data. This view 

of how environmental forcing influences community structure through bioenergetics has 

potential as a baseline model for predicting community level effects of climate change.  
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CHAPTER 2: Effects of Temperature on Community and Population Stability in 
Allometric Trophic Network Models 

 

 

ABSTRACT 

Most research on the effects of climate change focuses on individual species 

rather than entire community assemblages due to the complex structure and dynamics of 

communities. Here I explore how bioenergetic effects of temperature at the organismal 

level manifest at the community level when embedded in simulations of trophic species 

interaction networks. I show that despite the random structures of the species interaction 

networks, the results are consistent with expectations from first principles and previous 

work on model systems of only two interacting species. I incorporated theoretical 

equations for how metabolic (energetic costs) and ingestion (energetic gains) rates scale 

with temperature and body size into dynamic models of 500 realistic 30-species 

networks. By systematically changing ambient temperatures, and the parameters 

governing how metabolic and ingestion rates scale with temperature, I was able to 

characterize the effects on community stability, population stability and understand how 

individual species attributes affected the probability of species-level extinction. The 

relative temperature scaling of metabolic and ingestion rates reversed the effect that 

increasing temperatures had on network robustness and population stability. The 

probability of a species going ‘extinct’ depended largely on organismal-level attributes of 

body size and energetic efficiency at particular temperatures and secondarily on local 

network structure, specifically trophic level and consumer generality. The influence of 

the random network structure was relatively minor. The methodology used here is useful 

for identifying the relative influence of factors at different levels of biological 

organization and for setting a mechanistic baseline, upon which additional complexity 

can be built, towards identifying which species are likely to be vulnerable to climate 

change. 
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2.1 INTRODUCTION 

Predictions of climate change effects on species abundances and distributions 

typically focus on individual species in isolation. However, species interactions have an 

important influence on species distributions, abundances and the stability of entire 

communities and thus should not be ignored (Tylianakis et al. 2008; Araujo et al. 2011; 

Urban et al. 2011). The presence or absence of links between species determines the 

structure of community networks and the strength of the interactions influences how 

energy flows through the network. The structure and dynamics of these networks 

ultimately impacts community stability and species persistence in the face of 

environmental disturbance and stress (de Ruiter et al. 1995; McCann et al. 1998; 

Emmerson & Raffaelli 2004; Thebault & Loreau 2005; Navarrete & Berlow 2006; 

Rooney et al. 2006; Goudard & Loreau 2008). For instance, webs with higher 

connectance, or a greater number of interactions between species, have greater stability 

and lower probabilities of secondary extinctions (Dunne et al. 2002). The challenge is 

now to develop a strong theoretical foundation for climate influences on both species 

interactions and the flow of energy through communities, which will help clarify the 

implications of climate change for community structure and stability (Tylianakis et al. 

2008; Gilman et al. 2010).  

Due to the complexity of ecological networks, directly measuring the strength of 

species interactions is often difficult (Berlow et al. 2004; Wootton & Emmerson 2005). 

Despite this, there are constraints on the effects of environmental temperature at the 

physiological level that can help elucidate the important mechanisms affecting species 

interaction strengths and community level patterns (Berlow et al. 2009). Environmental 

temperature is often identified as the most important abiotic factor directly influencing 

species performance and, indirectly, the strength of species interactions. For instance, in 

ectotherms, the scaling of metabolic rate with temperature due to the kinetics of 

biochemical reactions is well established (Gillooly et al. 2001) and sets the baseline 

energetic costs per unit biomass. In fact, temperature is the most important factor 

dictating per unit biomass metabolic rates (Brown et al. 2004). Increased energetic costs 
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of higher temperatures are at least somewhat offset by increased ingestion rates, thus 

influencing the strength of consumer interactions with their resources (Vasseur & 

McCann 2005). These general constraints on species energetic gains and losses influence 

energy flow through community networks, but are only just beginning to be explored. 

A consumer’s energetic efficiency is defined as the ratio of energy gain through 

ingestion to energy lost through metabolism and represents the amount of energy 

available for growth and reproduction (Rall et al. 2010; Vucic-Pestic et al. 2011; Sentis et 

al. 2012). The effect of temperature on a consumer’s energetic efficiency depends on the 

relative temperature scaling of the consumer’s ingestion and metabolic rates. If consumer 

metabolic rates increase faster (more slowly) with temperature than ingestion rates, then 

energetic efficiencies decline (increase) with temperature. Of the handful of studies that 

have measured consumer energetic efficiency, Rall et al. (2010) and Vucic-Pestic et al. 

(2011) found that it decreased with temperature for many members of a community of 

forest floor beetle and spider species, however Sentis et al. (2012) found for one 

ladybeetle species that it increased to an optimum and then decreased at higher 

temperatures.  

Vasseur & McCann (2005) incorporated temperature dependency of consumer 

metabolism and ingestion rates into a model of a simple consumer-resource system. The 

general effect of temperature on the system depended on how the consumer’s energetic 

efficiency changed with temperature, or how metabolic and ingestion rates scaled with 

temperature relative to one another. If the energetic efficiency of the consumer declined 

with warming, population stability increased (Vasseur & McCann 2005). However, 

greater energetic costs relative to energetic gains  may increase the risk of starvation and 

extinction of the consumer (Rall et al. 2010). Alternatively, if energetic efficiency 

increases with warming, then the consumer has a larger impact on its prey and system 

stability declines (Vasseur & McCann 2005). Thus, the effects of temperature in a simple 

consumer-resource system depend on the parameters affecting temperature scaling of 

energetic costs and energetic gains.  
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While Vasseur and McCann (2005) modeled a system with 2 interacting species, 

it is unknown how this mechanism affects the structure and dynamics of entire 

community networks. Here I use a network approach that incorporates temperature 

scaling of energetic costs and energetic gains to explore community-level consequences 

of environmental temperature. To do this, I incorporated the Arrhenius temperature 

dependence equations for metabolic and ingestion rates developed by Vasseur and 

McCann (2005) for a simple predator-prey system into an allometrically-scaled multi-

species food web model. So-called Allometric Trophic Network (ATN) models have 

been useful previously for investigating community level effects of body size structure 

(Yodzis & Innes 1992; Brose et al. 2006b; Berlow et al. 2009). I used simulations of 

many random webs to visualize the consequences of differences in the temperature 

scaling differences of metabolic rates (energetic losses) and ingestion rates (energetic 

gains) along a range of ambient temperatures. The outcome of this theoretical analysis 

provides valuable insight into the relative influence of organismal traits versus network 

structure. I discuss the usefulness of such baseline, mechanistic models for predicting 

when and where species are likely to be vulnerable to climate change. 

 

2.2 METHODS 

2.2.1 ATN model overview 

The Allometric Trophic Network (ATN) model used in these simulations was 

developed based on previously published models (Brose et al. 2006b; Berlow et al. 

2009). The ATN model was built in a 4-step process: (1) the niche model (Williams & 

Martinez 2000) determines the food web structure, (2) the trophic levels and body masses 

of the species are then calculated based on the food web structure, (3) the parameters of 

the dynamic consumer-resource model are calculated based on allometric and 

temperature scaling relationships or are parameterized based on a random draw from a 

range of realistic values, and (4) the producer-nutrient component of the model is 

similarly parameterized.  



11 
 

 

2.2.2 Food web structure 

I used the niche model (Williams & Martinez 2000) to generate the structure of 

the model food webs, the properties of which compare well with empirical food webs 

(Dunne et al. 2004; Williams & Martinez 2008). This model assumes that direct 

interactions between species are only trophic. The omission of other non-trophic 

interactions might be an over simplification, but we are just beginning to understand the 

network structure of non-trophic interactions (Kefi et al. 2012). 

The niche model is based on algorithms that arrange trophic links, L, among 

species with species richness, S, and connectance, C = L/S2, as input parameters. All 

species are assigned a ‘niche value’, ni, drawn uniformly from the interval (0, 1). Species 

݅ consumes all species whose niche values fall in a range, ݎ௜, that is placed uniformly by 

drawing the center, ܿ௜, of the range from the uniform interval (ݎ௜/2, ݊௜). The size of ݎ௜ is 

assigned by using a beta function to randomly draw values from the interval ሺ0, 1ሻ whose 

expected value is 2ܥ and then multiplying that value by ݊௜ (whose expected value is 0.5) 

to match the ܥ of the empirical web being modeled (Williams & Martinez 2000). Primary 

producers are those species whose feeding range does not encompass the niche value of 

other species, thus they do not consume other species. Only webs with at least 15% of 

species as primary producers were accepted. Species that were completely disconnected 

from the other species in the web or that were trophically identical were eliminated and 

replaced until the web was free of such species.  

2.2.3 Trophic levels and body masses 

The food web matrix created by the niche model is used to calculate species 

trophic levels as one plus the average trophic level of their prey, assuming that consumers 

feed evenly on multiple resources. Because of looping, prey trophic levels can depend on 

consumer trophic levels, particularly for cannibals (Williams & Martinez 2004). Thus, I 

followed an analysis which utilizes the theory of Markov chains and produces a 

continuous measure of trophic level from the food web matrix (Levine 1980).  
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The body masses of all basal species were set to one and the body masses of each 

consumer was calculated by randomly sampling predator-prey body-mass ratios, Z, from 

a log-normal distribution (mean=3.60, SD=3.57). This distribution matched a weighted 

mean and standard deviation of body-mass ratios found in natural ecosystems (Brose et 

al. 2006a) and was consistent with previous findings that high body mass ratios stabilize 

complex food webs (Brose et al. 2006b). The body mass of each consumer, ܯ஼, depends 

on its trophic level, TL, as: 

஼ܯ ൌ ܼ஼
்௅ିଵ 

      (1) 

This methodology assumes that consumer body size is constant and non-adaptive. 

Many species have indeterminate adult body sizes and exhibit plasticity under different 

conditions (e.g. Iles & Rasmussen 2005). Since the effect of body size on biochemical 

reaction rates is much larger than the effect of temperature, this important omission 

warrants further investigation but is beyond the scope of this study. The model also 

assumes that the body sizes of producers are all the same, which is reasonable for pelagic 

systems where the majority of producers are single celled phytoplankton. 

2.2.4 Allometric and temperature scaled consumer-resource dynamics 

ATN models follow the bioenergetic approach of Yodzis and Innes (1992), where 

the change in relative, dimensionless biomass densities, ܤ௜, of S species with respect to 

time, ݐ, is described by S coupled ordinary differential equations for consumers (eqn. 2a) 

and primary producers (eqn. 2b). 

ᇱܤ
௜ሺݐሻ ൌ ෍ ௜௝ܨ௜ܤ௜ݕ௜ݔ

௝אோ೔

݁௜௝ െ ෍ ௝௜ܨ௝ܤ௝ݕ௝ݔ
௝א஼೔

െ  ௜ܤ௜ݔ

  (2a) 

ሻݐԢ௜ሺܤ ൌ ௜ܤ௜ሺܰሻܩ௜ݎ െ ෍ ௝௜ܨ௝ܤ௝ݕ௝ݔ െ ௜ܤ௜ݔ
௝א஼೔

 

      (2b) 
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The biomass density of consumer species i (eqn. 2a) equals the energetic gains 

from consumption of i’s set of resource species, ܴ௜, minus the energetic losses due to 

consumption from i’s set of consumer species, ܥ௜, and energetic losses due to i's mass and 

temperature-specific metabolic rate, xi. For primary producer species (eqn. 2b), biomass 

density equals energetic gains due to growth, Gi, which is a saturating function based on 

the most limiting nutrient (details below), minus energetic losses due to consumption 

from i’s set of consumer species, ܥ௜, and due to i's mass and temperature-specific 

metabolic rate, xi. In these equations, ri is the mass and temperature-specific maximum 

growth rate of the primary producers, yi is consumer’s maximum ingestion rate relative to 

its metabolic rate, eij is i's assimilation efficiency when consuming species j, which was 

set to 0.85 for carnivores and 0.45 for herbivores (Yodzis & Innes 1992), and Fij is the 

functional response describing the fraction of ݅’s maximum rate of ingestion accounted 

for when ingesting species ݆: 

௜௝ܨ ൌ
߱௜௝ܤ௝

௛

଴ܤ
௛ ൅ ଴ܤ௜ܤܿ

௛ ൅ ∑ ߱௜௞ܤ௞
௛

௞ୀோ೔

 

     (3) 

Where ߱௜௝ denotes the resource preference of ݅ for species ݆, B0 is the half-

saturation density, h is the Hill exponent and c quantifies predator interference. I set 

uniform relative ingestion rates for consumers with ݊ resources (߱௜௝ ൌ 1/݊, ଴ܤ ൌ 0.5,), 

which assumes that consumers have no prey preference and feed on all resources 

according to their relative biomass. The Hill exponent, h, regulates the shape of the 

functional response from Holling Type II to Holling Type III. Predator interference, c, 

quantifies the degree to which individuals within the same species interfere with each 

other’s consumption activities. For each consumer-resource species interaction in the 

food web models, I used random, normally distributed Hill exponents (mean = 1.5, SD = 

0.25) and predator interference coefficient (mean = 0.5, SD = 0.25). 

Following the approach of Vasseur and McCann (2005), the effect of temperature 

is incorporated into the dynamic ATN model through its effects on mass-specific 
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production rates, ܴ௉, metabolic rates, ܺ஼,௉, and ingestion rates, ஼ܻ, of consumers, C, and 

producers, P, as: 

ܴ௉ ൌ ܽ௥ሺ బ்ሻܯ௉
ି଴.ଶହ݁ாೝሺ்ି బ்ሻ/௞் బ் 

    (4a) 

ܺ஼,௉ ൌ ܽ௫ሺ బ்ሻܯ஼
ି଴.ଶହ݁ாೣሺ்ି బ்ሻ/௞் బ் 

    (4b) 

஼ܻ ൌ ܽ௬ሺ బ்ሻܯ஼
ି଴.ଶହ݁ா೤ሺ்ି బ்ሻ/௞் బ் 

    (4c) 

Where ܯ௜ is species i's body size, and the intercepts of the allometric relationships 

൫ܽ௜ሺ బ்ሻ൯ are empirically derived constants representing the maximum sustainable rates 

(physiological maxima measured at temperature ଴ܶ). The effect of temperature in these 

equations is derived from the Arrhenius equation, where the proportion of molecules with 

sufficient kinetic energy to activate a reaction is expressed as the activation energy (eV), 

E, divided by the temperature (K), T, and modified by the Boltzmann’s constant (k = 

8.62·10-5 eV·K-1) (Brown et al. 2004). Please see Appendix A for the full details of how 

these equations were evaluated.  

The time scale of the model system is defined by setting the mass-specific growth 

rate of the basal populations to unity. Then, to bring the rest of the rates to the same scale, 

the rate of mass-specific consumer metabolism is normalized by the time scale and the 

mass-specific ingestion rates are normalized by the metabolic rates:  

௜ݎ ൌ ܴ௉/ܴ௉ ൌ 1 

     (5a) 

௜ݔ ൌ
ܺ஼,௉

ܴ௉
ൌ

ܽ௫

ܽ௥
൬

஼,௉ܯ

௉ܯ
൰

ି଴.ଶହ

݁ିሺாೝିாೣሻሺ்ି బ்ሻ/௞் బ் 

   (5b) 

௜ݕ ൌ ஼ܻ

ܺ஼
ൌ

ܽ௬

ܽ௫
݁൫ா೤ିாೣ൯ሺ்ି బ்ሻ/௞் బ் 

    (5c) 
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Thus, through the temperature dependencies of metabolic rates and ingestion 

rates, the difference in activation energies governs the effect temperature has on a system 

of interacting species. In equation 5c, the difference between the activation energies of 

ingestion rate and metabolic rate, ܧ௬ െ  ௫, is termed the consumer thermal impact (CTI)ܧ

of the system (Vasseur & McCann 2005). When CTI is negative, metabolic rates increase 

faster with temperature than ingestion rates and consumer energetic efficiency declines as 

temperature increases. Species with negative CTI do better at colder temperatures and are 

considered cold-adapted. When CTI is positive, ingestion rates increase faster with 

temperature than metabolic rates and consumer energetic efficiency increases with 

temperature. Thus, these species do better at warmer temperatures and are considered 

warm-adapted (Fig. 2.1). The activation energy of production rate, ܧ௥, was set to 0.5 for 

all simulations based on calculations for marine and freshwater unicellular algae (Vasseur 

& McCann 2005). The allometric normalization constants evaluated at T0 = 20°C were 

set to the following for all simulations: ar = 0.386 (Vasseur & McCann 2005), ax = 0.12 

(for consumers; see Appendix A), ax = 0.189 (for primary producers; Brown et al. 2004), 

and ay = 1.3 (see Appendix A).  

2.2.5 Producer-nutrient model 

The nutrient-dependent growth rate of the primary producers, ܩ௜, follows a well-

established nutrient intake model (Tilman 1977; Brose et al. 2005; Brose 2008; Berlow et 

al. 2009), where growth is a saturating function of the most limiting nutrient: 

௜ሺܰሻܩ ൌ ܰܫܯ ൬ ଵܰ

௟௜ܭ ൅ ଵܰ
, ଶܰ

௟௜ܭ ൅ ଶܰ
൰ 

        (6) 

Where MIN is the minimum operator and Kli is the half saturation density of 

primary producer i for nutrient l. The half saturation densities for both nutrients were 

selected for each primary producer from a uniform interval (0.1, 0.2). Producer nutrient-

intake efficiencies decrease with higher half saturation densities. Thus, this term helps 

define the competitive hierarchy among the producers since the model assumes that all 
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producers have the same growth rate and effectively compete for two possible limiting 

nutrients. The dynamic variation in the concentration of the limiting nutrient, Nl, is given 

by: 

ܰᇱ
௟ሺݐሻ ൌ ሺܦ ௟ܵ െ ௟ܰሻ െ ෍ሺܿ௟௜ݎ௜ܩ௜ሺܰሻܤ௜ሻ

௡

௜ୀଵ

 

              (7) 

Where, D is the turnover rate, Sl is the supply concentration of nutrient l and 

removal depends on the current concentration in the system, Nl, and the total absorption 

rate of all the primary producers in the system is multiplied by cli, the content of nutrient l 

in the biomass of species i. In all simulations the turnover rate (D = 0.25) was kept 

constant, relative to the time scale of the producer growth rate (ri = 1). The supply 

concentrations of both nutrients was also constant (S1 = S2 = 1), however the first 

nutrient was the one most in demand as it had the highest content in the biomass of the 

primary producers (c1i = 1, c2i = 0.5).  

2.2.6 ATN Model evaluation 

I ran several evaluations of the model to choose how long to run the simulations 

and over what time period to calculate community and population stability. Most 

extinctions occur within the first 2000 time steps, thus, I measured community stability as 

web robustness, or the percentage of species remaining at t = 2,000 (Brose et al. 2006b; 

Heckmann et al. 2012). Longer time series (t = 5,000) had the same qualitative results, 

except with lower overall robustness. To measure population stability, I used the 

coefficient of variation (CV) of species’ biomass densities from t = 50 to 350, which 

measures population stability before equilibrium is reached and is akin to the non-

equilibrium state of natural ecosystems (Brose et al. 2006b; Berlow et al. 2009). An 

analysis of 10 random webs showed that biomass densities at t = 50 was sufficiently 

removed from initial biomass densities to be uncorrelated (p-values ranged from 0.1-0.8). 

The length of the time-averaged window was determined by evaluating the point at which 

mean biomass densities stopped changing. A window length of 300 time steps was long 
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enough to incorporate at least a full cycle of most population fluctuations. Numerical 

integration of equations 2a-b and 5 used the Runge-Kutta method with adaptive step 

sizes. The simulations were implemented in Matlab 7.8.0 (MathWorks R2011b). 

2.2.7 ATN Model simulations  

I ran two sets of simulations. The objective of the first set was to evaluate the 

effect of CTI on general web robustness and population stability and the second set was 

to evaluate how species attributes affected the probability of extinction. In the first set of 

simulations, I generated 100 food webs with a set species richness S = 30 and food web 

connectance C = 0.15. For each food web realization, I evaluated community and 

population stability at different activation energies for metabolic and ingestion rates, 0 ≤ 

E ≤ 1.2 eV with ∆E = 0.3 eV, and temperatures from 0 ≤ T ≤ 30 °C, ∆T = 3 °C. The 

activation energy of producer production rates, Er was set to 0.6. Initial biomass densities 

were selected randomly and uniformly from the interval (0.05, 1) and initial nutrient 

concentrations were constant (N1 = N2 = 1). Any species with a biomass density less than 

the extinction threshold Bext < 10ିଷ଴ at the end of the simulation was considered 

‘extinct’. Lower extinction thresholds produced qualitatively the same results with higher 

persistence.  

To evaluate how species attributes affect the probability of extinction, in the 

second set of simulations I generated 500 food webs with the same parameter values as 

before except that each species was assigned its own random activation energies for 

metabolic and ingestion rates, 0.2 ≤ E ≤ 1 eV, resulting in a continuous range of CTI 

values (-0.8, 0.8). The ambient temperature of each simulation was randomly selected 

between 0 and 40 °C. For each web realization, I recorded the web number and the 

ambient temperature of the simulation, and for each consumer species I recorded whether 

or not it went extinct, its CTI, body mass, trophic level, vulnerability (i.e. the number of 

consumers it has), generality (i.e. the number of resources it has), Hill exponent (which 

regulates the shape of the functional response from Holling Type II to Holling Type III), 
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and predator interference coefficient (which quantifies the degree to which individuals of 

that species interfere with each other’s consumption activities).  

2.2.8 Statistical analyses 

To analyze the effects of all these variables, and many of their interactions, on a 

species’ probability of extinction, I used a generalized linear mixed model (GLMM) with 

a binomial distribution for the response variable (whether or not a species went extinct). I 

incorporated the web number as a random factor, since species from the same web 

depend on one another and are thus highly likely to influence each other’s extinction 

probability. Body size was log transformed to improve the distribution and all the 

predictor variables were centered before analysis. Pearson’s correlation coefficients were 

calculated for all pairs of predictor variables to check for collinearity. All correlated 

variables were retained in the analysis since the strongest correlation was between log 

body size and trophic level (r = 0.35).  

Traditional methods to assess effect size typically use the coefficient of 

determination (R2) to understand the percent of the variation in the data accounted for by 

a variable, but calculating R2 values is inappropriate for binomial regression models. 

However, model comparisons using the change in AICc (corrected Akaike Information 

Criterion) due to the influence of a variable represents the comparative statistical 

contribution of a variable to model fit, or the relative information lost by removing a 

variable.  I used AICc model comparisons of the final model to models in which each 

variable or interaction term was sequentially removed.  

All analyses were conducted in R 2.14.1 (The R Foundation for Statistical 

Computing 2011) and followed statistical methods outlined in Zuur et al. (2009). 

 

2.3 RESULTS 

When the CTI (consumer thermal impact) is negative (i.e., when consumer 

energetic efficiency declines with temperature), increasing temperatures are destabilizing 

at both the community and population levels. At low temperatures, robustness is high and 
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the coefficient of variation in population biomass densities is low (Fig. 2.2). As 

temperatures increase, this relatively stable system becomes more and more unstable. 

Population stability declines as the variability of population densities increases. As the 

model system becomes destabilized, mathematical extinctions occur and web robustness 

declines. The opposite occurs when CTI is positive (i.e. when consumer energetic 

efficiency increases with temperature), in which case increasing temperatures are 

stabilizing at both the community and population levels. 

The GLMM analysis of which species attributes contribute to the probability of 

extinction indicated a strong 4-way interaction between CTI, temperature, body mass and 

trophic level (1 df, Χ 2 = 114.61, p = 2.2E-16; Table 2.1, Fig. 2.3). For all body masses 

and for all trophic levels, there was a clear and consistent interaction between CTI and 

temperature that mimics the pattern observed from the first round of simulations. When 

CTI is negative, probabilities of extinction are low at low temperatures but as temperature 

increases, the probability of extinction increases. The opposite occurs when CTI is 

positive; probabilities of extinction are high at low temperature and decrease as the 

temperature increases (compare subplots horizontally in Fig. 2.3). Species with smaller 

body masses consistently had higher probabilities of extinction than species with larger 

body masses under all the combinations of parameter values tested. Species with larger 

body masses were also not as sensitive to how CTI affected their probability of extinction 

(compare across colored lines in all subplots of Fig. 2.3). At higher trophic levels, the 

effect of body size becomes more pronounced, as the spread between small and large-

bodied species widens (compare subplots vertically in Fig. 2.3). For large-bodied species 

(blue and purple lines in Fig. 2.3), the probability of extinction goes down as trophic level 

increases. However, for average and small-bodied species (green, orange and red lines in 

Fig. 2.3), the probability of extinction increases with trophic level.  

More generalized species with greater numbers of resources to rely on exhibited a 

lower probability of extinction than specialized species (1 df, Χ 2 = 68.72, p < 2.2 E-16; 

Fig. 2.4). There was no effect of species vulnerability (the number of consumers a species 

has) on the probability of extinction and this term was dropped from the model (1 df, Χ 2 
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= 1.49, p = 0.22). However, species vulnerability was negatively correlated with species 

generality (r = -0.26), thus there is minor collinearity between these variables.   

For the parameters affecting each species’ functional response, the Hill exponent, 

h, had an interactive effect with body mass on the probability of extinction (1 df, Χ 2 = 

4.51, p = 0.03; Fig. 2.5).  Large-bodied consumers exhibited a greater probability of 

extinction with more of a type III functional response while small-bodied consumers 

showed a greater probability of extinction with a type II functional response. The 

parameter controlling the extent of predator interference within a species, c, did not have 

a systematic effect on species persistence and was dropped from the GLMM (1 df, Χ 2 = 

2.42, p = 0.1198).  

To assess the effect size of the different variables, I used ∆ AICc comparisons 

between the final model and models where each variable (Fig. 2.6a), or each term of the 

model (Fig. 2.6b) was sequentially removed. The relative statistical contribution of body 

mass far surpassed that of temperature and CTI, which were in turn relatively more 

important for model fit than trophic level or generality with variability in the Hill 

coefficient being the least influential (Fig. 2.6a). The relative statistical contribution of 

the significant model terms (Fig. 2.6b) indicates that the main effect of body size has a 

greater influence than any of the interaction terms in which body size is also influential. 

The interaction between CTI and temperature is the next most influential term. The 

random effect of the web a species came from is relatively minor. 

 

2.4 DISCUSSION 

Incorporating temperature scaling into ATN models demonstrates that the 

influence of temperature on per unit biomass rates of metabolism and ingestion can have 

implications for community stability. Moreover, the relative influence of temperature 

depends on species body size, energetic efficiency, and to a lesser degree, trophic level 

and generality. However, the relative effects of species attributes (body size, energetic 

efficiency) are collectively more important to the final model fit than the effects of local 



21 
 

 

food web structure (trophic level, generality) and both of these are overwhelmingly more 

influential than the random effects of the network structure. Thus, the results are 

consistent with expectations from first principles and analyses of simple systems of two 

interacting species despite the chaotic and random network structure imposed in these 

analyses. 

Increasing temperatures were destabilizing for simulations in which consumer 

energetic efficiencies decline with temperature (i.e. a negative CTI), which mimics 

observations of community stability from empirical studies where species were more 

likely to go extinct in warmed communities (Petchey et al. 1999; Voigt et al. 2003). Most 

lab measurements of CTI corroborate this, showing that consumer energetic efficiencies 

tend to decrease with temperature for various terrestrial arthropods (Rall et al. 2010; 

Vucic-Pestic et al. 2011) and rocky intertidal marine invertebrates (Iles in prep). The 

model simulations also indicate that at high ambient temperatures, populations whose 

energetic efficiencies increase with temperature (i.e. those with a positive CTI) would be 

more likely to persist.  Such species may be found in warmer habitats. There is very little 

support for this hypothesis, but Sentis et al. (2012) found increasing energetic efficiencies 

with temperature for a ladybeetle, Coleomegilla maculate lengi, which increased up to an 

optimum at ~30°C and then decreased thereafter, likely due to catabolism. Although this 

is just one study, this result may indicate adaptation, or acclimation, to high ambient 

temperatures, especially considering this lab population of C. maculate was reared at a 

relatively high ambient temperature (24°C) and tested along a much higher range of 

temperatures (14 - 33°C) compared to the terrestrial arthropods (8 – 22°C) and marine 

invertebrates (5 – 17°C) tested. If the energetic efficiencies of species are adapted to their 

local climate, then entire community assemblages living under similar abiotic conditions 

are likely to exhibit similar scaling of metabolic and ingestion rates. Thus, more 

empirical measurements of energetic efficiency from diverse habitats and climates are 

necessary to assess the real world importance of this finding.  

In the simulations, the influence of temperature and CTI on a species’ probability 

of extinction was dramatically lower for large-bodied species. This effect of body size 
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stems from the underlying expressions for mass-specific metabolic and ingestion rates, 

which scale with body size as M -0.25 (Equations 4a-c,Gillooly et al. 2001; Brown et al. 

2004). Although larger organisms require more resources, they operate more efficiently, 

requiring fewer resources on a per mass basis than smaller organisms (Brown et al. 

2004). Since the effect of body size is multiplied by the effect of temperature, per unit 

biomass rates of metabolism and ingestion become less sensitive to temperature as body 

size increases. Consequently, species with larger body sizes at any given trophic level 

were less susceptible to temperature fluctuations. Previous simulations of ATN models 

have shown that incorporating body size scaling means that consumers tend to have 

lower per unit biomass rates of metabolism and ingestion relative to their resources, 

which effectively decreases per unit biomass species interaction strengths and increases 

food web stability (Yodzis & Innes 1992; Brose et al. 2006b). In natural systems, such a 

disproportionate effect of temperature on small bodied species would provide added 

selection pressure for predators to be larger than their prey. 

The effect of trophic level in the simulations suggests that in real systems, small-

bodied consumers at higher trophic levels would be more vulnerable to temperature 

fluctuations and would thus experience greater selection pressure on traits affecting body 

size, energetic efficiency, or reproductive rates. In particular, parasites, parasitoids and 

other infectious agents, which typically occupy high trophic levels and have small body 

sizes, have been shown to reproduce at higher rates and exhibit higher energetic 

efficiencies (Lafferty et al. 2008a; Hechinger et al. 2011) and are quite vulnerable to 

ecosystem disturbance (Lafferty et al. 2008b; Wood et al. 2010). Furthermore, parasites 

do not fit into the common macro-ecology scaling rule for abundance as a function of 

body size and temperature unless trophic level is taken into account (Hechinger et al. 

2011). Experimental studies manipulating temperature on entire communities have 

generally found that upper trophic levels are more sensitive to climate change. For 

example, in communities of aquatic microorganisms held in microcosms that were slowly 

warmed, species went extinct disproportionately from top trophic levels (Petchey et al. 

1999). Similarly, Voigt et al. (2003) found that climate accounted for a greater amount of 
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explained variance in abundance of higher trophic levels in a grassland community of 

invertebrate consumers. Due to the space requirements of large-bodied species and the 

challenges of handling species of dramatically different body sizes, these manipulative 

experimental studies typically use organisms that are relatively small. This logistical 

limitation may unintentionally limit the size structure of the experimental community (i.e. 

predators are relatively small) and bias results towards greater extinction rates of top 

trophic levels.  

That large-bodied consumers at higher trophic levels would be less vulnerable to 

temperature fluctuations due to the overwhelming influence of body mass on metabolic 

rates, would be difficult to test. This is true not only because of the aforementioned 

logistical difficulties of experimenting with large-bodied species, but also because of the 

confounding effects of other mechanisms that disproportionately affect large-bodied, top-

trophic position species but were not incorporated into the ATN model. Most notably, 

large-bodied animals tend to have lower population densities, slower population growth 

rates, and occupy habitat at a greater spatial scales (Burness et al. 2001). This makes 

them more vulnerable to demographic and genetic variability with a reduced capacity to 

recover from disturbances or habitat loss (Karlsson et al. 2007). The ATN model is not 

spatially explicit and thus does not take into account the greater space requirements of 

larger species or allow species to disperse to or between more favorable habitats. 

Although the ATN model includes a minimum biomass density in the simulations, below 

which a species was considered mathematically extinct, it does not include a minimum 

density of individuals which would take into account body size and the minimum 

population size for maintaining long-term population viability. Finally, the ATN models 

do not include the ability of species to adapt to their environment. If adaptation were 

included, large-bodied species would be more vulnerable to temperature changes as they 

would adapt slower than small-bodied species.  

The results of the simulations support the hypothesis that specialized species 

should be more sensitive than generalists to climate change since the loss of a key prey 

could be catastrophic for a specialist but a generalist has other resources to drawn from 
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(Gilman et al. 2010). This result is also consistent with network analyses by Araujo et al. 

(2011) in which poorly connected species were most exposed to the effects of climate 

change. Furthermore, network robustness is known to increase with connectivity, which 

increases the proportion of generalists (Dunne et al. 2002). From the perspective of 

species interaction strength, consumers with multiple resources had no prey preference in 

the simulations and fed in proportion to the biomass densities of their resources. Thus the 

average per unit biomass interaction strength of a consumer would decrease when it had 

more resources to draw from, increasing the probability of persistence of species with 

more resources. This supports findings from marine communities in which highly 

connected species tended to have weak effects on average (O'Gorman et al.) and the 

species involved in strong interactions were more likely to have additional, stabilizing, 

weak interactions as well (Bascompte et al. 2005).  

Beyond the constraints discussed above, there are additional limitations and 

assumptions of these simulations. The ATN model system represents closed 

communities, in which species cannot disperse to better suited habitats and they either go 

extinct or persist. Species cannot adapt to their environmental conditions, nor do they 

have any ability to acclimate. This is important because for many organisms with 

indeterminate growth, temperature is often a major factor affecting adult body sizes and 

the effect of body size outweighs the effect of temperature. Furthermore, many organisms 

exhibit phenotypic plasticity with regard to metabolism. At times of resource scarcity or 

under stressful environmental conditions, many species can lower their metabolic rates 

and resource requirements by entering a low energy use torpor or diapause (Fly et al. 

2012). Non-trophic interactions are not included, yet can account for much of the 

complexity of ecological networks (Kefi et al. 2012). Particular non-trophic interactions 

may be very influential. For instance, some species ameliorate stressful environmental 

conditions for others. In contrast to the ectotherms modeled here, endotherms are in a 

different metabolic class, with very different coping mechanisms for preventing heat loss 

or heat gain as environmental temperatures change (Burness et al. 2001). Finally, there 

are many other ways, besides temperature changes, in which climate change will affect 
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organism performance, such as changes to precipitation patterns and ocean acidification. 

Thus, there are many more additional complexities and countervailing mechanisms 

missing from these simulations. Incorporating these complexities into such simulations 

would give insight into their relative importance. Developing these models further will 

also help identify influential factors that are easy to measure in the real world (e.g. body 

size) to make predictions for when and where species are likely to be vulnerable to 

climate change. Where the model predictions deviate from trends seen in empirical 

observations or experimental manipulations of warmed communities is also informative 

for what mechanisms are missing from the models and where the knowledge gaps lie.  

2.4.1 Conclusions 

The simulations presented here put the physiological effects of temperature at the 

organismal level into a trophic network context. The results provide insights into the 

mechanistic basis of temperature on community level patterns of stability and provide 

predictions for the vulnerability of species to climate change. Exothermic consumers in 

cooler habitats are likely to exhibit declining energetic efficiency and be vulnerable to 

warming, whereas exothermic consumers in warm environments would benefit from 

increasing energetic efficiency, which reflects existing but limited empirical 

measurements. Temperature changes are likely to have a greater influence on small-

bodied consumers, particularly those at higher trophic levels such as parasites, and 

contribute to the observed size structure of ecological communities.  

Despite these insights learned from incorporating temperature scaling of 

fundamental biological rates into trophic networks, the analysis also reveals the relatively 

minor importance of trophic network structure in comparison to particular species 

attributes and local food web structure for understanding species extinction probabilities. 

Of course, it is only after characterizing the general, bioenergetic constraints that species 

face and putting them in the network context that we are able to assess the relative 

influence of different factors at different levels of biological organization. The approach 
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used here helps characterize general bioenergetic constraints and set a baseline for 

predicting when and where species are likely to be vulnerable to climate change. 
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Table 2.1 Estimates of the coefficients for the fixed effects of the optimal generalized 
linear mixed model analysis of the probability of extinction. The explanatory variables 
retained in the model include Consumer Thermal Impact (CTI), ambient temperature 
(Temp), body mass (M), trophic level (TL), generality (G), and the hill coefficient (h). 
The random effect of the web the species came from had a standard error of 0.06 and the 
residual standard error was 0.25. 

 

Estimate Std. Error Z value Pr(>|z|) 
(Intercept) -0.784 0.047 -16.85 <2.0E-16 
CTI:Temp:M:TL 0.014 0.002 5.79 7.20E-09 

CTI -0.083 0.146 -0.57 0.57 
Temp -0.005 0.004 -1.15 0.25 
M -0.610 0.016 -38.62 <2.0E-16 
TL -0.011 0.052 -0.22 0.83 
CTI:Temp -0.228 0.013 -17.49 <2.0E-16 
CTI:M 0.046 0.036 1.25 0.21 
Temp:M -0.006 0.001 -5.25 1.60E-07 
CTI:TL -0.132 0.158 -0.84 0.4 
Temp:TL -0.001 0.004 -0.19 0.85 
M:TL -0.196 0.015 -13.43 <2.0E-16 
CTI:Temp:M 0.026 0.002 11.01 <2.0E-16 
CTI:Temp:TL -0.050 0.014 -3.67 2.41E-04 
CTI:M:TL 0.098 0.035 2.76 5.73E-03 
Temp:M:TL -0.004 0.001 -4.18 2.91E-05 

G -0.068 0.008 -8.19 2.58E-16 
M*h 0.068 0.032 2.12 3.44E-02 
      h 0.174 0.141 1.23 0.22 
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Figure 2.1  How the difference in the temperature scaling (or the activation energies) of a 
species ingestion, EI, and metabolic rates, EM, determines whether its Consumer Thermal 
Impact (CTI = EI – EM ) is positive or negative. If ingestion rates (dotted lines) increase 
faster than metabolic rates (solid lines) with temperature, then CTI is positive (a). If 
metabolic rates increase faster than ingestion rates with temperature, then CTI is negative 
(b). Shaded regions in both plots indicate the temperature range in which energetic gains 
due to ingestion are higher than energetic losses due to metabolism. Species with positive 
CTI would have greater energetic efficiencies at higher temperatures (a, dashed circle) 
and are warm-adapted species, whereas species with negative CTI would have greater 
energetic efficiencies at lower temperatures (b, dashed circle) and are cold-adapted.  
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Figure 2.2 Average web robustness (a; the proportion of species persisting in the web), 
and intrinsic population stability (b; the inverse of variability in biomass density over 
time) over 100, 30-species simulated food webs evaluated at different combinations of 
Consumer Thermal Impact (CTI = Ey – Ex) and ambient temperature. Higher values, or 
more yellow on the color bar spectrum, are indicative of greater community (a) and 
population (b) stability. The axes of invariance are found at CTI = 0 eV and temperature 
= 20°C. These are the values where the intercepts of the temperature dependent functions 
for metabolic and ingestion rates are defined.  
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Figure 2.3 The effect of CTI on the probability of a species extinction at four ambient 
temperatures: 5,15, 25 and 35°C and trophic levels 2, 3 and 4. The effect is plotted 
separately for various percentiles of body mass (see legend). The solid lines represents 
the GLMM-predicted values for the ‘population of webs’ at that particular combination 
of set temperature, trophic level and body mass; the dashed lines encompass the 95th 
percentile of the variation between the 500 webs analyzed.  
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Figure 2.4 The effect of consumer (centered) generality on GLMM-predicted 
probabilities of extinction. The thick line in the middle represents the predicted values for 
the ‘population of webs’; the two dashed lines encompass the 95th percentile of the 
variation between the 500 webs analyzed.  
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Figure 2.5 The effect of consumer (centered) Hill exponents, which determines whether 
a consumer exhibits a type II or III functional response, on GLMM-predicted 
probabilities of extinction. The effect is plotted separately for various percentiles of body 
mass (see legend). The solid lines represent the predicted probability of extinction for a 
species of a particular body mass for the ‘population of webs’; the two dashed lines 
encompass the 95th percentile of the variation between the 500 webs analyzed. ). Large-
bodied consumers exhibited a greater probability of extinction with more of a type III 
functional response while small-bodied consumers showed a greater probability of 
extinction with a type II functional response. 
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Figure 2.6 The relative contribution of a) the total effect of each variable, and b) the 
effect of each statistically significant model term to a species probability of extinction. 
The effect of each variable or term on model fit was assessed by the change in the 
corrected Akaike information criterion, ∆ AICc, after that variable or term was removed 
from the model.  
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CHAPTER 3: Temperature Effects on the Energetic Efficiency and Species 
Interaction Strength of Rocky Intertidal Invertebrate Consumers 

 

 

ABSTRACT 

Predicting the effects of climate change on ecological communities requires a 

fundamental understanding of how environmental factors influence both physiological 

and interspecific processes. Specifically, the net impact of temperature on community 

structure depends on the relative response of physiological energetic costs (basal 

metabolism) and interspecific gains (ingestion) that mediate the flow of energy 

throughout a food web. However, the relative scaling of metabolic and ingestion rates 

with temperature have never been measured for an entire ecological assemblage and it is 

not known how, and to what extent, they differ. To investigate the relative influence of 

these processes, I measured the temperature scaling of basal metabolic and ingestion rates 

for a suite of rocky intertidal species using a multiple regression experimental design. I 

compared oxygen consumption rates (as a proxy for basal metabolic rate) and ingestion 

rates by estimating the temperature scaling parameter (EA; the activation energy) of the 

‘universal temperature dependence’ (UTD) model, a theoretical model derived from first 

principles of biochemical kinetics and allometry. The results show that consumer basal 

metabolic rates (energetic costs) were more sensitive to temperature than ingestion rates 

(energetic gains). Thus, as temperature increased, metabolic rates tended to increase 

faster relative to ingestion rates and energetic efficiency declined. Metabolic and 

ingestion rates largely scaled in accordance with the UTD model; however, non-linearity 

was evident in several cases in which the UTD model was not the most appropriate. 

These results highlight the relative importance of physiological processes for forecasting 

temperature effects on ecological communities and the importance of measuring the 

effects of environmental factors in ways that can be easily incorporated into community 

models. 
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3.1 INTRODUCTION 

With mounting evidence of climate change, ecologists face the challenge of 

forecasting impacts on ecological communities (Helmuth et al. 2006). In particular, the 

influence of environmental temperature at the community level may be significant. 

Environmental temperature affects virtually all biochemical and physiological rates of 

ectotherms and is thus highly influential on their distribution and abundance (Somero 

2002; Pörtner & Peck 2010; Somero 2011). At the organismal level, the first principles of 

thermodynamics are quite successful in relating environmental temperature to body 

temperature in ectotherms (Helmuth 1998; Denny & Harley 2006; Szathmary et al. 

2009). Physiological responses to changing body temperatures are well understood, with 

effects on metabolism (Gillooly et al. 2001), larval development (O'Connor et al. 2007) 

and autotroph production and respiration (Lopez-Urrutia et al. 2006), to name just a few 

(see reviews by Dell et al. 2011; Somero 2011). Although the direct effects of 

temperature on the strength of species interactions (i.e. attack rates, maximum ingestion 

rates) is becoming increasingly recognized (Sanford 1999, 2002a, b; Yee & Murray 2004; 

Pincebourde et al. 2008a, b; Yamane & Gilman 2009; Rall et al. 2010; Englund et al. 

2011; Vucic-Pestic et al. 2011), little is understood about how these underlying 

physiological mechanisms manifest at the community level. Freshwater microcosm 

experiments on bacteria-protist communities (Petchey et al. 1999; Beveridge et al. 2010a; 

Beveridge et al. 2010b) suggest that the effects of temperature, through changes in 

species interaction strengths and the flow of energy through food webs, has strong 

influences on population dynamics, population persistence and ecosystem functioning. 

Thus, understanding the temperature responses of the processes that mediate the flow of 

energy through food webs is critical for forecasting the impact of temperature on 

ecological communities.  

Several general theoretical models have explored the effects of temperature on 

community structure by incorporating temperature dependency into consumer 

metabolism and ingestion rates (Vasseur & McCann 2005; Rall et al. 2010), herbivore 

metabolism and autotroph production rates (O'Connor et al. 2011), and consumer attack 
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rates and handling times (Petchey et al. 2010). Collectively, these modeling exercises 

confirm that the rate at which these processes scale relative to one another is extremely 

important for predicting ecosystem responses to temperature change. For instance, if 

consumer energetic efficiencies decline with warming (i.e. metabolic rates increase faster 

with warming than ingestion rates), it increases population stability but also increases the 

risk of starvation and extinction of top trophic levels (Vasseur & McCann 2005; Rall et 

al. 2010). Alternatively, if ingestion outpaces metabolism in response to warming, then 

consumers have a larger impact on their resources and system stability declines (Vasseur 

& McCann 2005). Thus, to understand temperature effects at the ecosystem level, we 

need to determine if there are systematic differences in how physiological responses scale 

with temperature. Identifying these general, species-independent effects of temperature 

on the flow of energy though food webs would significantly increase our ability to predict 

how food web structure and functioning may shift under climate change.  

My main objective was to investigate the temperature scaling of metabolic and 

ingestion rates for several key rocky intertidal species in ways that can easily be 

incorporated into community models. Specifically, I asked: 

How sensitive are metabolic and ingestion rates of rocky intertidal invertebrates 

to water temperature?  

Does the relative sensitivity of metabolic and ingestion rates to temperature vary 

across species or do all show similar patterns? 

What are the implications for food web models and for predicting climate change 

impacts on ecosystems? 

Metabolic and ingestion rates have rarely been measured on the same species, 

except collectively for a group of spider and beetle species from a terrestrial forest floor 

community, in which metabolic rates were more sensitive to temperature than ingestion 

rates (Rall et al. 2010; Vucic-Pestic et al. 2011). In freshwater microcosm communities 

of eukaryotic microorganisms that were warmed at 2 °C per week (or approximately 0.1-

0.2 °C per generation), warming greatly increased extinction rates of top consumers and 

increased the dominance of lower trophic levels (Petchey et al. 1999). These microcosm 
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results are consistent with theoretical model predictions (Vasseur & McCann 2005) only 

when consumer metabolic rate increases faster with warming than ingestion rate. Thus, I 

hypothesized that for all species metabolic rates would be more sensitive to temperature 

than ingestion rates and predicted I would find higher activation energy estimates for 

metabolic rates. My results support this hypothesis and in the discussion section I talk 

about possible causes of this trend and consequences in the face of climate change.  

 

3.2 METHODS 

All measurements of metabolic and ingestion rates took place at the Hatfield 

Marine Science Center (HMSC; Newport, Oregon, USA). The animals and algae were 

collected from two rocky intertidal field sites along the Oregon coast, Fogarty Creek (44o 

50’ 24” N, 124o 3’ 36” W) and Yachats Beach (44o 19’ 12” N, 124o 7’ 12” W). During 

collection, I ensured that the individuals selected for experimentation were evenly 

distributed along the entire range of body sizes encountered at the field sites. The species 

included a classic keystone predator, the sea star Pisaster ochraceus Brant and its main 

prey Mytilus californianus Conrad, a mussel which is a dominant competitor for space 

and a foundation species in the mid zone of the intertidal; two secondary predators, the 

whelks Nucella ostrina (Gould) and N. canaliculata (Duclos) and two of their preferred 

prey, the mussel Mytilus trossulus Gould and the barnacle Balanus glandula Darwin, and  

two common grazers of the kelp Saccharina sessilis (C.Agardh), the urchin 

Strongylocentrotus purpuratus (Stimpson) and the chiton Katharina tunicata (Wood). 

Because B. glandula could not be collected non-destructively, I bolted 10 X 10 cm PVC 

plates covered in Safetywalk® antislip tape to intertidal rocks, to which barnacles readily 

settled (Farrell et al. 1991; Menge et al. 2011b).  

3.2.1 Metabolic rate trials 

I used an experimental regression study design to measure how oxygen 

consumption rates (as a proxy for metabolic rate) scale with body mass and temperature 
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for P. ochraceus, M. californianus, M. trossulus, S. purpuratus, K. tunicata, N. ostrina, 

and N. canaliculata. Oxygen measurements were made using a Fibox 3 fiber-optic 

oxygen meter (PreSens, Precision Sensing GmbH, Germany) and oxygen sensitive spots. 

The oxygen sensitive spots were mounted inside clear, airtight containers (respirometers) 

of various sizes to accommodate the different body sizes of the species being measured. 

Individual organisms were sealed underwater into a respirometer and both the organism 

and chamber were checked to ensure there were no trapped air bubbles. The water was 

aerated and sterilized with a UV filter for at least 18 hours prior to each trial. For each 

trial, I took 3-5 oxygen measurements from each respirometer over a 3-4 hour period. I 

repeated these oxygen consumption trials at different water temperatures ranging from 

~5-20 °C. I maintained stable water temperatures by keeping the respirometers in water 

baths of the same temperature, removing them briefly from the cold room to make 

oxygen concentration measurements.  

Measurements were made using the default setting of the oxygen meter (% air 

saturation) and were converted to µmol/L with atmospheric pressure readings from the 

HMSC weather station and the average summertime salinity of HMSC seawater (34 ppt). 

Due to the low solubility of O2 in water, aquatic animals come to hypoxic conditions 

relatively faster than air breathing animals in traditional respirometers, which can 

considerably change their metabolism (Lamprecht et al. 1999). Thus, I calculated the rate 

of change of O2 concentration (μmol O2·L-1·s-1) only over the period of time in which the 

animals were experiencing normoxia (>110 μmol O2·L-1). I converted the oxygen 

consumption rate into energetic equivalents of metabolism (J·s-1) by assuming an 

oxycaloric equivalent of 0.44 (J·μmol·O2
-1), which represents the catabolism of a mixed 

metabolic substrate dominated by proteins but also containing carbohydrates and lipids 

(Lauff & Wood 1996; Hand & Kemp 1999). 

3.2.2 Ingestion rate trials 

I used an experimental regression study design to measure how ingestion rates 

scale with body mass and temperature for various consumer-resource species 
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interactions. The details of each ingestion rate experimental trial can be found in Table 

3.1. The experimental system consisted of 65, 19 L buckets, each with an air hose and air 

stone, insulated with reflective bubble insulation (Reflectix Inc., Markleville, Indiana, 

USA) and plumbed with flow-through seawater. To help prevent escape, the 

experimental animals and algae were confined to smaller plastic containers with mesh 

sides within the buckets, except for the P. ochraceus trial, in which the animals were 

placed directly in the buckets. The system was housed within a cold room with the 

thermostat set to 5 °C. To vary the water temperatures among the buckets, I used 7.5 and 

15 W aquarium heaters (Hydor Mini Heaters, Hydor USA Inc., Sacramento, CA, USA) to 

randomly assign 0 W, 7.5 W, 15 W, 22.5 W or 30 W of heat to each bucket. Although the 

variation in water temperature was created with distinct levels, as in an ANOVA design, I 

instead used temperature as a continuous variable, measured every other day with a 

digital handheld thermometer (Model HH-22A, Omega Engineering Inc., Stamford, CT, 

USA) and averaged over the course of each experiment. This is because there were many 

factors affecting the final water temperature of each bucket, including variation in air 

temperature around the cold room and the randomly assigned temperatures of 

neighboring buckets. However, the variability of within bucket water temperature was 

low, with a pooled standard deviation of 0.62 °C, as measured every 30 minutes by 

iButton temperature loggers (Maxim Integrated Products, Inc., Sunnyvale, California, 

USA) placed in 12 haphazardly chosen buckets. 

The ingestion rate trials were run consecutively from June through September, 

2010. The duration of each trial depended on the fastest rate at which the resources were 

being consumed so that no individual consumer exhausted its resource (Table 3.1). For 

the trials using B. glandula as the resource, I randomly assigned one barnacle plate per 

container, as the number of barnacles that settled on each plate varied. Each experimental 

trial included 5 consumer-free controls, one for each wattage level, which showed that 

resource mortality was negligible. For the trials using S. sessilis as the resource, the 

percent biomass loss from the controls was taken into account when calculating urchin 
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and chiton consumption rates. Other than the controls, each container held one consumer 

which was weighed at the start of each trial.  

For every combination of consumer j and resource i, I calculated the ingestion rate 

 :୧୨ (J·s-1) asܬ

୧୨ܬ  ൌ  ሺ ௘ܰܯ୧ߝሻ/ݐ 

                  (1) 

where ௘ܰ is the number of prey eaten (1 for S. sessilis), ܯ௜ is the estimated shell-

free wet mass (g) of an averaged length prey item based on length-mass relationships for 

each prey species (A. C. Iles, unpublished data) or the wet mass (g) of S. sessilis eaten, 

and ݐ is time in seconds. The energy content of the resources, ߝ, was set to 6173 and 5751 

J·g-1 of ash free wet mass for Mytilus spp. and B. glandula, respectively (B. A. Menge, 

unpublished data), and 3122 J·g-1 for S. sessilis (Paine & Vadas 1969). I calculated the 

per capita strength of the interaction between each consumer, j, and resource, i, as the 

absolute value of the log response ratio (Berlow et al. 1999; Rall et al. 2010): 

 α୧୨  ൌ  ተ
ln ቀ ௜ܰ െ ௘ܰ

௜ܰ
ቁ

ݐ ተ 

                     (2) 

where t (days) is the experimental duration, ௜ܰ is the initial prey abundance and 

௘ܰ is the number of prey eaten. 

3.2.3 Statistical analyses 

The metabolic rate and ingestion rate data were first analyzed using the ‘universal 

temperature dependence’ (UTD) model, a theoretical model derived from first principles 

of biochemical kinetics and allometry (Gillooly et al. 2001; Brown et al. 2004). The UTD 

model characterizes the effects of temperature and body mass on metabolic rate (Gillooly 

et al. 2001) and has been extended to other biological rates, including ingestion rate and 

species interaction strength (Rall et al. 2010; Vucic-Pestic et al. 2011). Under the UTD, 

per capita rates of metabolism, ܫ୨ (J·s-1), ingestion, ܬ୧୨ (J·s-1), and interaction strength, α୧୨, 
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of ectothermic organisms depend jointly on body mass, M (g) , and environmental 

temperature, T (K) as: 

୨ܫ ൌ  ݅଴ܯ୨
௕಺e

ିா಺
௞்  

                                                                           (3a) 

୧୨ܬ ൌ  ݆଴ܯ୨
௕಻e

ିா಻
௞்  

                                                                          (3b) 

݁஑౟ౠ ൌ  α଴ܯ୨
௕ಉe

ିாಉ
௞்  

                                                                          (3c) 

where b is an allometric exponent, E (eV) is the activation energy, k is 

Boltzmann’s constant (8.62 x 10-5 eV·K-1) and ݅଴ and ݆଴ are normalization constants. 

Taking the natural logarithm of both sides of equations 3a-c, results in the form of the 

multiple linear regression UTD models used to estimate the scaling coefficients of the 

continuous variables (1) body mass ሾlnሺܯሻሿ, and (2) water temperature ቀ ଵ
௞்

ቁand the 

normalization constants for each species: 

 

lnሺܫ୨ሻ ൌ ܾூ lnሺܯ୨ሻ െܧூ ൬
1

݇ܶ൰ ൅  lnሺ݅଴ሻ 

                                                        (4a) 

lnሺܬ୧୨ሻ ൌ ௃ܾ lnሺܯ୨ሻ െܧ௃ ൬
1

݇ܶ൰ ൅  lnሺ݆଴ሻ 

                                                       (4b) 

α୧୨ ൌ ܾ஑ lnሺܯ୨ሻ െܧ஑ ൬
1

݇ܶ൰ ൅  lnሺα଴ሻ 

                                                       (4c) 

Zero values in the ingestion rate data set were omitted in order to log transform 

the data. Complete inactivity of a consumer (the individuals with zero ingestion) is also 

an indication of an injured organism that has gone into a state of torpor, so including zero 

values in the ingestion rate data may bias the results. Data for water temperatures > 17 °C 
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were excluded as such temperatures are outside the normal water temperature range these 

organisms experience in their natural habitat. Regression diagnostics were performed on 

all models including tests for normality and constant variance of residuals. The residuals 

of several models were non-normally distributed due to influential outliers and curvature 

in the data. Because linear least squares is not robust to influential outliers and the 

accurate estimation of regression parameters was the primary objective, I also estimated 

the UTD model parameters using the Huber method for robust linear regression (see 

Appendix A). To address the curvature in the data, I considered optimal models including 

interaction and quadratic terms for body mass and temperature. I tested whether these 

optimal models were a statistically superior fit to the data by assessing the change in 

Akaike’s Information Criteria (∆AIC).  

The activation energies, E, are a measure of the temperature dependency of 

metabolic and ingestion rates. The difference between them (ܧ௃ െ  ூ), is the ‘consumerܧ 

thermal impact’ (CTI), which describes how the impact of a consumer on its resource 

changes with temperature (Vasseur & McCann 2005). A positive CTI means that 

ingestion rate outpaces metabolic rate as temperatures increase. A negative CTI means 

that a consumer’s metabolic demands increase faster than it can compensate with 

increased ingestion. To test for systematic differences between metabolic and ingestion 

rates across species, I performed a paired, two-tailed t-test. I used MATLAB 7.13 

(MathWorks R2011b) for data processing and R 2.13.2 (The R Foundation for Statistical 

Computing 2011) for all statistical analyses.  

 

3.3 RESULTS 

Metabolic rates, ingestion rates and species interaction strengths tended to 

increase with temperature and body mass in accordance with the UTD model (Table 3.2, 

Figs. 3.1-3.3). However, ingestion rate and interaction strength decreased with body size 

for the N. canaliculata – B. glandula interaction and convex curvature was evident in 

several models, indicating that the UTD model is inappropriate in some cases. The range 
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of each significant activation energy estimate (± SE) overlapped with the theoretical 

range of 0.6 – 0.7 eV (Allen & Gillooly 2007) for metabolic and ingestion rate but not for 

interaction strength UTD models. Although body mass explained much more of the 

variation in the data than temperature, temperature was a significant factor for all the 

UTD models of metabolic rate and 4 out of 7 UTD models for ingestion rate and 

interaction strength (Table 3.2, Figs. 3.1-3.3). The robust regression analysis yielded 

similar results with slightly different estimates for the model coefficients (Appendix A).  

Convex curvature occurred most often in models involving the whelks (Table 

3.3). A squared temperature term produced a better fit to the metabolic rate data over the 

UTD model for N. canaliculata and a marginally better fit for N. ostrina. By restricting 

the range of temperatures to the increasing, linear portion of N. canaliculata‘s metabolic 

response (water temperatures < 14 °C), the squared term becomes insignificant, and the 

estimate of the activation energy is much higher (ܧூ ൌ 1.40 ሺ0.23ሻ, ݌ ൏ 0.001ሻ. Adding 

a squared body mass term improved the fit of the ingestion rate data for N. canaliculata 

when feeding on B. glandula and was suggestive of a curved relationship for the N. 

ostrina – B. glandula interaction. For the species interaction strength models, a squared 

body mass term was a better fit for the interactions of N. ostrina with B. glandula and M. 

trossulus, and was suggestive for the N. canaliculata – B. glandula interaction. Finally, 

an interaction term between body size and temperature improved the fit of the species 

interaction strength model for N. canaliculata – M. trossulus.  

In both the least-squares and robust regression analyses, consumer metabolic rates 

tended to be more sensitive to temperature than ingestion rates (i.e. a negative CTI), with 

the exception of the N. canaliculata – M. trossulus interaction. However, when using the 

metabolic rate activation energy estimate for the linear portion of the temperature range 

the CTI for the N. canaliculata – M. trossulus interaction is negative (Table 3.4). 

Although there is clearly variability in species responses, the paired sample t-test 

indicated that CTI values are marginally more likely to be negative (t(5) = -2.48, p = 

0.056) with an average CTI of -0.26 (95% CI ± 0.28). When using the metabolic rate 

activation energy estimate for N. canaliculata over the range of temperature where the 
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relationship is linear, the paired sample t-test is indicates that CTI values are much more 

likely to be negative (t(5) = -7.34, p < 0.001), with an average CTI of -0.40 (95% CI ± 

0.14). 

 

3.4 DISCUSSION 

Metabolic rates tended to be more sensitive to temperature than ingestion rates 

(i.e. a negative CTI) for individual species of rocky intertidal invertebrate consumers. 

This result is consistent with temperature scaling measurements for beetle and spider taxa 

from forest communities (Rall et al. 2010; Vucic-Pestic et al. 2011). Furthermore, in a 

meta-analysis of the thermal responses of a variety of traits from many species across 

habitats, “autonomic” traits like basal metabolic rate tended to be more sensitive to 

temperature than “positive motivation” traits such as ingestion rate (Dell et al. 2011). 

This difference was not statistically significant, but a paired sample analysis would be 

necessary given the large degree of variability between species.  Unfortunately, few 

studies measure both types of traits on the same species. In my study, the one exception 

to the trend toward negative CTIs was the N. canaliculata – M. trossulus interaction, 

which had a positive CTI. However, N. canaliculata exhibited convex curvature in the 

scaling of metabolic rate with temperature, which means the UTD model is inappropriate 

as it violates a basic assumption of regression analyses. Reducing the temperature range 

to where the relationship was linear, however, resulted in a much higher estimate of the 

activation energy for metabolic rate and a negative CTI.  

This difference in temperature scaling between metabolic and ingestion rates may 

reflect evolutionary pressures to optimize energetic efficiencies of different kinds of 

physiological performances under variable thermal conditions. In a quantitative model of 

the evolution of thermal physiology, a wider performance breadth was favored under 

variable environmental temperatures (Huey & Kingsolver 1993). In Oregon, intertidal 

invertebrate consumers experience fluctuating water temperatures from ~8-16 °C when 

foraging underwater at high tide. However, in situ evidence indicates that cold water 

during upwelling limits the predation rate of the keystone predator P. ochraceus (Sanford 
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1999) and lab experiments simulating upwelling indicated a similar trend for N. 

canaliculata  (Sanford 2002a). Thus, selection pressure may favor increased foraging 

performance at low temperatures. This would reduce the slope of the temperature 

response and cause a reduction in the activation energy for ingestion rate, which could 

explain the lower sensitivity of ingestion rates to temperature in the results.  

Rocky intertidal consumers in Oregon are also exposed to daily aerial 

temperatures that range from ~5-35 °C, depending on the season and the timing of low 

tide during the day or night. Most intertidal invertebrates avoid or are unable to forage 

during low tide. However, they may take advantage of warmer body temperatures to 

speed up digestion before the next high tide when they can again forage. Many species 

behaviorally regulate to a higher body temperature when digesting a meal (e.g. snakes, 

Dorcas et al. 1997; and locusts, Coggan et al. 2011). Although usually attributed to 

avoiding chronic exposure to high temperatures (Pincebourde et al. 2009), 

thermoregulatory behavior in intertidal invertebrates may be co-adapted to optimize 

digestion rates. P. ochraceus has the capacity to store energy from periods of intensive 

feeding as lipids, proteins and glycogen reserves in their pyloric caeca (Lawrence & Lane 

1982). When water temperatures are very cold, foraging may be so inefficient that P. 

ochraceus choose to remain inactive in low-zone surge channels and take advantage of 

depressed metabolic rates to efficiently convert this stored energy into gonadal or somatic 

growth (Sanford 2002a). Thus, having a metabolic scope that is highly sensitive to 

temperature may be advantageous to a consumer capable of thermoregulation under 

extremely variable environmental conditions.  

Understanding the community-level effects of environmental temperature is of 

great concern in a changing climate. Along the west coast of the US, climate-induced 

trends indicate that upwelling is becoming stronger and more persistent (Bakun 1990; 

Bakun et al. 2010; Iles et al. 2012), which would likely cause longer periods of cold 

upwelled water. With negative CTI’s, consumer energetic efficiencies would increase 

under such conditions, leading to unstable population dynamics (Vasseur & McCann 

2005). In regions where the environment is predicted to become warmer, the opposite 
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response would occur: consumer energetic efficiencies would decline, leading to a lower 

per unit biomass impact on resource species. In the long-term, this would increase 

resource population stability, with fewer fluctuations in population densities over time, 

but also increases the risk of starvation and extinction of top trophic level species 

(Vasseur & McCann 2005; Rall et al. 2010). Indeed, in a study that slowly warmed 

freshwater microcosm communities, both consumer extinction rates and producer 

biomass increased (Petchey et al. 1999). These microcosm results are consistent with 

model predictions only when consumer metabolic rates are more sensitive to temperature 

than ingestion rates, as my results indicate is true for these dominant rocky intertidal 

invertebrates.  

My controlled laboratory measurements did not examine the effects of extreme 

aerial temperatures on metabolic or ingestion rates. Yamane & Gilman (2009) found that 

although there was no change in the ingestion rates of N. ostrina after experiencing aerial 

body temperatures of 12 to 20 °C, exposure to extremely high aerial temperatures (>28 

°C) caused decreased consumption rates during the subsequent high tide. In lab 

experiments with P. ochraceus, acute exposure to high aerial temperatures positively 

affected feeding rates, whereas chronic exposure caused reductions in feeding 

(Pincebourde et al. 2008a). Although aerial heat stress at low tide can affect intertidal 

predation rates, such high temperatures only occur occasionally (Sanford 2002b) and 

field surveys indicate that P. ochraceus seek refuge from chronic exposure (Pincebourde 

et al. 2008a). Sedentary organisms, such as mussels and barnacles that cannot take refuge 

from chronic exposure, often reach much higher body temperatures than their mobile 

predators (Broitman et al. 2009) and their upper distribution limits are often thermally 

constrained at warm sites (Harley & Helmuth 2003). Thus, the long term, relative impact 

of exposure to stressful temperatures compared to physiological rate effects near the 

center of a species thermal range is likely to be less important for the ingestion rates of 

mobile species and more important for sedentary ones.  

3.4.1 Conclusions 
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At the organismal level, water temperature is arguably the most important 

environmental factor dictating rates of biochemical processes in marine poikilotherms 

(Somero 2002). At the population level, water temperature is the main abiotic factor 

affecting the distribution of marine, water-breathing animals (Somero 2002; Pörtner & 

Peck 2010). At the community level, however, we are just beginning to understand the 

effects of water temperature. In conjunction with previous measurements on terrestrial 

invertebrates, this study of marine invertebrates advances our understanding by providing 

compelling evidence for a systematic difference in the temperature scaling of basal 

metabolic and ingestion rates. Incorporating this general systematic difference into a 

framework linking variation in environmental temperature to ecological processes 

embedded in networks of species interactions will enable us to test hypotheses on how 

climate change will affect community structure and dynamics. However, ecological 

communities are inherently complex and in order to predict temperature effects on 

community structure and dynamics, much more work must be done to establish such 

generalities and to identify where exceptions are likely to occur. 
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Table 3.1 Details of the rocky intertidal consumer ingestion rate experimental trials 
including the resource used for the trial, the amount of resource made available to 
consumers at the beginning of the trial, and the duration of the trial (days). 

Consumer  Resource  Resource 
amount (STD) # days

N. canaliculata M. trossulus 30 indv. 10 

N. canaliculata B. glandula 34.7 (3.2) indv.  8 

K. tunicata S. sessilis 23.1 (0.7) g  7 

N. ostrina M. trossulus 20 indv. 15 

N. ostrina B. glandula 46.5 (21.5) indv.  8 

P. ochraceus M. californianus 30 indv. 9 

S. purpuratus S. sessilis 23.0 (0.7) g  6 
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Table 3.2 Linear least-squares regression coefficients and statistics for the UTD models of the effect of body mass and water 
temperature on metabolic rates, ingestion rates, and interaction strengths in rocky intertidal invertebrate species. All the models are 
of the form ݕ ൌ ܾ lnሺܯሻ െܧ ቀ ଵ

௞்
ቁ ൅  lnሺܿሻ, where ܯ is body mass (g), ܶ is water temperature (K), and ݇ is Boltzmann’s constant 

(8.62 x 10-5 eVK-1). The coefficients with standard errors in parentheses include b, the allometric exponent; E, the activation energy 
(eV), and c, the normalization constant. Significance codes: 0 < ‘***’ < 0.001 < ‘**’ < 0.01 < ‘*’ < 0.05 < ‘¯’ < 0.1; R2, coefficient 
of determination; n, sample size. 

 Species / Interaction b E (eV) ln(c) R2 p-val n 

Log metabolic rate       
 M. californianus 0.61 (0.04)*** 0.76 (0.21)** 22.11 (8.38)* 0.90 8.12E-13 27
 N. canaliculata 0.55 (0.09) *** 0.59 (0.16)** 14.93 (6.56)* 0.71 1.09E-06 25
 K. tunicata 0.82 (0.06) *** 0.66 (0.16) *** 17.83 (6.36)** 0.89 2.22E-13 29
 N. ostrina 0.56 (0.11) *** 1.02 (0.21) *** 32.60 (8.52)*** 0.69 2.45E-06 25
 P. ochraceus 0.42 (0.08) *** 0.77 (0.25)** 23.22 (10.30)* 0.60 1.17E-05 28
 M. trossulus 0.47 (0.05) *** 0.77 (0.13) *** 22.29 (5.19)*** 0.86 2.84E-10 25
 S. purpuratus 0.43 (0.10) *** 0.63 (0.27) * 17.27 (10.98) 0.46 2.69E-04 30
Log ingestion rate       

 N. canaliculata - B. glandula -0.28 (0.10) ** 0.09 (0.24) -8.31 (9.92) 0.17 0.02 44
 N. canaliculata - M. trossulus 0.35 (0.08) *** 0.82 (0.12) *** 27.42 (5.01) *** 0.54 2.38E-09 54
 K. tunicata - S. sessilis 0.16 (0.27) 1.04 (0.58) ¯ 36.76 (23.32) 0.17 0.22 19
 N. ostrina - B. glandula 0.13 (0.10) 0.54 (0.14) *** 11.26 (5.70) ¯ 0.26 9.62E-04 49
 N. ostrina - M. trossulus 0.55 (0.07) *** 0.80 (0.10) *** 26.61 (4.25) *** 0.69 9.00E-13 51
 P. ochraceus - M. californianus 0.62 (0.13) *** 0.50 (0.21) * 15.99 (8.57) ¯ 0.50 9.05E-05 30
 S. purpuratus - S. sessilis 0.52 (0.33) 0.74 (0.67) 24.59 (27.35) 0.19 0.23 17
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Table 3.2 (Continued) 

 Species / Interaction b E (eV) ln(c) R2 p-val n 

Species interaction strength       
 N. canaliculata - B. glandula 0.38(0.39) -0.01(0.004)* -0.008(0.01) 0.16 0.031 44
 N. canaliculata - M. trossulus 1.09(0.16)*** 0.013(0.002)*** 0.026(0.004)*** 0.58 1.82E-10 54
 K. tunicata - S. sessilis 0.37(0.24) 0.005(0.003)- -0.009(0.006) 0.24 0.11 19
 N. ostrina - B. glandula 2.41(1)* -0.021(0.018) -0.057(0.025)* 0.13 0.037 49
 N. ostrina - M. trossulus 2.62(0.73)*** 0.026(0.013)* -0.062(0.018)** 0.24 0.0014 51
 P. ochraceus - M. californianus 0.85(0.93) 0.046(0.014)** -0.025(0.023) 0.3 0.0083 30
 S. purpuratus - S. sessilis 0.61(1) 0.02(0.012) -0.016(0.025) 0.18 0.26 17
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Table 3.3 Coefficients for the optimal models of the effect of body size and temperature on metabolic rate, ingestion rate and species 
interaction strengths. AICc values indicated a better fit over the UTD models. The models are of the form: ݕ ൌ ଴ߚ ൅ ଵሺlnߚ  ሻܯ ൅
ଶሺlnߚ ଶሻܯ ൅ ߚଷ

ଵ
௞்

൅ ସߚ 
ଵ

௞்మ ൅ ହߚ 
୪୬ ெ
௞்

, where ܯ is body mass (g), ܶ is water temperature (K), and ݇ is Boltzmann’s constant (8.62 x 
10-5 eVK-1). Note that not all terms are present in each model. All models were statistically significant (p < 0.05). Significance 
codes: 0 < ‘***’ < 0.001 < ‘**’ < 0.01 < ‘*’ < 0.05 < ‘¯’ < 0.1; R2, coefficient of determination; n, sample size. 

 

Log metabolic rate ࢼ૙ ࢼ૚ ࢼ૜ ࢼ૝ R2 

N. canaliculata -2419 (613.2)*** 0.55 (0.07)*** 119 (30.13)*** -17040 (4294)*** 0.84

N. ostrina -2153 (1000)* 0.57 (0.10)*** 106.3 (49.1)* -15280 (6992)* 0.75

Log ingestion rate ࢼ૙ ࢼ૚ ࢼ૛ ࢼ૜  

N. canaliculata – B. glandula -5.39 (9.57) -0.52 (0.14)*** -0.19 (0.09)* -0.15 (0.23) 0.26

N. ostrina – B. glandula 12.77 (4.87)* -0.45 (0.16)** -0.51 (0.12)*** -0.58 (0.12)*** 0.47

Species interaction strength ࢼ૙ ࢼ૚ ࢼ૛ ࢼ૞  

N. canaliculata – M. trossulus 1.07 (0.15)*** 0.41 (0.17)* -0.03 (0.004)*** -0.01 (0.004)* 0.63

  ૜ࢼ ૛ࢼ ૚ࢼ ૙ࢼ 

N. canaliculata - B. glandula 0.49 (0.38) -0.019 (0.0056)** -0.0074 (0.0034)* -0.012 (0.0092) 0.24

N. ostrina – B. glandula 2.6 (0.95)** -0.09 (0.03)** -0.06 (0.02)** -0.06 (0.02)* 0.25

N. ostrina – M. Trossulus 2.49 (0.7)*** 0.07 (0.02)** 0.03 (0.013)* -0.06 (0.017)** 0.33
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Table 3.4 Consumer thermal impact estimates (CTI ൌ ௃ܧ  െ  ூ) using only significant (pܧ 
< 0.05) estimates of activation energies from measurements of the temperature 
dependence of ingestion rate ܧ௃ and metabolic rate ܧூ in the present study and from the 
literature. 

Consumer Resource ࡵࡱ ࡶࡱ CTI 

M. californianus Rhodomonas spp. 0.33* 0.76 -0.43 

M. trossulus Rhodomonas spp. 0.33* 0.77 -0.44 

N. canaliculata M. trossulus 0.82 0.59 / 1.40† 0.23 / -0.58† 

N. ostrina B. glandula 0.53 1.02 -0.49 

N. ostrina M. trossulus 0.80 1.02 -0.22 

P. ochraceus M. californianus 0.50 0.77 -0.27 

*This value comes from a weighted average of estimates from the literature (Jorgensen et 
al. 1990; Kittner & Riisgard 2005) 

†These estimates are over the range of temperatures where the relationship is linear.  
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Figure 3.1 Metabolic rates as a function of water temperature (a-g) and body mass (h-n) 
for seven species of rocky intertidal invertebrates: M. californianus (a, h), N. canaliculata 
(b, i), K. tunicata (c, j), N. ostrina (d, k), P. ochraceus (e, l), M. trossulus (f, m), and S. 
purpuratus (g, n). Variables were log transformed and metabolic rates were normalized 
by body mass (a-g) or temperature (h-n). Statistically significant UTD regression models 
(α ≤ 0.05) are plotted in black. The grey regression line in subplot b represents a 
regression on the increasing linear subset of data (temperatures ≤ 14°C). The temperature 
axes scale inversely as 1/kT (1/eV), where T is temperature (K) and ݇ is Boltzmann’s 
constant (8.62 x 10-5 eVK-1). A transformed temperature scale in °C is on the top axis (a-
g).   
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Figure 3.1  
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Figure 3.2 Ingestion rates as a function of water temperature (a-g) and body mass (h-n) 
for seven rocky intertidal species interactions: N. canaliculata - B. glandula (a, h), N. 
canaliculata - M. trossulus (b, i), K. tunicata - S. sessilis (c, j), N. ostrina - B. glandula 
(d, k), N. ostrina - M. trossulus (e, l), P. ochraceus - M. californianus (f, m), and S. 
purpuratus - S. sessilis (g, n). Variables were log transformed and ingestion rates were 
normalized by body mass (a-g) or temperature (h-n). Statistically significant UTD 
regression models (α ≤ 0.05) are plotted in black. The temperature axes scale inversely as 
1/kT (1/eV), where T is temperature (K) and ݇ is Boltzmann’s constant (8.62 x 10-5 eVK-

1). A transformed temperature scale in °C is on the top axis (a-g).  
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Figure 3.2  
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Figure 3.3 Log ratio interaction strength as a function of water temperature (a-g) and 
body mass (h-n) for seven rocky intertidal species interactions: N. canaliculata - B. 
glandula (a, h), N. canaliculata - M. trossulus (b, i), K. tunicata - S. sessilis (c, j), N. 
ostrina - B. glandula (d, k), N. ostrina - M. trossulus (e, l), P. ochraceus - M. 
californianus (f, m), and S. purpuratus - S. sessilis (g, n). Variables were log transformed 
and interaction strengths were normalized by body mass (a-g) or temperature (h-n). 
Statistically significant UTD regression models (α ≤ 0.05) are plotted in black. The 
temperature axes scale inversely as 1/kT (1/eV), where T is temperature (K) and ݇ is 
Boltzmann’s constant (8.62 x 10-5 eVK-1). A transformed temperature scale in °C is on 
the top axis (a-g).  
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Figure 3.3  
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CHAPTER 4: A Field Test of the Mechanistic Effect of Body Temperature on 
Species Interaction Strength 

 
 
ABSTRACT 

The metabolic theory of ecology provides a basis from which to scale up the 

mechanistic effects of temperature (due to the kinetics of biochemical reaction rates) 

from the organismal level to the level of species interactions. However, this simple, 

mechanistic effect of temperature is usually quantified under lab conditions. In the field, 

the effect of temperature is complicated by the idiosyncrasies of species behavior that can 

compensate for bioenergetic constraints through acclimation and the evolution of coping 

behaviors, such as seeking refuge from stressful temperatures. We used long term 

predation rate data to test if the effects of temperature on ingestion rates and the strength 

of species interactions were apparent under field conditions. We related temperature to a 

series of field measurements of per capita mussel predation rates by the ochre sea star, 

Pisaster ochraceus, which is a keystone predator in rocky intertidal communities and 

compared results to lab estimates. We used two different temperature measures: mean 

daily water temperature and a bio-mimetic estimate of P. ochraceus body temperature. 

Mean daily water temperatures provide an accurate estimate of P. ochraceus body 

temperatures only at high tide, while the bio-mimetic estimate approximates both high 

and low tide body temperatures. The data showed a strong signal of temperature on per 

capita ingestion rates and species interaction strengths. Bio-mimetic temperature was a 

better predictor than mean daily water temperature, providing further evidence for the 

influence of the mechanistic effect of body temperature on ingestion rates and species 

interaction strengths of this keystone predator. However, seasonal winter torpor and the 

effects of the unique method in which P. ochraceus avoids high body temperatures were 

also apparent in the data, indicating that for at least some organisms, a variety of 

adaptations may be available to compensate for first-principle mechanistic constraints. 
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4.1 INTRODUCTION 

The metabolic theory of ecology (MTE) predicts how the temperature and body 

size dependency of metabolic rate governs energetic requirements and the pace of 

ecological processes from the organismal level to the community level (Brown et al. 

2004). Indeed, body temperature and body size affect a wide range of organismal 

biological rates, particularly for ectotherms. These effects include metabolic rate 

(Gillooly et al. 2001), larval developmental rate (O'Connor et al. 2007), autotroph 

production rates (Lopez-Urrutia et al. 2006), and many others (see reviews by Dell et al. 

2011; Somero 2011). Effects at the level of species interactions, including ingestion rates 

and the per capita strength of species interactions, are the end result of a series of 

physiological processes occurring at the organismal level (Woodward et al. 2010). These 

include foraging activity, prey handling times and digestion rates, all of which are 

influenced by temperature and body size (Sanford 1999, 2002a, b; Yee & Murray 2004; 

Pincebourde et al. 2008a, b; Yamane & Gilman 2009; Rall et al. 2010; Englund et al. 

2011; Vucic-Pestic et al. 2011). Since warming is the most evident consequence of 

climate change, the MTE may be a useful theoretical framework for understanding 

climate change effects on ecological communities (Woodward et al. 2010). 

That such a fundamental effect of temperature on the kinetics of biochemical 

reactions can manifest itself in such diverse ways is remarkable. Equally remarkable, are 

the diverse strategies in which organisms evolve to compensate for these bioenergetic 

constraints or to take advantage of fluctuating environmental conditions. Many 

ectothermic species behaviorally optimize their body temperatures, such as lying in the 

sun to speed up the digestion of a meal (e.g. snakes, Dorcas et al. 1997; and locusts, 

Coggan et al. 2011). In rocky intertidal ecosystems along the Oregon coast, many species 

exhibit behavioral regulation of body temperature and adaptation to wide temperature 

fluctuations. At high tide, water temperatures vary from ~8 to 17°C; however, at low tide, 

over the course of only a few hours, temperatures may drop below freezing or approach 

30 °C due to fluctuations in air temperature. Most mobile organisms avoid the extremes 
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of these temperature fluctuations by foraging at high tide and taking refuge at low tide in 

the subtidal zone or in cracks and crevices. Sedentary organisms are dependent on 

energetically expensive coping mechanisms, such as the production of heat shock 

proteins. Some species may also enter a low energy use state known as torpor or diapause 

to conserve energy during periods of unfavorable conditions. For example, the sea star 

Pisaster ochraceus Brant, keystone predators in the rocky intertidal, stockpile nutrients 

from periods of intensive feeding in their digestive glands (Mauzey 1966; Lawrence & 

Lane 1982). When temperatures are cold and foraging is inefficient, P. ochraceus remain 

inactive in low-zone surge channels and slowly, but efficiently, convert this stored energy 

into growth (Sanford 2002a). 

Because most measurements quantifying the effect of temperature on ingestion 

rates and species interaction strengths are made under lab conditions, a key question that 

remains unanswered is: What is the capacity of species to adjust their behavior, adapt or 

acclimate to the energetic constraints imposed by temperature? The answer to this 

question will help determine the usefulness of the MTE for generalizing the effect of 

body temperature and body size on the strength of species interactions.  

Our objective was to analyze the effect of temperature in field measurements of 

ingestion rates and per capita species interaction strengths, and compare the results to 

measurements taken under controlled lab conditions. Quantifying the ability of species to 

compensate for temperature effects is particularly important in systems with highly 

fluctuating temperatures, such as the rocky intertidal, which provide many opportunities 

for species to optimize their energy use. We used arguably the most pivotal species 

interaction in the rocky intertidal community of the US west coast, the strength of 

predation by the keystone predator P. ochraceus on its preferred prey and dominant space 

occupier, the mussel Mytilus californianus. We hypothesized that field measurements of 

ingestion rates and per capita species interaction strengths of P. ochraceus on M. 

californianus would: 1) increase with water temperature due to faster rates of metabolism, 

and 2) increase with body size, since larger organisms can move faster and eat faster. 
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4.2 METHODS 

In Chapter 3, I parameterized the ‘universal temperature dependence’ (UTD) 

model, a theoretical model derived from first principles of biochemical kinetics and 

allometry (Gillooly et al. 2001; Brown et al. 2004), for P. ochraceus by measuring 

predation rates on M. californianus under lab conditions at various water temperatures 

and body sizes. Under the UTD, ingestion rates, Jij (J·s-1), and per capita species 

interaction strength, α, of ectothermic organisms depend jointly on body mass, M (g) and 

environmental temperature, T (K) as: 

ܬ ൌ  ݆଴ܯ୨
௕಻e

ିா಻
௞்  

                                                     (1a) 

݁ఈ ൌ  α଴ܯ୨
௕ಉe

ିாಉ
௞்  

                                                  (1b) 

where b is an allometric exponent, E (eV) is the activation energy, k is the Boltzmann’s 

constant (8.62 x 10-5 eV·K-1) and ݆଴ and ߙ଴ are normalization constants. The exponential 

function is used for species interaction strength because the metric for interaction strength 

is calculated as the natural logarithm (see the calculations for the log-response ratio 

below). Taking the natural logarithm of both sides of equations 1a-b linearizes the UTD 

model and makes it easier to visualize the scaling coefficients for the effects of body size 

and temperature as b and E, respectively: 

ln ሺܬሻ ൌ ௃ܾ lnሺܯ୨ሻ െܧ௃ ൬
1

݇ܶ൰ ൅  lnሺ݆଴ሻ 

                                   (2a) 

ߙ ൌ ܾ஑ lnሺܯ୨ሻ െܧ஑ ൬
1

݇ܶ൰ ൅  lnሺα଴ሻ 

                                      (2b) 

4.2.1 Field data  
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All data were collected by the Partnership for the Interdisciplinary Study of 

Coastal Oceans (PISCO) from 2007 through 2012 at five rocky intertidal sites along the 

Oregon, USA coastline:  Fogarty Creek (FC; 44o 50’ 24” N, 124o 3’ 36” W), Boiler Bay 

(BB; 44° 49’ 48” N, 124° 3’ 36” W), Yachats Beach (YB; 44o 19’ 12” N, 124o 7’ 12” W), 

Strawberry Hill (SH; 44° 15’ N, 124° 7’ 12” W), and Cape Blanco (CB; 42° 50’ 24” N, 

124° 34’ 12” W).  

Ingestion rates and species interaction strengths of P. ochraceus on M. 

californianus were determined by the speed at which P. ochraceus consumed 

transplanted M. californianus. In May of each year, M. californianus (~ 5 cm in length) 

were translocated to all the study sites from one collection site, Bob Creek (44° 14' 40" 

N, 124° 6' 49" W). Five replicate plots of 50 mussels each were placed on cleared rock 

just below the existing mussel bed at each site. The mussels were held byssal thread side 

down in cages of black plastic mesh, which allowed the mussels to reattach to the rock. 

The mesh was removed in July of each year, and the number of live M. californianus in 

each plot was counted at ~2-4 week intervals until the end of each year.  

The density and body size structure of the P. ochraceus populations at each site 

were quantified in July of each year for all sites except YB, for which only data for 2012 

were available. Average density was determined from counts within 5, 10 m x 1 m belt 

transects in the low zone of each site. The first 200 individuals encountered within the 

belt transects were weighed to determine the body size distribution.  

The analyses were repeated using two different temperature data sets. The first 

data set was mean daily water temperatures from temperature loggers (StowAway TidbiT 

Temperature Loggers, Onset Computer Corporation, TBI32-05+37) bolted to low zone 

rocks within wire mesh cages at each site. The loggers measured ambient temperature at 

1 hour intervals. Tide tables were used to remove low tide air temperature measurements 

and the remaining water temperature measurements were averaged for each day. The 

second, bio-mimetic temperature data set more closely estimated the body temperature of 

P. ochraceus (Pincebourde et al. 2008a), which are typically exposed to aerial 

temperatures at low tide but have the capacity to buffer their body temperatures against 
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air temperature by retaining water (Pincebourde et al. 2009). We used a bio-mimetic data 

logger based on the design developed by Lauren Szathmary (University of South 

Carolina, Columbia) and described in Pincebourde et al. (2008a). We modified the design 

for use on the northern U.S. West coast where wave forces are considerably higher 

(Schoch et al. 2006). After placing the TidbiT temperature logger inside a commercially 

available cleaning sponge, we inserted the sponge into the center of a double-walled 

mesh tube created by unfolding two S.O.S Tuffy® mesh pads and inserting one into the 

other. The ends of the mesh tubes were folded under and secured at each end with two 2 

¼” stainless steel lag screws with wide, 1 ½” washers. We left enough room in the mesh 

so that when attached to the rock the mesh was snug but did not compress the water out 

of the sponge. Two bio-mimetic loggers were bolted to rock just below the mussel bed at 

each site. In addition to the four lag screws, the central sponge part of the logger was 

secured to the rock using epoxy putty (Z-spar splash zone compound A-788, Kop-Coat), 

which creates good thermal contact with the rock and helps prevent wave action from 

tearing the mesh away from the lag screws. Due to deterioration of the sponge over time, 

loggers were replaced twice per year. Daily averages of the bio-mimetic temperature data 

were used without removing low-tide temperatures. Bio-mimetic temperature data were 

only available for 2009 through September of 2011.  

4.2.2 Calculations  

We calculated P. ochraceus – M. californianus ingestion rates and species 

interaction strengths over each 2-4 week sampling interval for each plot. If all the 

mussels were eaten in a plot, that sampling interval (and all remaining intervals for that 

replicate plot) was removed from the analysis since we could not calculate how quickly 

they were eaten.  

To more easily compare statistical models developed from the field data to the 

theoretical models parameterized with lab experiments, we used the same units for the 

response and predictor variables. Ingestion rate, ܬ (J·s-1), was estimated as: 

ൌ ܬ  ሺ ௘ܰߝܯሻ/ݐ 
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                 (3) 

where ௘ܰ is the number of mussels eaten, ܯ is the estimated average mussel 

shell-free wet mass (7.95 g) based on a length-mass relationships (A. C. Iles, unpublished 

data), ݐ is time in seconds, and energy content of M. californianus, ߝ, was set to 6173 J·g-

1 of ash free wet mass (B. A. Menge, unpublished data). We chose the most widely used 

metric of species interaction strength, α, the log ratio of prey abundance at the end and 

the start of each sampling interval divided by the number of days in the interval (Berlow 

et al. 1999; Rall et al. 2010): 

ൌ ߙ   ተ
ln ቀ ௜ܰ െ ௘ܰ

௜ܰ
ቁ

ݐ ተ 

                        (4) 

where t the number of days, ௜ܰ is the mussel abundance at the beginning of the 

sampling interval and ௘ܰ is the number of prey eaten over the sampling interval. These 

population measures of ingestion rate and species interaction strength were converted to 

per capita measures by dividing by the annual density of P. ochraceus (m-2) measured at 

each site. It was necessary to use the log-transformation of these response variables to 

meet the assumption of Gaussian distribution in the regression analyses. So that the zeros 

in the analysis could also be log transformed, we added 0.5 to all the counts of number of 

mussels eaten, ௘ܰ.  For the predictor variables, body mass was log transformed, and the 

temperature data was converted to the units used in the UTD model (inverse temperature 

in Kelvin multiplied by the Boltzmann’s constant). 

4.2.3 Statistical analyses 

Our a priori objective was to assess P. ochraceus –M. californianus per capita 

ingestion rates and species interaction strengths as a function of temperature and body 

size as predicted by the UTD model. However, we also assessed alternative, optimal 

statistical models using day-of-the-year for each sampling event as potential covariate 

because P. ochraceaus are known to decrease feeding rates as winter approaches and 
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increase again the following spring (Mauzey 1966). Because repeated measures were 

made successively on each replicate plot and plots were nested spatially within each site 

and within each year, we could not assume these measurements were independent of each 

other. We used linear mixed effects regression analysis to assess the value of 

incorporating the nested structure as well as an auto-correlation structure as random 

effects in the model. Using sample size corrected Akaike’s Information Criterion (AICc) 

comparisons, the optimal random effects included random intercepts for the nested spatial 

structure of the plots. An auto-regressive model of order 1 was the optimal auto-

correlation structure, although this was not a statistically significant improvement in fit.  

We initially fit the field data to the theoretical UTD model, but then used AICc-

based model selection techniques to determine the optimal fixed structure of the models 

predicting per capita ingestion rates and species interaction strengths based on inverse 

temperature (both water and bio-mimetic), the natural logarithm of body size and day of 

the year. 

 

4.3 RESULTS 

As expected from the laboratory measurements, per capita species interaction 

strength increased with mean daily water temperature measurements and bio-mimetic 

temperature measurements (or decreased with respect to inverse temperature), in the fit to 

the theoretical UTD model, although the slopes were not as steep as for the laboratory 

measurements (Table 4.1). Unlike the laboratory measurements, the effect of temperature 

on per capita ingestion rates was not statistically significant in the UTD model and there 

was little effect of body mass (Table 4.1). 

All four optimal models fit the data better over the UTD models, based on AICc 

comparisons (Table 4.2). The optimal structure of the fixed effects differed between the 

two temperature data sets, but was the same for each of the response variables, per capita 

interaction strength and ingestion rate. The bio-mimetic temperature data produced 

models with a better fit (based on AICc comparisons) to the both the species interaction 

strength and ingestion rate data sets than the water temperature data, despite only half the 
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sample size. For the analyses with mean daily water temperature there was a significant 

interaction between log body mass and inverse water temperature. A one unit increase in 

the log body mass of P. ochraceus caused the effect of inverse temperature to be more 

negative and closer to the slopes calculated in the analyses with the bio-mimetic data. 

Thus, estimates based on the water temperature data were closer to the estimates based on 

the bio-mimetic data only for large-bodied P. ochraceus populations. 

Body size did not have a statistically significant main effect on either ingestion 

rates or species interaction strength, but it did modify the effects of temperature or day-

of-the-year on ingestion rates and species interaction strength (Table 4.2; Temp:Mass or 

Day:Mass interactions). Day-of-the-year had a negative effect on both species interaction 

strength and ingestion rates with both temperature data sets. There was a relatively high 

negative correlation between day-of-the-year and mean daily water temperatures (r = -

0.41), however this correlation was reduced with the mean daily bio-mimetic temperature 

data (r = -0.27). The Day:Mass interaction term with body size in the analyses with the 

bio-mimetic temperature data (Table 4.2), suggests that large-bodied sea stars do not 

exhibit reduced ingestion rates as winter approaches.  

 

4.4 DISCUSSION 

Our first hypothesis that increased water temperatures would increase consumer 

per capita ingestion rates and interaction strengths with their prey was supported by the 

field data. These data did not support the second hypothesis that with increasing body 

size, per capita ingestion rates and interaction strengths would increase. We argue below 

that this data set was an insufficient test of the body size hypothesis. The theoretical UTD 

models were partially supported with respect to temperature. However, the optimal 

statistical models also included interaction terms with body size and temperature or day-

of-the-year and a seasonal effect of day-of-the-year.   

Bio-mimetic temperature was a better predictor than mean daily water 

temperatures for both species interaction strength and ingestion rate analyses. Although 

water temperature is a good proxy for body temperatures at high tide, bio-mimetic 
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temperatures are also able to characterize body temperatures at low tide. Although P. 

ochraceus do not actively forage at low tide, they do continue to digest previously 

consumed prey items, thus higher body temperatures would speed up digestion rates 

(Dorcas et al. 1997; Coggan et al. 2011) and bio-mimetic temperatures would be a better 

representation of the kinetic effect of body temperature on ingestion rates. The 

improvement in model fit provided by the bio-mimetic temperature data is further 

evidence that the effect of temperature is due to kinetic effects on physiology.  

The interaction term between water temperature and body size did not appear in 

the analysis with the bio-mimetic temperature data. This may be because of the unique 

strategy that P. ochraceus has for regulating body temperatures at low tide (Pincebourde 

et al. 2009). Exposure to high air temperatures at low tide causes P. ochraceus to absorb 

more sea water and increase the volume of its coelomic fluid system during the following 

high-tide. This added body mass results in greater thermal inertia during the next low-tide 

and buffers P. ochraceus body temperatures against high air temperatures (Pincebourde 

et al. 2009). Because a larger sea star would have a greater capacity to regulate body 

temperatures in such a manner, mean daily water temperatures would be a better 

approximation for the body temperatures of larger sea stars than smaller ones, resulting in 

a significant interaction term between body size and temperature. 

The negative effect of day-of-the-year on ingestion rates and species interaction 

strength supports previous observations of a reduction in feeding activity of P. ochraceus 

from 60% feeding during the summer to about 10% during the winter (Mauzey 1966). 

However, there was also a correlation between day-of-the-year and water temperature, 

which reflects the increase in water temperatures after the fall transition from summer 

upwelling of cold, nutrient rich water bottom waters to warm, nutrient-depleted surface 

waters. If the effect of day-of-the-year was due to temperature, then day-of-the-year 

would have had a positive effect on predation rates. This correlation was not as strong for 

the bio-mimetic temperature data, likely because the bio-mimetic data also reflect lower 

air temperatures later in the year. The positive interaction between day-of-the-year and 

body size indicates that this seasonal effect is reduced for populations of larger-bodied P. 
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ochraceus. This may also be a result of the greater thermal inertia of larger-bodied sea 

stars (Pincebourde et al. 2009). In winter, the water is relatively warmer compared to the 

cold, aerial temperatures and large-bodied sea stars would be better equipped to maintain 

higher body temperatures at low tide.  

The lack of a direct effect of body mass did not support our second hypothesis. 

However, this may be because we were unable to measure the body sizes of the 

individual P. ochraceus that actually consumed the mussels and were forced to use 

population means. Since there was little variation between population means at most 

sites, this data set may not be able to adequately test this hypothesis. Furthermore, only 

one body size of mussel prey was provided, which may have attracted only a particular 

size class of P. ochraceus. Small P. ochraceus are less likely to forage for prey that are 

too large for them to handle efficiently and it may be more energetically efficient for 

larger P. ochraceus to go after larger prey. Thus, there may have been an even smaller 

variation in body size between sites for the sea stars that actually consumed the mussels. 

We chose to calculate and analyze two metrics of the predation data: per capita 

ingestion rates and species interaction strength. Although this was useful for the 

comparison to prior lab measurements and readers may find having the two metrics 

useful for comparisons to other species interactions, in this case the two metrics are 

essentially measuring the same thing. There is little evidence of any strong indirect, or 

non-trophic, effects of P. ochraceaus on M. californianus.   

Our study demonstrates that ingestion rates and species interaction strengths of 

the keystone predator P. ochraceus show a clear influence of the mechanistic, kinetic 

effect of temperature in both laboratory and field studies. This result supports the use of 

simple energetic constraints when scaling up temperature effects from the organismal 

level to the community level. However, our analysis also reveals the influence of 

seasonal torpor and behavioral regulation of body temperatures. Thus allometric and 

temperature scaling of biological rates in community models would likely make a useful 

baseline model, but must be built upon with the complexities of unique species 
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adaptations, particularly. This is especially important for keystone species which are 

highly influential on many other species in their communities. 
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Table 4.1 Regression coefficients and statistics for the UTD models of the effect of body mass and water temperature on per capita 
ingestion rates and interaction strengths of P. ochraceus feeding on M. californianus. The coefficients with standard errors in 
parentheses include b, the allometric exponent for the effect of body size; E, the activation energy (eV) for the effect of temperature, 
and c, the normalization constant. Parameter estimates are provided based on lab measurements from Chapter 3 and field 
measurements using either mean daily water temperatures or mean daily bio-mimetic temperatures.  

 

 

 

 

 

 

 

 

 

 UTD Model for: b E (eV) ln(c) R2 p-val n 

Log per capita ingestion rate       
 Lab measurements 0.62 (0.13) *** 0.50 (0.21) * 15.99 (8.57) ¯ 0.50 9.05E-05 30 
 Field (water temperatures) -0.97 (0.61) -0.05 (0.41) -0.48 (17.27)   305
 Field (bio-mimetic temperatures) -1.16 (1.14) 1.39 (0.83) 59.29 (34.52)   146

Log per capita species interaction strength     
 Lab measurements 0.85 (0.93) 0.046 (0.014)** -0.025 (0.023) 0.3 0.0083 30 
 Field (water temperatures) -0.01(0.005) ¯ 0.006 (0.003)* 0.32 (0.13)*   305
 Field (bio-mimetic temperatures) -0.01 (0.01) 0.02 (0.005)*** 0.88 (0.20)   146
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Table 4.2 The optimal fixed structure for the models predicting field measurements of 
log per capita species interaction strength (SIS) and log per capita ingestion rate based 
on  inverse temperature (Temp), log body mass (Mass) and day-of-the-year (Day). Each 
analysis was performed separately for the two temperature data sets: mean daily water 
temperatures and mean daily bio-mimetic temperature data. ∆AICc values are in 
comparison to the UTD models presented in Table 4.1. 

 

Coefficient (SE) df t-value p-value 

Water temperature data:

Log ingestion rate, ∆AICc to UTD model: -28.07 
(Intercept) -3.614 (0.327) 194 -11.07 0.000 
Temp -0.739 (0.424) 194 -1.74 0.083 
Mass -0.751 (0.574) 17 -1.31 0.208 
Day -0.013 (0.002) 194 -5.94 0.000 
Temp:Mass -2.440 (0.929) 194 -2.63 0.009 

Log per capita SIS, ∆AICc to UTD model: -12.17 
(Intercept) -6.287 (0.305) 194 -20.61 0.000 
Temp -1.170 (0.455) 194 -2.57 0.011 
Mass -1.281 (0.690) 17 -1.86 0.081 
Day -0.007 (0.002) 194 -2.80 0.006 
Temp:Mass -2.960 (1.002) 194 -2.96 0.004 

Bio-mimetic temperature data: 
Log ingestion rate,  ∆AICc to UTD model: -25.46  

(Intercept) -3.677 (0.800) 93 -4.60 0.000 
Day -0.014 (0.003) 93 -5.10 0.000 
Mass -0.334 (1.084) 7 -0.31 0.767 
Temp -2.151 (0.799) 93 -2.70 0.008 
Day:Mass 0.027 (0.009) 93 2.99 0.004 

Log per capita SIS, ∆AICc to UTD model: -12.34 
(Intercept) -6.457 (0.827) 93 -7.80 0.000 
Day -0.008  (0.003) 93 -2.53 0.013 
Mass -0.254 (1.121) 7 -0.23 0.827 
Temp -3.227 (0.838) 93 -3.85 0.000 
Day:Mass 0.033 (0.010) 93 3.45 0.001 
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Figure 4.1 Histograms of P. ochraceus body mass distributions for each of the field sites 
from 2007 to 2012. Data for YB are only from 2012. Summary statistics provided for 
each site include the sample size (n), mean and standard deviation (std).  
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ABSTRACT 

Eastern boundary current systems are among the most productive and lucrative 

ecosystems on Earth because they benefit from upwelling currents.  Upwelling currents 

subsidize the base of the coastal food web by bringing deep, cold and nutrient-rich water 

to the surface. As upwelling is driven by large-scale atmospheric patterns, global climate 

change has the potential to affect a wide range of significant ecological processes through 

changes in water chemistry, water temperature, and the transport processes that influence 

species dispersal and recruitment. We examined long-term trends in the frequency, 

duration, and strength of continuous upwelling events for the Oregon and California 

regions of the California Current System in the eastern Pacific Ocean. We then associated 

event-scale upwelling with up to 21 years of barnacle and mussel recruitment, and water 

temperature data measured at rocky intertidal field sites along the Oregon coast. Our 

analyses suggest that upwelling events are changing in ways that are consistent with 

climate change predictions: upwelling events are becoming less frequent, stronger, and 

longer in duration. Additionally, upwelling events have a quasi-instantaneous and 

cumulative effect on rocky intertidal water temperatures, with longer events leading to 

colder temperatures. Longer, more persistent upwelling events were negatively associated 

with barnacle recruitment but positively associated with mussel recruitment. However, 

since barnacles facilitate mussel recruitment by providing attachment sites, increased 

upwelling persistence could have indirect negative impacts on mussel populations. 

Overall, our results indicate that changes in coastal upwelling that are consistent with 

climate change predictions are altering the tempo and the mode of environmental forcing 

in nearshore ecosystems, with potentially severe and discontinuous ramifications for 

ecosystem structure and functioning. 

 

5.1 INTRODUCTION 

Eastern boundary current systems, such as the California Current System (CCS) 

in the eastern Pacific Ocean, are among the most productive ecosystems on Earth. 
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Although such regions account for less than 1% of the ocean surface, they support 20% 

of global commercial fishery yields (Pauly & Christensen 1995). The high productivity of 

these systems is largely dependent upon coastal upwelling, a wind-driven process that 

promotes the growth of phytoplankton, the base of the coastal food web, by bringing 

large pulses of deep, nutrient-rich water to the sunlit surface. As the upwelling process is 

driven by large-scale atmospheric patterns, it is expected to respond to global climate 

change. In 1990, Andrew Bakun hypothesized that increased concentrations of 

greenhouse gases would drive stronger and more persistent upwelling (Bakun 1990), a 

prediction recently confirmed along the coast of California (Garcia-Reyes & Largier 

2010). Coastal ecosystems—and the services they provide—will likely demonstrate a 

diverse range of significant, complex, and potentially discontinuous responses to changes 

in the upwelling process (Harley et al. 2006). Our understanding of these responses is 

critical for successful ecosystem-based management of these important systems. 

Coastal upwelling occurs when equatorward wind stress along the coast drives 

surface waters offshore, a phenomenon known as Ekman transport. Surface waters are 

replaced by subsurface waters that are drawn up from depth along the coast (Huyer 

1983). Periodic reversals of upwelling favorable winds, termed ‘wind relaxations’, break 

the upwelling process into a series of upwelling events (Huyer 1983; Papastephanou et al. 

2006; Melton et al. 2009). Upwelling events are particularly characteristic off the coast of 

Oregon, with periods of days to weeks, whereas upwelling further south tends to be more 

persistent with fewer wind relaxations (Huyer 1983). However, there is increasing 

evidence to suggest that climate change is causing stronger and more persistent upwelling 

in Eastern boundary current systems around the world (Bakun 1990; Mendelssohn & 

Schwing 2002; McGregor et al. 2007; Garcia-Reyes & Largier 2010). Increased 

greenhouse gas concentrations cause continents to warm faster than oceans, and thus lead 

to a more intense pressure gradient in coastal regions as hot air rises over land and cooler 

air sinks over water (Bakun 1990; Snyder et al. 2003). In eastern boundary systems, this 

increased pressure gradient would favor fewer, longer upwelling events over the course 

of the upwelling season. 
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Most prior studies of the long-term effects of global climate change on upwelling 

systems have focused on the atmospheric and oceanographic conditions that change with 

the coastal upwelling process, typically at an annual or seasonal temporal scale, such as 

changes in the seasonal onset of upwelling (Garcia-Reyes & Largier 2010). The scale and 

focus of this study is on the changing frequency and duration of upwelling events in the 

CCS and the potential ecological ramifications for a model ecosystem, the rocky 

intertidal. The Oregon rocky intertidal has long been a hotbed of experimental ecology, 

which makes it an ideal model system to begin to understand the ecological ramifications 

of long-term changes to the upwelling regime. Much is understood about how 

environmental forcing drives community structure in the rocky intertidal, particularly 

through the recruitment dynamics of two major space occupiers, mussels and barnacles 

(e.g. Menge et al. 1997a; Menge et al. 1997b; Menge et al. 2003; Menge et al. 2009). 

Increases in the strength and persistence of upwelling due to climate change has 

the potential to affect a wide range of significant ecological processes through changes in 

water chemistry, water temperature, and the transport processes that influence species 

dispersal and recruitment. The most important and widely recognized ecological 

consequence of upwelling is the delivery of nutrient-rich waters to the surface, causing 

blooms of phytoplankton that drive the high productivity of these coastal ecosystems. 

However, upwelled waters are also low in dissolved oxygen and any phytoplankton 

production that enters the detrital pool can further deplete oxygen concentrations at 

depth, due to bacterial respiration of sinking detritus (Bakun et al. 2010). Additional 

phytoplankton production resulting from more persistent upwelling would likely 

exacerbate the current hypoxic, and sometimes anoxic, summertime conditions at depth 

on the continental shelf (Grantham et al. 2004; Chan et al. 2008). 

Changes in the frequency and duration of upwelling events would also have 

consequences for how local oceanographic circulation patterns affect larval dispersal and 

recruitment. For the majority of intertidal and subtidal invertebrates and fishes, 

reproductive success depends on the dispersal of tiny pelagic larvae and their return to 

shore (Scheltema 1986). Larvae have been observed to recruit to the adult, rocky 
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intertidal habitat in episodic pulses linked to the periodic relaxation of upwelling-

favorable winds and the subsequent onshore flow of surface waters (Farrell et al. 1991; 

Roughgarden et al. 1991; Dudas et al. 2009). Not all species exhibit this response 

however, due to behavioral differences in their position in the water column (Shanks & 

Brink 2005; Broitman et al. 2008; Rilov et al. 2008; Shanks & Shearman 2009).  

Changes in the upwelling regime may also result in species range expansion/contraction.  

For example, Lima et al. (2006) documented the northern expansion of the limpet Patella 

rustica that coincided with a  period of weak upwelling, strong inshore poleward 

circulation, and warmer sea surface temperatures.   

The relationship between larval recruitment and wind relaxations also depends on 

the strength of offshore advection and the effects of coastline and bathymetry on 

circulation patterns. For example, during upwelling conditions in northern Oregon (north 

of ~44.5°N), the upwelling current flows roughly parallel and relatively close (<30 km) 

to the coastline, causing classic Ekman circulation nearshore and setting up a barrier to 

extreme offshore transport (Castelao & Barth 2005). In central Oregon, from ~44.5 to 

43°N, the large shallow submarine Heceta Bank extends >100 km out to sea, causing the 

upwelling current to flow around its margin. Between the current and the coastline is a 

large retentive area of re-circulating upwelled water (Barth et al. 2005; Kirincich et al. 

2005). Here, advection is low and plankton biomass is considerably higher than in other 

areas along the coast (Keister et al. 2009). Farther south at 42.8°N, the current encounters 

Cape Blanco, where the angle of the coastline deviates and the upwelling current 

separates from the coast and flows strongly offshore. This results in large advective 

losses far offshore for the plankton community, but the flow is generally weak and not 

strongly directional in areas close to shore, where surface waters still flow shoreward 

during wind relaxations (Keister et al. 2009). Upwelling in southern Oregon is generally 

much stronger than further north, with offshore Ekman transport about 3-4 times larger 

(Samelson et al. 2002), making successful larval recruitment potentially more reliant on 

wind relaxations. 
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The different response of local currents to upwelling favorable winds has been 

shown to affect community structure, particularly in rocky intertidal ecosystems (Menge 

et al. 1997a; Kirincich et al. 2005). For instance, sites within the retentive Heceta Bank 

region have higher phytoplankton productivity, higher recruitment and growth rates of 

filter feeding mussels and barnacles, and stronger rates of predation and grazing than sites 

further north or south (Menge et al. 1997b; Menge et al. 2011a). Hence, at sites located 

within the Heceta Bank region, competitively-superior filter feeding mussels are 

abundant in the low intertidal zone. Whereas outside of the Heceta Bank region, 

competitively-inferior macrophytes dominate the low zone (Menge et al. 1997b). 

In addition to altering recruitment patterns, upwelling can have a profound impact 

on coastal communities by reducing nearshore water temperatures. The effects of 

temperature at the organismal level (i.e. biochemical kinetics) are well known, and we are 

beginning to understand the effects at the population and community levels (Gillooly et 

al. 2001; Brown et al. 2004). For instance, cooler water temperatures suppress larval 

developmental rates and increase the duration of the larval period, which alters dispersal 

distances and survival (O’Conner 2009). Cooler water decreases the growth rates of the 

dominate space occupier in the rocky intertidal, the mussel Mytilus californianus (Menge 

et al. 2008), but also decreases the feeding rate of its main predator, the sea star Pisaster 

ochraceus (Pincebourde et al. 2008a, b). Thus, by altering demographic rates and species 

interactions in sometimes countervailing ways, temperature can have complex and 

critical effects on the structure and dynamics of ecological communities. 

To detect changes in event-scale upwelling and assess their ecological 

consequences, we quantified long-term temporal trends in upwelling event frequency, 

duration and strength over 43 years in Oregon and California. We then related event-scale 

upwelling to water temperature measurements and recruitment patterns of mussels and 

barnacles at three rocky intertidal sites over the last 10-21 years. We hypothesized that 

there would be long-term increasing trends in the persistence and strength of upwelling 

events, consistent with climate change predictions (Bakun 1990; Bakun et al. 2010). We 

also hypothesized that increased duration of upwelling events would be related to lower 
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water temperatures and reduced recruitment. Our analyses of long-term upwelling, water 

temperature and recruitment along the CCS provide us a with a unique opportunity to (1) 

test existing predictions about how climate change will affect the frequency, duration and 

magnitude of upwelling events along Eastern boundary currents, and (2) determine the 

likely impacts on the structure and functioning of coastal ecosystems. 

 

5.2 METHODS 

5.2.1 Regional upwelling index dataset 

We used the Pacific Fisheries Environmental Laboratory (PFEL) 43-year time 

series (1967 – 2010) of 6-hourly upwelling indices for 5 latitudes along the CCS: 45°N, 

42°N, 39°N, 36°N, and 33°N (www.pfeg.noaa.gov; Fig. 1). PFEL calculates coastal 

upwelling indices from 1°-resolution sea level pressure fields obtained from the U.S. 

Navy Fleet Numerical Meteorology and Oceanography Center. The index is based on 

estimates of Ekman mass transport of surface water due to wind stress and the Coriolis 

force (Bakun et al. 1974). Positive values, the result of equatorward wind stress, are an 

estimate of the amount of water upwelled from the base of the Ekman layer (m3·second-

1·100m-1 of coastline). Negative values imply downwelling, accompanied by the onshore 

advection of surface waters. We performed all analyses on the offshore component of the 

upwelling index and replaced missing values using linear interpolation. 

5.2.2 Trends in the annual number, duration and magnitude of upwelling events 

We calculated annual summary statistics to characterize the frequency, duration, 

mean and total magnitude of upwelling events, and then related the summary statistics to 

time using simple linear regression. We considered ‘upwelling events’ as periods of time 

when the upwelling index is positive. The end of an upwelling event is termed a ‘wind 

relaxation’ and marks the transition from upwelling to downwelling. For each upwelling 

event, we recorded the end date (the date of the wind relaxation), the event duration, and 

the mean and total magnitude of upwelled water over the course of the event. Because 
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there is a lag period between when the winds build and when upwelled water actually 

reaches the surface, others have classified only those upwelling events that last for at 

least 3 days as ‘ecologically significant’ (Garcia-Reyes & Largier 2010). We did not 

impose an arbitrary minimum duration for upwelling events to qualify as ‘ecologically 

significant’; instead we determined the robustness of the results using sensitivity 

analyses. Sensitivity analyses involved sequentially changing the definition of an 

upwelling event from 0-14 days and rerunning all regressions. 

We limited our analyses to the upwelling season, which we defined using the 

mean daily cumulative upwelling index following Schwing et al. (2006). Specifically, for 

each latitude, the start (end) of the upwelling season is defined as the date when the 

climatological mean daily cumulative upwelling index first becomes positive (starts to 

decline). The upwelling season spanned the spring and the summer in Oregon, the spring 

through the fall in northern California, and extended to almost the entire year in southern 

California. 

Because the distributions of upwelling event duration, mean magnitude and total 

magnitude were heavily right-skewed, we applied log-transformations (log10+1) prior to 

conducting simple linear regression in order to limit the effects of outliers and attain 

quasi-normality. The p-values of the regressions were calculated by performing 1,000 

permutations of the data and determining the proportion of permutations that yielded a 

coefficient of determination that was greater than or equal to the one obtained with the 

original data (Legendre and Legendre 1998). 

5.2.3 Trends in the intra-annual distribution of event duration and magnitude 

Summary statistics such as the annual mean can often conceal more complex 

intra-annual temporal trends. The sensitivity of the annual trends to the minimum 

duration defining an upwelling event indicated the need to document these trends. To 

accomplish this, we determined how the entire intra-annual distribution of upwelling 

event duration and magnitude shifted over time by calculating quantiles of upwelling 

event duration, mean magnitude and total magnitude for each year and regressing them 
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against time. This approach is similar to regressing the annual minimum or maximum 

against time, but by dividing the data into many different quantiles, we were able to 

quantify the temporal trends across the entire distribution. Specifically, for data X  

consisting of N values sorted from lowest to highest, the kth q-quantile Qk X( ) was 

obtained by selecting the value of X  at index N k
q

. For each year, we used this method 

to calculate 25 quantiles of the data, from very low (0.03) to very high (0.99). 

5.2.4 Determining the temporal trends in the raw upwelling time series 

To confirm the temporal trends observed in the annual summary statistics, we 

used wavelet analysis to document how the variability of the raw upwelling time series 

changed from 1967 to 2010. Wavelet analysis decomposes a time series into its 

component periodicities and reveals the relative contribution of the variability at each 

period to the total variability over time (Cazelles et al. 2008; Torrence & Compo 1998). 

Because wavelet analysis is well-resolved in both the time and frequency domains, it can 

reveal trends that would go unnoticed with simpler methods that are either unresolved or 

poorly resolved in time/frequency such as annual means. A complete description of 

wavelet analysis is provided in appendix C. 

5.2.5 Intertidal water conditions in response to upwelling events 

The upwelling index is generated from large-scale, regional atmospheric forcing 

far offshore in the CCS, yet the index is an estimate of how much cold, nutrient-rich 

upwelled water is being brought to the surface in the near-shore environment. To test the 

influence of temporal trends in upwelling event variability on intertidal water conditions, 

we related the index to long-term measurements of mean daily water temperatures at 

three intertidal sites collected by the Partnership for Interdisciplinary Studies of Coastal 

Oceans (PISCO). Boiler Bay (BB; 44° 49’ 48” N, 124° 3’ 36” W) is located at the 

southern edge of the region where the upwelling current runs close and parallel to shore 

and classic Ekman circulation dominates (Fig. 1). Strawberry Hill (SH; 44° 15’ N, 124° 
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7’ 12” W) is located within the Heceta Bank region, where a large, sluggish, re-

circulation zone retains plankton and upwelling drives high productivity (Fig. 1). Cape 

Blanco (CB; 42° 50’ 24” N, 124° 34’ 12” W) is located on Cape Blanco in southern 

Oregon where the upwelling current separates from the coastline and flows offshore (Fig. 

1). Of the many PISCO sites, Boiler Bay and Strawberry Hill have the longest time-series 

of daily water temperature measurements (1993 to 2009) and are within 1° latitude of the 

45°N upwelling index. Although we only had 11 years of data for Cape Blanco (1999 to 

2009), including this site allowed us to assess the relationship between temperature and a 

different upwelling time series, the index for 42°N, where upwelling tends to be 3-4 

times stronger. 

The temperature data are point source from temperature loggers (StowAway 

TidbiT Temperature Loggers, Onset Computer Corporation, TBI32-05+37) that were 

bolted to rocks inside wire cages in the low zone at each site with three replicates per site. 

Although temperature was recorded at 1 hour intervals, we used tide tables to remove low 

tide air temperature measurements and averaged the remaining water temperature 

measurements for each day. 

We computed the cross-correlation between daily temperature and upwelling 

index at each of the three Oregon locations during the upwelling season to determine the 

temporal lag between changes in regional upwelling conditions and local intertidal 

temperature. We also tested whether longer upwelling events resulted in colder water 

temperatures. Using simple linear regression, we related the duration of upwelling events 

to the change in water temperature, calculated as the difference between the average 

water temperature during an event and the water temperature on the day before the event 

started. 

Additionally, we used wavelet coherence (Torrence & Compo 1998; Grinsted et 

al. 2004; Cazelles et al. 2008), a bivariate extension of wavelet analysis that describes 

patterns of correlation between pairs of time series in the time-frequency domain to 

assess the temporal variability in the relationship between daily upwelling and intertidal 

temperature from 1999 to 2009 at all three Oregon locations (see appendix C for a full 
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description of wavelet coherence). Although we used wavelet coherence to document 

how the correlation in the fluctuations of upwelling and temperature varies over time at 

periods ranging from 2 to 1024 days, we focused on event-scale (<40 days), sub-annual 

(41-255 days) and annual (256-512 days) period blocks. These divisions were motivated 

by strong differences in the temporal patterns of variability across these period blocks, 

with upwelling and temperature exhibiting (1) seasonal and high variability at event-scale 

periods, (2) seasonal and weak variability at sub-annual periods, and (3) persistently high 

variability at annual periods (Appendix D Fig. C2-1, D3). The different temporal patterns 

of variability summarized above are presented in greater detail in appendix D. 

5.2.6 Response of intertidal ecosystem productivity to upwelling 

 In addition to the temperature analyses, we determined if local ecosystem 

productivity at our field sites was also responding to upwelling conditions. We examined 

PISCO’s long term nitrate, phosphate and chlorophyll-a data from Boiler Bay (1993-

2010), Strawberry Hill (1993-2010) and Cape Blanco (1995-2010). Each month during 

the upwelling season, replicated (n = 3) samples were collected at low tide in flowing 

water at a depth of ~30 cm using opaque plastic (HDPE) bottles. For chlorophyll-a, a 100 

mL subsample was filtered through a 25 mm combusted Whatman glass fiber filter (pore 

size 0.7 μm) and stored on ice. The filter was extracted in 90% HPLC acetone for 12 h in 

the dark at -20°C, and the concentration of chlorophyll-a was determined using a Turner 

Designs Model 10 fluorometer calibrated with a pure chlorophyll-a standard (Sigma 

Chemical). Nitrate and phosphate were quantified from 20 ml subsamples of the filtrate 

by standard auto-analyzer techniques (Atlas et al. 1971). We used Spearman's rank 

correlations to analyze the association between nutrient and chlorophyll-a concentrations 

and (1) the number of wind relaxations, (2) the mean duration of upwelling events, and 

(3) the mean upwelling index over the days prior to each water sample. For nutrients we 

examined upwelling event conditions from 1 to 10 days prior to the sample and from 5 to 

50 days for chlorophyll-a. 
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5.2.7 Effects of upwelling events on recruitment to the intertidal 

We investigated whether the number of wind relaxations that mark the end of 

upwelling events and upwelling event duration were associated with the recruitment of 

barnacles and mussels. We obtained long-term recruitment data from PISCO for the same 

three sites as the temperature analyses. We used 21 years of barnacle and mussel 

recruitment data for Boiler Bay and Strawberry Hill, 1989 to 2009, and 10 years of 

recruitment data for Cape Blanco, 1999 to 2009. 

As described elsewhere (Menge et al. 2009; Menge et al. 2011b), recruitment of 

barnacles and mussels was measured using artificial substrates on which larvae readily 

settle when deployed in the rocky intertidal. Briefly, Safetywalk® anti-slip tape on PVC 

plate (“plates”) and S.O.S Tuffy® mesh pads (“tuffies”) were used as substrates 

(“collectors”) for barnacle and mussel recruitment respectively. Collectors were bolted to 

rocks in the rocky intertidal at two wave exposures (exposed and protected) and two tidal 

heights (mid and low zones of the intertidal), except at CB where they were deployed in 

the mid exposed intertidal only. Plates and tuffies were deployed for 2 to 4 weeks, with 5 

to 8 replicates of each. The collectors were then brought to the laboratory where barnacle 

cyprids and metamorphs and whole mussels were identified and counted using dissecting 

microscopes. Because post-settlement mortality can increasingly influence recruitment 

measurements as deployment time increases (Shanks 2009a), we did not use recruitment 

data for plates or tuffies deployed longer than 35 days.  

For each deployment interval, we calculated the mean daily barnacle and mussel 

recruitment rates. Replicate measurements were averaged together before averaging over 

wave exposures and tidal heights. This reduced the data to one measure of mean daily 

recruitment for the barnacles Balanus glandula and Chthamalus dalli, and for the mussels 

Mytilus spp. for each deployment interval at each site. Because the data contain zeros and 

are not normally distributed, we used Spearman's rank correlations to analyze the 

association between recruitment and (1) the number of wind relaxations that occur during 

the deployment interval, (2) the mean duration of the upwelling events prior to those 

wind relaxations, and (3) the mean duration of the downwelling events that occur after 
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those wind relaxations. Since both recruitment and the upwelling index exhibit annual-

scale variability (both are low during winter and high during summer), and we were 

interested in event-scale associations, we confined the data to Oregon’s upwelling season, 

April through September. To assess the sensitivity of the results to the minimum duration 

defining an upwelling event, we repeated the analysis for minimum durations from 0 to 

12 days. All data processing and analyses were conducted using MATLAB 7.8 

(MathWorks, R2009a), and R 2.11.1 (R Development Core Team 2010). 

 

5.3 RESULTS 

5.3.1 Trends in the annual number, duration and magnitude of upwelling events 

At each of the 5 latitudes along the CCS, the number of upwelling events has 

declined by 23 – 40% from 1967 to 2010 (Table 5.1a). In addition, the annual mean 

duration of upwelling events has increased from 26 – 86% (Table 5.1b), and the annual 

mean and total magnitude of upwelling events are increasing over time (Table 5.1c-d). 

The sensitivity analyses, which sequentially redefined the minimum duration of an 

upwelling event, reveal that the increase in the mean annual duration of upwelling is 

partially due to short events (< 1day) becoming less frequent and partially due to long 

events (> 6 days) becoming more frequent (Appendix E Fig. E3-1).  

5.3.2 Trends in the intra-annual distribution of event duration and magnitude 

Overall, the intra-annual distribution of event durations is shifting towards higher 

values over time (positive slopes) at all sites (Fig. 2). Similar trends occur in the 

distributions of upwelling event mean and total magnitude, indicating that events are not 

only becoming longer, but are also becoming stronger (Appendix E Figs. E5, E6). This 

analysis also confirms the different trends of short and long upwelling events seen in the 

sensitivity analysis. Indeed, the frequency of intermediate to long upwelling events 

durations is increasing at a faster rate than that of short upwelling events (Fig. 2). 

Specifically, very low quantiles (e.g., < 0.2) and very high quantiles (e.g., > 0.9) of 
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upwelling event duration have smaller positive slopes than intermediate-to-high quantiles 

at 42°N, 36°N and 33°N (Fig. 2c, d, g, h, i, j). At 45°N and 39°N, the relatively low 

quantiles are the ones showing stronger increases (largest slopes) over time (Fig. 2a, b, e, 

f).  

The wavelet analysis of the raw upwelling time series indicates that upwelling is 

being increasingly dominated over time by variability at event-scale (<40 days), sub-

annual (41-255 days) and super-annual (>512 days) periods instead of annual periods 

(256-512 days) at several latitudes (Appendix D Fig. D2-2). This is consistent with the 

observed annual trends in upwelling events: by becoming stronger and more persistent, 

upwelling events are accounting for a greater proportion of the variability in upwelling 

over time. 

5.3.3 Intertidal water conditions in response to upwelling events 

The regional upwelling index and local intertidal water temperature are negatively 

correlated at time lags of 0-9 days at all three Oregon sites during the upwelling season, 

with the cross-correlation being strongest at time lags of 2-3 days (Fig. 3a, c, e). 

Furthermore, at all three Oregon sites, the change in water temperature is strongly 

negatively associated with the duration of upwelling events (p < 0.0001; Fig. 3b, d, f). 

Thus, upwelling events at the regional scale lead to a systematic decrease in local 

intertidal temperature after a 0-3 day lag period, with longer upwelling events generating 

colder intertidal temperatures. Overall, these results indicate that changes in daily 

upwelling have both a quasi-instantaneous and a cumulative effect on local intertidal 

water temperature. 

To determine how the relationship between fluctuations in daily upwelling and 

temperature at different periodicities varied over time, we conducted wavelet coherence 

analysis at all three Oregon sites from 1999-2010. Upwelling and temperature show 

coherent fluctuations (coherence > 0.8) at event-scale (<40 days) and sub-annual periods 

(41-255 days) at all three sites during the summer months, with a phase difference 

between the cycles of upwelling and temperature of −π / 2 (Fig. 4). This phase 
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difference means that there is a time lag between changes in upwelling conditions and 

water temperature, with peaks in upwelling trailing peaks in temperature by a quarter of 

the amount of time a complete cycle takes. This means that through time, temperature 

drops follow peaks in upwelling. This pattern is consistent with a causal relationship 

between upwelling and temperature fluctuations at event-scale and sub-annual periods. 

Upwelling and temperature undergo coherent fluctuations at annual periods (256-

512 days) at Cape Blanco only, with upwelling leading temperature by π / 2 (i.e. a 

temporal lag of approximately three months; Fig. 4f). These coherent annual fluctuations 

are unlikely to be causally related but due instead to seasonality in both temperature and 

upwelling patterns. Upwelling peaks earlier in the year than water temperature because 

the sun warms the air much faster than water during the spring months, thus generating a 

thermal gradient between the heated land mass and the cooler coastal ocean (Bakun 

1990). The thermal gradient then generates strong alongshore winds that cause coastal 

upwelling to arise. This leads to a π / 2 phase difference between upwelling and 

temperature at annual periods, with upwelling peaking in the spring and water 

temperature peaking in the summer (Fig. 4f, Appendix D Fig. D2-5f). 

All water productivity indicators showed similar trends in response to upwelling 

at all sites. Chlorophyll-a, nitrate and phosphate concentrations were negatively related to 

the number of wind relaxations and positively related to the mean duration of upwelling 

events and the mean upwelling index (Appendix F Fig. F1a,b,c). 

5.3.4 Effects of upwelling events on recruitment to the intertidal 

Overall, barnacle and mussel recruitment varied with the number and mean 

duration of upwelling events, and these relationships depended on the minimum duration 

defining an upwelling event (Fig. 5). The trends observed for Boiler Bay and Strawberry 

Hill were stronger than for Cape Blanco. Recruitment of mussels and barnacles was 

positively associated with the number of wind relaxations, although this relationship 

often did not appear unless short upwelling events were excluded from the analysis, 

which indicates that larvae do not recruit in response to wind relaxations at the end of 
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short events (Fig. 5). However, the minimum duration of upwelling events with which 

recruitment was most strongly associated differed between sites. The correlation 

coefficients of Balanus spp. recruitment peaked at a minimum duration of 2 days at 

Boiler Bay (Fig. 5a), 6 days at Strawberry Hill (Fig. 5d), and 12 days at Cape Blanco 

(Fig. 5g). The correlation of C. dalli recruitment also peaked at 2 days for Boiler Bay 

(Fig. 5b) and 6 days at Strawberry Hill (Fig. 5e), but the patterns of the correlation 

coefficients at Strawberry Hill and Cape Blanco for this species were non-significant and 

close to zero. Mytilus spp. recruitment was also positively associated with the number of 

wind relaxations at a minimum duration of 6 days at Boiler Bay (Fig. 5c), 6 days at 

Strawberry Hill (Fig. 5f), and a peak in the correlation coefficient at 12 days at Cape 

Blanco (Fig. 5g), although the latter was not statistically significant. Barnacle recruitment 

at Boiler Bay was negatively associated with upwelling event duration (Fig. 5a, b). 

However, for Mytilus spp. recruitment at all three sites (Fig. 5c, f, i) and for Balanus spp. 

recruitment at Strawberry Hill (Fig. 5d) and Cape Blanco (Fig. 5g), the association with 

the mean duration of upwelling event is positive when short events are included in the 

analysis. This relationship is only significant for mussel recruitment at Boiler Bay and 

Strawberry Hill and as short events are excluded, these relationships decline and become 

non-significant (Fig. 5c, f). 

 The positive association of mussel recruitment with the duration of short 

upwelling events at Strawberry Hill is complemented by negative associations with the 

duration of downwelling events (Fig. 5f). Similar relationships are evident for mussels at 

Boiler Bay (Fig. 5c) and Balanus spp. at Cape Blanco (Fig. 5g), but these are not 

significant. Similarly, the negative association of barnacle recruitment with the duration 

of upwelling events at Boiler Bay is reflected in positive associations with duration of 

downwelling events (Fig. 5a, b), although this relationship is only significant for C. dalli 

recruitment. 

 

5.4 DISCUSSION 
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Upwelling events in the California Current System have become longer in 

duration, stronger in magnitude and fewer in number, which is consistent with Bakun’s 

hypothesis for how climate change would impact Eastern Boundary Currents (Bakun 

1990). The increase in upwelling event duration reflects both the increased persistence of 

events and the loss of short events (<1 day long), especially in the southern regions of the 

CCS. The strong, quasi-instantaneous, and cumulative effect of upwelling events on 

intertidal water temperatures suggests that the increased persistence and strength of 

upwelling events will result in colder upwelled water shoaling over longer periods in the 

nearshore environment. Furthermore, our results show that larval recruitment, nutrient 

availability and phytoplankton concentration in coastal regions are strongly related to 

larger-scale upwelling events. Overall, our findings suggest that changes in the 

distribution, persistence and strength of event-scale upwelling are likely to have 

important consequences for the structure and functioning of nearshore ecosystems. 

5.4.1 Temporal trends and climate change hypotheses 

The observed increase over time in the duration and magnitude of upwelling 

events in Oregon is consistent with the recently documented increase in annual upwelling 

in California (Garcia-Reyes & Largier 2010). The similarity in these trends over 12° of 

latitude (~1,400 km) along the U.S. west coast suggests that coastal climate forcing at the 

scale of the entire CCS is shifting. Our results are consistent with Bakun’s 1990 

upwelling intensification hypothesis, which predicts that increased greenhouse emissions 

lead to a stronger thermal gradient between the warm land mass and the cooler coastal 

ocean, thereby driving more persistent upwelling-favorable winds in coastal upwelling 

systems worldwide (Bakun 1990; Mendelssohn & Schwing 2002; Santos et al. 2005; 

McGregor et al. 2007; Bakun et al. 2010). Thus, we predict that these trends would likely 

be found in similar coastal upwelling systems and that they will continue to strengthen 

with further global climate change (Bakun 1990; Snyder et al. 2003). 

5.4.2 Intertidal water temperature response to upwelling conditions 
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On a global scale, climate change is causing higher average sea surface 

temperatures (Scavia et al. 2002). However, this effect is negated or reversed in coastal 

upwelling regions where climate change is predicted to cause stronger and more 

persistent upwelling during the upwelling season. We have show that upwelling event 

conditions at the regional scale are strongly associated with the quasi-instantaneous 

shoaling of cold water in local nearshore environments and that upwelling events have a 

cumulative effect on nearshore temperatures, with longer upwelling events leading to 

colder temperatures. Hence, our results suggest that stronger and more persistent 

upwelling may lead to a reduction in water temperatures in the coastal ocean despite a 

global trend toward higher temperatures. However, increased solar heating and reduced 

mixing may enhance stratification and deepen the thermocline to the point at which 

upwelling would only turnover water above the thermocline and no longer bring cold, 

nutrient rich deep water to the surface (Harley et al. 2006). Although such a deepening of 

the thermocline can decouple upwelling events from their expected effects on the 

temperature and productivity of coastal waters (Roemmich & McGowan 1995), our 

results indicate that upwelling remains strongly related to (1) temperature, (2) nutrients, 

and (3) chlorophyll-a despite a 26-86% increase in upwelling strength and persistence 

over the last 43 years. 

Colder water temperatures will have consequences for nearshore ecosystems 

through direct effects of temperature on species performance and indirectly through 

species interactions. The direct, physiological effect of temperature is the main factor 

defining the geographic distribution of marine animals (Hutchins 1947; Helmuth et al. 

2006). Temperature-induced changes to the distribution and population sizes of species 

affect other species indirectly, as mediated through the network of species interactions 

(Leonard et al. 1999; Moore et al. 2007). Furthermore, the strengths of species 

interactions are also directly dependent on temperature (Rall et al. 2010). Colder 

temperatures typically cause lower consumption rates by reducing the metabolic rates of 

consumers, thus weakening top-down control in ecosystems (Vasseur & McCann 2005). 

Enhanced bottom-up effects from the increased provision of nutrient rich water 
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potentially compounds the situation.  This unchecked growth of lower trophic levels 

could further exacerbate hypoxia and anoxia at depth on the continental shelf (Grantham 

et al. 2004; Chan et al. 2008). 

5.4.3 Effects of upwelling events on recruitment 

Regional scale variability in upwelling conditions within the CCS have been 

linked to recruitment patterns (Menge et al. 2011b), however, there is some debate over 

the physical oceanographic mechanism responsible for delivering larvae to shore. The 

transport hypothesis suggests that persistent upwelling limits recruitment in the southern 

CCS by preventing onshore larval transport and advecting larvae offshore, whereas 

frequent wind relaxations in the northern CCS cause current reversals and result in 

saturating recruitment pulses (Farrell et al. 1991; Connolly et al. 2001; Menge et al. 

2003; Noda 2004; Dudas et al. 2009). Our results partly support this hypothesis, as 

recruitment of both barnacles and mussels was positively associated with the number of 

wind relaxations. However, offshore larval distributions have not been found to be 

susceptible to offshore advection during upwelling (Shanks & Brink 2005; Morgan et al. 

2009; Shanks & Shearman 2009) and recruitment does occur in the absence of major 

wind relaxations. Thus, other physical oceanographic processes, such as internal waves 

and tidal currents, and site-specific differences in hydrodynamics may also be responsible 

for larval delivery (Menge et al. 1997a; Shanks 2009b; Shanks et al. 2010).  

The behavior of different taxa is likely to affect the recruitment response to 

upwelling conditions. In fact, within-site differences between mussel and barnacle 

recruitment are apparent in our results. At each site, barnacle recruitment tended to be 

negatively (or less positively) related to the mean duration of upwelling events than was 

mussel recruitment. Mussel recruitment was consistently positively associated with event 

duration and only becomes positively associated with the number of upwelling events 

once short upwelling events are excluded from the analysis. One reason for this may be 

that mussel larvae are typically found below the thermocline and thus would not be 

susceptible to offshore advection during upwelling, whereas barnacles are often found in 
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the surface Ekman layer (Shanks & Brink 2005; Broitman et al. 2008; Rilov et al. 2008; 

Shanks & Shearman 2009). If mussel larvae are not susceptible to offshore advection of 

the top water layer during upwelling, the positive effect of upwelling duration seen in the 

results may be due to the onshore advection of deeper water or the increased food 

availability associated with upwelled waters (Broitman et al. 2008; Menge et al. 2009). 

Because mussels respond positively as the duration of upwelling events increases, they 

will likely be positively affected by climate driven increases in upwelling persistence. 

Although barnacle recruitment is generally positively associated with the number 

of wind relaxations, there are large differences between sites that are likely due to how 

regional currents respond to upwelling events and wind relaxations. At Boiler Bay where 

the continental shelf is narrow and the upwelling current runs parallel and relatively close 

to shore (Castelao & Barth 2005), we expect barnacle larvae to be highly dependent on 

wind relaxations for recruiting onshore. Conversely, we would not expect barnacle larvae 

to be as dependent on wind relaxations for recruitment at Strawberry Hill because of the 

large retentive zone which retains larvae close to shore (Keister et al. 2009). Our results 

support this interpretation, as barnacle recruitment at Boiler Bay was positively 

associated with both the number of wind relaxations and the duration of the subsequent 

downwelling events and negatively associated with upwelling event duration whereas the 

relationships at Strawberry Hill were much weaker. Further south at Cape Blanco, the 

upwelling current separates from the coast (Springer et al. 2009) causing advection of 

surface waters and their associated planktonic communities far offshore (Keister et al. 

2009). Although much less is known about nearshore currents in the shadow of the 

upwelling current, there is evidence to suggest that they are generally weak and not 

strongly directional, yet still flow shoreward during wind relaxations (Keister et al. 

2009). Thus, barnacle larvae at Cape Blanco may not be subject to strong advection in the 

upwelling current and thus not as dependent on wind relaxations for onshore recruitment. 

This is consistent with our weak results for Cape Blanco, although the small sample size 

for this site may also be a factor.    



94 
 

 

Climate-induced changes to recruitment have the potential to affect community 

structure and dynamics, but only if the abundance of adult populations are ultimately 

affected (Svensson et al. 2005; Poloczanska et al. 2008). This is not always the case 

because of post-recruitment processes. For example, the orders-of-magnitude increases in 

mussel recruitment observed at many sites within the last decade (Menge et al. 2009) 

usually were not accompanied by a corresponding increase in adult mussel abundance 

(Menge et al. 2011a). Menge et al. (2011a) hypothesized that the lack of response of the 

adult mussel populations was because recruitment of their main facilitator, barnacles, 

failed to increase over the same period. Barnacles facilitate mussel recruitment by 

providing many tiny crevices for mussel recruits to attach to the substratum (Berlow 

1997). Thus, in regions where barnacle recruitment responds even to short upwelling 

events, increasing persistence of upwelling will not only impact barnacle populations, but 

will indirectly impact mussel populations too. Such context-dependent, non-linear 

responses of different species to environmental forcing are likely to be the norm. 

5.4.4 Broader impacts 

In addition to the effects of upwelling on productivity, temperature, and larval 

distribution, upwelled waters are also high in dissolved carbon dioxide, low in dissolved 

oxygen and low in pH (Grantham et al. 2004; Chan et al. 2008; Hauri et al. 2009). In 

2002, persistent upwelling caused severe inner-shelf (<70 m) hypoxia ([O2] ≤ 0.5 ml l–1) 

to develop from 44.00°N to 44.65°N, which resulted in mass die-offs of fish and 

invertebrates (Grantham et al. 2004). In the summer of 2006, extremely high productivity 

in the same region resulted from a prolonged period of unusually intense upwelling and 

contributed to widespread and severe hypoxia and the first recorded instance of anoxia in 

the CCS (Chan et al. 2008). Indeed, upwelling was so persistent in 2006 at 45°N that the 

number of wind relaxations was the lowest of any year on record. Respiration of excess 

phytoplankton production also adds to dissolved CO2 levels, which decreases pH and the 

carbonate saturation state (Hauri et al. 2009). Low pH and under-saturated waters have 

been observed during strong upwelling events (Feely et al. 2008), so longer upwelling 
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events will likely mean higher shoaling and longer exposure to acidic waters in the near 

shore environment. 

Climate-driven changes in the phenology of upwelling events are altering the 

tempo and the mode of environmental forcing in nearshore ecosystems of the California 

Current System: upwelling events have become longer in duration, stronger in magnitude 

and fewer in number. By affecting water temperature, nutrient availability, phytoplankton 

productivity, larval recruitment and species interaction strength, changes in the duration, 

frequency and magnitude of upwelling are likely to significantly impact the structure and 

functioning of coastal ecosystems in Eastern boundary currents around the world. 
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Table 5.1 Temporal trends from 1967 to 2010 in the frequency, mean duration, mean 
magnitude and total magnitude of upwelling events at five latitudes across the California 
Current System.  Only upwelling events occurring during the upwelling season of each 
latitude are included.  Statistics represent simple linear regression models (y = β0 + β1x) 
of the effect of year on the (a) frequency, (b) mean duration (log10+1), (c) mean 
magnitude (log10+1), and (d) total magnitude (log10+1) of upwelling events.  For each 
analysis we present the p-value (bolded when < 0.05), coefficient of determination (R2), 
intercept (β0), and slope (β1).   

Latitude p-val R2 β0 β1 

a.  Frequency of upwelling events
45 0.040 0.103 371.332 -0.172
42 0.002 0.253 660.587 -0.317
39 0.010 0.164 475.072 -0.226
36 0.001 0.350 965.509 -0.465
33 0.007 0.175 731.596 -0.344

b.   Mean duration of upwelling events 
45 0.077 0.078 -3.147 0.002 
42 0.001 0.249 -7.947 0.004 
39 0.053 0.093 -4.205 0.002 
36 0.001 0.453 -10.520 0.006 
33 0.001 0.253 -5.775 0.003 

c.   Mean magnitude of upwelling events
45 0.208 0.033 -1.581 0.001 
42 0.030 0.112 -6.523 0.004 
39 0.436 0.016 -1.187 0.001 
36 0.007 0.165 -5.700 0.004 
33 0.088 0.067 -1.548 0.001 

d.   Total magnitude of upwelling events 
45 0.068 0.074 -7.290 0.005 
42 0.003 0.201 -19.407 0.011 
39 0.149 0.052 -7.231 0.005 
36 0.001 0.352 -21.616 0.012 
33 0.002 0.205 -10.341 0.006 
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Figure 5.1 Map of the study region. Shown are the locations of the five PFEL upwelling 
stations in the CCS off the coast of Oregon and California (circles) and the three rocky 
intertidal field sites along the Oregon coast (triangles): Boiler Bay (BB), Strawberry Hill 
(SH), and Cape Blanco (CB).  
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Figure 5.2  Temporal trends in the intra-annual distribution of log10 upwelling event 
durations from 1967 to 2010. Within each year for each of the five latitudes, we 
identified the different quantiles of log10 upwelling event duration. The quantiles were 
related to year via simple linear regression models y = β0 + β1x( ) , yielding a coefficient of 
determination (R2, left column) and a slope (β1, right column). Closed (open) circles 
indicate regressions with p-values < 0.05 (> 0.05). The p-values were assessed by 
performing 1,000 permutations of the data and determining the proportion of 
permutations that yielded a coefficient of determination that was greater than or equal to 
the one obtained with the original data.  
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Figure 5.2   



100 
 

 

 

Figure 5.3  The effect of daily upwelling conditions on daily rocky intertidal water 
temperatures from 1999 to 2010. Subplots represent cross-correlations of mean daily 
water temperature and mean daily upwelling index at (a) Boiler Bay, (c) Strawberry Hill 
and (e) Cape Blanco. The dashed lines indicate the 95% confidence interval of cross-
correlation values predicted for two uncorrelated time series. Cross-correlations outside 
of the confidence interval are thus significant at the α = 0.05 level. The lag time at which 
water temperature was most highly correlated to the upwelling index is indicated with an 
arrow for each plot. Side plots represent simple linear regressions of the effect of 
upwelling event duration on the change in water temperature at (b) Boiler Bay, (d) 
Strawberry Hill and (f) Cape Blanco. The change in water temperature is the difference 
between the water temperature the day before an upwelling event starts and the mean 
water temperature over the course of the event. The regression statistics are indicated on 
each plot.  
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Figure 5.4  Pairwise wavelet coherence analysis of daily upwelling and temperature time 
series from 1999 to 2010 at (a, b) Boiler Bay, (c, d) Strawberry Hill and (e, f) Cape 
Blanco. The left column represents wavelet coherence analyses between (a) 45°N 
upwelling index and temperature at Boiler Bay, (c) 45°N upwelling index and 
temperature at Strawberry Hill and (e) 42°N upwelling index and temperature at Cape 
Blanco. Wavelet coherence represents regions of high (low) common fluctuations 
between the time series in warm (cold) colors. Black arrows indicate the phase angle 
between the time series. When the time series move in the same direction (i.e., in phase), 
the arrows point to the right and when they move in opposite directions (i.e., anti-phase), 
the arrows point to the left. Arrows pointing down indicate a π / 2 phase difference 
between the time series, with upwelling leading temperature, and arrows pointing up 
indicate a −π / 2 phase difference between the time series, with temperature leading 
upwelling. Black contours represent regions of statistically significant common 
variability at the α=0.05 level. Regions within the black dashed lines (the cone of 
influence) are not affected by edge effects. (b, d, f) The right column shows the 
distribution of phase differences between upwelling and temperature across all significant 
wavelet coherence regions for event-scale (<40 days; green), sub-annual (41-255 days; 
blue) and annual (256-512 days; red) periodicities. 
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Figure 5.4  
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Figure 5.5 Correlation analyses of barnacle and mussel recruitment with upwelling event 
conditions. Plotted on the y-axis are the coefficients of the Spearman’s rank correlation 
analyses of barnacle and mussel recruitment versus (1) the number of wind relaxations 
(circles), (2) the mean duration of the upwelling events that occur before (squares), and 
(3) the mean duration of the downwelling events that occur after those wind relaxations 
(triangles). The x-axis is the minimum duration of upwelling events included in the 
analysis, from 0 to 12 days. Correlation coefficients that account for a statistically 
significant proportion of the variation in the data at the α=0.05 level are represented by 
closed symbols, non-significant coefficients have open symbols. Results are presented for 
the barnacles Balanus spp. (a, d, g), Chthamalus dalli (b, e, h), and for the mussels 
Mytilus spp. (c, f, i), at three rocky intertidal field sites: Boiler Bay (a, b, c), Strawberry 
Hill (d, e, f), and Cape Blanco (g, h, i). 
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Figure 5.5  
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CHAPTER 6: General Conclusions 

 

My dissertation research demonstrates that the mechanistic effect of temperature 

on organismal performance is an important force structuring ecological communities and 

has potential as a tractable framework for predicting the community level effects of 

climate change. Ongoing, long-term changes in environmental forcing in rocky intertidal 

ecosystems provide an opportunity to understand how temperature shapes community 

structure and the ramifications of climate change (Chapter 5). The modeling exercises of 

Chapter 2 indicated that the bioenergetic constraints of body size and body temperature 

influence species persistence in communities primarily through physiological effects at 

the organismal level. However, local community structure also influences the effect of 

temperature by either limiting the flow of energy up the food web, which imposes 

additional energetic constraints on higher trophic species, or by mitigating the negative 

effects of temperature with stabilizing species interactions. The results of Chapter 3 

supported the model prediction that rocky intertidal species should express declining 

energetic efficiencies with temperature. Finally, the effect of temperature on ingestion 

rates and species interaction strengths observed in the lab was also apparent under field 

conditions (Chapter 4).  

Temperature is not the only abiotic factor affecting organismal performance, nor 

is it the only abiotic factor predicted to change with climate change. In rocky intertidal 

systems, stronger and more persistent upwelling will deliver more nutrients to the coastal 

photic zone, boosting primary production and fueling the base of the food web. A 

stronger bottom-up effect, combined with a suppressed top-down effect due to cold water 

temperatures limiting the ingestion rates of consumers, could contribute to the unchecked 

growth of phytoplankton. Since uneaten phytoplankton biomass may be the main factor 

causing the widespread hypoxia observed during the upwelling season along the Oregon 

coast since 2001(Chan et al. 2008), the consequences could be severe. Upwelled waters 

also have a low pH, which disproportionately impacts species with carbonate body parts, 

such as shells (Feely et al. 2008). In order to understand the cumulative, or synergistic, 
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effects of many simultaneously changing abiotic factors on ecological communities, it is 

important that organismal-level responses are characterized across the full range of 

conditions that species currently or are projected to experience.  

Characterizing biological rates under the full range of typical environmental 

conditions is necessary to scale up physiological effects to the community level. 

Although the direct, physiological responses to temperature are well documented for 

many intertidal organisms, most investigations focus on thermal stress at the extremes of 

a species’ tolerance and overlook temperature effects on physiology near the center of a 

species’ thermal range (Sanford 2002b). Most studies take measurements such as the 

LT50 (the temperature at which 50% mortality occurs), maximal habitat temperature, or 

the Arrhenius ‘break’ temperature (the temperature at which a sharp discontinuity in 

slope occurs in an Arrhenius plot of physiological rates). While such measurements are 

necessary for understanding range limits, physiological mechanisms, and energetic costs 

arising from extreme heat stress (see reviews by Somero 2002, 2011), they are not useful 

for defining how temperature affects performance across the range of conditions that 

organisms typically experience over the long-term.  

The experimental design used to measure how physiological rates scale with 

environmental variables affects how easily organismal physiology can be integrated into 

community models (Angilletta & Sears 2011). Most experiments characterizing 

physiological responses to environmental factors use ANOVA experimental designs 

where continuous environmental variables are constrained to 2-5 categorical levels, with 

replicates at each level, resulting in estimates of the mean and variance at only those 

particular levels. Alternatively, an experimental regression design, such as I used in 

Chapter 3, characterizes the response over the full range of the predictor variable, often 

with superior efficiency (no need for replicates!) and statistical power, and a much 

improved ability to detect non-linear, threshold, or asymptotic responses (Gotelli & 

Ellison 2004). With multiple factors, experimental regression designs (a.k.a. response 

surface designs) are analyzed with multiple regressions and can reveal additive or 

synergistic effects (Inouye 2001, Gotelli & Ellison 2004). Most importantly, the slope 
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and intercept parameters from regression models are much more appropriate for 

integrating into ecological models where predictor environmental variables vary 

continuously (Gotelli & Ellison 2004).    

By considering how environmental factors influence species energetics and the 

strengths of species interactions in the context of a community network, my thesis work 

demonstrates the potential for using a holistic approach to understanding the 

consequences of environmental forcing on community structure. The development of an 

ecological community modeling framework that links environmental variability, 

organismal physiology, and species interactions will take close collaboration between 

ecophysiologists, community ecologists, and theoretical ecologists. Such research 

networks are critical for us to improve our predictive power for assessing the impact of 

climate change on ecological communities.   
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Appendix A – An evaluation of the temperature scaling equations of Chapter 2 

 

The joint effects of body mass, M, and temperature, T (in K), on the metabolic 

rate, X, and ingestion rate, Y, of ectotherms are well described by the Universal 

Temperature Dependence (UTD) model (Gillooly et al. 2001; Brown et al. 2004): 

ܺ ൌ  ܽ௫ܯ௕ೣe
ିாೣ
௞்  

     (1a) 

ܻ ൌ  ܽ௬ܯ௕೤e
ିா೤
௞்  

     (1b) 

where b is an allometric exponent, E (eV) is the activation energy, k is 

Boltzmann’s constant (8.62 x 10-5 eV·K-1) and ܽ௫and ܽ௬ are normalization constants 

independent of body mass and temperature. By calculating the mass corrected rates and 

taking the natural logarithm of both sides, these equations can be linearized and the 

temperature scaling parameters (Ex, Ey) can easily be estimated as the slope of a least-

squares linear regression line: 

 

 ݈݊ሺܺିܯ௕ೣሻ  ൌ െܧ௫ ൬
1

݇ܶ൰ ൅  ݈݊ሺܽ௫ሻ 

    (2a) 
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1
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    (2b) 
Because temperature is in degrees Kelvin, the intercepts (ln(ܽ௫), ln(ܽ௬)), 

represent mass-corrected metabolic rates at -273.15°C, which is biologically meaningless 

and impossible to measure. Thus, to incorporate estimates of the normalization constants 

from lab measurements, it is necessary to resolve these equations at a temperature at 

which these rates are measured (Vasseur & McCann 2005). I will describe how this is 
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done using the equation for metabolic rate, but the calculations for ingestion follow the 

same methods. First, evaluate equation 2a at a common reference temperature (T0): 

݈݊ ሺܽ௫ሺ బ்ሻሻ ൌ   െܧ௫ ൬
1

݇ ଴ܶ
൰ ൅  ݈݊ሺܽூ௫ሻ 

    (3) 
Where ln(ax(T0)) represents the mass-corrected metabolic rate at T = T0, which will 

be the new normalization constant where the y-axis crosses at the equivalent of 20 °C 

instead of -273.15 °C. Next, solve for the original intercept:  

 lnሺܽ௫ሻ ൌ ݈݊ ሺܽ௫ሺ బ்ሻሻ ൅ ௫ܧ ൬
1

݇ ଴ܶ
൰ 

    (4) 
Then substitute for the original intercept in equation 2a and simplify: 
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     (5c) 
Assuming that the allometric exponent is equivalent to ¾ power scaling, then the 

final equation for mass-specific metabolic rate is:  

ܯ/ܺ ൌ ܽ௫ሺ బ்ሻିܯ଴.ଶହ݁൬ாೣሺ்ି బ்ሻ
௞் బ்

൰ 

    (6) 
This equation is used in the ATN model using the empirical estimates of the 

normalization constants. Because the models are of how biomass densities (mass/area) 

change through time, the units of the normalization constants need to be in units of mass 
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per time. I used empirical estimates of the normalization constants from UTD models of 

metabolic and ingestion rates for several rocky intertidal invertebrates (see Chapter 3). 

These analyses were originally analyzed in units of Joules per second but were converted 

to kilograms per year, assuming 6,000,000 J kg-1 (Table A1). 
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Table A1 Robust linear regressions coefficients and statistics for the UTD models of the effect of body mass and water temperature 
on mass specific metabolic and ingestion rates (kg · s-1), using the Huber method. All the models are of the form: lnሺݕሻ ൌ
ܾ lnሺܯሻ െܧ ቀ ଵ

௞்
ቁ ൅  lnሺܽሻ, where ܯ is body mass (kg), ܶ is water temperature (K), and ݇ is Boltzmann’s constant (8.62 x 10-5 eV·K-

1). The coefficients with the 95% confidence interval in parentheses include b, the allometric exponent; E, the activation energy (eV); 
and a, the normalization constant or the intercept. The model statistics include the model p-value (α < 0.05 in bold) and the sample 
size, n. Also included is the normalization constant, ܽ(T0), evaluated at T0 = 20°C in units of kg (kg year)-1 kg0.25. P value significance 
codes: 0 < ‘***’ < 0.001 < ‘**’ < 0.01 < ‘*’ < 0.05 < ‘¯’ < 0.1. 

Species / Interaction b E (eV) ln(a) ࢇ(T0) p-value n 

Metabolic rate, X      
M. californianus -0.34(-0.39–-0.28)*** 0.68(0.42–0.96) 24.89(14.53–36.26) 0.143 4.55E-12 27
N. canaliculata -0.4(-0.57–-0.23)** 0.6(0.29–0.88)* 20.99(9.51–32.57)- 0.069 9.66E-05 25
K. tunicata -0.2(-0.3–-0.08)* 0.66(0.33–0.94)** 25.16(11.55–36.54)** 0.359 4.75E-05 29
N. ostrina -0.46(-0.64–-0.26)** 0.92(0.58–1.28)* 33.86(19.35–48.48)* 0.085 5.37E-06 25
P. ochraceus -0.54(-0.68–-0.36)*** 0.84(0.41–1.36)- 30.94(13.12–51.88) 0.010 2.18E-07 28
M. trossulus -0.52(-0.61–-0.43)*** 0.76(0.54–0.99)* 26.87(18.06–36.28)* 0.042 1.31E-10 25
S. purpuratus -0.47(-0.61–-0.27)** 0.56(0.13–1.04) 19.7(2.65–39.18) 0.074 5.08E-07 30

Ingestion Rate, Y      
N. canaliculata - B. glandula -1.28(-1.47–-1.07)*** 0.06(-0.47–0.52) -9.6(-30.99–8.7) 6.12E-6 3.79E-14 44
N. canaliculata - M. trossulus -0.57(-0.66–-0.48)*** 0.8(0.65–0.95)*** 31.36(24.78–37.36)*** 0.681 4.88E-21 54
K. tunicata - S. sessilis -0.81(-1.3–-0.27)* 1.06(0.04–2.16) 40.52(-2.03–85.69) 0.2271 0.00781 19
N. ostrina - B. glandula -0.82(-0.98–-0.69)*** 0.57(0.36–0.76)* 15.29(6.57–23.17) 7.58E-4 4.96E-15 49
N. ostrina - M. trossulus -0.41(-0.52–-0.28)** 0.8(0.61–0.97)*** 32.28(24.34–39.38)*** 1.870 1.1E-14 51
P. ochraceus - M. californianus -0.43(-0.65–-0.22)** 0.39(0.02–0.77) 17.72(2.22–32.81) 8.094 0.00165 30
S. purpuratus - S. sessilis -0.4(-0.8–0.02) 0.65(-0.26–1.52) 26.33(-12.66–61.22) 2.036 0.12 17
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Appendix B – Robust linear regression analysis for the estimation of the coefficients 
of the UTD models from Chapter 3 

 

In several of the universal temperature dependence (UTD) models describing the 

temperature and body mass dependence of metabolic rates, ingestion rates, and species 

interaction strengths, the residuals were non-normally distributed due to influential 

outliers. Because influential outliers can affect the estimation of regression parameters in 

least squares regression and since this was the primary objective of the study, I 

reanalyzed the UTD model using the Huber method for robust linear regression, which 

weights observations based on their residuals. The p-values of the robust regression 

coefficients were calculated by performing 1,000 permutations of the data and 

determining the proportion of permutations that yielded a coefficient that was greater 

than or equal to the absolute value of the one obtained with the original data. Since 

standard errors reported by robust linear regression rely on asymptotic approximations, 

and may not be trustworthy in a small sample, I used a bootstrap method, reshuffling 

residuals to fitted y-values 1000 times to calculate the 95% bias-corrected confidence 

intervals. To test for systematic differences between metabolic and ingestion rates across 

species, I performed a paired, two-tailed t-test and a power analysis to determine whether 

the t-test results were due to lack of power from the low sample size. I used R 2.13.2 

(The R Foundation for Statistical Computing 2011) for all statistical analyses. 

Like the linear least squares regression results, metabolic rates, ingestion rates, 

and the strength of species interactions tended to increase with body size and temperature 

in accordance with the UTD model (Fig. B1-3, Table B1). The obvious exception to this 

trend was the negative effect of body mass on ingestion rates and species interaction 

strength between N. canaliculata and B. glandula (Fig. B2-3, Table B1). This is likely 

due to reduced feeding rates at very high body size ratios between the large whelks and 

the tiny barnacle prey, which has been observed in prior feeding trials (A. C. Iles 

unpublished data). Although these estimates of the UTD model coefficients are more 

robust to outliers, they are very similar to the estimates obtained from the least squares 
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regression in the main paper, indicating that the outliers were not very influential on the 

final results.  

Like the linear least squares regression results in the main paper, consumer 

metabolic rates tended to be more sensitive to temperature than ingestion rates, with the 

exception of the N. canaliculata – M. trossulus interaction, resulting in negative 

consumer thermal impacts (CTIs; Table B2). The paired sample t-test indicated that CTI 

values are more likely to be negative, t(5) = -2.45, p = 0.058, with an average CTI of -

0.25 (95% CI ± 0.26; Table B2). However, due to the low number of observations (n=6), 

the power was low (power = 0.51). A power analysis (β=0.9, α=0.05) indicated that a 

sample size of at least 13 species would be necessary to detect a significant systematic 

difference between the activation energies of metabolic and ingestion rates. 
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Table B1  Robust linear regressions coefficients and statistics for the UTD models of the effect of body mass and water temperature 
on metabolic rates, ingestion rates and species interaction strengths, using the Huber method. All the models are of the form lnሺݕሻ ൌ
ܾ lnሺܯሻ െܧ ቀ ଵ

௞்
ቁ ൅  lnሺܿሻ, where ܯ is body mass (g), ܶ is water temperature (K), and ݇ is Boltzmann’s constant (8.62 x 10-5 eV·K-

1). The coefficients with the 95% confidence interval in parentheses include b, the allometric exponent; E, the activation energy (eV); 
and c, the normalization constant. The model statistics include the model p-value (α < 0.05 in bold) and the sample size, n. P value 
significance codes: 0 < ‘***’ < 0.001 < ‘**’ < 0.01 < ‘*’ < 0.05 < ‘¯’ < 0.1 

 Species / Interaction b E (eV) ln(c) p-value n 

Metabolic rate    
 M. californianus 0.66(0.61–0.71)*** 0.68(0.41–0.94) 18.68(7.84–29.27) 4.08E-18 27
 N. canaliculata 0.6(0.42–0.78)*** 0.6(0.32–0.93)- 15.21(3.84–28.8) 5.71E-07 25
 K. tunicata 0.8(0.69–0.92)*** 0.66(0.35–0.95) 17.95(5.3–29.49) 3.74E-13 29
 N. ostrina 0.54(0.36–0.72)** 0.92(0.54–1.25)** 28.48(13.28–42.06) ¯ 2.17E-06 25
 P. ochraceus 0.46(0.31–0.6)*** 0.84(0.34–1.28)* 26.09(5.51–43.68) 3.43E-06 28
 M. trossulus 0.48(0.4–0.58)** 0.76(0.52–0.99)* 21.87(12.28–31.14) 1.24E-10 25
 S. purpuratus 0.53(0.34–0.69)*** 0.56(0.18–1.04) 14.35(-1.7–33.3) 4.64E-08 30

Ingestion rate    
 N. canaliculata - B. glandula -0.28(-0.46–-0.07)* 0.06(-0.43–0.56) -9.35(-29.63–10.95) 0.042 44
 N. canaliculata - M. trossulus 0.43(0.34–0.52)*** 0.8(0.65–0.96)*** 26.74(20.36–33.12)** 6.3E-17 54
 K. tunicata - S. sessilis 0.19(-0.3–0.67) 1.06(-0.12–2.09)- 37.54(-8.9–79.83) 0.24 19
 N. ostrina - B. glandula 0.18(0.04–0.34) ¯ 0.57(0.38–0.78)** 12.42(4.6–20.84) 4.08E-06 49
 N. ostrina - M. trossulus 0.59(0.48–0.73)*** 0.8(0.64–0.99)*** 26.52(19.82–34.4)** 3.95E-16 51
 P. ochraceus - M. californianus 0.57(0.33–0.79)*** 0.39(0.01–0.79) 12.14(-3.29–28.16) 0.00054 30
 S. purpuratus - S. sessilis 0.6(0.18–1.01)* 0.65(-0.17–1.62) 20.53(-12.41–59.8) 0.06 17
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Table B1 (Continued) 

 Species / Interaction b E (eV) ln(c) p-value n 

Species interaction strength  
 N. canaliculata - B. glandula 0.14(-0.52–0.71) -0.008(-0.01–-0.002)* 0.003(-0.013–0.017) 0.047 44
 N. canaliculata - M. trossulus 0.92(0.68–1.14)*** 0.011(0.008–0.015)*** 0.022(0.016–0.027)*** 7.5E-12 54
 K. tunicata - S. sessilis 0.32(-0.06–0.72) 0.003(-0.002–0.007) 0.008(-0.001–0.018) 0.15 19
 N. ostrina - B. glandula 1.85(0.64–2.98)** -0.021(-0.043–-0.002)- 0.044(0.014–0.071)** 0.0034 49
 N. ostrina - M. trossulus 1.12(0.82–1.47)** 0.018(0.012–0.026)*** 0.026(0.019–0.035)** 1.28E-09 51
 P. ochraceus - M. californianus 0.94(0.03–1.82) 0.033(0.019–0.047)*** 0.026(0.004–0.048)- 0.00015 30
 S. purpuratus - S. sessilis 0.36(-1.11–1.63) 0.017(-0.001–0.03)* 0.0094(-0.027–0.04) 0.015 17
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Table B2  Consumer thermal impact estimates (CTI ൌ  EJ െ EI) calculated from robust 
linear regression estimates of the activation energies of metabolic rate, ܧூ, and ingestion 
rate, ܧ௃.   

Consumer Resource ࡵࡱ ࡶࡱ CTI 

M. californianus Rhodomonas spp. 0.33* 0.68 -0.35 
M. trossulus Rhodomonas spp. 0.33* 0.76 -0.43 
N. canaliculata M. trossulus 0.80 0.60/1.34† 0.20/-0.54† 
N. ostrina B. glandula 0.57 0.92 -0.35 
N. ostrina M. trossulus 0.80 0.92 -0.12 
P. ochraceus M. californianus 0.39 0.84 -0.45 

*This value comes from a weighted average of estimates from the literature (Jorgensen et 
al. 1990; Kittner & Riisgard 2005) 

†These estimates are over the range of temperatures where the relationship between 
temperature and metabolic rate is linear.  
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Figure B1 Metabolic rates as a function of water temperature (a-g) and body mass (h-n) 
for seven species of rocky intertidal invertebrates: M. californianus (a, h), N. canaliculata 
(b, i), K. tunicata (c, j), N. ostrina (d, k), P. ochraceus (e, l), M. trossulus (f, m), and S. 
purpuratus (g, n). Variables were log transformed and metabolic rates were normalized 
by body mass (a-g) or temperature (h-n). Statistically significant robust UTD regression 
models (α ≤ 0.05) are plotted in black. The grey regression line in subplot b represents a 
robust regression on the increasing linear subset of data (temperatures ≤ 14°C). The 
temperature axes scale inversely as 1/kT (1/eV), where T is temperature (K) and ݇ is 
Boltzmann’s constant (8.62 x 10-5 eV·K-1). A transformed temperature scale in °C is on 
the top axis (a-g).   
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Figure B1  
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Figure B2 Ingestion rates as a function of water temperature (a-g) and body mass (h-n) 
for seven rocky intertidal species interactions: N. canaliculata - B. glandula (a, h), N. 
canaliculata - M. trossulus (b, i), K. tunicata - S. sessilis (c, j), N. ostrina - B. glandula 
(d, k), N. ostrina - M. trossulus (e, l), P. ochraceus - M. californianus (f, m), and S. 
purpuratus - S. sessilis (g, n). Variables were log transformed and ingestion rates were 
normalized by body mass (a-g) or temperature (h-n). Statistically significant robust UTD 
regression models (α ≤ 0.05) are plotted in black. The temperature axes scale inversely as 
1/kT (1/eV), where T is temperature (K) and ݇ is Boltzmann’s constant (8.62 x 10-5 eV·K-

1). A transformed temperature scale in °C is on the top axis (a-g).   
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Figure B3 Log ratio interaction strength as a function of water temperature (a-g) and 
body mass (h-n) for seven rocky intertidal species interactions: N. canaliculata - B. 
glandula (a, h), N. canaliculata - M. trossulus (b, i), K. tunicata - S. sessilis (c, j), N. 
ostrina - B. glandula (d, k), N. ostrina - M. trossulus (e, l), P. ochraceus - M. 
californianus (f, m), and S. purpuratus - S. sessilis (g, n). Variables were log transformed 
and interaction strengths were normalized by body mass (a-g) or temperature (h-n). 
Statistically significant robust UTD regression models (α ≤ 0.05) are plotted in black. The 
temperature axes scale inversely as 1/kT (1/eV), where T is temperature (K) and ݇ is 
Boltzmann’s constant (8.62 x 10-5 eV·K-1). A transformed temperature scale in °C is on 
the top axis (a-g). 

  



134 
 

 

 
Figure B3  



135 
 

 

Appendix C – Wavelet analysis tutorial 

 

BACKGROUND 

The variability of a time series is traditionally studied by using spectral analysis 

(Chatfield 1996, Cazelles et al. 2008). Spectral analysis partitions the variability (or 

power) in a time series into a suite of harmonic components characterized by different 

frequencies (or periods) (Cazelles et al. 2008). Plotting the power of each harmonic 

component as a function of its frequency (i.e., the power spectrum) reveals the 

contribution of each frequency (or period) to the variability (or power) in the time series 

(Fig. C1a,b). The power spectrum can thus be used to identify key temporal scales of 

variability (or periodicities) in a time series. Once these periodicities are detected, one 

can focus on processes occurring at those temporal scales to potentially uncover critical 

underlying mechanisms. 

One important limitation of spectral analysis lies in the assumption that the 

moments of the time series (i.e., its mean, variance, skewness, kurtosis, etc…) do not 

change over time (i.e., are stationary; Torrence and Compo 1998, Cazelles et al. 2008, 

Rouyer et al. 2008a, 2008b). However, there is increasing evidence that many time series 

exhibit non-stationary variability (Rohani et al. 1999, Grenfell et al. 2001, Beninca et al. 

2008, Rouyer et al. 2008a, Beninca et al. 2009, Gouhier et al. 2010). In order to analyze 

these types of non-stationary time series, we must turn to more complex, time-resolved 

methods. 

Wavelet analysis provides an efficient and accurate method for describing the 

variability of non-stationary time series in the time-frequency domain (Fig. C1; Torrence 

and Compo 1998, Cazelles et al. 2008). Indeed, since wavelet analysis decomposes a 

time series over functions (wavelets) that can be scaled (i.e., contracted or dilated) and 

translated, high-frequency structures in the time series can be fit with narrow wavelets 

whereas low-frequency structures in the time series can be fit with wide wavelets (Fig. 

C2; Cazelles et al. 2008). This decomposition leads to a good trade-off for the time-scale 
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resolution, and a good localization in both the time and frequency domains (Cazelles et 

al. 2008). Hence, wavelet analysis provides an efficient way of tracking changes in time 

in the contribution of each frequency to the variability of a time series (Fig. C1). 

Wavelet analysis can be extended to assess the relationship between two time 

series by calculating the cross-wavelet and the wavelet coherence. The cross-wavelet and 

the wavelet coherence can be thought of, respectively, as the covariance and the cross-

correlation of two time series in the time-frequency domain (Cazelles et al. 2008, Rouyer 

et al. 2008a). Cross-wavelet and wavelet coherence thus provide ideal and 

complementary tools for studying the relationship between non-stationary time series. It 

is important to note, however, that while cross-wavelet analysis and wavelet coherence 

can document patterns of covariation between time series, they cannot provide definitive 

evidence about the mechanisms responsible for these patterns (Cazelles et al. 2008). 

Hence, just as with classical correlative approaches, cross-wavelet and wavelet coherence 

analyses must be complemented by experimental studies in order to ascribe the observed 

patterns of covariation to their underlying, causal mechanisms. 

Applying wavelet analysis to ecological time series 

Wavelet analysis is often dismissed in ecology because time series are typically 

short and have missing values. However, recent work has shown that wavelet analysis 

can be performed on short (Cazelles et al. 2008) and irregularly spaced time series (Keitt 

2008). Additionally, Cazelles et al. (2008) have shown that wavelet analysis is robust to 

missing values, even when they occur at regular intervals. They suggest two criteria for 

the application of wavelet analysis: (1) the time series must have at least 30-40 data 

points and (2) the significant periodic components of the time series must be smaller than 

20-25% of its length (Cazelles et al. 2008). 

All of our daily upwelling and temperature time series fit both criteria (minimum 

total length of 3,945 days, main period of ~365 days). Missing values represented 0.2% 

of the upwelling data and 1.42% of the temperature data for Boiler Bay, 0.2% of the 

upwelling data and 6.4% of the temperature data for Strawberry Hill, and 0.16% of the 
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upwelling data and 5.3% of the temperature data for Cape Blanco. The missing values 

were scattered randomly across the time series and were thus unlikely to exert a strong 

and systematic influence on our analyses. We used linear interpolation to replace these 

missing values. Using cubic splines to replace the missing values yielded results that 

were qualitatively identical to those obtained using linear interpolation. Thus, our results 

are robust to the method used to replace the missing values. 

In this appendix, we provide details on the wavelet, cross-wavelet and wavelet 

coherence analyses used in the main text. More details on these methods can be found in 

the reviews by Torrence and Compo (1998), Grinsted et al. (2004), Cazelles et al. (2008) 

and Rouyer et al. (2008b). All of our analyses were conducted with the WTC MATLAB 

program1 written by A. Grinsted and the wavelet MATLAB program written by C. 

Torrence and G. Compo2. 

 

WAVELET THEORY 

In order to conduct wavelet analysis, one must first select a “mother wavelet” 

function to be applied to a time series in the time-frequency domain. Wavelet functions 

must have zero mean and be localized in both time and frequency in order to be used in 

wavelet analysis (Torrence and Compo 1998). The choice of a wavelet function depends 

on the properties of the wavelet, the goals of the analysis and the nature of the time 

series. Here, because we are interested in characterizing the phase and amplitude of 

smoothly varying time series, we have elected to use the Morlet wavelet, which 

represents a sine wave modulated by a Gaussian function (Fig. C2; Torrence and Compo 

1998): 
ψ 0 (t) = π −1/4eiω0te− t2 /2       (1) 

                                                 
1 http://www.pol.ac.uk/home/research/waveletcoherence/ 
2 http://paos.colorado.edu/research/wavelets/ 
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where i  is the imaginary unit, t  represents nondimensional time, and ω0 = 6 is 

the nondimensional frequency chosen to allow the Morlet wavelet to satisfy the 

admissibility conditions outlined above (Torrence and Compo 1998). 

The continuous wavelet transform of a discrete time series x(t) with equal 

spacing δ t  and length T  is defined as the convolution of x(t) with a normalized Morlet 

wavelet (Torrence and Compo 1998, Grinsted et al. 2004): 

Wx s,τ( ) = δ t
s

x(t)ψ 0 *
t −τ( )δ t

s
⎛
⎝⎜

⎞
⎠⎟t=0

T−1

∑    (2) 

where * indicates the complex conjugate. By varying the wavelet scale s  (i.e., dilating 

and contracting the wavelet) and translating along localized time position τ , one can 

calculate the wavelet coefficients Wx (s,τ ) , which describe the contribution of the scales 

s  to the time series x(t) at different time positions τ  (Torrence and Compo 1998, 

Cazelles et al. 2008). Here, δ t
s

 is a parameter used to normalize the Morlet wavelet 

function to unit variance in order to allow direct comparisons of the wavelet coefficients 

Wx s,τ( )  across the different scales s  and time positions τ  (Torrence and Compo 1998, 

Grinsted et al. 2004). Since we used a complex Morlet wavelet, Wx (s,τ )  is a complex 

number that can be decomposed into its amplitude Wx (s,τ )  and its phase φx (s,τ ). The 

local (i.e., time-dependent) wavelet power spectrum is defined as Wx (s,τ ) 2. The phase 

varies cyclically between −π  and π , and is defined as (Cazelles et al. 2008): 

φx (s,τ ) = tan−1 ℑ Wx (s,τ )( )
ℜ Wx (s,τ )( )

⎛

⎝⎜
⎞

⎠⎟  
    (3) 

Contour plots can be used to visualize how the local wavelet power spectrum (i.e., 

the contribution of each frequency or period in the time series) varies in time (Grinsted et 

al. 2004, Cazelles et al. 2008, Rouyer et al. 2008a, 2008b, Beninca et al. 2009). 

Additionally, one can quantify the global wavelet spectrum Wx
2 (s)  as the time-average 
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(i.e., over all time locations τ ) of all local wavelet spectra for each scale s  (Torrence 

and Compo 1998, Cazelles et al. 2008): 

Wx
2 (s) = σ x

2

T
Wx s,τ( ) 2

τ =0

T−1

∑
 
     (4) 

where σ x
2  represents the variance of the time series. Similarly, one can determine 

the scale-averaged wavelet power by taking the weighted sum of the wavelet power 

across all scale locations j = 0,..., J  for each time location τ  (Torrence and Compo 1998, 

Cazelles et al. 2008): 

Wx
2 (τ ) = σ x

2δ jδ t
Cδ

Wx sj,τ( )
sjj=0

J

∑
2

    (5) 

where σ x
2  represents the variance of the time series, Cδ = 0.776 is a scale-

independent reconstruction constant for the Morlet wavelet, δ j =1/12  represents the 

number of octaves per scale and δ t  represents the spacing between successive time 

locations (Torrence and Compo 1998). These time-averaged and scale-averaged metrics 

can also be computed over specific time and scale bands. 

The scale s  of the Morlet wavelet is related to Fourier frequency f  by the 

following equation (Maraun and Kurths 2004, Cazelles et al. 2008): 1
f
=

4π s
ω0 + 2 +ω 0

2
. 

With ω0 = 6, the scale s  is approximately equal to the reciprocal of the Fourier 

frequency f  (Maraun and Kurths 2004, Cazelles et al. 2008): s ≈ 1
f

. Hence, in all 

equations, the scale s  can be converted to Fourier frequency f ≈ 1
s

 or period p = 1
f
≈ s . 

Zero-padding and the cone of influence 

The continuous wavelet transform can be approximated by using (2) to compute 

T  convolutions for each scale s  (Torrence and Compo 1998). However, in practice, it is 
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much faster to use discrete Fourier transforms to calculate all T  convolutions 

simultaneously (Torrence and Compo 1998): 

x̂(k) = 1
T

x(t)e−2π ikτ /T

τ =0

T−1

∑      (6) 

where k = 0,...,T −1 is the frequency index. The wavelet transform can then be 

calculated by taking the inverse Fourier transform of the product:
 
 

Wx s,τ( ) = δ t
s

x̂(k)ψ̂ 0 * sω (k)( )eiω (k )τδ t

k=0

T−1

∑    (7) 

where ψ̂ 0  is the Fourier transform of the Morlet wavelet and where the angular 

frequency ω (k) is defined as (Torrence and Compo 1998): 

ω (k) =

2πk
Tδ t

: k ≤ T
2

−
2πk
Tδ t

: k > T
2

⎧

⎨
⎪⎪

⎩
⎪
⎪

 
     (8) 

Using equation (7), one can calculate the continuous wavelet transform for each 

scale s  at all T  simultaneously (Torrence and Compo 1998). 

However, since the Fourier transform used in wavelet analysis assumes that the 

data is cyclic or periodic, errors in the estimation of the local wavelet power spectrum 

will occur at the beginning and at the end of any finite-length time series (Torrence and 

Compo 1998, Cazelles et al. 2008). In order to limit these edge effects, the end of a time 

series is padded with zeros prior to taking the wavelet transform and the zeroes are then 

removed (Torrence and Compo 1998, Cazelles et al. 2008). Typically, enough zeros are 

added in order for the total length T  of the time series to reach the next-higher power of 

two. This both limits edge effects and improves the speed of the Fourier transform 

analysis (Torrence and Compo 1998). 

Although padding with zeros limits errors due to edge effects, it introduces 

artificial discontinuities at the endpoints of the data (Torrence and Compo 1998, Cazelles 

et al. 2008). As one gets closer to the end of the data, the local wavelet spectrum becomes 
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increasingly affected by the discontinuity, as more zeros are included in its estimation 

(Torrence and Compo 1998, Cazelles et al. 2008). The region where zero padding affects 

the estimation of the wavelet spectrum is called the cone of influence (COI), and is 

defined as the region in which the wavelet power for a discontinuity at the edge drops by 

a factor of e−2  (Torrence and Compo 1998). Here, we have excluded all regions below 

the cone of influence (depicted in black dashed lines) from our analyses in order to focus 

our interpretations on the part of the wavelet spectrum that is unaffected by edge effects. 

Statistical significance testing 

In order to conduct statistical significance testing on the wavelet spectrum 

obtained from a time series, one must first formulate an appropriate null hypothesis. 

Here, our null hypothesis is that the observed time series is generated by a stationary 

process with a given background power spectrum P(k)  (Torrence and Compo 1998, 

Grinsted et al. 2004). Since many ecological time series exhibit strong temporal 

autocorrelation (i.e., high power associated with low frequencies; e.g., Beninca et al. 

2009, see Ruokolainen et al. 2009 for review), we used a first order autoregressive model 

[AR(1)] to generate a temporally autocorrelated time series or red noise, which served as 

our null hypothesis. Specifically, the power spectrum P(k)  of our red noise process was 

calculated with (Gilman et al. 1963): 

P(k) = 1−α 2

1+α 2 − 2α cos 2πk / N( )
    (9) 

where the autocorrelation coefficient α  at time lag 1 is estimated from the 

observed time series and k = 0,..., N / 2  represents the frequency index. The observed 

wavelet spectrum can be compared to the wavelet spectrum of the red noise process by 

means of a chi-square test. The distribution of the local wavelet power spectrum of a red 

noise process is (Torrence and Compo 1998):  

Wx (s,τ ) 2

σ 2 ⇒
1
2

P(k)χ2
2      (10) 
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where k  represents the frequency index, σ 2  represents the variance of the time 

series, “⇒” means “is distributed as”, and χ2
2  represents the chi-square distribution with 

2 degrees of freedom. The value of P(k)  is the mean wavelet power spectrum at 

frequency k  that corresponds to the wavelet scale s  (Torrence and Compo 1998). Here, 

we constructed 95% confidence contour lines by evaluating equation (10) at each scale 

using the 95th percentile of the chi-square distribution χ2
2 . 

 

BIVARIATE EXTENSIONS OF WAVELET ANALYSIS 

Wavelet analysis provides critical, time-resolved information about the dominant 

frequencies (or periods) of a univariate time series. However, in order to determine the 

relationship between the time-resolved variability of pairs of time series, one needs to use 

the recently developed bivariate extensions of wavelet analysis (Grinsted et al. 2004). 

Below, we discuss both cross-wavelet and wavelet coherence, which are methods that 

generate complementary and time-resolved information about the relationship between 

pairs of time series. 

Cross-wavelet analysis 

In order to calculate the cross-wavelet analysis of time series x(t) and y(t), one 

first needs to take their respective wavelet transforms Wx (s,τ )  and Wy (s,τ ), as described 

in the previous section. Then, the cross-wavelet transform is computed with (Torrence 

and Compo 1998, Grinsted et al. 2004): 

Wx,y (s,τ ) =Wx (s,τ )Wy
*(s,τ )     (11) 

where * indicates complex conjugation. Since we use a complex wavelet (the 

Morlet), Wx,y (s,τ )  is a complex number that can be decomposed into its amplitude 

Wx,y (s,τ )  and its phase φx,y (s,τ ). Wx,y (s,τ )  represents the local cross-wavelet spectrum 

of time series x(t) and y(t). The phase φx,y (s,τ ) can be interpreted as the local phase 
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difference between the fluctuations in the time series x(t) and y(t) in the time-frequency 

domain, and is defined as: 

φx,y (s,τ ) = tan−1 ℑ Wx,y(s,τ )( )
ℜ Wx,y (s,τ )( )

⎛

⎝
⎜

⎞

⎠
⎟     (12) 

The amplitude and the phase of the cross-wavelet provide complementary 

information about the covariation between two time series. The amplitude indicates the 

common strength (or power) of the fluctuations, whereas the phase indicates whether the 

time series vary in similar (i.e., in phase) or opposite (i.e., in anti-phase) directions. As 

with the local wavelet spectrum, the local cross-wavelet spectrum can be represented 

with contour plots that describe how the covariation between two time series varies in 

time. In addition, the phase of the cross-wavelet can be represented with arrows that 

indicate whether the two time series are moving in the same direction (i.e., in phase: 

arrows pointing to the right indicating a 0 degree/radian difference in the phase 

difference) or in opposite directions (i.e., in anti-phase: arrows pointing to the left 

indicating a 180 degree or π  radian difference in the phase difference). Overall, the 

cross-wavelet can be thought of as the local or time-resolved covariance between two 

time series (Cazelles et al. 2008, Rouyer et al. 2008a, 2008b). 

Statistical significance testing 

The statistical significance of a cross-wavelet spectrum can be assessed by using a 

procedure that is analogous to the one described for a wavelet spectrum. We first need to 

determine an appropriate null hypothesis to explain the variation of both time series. As 

before, our null hypothesis is that both of the observed time series are generated by a 

stationary red noise process. Here, we generated two independent, temporally 

autocorrelated time series (i.e., red noise) with the same first order autocorrelation 

coefficients as our observed time series. Under the null hypothesis that the observed time 

series x(t) and y(t) were generated by a red noise process with power spectrum Px (k)  

and Py (k), the distribution of the cross-wavelet spectrum is (Torrence and Compo 1998):  
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Wx (s,τ )W *
y (s,τ )

σ xσ y

⇒
Zυ (p)
υ

Px (k)Py (k)    (13) 

where σ x  and σ y  represent the standard deviations of the time series, Wx (s,τ )  

and Wy (s,τ ) represent the wavelet transforms of the time series, Wx (s,τ )W *
y(s,τ )  

represents the cross-wavelet spectrum of the two time series, Zυ (p)  represents the 

confidence level associated with probability p  for a probability density function defined 

by the square root of the product of two chi-square distributions with υ = 2 degrees of 

freedom for a complex wavelet, and * indicates complex conjugation (Torrence and 

Compo 1998). Here, we constructed 95% confidence contours by selecting p = 0.95(i.e., 

Z2 (0.95) = 3.999), and evaluating equation (13) at each scale (Torrence and Compo 

1998, Grinsted et al. 2004). 

Caveats and limitations 

The cross-wavelet spectrum reveals areas of high common power between two 

time series. However, because the cross-wavelet spectrum is not normalized by the 

wavelet spectra of the time series, it can generate spurious associations between two time 

series (Maraun and Kurths 2004). Indeed, without normalization, the cross-wavelet 

spectrum between a wavelet spectrum exhibiting strong peaks and a wavelet spectrum 

that is completely flat can have pronounced peaks, despite the lack of any true association 

between the two time series (Maraun and Kurths 2004). 

Wavelet coherence 

Wavelet coherence overcomes the problems of cross-wavelet analysis by 

quantifying the coherence of the fluctuations between two time series. Indeed, by 

normalizing the square of the cross-wavelet spectrum by the wavelet spectra of each time 

series, wavelet coherence limits the occurrence of spurious associations between 

unrelated time series. Specifically, the wavelet coherence between two time series x(t) 
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and y(t) with wavelet spectra Wx (s,τ )  and Wy (s,τ ), and cross-wavelet spectrum 

Wx,y (s,τ )  is defined as (Torrence and Webster 1998, Grinsted et al. 2004, Cazelles et al. 

2008): 

R2
x,y (s,τ ) =

s−1Wx,y (s,τ )
2

s−1 Wx (s,τ ) 2 s−1 Wx (s,τ ) 2
   (14) 

where ⋅  denotes smoothing in both time τ  and scale s  and 0 ≤ R2
x,y (s,τ ) ≤1. 

The time smoothing uses a filter given by the absolute value of the wavelet function at 

each scale, normalized to have a total weight of unity, which is a Gaussian function e
− t2

2s2

for the Morlet wavelet. The scale smoothing is done with a boxcar function of width 0.6, 

which corresponds to the decorrelation scale of the Morlet wavelet (Torrence and 

Webster 1998, Torrence and Compo 1998, Grinsted et al. 2004). 

Since we use a complex wavelet, we can compute φx,y (s,τ ), which describes the 

local phase difference between the fluctuations in the time series x(t) and y(t) in the 

time-frequency domain (Torrence and Webster 1998): 

φx,y (s,τ ) = tan−1
ℑ s−1Wx,y (s,τ )( )
ℜ s−1Wx,y (s,τ )( )

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

    (15)

 
As with the cross-wavelet spectrum, the wavelet coherence can be represented 

with contour plots that describe how the correlation between two time series varies in 

time. In addition, the phase of the wavelet coherence can be represented with arrows that 

indicate whether the two time series are moving in the same direction (i.e., in phase: 

arrows pointing to the right indicating a 0 degree/radian difference in the phase 

difference) or in opposite directions (i.e., in anti-phase: arrows pointing to the left 

indicating a 180 degree or π  radian difference in the phase difference). Overall, the 

wavelet coherence can be thought of as the local or time-resolved correlation between 

two time series (Cazelles et al. 2008, Rouyer et al. 2008a, 2008b). 
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Statistical significance testing 

The statistical significance of wavelet coherence can be tested by using Monte 

Carlo randomization techniques (Grinsted et al. 2004). Specifically, we generated 1,000 

pairs of surrogate time series with the same first order autoregressive coefficients as our 

observed time series. We computed the wavelet coherence for each pair of surrogate time 

series, thus generating a distribution of wavelet coherence. We then obtained the 95% 

significance level for each scale by computing the 95th percentile of the wavelet 

coherence distribution. 

Caveats and limitations 

Although wavelet coherence overcomes some of the limitations of cross-wavelet 

analysis, it is sensitive to the smoothing procedure, which can reduce the localization in 

both the time and frequency domains (Grinsted et al. 2004, Maraun and Kurths 2004). 

Additionally, wavelet coherence analysis will identify regions in the time-frequency 

domain where pairs of time series undergo common fluctuations, even if the fluctuations 

have low power. Hence, the relationship between pairs of time series should be assessed 

using both cross-wavelet and wavelet coherence methods in order to determine the 

robustness of the results to the specifics of the bivariate wavelet analysis (Grinsted et al. 

2004). 

 

AN EXAMPLE OF WAVELET ANALYSIS 

To illustrate the use and interpretation of univariate and bivariate wavelet 

analyses, we construct 200-day artificial upwelling and temperature time series. 

Specifically, upwelling and temperature vary according to a regular sinusoidal function 

with a period of 40 days (frequency of 5), with upwelling lagging temperature by π / 2 

(i.e., a phase difference of −π / 2 between upwelling and temperature). The phase 

difference can be converted into a temporal lag by using the following relationship: 
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temporal lag=
wavelength ⋅(phase difference)

2π
. Since the period of time series is 40 days, 

the temporal lag=
40 ⋅(-π /2)

2π
=10 days. Hence, in this example, there is a ten-day lag or 

delay between the phases (e.g., the maximum, minimum) of upwelling and temperature, 

with positive values of upwelling leading to a decrease in temperature and negative 

values of upwelling (i.e., downwelling) leading to an increase in temperature (Fig. C3a). 

Although the wavelet analysis shows that both time series undergo strong and 

consistent (in time) variability at the same period of 40 days (Fig. C3), it cannot assess 

the relationship (e.g., the phase difference) between the two time series. In order to assess 

patterns of covariation between pairs of time series, bivariate wavelet analyses such as 

cross-wavelet and wavelet coherence are needed. Indeed, cross-wavelet analysis detects 

consistent and common high power fluctuations between upwelling and temperature at a 

period of 40 days with a phase difference of −π / 2 (Fig. C4b). Wavelet coherence also 

detects consistent and coherent fluctuations between upwelling and temperature at a 

period of 40 days with a phase difference of −π / 2 (Fig. C4c). However, because it is 

normalized by the wavelet spectrum of each time series, wavelet coherence also identifies 

coherent fluctuations between the two time series at all other periods (Fig. C4d,e). Hence, 

both cross-wavelet and wavelet coherence analyses identify the correct phase difference 

between the time series, but cross-wavelet analysis focuses on the period of common 

high-power fluctuations whereas wavelet coherence identifies coherent fluctuations at all 

periods, regardless of their power. 
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Figure C1 Analyzing a complex and non-stationary time series with classical power 
spectrum methods and wavelets. (a) The time series consists of four different 500-time 
step sections: (1) a sinusoidal function of frequency 5, (2) normally distributed noise with 
zero mean and unit variance, (3) a sinusoidal function of frequency 25 and (4) a 
sinusoidal function of frequency 8 with uniform random noise. (b) Classical spectral 
analysis using Welch’s modified periodogram detects the dominant frequencies of the 
time series (i.e., peaks in power or variability in the time series associated with 
frequencies 5, 8 and 25), but cannot describe how the dominance of these frequencies 
changes in time. (c) Wavelet analysis describes changes in time in the contribution of 
different frequencies (or periods) to the power (or variance; color bar) of a time series. 
Black contour lines indicate regions in which the observed continuous wavelet spectra 
differ significantly (α=0.05) from those obtained from a random time series whose first-
order autoregressive coefficients match those of the original time series. Regions within 
the black dashed lines (the cone of influence) are not affected by edge effects. Here, 
wavelet analysis detects all key frequencies and also shows how they vary in time despite 
abrupt changes and the addition of stochastic noise to the last sinusoidal function. 
Wavelet analysis is thus an effective tool for analyzing time series that show strong 
and/or abrupt changes in their dominant frequencies in time, even in the presence of 
stochastic noise. 
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Figure C1  
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Figure C2 The effect of varying the scale s  of the Morlet wavelet (blue curve) on its 
time-frequency resolution (grey box). Increasing the scale s  dilates the wavelet and leads 
to higher resolution in the frequency domain (shorter grey boxes), but lower resolution in 
the time domain (wider grey boxes). Conversely, decreasing the scale s  contracts the 
wavelet and leads to lower resolution in the frequency domain (taller grey boxes), and 
higher resolution in the time domain (narrower grey boxes). Hence, the wavelet must 
strike a balance between its resolution in the time and frequency domains. Based on 
Figure 1 of Cazelles et al. (2008). 
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Figure C2   



152 
 

 

 

 

 

 

 

Figure C3 Wavelet analysis of artificial daily upwelling and temperature data. (a) 
Standardized values of each time series were obtained by subtracting the mean and 
dividing by the standard deviation. (b, d) Regions of high (low) power are represented in 
warm (cold) colors. Black contours represent regions of statistically significant variability 
at the α=0.05 level. Period is in days and time is coded in number of days. Regions 
within the black dashed lines (the cone of influence) are not affected by edge effects. (c, 
e) Side plots represent the global wavelet spectrum for upwelling (c) and temperature (e). 
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Figure C3  
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Figure C4 Pairwise cross-wavelet and wavelet coherence analyses of artificial daily 
upwelling and temperature data. (b) The cross-wavelet represents regions of high (low) 
common power between the time series in warm (cold) colors. (c) Wavelet coherence 
represents regions of high (low) common fluctuations in warm (cold) colors. Black 
arrows indicate the phase difference between the time series. When the time series move 
in the same direction (i.e., in phase), the arrows point to the right and when they move in 
opposite directions (i.e., anti-phase), the arrows point to the left. Arrows pointing down 
indicate a π / 2 phase difference between the time series, with upwelling leading 
temperature, and arrows pointing up indicate a −π / 2 phase difference between the time 
series, with temperature leading upwelling. Black contours represent regions of 
statistically significant common variability at the α=0.05 level. Regions within the black 
dashed lines (the cone of influence) are not affected by edge effects. (d) Distribution of 
phase difference between upwelling and temperature across all significant wavelet 
coherence regions. 
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Appendix D – Wavelet analysis of temporal trends in upwelling and temperature 
along the California Current system 

 

In this appendix, we use univariate wavelet analyses to characterize temporal 

trends in the variation of the raw 6-hour upwelling time series at all five latitudes along 

the California Current System. Because wavelet methods are ideal for describing the non-

stationary and seasonal variability observed in the raw upwelling time series, the analyses 

presented in this appendix complement and augment the results based on summary 

statistics (i.e., mean annual duration, frequency and magnitude of upwelling) documented 

in the main text. Indeed, using annual summary statistics such as the mean to detect 

temporal trends can often conceal more complex and potentially countervailing 

variability within years. Because wavelet analysis decomposes the total variability of a 

time series into its component periodicities over time, one can track temporal trends in 

the relative contribution of each period to the total variability. Wavelet analysis thus 

provides a more complete picture of the changes in upwelling over time. We also use 

cross-wavelet analysis, a bivariate extension of wavelet analysis, to assess how the 

patterns of covariation between daily upwelling and intertidal temperature changed over 

time. The univariate and bivariate wavelet methods used in this appendix are described 

thoroughly in appendix C and reviewed by Torrence and Compo (1998), Grinsted et al. 

(2004) and Cazelles et al. (2008). 

Temporal trends in upwelling 

The univariate wavelet analyses reveal that most of the variability in upwelling is 

associated with annual periods (~256-512 days) at all five locations (Fig. D1). At higher 

periods, the temporary but strong influence of the 1982 and 1998 El Niño events can be 

seen (Zhang et al. 1997, McPhaden 1999), with much of the variability in upwelling 

shifting from annual to multi-annual periods, especially at lower latitudes (Fig. D1). 

Upwelling also exhibits statistically significant variability at lower periods (<40 

days) at all latitudes (Fig. D1). At northern locations (39-45°N), statistically significant 
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variability at lower periods occurs mainly in winter and is associated with relatively short 

but strong and periodic downwelling events (Fig. D1). In the summer, upwelling 

undergoes a shift in statistically significant variability from 4-to-40-day periods to daily 

periods (Fig. D1). This shift in significance to daily variability occurs because upwelling 

conditions in the summer do not fluctuate on a regular basis the way they do in the 

winter. In the summer, upwelling persists until occasional and irregular downwelling 

events occur. Because these downwelling events occur sporadically, upwelling variability 

at periods of 4-40 days is scattered across multiple periods and thus weak and not 

statistically significant like the regular wintertime fluctuations (Fig. D1). At southern 

locations (33-36°N), summers are characterized by the same shift in statistically 

significant variability from 4-to-40-day periods to daily periods because upwelling is 

persistent and rarely interrupted by wind relaxations or downwelling events (Fig. D1). 

To detect temporal trends in the variability of upwelling, we calculated the scale-

averaged wavelet power for event-scale (<40 days; green), sub-annual (41-255 days; 

blue), annual (256-512 days; red) and super-annual (>512 days; black) periods by taking 

the weighted sum of the wavelet power of upwelling across each group of periods (Fig. 

D2). Event-scale wavelet power exhibits a statistically significant increase at 36°N but no 

significant change over time at other latitudes, whereas annual-scale wavelet power 

undergoes a statistically significant decrease at both 36°N and 33°N, but no significant 

change at other latitudes (Fig. D2). Super-annual wavelet power exhibits a statistically 

significant increase at all latitudes and sub-annual wavelet power undergoes a statistically 

significant increase at 45°N, 42°N, 36°N and 33°N but not 39°N (Fig. D2). Overall, these 

results indicate that upwelling is becoming increasingly dominated by variability at 

event-scale, sub-annual and super-annual periods instead of annual periods, especially at 

the two southernmost latitudes. These results are consistent with the notion that 

upwelling events are becoming stronger, more frequent and more persistent (Appendix 

E), and thus accounting for a greater proportion of the variance in upwelling over time. 

Relating regional-scale upwelling conditions to local intertidal temperature 



158 
 

 

To determine how the relationship between regional-scale upwelling conditions 

and local intertidal temperature varied over time, we first performed wavelet analysis on 

the daily temperature time series at Boiler Bay, Strawberry Hill and Cape Blanco (Fig. 

D3). At all three locations, most of the variability in temperature is consistently 

associated with annual periods (256-512 days). However, a statistically significant 

proportion of the variability in temperature is also related to event-scale (<40 days) and 

sub-annual (41-255 days) periods during the summer (but not the winter) (Fig. D3). 

These seasonal patterns in temperature variability at event-scale and sub-annual periods 

could be explained by upwelling. Indeed, at the Oregon locations (~42-45°N), periodic 

upwelling events can reduce intertidal temperatures during the summer months (compare 

Figs. B1 and B3), whereas the strong and frequent downwelling events that occur during 

the winter months do not alter intertidal temperatures (compare Figs. B1 and B3). 

To test this prediction, we used cross-wavelet analysis to determine patterns of 

covariation in the time-frequency domain between upwelling and temperature (Fig. D4). 

At all three Oregon locations, most of the cross-wavelet power is concentrated at annual 

periods (256-512 days), with upwelling leading temperature by π / 2 (i.e., a temporal lag 

of approximately three months; Fig. D4). Upwelling peaks earlier in the year than water 

temperature because the sun warms the air much faster than water during the Spring 

months, thus generating a thermal gradient between the heated land mass and the cooler 

coastal ocean (Bakun 1990). The thermal gradient then produces strong alongshore winds 

that cause coastal upwelling to arise. This leads to a π / 2 phase difference between 

upwelling and temperature at annual periods, with upwelling peaking in the Spring and 

water temperature peaking in the Summer (Fig. D5). Hence, despite the strong cross-

wavelet power, there is no causal relationship between upwelling and water temperature 

cycles at annual periods. 

At event-scale and sub-annual periods, the cross-wavelet power is relatively weak 

but significant during the summer months, with a phase difference of −π / 2 between 

upwelling and temperature (Fig. D4). This phase difference means that there is a time lag 

between changes in upwelling conditions and water temperature, with peaks in upwelling 
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trailing peaks in temperature by π / 2 or one quarter of a cycle. Hence, increased 

(decreased) upwelling leads to a lagged decrease (increase) in water temperature (see 

example in Appendix C, Fig. C1-3). This pattern is consistent with a causal relationship 

between upwelling and temperature at event-scale and sub-annual periods. The relatively 

weak cross-wavelet power at event-scale and sub-annual periods is due to the seasonal 

mismatch between the wavelet power of upwelling and temperature (Fig. D5). Indeed, 

the scale-averaged wavelet power of upwelling and temperature are negatively correlated 

to each other at all three Oregon locations ( ρ < 0, p-value < 0.001), with upwelling 

power peaking in Fall-Winter and temperature power peaking in Spring-Summer (Fig. 

D5). This is because at sub-annual and event-scale periods, upwelling variability in 

Oregon is driven primarily by strong and periodic downwelling events in the Fall-Winter 

(Figs. D1, D5) whereas temperature variability is driven primarily by Spring-Summer 

temperatures (Figs. D3, D5). 

Overall, our analyses show that upwelling across the California Current System is 

being increasingly dominated by variability at event-scale, sub-annual and super-annual 

periods due to the increased persistence, frequency and strength of upwelling events. 

Furthermore, regional-scale upwelling events have a direct effect on local intertidal 

temperatures during summer months. The wavelet analyses of the raw upwelling time 

series documented in this appendix thus augment and support the temporal trends 

presented in the main text using annual summary statistics. 
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Figure D1 Wavelet analysis of 6-hour upwelling time series from 1967 to 2010 at five 
locations across the California Current System. (a, c, e, g, i) Regions of high (low) power 
or variability are represented in warm (cold) colors. Black contours represent regions of 
statistically significant variability at the α=0.05 level. Period is in days and time is coded 
in month/year. Regions within the black dashed lines (the cone of influence) are not 
affected by edge effects. (b, d, f, h, j) Side plots represent the global wavelet spectrum. 
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Figure D1 
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Figure D2 Temporal trends in scale-averaged wavelet power (+/- standard error bars) at 
event-scale (<40 days; green), sub-annual (41-255 days; blue), annual (256-512 days; 
red) and super-annual (>512 days; black) periodicities for 6-hour upwelling time series 
from 1967-2010 at five locations across the California Current System. Fitted lines 
represent statistically significant linear regressions (p-value < 0.05). The p-values of the 
regressions were calculated by performing 1,000 permutations of the data and 
determining the proportion of permutations that yielded a coefficient of determination 
that was greater than or equal to the one obtained with the original data. 
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Figure D2  
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Figure D3 Wavelet analysis of daily intertidal temperature time series from 1999 to 2009 
at (a, b) Boiler Bay, (c, d) Strawberry Hill and (e, f) Cape Blanco. (a, c, e) Regions of 
high (low) power or variability are represented in warm (cold) colors. Black contours 
represent regions of statistically significant variability at the α=0.05 level. Period is in 
days and time is coded in month/year. Regions within the black dashed lines (the cone of 
influence) are not affected by edge effects. (b, d, f) Side plots represent the global 
wavelet spectrum. 
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Figure D3 
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Figure D4 Pairwise cross-wavelet analysis of daily upwelling and temperature time 
series from 1999 to 2010 at (a, b) Boiler Bay, (c, d) Strawberry Hill and (e, f) Cape 
Blanco. (a, c, e) Regions of high (low) common power between the time series are 
represented in warm (cold) colors. Black arrows indicate the phase difference between 
the time series. When the time series move in the same direction (i.e. in phase), the 
arrows point to the right and when they move in opposite directions (i.e. anti-phase), the 
arrows point to the left. Arrows pointing down indicate a π / 2 phase difference between 
the time series, with upwelling leading temperature, and arrows pointing up indicate a 
−π / 2 phase difference between the time series, with temperature leading upwelling. 
Black contours represent regions of statistically significant common variability at the 
α=0.05 level. Regions within the black dashed lines (the cone of influence) are not 
affected by edge effects. (b, d, f) Distribution of phase difference between upwelling and 
temperature across all significant cross-wavelet regions for event-scale (<40 days; green), 
sub-annual (41-255 days; blue) and annual (256-512 days; red) periods. 
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Figure D4 
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Figure D5 Scale-averaged wavelet power for daily upwelling (blue) and temperature 
(red) time series at Boiler Bay (a), Strawberry Hill (b) and Cape Blanco (c) from 1999 to 
2010. The scale-averaged wavelet power of upwelling and temperature are negatively 
correlated at each location ( ρ < 0, p-value < 0.001), with upwelling power peaking in 
Fall-Winter (white background) and temperature power peaking in Spring-Summer (gray 
background). The p-values of the correlations were calculated by performing 1,000 
permutations of the data and determining the proportion of permutations that yielded a 
correlation that was greater than or equal to the one obtained with the original data. Time 
is coded in month/year on the x-axis. 
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Figure D5 
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Appendix E – Temporal trends in the annual mean and intra-annual distribution of 
upwelling events along the California Current system 

 

SENSITIVITY ANALYSIS OF ANNUAL TEMPORAL TRENDS IN UPWELLING EVENTS 

Number of upwelling events 

When we do not impose a minimum duration of persistent upwelling for a given 

period to qualify as an upwelling event (i.e., minimum duration of 0 days), we find that 

the number of upwelling events decreases significantly over time at all five latitudes (Fig. 

E1). However, when we set the minimum duration of persistent upwelling to 4-6 or more 

days, the number of upwelling events shows little to no change at the three northernmost 

latitudes (i.e. slope β1 ≈ 0 ; Fig. E1). At the two southernmost latitudes, the number of 

upwelling events actually increases over time when the minimum duration is 4-6 or more 

days (Fig. E1). Overall, this means that the frequency of short upwelling events (<4 days) 

is decreasing over time at all latitudes whereas the frequency of long upwelling events 

(>4-6 days) is (1) not varying significantly at northernmost latitudes and (2) increasing 

significantly over time at southernmost latitudes. 

Mean duration of upwelling events 

When all periods of upwelling qualify as upwelling events regardless of their 

duration (i.e., minimum duration of 0 days), mean annual event duration increases 

significantly over time at the four southernmost latitudes but not at the northernmost 

latitude (Fig. E2). This significant increase in mean event duration holds for short 

minimum durations of 1-2 days at 33oN and 1-5 days at 36oN (Fig. E2). For intermediate 

minimum durations (6-9 days), mean annual upwelling event duration increases 

significantly at 39oN. For longer minimum durations (>5-9 days), mean annual upwelling 

event duration decreases over time at 36oN and 39oN, but the trends are not statistically 

significant (Fig. E2). 

Mean magnitude of upwelling events 
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The mean magnitude of events is increasing over time at all five latitudes when 

there is no minimum duration requirement, with the trend being significant at 42oN and 

36oN (Fig. E3). The trends become non-significant for intermediate minimum durations 

(1-4 days) at all five latitudes (Fig. E3). For long minimum durations (>5-12 days), the 

mean magnitude of upwelling decreases significantly over time at the two southernmost 

latitudes (Fig. E3). Overall, these results suggest that very short (<1 day) upwelling 

events are becoming stronger over time and causing an increase in the mean upwelling 

magnitude at 42oN and 36oN. However, excluding short upwelling events from the 

analysis shows that longer upwelling events (>5-12 days) are becoming weaker over time 

and causing a decrease in the mean magnitude of upwelling at 36oN and 33oN. 

Total magnitude of upwelling events 

The total magnitude of upwelling events exhibits temporal trends that are very 

similar to those of the mean magnitude of upwelling events (Fig. E4). Specifically, total 

event magnitude increases over time at all five latitudes when there is no minimum 

duration requirement, with the trend being significant at 42oN, 36oN and 33oN (Fig. E4). 

This trend remains significant for short minimum durations (1-2 days) at 36oN, but 

becomes non-significant at the remainder of the latitudes. For long minimum durations 

(>6-12 days), total magnitude decreases significantly over time at 36oN and 33oN (Fig. 

E4). 

Overall, these results suggest that the sign and the significance of the temporal 

trends in the annual (i) frequency, (ii) duration, (iii) mean magnitude and (iv) total 

magnitude of upwelling events are highly sensitive to the minimum duration used to 

define an event. Indeed, our sensitivity analysis demonstrates that including short events 

tends to generate statistically significant positive trends in (i) the annual duration, (ii) 

mean magnitude and (iii) total magnitude of upwelling, whereas their exclusion typically 

yields statistically significant negative trends (the converse is true for the frequency of 

upwelling events). Hence, by using the annual mean for each event metric, we are likely 

underestimating the temporal trends because of the countervailing effects of short and 
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long upwelling events. To account for these countervailing effects, we now describe the 

temporal trends in the intra-annual distribution of upwelling events. 

 

TEMPORAL TRENDS IN THE INTRA-ANNUAL DISTRIBUTION OF UPWELLING EVENTS 

Mean magnitude of upwelling events 

Intermediate to high quantiles of the intra-annual distribution of upwelling event 

mean magnitude undergo significant increases over time at 45oN, 42oN, 36oN and 33oN 

but not at 39oN (Fig. E5). The slopes of the quantiles typically exhibit a modal shape, 

indicating that intermediate quantiles of event mean magnitude are increasing at a faster 

rate than lower and higher quantiles (Fig. E5). At the southernmost latitude, the highest 

quantiles exhibit a negative slope, indicating that upwelling events of extremely high 

mean magnitude are decreasing over time (Fig. E5). Overall, the intra-annual distribution 

of upwelling event mean magnitude is shifting towards higher values over time and 

becoming increasingly dominated by events of intermediate to strong magnitudes. 

Total magnitude of upwelling events 

The slopes of the quantiles of the intra-annual distribution of upwelling event total 

magnitude tend to exhibit a modal shape at all latitudes, with intermediate quantiles 

having greater rates of increase over time than extreme quantiles (Fig. E6). Only low and 

intermediate quantiles at 45oN and 39oN, respectively, increase significantly over time 

(Fig. E6). At the other latitudes, most intermediate to high quantiles of upwelling event 

total magnitude undergo significant increases over time. At the northernmost latitude, the 

highest quantile exhibits a negative slope, indicating that upwelling events of extremely 

high total magnitude are decreasing over time (Fig. E6). Overall, the intra-annual 

distribution of upwelling event total magnitude is shifting towards higher values over 

time, with intermediate upwelling event magnitudes becoming increasingly dominant at 

most latitudes. 
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The results presented in this appendix demonstrate that the annual mean 

magnitude and total magnitude of upwelling events are increasing over time and that their 

intra-annual distribution is shifting towards higher values. This indicates that upwelling is 

becoming increasingly dominated by stronger events over time. 
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Figure E1 The effect of varying the minimum duration used to define an upwelling event 
on temporal trends in the number of upwelling events from 1967 to 2010 at five latitudes 
across the California Current System. At each of the five latitudes and for each minimum 
duration, the number of upwelling events was related to the year via simple linear 
regression y = β0 + β1x( ) , yielding a coefficient of determination (R2, left column) and a 
slope (β1, right column). Full circles indicate regressions whose p-value < 0.05. 
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Figure E1  
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Figure E2 The effect of varying the minimum duration used to define an upwelling event 
on temporal trends in the mean duration of upwelling events (log10+1 transformed) from 
1967 to 2010 at five latitudes across the California Current System. At each of the five 
latitudes and for each minimum duration, the mean duration of upwelling was related to 
the year via simple linear regression y = β0 + β1x( ) , yielding a coefficient of 
determination (R2, left column) and a slope (β1, right column). Full circles indicate 
regressions whose p-value < 0.05. 
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Figure E2  
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Figure E3 The effect of varying the minimum duration used to define an upwelling event 
on temporal trends in the mean magnitude of upwelling from 1967 to 2010 (log10+1 
transformed) at five latitudes across the California Current System. At each of the five 
latitudes and for each minimum duration, the mean upwelling magnitude was related to 
the year via simple linear regression y = β0 + β1x( ) , yielding a coefficient of 
determination (R2, left column) and a slope (β1, right column). Full circles indicate 
regressions whose p-value < 0.05. 
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Figure E3  
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Figure E4 The effect of varying the minimum duration used to define an upwelling event 
on temporal trends in the total magnitude of upwelling events (log10+1 transformed) from 
1967 to 2010 at five latitudes across the California Current System. At each of the five 
latitudes and for each minimum duration, the total upwelling magnitude was related to 
the year via simple linear regression y = β0 + β1x( ) , yielding a coefficient of 
determination (R2, left column) and a slope (β1, right column). Full circles indicate 
regressions whose p-value < 0.05. 
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Figure E4  
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Figure E5 Regression statistics of temporal trends in the intra-annual distribution of 
upwelling event mean magnitude (log10+1 transformed) from 1967 to 2010 at five 
latitudes across the California Current System. Within each year, we identified the 
different quantiles of upwelling event mean magnitude and related them to the year via 
simple linear regression y = β0 + β1x( ) , yielding a coefficient of determination (R2, left 
column) and a slope (β1, right column). Full circles dots indicate regressions whose p-
value < 0.05. 
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Figure E5  
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Figure E6 Regression statistics of temporal trends in the intra-annual distribution of 
upwelling event total magnitude (log10+1 transformed) from 1967 to 2010 at five 
latitudes across the California Current System. Within each year, we identified the 
different quantiles of upwelling event total magnitude and related them to the year via 
simple linear regression y = β0 + β1x( ) , yielding a coefficient of determination (R2, left 
column) and a slope (β1, right column). Full circles indicate regressions whose p-value < 
0.05. 
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Figure E6  
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Appendix F – Chlorophyll-a and nutrient analysis 

 

Figure F1 The association between upwelling event frequency and duration of local 
chlorophyll-a and nutrient levels. Plotted are the coefficients of the Spearman's rank 
correlations between chlorophyll-a, nitrate, and phosphate concentrations and a) the 
number of upwelling events occurring during a certain number of days prior to each 
sample, b) the mean duration of those upwelling events, and c) the mean upwelling index 
over those days. For nutrients we examined upwelling event conditions from 1 to 10 days 
prior to the sample and from 5 to 50 days for chlorophyll-a. Results are plotted with dark 
grey circles for Boiler Bay, BB, black triangles for Strawberry Hill, SH, and light grey 
squares for Cape Blanco, CB. Closed symbols indicate that that relationship is 
statistically significant at the α=0.05 level and open symbols are not statistically 
significant 
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Figure F1 


