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The support structures for offshore platforms that are used to
recover raw petroleum consist of vertical, horizontal, and inclined
cylindrical members. Since the design for these platforms is
increasingly refined for large, expensive structures, the knowledge
of forces on individal cylindrical members becomes increasingly
important. This thesis emphasizes information about the horizontal
cylindrical members in periodic waves and in periodic waves with
towing (waves plus current approximation).

This thesis presents the results of a series of laboratory
experiments on four horizontal cylinders with different surfaces:
smooth, sand-roughened, barnacle-roughened, and one with rigid arti-
ficial sea anemones. Both amplitudes and phases of harmonic compo-
nents of horizontal and vertical forces are analyzed by using Fourier
analysis. It is shown that the fundamental harmonic force coeffi-
cients and phases, which come mainly from the inertia and drag force,
correlate well with the Keulegan-Carpenter number, K. Some degree of
correlation ﬁith the shape parameter of the fluid particle motionms,

Q, 1is also shown. The higher harmonic force components, which con-



tain the vortex—induced forces and the nonlinear Morison forces,
become more important as K increases or Q decreases. The force coef-
ficients, Cd and Cm, based on the vector form of the Morison equation
are utilized as well as the root-mean-square and the maximum force
coefficients to i1illustrate differences brought on by K, 2, and rough-
ness (e/D).

In this thesis, new information on horizontal cylinders that
were towed toward waves, which simulates the superposition principle
of waves and current, is shown. When the tow velocity becomes larger
than the maximum wave-induced velocity, the drag and the rms force
coefficients decrease rapidly, and the drag and the steady horizontal
force coefficients approach the drag coefficients for steady flow.

Flow visualization techniques are used to observe flow patterns
around stationary horizontal cylinders in waves, which are strongly
affected by K and Q.

From measurements, the wave-to-wave variations of forces are
clearly observed. It is found that the vortex motions contribute
strongly to the variations of force coefficients. The variations are

smaller in the horizontal direction and for the rougher cylinders.
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z Vertical coordinate, direction measured positive upwards
from still water level

8 Frequency parameter [=D2/Tv]

€ Relative surface roughness [=e/D]

8 Angular coordinate around a cylinder [Fig. 3-4]

v Kinematic viscosity

P Density of water

o} Standard deviation

w Angular wave frequency [=2n/T]

Q Shape parameter [=wu/uu]

¢X(n) Phase angle of nth harmonic horizontal force

¢,(n) Phase angle of nth harmonic vertical force



r Strength of vortex
8 Effective diameter factor [ratio of effective diameter to

smooth diameter, see Table 4-1]

A Wave length

Subscripts

r rms value

u Maximum value

W Wave—-induced value

b4 Value in horizontal direction

A Value in vertical direction



SMOOTH AND ROUGHENED HORIZONTAL CYLINDERS

IN PERIODIC WAVES AND CURRENT

1. INTRODUCTION

l.1 Background

The interest in wave forces on cylinders continues to be strong
because the subject knowledge is important, yet incomplete, for the
design of ocean structures. The main focus for this thesis is on new
information regarding the forces from periodic wa?es, current and

waves, and surface roughness effects, for horizontal cylinders.

l.1.1 Horizontal Cylinders in Periodic Waves

Since Morison et al. (1951) proposed the well~known Morison
equation, most studies on this subject emphasized wave forces on
vertical cylinders or similar conditions (either oscillating a cylin-
der in still water or generating a planar oscillatory flow past a
stationary cylinder). Vertical cylinders are of most importance
because they are usually support members and they constitute the main
portion of the projected elevation area of a platform. Horizontal
cylinders have been of less importance, so wave force information on
them is scarce. However, as designs are increasingly refined for
large, expensive structures, the forces on horizontal cylindrical
members are becoming more important.

The flow and resulting force characteristics around a horizontal
cylinder are different from those for a vertical cylinder, or the
similar cases mentioned above. The axis of a vertical cylinder lies

on the same plane as that of the undisturbed velocity vector and the



vortex wake formed on one half wave cycle will sweep past the body
during a subsequent half cycle. To evaluate the force that is in~
line with the direction of wave propagation, only the horizontal
component of the time-dependent velocity and acceleration are usually
considered. The vertical forces from the vertical wave motion are
paraliel to the cylinder axis and consitute mostly skin friction drag
which is negligible compared to the form drag of the in-line and
vortex-induced transverse forces. The in-line force, which consists
of the drag and the inertia force, can be predicted by the Morison
equation. The vortex~induced transverse force with uncertain magni-
tude, phase and sign is normal to the plane of the velocity vector
and the in~line force.

For a horizontal cylinder with its axis parallel to the wave
crests, the velocity vectors rotate around the cylinder in an ellip~
tic motion. In this case, the drag force (which is in-line with the
velocity veétor) is not always in line with the inertia force (which
is in-line with the acceleration vector). The vortex wake formed
over a horizontal cylinder rotates, depending on  (the orbital shape
parameter, which is the ratio of the maximum vertical velocity to the
maximum horizontal velocity), around the cylinder which is different
from that for a vertical cylinder. Under this circumstance, the
vortex~induced force, which is customarily defined to be perpendicu-
lar to the velocity vector, is not always normal to the inertia force

and is in the same plane of the velocity vector, i.e., in the same



plane of the drag and the inertia forces. This makes the already
complicated hydrodynamic force problem more complicated.

This thesis concentrates on the forces on horizontal cylinders.

1.1.2 Current Effect on Wave Forces

It is well known that there are currents generated by wind,
earth gravity, tides and waves in the open sea. The interaction
between waves and currents are often considered in oceanography and
engineering, e.g. Longuet-Higgins (1961) and Ismail (1983). The
existence of a current for a cylinder in waves will cause a bias to
the wake structure around the cylinder. Thus, the forces will differ
from those on a cylinder in purely wavy flow or in steady flow.
However, the forces on cylinders in waves and current are nearly
impossible to determine experimentally because laboratories cannot
generate waves superimposed on currents at a Reynolds number suffi-
ciently large. 1In the field, it is not possible to control the waves
and current independently and it is difficult to separate the current
effects from the wave measurements.

Engineering designers and some researchers use the simple super-
position principle for waves and current because it is expedient.
Some studies (Chandler and Hinwood, 1982; Ismail, 1983; Knoll and
Herbich, 1980) have‘shown this approximation to be sufficiently valid

for most design purposes. This principle is used in this study.



1.1.3 Marine Roughness Effect on Forces

Marine structures act as artificial substrata for marine plants
and animals. Marine growth can be found, more or less, on most of
the offshore structures in the world. Heideman et al. (1979)
reported there were 1 inch barnacles attached to the Ocean Test
Structure just 8 months after the installation of the structure.
Ralph and Troake (1980) described marine growth on North Sea oil and
gas platforms with respect to water depth. Sharma (1983) reported on
the marine growth on the Hondo platform in the Santa Barbara Channel
and suggested the marine growth thickness and height for future
structures near the Hondo platform after comparing the data reported
by Nath (1981b) from two other platforms near Santa Barbara. Nath
(1983c and 1985b) also reported the 1-, 2=, and 3~year accumulations
of marine growth from the CHEVRON SOUTH PASS 77"B" platform in the
Gulf of Mexico.

Heaf (1979) discussed the effects of marine growth on the load-
ing of a structure in five ways: (i) increased effective diameter,
(ii) increased drag coefficient due to the roughness, (iii) increased
mass and hydrodynamic added mass leading to a low natural frequency
and an increased dynamic amplification factor, (iv) increased struc-
tural weight, and (v) a change in the hydrodynamic instability from
the mass change and the vortex shedding frequency changes.

In this thesis, the influence on some aspects of marine biofoul-
ing on hydrodynamic forces on horizontal cylinders either in waves or

under waves plus current will be studied.



1.2 Literature Review

There are a number of excellent reviews and summaries on the
studies of the wave-induced forces on marine structures, eeg.
Sarpkaya and Isaacson (1981), Hogben et al. (1977), Lin and Nath
(1980), Fallon (1984), etc. 1In this section, it is intended to give
necessary information for later discussion and a short review of some

important literature that will be cited in later chapters.

l1.2.1 Planar Oscillatory Flow and Vertical Cylinders in Waves

The planar oscillatory flow around a cylinder is a fundamental
and important condition to study and understand for the complex prob-
lem of hydrodynamic forces. A cylinder in such flow can be con-
sidered to be an extreme case for a horizontal cylinder in shallow
water periodic waves where the vertical ambient velocity is zero
(9=0). |

There are two orthogonal forces on a cylinder in planar oscilla-
tory flow: the in-line force and the transverse force. "In-line"
means co-linear with the flow direction and "transverse" means normal
to it and the cylinder axis.

The in-line force on slender cylinders is usually determined by
the Morison equation, which is a linear combination of a velocity-

dependent drag term and an acceleration-dependent inertia term.

2
- pDL ptD L . _
F=2=culul + 25 cu (1.2.1-1)

in which F = the in—line force acting on the cylinder, which is

uniform over the length considered,



L = the length of the cylinder on which the uniform

force acts,

P = the fluid density,
D = the diameter of the cylinder,
u,u = the velocity and acceleration of the water particle,

respectively, and

C4:C, = the drag and inertia force coefficients.
The force coefficients may be determined from the Fourier—averaged
method, least squares method, and maximum kinematics and dynamics
method, and force—phase method. A lot of research work has been done
for planar oscillatory flow using the Morison equation, including
those done by Sarpkaya (1976), Garrison (1980), Yamamoto and Nath
(1976) and Bearman et al. (1981). They showed that Cd and Cm cor—
relate well with Keulegan—-Carpenter number, K (=uuT/D)» and frequency
parameter 8 (=D2/vT). In the above parameters, T is the wave period,
v is kinematic viscosity, and y represents the maximum value.

The differences between vertical cylinders in periodic waves and
cylinders in planar oscillatory flow are the velocity gradient along
the vertical cylinder axis and the orbital water particle motion
around vertical cylinders. The horizontal velocities encountered by
a vertical cylinder in periodic waves vary with depth except for
shallow water waves. Besides, due to the orbital motion of the fluid
particles, the wake and vortices generated during one half wave cycle
might not be swept back to the same elevation of the cylinder during
the next half cycle, i.e., the vortices could move downward (after

crests pass) or upward (after troughs pass). In addition, the small



axial skin drag force, which is induced by the verticai velocity,
acts on the surface of the cylinder and generates local disturbances,
which are greater if the surface is rougher. The disturbances will
modify the flow and wake characteristics in some presently unknown
way as discussed by Nath (1983a).

Chakrabarti (1980) showed that Cd and Cm obtained from local
forces on vertical cylinders in waves may be nearly equal to those
from planar oscillatory flow (at least in some regiogs of K) as seen
in Fig. 1.2;1-1. From this figure, for K > 36, the C; values from
Chakrabarti are lower than Sarpkaya's planar oscillatory flow data,
but C_ values are higher. For small K, data from these two different
flows match well.

The maximum in—-line force coefficients (Cxu) and the rms in-line
force coefficients (C..), defined in Egqs. (l.2.1-2) and (1.2.1-3),
were studied by Sarpkaya (1976, 1986), Bearman et al. (1978,

1985a,b), and Nath et al. (1984b, 1986). These coefficients are

F .
= __xu___ slel™
Con ST 2 (1.2.1-2)
2 P u
and
Fx
C = ""‘"“r— (10201"3)
X l pDLu2
2 u

in which p represents the maximum value and r represents the root-

mean—-square value.
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Fige 1.2.1-1 Comparison of Cd and Cm between cylinders around planar
oscillatory flow and vertical cylinders in waves (from
Chakrabarti, 1980).
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Figure 1.2.1-2 shows the maximum in-line force coefficients from
Nath, et al. (1984b), which correlate quite well with K. 1In this
figure, Cds is the drag coefficient for steady flow. They also pro-
posed a new technique to obtain Cd and Cm by using maximum force
coefficients and the phase shift.

As to forces on roughened cylinders, only a few studies in the
open literature have been devoted to this topic. Sarpkaya (1976) and
Garrison (1980) reported that Cd increases and Cm decreases as the
relative roughness, ¢ (=e/D) increases for planar oscillatory flow.
Figure 1.2.1-3 shows the results from Sarpkaya (1976). Most studies
of forces on roughened vértical cylinders in the open literature were
conducted by Nath (1983a, 1983b, 1984a, and 1985b). The Cd’ Cm, and
CXu for the smooth (VSMC), the sand-roughened (VSRC, ¢ =.02), and the
artificially marine-roughened (VAMRC, & =0.09) vertical cylinders are
plotted in Fig. 1.2.1-4 after Nath (1983a). The C4 and the Cxu
increase significantly as the relative roughness increases. The dif-
ference of Cm between the smooth and the sand roughened cylinder is
not clear, but the Cm increases rapidly for the artificially marine-
roughened cylinder.

The transverse force is mainly generated by the asymmetric
vortex shedding and is strongly affected by the resulting pattern and
frequencies. Due to the complexity and irregular nature of this
phenomenon, there is not a widely accepted model that predicts the
transverse force trace (magnitude, phase, and direction).

Most of the studies (e.g. Sarpkaya 1976 and 1986, Yamamoto and

Nath 1976, Isaacson and Maull 1976) used the maximum transverse coef-
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ficient (Clu) and the rms transverse coefficient (CZr)’ that have
similar definitions as in Eqs. (l1.2.1-2) and (l.2.1-3), to character-
ize the 1lift force. Figure 1.2.1-5 shows values of Clu and CZr
obtained by Sarpkaya (1976 and 1986) were highly correlated with K
and B. Several researchers (Chakrabarti, et al. 1976; Isaacson and
Maull 1976; Maull and Milliner 1978) studied the harmonic transverse

force coefficients, as defined by using Fourier analysis, as follows:

Fz(n)
Cz(n) = T 3 (1.2.1=4)

+ pDLu
2 P i

Recently, Sarpkaya (1986) presented the first five harmonics of
transverse force coefficients as a function of K as shown in
Fig.l.2.1-6 for 8=2300. It is clear that Cz(l) is much smaller than
C£(2)° Similar to Clu’ CZ(Z) has a maximum value at K=12.

Sarpkaya (1976) found that the maximum transverse force some-
times has the same order as, or is higher than, the maximum in-line
force. Chakrabarti, et al. (1976) also concluded that the resultant
force (vector sum of the in-line force and the transverse force) may
be as much as 60% higher than the in-line force. Sawaragi, et al.
(1976) also reported that the ratio of the maximum resultant force to
the maximum in-line force has a maximum value of l.4. Thus, the
transverse force is important and should not be neglected in calcula-
tion of the total force on a cylinder.

Sarpkaya (1976) claimed that the maximum transverse force coef-
ficient does not clearly vary with 8 or ¢ (Fig. 1.2.1-7). But, his

new report in 1986 showed that the rms transverse coefficient
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Fig. 1.2.1-6 Amplitude of the harmonics of transverse froce for a
smooth cylinder in planar oscillatory flow (from
Sarpkaya, 1986).
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increased significantly from the smooth cylinder to the roughened
cylinder as shown in Fig. 1.2.1-8.

Flow visualization is probably one of the most useful tools to
study the role of yortices around cylinders in oscillatory flow.
Several flow visualization experiments under planar oscillatory flow
have been conducted by Bearman, et al. (1981), Sarpkaya and Wilson
(1984), and Williamson (1985). They all concluded that the vortex
shedding patterns are highly correlated with K, which are summarized
herein and sketched in Fig. 1.2.1-9. The capital letters in the
parentheses in the following discussion represent the vortices shown
in Fig. 1.2.1-9.

(i) For K < 3, no vortices could be observed.

(ii) For K=4, there is symmetric pairing of attached
vortices and no resultant transverse force.

(iii) For 4 < K < 8, there is asymmetric pairing of
attached vortices with unequal strength, yielding
resultant transverse forces.

(iv) For 8 < K < 15, a pair of vortices forms in each
half cycle and the larger one (B) sheds. When flow
reverses, (B) is swept back over the cylinder and
makes the new formed vortex (E) on the same side
stronger than (D) on the other side. Thus, the
shedding and backwash of vortices always occurs on
the same half of the cylinder. The smaller
vortices (C) and (D) are always swept on to the

cylinder and disappear.
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(v) For 15 < K < 24, two asymmetric vortices form at
first and the larger one (B) sheds and flows away
with (A), which was formed during the previous half
cycle. The smaller one (C) continues to grow. A
new vortex (D) forms at the same side as (B).
Then, (C) is swept over the shoulder and (D) hits
on the cylinder.
(vi) For K > 24, more vortices are formed and detached
in each half cyéle. More pairs of vortices will
move together. As the flow reverses, these
vortices, or pairs, will convect, dissipate, or be
canceled by mixing with the others or the
boundaries.
Sawaragi and Nakamura (1979) and Zdravkovich and Namork (1977) also
conducted flow visualization experiments to observe the flow patterns
for a vertical cylinder in periodic waves at the water surface. The
vortex shedding patterns they observed were similar to those for
planar oscillatory flow.sketched in Fig. 1.2.1-9.

Grass et al. (1981) indicated that quantitative measurements of
the positions of the centers of the dominant vortices show up certain
differences between a vertical cylinder in real oscillatory waves and
a cylinder in planar oscillatory flow through the flow visualization
experiments of both conditions. These differences may cause differ-—

ences of induced forces.
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1.2.2 Horizontal Cylinders in Periodic Waves

The significant features of a horizontal cylinder with its axis
parallel to the wave crests are that (i) the velocity vector, the
wake and vortices tend to rotate around the cylinder and are not
always swept back onto the cylinder, and (ii) the plane of the
velocity vector is normal to the axis of the cylinder with no axial
component of velocity. Thus, the induced forces, i.e., the drag, the
inertia, and the vortex-induced force, are in the same plane of the
velocity vector and there is no axial force.

It is customary to assume that the drag and inertia components
are in the direction of the velocity and acceleration vectors
respectively and the vortex~induced component is perpendicular to the
velocity vector with unknown sign. Because the acceleration vector
is not necessarily in line with the velocity vector in waves, there
is an angle between the drag force (velocity) and the inertia force
(acceleration) depending on the wave condition and phase angles.
Thus, the vortex-induced force is not normal to the inertia force and
these two forces mix with each other. Because the vortex-induced
force acts, at least until now, with unpredictable magnitude, fre-
quency and sign, this phenomenon makes this problem more complicated.

Neglecting the vortex-induced component, a lot of researchers
used the following vector form of the Morison equation to study the
forces on a horizontal cylinder in waves, e.g. Nath (1982), Teng and
Nath (1983), Ramberg and Niedzwecki (1979,1985), Holmes and Chaplin

(1978), Chaplin (1985a,b), and Bearman et al. (1985a).
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2
—F*=pDL +++p'n'DL >, 2.0
&= qulql 7— C.d (1.2.2-1)

in which a is the velocity vector and a' is the total acceleration
vector.,

The force coefficients obtained from a large wave flume by
Bearman et al. (1985a) were relatively scattered as shown in Fig.
l.2.2-1. One can see that no clear dependence of force coefficients,
Cd and Cm’ on the shape parameter, , can be found. Because the
Morison equation does not include a term to take the vortex—induced
force into account, the force therefore will appear as noise and will
contaminate the Cd and Cm values. This is thought to be the main
reason for the scatter of the force coefficients.

Ramberg and Niedzwecki (1983) used a vector form of the Morison
equation with one pair of Cd and Cm in the horizontal direction and
another in the vertical direction. Their experiments, from a small
wave flume, showed no clear trend of C4y and Cj on @, although the
scatter of their data is less than those from Bearman, et al.
(1985a).

In order to achieve high R and K, a complete range of Q, precise
water particle kinematics, and to avoid nonlinearities, some
researchers used alternative experimental techniques to simulate the
condition of a horizontal cylinder in periodic waves. By driving a
cylinder in an elliptical path, in otherwise still water, to simulate
a horizontal cylinder in wave-type orbital flow where 0<gqc< 1,
Chaplin (1985b) obtained estimates of Cd and Cm, as shown in Fig.

1.2.2-2 for K=14. His results showed the inertia coefficient reduced



0.5

Figc 1.202-1

T T T T T T T T T
a
b ] } b
é$ O
¢  § L o d
o}
b .
- -4
s L) :{0
. * *
1 1 1 1 1 1 1
T T T T 1 T T
v]
- o -~
OU ] o .
o ¢ u
¢
- U.UU - o h "0 A
*
o L 4
A1 It 1 1 L It 1
2 4 6 8 10 12 14 K 16

Cd and C; of a smooth horizontal cylinder in waves
versus K for various @ (from Bearman, et al., 1985a).

Empty symbols: 10° <R XK 3x10°
Solid symbols: 3x10° < R < 5x10°
o: 0.50<0<0.75; o : 0.25<0<0.50; ¢ : 0.15<n<0.25

21



10 , i x 0 l
C . Aﬁw
d
[ ]
0-8 . ‘ _
L ]
(e} o .
06 o ‘ _
. (e}
o © o
0L - o _|
02 _
0 [ | l l i
20 I T T T I
Cm
+8 = e R= 70,000 -
0 R=222,000
(e}
(e} (e}
16 — _
® (e}
10 d b= o ]
L ]
(e}
1.2 = _
(e}
1.0 —
(e}
[
08 t— o ]
0 0-2 0L 06 08 ® 1.0

Fig. 1.2.2-2 Cq and C versus Q for a smooth cylinder in orbital
flow for K=14 (from Chaplin, 1985b).



23
rapidly as Q increased, but Cd decreased with larger Q, for large K.
Using the same experimental technique with the particle velocity
measurements under the wave—induced orbital flow around a cylinder,
Chaplin (1981) concluded the direction of the drag force lags, in
time, that of the velocity vector. This time lag will make the drag
force have a component opposing the inertia force, which always leads
the velocity vector by 90° for deep water waves.

Rodenbusch and Gutierrez (1983) conducted experiments in a large
basin (88m x 39m x 3.5m) and their data and results became public iﬁ
1985. They towed a large vertical cylinder (D=Im) in still water.
This cylinder was suspended from a bridge, which moved along the long
axis of the basin, and a subcarriage on the bridge, which moved along
the short axis of the basin. They made elliptical oscillations of
the cylinder and used a velocity tracking analysis, which takes the
projection of forces and accelerations on the direction of the veloc—
ity vector into account, to obtain C4 and C, (=C-1). Figure 1.2.2-3
shows their results. In this figure, the A, and Ay are the ampli-
tudes of the motion in the x and y direction, respectively. The Cy
values they reported decreased with increasing Q, but; the Ca values
did not seem to follow any simple pattern. They explained two rea=
sons for this irregularity. One is the iﬁterference of the vortex-—
induced forces with the inertia force (aé discussed at the beginning
of this section). The other reason is that the conditioning for
determining C, is worse due to the relatively small inertia force
(note that Ca was obtained from the part of the inertia force which

is in the direction of the velocity vector).
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Sarpkaya (1984) oscillated a horizontal cylinder sinusoidally in
the vertical direction under horizontally planar sinusoidal flow
(both with the same period) in his U tube to simulate a horizontal
cylinder in periodic waves. He determined C4 and C, from the in-line
force and showed that C4 decreases and C increases as Q increases
for K < 35. Grass, et al. (1984) conducted experiments similar to

Chaplin's (1985b) but with smaller equipment and estimated Cq and Cm

for the in-line force only. But, they showed both C4 and Cp de-
creased as Q increased. Note that both Sarpkaya's and Grass's force
coefficients can not be directly compared to those from Bearman, et
al. (1985a), Teng and Nath (1985), Chaﬁlin (1985b), and Rodenbusch

and Gutierrez (1983), because the latter are for total forces with

the vector form of the Morison equation.

Without using the Morison equation, Maull and Norman (1978)
obtained, from a small wavé flume, the rms force coefficients in both
the horizontal and vertical directions for each harmonic (the wave
frequency is the fundamental frequency). These coéfficients in the

horizontal direction were défined as follows
C__(n) =-—’“"——2 (1.2.2-2)

in which n is the order of harmonics, u. is the rms horizontal veloc-
ity, and Fxr(n) is the nth harmonic horizontal force. Their results
showed the rms coefficients of the first harmonic horizontal force

are functions of Q and decrease with increasing Q. Bearman, et al.

(1985a) calculated the first harmonic rms coefficient and no trend on
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2 was observed, but their data fell in the range of Maull and
Norman's as shown in Fig. 1.2.2-4.

Maull and Norman also conducted flow visualization experiments
by using hydrogen bubbles to observe the vortex shedding pattern
around & horizontal cylinder in waves. They concluded that the
presence of the vertical velocity reduces the horizontal force by
altering the trajectory of the vortices developed and reduces the
vertical force by constraining the movement of the vortices in the
horizontal direction.

The total rms force coefficient, which is defined in Eq.
(1.2.2-3), was estimated by Bearman et al. (1985a) and Chaplin

(1985b) to be

(F2 + F2 )1/2
Xr Zr

C = (102.2_3)
tr 1 2 2
5 DL(ur + wr)

in which F,  is the vertical rms force and w,. is the rms vertical
velocity. Figure 1.2.2-5 shows the C.,. values for K=14 for both
studies. Chaplin showed the Cy, decreased as @ increased for the
simulated orbital flow. The trend for Bearman's data (which were
obtained from periodic waves) is not clear. This shows the differ-
ence between horizontal cylinders in these two flows. Chaplin also
said it would be unfeasonable to assume the results from one case
should be directly applicable to the other.
In Fig. 1.2.2-5, Chaplin also presented the rms horizontal force

ceofficient, C_,.. This coefficient clearly decreases as { increases.

XTr
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Grass, et al. (1984) obtained the same result. This coefficient and

the rms vertical force coefficient are defined as

F
= — X -
er = l DLu2 (10202 4)
7 P r
and
FZI‘
CZI’ = m (1.2.2—5)
7 P r

Figure 1.2.2-6 shows that the Cyr and C, . values obtained from
waves experiments by Ramberg and Niedzwecki (1985) correlates well
with K. But, no clear trend on Q can be observed, which is not simi-
lar to Chaplin's and Grass's simulated orbital flow.

Teng and Nath (1984) calculated the maximum force coefficient
for horizontal cylinders, which is defined as

F

c = —H4 (1.2.2-6)

" -1— pDLu2
2 u

In Fig. 1.2.2-7, the Cu values for the smooth cylinder are presented.
It can be seen that the Cu values correlate well with K.

Figure 1.2.2-8 shows the Cq and C, data for the roughened hori-
zontal cylinders from Teng and Nath (1984). It is clear that Cd
increases as ¢ increases. The Cm values obviously increase for the
barnacle cylinder and no difference between the smooth and sand-
roughened cylinder .is observed. This result is similar to that

obtained by Nath (1983a,b) for vertical roughened cylinders as dis-—
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cussed in Section 1.2.,1 (Fig. 1.2.1-4). Note that the smooth

cylinder diameter was used to compute the coefficients and K.

1.2.3 Cylinders in Waves and Current

Due to the mean flow of a current, the horizontal velocities
toward the upstream side of a cylinder are stronger than those toward
the downstream side. This causes a bias of the cylinder wake. The
bias is greater if the current is stronger. If the current velocity
(U) is larger than the maximum oscillatory velocity (uu), the hori-
zontal velocity is always directed in the direction of the current.

Sarpkaya, et al. (1982 and 1984) studied the hydrodynamic forces
on smooth and rough cylinders from combined shallow water waves and
current by moving cylinders with a constant velocity in a planar
oscillatory flow with the motion in-line with the flow. He evaluated
Cq and Cp for the in-line force througﬁ Fourier analysis and the
modified Morison equation as
wazL du

T

F = BI%I: cd(u+U)]u+U| +

(10203—1)

The coefficients correlated quite well with both K (=uuT/D) and VM
(=UT/D) as shown in Fig. 1.2.3-1 for B=1594. It is observed that the
wake bias, resulting from the current, increases C  and decreases Cd
and, for K larger than 20, the effect of current on force coeffi-
cients and on the calculated in-line force is negligible.

Koterayama (1984) studied experimentally the forces on vertical
cylinders with a constant forward velocity by using two experimental

techniques. One was to move a cylinder in laboratory waves (wave
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force test) and the other was to oscillate a cylinder moving with a
steady translation in still water (surging test). He used Eq.
(1.2.3-1) and a Fourier series expansion to analyze the in-line
force. The steady drag coefficient (Cdo), the oscillating drag coef~-
ficient (Cdl) , and the inertia coefficient (Cm) were obtained from
the steady force, the harmonic force in phase with the velocity and
the harmonic force in phase with the acceleration, respectively. The
lift coefficients (Cz), which was defined as 1/10 maximum values of
lift forces divided by maximum total velocity square, was also esti-
mated. Figure 1.2.3-2 shows these coefficients verse VM (=UT/D) for
3.8 < K< 6.1. Koterayama concluded that the force coefficients
depend mainly on VM, and the oscillatory drag coefficient is smaller
than the steady drag coefficient and approaches it as VM increases.
Matten (1976) obtained similar conclusions. Besides, the Fourier
drag coefficients are generally smaller for the wave force tests than
for the surging tests due to the 3-D effects, which reduced coherence
and strength of vortices, of the wave tests.

Some researchers (Verley and Moe, 1979; Mercier, 1973; Kato et
al., 1983; Bryndum et al.,1983) oscillated a cylinder in line with a
steady flow which can be used to simulate a cylinder subjected to
(shallow water) waves and current.

Verley and Moe (1979) conducted a sequence of experiments by
oscillating a cylinder, which was attached to a pendulum, in line
with a uniform and constant flow. In their study, the following two

equations were used to analyze the data.
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2 -
F =20k ¢ (u-%) |U-%| - prD L o gy (1.2.3~2)
2 d 4 m
and
DL 2 DL ole 2L -
F =-‘?——-2 c, U -9—2 cdlx[x| —P———-4 (c - Dx (1.2.3-3)

3

where x and X are the velocity §nd acceleration of the cylinder.
They studied the inertia coefficient (Cm)’ the steady drag coeffi-
cient (Cdo) and the oscillatory drag coefficient (Cdl) for both equa-
tions, and found that Eq. (1.2.3-2) is the better formulation. Note
that they split the drag coefficient in Eq. (1.2.3-2) into Cio and
Cqp by using the similar definitions as just discussed in
Koterayama's (1984) study. Figure 1.2.3-3 shows their results by
using Eq. (1.2.3-2). The dependences of the force coefficients on VM
(=U/TD) and xo/D (=K/7m) were observed. The X, is the amplitude of
the displacement. |

Bryndum et al. (1983) used a least square method to quantify Cy
and Cm in Eq. (1.2.3-2) and estimated the 1lift coefficients, CZ'
They concluded that Cq and,CZ decrease to as much as 60% and 407,
respectively, of the values found in wave motion when U/uu approaches
0.9.

Teng and Nath (1985) simulated the waves and cqrrent condition
by towing horizontal cylinders (smooth and roughened) in waves and
used the following modified Morison equation to describe the forces

on a horizontal cylinder under waves and towinge.
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2
- DL > 7D7L _
Fx -L—Z Cdqul +-L—4 Cmu' (1.2.3-4)
and
Fo=2%cwld] + prD’L ¢ (1.2.3-5)
z 2 “avid 7 ‘" ol

In the above equations, u is the sum of the wave—induced velocity
(uw) and the current velocity (U).

Figure 1.2.3-4 shows their C4 values for the smooth and the
roughened cylinders against VM (=UT/D). They also found that C,4
approaches that of steady flow as the current velocity increases.
Teng and Nath (1984) studied the maximum total force coefficients
(Cu) for smooth and roughened horizontal cylinders and found the
values of Cu against K [=(uwu+U)T/D] for the waves and current case
agree quite well with those for the waves only case as shown in Fig.
1.2.3-5. From this figure, as K gets large, Cu seems to approach the

drag coefficient for steady flow, C4g-

1.3 Scope of This Study

This thesis is about exterior hydrodynamic forces on horizontal
circular cylinders which are slender and rigid.

The forces from laboratory periodic waves were measured for 4
horizontal cylinders with different surface roughnesses for Keulegan-
Carpenter number (K) up to 25. The Reynolds number was in the range
of 3x10% <R K 2x105, and 5 orbital shape parameters (Q) ranged from
0.42 to 0.85. The cylinders were smooth, sand-roughened, barnacle-

roughened, and one with rigid artificial sea anemones.
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In this thesis, both amplitudes and phases of harmonic compo-
nents of measured forces are analyzed by using Fourier analysis. The
force coefficients, C4 and C,» based on the vector form of the
Morison equation, the root-mean—square force coefficients, and the
maximum force coefficients are utilized to illustrate the effects of
roughness, K, and Q.

The wave-to—~wave variation of forces on horizontal cylinders in
periodic waves is examined by means of the maximum forces, the root-
mean—-square forces and both the amplitudes and phases of harmonic
components of forces.

Waves forces on vertical cylinders are compared with those on
horizontal cylinders.

The cylinders were towed with steady speeds under a fixed wave
condition, which simulates the superposition principle of waves and
current, for the tow speeds up to 4.7 times the maximum wave-induced
velocity. The towing (current) effect on force coefficients is
examine&.

Flow visualization experiments were conducted in a small wave
flume to observe flow patterns around stationary horizontal smooth

cylinders in periodic waves.



2. THEORY AND ANALYSIS

2.1 Governing Parameters

The force on a cylinder is a function of fluid viscosity (v),
cylinder diameter (D), fluid particle velocities (u and w), flow
period (T), roughness height (e), etc. Through dimensional analysis,
the dimensionless force coefficient is considered as a function of
several dimensionless parameters. For horizontal cylinders in peri-

odic waves and current, one possible set of important parameters is

ul uT w

- u u e p UT Y} _
Ce=fl4 >3 D5 5 "5 ) (2-1)
H Wi
or
C; = £(R, K, &, 2, VM, U)) (2-2)

in which u, and w, are the maximum horizontal and vertical velocity
respectively, U is current velocity, U is the maximum wave—induced
horizontal velocity, R is the Reynolds number, K is the Keulegan-
Carpenter number, € is the relative roughness, Q@ is the shape param—
eter of fluid particle orbit, VM is the Verley-Moe number, and U, is
the relative velocity. More details and discussion about this analy-
sis can be found in Teng and Nath (1983).

The Reynolds number and Keulegan—Carpenter number for the com—
bined field of waves and current may have several different defini-

tions (see Sarpkaya, et al. 1984). The two dimensionless parameters

used in the present study are defined in the following.
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(uw + U)T
K = “D— (2-3)
and
(u + U)D
R ='_JﬂLTT___ (2-4)

In the above dimensionless parameters, the maximum velocity is used
to characterize the kinematics. But, this maximum velocity can not
represent the nonlinearity of ocean waves. Thus, two different wave
conditions could have the same maximum velocity (or the same dimen;
sionless parameters). This will cause scatter in the data distribu-

tions when the data are plotted against these parameters.

2.2 The Vector Form of The Morison Equation

As discussed in Section 1.2.2, the forces on a horizontal cylin-
der can be predicted by the vector form of the Morison equation,
which assumes the drag force is in line with the velocity vector and

the inertia force is in line with the acceleration vector. That is,

2 A
_ pDL > > prD"L | » _
F 5 qu‘q’ + = Cmq (2-5)
In the above equation, a is the total velocity and the prime
represents the associated Eulerian acceleration.
The total force thus described may be decomposed into the hori-

zontal (x) and vertical (z) direction as

2
= £DL 3 4 2B L -
F 3 Cdulql g Cu (2-6)



44

and

Fz - E%E de'ai +

2
ptD L o o (2-7)
4 m ,

The vortex—induced force, which is not included in the above equa-

tion, is regarded as noise to the above forces.

2.3 Least—-Squares Method

The time-invariant average force coefficients C4y and C, in the
vector form of the Morison equation are determinéd by using the
least-squares method in this study. The least-squares method obtains
the force coefficients by minimizing the total error between the mea-
sured forces and predicted forces. The details of this method can be

found in Teng and Nath (1983). The force coefficients obtained are

(AA)(BB) — (DD)(EE)

C (2-8)
4 2 oDLI(cC)(BB) = (DD)?]
and
¢ - —(COEE) - (h)(oD) (2-9)
% pmD L[(CC)(BB) - (DD)"]
in which
27 R
AA = oj [F_u+F_wl|q|de (2-10)
Zm +,12 :
BB = [ |3']|%ae (2-11)

]
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2m >4
cc = [ |3 ae (2-12)
(o]
27 N .
DD = [ [uu' + ww']|q|de (2-13)
(o]
2y
EE = f [Fxmu' + Fme']de (2-14)

o]

In the above expressions, Fxm and FZm are the horizontal and vertical
measured force, respectively.

Under the same test condition, data of n wave cycles were
recorded (see Section 4.4). The representative Cq and C, may be
determined from 3 ways: (a) Get Cq and Cm for each wave cycle, and
then average these n pairs of coefficients to obtain an average pair;
(b) Average these n cycles of wave data to obtain an average wave
record, and then obtain coefficients for this mean wave; and (c) Get
one pair of Cj and Cp by using the continuous n wave record as a
whole. In Appendix A, it is proven that the representative pairs of

Cq and C from these 3 ways are actually the same.

2.4 Harmonic Analysis

A periodic function f(t) with fundamental period T can be

expressed with a Fourier series as

f(t) = a + 2 nzl (ancoswnt + bnsinwnt) (2-15)

in which wn=2nn/T,

T
f f(t) cos
)

1 2nmt

a = T

n

!

dt (2~-16)

n>0
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and

1 T
bn = T’ f f(t) sin
n3l °

2nwt
T

dt (2-17)

using complex notation F =a -ib , the above coefficient expressions

can be reduced to the following single equation

T -1 ZDWt)

[ f(te T Tac (2-18)

o]

F =
n

|-

If the continuous time series f(t) is not known and only equally
spaced samples are given as a discrete time series, i.e. {fj},
j=0,1, 2, veveee, (N-1), the following discrete Fourier transform
may be used.

= -1 (221,
Fo=% Z f.e (2-19)

and

N-1 o i(Zam)
f.= ] Fe (2-20)

Since F =a -ib , we can obtain

F o= |F e 7 | (2-21)

in which IFnI (= v ai+b§) is the amplitude of the nth harmonic and

¢n(=tan_1(bn/an)) is associated phase angle. Thus,
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N-1 . ' :
£,= Y ‘F lcos(ggll - ¢ ) (2-22)
3 n=0 n N n

An FFT algorithm can be used to evaluate the amplitude and phase
of each harmonic of a time series.

In the present study, this harmonic analysis is used to deter-—
mine the amplitude and phase of each harmonic of the measured hydro-
dynamic forces (both the horizontal and the vertical), that will be
studied in Sections 5.4 and 6.3.

From Eq. (2-22), the phase of each harmonic is related to a
cosine curve, i.e., that means the phase is the shift between the
profile of a harmonic and a cosine curve. In this study, a whole
periodic wave is defined from peak (wave crest) to peak (see Section
4.3). The measured forces for the associated whole wave are taken
from the same time interval. Thus, the phase of each harmonic of
measured force is related to the wave crest (or the maximﬁm of the

horizontal velocity).

2.5 Kinematics of Fluid Particles

When analyzing the data, the ambient kinematics of fluid parti-

cles are needed. The seventh order stream function wave theory is

used to predict the velocities and accelerations in the present
'study. Nath (1981) showed that the stream function theory compares
quite well with the measured kinematics and is adequate for predict-
ing velocities and accelerations of water particles at the cénter of
a cylinder.

When a steady and uniform current (U) is introduced to the wave

field, the linear superposition principle, which assumes the total
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velocity is the linear combination of current velocity and wave-
induced velocity, is used to predict the kinematics. According to
the linear superposition priﬁciple (ngglecting the interaction
between waves and current), the water particle velocities under waves

and current are expressed as
u(x,z,t) = uw(x,z,t) +U (2-23)

and

w(x,z,t) ww(x,z,t) (2-24)

in which the subscript w represents the wave-induced velocity. Since
the total acceleration is used in this study, the acceleration is

modified due to the presence of the current as

du auw auw auw
! = o = 4 ——an esrt—— -~
u It ™ + (uW + U) = v v (2-25)
and
dw aww aww aww
! = o = — — —— . —
w It Y + (uW + U) Y + v Y (2-26)

Teng and Nath (1983) showed that the stream function theory with
linear superposition principle can predict the kinematics for a
cylinder towed in a wave field (which is used to simulate a cylinder

under waves and current in this study) quite well.
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2.6 The Blasius' Equation

By using the unsteady form of the Blasius' equation, Maull and
Milliner (1978) showed the horizontal and vertical forces, X and Z,

on a cylinder due to the movements of the vortices are given by

p? 2 2
X = pP{w* + — [(z27= x7)w* + 2xzu*]} (2=-27)
2. 2.2
4(x"+z7)
and
D2 2 2
Z-= -pr{u* +——- [(x"= 27 )u* + 2xzw*]} (2-28)
2..2.2
4(x"+z7)

in which T is the strength of the vortex (which is defined as posi-
tive when it is clockwise and negative when it is counter-clockwise),
x and z are the coordinate of the vortex, u* and w* are the hori-
zontal and vertical velocity of the vortex at point (x,z), and D is
the diameter of the cylinder. Figures 2-1 shows the definitions of
these variables.

From the above two expressions, the forces on the cylinder due
to the moving vortices may be predicted. However, the magnitudes of
these forces need precise and detailed values about the strength,
location and velocity of the vortex. These values are almost im-
possible to obtain or measure until now. Thus, it is very difficult
to quantify the forces. However, the direction of forces due to the
motion of the vortex can be judged if the vortex motion can be rough-

ly observed through experiments.
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The force acting on a cylinder due to the motion of vortices is
a summation of forces induced by each individual vortex. However,
according to Eqs. (2-27) and (2-28), only a few vortices that are
close to the cylinder are important. Contributions from most of the
vortices can be neglected due to the weak strength, slow velocity or

far distance from the cylinder.

Fig. 2-1 Definition sketch for vortices around a horizontal cylinder
in waves.
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3. FLOW VISUALIZATION EXPERIMENTS OF
HORIZONTAL CYLINDERS IN WAVES

3.1 Description of Experiment

In order to observe and study the vortex shedding patterns
around a horizontal cylinder in waves, a series of flow visualization
experiments were conducted at the wave flume in Graf Hall at OSU (see
Fig. 3-1). This flume is 40 feet long, 24 inches wide and 26 inches
in depth with a 18 feet long, 1/12 slope beach at one end. Two side-
walls of the flume are constructed of 1/2 inch clear Plexiglas. The
waves, with the wave periods of from about 1 to 3 seconds and wave
height up to 4 inches, depending on the water depth, are generated by
a hinged flap type wavemaker. This wavemaker is driven by a 1/3
horsepower electric motor with an SCR speed control. The generator
stroke is controlled by adjusting a linkage between the electric
motor and the wave generating plate.

The smooth test cylinder, 1.5 inches in diameter and 24 inches
long, is supporte& by two clear Plexiglas plates at two ends and is
put in the flume horizontally. To avoid the boundary effect, the
cylinder is located at least 4 diameters away from the free surface
and solid bottom. This plastic cylinder has & equally-spaced
passageways, that are 1 mm diameter holes drilled on the surface of
the cylinder, around the circumference along the center cross sec—
tion. These holes are connected by 8 plastic tubes, inside the
cylinder, to two sets of glass columns, that contain dye and are
located above the flume as shown in Fig. 3-2. The solution of

potassium permanganate (KMnOQ) dye can be introduced into the



Fig. 3-1 Wave flume in Graf Hall at 0SU.
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Fig. 3~2 Layout of flow visualization experiments.
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boundary layer through the holes. Each set of glass columns contains
4 individual glass columns. A valve on each glass column controls
the rate of dye released into the flow as necessary. A master con-
trol valve on each set of glass columns controls the ejection of dye
from 4 different holes simultaneously. |

A super 8 mm movie camera was used to record the continuous
process of the flow pattern and vortex shedding. After development
and processing, the movie film was examined frame by frame (or by
slow motion) by using the Timelapse data analyzer projector. Also,
still photos were made of the flow at the wave crest, trough and zero
crossings. The layout of this experiment is sketched in Fig. 3-2.

Due to the limitation of the experiment facilities, only a
limited range of experiments, characterized by some dimensionlesé
parameters, could be conducted. They were:

R (Reynolds number): 1200-5000

K (Keulegan—Carpenter number): 2-13

Q (shape parameter): 0.2-0.6

3.2 Results

It is possible to show only the influence of @ (from 0.2 to 0.6)
and K (from 3 to 12) on the patterns of vortex shedding. It is hoped
this may give some insight to the flow process around horizontal
cylinders in waves.

From consecutive observations of the flow visualization, the
vortex shedding patterns sometimes vary from cycle to cycle under the
same wave and cylinder conditions. It could have some kind of regu-

larity over a long period. But, only several cycles were observed
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because the water contaminated quickly with the dye (solution of
potassium permanganate). The flow patterns presented here are the
most possible and frequent patterns observed under the specific
conditions.

Figure 3-3 shows some photos of the flow pattern around a hori-
zontal cylinder from the experiment. In the following, the flow
patterns are sketched from the continuous films taken by the movie
camera.

Several typical cases, that contain two values of @ (0.25 and
0.5) with different values of K for each Q, are sketched and
described in the following. To give a simple and clear presentation
of the results for the flow visualization experiments, the periphery
of the cylinder is divided into four quadrants as shown in Fig. 3-4.
In this figure, the angular coordinate is also defined so that the
location of formation and movement of a vortex can be easily
described. In Figures 3-5 to 3-10, the arrow in the center of the
cylinder represents the direction of the velocity vector at that
moment. But, the length does not represent the magnitude of the

velocity.

(1) X=10 and 9=0.25 (Fig. 3-5)

At t=0, the vortices associated with quadrant I and II, namely
vortex A and B respectively, start to form and grow with almost the
same strength. The vortex D' from the previous cycle passes above
the top of the cylinder counter—clockwise and moves with the newly
formed A. After t=0, both A and B continue to grow and A is stronger

and moves further than B. The vortex A detaches from the cylinder



K=10 =5 t=T/8 (b) K=10 9=0.5 t= 2T

K=12 Q=0.25 t=T/8 (d) K=12 9=0.25 t= %T

Photos of flow visualization around a horizontal cylinder
in periodic waves. (The arrow at the cylinder center
represents the velocity vector. The arrow at the above
wave profile sketch points the phase that the wave passes
the cylinder at that moment.)
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between t=T/8 and t=T/4. The vortex A reaches the maximum distance,
which varieé from 2 to 3 diameter of the cylinder (measured from the
center of the cylinder), at t=3/8T. B is always around the periphery
of the cylinder. After t=3/8T, A and B start to reverse due to the
increase of the rightward velocity. The vortex A is swept back and
slightly touches the cylinder at 6=60°. The vortex B, which did not
detach during the forward half cycle, moves along the lower periphery
from 150° to 210° during its reversal. Between t=T/2 and t=5/8T, the
vortex A convects over the top of the cylinder and B detaches from
the cylinder at 6=210°. Then, both vortices continue to move to the
right and diffuse rapidly. At t=5/8T, two vortices associated with
quadrant III and IV, namely C and D, start to form and move upward
slightly along the surface of the cylinder due to the presence of the
vertical upward velocity. The vortices C and D grow and move coun-
terclockwise along the surface of the cylinder (from 270° to 360°).
At t=7/8T, D detaches the cylinder at 6=0° and will form a pair with
the vortex formed at the next cycle at quadrant I. The vortex C
becomes weaker and diffuses in the boundary at 6=0° by the end of

this cycle.

At t=0, A and B have the same size and pattern of formation.
After t=T/8, A detaches and B does not. At t=T/4, A and B start to
reverse and move downward during the reversal due to the presence of
the vertical water particle velocity. From a series of observation,
the vortex A sometimes hits the cylinder at 6=150° and sometimes

moves below the cylinder (does not hit it) at t=3/8T. The vortex B
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detaches at 6=210° before t=3/8T. The vortices B and A (if A did not
hit the cylinder) continue to move to the right and diffuse. The
vortices C and D form at t=T/2. Both vortices move counterclockwise
along the surface of the cylinder due to the vertical velocity. At
t=7/8T, D detaches the cyliﬁder at the top of the cylinder. - The
vortex C sometimes moves above the top of the cylinder (if A hit omn
the cylinder) and sometimes moves along the boundary of the cylinder
near 6=0°. The vortex B moves upward with the vertical velocity
after t=T/2 and diffuses gradually.

Comparing with Case (1), It is clear that vortices have more
chance to move in the vertical direction due to the increase of @ (or
vertical fluid velocity) under the same K. For example, the vortex A
convects away from the cylinder horizontally and reverses back over
the upper half for Q=0.25. For 02=0.5, A moves downward gradually
since its formation and reverses onto or under the lower half
cylinder. Also, the ‘developments of vortices in the horizontal
direction are constrained as Q becomes larger and the reversal of A

and B occurs earlier for large Q.

(3) X=5.5 and 0=0.25 (Fig. 3-7)

At t=0, the vortices A and B form. A grows and moves to the
left side and detaches at t=T/4. B grows slowly and stays around the
periphery of the surface. Both A and B start to reverse after t=T/4.
B is swept back along the lower surface of the cylinder (from 150° to
220°) and detaches the cylinder before t=T/2. Similar to case (1), A
touches the upper surface of the cylinder (at 6=60°) at t=3/8T and

moves over the top of the cylinder. After t=T/2, A almost dies out
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and B continues to move tovthe right and diffuses gradually. The
vortices D and C start to form after t=T/2 and move along the surface
counterclockwise due to the upward velocity. D detaches from the
surface after t=7/8T and cpntinues to move to the left. C merges in
the boundary of the surface at about 340°.

With the same Q and smaller K, vortices (e.g., the vortex A) can
not move as far as those with larger K in Case (l). Accordingly, it
reverses back to the cylinder earlier during the flow reversal. The

vortex A hits the cylinder at t=3/8T for K=5.5 and at t=T/2 for K=10.

(4) K=5.5 and 9=0.5 (Fig. 3-8)

The vortices A and B form with significantly unequal size and
strength at t=0. After formation, A grows and moves slightly down-
ward and B does not grow too much due to the relatively strong
vertical velocity. At t=T/4, A detaches from the cylinder and B
still stays around the surface at 9=180°. After its reversal at
t=T/4, A hits on the cylinder at §=150° and dies out between t=3/8T
and t=T/2. The vortex B detaches from the cylinder due to the
reversal at t=3T/8 and moves to the right upper direction with the
rotation of the velocity vector. D starts to form at t=T/2 and C
starts to form at t=5/8T. D detaches the cylinder from the top
(8=0°) at t=3T/4. Note that the vortex B is at the right side of D
and moves with D and diffuses. The smaller C, always moves around
the surface of the cylinder from 270° to 360°, is mixed with the
boundary at t=7T/8.

In this case, the flow pattern combines the characters of small

K from Case (3) and large Q from Case (2), that are the increase of
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vertical movements and decrease of horizontal movements. Thus, all

vortices stay around the cylinder.

(5) For 9=0.5 (the same as cases (2) and (4)) and smaller

K(=3.5) (Fig. 3-9)

With smaller K, the vortex A does not detach from the cylinder.
Before t=T/2, A hits the lower left surface (6=150°) of the cylinder
during its reversal. The B and D grow and detach due to the reversal
of the flow. Both vortices rotate around the cylinder counter-
clockwise for about 180°. The vortex A is much larger and stronger

than the vortex B during the first half cycle.

(6) For Q9=0.25 (the same as cases (1) and (3)) and larger

K(=12) (Fig. 3-10)

There exists a second vortex E at quadrant I right after the
vortex A detached (at t=T/4). The vortex E reverses to the right
"hand side of the cylinder from the top of the cylinder. In this
case, A reverses very slowly toward 6=90° and its strength is
relatively weak as it approaches the surface. »The formation and
movement for vortices B, C, and D are almost the same as those for
the same Q and smaller K (=10).

Besides the cases sketched and described above, more cases were
conducted. The flow patterns of the rest of the cases are similar to
those just described. The general phenomena observed from all of the

cases in the present study are summarized in the following.
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(1)

(ii)

(iii)

(iv)

For all cases, the flow patterns are not symmetric
about t=T/2. Usually, the vortices formed during
the first half cycle (especially, the vortex A).
are stronger than those formed during the second
half cycle.

Basically, the 4 locations (one in each quadrant)
of vortex formation are similar to those for
planar oscillatory flow (Q=0, see Fig. 1.2.1-9).
The presence of the vertical velocity will shift
the separation point a little and make the formed
vortices move in the vertical direction in some
degree.

For small values of Q, the vortex A hits or passes
over the cylinder at quadrant I (i.e., the upper
half cylinder). For large @, the vortex A hits on
or passes below the cylinder at quadrant II (i.e.,
the lower half cylinder). The value of Q between
these two conditions is approximately 0.35 in the
present experiments. This value is thought to be
function of R, K, and e/D.

The vortices B and D, formed at quadrant II and IV
respectively, grow and detach from the cylinder
mainly due to the reversal of the flow instead of
the general detachment process as that in steady

unidirectional flow.
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(v) The vortex B formed at quadrant 11 always passes
the the lower half of the cylinder during the
reversal due to the downward vertical velocity.
After detachment, B convects to the right (in
quadrant III) for small Q and convects upward
(toward quadrant 1IV) for large Q.

(vi) The vortices formed during the second half cycle,
C and D, always move counter— clockwise over the
top half of the cylinder. Then, D detaches from
the top and moves with the newly formed A during
the next cycle at quadrant I. The vortex C merges
in the boundary at 6=330°-360° by the end of this
cycle.

(vii) For large Q, the vortex has more opportunity to
move in the vertical direction. And the movement
and growth of vortices in the horizontal direction
are confined due to the relatively stronger verti-
cal velocity of water particle.

(viii) For large K (note that K is based on the maximum
horizontal velocity), the vortex has more oppor-
tunity to grow and move in the horizontal direc-—
tion. Also, more vortices could form and grow
with large K (e.g., K > 12 with 0=0.25 in Fig.
3-10). For small X, the dominant vortex A does
not detach and A is much larger and stronger than

B (e.gﬂ, K < 3.5 With Q=005 in Figo 3_9)0
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(ix) Neither the wake nor the shed vortices rotate or
move synchronously with the velocity vector,
especially for small Q.
Besides, it was observed that the diffused dye slowly moved
toward the wave board during the flow visualization experiments.
This phenomenon is thought to be due to the return current effect in

a closed wave flume.

3.3 Discussion

(1) Comparison With Other's Observations

Comparing the present observations with those from Maull and
Norman (1979) for horizontal cylinders in waves, the vortex shedding
pattern they observed for K=8 and 2=0.3 is almost the same as that
for K=10 and @=0.25 in Section 3.2. They also presented the flow
pattern for Q=0.79, which is the highest @ value they reached. The
pattern they observed is similar to that observed with the highest

value of Q=0.6 in the present study.

(2) Comparison With Observations for Planar Oscillatory Flow

Comparing the present results with small 2(=0.25) with those for
planar oscillatory flow (Q=0) shown in Fig. 1.2.1-9, it is clear that
the differences are significant, especially for the second half
cycle. The flow patterns for planar oscillatory flow (Q=0) are sym-
metric, but those for horizontal cylinders in waves with Q#0 are
not. For Q=0.25, the vortices formed in the first half cycle, A and
B, are stronger and larger than C and D formed in the second half

cycle. Also, during their reversal, A and B convect over the
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cylinder from the upper and lower side respectively, but both C and D
in the second half cycle move from the upper side.

The other important difference between Q=0 and Q#0 is that asym-
metric vortices, that will cause the transverse (lift) force, for the
horizontal cylinder cases (Q#0) occurs at smaller K than that for
planar oscillatory flow (Q=0). Significant asymmetric vortices can
be observed for Q=0.5 at K=3.5 for horizontai cylinders in waves.
But, asymmetric vortices start to form at K > 4 for planar oscilla-
tory flow és shown in Fig. 1.2.1-9. - In other words, the presence of
the vertical velocity will accelerate the occurrence of asymmetric
vortices, which causes the unbalanced force called vortex—-induced
force.

It is believed that the flow pattern for horizontal cylinders in
waves tends to be similar to that for planar sinusoidal flow as Q

approaches 0.

(3) Interaction Effects Between Vortices

The formation of the vortex D is at t=5T/8 for Q=0.25 and A
reverses over the top of the cylinder in this case. The D forms at
t=T/2 for 2=0.5 while A reverses under the lower half of the cylin-
der. It is clear that the formation of D is delayed if the vortex A
convects over the upper half of the cylinder. In other words, the
vortex A, which is defined as counterclockwise, will retard the
formation of the clockwise D. The same for the lower half cylinder,
the reverse vortex B retards the formation of C. Due to the delay of
formation, the vortex C starts to form at the moment that the water

particles start to move upward. Thus, the growth of C is confined
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and the movement is usually along the surface. Before the end of a
cycle, the vortex C is very close to the boundary of the top of the
cylinder and tends to accelerate the growth of the vortex A in the
next cycle. Note that the vortices A and C have the same sign (coun-
terclockwise). This is considered as one of the reasons for A > B
since there is no vortex will enhance the formation of B. Thus, it
may be concluded when a vortex approaches a location where another
vortex is going to form and grow, the former will enhance the latter
if they have the same sign and the former will retard the latter if

they have the opposite sign.

(4) Asymmetry of Flow Patterns

From all of the observations, the vortices form and grow during
the first half cycle appear stronger than those observed in the
second half one. The vortex A, associated with quadrant I and formed
under the wave crest, is always strongest and thence the dominant
one. The main reason is thought to be the nonlinearity of waves,
which makes the horizontal velocity under the crest (t=0) greater
than that under the trough (t=T/2). The enhancement and retardation
between vortices (interaction effect) will enhance the asymmetry of
the flow pattern around a horizontal cylinder in waves as discussed
in the last paragraph.

The vortex A is always stronger and larger than the vortex B
formed in the second quadrant. The main reason is that the downward
vertical velocity retards the development of B. The interaction
effect discussed in (3) and the small velocity gradient between the

top and the bottom are thought to be possible reasons for A > B.
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Thus, the fact that A > B is getting significant for small K (compare

Fig. 3-6 with Fig. 3-9) and large Q (compare Fig. 3-7 with Fig. 3-8).

(5) Effect of Vortex Formation and Movement on Forces

As discussed in Section 2.6, the forces induced by the formation
and movement of vortices can be qualitatively estimated by the
Blasius' equation, i.e., Eqs. (2-27) and (2-28).

From flow visualization and Figs. 3-5 to 3-10, only the vortiées
A and B (and E) dominate the flow field during the first half cycle.
The D' from the previous cycle has a minor effect. Thus, the force
induced by the movement of vortices is mainly the summation of the
forces from these vortices. In the second half cycle, the vortices C
and D dominate. The vortices from the previous cycle, i.e. A, B and
E, have minor contributions.

From the observed flow patterns and Eqs. (2-27) and (2-28), the
direction of forces induced by the movement of dominant vortices can
be judged. For example, the vortex A induces downward forces and B
induces upward forces. There exists a downward forces during the
first half cycle as the effect of A is greater than that of B, and
vice versa.

For large K, more vortices can form and move. These vortices
will modify the induced force in both directions, especially in the
vertical direction. Let us use the vortex E in Fig. 3-10 as an
example. The newly formed E has the same effect as A. In the hori-
zontal direction, A, B and E all induce forces to the left. Thus,
the presence of E will enhance the magnitude of force in this direc-

tion (recall that total force induced by vortex movement is the
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summation of the effects from each individual vortex). But, in the
vertical direction, A induces downward forces and B induces upward
forces. Then, E will induce downward forces again and might change
the sign of the vertical force depending on the relative strength and
velocity. Thus, the presence of the vortex E will change the pattern
and increase the higher harmonics of forces in the vertical direc-

tion.
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4. LARGE-SCALE LABORATORY EXPERIMENTS OF FORCE MEASUREMENTS

Actually, the experimental data of force measurements in the
present study came from several research projects conducted at OSU
from 1981 to 1985. Even though the experiment instruments and tech-
niques were improved from time to time, the basic frame of the whole
experimental system was unchanged. In this section, thevimportant
information about the experiments is described. For more details,
the reader is suggested to refer to Nath (1981a, 1983b, 1983c,

1984a).

4.1 Wave Tank

The experiments of the present study were conducted at the O.H.
Hinsdale Wave Research Laboratory (WRL) of Oregon State University.
It is a wave flume 340 feet long, 12 feet wide and 15 feet deep in
the test region.‘ Water depths are usually 11.5 feet in the test
region so that 3.5 feet of freeboard exists.

The wave board is a flap-type board which is hinged at the
bottom and is activated by a 150-HP pump with a hydraulic servo
mechanism. Good, repeatable periodic waves can be generated with
periods of from about 1 second to 7 seconds. The wave height (trough
to crest) are limited by incident breaking up to a period of 2.5
seconds, where the wave height is about 5 feet. For periods greater
than 2.6 seconds, the maximum waQe heights are limited by either the
stilliwater free board (3.5 feet) or the availablg energy from the
wave generator. The maximum height for the 6.0 seconds waves is 3

feet. Random waves can also be generated using the on-site PDP-1l
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computer to generate the wave spectrum and the transfer function for
the board motion.

A towing carriage, capable of towing up to 500 pounds at speeds
ranging from 0.23 to 11.81 feet per second, is supported by the two
side walls of the flume and is available for towing models. Figure
4-1 shows the carriage on the wave flume. In the present study, a
cylinder subjected to waves and current is simulated by towing the

cylinder with steady velocity in a wave field.

4.2 Test Cylinders

All test cylinders in this study have a nominal diameter of 8
inches (actual diameter is 0.719 feet) and 8.7 feet long. Each
cylinder includes a two—foot long test section at the center portion
and two dummy sections at both ends to minimize the end effect. The
outer shell of each section is made up of two aluminum semi-cylin=-
ders. The shells were drilled for bolt holes (which were flush
bolted) so that the shells with different roughness could be easily
changed by removal of these bolts.

The test section is suspended from two 5/8=inch diameter alumi-
num rods that were milled on the ends to receive strain gauges in
such a manner as to measure the total horizontal and vertical forces
on the test section. The gauging length of each rod is 8 inches, and
the construction resulted with this gauge length being a fixed ended
beam. There are four beams total and the strain gauges are arranged
to eliminate any influences from torsion or from off—centered load-

ings of the hydrodynamic forces.
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In this study, four sets of cylinders with different roughness
were examined: (1) the smooth cylinder (abbreviated as HSMC8); (2)
the sand-roughened cylinder (HSRC.02); (3) the barnacle-roughened
cylinder (HBRC.2); (4) the artificially rigid sea anemone cylinder
(HRAN). Figure 4-2 shows the skins of these four types of cylin?
ders. The smooth cylinder has a smooth aluminum surface. The sand-—
roughened cylinder was made by gluing sands uniformly on the smooth
aluminum surface and is characterized by relative roughness e/D =
0.023 (e = sand size and D = diameter of the smooth cylinder). The
barnacle-roughened cylinder had dried barnacles randomly glued on and
the e/D = 0.19 is determined by circumferential measurements. The
artificially rigid sea anemone cylinder was constructed by gluing
1-5/16 inches in diameter and 3-3/4 inches wood rods on. It is a 1/3
scale ratio model to the typical structures and anemone in seas. The
spacing between artificially rigid anemones (rods) in a row, which is
parallel to the cylinder axis, is 3 inches. The distance between
rows is 3 inches and there is 1.5 inches distance shift between two
consecutive rows. The details of this model cylinder can be found in
Nath (1984a) and observed in Fig. 4-2. The relative roughness e/D,
which was determined by area projections, is 0.315 for the rigid
anemone cylinder. Table 4—-1 summarizes the abbreviation, relative
roughness, effective diameter and name of project of these four test
cylinders. 1In this table, the effective diameter factor, §, is
defined as the ratio of the éffective diameter to the smooth diam-—

eter. The effective diameters for the HBRC.2 and HRAN were obtained



Horizontal smooth

78



Horizontal barnacle roughened cylinder (HBRC.2)

Horizontal artificially rigid sea anemone cylinder (HRAN)

iz. 4-2 Test cyliaders in this study (continued).
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Table 4~1. Information about test cylinders studied in this thesis.

Effective $ Project
Test Cylinder Abbreviation e/D Diameter (Year)
5D*

Hori. SMooth HSMCS8 - 0.72 1.00 API
Cylinder (0.72)%x (1981)
Hori. Sand HSRC.02 0.023 0.75 1.046 API
Roughened Cylinder (0.72) (1984)
Hori. Barnacle HBRC.2 0.19 0.88 1.22 NSF.SG
Roughened Cylinder : (0.72) (1984)
Hori. Artificially 0.99 API
Rigid Sea HRAN 0.315 (0.72) 1.38 (1984)
ANemone Cylinder

* The smooth diameter is D.

The effective diameter is &D.
The symbol § is called the effective diameter factor.
*%* Values in the parentheses are the smooth diameter D.
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by measuring the projection area. The effective diameter for the

HSRC.02 was calculated by the grain size of uniform sand.

4.3 Measurements and Recording

‘The horizontal and vertical forces were measured together with
the wave profile and water kinematics for each test run.

The water surface profile‘was measured with a sonic profiler
mounted in an opening of the carriage directly above the test cylin-
der. The water velocities were measured for each cylinder with Marsh
McBirney current meters. Due to the presence of the cylinder, it is
impossible to measure water velocities at the same position of the
center of the cylinder. Thus, the current meter was placed 1.87
diameters clear of the top of the cylinder to minimize effects on the
current meter from the presence of the cylinder.

The force transducers were carefully calibrated by means of
providing known forces before and after the test. The details of
calibrations can be found in Nath (198la, 1984a, and 1985b).

Experimental outputs were recorded on digital magnetic tape and
strip chart records. A PDP-1l minicomputer provided software for
multiplexing and initial recording on disk. After the experiment,
data were transferred from disk to tape.

The original approach to digitize the data is to keep the time
interval small enough to avoid aliasing in the frequency domain with
respect to the fundamental wave frequency and the higher harmonics
for any frequencies under consideration. Because the Fast Fourier
Transform (FFT) algorithm was used for processing the data, each

fundamental wave period was digitized at 2N (where N is integer)
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intervals. After complete processing, the data were reduced to 32
increments (with equal spacing) per wave, from which the force coef-
ficients and other desired quantities were calculated.

Because the data in the present study came from different proj-
ects, some of the data were recorded for 10 &aves, from which 7 peak-
to—peak waves were chosen and used for data analysis. For some data,
only 4 waves were recorded, from which 3 peak-to-peak waves were
used. The details about waves recorded and used are reported in the

next section.

4.4 Test Conditions

The test conditions of force measurements for the smooth and
roughened cylinders, periodic waves and waves plus current (towing)
are summarized in Table 4-2.

The ranges of governing parameters ﬁor the present study are:

R : 0.3x10° - 1.8x10° (up to 5%10° if including current),

K ¢ 2-25 (up to 60 if including currents),

e/D: 0.(HSMC8), 0.02(HSRC.02), 0.19(HBRC.2), 0.315(HRAN),

@ :+ 0.85, 0.67, 0.55, 0.47, 0.42,

VM : 0-40, and

Uu. : 0-4.7.

In this study, horizontal cylinders were towed with steady
velocity U toward the waves. This simulates that the current is in
the direction of wave propagation, i.e., the current velocity is

positive and is added to the wave-induced velocity.
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Table 4-2. Test conditions for force measurements.

Periodic Waves Waves Plus Towing
Cylinders test No. of | No. of test No. of | No. of
conditions runs waves| conditions runs waves
T=2.5,3.7,4.6,
5.3,6. sec
8 ’ :
R A A > — | —
depends on T
T=4.6 sec.
HSRC . 02 " " 17 7 |H=4.0 ft 22 3-7%
U=0-9.6 ft/sec
T=3.7 sec.
HBRC.2 " " " 14 7 |H=3.5 ft 8 3-7%
' U=.9-9.2 ft/sed|
T=3.7 sec.
HRAN " " 14 7 |H 3.5 ft 8 3-7%
U=2.5-8.5ft/sed

* depending on tow speed
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Since cylinders were towed into wa&es, the period experienced by
the cylinder is different from the actual wave period, T, and is

called the apparent period, Tap'

= _T -
Tap = ] —T (4-1)
c
in which C is the wave celerity. Thus, the apparent wave period
should be used in the dimensionless parameters K (Eq. 2-3) and VM
instead of the actual period. However, the wave—induced kinematics

must still be predicted by using the actual wave period (see Teng and

Nath 1985).
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5., FORCES ON HORIZONTAL CYLINDERS IN PERIODIC WAVES

In this chapter, the forces on horizontal cylinders in labora-=
tory periodic waves are studied in several respects. First, the
variations of measured forces, from wave to wave in a train of
periodic waves, are examined. Then, the forces based‘on the Morison
equation; the maximum and the rms forces, and the harmonic components
of forces are studied. Finally, the forces between horizontal and
vertical cylinders are compared.

In this study, because the water depth and cylinder elevation
are fixed for all runs, the shape parameter, Q, is mainly determined
by the wave period, T. The nonlinearity of waves has a negligible
effect on the determination of Q. Herein, the rums with the same
wave period are considered to have the same Q. Note that values of
B(=D2/Tv) are also the same for runs with the same T. Thus, Q and B
are related. Table 5-1 presents the Q and B values for the associ-

ated wave periods used in the present experiments.

Table 5-1. Values of Q and B with respect to T.

T(sec.) Q B*
2.5 0.85 1.47x10%
3.7 0.67 0.99x10%
4.6 0.55 0.80x10%
5.3 0.47 0.69x10%
6.0 0.42 0.61x10%

*based on D = 8" and temperature = 50°F
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5.1 Wave-to-Wave Variations of Forces

From flow visualization experiments (Chapter 3), it is observed
that the wake and the vortex pattern may vary from wave to wave in a
train of periodic waves. Accordingly, the flow induced forces in
" both the horizontal and vertical directions may vary from wave to
wave. Besides, in the laboratory, waves can not be repeated per-
fectly in a train of periodic waves. For example, for the wave
heights, the ratios of the standard deviation (o) to the mean value
(m) over a train of periodic waves in this study have values up to
3%. (Note that this ratio (o/m) of measured forces will be used to
show the wave-to-wave variation of forces.) In addition, there could
be other un—-identified or unknown reasons for wave—to-wave variation
of forces, e.g., coherence effect.

Figures 5.1-1 and 5.1-2 show two records of wave profile and
force measurements under 7 consecutive waves. Froﬁ these two exam—
ples, it is clear that wave-to-wave variations exist for both ampli-
tude and phase. In the following sections, the mean values of
measurements of a record of 7 waves are used to quantify the force
coefficients and their tendencies are studied at.that time. (For the
smooth cylinder, only 3 waves were recorded for each test run. See
Table 4-1.)

In this section, the wave—to—wave variations of the maximum
force, the root-mean—-square (rms) force and the harmonic component'of
forces are examined to see wheﬁher theré is any tendency for these
variations. The standard deviation (o) and the ratio of the standard

deviation to the mean value (o/m) of these forces are used to examine
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the variations. The mean values of these forces will be studied in
Sections 5.3 and 5.4.

In this study, data for the smooth cylinder (HSMC8) only were
recorded for 3 wave cycles. Thus, three roughened cylinders
(HSRC.02, HBRC.2 and HRAN) with 7 waves data are used to analyze the
variations.

Figures 5.1-3 and 5.1-4 present the ¢/m values of the maximum
force and rms force in both directions for the sand-roughened
cylinder (HSRC.02). 1In Fig. 5.1-3, the variations of the maximum
horizontal force (empty symbols) are all below 15%. No clear trend
on Q can be observed. The variations of the maximum vertical force
(solid symbols) are higher and seem to increase as K increases or
decreases. Variations of rms forces in both directions (Fig. 5.1-4)
are smaller than those of maximum forces. The o/m values of rms ver—
tical forces are all smaller than 0.24 and are higher than those of
rms horizontal forces except the one with the smallest K and largest
Q. For larger K, the variations of horizontal rms forces are all
below 10%.

For both rougher cylinders (HBRC.2 and HRAN), the trend is
almost the same as that for the HSRC.02 as shown in Figs. 5.1-5 and
5.1-6 for the HRAN. One very important difference is that the varia-
tions for the rougher cylinder (HRAN) are clearly smaller than those
for the HSRC.02. The results for the HBRC.2 (which are tabulated in
Appendix B and not shown here for space saving) have the same trend.

The harmonic components of forces in the horizontal and vertical

directions are calculated by using Fourier analysis described in
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Section 2.4. Their mean values will be studied in Section 5.4 and
the wave-to-wave variations of each harmonic force are analyzed here.
The o/m values of the amplitude of the fundamental and the second
harmonic forces for HSRC.02 and HRAN are plotted in Figs. 5.1-7 and
5.1-8, respectively. For large K, the o/m values of the fundamental
harmonic horizontal force for HSRC.02 and HRAN are less than 0.l. In
the vertical direction, the o/m values of the fundamental harmonic of
forces are higher than those in the horizontal direction and the
trend that variations with smaller Q are greater than those with
larger Q is observed.

In Fig. 5.1-8, the o/m values for the second harmonic forces are
much higher than those for the first harmonic force and the values of
variations in both directions seem to have the same order. The ¢/m
values of the second harmonic horizontal force for small Q(< 0.47)
are smaller than those for large Q(> 0.55). This is true for all
three roughened cylinders. Variations of the second harmonic verti-
cal force do not have clear trend on Q-

The standard deviations (¢) of the phase angles (see definition
in Section 2.4) of the fundamental harmonic force in the horizontal
and the vertical direction, ¢_(1) and ¢$,(1), are shown in Fig. 5.1-9.
The ¢,(1) values are all smaller than 10° and the ¢,(1) has greater
variations (up to 20°). Combining the variations of phase angles
with amplitude variations discussed above, it is concluded that the
fundamental harmonic forces in the horizontal direction have less
variation than those in the vertical direction. Furthermore, the

phases for the second harmonic force are extremely scattered. Thus,
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the wave-to-wave variations of the second harmonic forces (both
amplitude énd phase) are much greater than those of the fundamental
harmonic forces, especially for the phase. Since the second harﬁonic
forces come mainly from the effect of vortex shedding, a relatively
large amount of variations of forces comes from the vortex shedding
phenomena.

From the flow visualizationg in Chapter 3, the principle forma-
tion and movement of vortices are in the horizontal direction for a
horizontal cylinder in waves. Thus, their induced forces are mainly
in the vertical direction. Compared with the horizontal forces, the
vertical forces contain more vortex—induced forces and less the first
harmonic forces depending on Q. It is one of the reasons that the
variations of the maximum and rms forces in the vertical direction
are greater than those in the horizontal direction as shown in Figs.
5.1-3 to 5.1-6 (because the vortex—induce forces contain more varia-
tions).

Besides the wave-to-wave variation of measured forces, Nath

(1986) examined the variability of force coefficients, Cd and C,

from wave to wave for vertical cylinders in waves. He reported that

the wave-to-wave variation of C4 and C is probably due to subtle

differences in the phase between the ambient flow conditions and the

force measurements, which are due to the vagaries of vortex sheddinge.
According to the above discussions, the wave-to-wave variation

of forces from the present data has the following characteristics:
(1) The vortex shedding phenomena have great contribution

to the wave-to—-wave variation of forces.



97

(2) The variation of the horizontal force is smaller than
that of the vertical force, partly because the vortex
shedding effect in the horizontal direction is
smaller than in the vertical direction.

(3) The variations of forces for the rougher cylinders
(HBRC.2 and HRAN) are smaller than those for the
sand-roughened cylinder (HSRC.02).

(4) 1In general, as Q decreases, the variation of hori-
zontal forces décreases and the variation of vertical
forces increases.

In spite of the variations discussed in this section, the mean

values of forces are used and studied in the later sections.

5.2 Forces Predicted by The Morison Equation

The force coefficients, C4 and C,, for the HSMC8, HSRC.02,
HBRC.2 and HRAN are shown in Figs. 5.2-1 to 5.2-4. The results for
the smooth cylinder have considerable scatter. However, it seems
that Cy values with the smallest shape parameter (9=0.42) are greater
than those with larger Q. Bearman, et al. (1985a) also presented the
values of Cd and C  for a smooth horizontal cylinder in waves from a
larger wave tank. The upper and lower bound pf their data are shown
as dashed lines in Fig. 5.2-1. In spite of the similar scatter,
their C4y values are in the same range of the present data and Cj
values are a little higher. The possible reason for the difference
is the different 8 values between these two studies. The B values

for Bearman, et al.'s data are higher than those for the present
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data. For planar oscillatory flow (Q=0), Sarpkaya (1976) also showed
that the C  values were higher for larger 8 values.

The force coefficients for roughened cylinders shown in Figs.
5.2=2 to 5.2-4 have fewer data points and seem to have less scatter.
The data with smaller § are greater than those with large Q,
especially for Cm and smallest Q. Both Cd and Cm increase as the
relative roughness, e/D, increases. Note that the smooth cylinder
diameter is used to evaluate force coefficients for roughened
cylinders here. If the effective diameters (see Section 4.2.) are
desired to use, the Cd values should be divided by the effective
diameter factor § (Table 4-1) and the C, values are divided by 62.

By examining the force traces of measured data and values pre-
dicted by the vector form of the Morison equation with the best

fitted Cd and C it seems that the vector form of the Morison equa-

m?
tion can not predict the forces on a horizontal cylinder (both the
phase and magnitude) quite well, especially for large K and small
e Figures 5.2-5 and 5.2-6 show two examples of the comparison
between measured and predicted forces.

To examine the forces predicted by the vector form of the
Morison equation, the root—-mean—-squared error, which is defined as

Eq. (5.2-1), and the ratio of the maximum predicted total force to

the maximum measured total force [(Fp)u/(Fm)u] are used.

e T[(F +(F -F )a
T I xm Fxp) ( zm zp) t
E = o (502_1)

rms (Fu)measured

2
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in which FXm is the measured horizontal force, F is the predicted

Xp
horizontal force, Fzm and sz are the vertical measured and predicted
forces, and (Fu)measured is the maximum total (horizontal + vertical)

measured force.

Table 5-2 shows the range, mean and standard deviation of these
two parameters over all the test runs for each test cylinder. From
this table, the Morison equation underpredicted the maximum total
force and generated relatively large root—mean-square errors. Also,
it seems that predictions for the roughened cylinders are a little
better than those for the smooth cylinder.

The main weakness of the vector form of the Morison equation in
predicting forces on a horizontal cylinder in waves is the lack of a
term to take the force due to the vortex shedding into account.
Thus, when determining'Cd and C , this vortex induced force is intro-—
duced into the drag and inertia term as noise and makes the force
coefficient scattered. From flow visualization experiments (Chapter
3) and Section 5.1, the vortex shedding affects the vertical force
more severely than the horizontal force. Thus, predictions of forces
in the vertical direction are usually worse than those in the hori-
zontal direction. One extreme example is the prediction for Q=0.
Under this condition, the horizontal force can be predicted by the
Morison equation quite well, but the vertical force, which now is
mostly an asymmetric vortex—induced force, cannot be predicted by
this equation at all.

As mentioned in section 1.2.2, the vortex—induced force (with

unknown magnitude, angle and sign) on a horizontal cylinder in waves
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Table 5-2. rms error and maximum force ratio for forces predicted
by the vector form of the Morison equation in waves.

(Fp)u/
E (F)
test s (rms error) n’u
cylinder range mean stapda?d range mean sta?da?d
deviation deviation
S’“‘(’I‘_’igﬁcgli“der 0.14-0.44 | 0.303| 0.062 | 0.66-0.97|0.79 | 0.08
Sa‘(‘gsgélégger 0.20-0.35| 0.259| 0.034 | 0.69-0.93| 0.82| 0.06
Barnacle Cylinder O.16—O.3O 0.217 0.043 0.72-1.00] 0.88 0.07
(HBRC. 2)
Anemone Cylinder
(HRAN) 0.21-0.26} 0.222 0.031 0.80-0.991 0.88 0.06
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is mixed with the drag and inertia force. Generally, it is almost
impossible to separate the vortex induced force from the drag and
inertia force. However, for =0 (cylinders in shallow water waves
or planar oscillatory flow), the vortex induced.transverse force is
independent of the in-line (drag and inertia) force that is predicted
by the Morison equation. In this case, the drag and the inertia
force associated with the force coefficients will not be contaminated
by the vortex—induced transverse force. That is the main reason why
the reported data for Q=0 (e.g. Sarpkaya 1976, Chakrabarti 1980)
possess less scatter and the in-line force can be predicted better
than those for the present study (0 < @ < 1) and those from Bearman,
et al. (1985a).

If the vector form of the Morison equation is used, only a rela-
tively small amount of second harmonic forces can be predicted due to
the nonlinearity of the flow. Figures 5.2-7 and 5.2-8 show the
spectral plots of the measured forces, related to the time plots of
Figse 5.2-5 and 5.2-6, for the smooth cylinder. From these two ex-
amples, it is clear that both the second harmonics of the horizontal
and vertical force are relatively significant. In other words, the
vector form of the Morison equation fails to predict the second
harmonic forces which are thought to be mainly due to the vortex
shedding phenomena. The significance of the second harmonics will be
studied in detail in Section 5.4.2.

From the results of the flow visualization experiments, it is
clearly observed that the rotation of the wake around a horizontal

cylinder in waves is not always synchronized with the velocity
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vector. For small @, the wakes do not truly rotate around the
cylinder. They just fluctuate in a small region on one side of the
cylinder due to the relatively small vertical velocity during the
first half cycle of the wave motion and then fluctuate in a small
region on the other side of the cylinder during the second half
cycle. Similar results cén be found from the flow visualization
experiments of Maull and Norman (1979). Chaplin (1984) and Grass, et
al. (1984) also concluded that there is a time lag between the rota-
tion of the wakes and the velocity vector.

The vector form of the Morison equation assumes the force on a
horizontal cylinder is the vector combination of drag force (which is
in-line with the Qelocity vector) and inertia force (which is in-line
with the acceleration vector). Due to the lag and un—-synchronization
between the wake rotation and the velocity vector, the vector form of
the Morison equation can not accurately describe the drag and inertia
force. As sketched in Fig. 5.2—9, when the rotation of the wake and
the velocity vector are not synchronized, the instantaneous drag
force (mostly form drag due to the wake) will have a component per-—
pendicular to the velocity vector. This component will be counted as
the inertia force instead of the drag force according to the vector
form of the Morison equation and will contaminate the determination
of force coefficients.

Rodenbusch and Gutierrez (1983) used the forces projected in the
instantaneous velocity direction (that include all the drag force and
a portion of the inertia force) and the least square technique to

determine Cd and Ca (=Cm—l) for horizontal cylinders in orbital
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oscillatory flow (see Section 1.2.2 for more details). Due to the
unsynchronization between the velocity vector and the wake, the Cjy
and Cm they obtained should be contaminated more or less as discussed
above and shown in Fig. 5.2-9.

From the above discussion, it may be concluded that the vector
form of the Morison equation underpredicts the maximum force on a
horizontal cylinder up to 20% and produces rms errors of from 15% to
40% due to the lack of a term taking the vortex induced force into
account and due to the unsynchronization between the wake and the
velocity vector. Because of the above weaknesses, even if good
correlations between forces coefficients and governing parameters are
obtained, the force predictions (both amplitude and phase) by using
the vector form of the Morison equation will not be much better in a
wide range of conditions. For example, if the correlation between
parameters (K and Q) and force coefficients (Cd and Cm) is very good
in Fig. 5.2-1, the prediction of forces shown in Fig. 5.2-5 and Fig.
5.2—-6 will not improve too much.

However, the vector form of the Morison equation is widely used
in the practical engineering design and research work. From an engi-
neering point of view, this equation is still an acceptable approxi-
mation providing an appropriate factor of safety is also applied in
order to approximate the maximum forces well, on a statistical basis.

Sarpkaya (1984) and Grass, et al. (1984) calculated Gy and C
from the horizontal force (they called it in-line force) of a hori-
zontal cylinder in simulated orbital flow {see Section 1.2.2 for

details). Their C4 and C, cannot be compared directly with the
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present data because the present data are obtained from the total
(horizontal and vertical) force. It is known that the vertical force
sometimes has the same magnitude as the horizontal force, depending
on Q. Thus, it is very important to consider the yertical force and
include it into the total force.

Grass, et al. (1984) and Chaplin (1985b) oscillated a cylinder
in an elliptic or circular path in still water to simulate a hori-
zontal cylinder in waves (see Section 1.2.2). One very important
difference between these simulations and large, real wave conditions
is the nonlinearity of the waves. Besides, in the real waves, the
wake and vortices rotate more or léss around the cylinder as observed
in the flow visualizations (Chapter 3) for a large enough Q. That
means that the wake encounter effect is weak, especially for deep
water waves. But, for a cylinder oscillating elliptically in still
water, the cylinder will encounter its own wake or vortices due to
its own motion in the still water. These differences could cause the

difference of the induced forces between these two cases.

5.3 Maximum and Root-Mean-Square Forces

From the last section and Table 5-2, it is shown that the vector
form of the Morison equation underpredicts the maximum force and gen-
erates large rms error. The maximum force and the root-mean-square
(rms) force are very important for the practical engineering design.
In this section, these two forces will be studied directly from the
measured forces. Besides their importance in design, these two
values have the advantage that they are relatively insensitive to the

phase or phase shift between two different components. It is well
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known that the Cq and Cp in the Morison equation are very sensitive
to the phase (see Nath 1986) and, thus, they always have considerable
scatter.
The rms force coefficients in the horizontal and in the vertical

direction, the total rms coefficient, and the maximum total force

coefficient are designated as C,., C,., C.. and Cu, respectively, and
are defined in the following.
Fxr
er = m (5.3—1)
2 P r
Fzr
CZI’ = m (5.3—2)
2 P r
(Fir+ Fir)l/z
Cer 71 7 7 (5.3-3)
= +
5 pDL(ur wr)
FU
7 P u

in which the subscripts y and r represent the maximum and the root-
mean-square value respectively. The Fp is the maximum of the total
force (the vector sum of the horizontal and vertical force). Because
the above coefficients all contain the first power of the diameter,
D, in the denominators, the coefficients are modified by dividing the
effective diameter factor, §, (see Table 4-1 for § values for
roughened cylinders) if the effective diameters are desired to be
used.

Figures 5.3-1 to 5.3-4 present the above coefficients versus K

for the smooth cylinder (HSMC8) in waves. In Fig. 5.3-1, the C
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fits well with K. The values of er with the smallest Q(=0.42, solid
triangles) are higher than the rest of the data. For Q@ > 0.42, the
trend of er on Q is not distinguishable. The solid line represents
the values of C, . from Bearman et al. (1979 and 1985b) for planar
oscillatofy flow (Q=0) and the dashed line is the er from Bearman,
et al (1985a) for vertical cylinders in waves. The differences
between cylinders in planar oscillatory flow and vertical cyiinders
in waves were discussed in Section 1.2.1. The present data for a
horizontal cylinder in waves are smaller than those for planar ;scil—
latory flow (Q=0) and vertical cylinders in waves. It is believed

that the values of CX for Q#=0 approach those for Q=0 as Q

r
approaches 0.

For C,., all data match well for K > 10. For K < 10, the data
for the largest Q(=0.85, open circles) are clearly higher than those
with smaller Q. It is reasonable because the vertical velocity is
relatively large for larger Q and the vertical force increases

accordingly. Comparing er with C the former is a little larger

zr?
than the latter for K > 10. For K <10, the difference increases with
decreasing K for Q smaller than 0.85. The reason is that, for small
K and Q, the vertical velocity is too small to make the wake move in
the vertical direction and the form drag in the vertical direction is
small. Because the vertical velocity.almost has the same order as
the horizontal velocity for Q=0.85, the difference between C . and
Cor is small, even for small K.

The total rms force coefficient, C.., has the same trend as C,.

and the tendency that the values for the smallest Q(=0.42) are higher
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is clearer for C.. than that for Cy .. In Fig. 5.3-3, the two dashed
lines represent the upper and lower bound of the data from Bearman et
al. (1985a). The pfesent data fit their data for K > 5, but are
lower for K < 5. Again, the difference is probably due to the dif-
ferent B values as discussed in Section 5.2.

In Fige 5.3-4, the maximum total force coefficient, Cu,
correlates with K and does not have clear trend on Q. Note that Cu
includes the vortex—induced force which contains great variations in
both amplutides and phases (as discussed in Section 5.1).

Due to limitations of experiments, the smallest Q obtained in
the present study is 0.42. This value is not small enough to make
the flow approach planar oscillatory flow (i.e. £=0). It is believed
that the data would approach those for planar oscillatory flow if Q
approaches zero.

Figures 5.3-5 to 5.3-8 show the above four force coefficients
against K for three roughened horizontal cylinders (HSRC.02, HBRC.2
and HRAN).

The values of C,. (Fig. 5.3-5) and C.. (Fig. 5.3-7) increase
significantly as the relative roughness (e/D) increases. If the
effective diameter is used instead of the smooth diameter, the values
for those with larger relative roughness are still higher. This
shows the effect of roughness on forces (force coefficients). The
trend that the values of Cxr and Ctr with smallest Q(=0.42, solid
triangles) are higher than the rest of the data is clearer for

roughened cylinders.
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From Fig. 5.3-6, the values of C, . correlate well with K for
each cylinder, but no clear trend on @ can be observed (Note that
there is only one data point for Q=0.85 for all roughened cylin-

C seems not to increase sig-

ders). Unlike those for C,. and C.., C,.

ﬁificantly as e/D increases, especially for those with small Q (solid
symbols). That means, from the present data, the CZr does not vary
significantly among different e/D. One notable phenomenon is that
the C,. for HBRC.2 (with larger roughness) is a little smaller than
that for HSRC.02. From Fig. 4-2, the roughness of HSRC.02 is uniform
and organized, but the roughness of HBRC.2 is nonuniform and un-
organized. Thus, the spanwise coherence and the induced forces on
HBRC.2 are reduced. This is thought to be the reason that causes Czr
of HSRC.OZ is greater than that of HBRC.2 in spite of its smaller
relative roughness. Comparing Fig. 5.3-6 with Fig. 5.3-2, it is

observed that C,  increases from the smooth cylinder to the roughened

r
cylinders. Thus, the rms vertical force coefficient increases from
smooth cylinders to roughened cylinders, but it does not have a pro-
nounced increase among diffe;ent roughened cylinders. For planar
oscillatory flow (Q=0), Sarpkaya (1976) reported the maximum lift
coefficients (iﬂe., the maximum vertical force coefficient for Q=0)
do not vary among different e/D and he (1986) showed the rms 1lift
force coefficieﬁts increase from the smooth to the rough cylinder
(see Figs. 1.2.1-7 and 1.2.1-8). This phenomenon and possible
reasons will be studied further in the following section.

Compared with the results of the smooth cylinder (Fig. 5.3-4),

the Cu values for the roughened cylinders presented in Fig. 5.3-8 are
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much higher. No clear difference of Cu values between the HSRC.02
and HBRC.2 is observed. The values of Cu for the HRAN are clearly
higher than the HSRC.02 and HBRC.2. It is observed for all three
roughened cylinders that the values of Cu for the smallest Q(=0.42)

are greater than the rest of the data.

5.4 Harmonic Analysis of Forces

In this section, the amplitude énd phase of each harmonic com-
ponent (the wave frequency is the fundamental frequency) of the hori-
zontal and vertical forces are analyzed by using Fourier analysis
described in Section 2.4.

Basically, the fundamental harmonic of the forces comes mainly
from the inertia force and the drag force. The higher harmonics of
the forces are composed of the vortex—induced force (due to the
asymmetric vortex motion) and a relaﬁively small amount of nonlinear
Morison force coming from the nonlinearity of waves and the nonlinear
drag term. By conducting a harmonic analysis of the horizontal and
vertical forces, the structure of these forces can be examined.

The amplitudes of each harmonic are normalized by the square of

the maximum horizontal velocity as follows.

Fx(n)
Cx(n) ol m— (5.4-1)
E— pDLuLl
amd
Fz(n)
Cz(n) = - (5.4-2)

1 2
7 [,')DLU.u
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in which n (an integer) represents the order of harmonics. In addi-
tion to the amplitudes, the phase angles of each harmonic are
studied. These angles are designated as ¢,(n) and ¢,(n), that repre-
sent the phase angles of the nth harmonic force in the horizontal and
vertical direction, respectively. Equations (5.4-1) and (5.4-2)
contain the first power of D. 1If the effective diame;ers are

considered, these coefficients should be divided by §.

5.4.1 Fundamental Harmonic

The values of C (1) for HSMC8 with various values of Qﬂare
plotted against K in Fig. 5.4.1-1. It is clear that Cx(l) correlates
well with K and, except for Q=0.85, the trend of Cx(l) on  is not
very clear. The best fit lines for 9=0.85 and Q=0.67 are drawn by
eye for the comparison with the following figure. 1In Fig. 5.4.1-2,
the relation between C,(l) and Q@ can be drawn, eépecially for small
K. The Cz(l) decreases as  decreases because the Morison—type force
(inertia plus drag) in the vertical direction decreases as the Q
decreases (i.e., the relative vertical velocity decreases). For
K < 10, there is a clear discrepancy of Cz(l) between data for Q=0.85
(open circles) and the rest of the data. Similar trend was observed
for C,. in Section 5.3.

In Fig. 5.4.1-2, the best fit lines of Cx(l) for 0=0.85 and
Q=0.67 from Fig. 5.4.1-1 are also drawn. It is clear that, for
K < 10, the Cz(l) with Q=0.85 is very close ﬁo Cx(l). However, Cz(l)
with smaller Q is much smaller than the associéted C,(1) for small -
K. The reason is, for small K and f, the vertical velocity might be

too small to make the wake move in the vertical direction. It is
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thought that, for K < 10, there is an Q value between 0.67 and 0.85
that has the vertical velocity strong enough to make the wake rotate
around the cylinder. For K > 10, the values of C, (1) for all Q in
this study are just a little lower than those of C,(1).

Maull and Norman (1979) used the rms ﬁorizontal velocity to
quantify K and C,(1) and found the dependence of Cx(l) on Q. In Fig.
5.4.1-3, the present data were recalculated and plotted with Maull
and Norman's data. Although the present data fall between the upper
and the lower limit of their data, the dependence on Q is still not
clear. Bearman et al. (1985a) also reported their data fell between
these limits but no trend on Q could be observed. Now, the question
is why Maull and Norman can find the dependence of Cx(l) on , but
this trend can not be clearly found from the present data and
Bearman, et al's data? The difference of B(=D2/Tv) values is thought
to be one of the possible reasons. Although B and Q are closely
related for the same test cylinder and cylinder elevation as dis-
cussed at the beginning of this chapter, for the same Q, the 8 values
may vary between different experiments and should be considered as an
important parameter. Maull and Norman conducted the experiment in a
relative small wave flume and the B values were about 200. The
experiments of the present study and of Bearman, et al. were con-
ducted in a large wave tank and 8 values for both studies were over
5000. From the data of planar oscillatory flow from Sarpkaya (1976),
it is also observed that force coefficients (Cd, Cm and rms force
coefficient) for different B values are distinguishable for small B.

However, these coefficients are very close to each other between
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different B values for 8 > 3000. That means, for large B8 values, the
force coefficients under the same K are very close and the dependence
on other parameters is hard to distinguish.

The phase angles (see definition in Section 2.4) for the funda-
mental harmonic of the horizontal and vertical forces for HSMC8 are
plotted in Figs. 5.4.1-4 and 5.4.1-5. The phase angles for the first
harmonic of horizontal forces, ¢x(l), only vary in a small range.

The trend that ¢,(1) for small @ (e.g. solid symbols) is smaller than
that for large Q (e.g. open symbols) is roughly observed. The ¢x(l)
seems to decrease slightly as K increases. It is reasonable because
the drag force tends to dominate as K increases. The ¢x(1), contain-—-
ing mostly the drag and inertia force, should approach 0° as the drag
component becomes very large. The scatter of the phase angle for the
fundamental harmonic of the vertical force'(¢z(l)) is more signifi-
cant. However, it is visible that the ¢z(l) values for smaller Q are
smaller.

The values of Cx(l) and Cz(l) for three roughened cylinders
(HSRC.02, HBRC.2 and HRAN) against K for various values of Q are
shown in Figs. 5.4.1-6 and 5.4.1-7. The Cx(l) increases considerably
as the relative roughness increases and dependence on Q is not clear.
In Fig. 5.4.1-7, the increase of C,(1), due to the increase of
roughness, is not as rapid as that of Cx(l). The Cz(l) increases
from the smooth cylinder to the sand-roughened cylinder. But, the
C,(1) does not increase significantly from HSRC.02, HBRC.2 to HRAN,
especially for those with small Q (solid symbols). The similar trend

was found for C,. in the previous section. For small Q, the vertical
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velocity might be too small to make the wake move toward the vertical
direction. Thus, for small @, the fundamental harmonic vertical
force coefficients does not vary between different roughened cylin-
ders. However, for the smooth cylinder, the wake is easier to move
due to the smooth boundary of the cylinder.- Besides, the tendency
that C (1) decreases with decreasing Q is more clear as the relative
roughness increases.

Because no clear dependence of ¢X(1) and ¢z(1) on § for the
roughened cylinders is observed, only one symbol is used to represent
each cylinder in Figs. 5.4.1-8 and 5.4.1-9. Values of ¢X(1) for
three different roughened cylinders agree quite well with one another
(Fig. 5.4.1-8). That means, in this study, the phase angle of the
fundamental horizontal force does not vary due to the change of rela-
tive roughness. Comparing to Fig. 5.4.1-4, the ¢,(1) for roughened
cylinders is slightly lower than that of the smooth cylinder. That
means, under the same K, forces on roughened cylinders are more drag-
dominant than those on the smooth cylinder.

Although the values of ¢,(1) for the roughened cylinders have a
little more scatter than those of ¢X(1), the values of ¢z(1) are
still in a small range as shown in Fig. 5.4.1-9. The $,(1) values
for three roughened cylinders have less scatter than those for HSMCS8.

From the present data, the scatter of ¢,(1) and ¢,(1) for the
roughened cylinders is less than that for the smooth cylinder. Com-
bining this result with the result of Cx(l) and Cz(l), it can be said

that the fundamental harmonic force (mainly the inertia and drag



T T T I T T T I T I T 4
160 |-
Waves Only o HSRC.02
e HBRC.2
120 |- o HRAN
80 |-
&
40 |- °he oc,°8 °eb'3- oo?d 8 &
6 (1)
0 b o o o e e e et e e e . e

—
o)
2

o ~40
)
=

~-80 |-

-120 P

e 1 ] 1 1 1 t L 1 i 1 1
0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 5.4.1-8 Phase angle of the fundamental horizontal forces for

320
280

240
(D

200

160

(degree)

120

80

40

Fig. 5.4.1-9 Phase angle of the fundamental vertical forces for

K

roughened cylinders in waves.

T J T T T T T T T I T T
i o HSRC.02
Waves Only
» e HBRC.2
o HRAN
- .o
*
o .« o 2. ..
~ & OD ® o & 9. O OC’
B o F°
8
! 1 } 1 I ] ! 1 L ] 1 [
] 2 4 6 8 10 12 14 16 18 20 22 24
X

roughened cylinders in waves.

133



134
force) on the roughened cylinders has less’variation than on the
smooth cylinder.

From the above discussions, the characteristics of the funda-
mental harmonic forces of the present data can be summarized as
follows.

(1) Both force coefficient (amplitude) and phase of the
fundamental harmonic horizontal force correlate quite
well with K and the dependence\on 8 is roughly
observed. In the vertical direction, the fundamental
harmonic force (both coefficient and phase) decreases
as { decreases.

(2) As the relative roughness increases, the fundamental
harmonic horizontal force increases even if the
effective diameter is used. It reveals that the
roughness significantly increases the fundamental
harmonic of horizontal forces.

(3) The fundamental harmonic vertical force coefficient
increases significantly from the smooth cylindef to
the roughened cylinders. However, this force coeffi-
cient does not have pronounced increase between
roughened cylinders.

(4) The fundamental harmonic forces (especially the
phase) for the réughened cylinders in both directions

have less scatter than those for the smooth cylinder.
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As mentioned at the beginning of this chapter, the fundamental
forces are mainly from the inertia and the drag components. Because
the fundamental forces (force coefficiients and phases) do not have
pronounced scatter, the drag and inertia force should not have great
variation. Thus, the scatter of Cd and Cm shown in Section 5.2. is

thought mainly from the higher harmonic forces.

5.4.2 Higher Harmonics

In this study, only the second and the third harmonic of mea-
sured forces are investigated. To compare the relative importance,
the force coefficients for these higher harmonics (i.e., Cx(n) and
C,(n), n=2 and 3) are normalized by dividing by the related funda-
mental harmonic force coefficients (Cx(l) and Cz(l)). These
coefficients are designated as C;(n) and C;(n), respectively and are
called the relative nth harmonic horizontal and vertical force coef=-
ficients. The original values of Cx(n) and Cz(n) are listed in
Appendix B.

Figures 5.4.2-1 to 5.4.2-4 present these relative horizontal and
vertical force coefficients of the second and third harmonic for the
smooth cylinder (HSMC8). From Figs. 5.4.2~1 and 5.4.2-2, it is clear
that both relative force coefficients in the horizontal direction,
C;(2) and C(3) increase as K increases. That coefficients with
smaller Q@ (solid symbols) are greater than those with larger Q (open
symbols) is roughly observed. Because none of C}(2) or C4(3) is
greater than 1.0 in this study, none of the second harmonic force
exceeds the fundamental harmonic force and none of the third harmonic

force exceeds the second harmonic force in the horizontal direction. -
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When studying the transverse force on a cylinder under planar
oscillatory flow (which is the effect of asymmetric vortex shedding),
several researchers (e.g., Sarpkaya 1976) found the transverse coef-
ficient possess a maximum at K around 10. The Cé(Z), which counts
the vortex shedding effect in the horizontal direction, also has a
local maximum at K=9 as shown in Fig. 5.4.2-1.

In the vertical direction, Cé(Z) increases rapidly from K=2.5
and also reaches the maximum at K=9 as shown in Fig. 5.4.2-3. The
C,(2) for the smaller @ (solid symbols) is clearly greater than that
for the larger 9 (open symbols). After the maximum value at K=9,
Cé(Z) with small Q decreases. The C;(Z) with larger Q decreases
mildly and, then, reaches another peak value at K=16. This trend is
similar to the transverse force of a cylinder under planar oscilla-
tory flow as reported by Ikeda and Yamamoto (1981). Actually, the
original data from Sarpkaya (1976) also have this character.

For © » 0.5, none of C;(Z) or C;(3) exceed 1.0. In other words,
the second and the third component will not be larger than the funda-
mental force in the vertical direction for large Q. For @ < 0.5,
some of the C;(Z) are greater than 1.0 and that means the second
harmonic force exceeds the fundamental force. It is believed that
C%(Z) will increase rapidly as Q decreases below the lowest Q value
here (=0.42) because the fundamental harmonic vertical force
decreases and the second harmonic force increases rapidly with
decreasing Q (decreasing vertical velocity). Note that Cé(Z)
approaches zero at K=2.5. This result confirms that the asymmetric

vortex shedding starts earlier for horizontal cylinders in waves than
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in planar oscillatory flow (i.e. K=4) as observed in the flow visual-
ization experiments (see Chapter 3). |

In Fig. 5.4.2-4, the values of Cé(3) for Q= 0.42 are much
greater than those for other values of Q including Q=0.47 which is
just a lot higher than 0.42. Thus, a value between 0.42 and 0.47 is
thought to be the critical value of @ that makes the third harmonic
force significant. Comparing with Cé(Z) in Fig. 5.4.2-3, Cé(3) for
Q=0.42 is greater than C;(2) as K > 18. This implies the stronger
third harmonic force (due to the formation and motion of the third
vortex in one half cycle with relatively stronger strength) exists
for émall Q and K > 18,

The phase angles of the second harmonic force (¢,(2) and $,(2))
for the smooth cylinder (HSMC8) are plotted in Figs. 5.4.2-5 and Fig.
5.4.2-6. No clear trend on Q can be observed. The scatter in these
plots is expected because (i) vortex shedding forces are not so
regular even under planar oscillatory flow as reviewed in Section
1.2, (ii) the sécond (or higher) harmonic force includes a portion of
the nonlinear force, coming from the wave nonlinearity and nonlinear
drag term (the square of the velocity), and (iii) the phase is very
sensitive even with a small disturbance. However, the rough trend
that these two angles increase with increasing K for K < 10 and then
keep constant is still observable. The phase angles for the third
harmonic force are more scattered than those for the second harmonic
force and are listed in Appendix B.

The relative second and third harmonic force coefficients in the

horizontal direction, C;(2) and C;(3), for roughened cylinders do not
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increase with the increase of roughness as shown in Figs. 5.4.2-7 and
5.4.2-8. That means the higher harmonic horizontal forces increase
at the same rate as the fundamental harmonic horizontal force due to
the increase of e/D. Note that the fundamental harmonic horizontal
force coefficient increases significantly as e/D increases (see
Section 5.4.1). Besides, the C%(Z) with smaller Q is greater than
that with larger @, but this tendency does not hold for C§(3).

Similar to those for the smooth cylinder (Figs. 5.4.2-3 and
5.4.2-4), the C;(Z) and Cé(3) for the roughened cylinders with small
Q are higher than those with large Q as shown in Fig. 5.4.2-9 and
5.4.2-10. None of the second and the third harmonic vertical forces
exceed the fundamental vertical force for large Q (open symbols). In
general, C;(2) and Cx(3) do not vary significantly between different
e/D values except the data with small Q@ near K=15. From the last
section, it was observed that the fundamental vertical force does not
significantly increase due to the increase of e/D. Thus, the higher
hérmonic vertical forces are still at the same range between differ-
ent e/D except near K=15. Because no data for roughened cylinders
with small Q are at K=9, the peak value at K=9 found for the HSMC8
can not be verified for the roughened cylinders.

Similar to the smooth cylinder, ¢,(2) and ¢,(2) for the
roughened cylinders have no clear relation with Q and scatter exists
somewhat as shown in Figs. 5.4.2-11 and 5.4.2-12.

In summary, the following characteristics of the higher (second

and third) harmonic forces from the present data can be stated.



2.0

1.5

C.(2)

0.0

2.0
1.5

C.(2)

1.0

0.0

2.0

1.5

C.(D)

0.0

Figo 504'2—7

o N=0.85
AQ=0.67
D 0=0.55
HSRC.02 0 N=0.47
A0=0.42
.
A
A
. 2.,
1 O 1 1 L
5 10 15 20 25 30
K
HBRC.2
.
A
L.V
> a a
1 ] 4 1 1
5 10 15 20 25 30
K
HRAN
-
A
& o 4 4 .
1 i 13 1 I S
5 10 15 20 25 30
K .

142

Cé(Z) versus K for various Q for roughened cylinders in
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2.0
© 0-0.85
A 2=0.67
0 Q-0.55
1.5 F HSRC.02 ® R=0.47
- A 9=0.42
t
c1(3)
1.0
5 F
[ )
a ° . %o ‘gt
0.0 ) . . i :
0 5 10 15 20 25 30
K
2.0
1.5 | HBRC.2
t
CX(3)
1.0 F
St
a
o o 4 e f o ﬂ P
0.0 L L t 1 2
0 5 10 15 20 25 30
K
2.0
1.5 HRAN
Al
c1(3)
1.0
SF
A A 'y -
0.0 . ¢ ,0 4. 2°F 4 .
0 5 10 15 20 25 30
K

Fig. 5.4.2-8

143

C4(3) versus K for various Q for roughened cylinders in
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(1) As K increases or Q decreases, the importance of the
higher harmonic forces in both directions increase.

(2) 1In the horizontal direction, the higher harmonic
forces are all smaller than the fundamental forces.
In the vertical direction, the higher harmonic forces
exceed or approach the fundamental harmonic forces
for small @ and large K.

(3) The higher harmonic horizontal force increase with
the increase of e/D at the same rate as the funda- -
mental harmonic horizontal forces.

(4) The relative second and the third harmonic ve;tical
force coefficients have a maximum at K=9 and K=15.
This is similar to the characteristics of transverse
force coefficients from planar oscillatory flow
(2=0). |

(5) Phase angles of the higher harmonic forces are rela-
tively more scattered than those for the fundamental
harmonic forces due to, mainly, the random nature of

the vortex shedding force.

5.4.3 Steady Component

The steady component (D.C. component) of forces on a cylinder is
considered as the result of the flow around the cylinder (see Chaplin
1984) in an open environment or return currenté if experiments are
conducted in a closed wave flume (sée Nath 1982). According to Kim
(1983), the return current in a closed wave flume has the following

characteristics:
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(i) For a specified wave period T, the return current
increases with the increase of the wave height H.
(ii) With the same wave heights, the return current for
shorter period waves is greater than that for longer
period waves.

The steady components of the measured horizontal and vertical
forces for the HSMC8 in this study are shown in Fig. 5.4.3-1. To
show the influence of H and T directly, steady forces in these
figures are not normalized by any factor.

Because most of the horizontal steady forces are negative, it
reveals that the horizontal steady force in this study is strongly
affected by the presence of return currents that cause negative hori-
zontal steady forces. The steady force with the longer wave period
(or small Q) is smaller than that with shorter period (or large Q).
This tendency is due to the character (ii) of the return current
indicated above. According to the character (i), with the same
period (the same symbol), the horizontal steady force should increase
if the wave height increases (i.e., K increases). From Fig. 5.4.3-1,
the force just increases a little as H (or K) increases, especially
for those with longer periods (solid symbols).

For small waves (K < 7), most of the vertical steady force are
positive. One possible reason for this is the viscous effect around
the horizontal cylinder as presented by Chaplin (1984). For K > 7,
the vertical steady forces for longer wave periods are very small and
do not increase with increasing H. For shorter waves, the forces are

negative and the magnitudes are larger than those for longer waves.
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For large K, the vertical steady force is the result of the mean of
the asymmetric vortex—induced force. Because the details of the
asymmetrié vortex shedding were not clearly known until now, the ver-
tical steady force induced by them can not be predicted accordingly.

For the sand-roughened cylinder (as shown in Fig. 5.4.3-2), the
horizontal steady forces with small T are in the same level as that
of the smooth cylinder. That means thé presence of the roughness
does not have a clear influence on it. The steady forces with larger
T (sdlid symbols) all become positive, but those with smaller T are
still negative.

Comparing with the result from HSMC8 (Fig. 5.4.3—1),vthe verti-
cal steady forces for HSRC.02 become positive due to the presence of
the roughness as shown in Fige 5.4.3-2. The same results hold for
the other two roughened cylinders (HBRC.2 and HRAN) that are tabu-
lated in Appendix B. Thus, the steady vertical forces are mostly
negative for the smooth cylinder but are positive for the roughened
cylinders. The reason for this phenomenon is unknown.

From the present data, the steady component of forces can be
characterized as:

(1) In this study, the horizontal steady force is mainly

due to the return current in the closed wave tank.

(2) Both horizontal and vertical steady force for the

smooth cylinder are smaller for smaller Q (or larger

T).
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(3) The vertical steady forces are strongly affected by
the roughness. For large K, these forces are mostly
negative for the smooth cylinder. They become posi-

tive for the roughened cylinders.

5.5 Horizontal vs. Vertical Cylinders

As indicated in Section 1.1 and 1.2, horizontal cylinders and
vertical cylinders in waves have some significant differences in flow
patterns around them and in the induced forces. In this section,
differences and similarities of forces acting on these two cylinders
(horizontal and vertical) in periodic waves are compared and
examined. Note that the forces on vertical cylinders considered here
were measured on a small segment of the cylinders (i.e., local
forces).

Nath (1983a) has reported that both Cq and C for the vertical
cylinder are larger than those for the horizontal cylinder for the
smooth and roughened cylinders except that values of Cq between
smooth horizontal and smooth vertical cylinders do not have appre-
ciable differences. Recall that the hydrodynamic forces acting on a
fixed cylinder due to the unsteady flow consist of three components:
the drag, the inertia and the vortex—induced forces. For vertical
cylinders, Cd and Cm are evaluated from in-line forces which include
the drag, inertia and a small portion of vortex-induced force (which
is neglected in the Morison equation). The vortex—induced force
normal to the in-line force is called the transverse force for verti-
cal cylinders and is not involved in determining Cd and Cm. But, the

values of Cq and Cm for the horizontal cylinder are determined from
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all three components (drag, inertia and vortex-induced) as discussed
in Section 5.2. When comparing the Cq and C between these two
cylinders, one must keep this difference in mind.

The following data of vertical cylinders used to compare with
those of horizontal cylinders are from Nath (1983b, 1984a). Because
the in-line force on a vertical cylinder and the horizontal force on
a horizontal cylinder are in line with the wave propagation, the term
"in-line force" is used for both cylinders here. Both the transverse
force on a vertical cylinder andlﬁhe vertical force on a horizontal
cylinder are normal to the direction of wave propagation and the
cylinder axis. Thus, these two forces are called "transverse force"
for simplicity of comparison.

Nath (1983a) defined the maximum in-line force coefficient, Cxu,

as

F
= . _x_u__ (50 5_1)

1 2
— pDLu
2 P U

Xy

He reported this coefficient is higher for vertical cylinders than
for horizontal ones.
The rms in-line, transverse and total (in-line + transverse)

force coefficients are designated as C 21 and Ctr’ respectively,

xr’ c
and their definitions are the same as Eqs. (5.3-1) to (5.3-3).
Values of these coefficients for the smooth vertical cylindef are
plotted together with those for the smooth horizontal cylinder

(HSMC8) in Figs. 5.5-1 to 5.5-3. The Cyr values of the vertical

cylinder are higher than those of the horizontal cylinder. On the
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other hand, C, . values of the vertical cylinder are smaller than
those of the horizontal one. Thus, the total rms force coefficient
(drag + inertia + vortex-induced) is needed to compare the total
forces between them. In Fig. 5.5-3, the values of C.. for the verti-
cal cylinder correlate very well with K. These .values are higher
than those for the horizontai cylinder and form an upper bound. In
other words, the total rms force acting on the vertical cylinder is
larger than that on the horizontal cylinder. The C.,. values for the
horizontal cylinder with the smallest Q(=0.42) in this study, that
have a cross bar on the representative symbols in Fig. 5.5-3, are
very close to the values of the vertical cylinder at K = 9, 15, 19,

and 23. This implies Ct values for these two cylinders are getting

r
closer if @ for the horizontal cylinder becomes smaller.

The maximym total force coefficients for the horizontal cylinder
together with the maximum in-line force coefficients for the vertical
cylinder from Nath (1985a) are shown in Fig. 5.5-4. Note that the

maximum in-~line force coefficients, C for the vertical cylinder

Xu?
are evaluated from in-line forces only and the transverse force
(induced by vortex shedding) is not included. But, the Cu for the
horizontal cylinder is evaluated from the total (drag, inertia and
vortex—induce force) force. Although the transverse force is not
included, the Cxu for the vertical cylinder is still higher and forms
an upper bound of Cu. For vertical cylinders in waves, several
studies (e.g. Chakrabarti, et al. 1976; Sawaragi, et al. 1976)

reported that the maximum transverse force might exceed the maximum

in-line force and the total resultant force might be l.4 to 1.6 times
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of the in-line force. Sawaragi et al (1976) also reported the phases
between the maximum in-line force and the maximum transverse force
are close to or, sometimes, coincide with each other. With the
transverse force included, the maximum total force coefficient for
the vertical cylinder in periodic waves is, naturally, higher than
that for the horizontal one. It can be concluded that the maximum
total force coefficient for the horizontal cylinder in periodic waves
is smaller than either the maximum in-line or the maximum total force
coefficient for the vertical cylinder. Thus, the in-line maximum
force coefficients for a vertical cylinder can be used to calculate
the total maximum force on a horizontal cylinder for engineering de-
sign and this will be a conservative design for most cases with Q#0.

The force coefficients of the first and the second harmonic
force for both cylinders in both directions are shown in Figs. 5.5-5
and 5.5-6. In the horizontal diréction, Cx(l) values for the verti=-
cal cylinder are higher than those for the horizontal cylinder and
the values of CX(Z) are at the same level for both cylinders. How-
ever, in the perpendicular direction, both Cz(l) and C,(2) for the
horizontal cylinder are greater than those for the vertical cylinder.

From the above discussions, the horizontal force on a vertical
cylinder is greater than that on a horizontal cylinder. 1In the per-
pendicular direction, the force on a vertical cylinder is smaller
than on a horizontal cylinder. Over all, the totél force on vertical
cylinders is gréater tﬁan<that on horizontal cylinders. This is also

true for the sand-roughened cylinders. Figure 5.5-7 shows the Ctr
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values for both tﬁe horizontal and the verticalrsand—roughened
cylinder.

From the flow visualization results in Chapter 3, it is seen
that the wake formed around a horizontal cylinder rotates or moves
around the cylinder (depending on Q) and the chance that the wake is
washed back on to the cylinder (wake encounter effect) reduces as Q
increases. Besides, the formation and movement of wake and vortices
around a horizontal cylinder are confined in the horizontal direction
and increase in the vertical direction due to the increase of Q@ (or
vertical velocity). These are thought to be the main reasons that
cause the difference of forces between vertical and horizontal cylin-

ders discussed above.
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6. FORCES ON HORIZONTAL CYLINDERS UNDER WAVES AND TOWING

As pointed out in Chapter 1, the existence of a current will
bias the flow pattern around a cylinder and, thence, affect the
hydrodynamic force on it. In this study, a horizontal cylinder in
the superposition principle of waves and current is simulated by
towing the horizontal cylinder in waves (see Chapter 4). 1In this
chapter, the towing (current) effect on wave forces on horizontal
cylinders is studied based on the forces on horizontal cylinders in
waves only (as discuésed in Chapter 5) and based on_the linear super-
position principle (as described in Section 2.5).

From the test conditions listed in Section 4.4, the sand~-
roughened cylinder (HSRC.02) in waves and towing has more data points
and is studied here as a base. The data from the rqugher cylinders

(HBRC.2 and HRAN) are compared to those for HSRC.02.

6.1 Forces Predicted by the Morison Equation

The vector form of the Morison equation, Eq. (2-5), with the
linearly superimposed kinematics shown in Eqs. (2-23) to (2-26) is
used to predict forces on horizontal cylinders in waves and towing.
Again, the least square method (Section 2.3) and the smooth cylinder
diameter (D=0.72 ft) were used to determine Cd and Cm’ If the
effective diameters are desired to be used, Cq and C, are modified by
dividing by the effective diameter factor § and 62, respectively.

Figure 6.1~1 shows the Cq and C of the sand-roughened cylinder
against K for the waves and towing case together with those for the

waves only case. The values of Cd seem to fit quite well between
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these two cases, although they do not overlap. The C  values for the
waves and towing case are widely scattered, especially for those with
larger tow (current) velocity (equivalently, with larger K). As
indicated by Dean (1976), if the drag forces tend to dominate, the
data are better conditioned for determining Cd’ and the Cm values
tend to be contaminated by errors and are scattered. When a cylinder
is towed with steady speed in a wave field, the drag force on the
cylinder increases rapidly as the tow velocity increases and the
inertia force becomes less and less important. Thus, Cm values for
waves and towing are not reliable and are not so important. The Cm
values for the HSMCB are included here only for interest's sake. A
more detailed discussion about this point can be found in Teng and
Nath (1983).

The values of Cd for HBRC.2 and HRAN are plotted against K in
Figs. 6.1-2 and 6.1-3. As seen, these data all fit well with those
for the waves only case. Thus, the K defined in Eq. (2-3) for waves
and towing [=(U+uwu)T/D’ in,which Uy, is the maximum wave—induced
veloéity] seems to be acceptable when it is considered as an exten-—
sion of the waves only case.

Similarly to the question raised in Section 5.2, how does the
vector form of the Morison equation with the above empirical coeffi-
cients, Cd and Cm’ predict the measured forces for the waves and
towing case? Figures 6.1-4 and 6.1-5 show two examples of comparison
between measured forces and forces predicted by the Morison equation
for U=1.80 and 4.94 ft/sec (U/uwu = 0.56 and l.42, respectively.

From these two examples, it can be seen that predictions in both
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directions for larger U match the measurements better than those for
smaller U. Table 6-1 presents the values of the ratio of the maximum
prgdicted total force to the maximum measured total force,
(FP)U/(Fm)u’ and the rms error as defined in Eq. (5.2-1) for three
roughened cylinders (HSRC.02, HBRC.2 and HRAN) in waves and towing.
Based on these two indicators, it seems predictions of forces on
horizontal cylinders for the waves and towing case by using the
vector form of the Morison equation are much better than those for
the waves only case (see Table 5-2).

The Cd values for all three cylinders are plotted against the
relative velocity, U/uwu’ in Fig. 6.1-6. Note that test runs for
each cylinder have almost the same wave conditions (see Table 4-~2)
with different tow velocities. For the sand roughened cylinder
(HSRC.02), the Cq value for the waves only case with the same wave
condition is around 1.0 (from Section 5.2). As a cylinder is towed
in the wave field, Cd values become larger than those for the waves
only case for U/uWu < 1.2 and they drop quickly as U/uwu > 1.2. For
HBRC.2 and HRAN, only one data point is below U/uwu =1.2, however,
the values of Cd for U/uwu > 1.2 are all smaller than that point.

For U/uwu > 1.0, the horizontal velocity, which is always posi-
tive and varies from U-uWu to U+uwu’ is in the opposite direction of
the towing and does not reverse. This flow may be called the "uni-

directional oscillatory flow." 1If the wake and vortices are washed

back upon the cylinder, the actual velocity around the cylinder
increases and, thence, the induced force increases (it is called wake

encounter effect, see Heideman, et. al 1979). For U/uwu > 1.0, the
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Table 6-1. RMS errors and maximum force ratios for forces predicted
by the vector form of the Morison equation under waves
and towing.

(F )

. rms p
Cylinder K VM U/uwu error (Fm)U
1.22 26.55 7.30 0.34 0.251 1.01

1.27 26.33 7.58 0.36 0.280 0.91

1.16 24 .53 6.96 0.36 0.236 0.91

1.80 29.10 10.44 0.56 0.208 0.93

1.80 27.36 10.44 0.55 0.181 0.98

2.96 32.35 16.18 0.90 0.186 0.91

2.99 32.28 16.32 0.92 0.159 0.97

3.69 34.76 19.46 1.14 0.153 0.92

HSRC.02 3.73 35.38 19.63 1.12 0.170 0.91
(T=4.6sec 4.37 39.03 22.32 1.20 0.114 0.99
H=4.0ft) 4,33 38.68 22.15 1.20 0.140 0.94
4.93 39.84 24.53 1.44 0.115 0.93

4.94 39.86 24,44 1.42 0.081 1.01

5.74 41.71 27.55 1.74 0.088 0.98

6.95 45.48 31.69 2.06 0.091 0.97

6.91 44,95 31.55 2.11 ] 0.078 1.00

8.00 48.09 34.95 2.38 0.079 1.01

8.44 48.96 36.23 2.55 0.082 1.00

8.52 49.94 36.46 2.43 0.116 | 1.10

9.05 51.18 37.94 2.57 0.103 1.15

9.59 52.02 39.39 2.80 0.116 1.15

mean =1 0.14 0.98

standard deviation ={ 0.06 0.07

2.41 23.39 11.73 1.01 0.18 1.02

3.61 26.49 15.16 1.34 0.12 1.00

HBRC.2 4.57 28.18 18.31 1.85 0.09 0.99
(T=3.7sec 5.94 31.33 22.31 2.47 0.06 1.00
H=3.5ft) 7.07 33.86 25.17 2.90 0.05 1.01
8.28 36.23 28.10 3.46 0.08 0.99

9.14 36.23 29.87 3.80 0.08 0.96

mezn =4{ 0.09 1.00

standard deviation =| 0.04 0.02

2.49 21.95 11.22 1.05 0.10 0.98

3.57 26.68 15.14 1.31 0.12 0.98

4.60 28.37 18.55 1.89 0.08 0.98

5.95 31.36 22.26 2.45 0.11 0.98

HRAN 6.82 33.39 24,57 2.78 0.11 0.98
(T=3.7sec 8.00 36.29 27.37 3.07 0.14 1.11
H=3.5ft) 8.55 36.87 28.66 3.49 0.14 1.10
8.52 37.07 28.56 3.36 0.12 1.02

mean =] 0.12 1.02

standard deviation =] 0.02 0.06
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wake and vortices are not washed back upon the cylinder. Under this
circumstance, the wake encounter effect vanishes and the force drops
down.

One might wonder why the Cd does not drop down exactly at

U/uwﬁ = 1,0. For U=u -there is an instant that the combined veloc-—

wu?
ity is zero. Due to deceleration of flow, a portion of formed vor-
tices and wake might have a chance to move back on to the cylinder.
For U/uwu > 1.2, the smallest relative veloci?y is 0.2 Uy and the
chance for the vortiées and wake to move back on to the cylinder is
nil. This needs to be verified in some way; possibly by a flow
visualization experiment. |

For large U/uwu’ Cq for waves and towing approaches the value of
the steady flow drag coefficient, Cj . Note that C4  is 0.95 for the
HSRC.02, 1.25 for the HBRC.2 and 1.45 for the HRAN (Nath 1984a and
1985b) as marked in Fig. 6.1-6.

Figure 6.1-7 shows the values of Cq for all three roughened
cylinders versus Verley-Moe number (VM = UT/D, see Section 2.1). The
data for the smooth and sand-roughened cylinder from Teng and Nath
(1983, 1985) are plotted in this figure as dashed and solid lines,
respectively. For ;he HSRC.02, our new data (1984 API project) fit
well with our old data (1982 API project), especially for large VM.
The o0l1d data with sﬁall tow velocity (VM < 5) decrease and are
smaller than those for the waves only case (Cd=l.0). Matten (1976)

reported that Cd decreases for a very small current, and then

increases as the current increases. Our old data with very small
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currents (about VM=5) seem to have the same trend but the data points

are not enough to support this result.

6.2 Maximum and Root-Mean-Square Forces

The root—mean-square and the maximum force coefficients, i.e.,

c c

zr?

Xr? Ceps and Cu, used in this section have similar definitions

as in Section 5.3, i.e., Eqs. (5.3-1) to (5.3-4). The only modifica-
tion is that the total velocity (tow velocity + wave-induced veloci-
ty) is used as the normalization factor instead of the wave—induced
velocity.

Figure 6.2-1 presents the values of the horizontal rms force
coefficient, C_ ., for the sand roughened cylinder (HSRC.02) in waves
and towing. The data for the same cylinder in waves only from
Section 5.3 are plotted as circles. The solid circles represent the
data for waves only that have the same wave period T (equivalently,
the same Q@ or B) as those for waves plus towing. Recall that all
data of the HSRC.02 in waves and towing have the same wave period
(T = 4.6 sec.) and similar wave height (H = 4 ft). The ranges of
relative velocity, U/uwu, are also marked in this figure. Consider-
ing the data with the same T (or Q), it is clear that the horizontal
rms force coefficient increases as towing is introduced. As tow
velocity continues to increase, it starts to decrease. When the
relative velocity is greater than 1.2, this force coefficient
decreases rapidly. This trend is similar to that for Cd as presented
in Section 6.1.

The vertical and the total rms forcé coefficients for HSRC.02 in

waves and towing are shown in Figs. 6.2-2 and 6.2-3 with the same
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format as in Fig. 6.2-1. The same trend as er is observed for Ctr'
The Czr just increases a little as the towing is introduced. As tow
velocity increases, it decreases. After U/uwu=l.2, it drops down
rapidly and becomes very small. Over all, it can be said the rms
force coefficients increase as the cylinder is towed into the wave
field, and then they decrease rapidly as the tow velocity is greater
than the maximum wavefinduced velocity. A reasonable conjecture is
that the same behavior would be in evidence for waves plus current,
using the linear superposition principle.

The values of C, . versus K for two rougher cylinders (HBRC.2 and
HRAN) with those for the HSRC.02 are presented in Fig. 6.2~4 and they
correlate well with K. The Cyr for the HRAN is a little higher than
that for HBRC.2, but no difference can be observed if the effective
diameters are used. The values of C . for the HSRC.02 seems a little
higher than those for the rougher HBRC.2 and HRAN. The reason is
thought to be the different T (Q or 8) used for these cylinde?s
(T = 4.6 sec. for HSRC.02 and T = 3.7 sec. for HBRC.2 and HRAN).
Thus, some other parameters should be éonsidered when studying hori-
zontal cylinders under waves and towing (current).

Actually, the X for waves plus towing [=(U+“wu)T/D] contains VM
(=UT/D) and K for wave only case (uqu/D). Figure 6.2-5 shows the
values of er versus VM. The er values for these three cylinders
decreasé as VM increases. From this figure, it seems that C,. values
for HSRC.02 are equal to or just a little smaller than those for
HBRC.2 and HRAN although the e/D value for HSRC.02 is much smaller

than for HBRC.2 and HRAN. Note that, for the waves only case, er
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values for HSRC.02 are much smaller than those for the other two
cylinders as shown in Fig. 5.3-5.

Figure 6.2-6 shows these data against relative velocity, U/uwu.
In this figure, the data for HSRC.02, unlike in Figs. 6.2-4 and
6.2-5, are clearly smaller than those for HBRC.2 and HRAN. The
parameter U/uw“ indicates the degree of the bias of a wake, i.e., the
larger the U/uwu, the greater the bias. If the U is greater than the
Yy (it is called "uni-directional oscillatory flow," see Section
6.1), the wake forms on the lee side of the cylinder only. Thus,
this parameter is important when the towing (current) effect for a
fixed wave condition is considered.

The values of C,. for three roughened cylinders versus U/uw“ are
shown in Fig. 6.2-7. The differences of CZr between different
roughened cylinders are clear. Again, the C,. values drop down sig-
nificantly for U/uwu > 1.2. The total rms force coefficients (Ctr)
for the HBRC.2 and HRAN have the same tendency as er and are not
repeatedly reported here.

The maximum force coefficients, Cu for both the waves only case
and the waves plus towing case are plotted in Figs. 6.2-8 to 6.2-10
for three roughened cylinders, respectively. The data for the waves
only case and for the waves and towing case connect well. Combining
this result with that of Cd in Section 5.1, it is thought the use of
K defined in Eq. (2-3) and the use of U+uwu to estimate kinematics
are acceptable for determining Cd and Cu when the waves aﬁd towing
case is considered as an extension of the waves only case. The

results of Cu for the rougher cylinders HBRC.2 and HRAN seem to
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posses 1éss scatter than those for the HSRC.02 as shown in Figs.
6.2-8 to 6.2-10. It is also observed that dCu/dK (the slope of the
best fit line) becomes steep as e/D increases. But, the Cu for the
waves only case increases as e/D increases. Thus, the Cu for the
waves and towing case does not have pronounced increase due to the
increase of e/D.

Figure 6.2-11 shows the Cu values for all three cylinders versus

relative velocity, U/u It seems that Cu values for three

wu *
roughened cylinders under waves and towing are at the same range and

no clear difference is observed. Note that the smooth cylinder

diameter is used to evaluate Cu and K.

6.3 Harmonic Analysis of Forces

In this section, the forces on horizontal cylinders under waves
and towing are decomposed into harmonic cémponents by using Fourier
Analysis to study towing (current) effect on wave forces.

Intuitively, the steady horizontal force increases rapidly as
the tow (current) velocity increases. The steady horizontal force
coefficients, which are normalized by the square of the towing
velocity (=U2, which is also the maximum of the steady component of
the total velocity square), for all three cylinders (HSRC.02, HBRC.2
and HRAN) are shown in Fig. 6.3-1. Values of this coefficient corre-
late well with U/uwu and decrease rapidly for U/qu > 1.2. As the
tow velocity becomes very large, the CX(O) for each cylinder
approaches their associated steady flow drag coefficient, C4 . The
steady flow drag coefficients for these three cylinders marked on the

figure were reported by Nath (1984a,1985b). Thus, for large tow
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velocity, the steady horizontal force for the wave and towing case 1is
mainly due to the towing and the contributions from waves (ué) and
the cross term between waves and towing (i.e., 2u U) are very small
and unimportant.

_Figure 6.3-2 shows the vertical steady forces (note: it is
dimensionél) for all three cylinders. The steady vertical forces,
F,(0), for the HSRC.02 are all positive and do not increase as U
increases. The values of FZ(O) for the HBRC.2 are also positive and
increase for VM > 20. But, these forces for the HRAN vary from posi-
tive to negative as U increases. It seems that F,(0) does not
increase with increase of tow velocity (at most there is a minor
increase) and no general trend for FZ(O) can be found. The reason
for the vagarious trend of F,(0) between different roughened
cylinders is unknown.

In Fig. 6.3-3, the fundamental harmonic horizontal force coeffi-
cient of the HSRC.OZ, normalized by the maximum wave-induced velocity
(i.e. uwu)’ increases rapidly as K (or U) increases. That means the
presence of the towing significantly increases the fundamental
harmonic of the horizontal force. Therefore, the square of the total
maximum velocity, (U+uw“)2, which includes the tow velocity square
(Uz) and the cross term (ZUuwu), is used as the normalization factor
in Figure 6.3-4. It is clear that Cx(l) in this figure correlates
quite well with K and seems to connect well with that for the waves
only case.

The fundamental harmonic horizontal force coefficients, CX(l),

for rougher cylinders (HBRC.2 and HRAN) are plotted in Fig. 6.3-5
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with the data for waves only. The values of Cx(l) for the waves and
towing case still correlate well with K, but can not connect well
with those for waves only, especially for the HRAN. From Figs. 6.3-4
and 6.3-5, the Cx(l) values for the waves only case do increase with
increasing e/D, but the values for the waves and towing case do not
increase as significantly as those for the waves only case. However,

when these values are plotted against U/u as shown in Fig. 6.3-6,

Wi
the increase of Cx(l) with increaseing e/D is clear. This implies
that (i) the U/uwu is an important parameter for determining the
towing (current) effect; and (ii) one had better consider more param-
eters to determine the force coefficients under wéves and towing
(current).

From the aBove studies, both the steady horizontal force and the
fundamental harmonic horizontal forces increase as the tow velocity
increases. The ratios of the amplitude of the fundamental harmonic
horizontal force to the steady horizontal force, Fx(l)/FX(O), for all
three cylinders are plotted against the relative velocity, U/uwu’ in
Fig. 6.3-7 and they all fit well. From this figure, the fundamental
harmonic force is dominant for U/uwu < 1 and, then, its importance
decreases as the tow velocity increases. This ratio approaches a
constant (about 0.25) for large U. In other words, the rate of
increase of the fundamental harmonic horizontal force is the same as
that of the steady horizontal force for large U. This also implies
that the fundamental harmonic of horizontal forces have a pronounced

increase due to the presence of steady tow.
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The values of Cz(l), which are normalized by dividing by
(uwu+U)2, of the sand roughened cylinder for waveé and towing are
plotted in Fig. 6.3-8 and their correlation with K is good. It seems
the connection of C,(1) between the waves only case and the waves
plus towing case 1s smooth. The C,(1) is very small for large tow
velocity. That means the towing does not siginificantly increase the
fundamental harmonic of vertical forces (note the normalization
factor of Cz(l) includes G and 2Uuwu).

Figure 6.3-9 shows the values of Cz(l) versus U/uWu for three
roughened cylinders. It is clear that the values are higher for the
rougher cylinders. Again, this trend is hard to find if these values
are plotted against K.

The phase angles of the fundamental harmonic of horizontal and
vertical forces, ¢X(l) and ¢z(l), for all three cylinders are plotted
against K in Fig. 6.3-10. These two phase angles correlate very well
with K, especially for large K (or U). Comparing with the results
for waves only case (Figs. 5.4.1-8 and 5.4.1-9), it seems that phase
angles in both directions decreases a little due to the increase of
tow velocity, i.e., the increase of K (or U). For large K, the ¢X(l)
approaches 0° and ¢z(l) approaches 90°, This means the forces are
dominated by the drag component because these angles show the forces
are in phase with the velocity components.

By examining the magnitudes of the second harmonic force in both
directions for all three cylinders, it seems these forces do not in-
crease too much as the tow velocity increases. That means the towing

of a cylinder (or the presence of a current) in a wave field does not
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significantly increase the second harmonic forces (mostly vortex-—
induced force).

~ The second harmonic force coefficients are normalized by the
associated fundamental force coefficients and are designated as C;(Z)
and C)(2). Figures 6.3—1i and 6.3-12 present these two coefficients
versus U/uwu for all three cylinders. The C%(Z) decreases as U
increases. It seems that the values of C;(Z) for the HRAN and HBRC.2
are smaller than those for the HSRC.02. Note that C;(Z) is normal-
ized by C.(1). From Fig. 6.3-6, C (1) values for the HRAN and HBRC.2
are greater than those for the HSRC.02. Thus, values of CX(Z) do not
have significant increase due to the increase of e/D.

In the vertical direction, Cé(Z) for the HSRC.02 (Fig. 6.3-12)
reaches the maximum near U/uwu=1.2, and then decreases for
U/uwu > 1.2, Data points for the HBRC.2 and HRAN are not enough to
support this result. Except for U/qu=1.2, C;(Z) values do not
increase as U increases. Since towing of the cylinder does not make
great increase of Cz(l), C,(2) does not significantly increase. Note
that €}(2)=C,(2)/C,(1). No clear difference of C;(2) between differ-
ent roughened cylinders can be observed for large tow velocities.
From Figs. 6.3-11 and 6.3-7, the second harmonic of the horizon-

tal force, comparing with the steady horizontal force, is relatively
unimportant as the tow velocity increases (e.g., not éver 5% for
U/uwu=2.5) and can be neglected. Meanwhile, from Figs. 6.3-8 and
6.3-12, the second harmonic of the vertical force is relatively small

for large U if compared with the horizontal steady force.
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Due to the small portion of the second harmonic force, compared
to the total force (mainly the steady force), the data are not well-—
conditioned for determining phase angle. Thus, the phase angles for

the second harmonic forces are not reliable and not presented here.
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7. CONCLUSIONS

The following major conclusions from this study can be drawn.

(1

(2)

The flow patterns around a horizontal cylinder in
waves are not symmetric between the forward and the
reverse half wave cycles due to the nonlinearity of
waves, velocity gradient between upper and lower
surface of the cylinder, and the interaction effect
between vortices. 1In general, the vortices in the
forward half cycle (under the wave crest) are
stronger than those in the second half cycle. In
the forward half cycle, the first vortex formed from
the top half of the cylinder is the largest and
dominant one. The patterns of formation and move-
ment of wake and vortices are dominated by the
dimensionless parameters K and Q.

The vortex shedding phenomena have great contribu-
tions to the wave-to-wave variations of forces.
Thus, variations of the vertical forces, that
contain more vortex—induced forces, are more severe
than those of the horizontal forces. For smaller §,
variations of horizontal forces are smaller and
variations of vertical forces are greater. It seems
that variations are smaller for the rougher cylin-

ders.



(3)

(4)

The flow visualization experiments indicated that
the wake and vortices do not always rotate synchro—
nously with the velocity vector around a horizontal
cylinder, especially for small Q. This fact makes
the force predictions through the use of the Morison
equation (or other techniques based on the instan-
taneous velocity vector) less accurate.

For horizontal cylinders in periodic waves, the vec—
tor form of the Morison equation under-predicts the
maximum forces up to 20% and generates rms errors of
from 15% to 40%. Based on the maximum force predic-
tion and the rms error, the Morison equation force
predictions for a rough cylinder are better than
those for a smooth cylinder and predictions for the
waves and towing case, by assuming the linear super-
position principle, are better than those for the
waves only case. Predictions using the vector form
of the Morison equation have the following inherent
weaknesses: (i) lack of a term taking the vortex-
induced force (mainly higher harmonic forces) into
account, and (ii) wake direction may not be colinear
with the velocity vector. However, the vector form
of the Morison equation is still an acceptable first
approximation for predicting forces on horizontal
cylinders. It is more useful if a factor of safety

is applied to the maximum force determination.
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(5)

(6)

(7
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The rms (horizontal, vertical, and total) force
coefficients correlate well with K and some degree
of dependence of these coefficients on @ is
observed. The maximum total force coefficients,
which include the drag, the inertia, and the vortex—
induced forces, correlate with K and no trend on
is observed.
Both the force coefficients (amplitudes) and phases
of the fundamental harmonic forces, which are mainly
from the drag and inertia forces, correlate well
with K. Some degrée of correlation with @ is also
shown. Thus, it is thought that the scatter of C4
and C  as observed in Section 5.2 is largely from
the higher harmonic forces which are mostly due to
the vortex shedding phenomenone.
Both the force coefficients and phases of the higher
harmonic forces (which contain’the vortex—~induced
forces énd the nonlinear Morison forces) have
greater scatter than those of the fundamental
harmonic forces. The higher harmonic forces become
important as K increases or Q@ decreases. None of
the higher harmonic forces exceed the fundamental
harmonic force in the horizontal direction. The
second and third harmonic vertical forces exceed the

fundamental harmonic vertical force for small Q.



(8)

(9

(10)

In this study, the horizontal steady force is mainly
due to the return current in a closed wave flume.
For the smooth cylinder, both the horizontal and
vertical steady forces decrease as Q decreases (or T
increases). For roughened cylinders, the vertical
steady force becomes positive.

For small Q and small K, the vertical velocity is
too small to make the wake move in the vertical
direction. Thus, the vertical force is much smaller
than the horizontal force. For larger Q (laboratory

values herein are between 0.67 and 0.81), the verti-

cal velocity is large enough to make the wake rotate

around the cylinder and the vertical (fundamental or
rms) forces have almost the same magnitude as the
horizontal forces.

For a vertical cylinder, the maximum and rms force
coefficients in line with the wave propagation are
greater than those for a horizontal cylinder, due to
(i) the reduction of the wake encounter effect, and
(ii) the confinement of the formation and movement
of wake and vortices. However, the rms vertical
force coefficient of horizontal cylinders is greater
than the rms transverse force coefficient of verti-
cal cylinders. (Note that both are ﬁormal to the

axis and to the wave direction.)
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(11)

(12)

(13)
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As a cylinder is towed in a wave field, the force
coefficients increase. However, when the tow
velocity is greater than the maximum of the wave-
induced velocity, the flow becomes unidirectional
and oscillatory and the force coefficients decrease
rapidly because the wake and vortices are not swept
back on to the cylinder to enhance the relative
velocity. When a cylinder is towed in waves, the
amplitude of the fundamental harmonic of the hori-
zontal forces strongly increase due to the presence
of towing. The steady component of horizontal
forces is mainly from the téw velocity and its coef-
ficient approaches the steady flow drag coefficient
for large tow velocity.
When the waves and towing case is considered as an
extension of the waves only case, the use of K
(which includes the wave—induced velocity and tow
velocity) and the use of the linear superposition
principle fof the kinematics are acceptable for
estimating Cy and Cu. The relative velocity
(U/UWU), which is a measure of flow bias, is an
important parameter.
Generally, force coefficients for rougher cylinders
havé less scatter and are more stable than for
smooth cylinders. When the relative roughness in-

creases, the vertical forces on horizontal cylinders
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in waves do not increase as significantly as the
horizontal forces, especially for those with small
Qe The dependences of force coefficients on Q are
clearer for rougher cylinders.
(14) 1In this study, the data cover a limited range of
parameters, especially for the waves and towing
case. Thus, it is risky to use the present results

for a wider range of conditions.
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APPENDIX A - Similarity of Average Cq and Cm

When data (wave profile, force measurements, etc.) from n con-
secutive waves under the same wave condition are recorded, there are
three ways to obtain a representative Cq and Cp for this flow and
cylindér condition if the leasﬁ square method is applied (see Section
2.3):

(a) Get Cd and C for each wave cycle, and then average
these n pairs of coefficients to get an average pair.
[They are designated as (Cd)a aﬁd (Cm)a.]

(b) Average these n cycles of wave data to obtain an
average wave record, and then obtain Cd and Cm for this
representative wave. [(Cd)b and (Cm)b.]

(¢c) Get one pair of Cd and Cm by using the continuous n
wave record as a whole. [(Cd)C and (Cm)c.]

If the n cycles of waves are perfectly repeatable, i.e, the
undisturbed velocity and acceleration used in the Morison equation
are perfectly repeatable from wave to wave, but force measurements
are not necessarily repeatable, the representative pairs of Cq and Cm
from the above three methods are theoretically identical as proven in
the following. The equations for Cq> CIn and associated abbreviations
[AA, BB, etc.] presented in Section 2.3, i.e., Egs. (2-8) to (2-14)

are used here.

(1) (Cd)a=(cd)b

The number subscripts (from 1 to n) represent the number of

waves. From Eq. (2-8),
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(A4), (BB),~ (DD) (EE),

C =

dl 1 2
5 DL[(CC)I(BB)I— (DD)I]
C.,+C,.+ «as +C

) - d1” “42 dn

a n
(a0, (3B),- D), @), (), (BB) - (OD), (8D,

% BDLL(CO), (8B) = (PD)’] 2 eDLI(CC)_(3B) = (DD)?]

Since the undisturbed velocity and acceleration are identical

from cycle to cycle, from Eqs. (2-11) to (2-13), we have

(cc); = (cC)y = = (CC), = (CC)
(BB){ = (BB), = = (BB), = (BB)
and
(DD); = (DD)y= ««. = (DD)_ = (DD).
Thus,
), - (a4), (BB),~ (DT)I(EE)1+ ceo + (AA)n(BB;n— (DD)n(EE)ﬁ
n o« 5 pDL « [(CC)(BB) - (DD)7)
[(AA)1+ ees + (AA)n] [(EE)1+ ees + (EE)n]

(BB)

- (DD)

Nj—=is

oDL[(CC)(BB) ~ (DD)?]



214

From Eq. (2-10), it is known that

27 21 N
[(AA)1+...+(AA) ] f [Fxmlul+F2mlwl]la‘lde+"'+oj [?anun+Fzmnwn]‘q\nde
n _o
n - n
Zm > >
/ {[Fxmlu1+FZmlwq]Iq'1de+...+[Fxmnun+Fzmnwn]|q|n}d6
0
- n
(Note: u, = =u =u,w = =w_ = W)
2 F +eeet F ] { + F
) f w{[ xml . Xmn~ ooy zml . Zmn W}Ialde
0
= (AA)
Similarly,
[(EE),+ «os + (EE) ]
1 . n° _ (EE)
Thus,
(BB)(AA) - (DD)(EE) _
(C)H_ = = (C.)
2 onLiccoym) - op’1 P

(2) (cd)b = (Cd)c

(Cy. = —(BB)(AA) - (DD)(EE)
a’p ~ 1 2
5 PLI(CC)(BB) = (DD)”]

Set AA=[A, BB=[B,CC=/[C,DD=/D, and EE = [ E
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(C), = J.BIA'ZIDJE

4 Loy e 5= D
Bl+-o.+ B A teeet A D +...+D E +.-.+En
T ey Ay - (T (T
Cyteeet +eeet B D,+eeet+ D
Lo (,_1__11_‘?_2) . (33—1——;——3) - (I-(—l——;——‘l).)zl

[J(By+eee#B ) o [(Aj+eeoth ) - J(D +eee4D (B +eeotE )

%—pDL[f(Cl+...+Cn) [(B *eeoB ) - (f(Dl+...+Dn))2]

- (Cd)c

In the laboratory, it is very difficult, if not impossible, to
generate a series of waves with exactly the same wave height and
shape. Thus, the undisturbed kinematics are not exactly the same
from wave to wave. However, even with slight variations of wave
heights from wave to wave in this study, it is found that the Cj and
Cm from method (a) and (b) are almost the same. Figure A-1 shows

this result for the HSRC.02 in periodic waves.
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Table B~1. Data of HSMC8 in waves.

RUN T H ¥ R ¢ c c c c c (1) (1) C (2

278 2.50 1.20 2.75 €.46 0.33 0.93 5.333 4.383 6.993 4.17 3.793 3.711 9.199
286 2.5¢ 1.8 4.16 ©.61 1.11 1,58 5.188 4.864 7.186 5.51 4.819 4.249 0.629
281 2.5 2.87 6.69 @.98 @.93 1.93 2.753 2.677 3.848 2.66 2.300 2.079 0.605
283 2.5 3.88 8.53 1.25 @9.62 1.19 2.319 2.1@3 3.138 2.11 2.119 1.674 9.417
284 3.7¢ 1.60¢ 3.87 ©.38 .37 @0.91 4.l1@6 1.784 4.477 3,09 2.817 1.195 0.067
285 3.7¢ 2.20 8.45 ©.84 g@.64 1.99 2.¢l@¢ 1.534 2.529 1.85 1.497 1.859 0.277
286 3.7¢ 3.39 12.64 1.25 @.53 @.84 1.136 1.@3¢ 1.533 1.87 @.851 0.638 @.145
287 3.7¢ 4.71 16.64 1.65 @.26 1.13 ©.978 9.812 1.271 @.95 @.714 @.540 9.221
288 3.7¢ 4.80 16.89 1.67 .37 1.1¢ 90.998 ©.789 1.272 ©.83 9.744 0.533 8.211
289 4.61 1.83 5.17 ©0.41 @.64 ©.84 2.59¢ 1.008 2.78@ 2.15 1.909 @.733 @.221
290 4.61 1.91 9.63 @.77 9.77 @.94 1.767 1.165 2.117 1.53 1.144 0.729 9.178
291 4.61 3.68 17.74 1.41 9.66 9.64 1.837 ©.771 1.293 @.83 @.685 0.456 9.9075
292 4.61 4.5 22.83 1.75 9.39 @.93 9.879 @.743 1.151 @.61 9.496 ¢.338 0.114
293 5.29 9.9¢ 5.38 ©.37 9.99 ¢.82 2.939 1.246 3.182 2.22 1.838 0.647 0.280
294 5.29 1.65 9.99 ©.69 @.51 @.77 1.598 ©.943 1.855 1,33 @.926 @.329 9.27¢
295. 5.29 2.99 17.63 1.22 .45 9.96 1.843 9.786 1.306 ©0.72 0.591 @.297 0.266
296 5.29 4.80 24.67 1.67 @.43 .88 @.756 ©.684 1.019 ©.71 9.335 9.3¢60 9.177
297 6.0 1.25 8.87 @.54 ©.96 1.88 2.362 1.195 2.647 2.64 1.431 @.3l1@¢ @€.505
298 6.0@ 2.68 15.86 2.92 9.62 1.97 1.549 1.892 1.896 1.20 ¢.777 @.284 0.289
299 6.00 2.75 19.82 1.21 @.68 ©.97 1.184 @.937 1.448 1.05 9.536 9.335 @.184
369 6.66 3.16 22.83 1.39 @.59 1.83 1.5¢ @.751 1.291 9.8l @.499 9.304 0.199
313 2.5¢ 1.20 2.75 @.4¢ 1.¢5 @.92 5.524 4.728 7.271 4.15 3.948 3,741 0.224
315 2.5¢ 1.75 4.85 $.59 .71 1.39 ©5.316 4.931 7.251 4.94 3,881 3.607 0.574
316 2.59 2.65 6.13 9.9¢ @.81 1.25 3.138 3.071 4.39¢ 2.8 2.567 2.639 .65l
318 2.5 3.82 8.56 1.25 @.21 1.24 2.182 1.947 2.925 2.58 1.891 1.885 @.612
319 3.7¢ 1.00 3.87 .38 g¢.21 ©.80 3.989 1.539 4.268 3.72 2.659 @.920 0.018
326 3.79¢ 2.11 8.¢8 #.89 9.6¢ 1.8 2.251 1.671 2.863 2.37 1.51¢ 1.419 98.369
321 3.79 2.9¢ 10.99 1.9 @.69 1.18 1.681 1.343 2.152 1.59 1.287 1.914 @.1865
322 3.7¢ 3.91 14.13 1.4 ©.85 1.43 1.385 1.169 1.812 1.17 ¢.999 @.835 @.314
323 3.7 4.15 15.20 1.51 @.4¢ 1.34 1.295 1.915 1.645 1.06 0.987 9.757 @€.249
324 4.61 @.88 4.44 .35 @.82 €.95 3,743 1.415 4.e0l 3.13 2.604 0.835 0.145
325 4.61 1.78 9.8l $.72 9.79 @.77 2.841L 1.349 2.446 1.49 1,202 9.599 9.085
326 4.61 3.62 17.83 1.42 @.53 @.92 1.926 ©.755 1.274 90.93 ¢.684 9.412 0.054
327 4.61 4.37 21.35 1.7¢ @.54 ¢.88 ©9.941 ©.77¢ 1.216 @.61 9.513 @.385 0.169
328 5.29 ©.94 5.63 @#.39 9.87 9.65 2.408 @.691 2.565 1.87 1.550 @0.343 0.225
329 5,29 1.72 1@.4¢ .72 @.70 ¢.8¢ 1.498 @.85¢ 1.723 1.21 0.945 @.483 0.245
331 5.29 3.95 23.75 1.64 @.47 @.86 ©.831 ©.738 1.112 ©0.55 9.364 90.299 0.187
332 6.0 1.3 9.22 .56 ¢.67 ©.98 2.349 1.562 2.821 1.52 1.249 9.196 98.342
334 6.p0 2.7 19.54 1.19 @.73 @.37 1.293 ©.887 1.568 ©.93 9.626 0.265 @.238
335 6.80 3.15 22.74 1.39 @.56 1.¢3 1.835 ©.724 1.263 @.86 ©0.498 8.267 9.205
340 2.5¢ 1.23 2.82 @.41 -1.34 9.99 5.855 5.4@4 7.967 5.9¢ 4.866 4.388 0.846
341 3.7¢ ©.95 3.66 @.36 @.31 ©.86 4.391 1.721 4.633 3.42 2.955 1.859 0.056
342 4.61 9.88 4.44 ©.35 @.79 @.93 3.566 1.288 3.735 2.97 2.514 0.882 9.l19
343 5.29 9.97 5.81 @.40 @.79 @.66 2.219 @.751 2.343 1.63 1.445 @.472 0.239
344 6.69¢ 1.31 9.28 0.57 1.7 1.8 2.378 1.311 2.715 1.65 1.422 ©.586 9.51l4
3145 3.7¢ 3.080 11.37 1.13 @.52 @.92 1.478 1.275 1.952 1.28 1.096 @.647 0.109
346 4.61 3.42 16.88 1.34 @.75 ¢.34 1.977 ©.924 1.419 .77 9.612 £.466 @.863
347 6.0 2.66 19.24 1.17 8.77 9.99 1.352 @.947 1.651 ©.89 @.646 @.323 0.268
349 5,29 3.90 23.46 1.62 @.37 ¢.93 @.785 ©.627 1.904 ©.59 9.362 0.217 0.224
35¢ 4.61 4.37 21.35 1.76 9.23 1.20 0.996 ©.725 1.1680 @.64 0.507 @.387 9.159



RUN

278
289
281
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
313
315
316
318
319
320
321
322
323
324
325
326
327
328
329
331
332
134
335
340
341
342
343
344
345
346
347
349
359

c, (@
6.882
2.892
9.840
6.616
¢.098
6.526
9.288
6.364
9.345
6.469
0.4080
8.177
6.123
6.384
¢.3065
6.312
6.187
6.513
6.324
6.185
6.126
6.186
6.643
6.853
9.862
6.124
6.614
6.491
8.267
8.425
6.185
6.338
8.205
6.179
0.042
6.341
9.202
6.533
8.131
6.158
6.494
6.122
6.219
6.139
6.596
9.337
6.151
2.192
6.191
6.125

Table B-1l.
€ 3 3 &M
6.066 6.0619 86 .659
0.694 6.070 81.654
9.0890 9.093 63.599
6.026 6.046 72.396
9.201 9.132 86.862
9.098 6.862 75.1862
6.0656 9.081 66.861
6.1086 6.122 79.754
g.112 ©0.134 72.475
9.695 6.113 78.179
6.037 6.068 66.826
6.835 ©.1¢3 59.¢71
6.955 ©6.138 68.694
6.189 ©6.146 66.925
6.652 @.092 69.663
@.058 6.130 66 .255
9.140 ©6.196 53.379
6.166 6.417 62.781
9.093 6.265 64.766
6.125 6.280 55.956
6.139 06,255 52.542
6.687 6.657 74.761
6.084 6.057 82 .995
9.091 6.111 74.037
0.104 6.9076 88.152
9.182 6.131 91.314
6.0637 6.672 76.808
9.145 6.888 72.493
6.182 ©.275 98. 946
9.141 6.126 76.515
6.0625 9.168 78.126
6.092 6.672 63.691
0.045 6.0676 63.835
0.074 6.146 54.591
6.085 6.163 62.605
6.074 6.671 58.461
9.087 6.167 48.571
6.167 6.373 68.769
a.076 2.258 46 .356
6.119 6.217 53.500
9.411 ©.166 113.5063
6.181 0.140 89.424
9.049 6.157 78.484
6.097 6.116 65.978
6.9823 6.173 57.854
$.132 ®8.1e2 71.895
9.036 9.081 33.869
6.678 6.216 46.584
6.096 0.122 60.344
6.119 d.144 £1.,203

8,
176.813
156.457
153,292
156.686
149.115
136.0606
121.899
144.333
127.849
122.285
116.618
67.824
167.871
116.365
91.165
66.255
115.878@
116.623
97.318
105.808
165.489
160.909
161.374
159.451
171.6062
134.251
138.678
125.969
151.845
137.269
169.754
91.382
163.400
113.627
78.517
94.297
112.839
83.5890
164.453
99.175
194.018
136.924
116.475
91.521
79.859
118.999
74.723
22.808
166.874
139.385

$,.(2)
280.420
331.711
33.023
35.204
347.482
58.041
55.736
46.195
8l.614
333.550
11.639
92.095
57.185
38.346
47.085
58.669
68.518
41.593
63.919
78.999
68.432
257.832
320.457
40.719
92.3082
124.512
37.969
49.039
75.272
80.522
162.574
21.383
27.842
35.366
67.389
66.314
65.019
66.368
63.459
81.753
290@. 955
2408.950
185.364
26.838
8l .824
56.863
353.316
63.078
66.199
63.221

3,
354.154

74.856
122.228
119.199
278.582
157.637
159.997
179.362
172.713

53.563
113.542
156.544
104.394

78.129
163.683

58.669
162.467

68.835
118.112
115.367
142.386
312.781

44.598
139,346
178.787
188.642
148.617
165.813
222.494
186.376
350.115

82.221
111.586
108.475

72.184
151.845
152.998

85.099
118.028
122.969

35.655
246.949
351.912
114.843
225.274
166.337
162.916
137.5@6
156.445
145.489

3, (3)
285.9789
269. 499
258.065
269.298
274.992
368.699
338.494

78.884

38.56¢
249.715
358. 343
341.896

14.912
194.168

226.647-

283.891
21.943
294.491
336.985
l196.7862
16.846
286.724
257.573
256.968
282.633
282.676
322.784
334.489
138. 448
53.515
40.624
226. 466
348.583
17.638
168.596
168.7790
12.859
296.751

355.377°

21.224
290.756
284.527
227.916
163.243
2796.587
311.865

23.426

13.145

27.624

89.401

Data of HSMC8 in waves (continued).

¢ _(3)
s%126
275.897
362.186
321.536
310.638
36.225
95.469
141.740
144.844
49.518
88.654
53.220
143.797
334.597
6.369
283.891
121.560
15.223
56.589
121.260
113.538
322.265
226.968
318.212
345.326
26.799
299.321
71.028
194.615
151.907
337. 466
348.265
169.876
136.350
362.260
292.572
117.138
7.763
128.819
127.482
38.054
34.815
353.787
284.679
16.950
57.985
186.782
116.784
129.294
186.985

F,(0)
9.434
-9.629
-2.374
-2.181
9.0834
-9.858
-1.733
-1.823
-1.249
-6.668
-6.729
-2.0872
-1.454
6.124
-9.862
-9.139
-8.504
6.9895
6.026
-9.0622
-0.148
6.376
6.876
-2.299
-2.662
6.263
-1.128
-1.289
-1.293
-98.991
8.255
-9.418
-1.613
-1.566
6.039
-9.087
-9.288
0.047
6.112
-9.2087
8.179
9.247
6.232
9.0673
-6.630
-9.839
-1.538
-9.176
-8.577
-1.0624

218

F,(0)
9.000
0.704
6.161
9.222
6.199

-8.498

-1.371

-1.835

-1.158
6.219

-0.412

-1.799

~0.893
6.118

-8.056
9.027

-9.501
9.145

-8.149

-9.200

-8.023
9.090
1.441
9.289

-0.200
0.068@

-0.463

-8.713

~1.385

-8.723
0.247

-0.162

-1.088

-0.876
6.137
6.018

-0.259
6.154
0.859
9.642

~-8.161

9.146
6.149
¢.115
9.045

-1.9029

-8.939

-8.0849
9.012
9.018



RUN
39
49
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Table B—-2. Data
T H K R
4.61 4.24 24.88 1.66
3.790 2.01 7.79 B.76
3.70 3.22 12.18 1.26
3.78 4.17 15.00 1.48
4.61 4.08 20.060 1.59
4.61 2.8 190.50 0.84
4.61 3.29 1l6.56 1.31
4.61 4.09 20.90 1.59
5.29 2.15 13.190 9.99
5.29 3.12 18.9%98 1.31
5.29 3.48 21.99 1.46
4.61 4.21 20.78 1l.64
6.00 2.11 15.20 ©.93
6.00 2.66 19.36 1.18
6.00 2.88 206.74 1.26
4.61 4.88 19.89 1.57
C, c (1) c,(1) c.(
1.05 3.865 4.298 8.7
2.43 2.001 1.121 3.2
1.74 1.552 1.037 9.3
1.43 1.287 #.825 8.2
1.22 1.019 #.583 3.2
1.72 1.434 0.664 6.9
1.27 1.0891 g.552 0.1
1.19 #.987 ©8.538 0.1
1.38 1.095 0.443 8.2
1.44 #.896 g.451 B.4
1.41 0.879 #.355 6.3
1.12 #.934 B.479 g.1
2.16 1.445 0@.546 8.3
1.78 1.181 ©8.367 g.4
1.74 1.0490 3.341 B.4
1.23 1.832 3.571 3.2
¢Z(l) ¢X(2) ¢Z(2)
114.90 26.46 131.25
116.55 89.39 18l1.24
183.13 4.89 119.73
113.81 21.11 127.98
116.32 26.54 134.04
111.58 3508.32 76.69
111.46 341.06 1909.4¢
118.01 24.57 151.19
134.98 76.19 18l.66
140.48 44.44 133.96
120.62 44.41 127.22
114.11 23.95 128.17
154.38 47.41 145.87
142.19 38.99 128.78
127.81 44.07 131.63
120.19 5.37 136.99

of HSRC.02

9.97
1.25
1.35
1.82
1.06
1.22
1.15
1.91
g.91
.97
1.83
8.99
1.42
1.26
1.22
1.06
2) Cz
55 3.
26 @.
11 @.
36 9.
29 4.
41 0.
68 0.
54 9.
68 0.
23 8.
61 0.
37 8.
67 0.
g4 0.
68 @.
g3 8.
5,(3)
47. 44
283.47
313.990
32.85
7.42
96.61
343.58
38.88
228,22
336.65
351.92
28.98
349.76
336.86
342.29
58.52

Cm Xr ZY Ctr
1.32 1.567 ©.998 1.441
1.9 2.827 1.932 2.355
.97 2.263 1.618 1.901
1.13 1.745 1.322 1.536
1.36 1.683 1.146 1.579
1.96 2.255 1.400 2.041
1.65 1.768 1.896 1.606
1.24 1.685 ©.982 1.459
1.20 1.843 1.947 1.720
1.55 1.733 1.253 1.738
1.48 1.781 1.691 1.642
1.26 1.565 ©.975 1.430
1.89 2.692 1.659 2.671
1.74 2.297 1.448 2.223
1.68 2.¢85 1.215 2.837
1.32 1.714 1.478 1.5760
2 ¢ (3 ¢ (3 s ()
231 9.156 ©9.186 44.082
288 ©9.208 ©8.256 59.73
373 ©9.256 $.334 44.19
172 ©.240 8.2786 47.17
161 ©0.196 9.234 42.89
271 ©9.250 ©.308 47.90
286 ©9.12¢ ©.168 39.82
165 @.122 ©8.152 42.21
252 9.128 0.226 49.62
446 ©.192 @.218 46.46
324 9.218 ©0.174 40.43
163 ©9.172 ©.224 43.082
327 ©9.194 ©0.438 45.72
435 $.198 ©8.234 42.96
347 ©.1886 ©8.239 41.19
138 ©9.174 ©.178 48.96
$,(3)  F_(0) F_(0)
142.42 -8.915 ©.275
21.92 p.067 ©0.580
51.38 -1.856 -0.414
139.42 -1.158 8.3990
113.69 -2.448 1.651
337.39 -9.627 ©.538
167.606 -1.436 @.345
162.82 -1.881 @.131
311.85 $.269 1.195
98.38 6.647 9.716
196.93 g.389 1.395
156.47 -1.98¢ ©£.154
168.54 g.195 @.855
123.87 g.132 0.618
152.16 §.539 0.958
159.31 -1.161 ©@.878

in waves.
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RUN

51
52
53
54
55
56
57
58
59
68
61
62
63

Table B-3.
T H K

3.7 2.12 8.0
3.76 3.42 12.4
3.79  4.44 15.7
3.780  4.54 16.2
4.61 2.16 11.2
4.61 3.37 16.8

4.61 4.21 28.1
5.29 2.25 13.7
5.29 3.22 29.1

5.29 3
6.6 2
6.98 2
6.0 2

a
2.45
1.93
1.48
1.63
1.74
1.42
1.33
1.32
1.33
1.42
1.76
1.56
1.53

¢, (1)
135.34
122.54
129.51
132.54
139.08
122.38
125.11
151.56
139.76
125.50
161.78
117.65
123.37

.68 22.3
.14 15.5
.76 20.1
.97 21.2

Cx(l) Cz(l)

Data

.79
1.23
1.56
l1.68
g.89
1.34
1.63
8.95
1.42
1.55
g.41
1.22
1.30

2.694 1.583 @.
1.887 1.297 4.
1.536 0.845 @.
1.596 9.866 4.
1.727 ©.936 4.
1.463 9.631 4.
1.335 ©8.559 4.
1.362 0.424 4.
1.179 @.378 4.
1.842 9.335 4.
1.826 @.464 9.
1.381 @.331 4.
1.279 ©0.333 4.

4, (2)

348.15
27.76
40.87
42 .56

337.24
11.15
41.23
42 .35
44,44
43.43
42.65
48.14
47.99

5, (2

89.97
147.34
129.33
140.08

58.19

78.78

86.76
111.12
123.49
124.11
136.71
119.01
126.33

of HBRC.02 in waves.

C C C
d Xr

1.36 1.72 3.785
1.73 1.49 2.765
1.12 1.64 2.185
1.12° 1.71 2.197
l.64 1.31 2.837
1.39 1.53 2.342
1.19 1.88 2.167
1.99 1.58 2.349
1.13 1.96 2.252
1.20 1.72 2.058
1.56 2.496 3.3390
1.49 2.08 2.641
1.43 2.27 2.579

CX(Z) Cz(2)

557 ©0.728
266 0.283
392 0.349
395 0.304
321 @.518
194 @.216
222 @9.113
483 0.596
496 0.428
445 0.279
468 0.529
438 0.234
473 0.328

6,(3)

346.79
34.98
35.86
68.16

299.21

353.63
54.51

369.19

355.02
23.89

341.88
19.34

1.87

C.(3

g.208
9.260
g.218@
8.270
g.144
g.162
g.174
8.170
g.160
8.1490
g.172
#.144
g.138

5,(3)

124.065
135.65
128.77
169.62
24.08
57.10
166.38
355.96
96.28
185.69
11l.64
188.75
185.39

2T
2.356
1.958
1.297
1.255
1.757
1.134
9.976
1.211
1.851
g.847
1.419
g.933
1.001

Cc_(3)
z

8.246
8.340
8.230
0.240
g.176
8.238
8.170
8.249
g.124
8.096
g.332
g.172
@.158

F_(0)

-0.635
-1.687
~1.442
g.841
-0.959
-1.539
-1.770
-9.176
8.565
-1.013
~9.408
8.539
g.666

Ctr
3.967
2.353
1.789
1.787
2.563
2.0140
1.844
2.138
2.018
1.808
3.6458
2.361
2.333

8, (1)

67.87
41.29
49.14
47.50
43.28
41.39
46.47
53.85
47.37
39.80
51.39
41.20
42.79

F_ (0

9.988
1.286
.756
1.238
1.051
1.137
1.925
g.618
1.411
1.635
1.891
1.485
1.506
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2.59
3.78
3.70
3.78
3.70
4.61
4.61
5.29
5.29
5.29
5.29
6.90
6.00
6.00

3.52
2.97
2.09
1.95
1.76
2.46
1.91
1.44
1.81
1.69
1.59
2.06
1.89
1.69

¢, (1)

127.16
119.14
165.19
117.88
115.49
116.84
164.61
186.94
126.31
162.22

97.19
134.13
106.35

94.88

Table B-4. Data of HRAN in waves.
H K R c C C
d m Xr
3.28 7.80 1.14 1,94 1.46 4,30
2.806 - 7.99 3.78 2.63 1.87 5.98
3.39 12.40 1.23 2.19 1.57 3.48
4,27 15.29 1.59 1.64 2.19 3.15
4.36 16.60 1.68 1.69 2.989 3.11
2.13 190.80 ©0.86 2.59 1.68 4.10
3.30 16.686 1.32 2.12 1.85 3.31
4,11 24.99 1.72 1.70 2.40 2.87
2.24 13.79 4.95 1.68 1.87 3.26
3.18 19.56 1.35 1.73 2.26 3.06
3.79 22.40 1.55 1.64 2.07 2.66
2.18 15.60 .95 2.14 2.72 4.19
2.69 19.79 1.20 1.92 2.78 3.68
2.95 22.49 1.99 2.49 3.44
Cx(l) Cz(l) CX(Z) Cz(2) CX(3)
4,177 3.065 @.556 g.755 3.172
3.685 1.998 g.514 3.658 3.214
2.418 1.307 @9.322 ©.365 3.178
2.201 1.0853 0.452 3.396 3.279
2.152 1.015 ©.398 3.346 5.292
2.682 1.334 0.424 .607 B.160
2.056 3.871 0.291 3.269 6.179
1.535 3.638 3.236 3.135 3.172
1.959 @.491 @.559 @.639 @.@86
1.634 3.452 3.619 0.492 3.100
1.384 g.461 B.566 3.308 06.160
2.237 3.364 3.607 B.643 g.186
1.834 @.444 9.691 3.382 ©.152
1.643 3.445 9.637 3.328 3.174
¢X(2) ¢z(2) ¢X(3) ¢z(3) FX
30.12 128.43 347.36 139.28 =2
358.42 86.43 19.55 111.91 -8
8.77 104.86 359.67 86.20 -2
20.34 117.13 67.63 156.58 -2
29.62 128.51 62.46 154.18 -1
316.30 46.53 354.03 162.46 -1
329.92 58.96 35.92 148. 80 -3
29.81 65.36 59.58 172.18 -3
26.47 108.56 141.54 339.15 -9
31.53 112.96 8.44 123.53 %}
44.54 116.26 43.21 168.55 [}
22.83 167.28 298.57 8.46 -9
43.86 119.19¢ 13.21 148.92 /]
44.79 1067.79 17.27 166.43 %}

C
27,
3.231
2.8805
2.013
1.637
1.593
2.236
1.5290
1.308
1.248
1.222
1.101
1.492
1.246
1.218

tr
3.062
3.993
2.791
2.492
2.451
3.589
2.815
2.562
2.838
2.672
2.343
3.755
3.276
3.0880

c,(d b (1)

g.1686 54
9.226 51
8.238 40
8.334 50
8.374 46
B.160 490
g.234 490
.238 42
g.158 47
g.126 45
g.184 41
9.338 47
0.176 47
g.194 490

©) F_(0)

.02 1.04
.52 1.91
.93 1.46
.00 2.09
.57 2.50
.45 1.77
.06 1.36
.54 1.22
.34 9.87
.19 1.67
.48 1.81
.61 1.91
.22 1.41
.44 1.68

.83
.37
.95
.41
.87
.04
.66
.98
.48
.43
.29
.51
.18
.36
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RUN

WD~ W

O sl i et et e
NP‘&\D@\JC\W‘EUNP—‘E

=
=
k4

WA S W

-

O N N el al el el et
C\C\C\C\C\C\C\C\C\C\C\C\C\C\C\C\S\C\O\G’\C\C\

C (2

8.221
6.263
0.323
8.298
9.228
0.232
9.198
8.196
9.151
8.154
6.124
#.132
9.132
0.122
8.117
0.092
6.095
0.093
8.078
0.060
06.079
0.036

P R I T R N N W T bl el

.86
.17
.08
.82
.77
. 81
.86
.82
.79
.90
.24
.19

"]']

.65
. 85
.94
.83
.92
.87
.89

.00

c
z

ssssssssssssasssssssss

K

20.
26.
26.
24
29
27.
32
32
34.
35.
39.
38.
39.
39.
41.
45.
44.
48.
48.
49.
51.

(2)

.158
.289
. 068
122
.132
.129
. 147
.105
.122
.133
. 0858
.094
.0874
.063
. 0859
.045
. 041
.043
. 0835
.043
.9838
.043

X}
55
33

.53
.10

36

.35
.28

76
38
a3
68
84
86
71
48
95
09
96
94
18

¢ (3

.138
.156
. 164
.116
.244
.262
.238
.196
286
.362
.280
.268
.394
.320
. 344
. 348
L2084
.252
.236
.634
L2186
.422

e e e ®

s oNSRNERE®

Table B-5.

1.59
2.24
2.23
2.8
2.39
2.41
3.02
3.02
3.36
3.43
3.89
3.86
4.08
4.11
4.43
5.99
5.02
5.61
5.81
5.95
6.31
6.47

s@ssss&sssssssssa&sss&

NN S

WD DDA Ua B s P W

c,(3
.186
.326
. 440
. 346
L3690
.234
. 542
.314
. 408
.392
.236
.262
.334
.222
. 294
.178
.252
.262
.204
. 346
. 242
. 346

. 00
.22
.27
.16
.80
.80
.96

99

.69
.73
.37

33

.93

94

.74
.95
.91
.00
. 44
.52
. 85
.59

—
=X RN )

18.
16.
16.
19.
19.
22
22.
24.
24.
27.
31.
31.
34.
36
36.
37.
39.

#, D

37
20
36
21
26
32
13
16
13
11
11

7
10
12
10
12
18

4
14

5.

.31
.70
.38
.23
.66
.85
.32
.04
. 87
.94
.93
.07
.58
.86
.24
.79
.09
.92
.71
54

-18.13

14.

56

. e
.30
.58
.96
.44

44
18
32
46
63

.32

15
53
44
55
69
55
95

.23

46

39

Data of HSRC.02 under waves and

=
S~
c

£

w =
=Y

O O W
NN AN

P
N

-
~

NN RRFRRRP RS SR88 S
~ -~
'S [NIFS

-
- o

[SEN)
[y
RS AR~

2.43
2.57

[
.

@
=

¢, (D

102.78
191.27
131.085
119.083
169.16
117.81
97.69
112.64
119.13
110.25
99.26
99.75
98.59
97.39
93.01
93.50
92.13
92.89
90.97
91.64@
95.56
908.33

1.12
1.31
1.05
1.87
1.22
1.16
1.21
1.19
1.21
1.17
0.97
1.082
1.05
0.98
1.83
0.96
1.00
1.902

6.91-

1.01
8.89
0.90

,.(2)

49 .
353.
18.
349.
19.
10.

8.
l4.
24.
25.
11.

7
356.

51
61
40
78
63
66
19
71
31
76
30

.80

60

.80

78

.60
.95
.12
.79
.42
.49
.88

1.14
8.91
1.73
8.95
1.49
1.84
1.33
1.60
1.77
1.17
8.92
0.84
1.53
1.66
1.66
2.46
2.03
3.51
3.74
1.76
4.98
4.082

(9]

— e e e e e e e R e B

b, (2

132.
67.
178.
155.
95.
1083.
134.
127.
106 .
82.
86 .
82.
102.
1a7.
108.
121.
188.
181.
1186.
98
125.
116.

76
86
82
23
70
92
78
6@
30
89
56
29
92
20
51
26
31
45
45

.13

65
63

.659
.215
.226
.976
.894
.119
.882
.900
.762
.696
.380
.437
.388
.302
.281
.154
.176
.165
.0848
.151
.826 0.137
.001 0.147

c

Xr zr

L0490
.140
. 047
.039
.1989
.060
.923
.788
.657
.678
.36¢
.459
. 386
.279
.277
.203
.203
.183
. 136
.211

E eSS G P

?, (3
8.35
298.30
266.37
333.84
36.71
57.58
29.15
18.54
350.23
346.57
309.92
329.28
309.44
321.54
312.51
296.97
318.77
356 .28
69.649
285.89
281 .58
240.76

a

tr
.517
.998
.982
.790
.873
.%09
.898
.867
.753
791
.342
.418
.376
.278
.267
.143
.166
.157
.832
.158
.0819
.999

[ S el el ol ot ol el il e i

¢Z(3)
1308.22
285.14
323.69
248.78
22.14
23.26
166.98
181.21
56.50
44.52
134.56
92.68
152.72
56.49
54.56
66 .56
91 .55
103.44
139.49
67.83

133.22 108.706
126.37 1208.721

towing.

L G
8.79 0.984
1.16 08.692
9.96 0,704
1.16 @.651
1.32 ©0.526
1.36 0.626
1.27 ©8.555
1.31 ©0.572
1.18 0.545
1.35 ©8.524
1.10@ 9.427
1.13 0.433
1.14 0.44¢
1.12 ©.409
1.286 0.410
$.88 ©.348
¢.97 0.362
1.13 @.355
9.97 0,302
1.85 ©.308
9.84 8.270
6.84 ©0.239
FX(O) FZ(O)
-1.636 0.421
4.154 ©0.513
6.647 1.526
4.227 1.122
10.119  2.227
18.214 2.0835
20.470 2.963
20.746 1.629
28.8080 1.755
28.207 2.201
24.452 1.463
28.265 1.462
32.899 1.480
36.108 1.383
39.432 1.956
55.142 1.687
69.652 1.504
94.664 1.054
93.867 1.557
86.216 1.355

1.236
0.9089

Cz(l)
0.583
6.306
0.227
9.256
9.319
8.311
8.217
0.188
8.153
6.135
0.1065
8.111
0.118
8.113
0.108
9.1082
8.103
0.0895
0.081
0.0892
0.084
0.084

c, (@

4.003
5.378
4.506
4.480
4.522
3.351
3.327
3.0834
2.908
2.383
2.515
2.377
2.247
2.218
2.858
2.092
2.122
1.890
2.131
1.964
1.883

c (M
z

0.494
1.357
1.196
0.986
8.901
0.485
.261
.185
.227
.118
.112
.087
.0881
.885
.850
.045
.024
.831
0.0827

eSS E®

ééc



c_(2)
z

8.104
8.139
@.107
9.084
9.0857
9.049
8.049

H

K

Table B

R U

3.38 23.39 2.45 ~2.41
3.78 26.49 3.22 -3.61
3.47 28.18 3.59 -4.57
3.39 31.33° 4.25 -5.94
3.44 33.86 4.85 -7.97
3.38 36.23 5.44 -8.28
2.79 36.23 5.65 -9.14

Cx(3)

B.264
3.240
9.230
3.242
9.124
0.288
2.538

c,(3) ¢ (D

0.596 36.30
0.712 15.12
9.674 18.15
9.412 19.39
9.250 18.51
8.248 34.61
0.714 32.27

-6.

A8

16.8
15.2
18.3
22.3
25.5
28.1
29.9

¢, (1)
120.92
118.69
104,25
141.96
96.89
142.98
98.62

U/u

wh
1.01
1.34
1.85
2.47
2.90
3.46
3.89

¢, (2)

342.43
27.96
11.41
27.93
23.54
55.680
63.49

€4

1.51
1.34
1.38
1.309
1.25
1.2¢

C
m
2.55
1.57
2.32
3.44
3.97
9.37

1.30 12.89

$,(2)
26.62
58.62
83.52
113.19
111.79
139.72
134.63

Xr
2.527
1.916
1.766
1.539
1.421
1.346
1.403

NN
300.05
359.43
281 .13
318.20
321.21
256.56
225.74

zr
1.139
8.631
0.445
0.305
0.239
9.201
0.204

RED
275.39

51.81
138.14
194.63
203.54
195.20
313.02

tr
2.378
1.829
1.717
1.514
1.404
1.335
1.402

F (0)
18.758
32.268
44.709
67.470
99.186

118.020
150.416

Data of HBRC.2 under waves and towing.

C

1.27
1.11
1.15
1.8
0.84
1.82
1.14

F,(0)
2.821
2.043
1.924
2.436
3.124
5.587
4.431

c (1)
9.827
9.588
0.626
8.531
0.464
0.434
9.451

CX(O)

4.630
3.551
3.071
2.743
2.588
2.469
2.583

c (1)
z

0.476
0.239
0.229
9.194
9.170
8.152
0.169

c, 0
3.496
0.225
8.132
9.099
3.090
g.117
0.976

c,(2)
0.261
#.130
0.114
0.082
0.073
8.0864
0.059

€ac¢



RUN

42
43
44
45
46
47
48
49

-

W Wwwwwwww
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c_(2)
z

8.165
9.143
9.114
9.149
0.126
9.093
3.078
9.075

H

3.36
3.81
3.43
3.43
3.45
3.66
3.45
3.57

21.95
26.68
28.37
31.36
33.39
36.29
36.87
37.07

c (3 ¢,
0.220 9.27
9.188 8.54
9.450 9.47
9.782 0.44
9.348 90.92
9.566 9.95
0.87¢ 0.98
9.320 9.63

Table B-7.

R

VM

2.48 -2.49 1l.22
3.21 -3.57 15.14
3.9 -4.68 18.55
4.28 -5.95 22.26
4.72 -6.82 24.57
5.41 -8.00 27.37
5.61 -8.55 28.66
5.64 -8.52 28.56

b, (D
8 30.19
2 23.68
6 23.22
2 25.44
2 33.02
4 25.66
4 35.32
4 26.73

U/u

1.5
1.31
1.89
2.45
2.78
3.07
3.49
3.36

() 0 (D)

122 .97
126.05
163.21
111.69
98. 81
262.12
93.53
262.63-

23.43
36.88
25.29
24.15
45.83

5.33

7.86
39.73

1.68
1.39
1.59
1.42
1.39
1.33
1.35
1.42

4,(2)
95.04
55.39
82.39
96 .19

111.99

196.06

119.77
113.44

Data of HRAN under waves and

towing.
C C C
m Xr zr tr u
2.81 2.733 1.028 2.523 1.30
2.75 2.918 8.779 1.957 l.‘f’7
3.32 1.954 ©.473 1.898 1.1l6
4.60 1.702 ©.414 1.689 1.08
6.62 1.647 0.395 1.647 1.06
4.65 1.487 ©.328 1.489 0.88
8.63 1.492 ©0.3082 1.495 ©.99
7.78 1.582 ©9.396 1,581 1.06
¢x(3) ¢z(3) FX(O) FZ(O)
162 .96 37.43 19.223 3.267
349.57 48.58 31.964 4.864
268.18 75.18 48.688 2.541
288.65 273.96 74.579 1.759
45.99 36.47 95.279 ©.899
260.74° 78.60 124.988 -0.758
284.45 327.74 143.166. -2.317
332.91 71.28 149.7961 -2.857

Y

9.996
9.669
9.728
3.584
9.533
3.409
9.406
9.458

CX(O)
4. 449
3.597
3.3049
3.022
2,938
2.801
2,809
2.958

c, (b

0.437
8.352
8.265
9.247
9.248
$.232
8.226
0.221

CZ(O)
8.756
8.547
9.172
9.471
9.028
-8.178
-9.045
~9.856

c,(2)
3.269
8.198
8.121
0.094
9.082
8.835
3.032
8.049
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