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The support structures for offshore platforms that are used to

recover raw petroleum consist of vertical, horizontal, and inclined

cylindrical members. Since the design for these platforms is

increasingly refined for large, expensive structures, the knowledge

of forces on individal cylindrical members becomes increasingly

important. This thesis emphasizes information about the horizontal

cylindrical members in periodic waves and in periodic waves with

towing (waves plus current approximation).

This thesis presents the results of a series of laboratory

experiments on four horizontal cylinders with different surfaces:

smooth, sand-roughened, barnacle-roughened, and one with rigid arti-

ficial sea anemones. Both amplitudes and phases of harmonic compo-

nents of horizontal and vertical forces are analyzed by using Fourier

analysis. It is shown that the fundamental harmonic force coeffi-

cients and phases, which come mainly from the inertia and drag force,

correlate well with the Keulegan-Carpenter number, K. Some degree of

correlation with the shape parameter of the fluid particle motions,

SI, is also shown. The higher harmonic force components, which con-



tain the vortex-induced forces and the nonlinear Morison forces,

become more important as K increases or a decreases. The force coef-

ficients, Cd and Cm, based on the vector form of the Morison equation

are utilized as well as the root-mean-square and the maximum force

coefficients to illustrate differences brought on by K, 12, and rough-

ness (e/D).

In this thesis, new information on horizontal cylinders that

were towed toward waves, which simulates the superposition principle

of waves and current, is shown. When the tow velocity becomes larger

than the maximum wave-induced velocity, the drag and the rms force

coefficients decrease rapidly, and the drag and the steady horizontal

force coefficients approach the drag coefficients for steady flow.

Flow visualization techniques are used to observe flow patterns

around stationary horizontal cylinders in waves, which are strongly

affected by K and Q.

From measurements, the wave-to-wave variations of forces are

clearly observed. It is found that the vortex motions contribute

strongly to the variations of force coefficients. The variations are

smaller in the horizontal direction and for the rougher cylinders.
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SMOOTH AND ROUGHENED HORIZONTAL CYLINDERS

IN PERIODIC WAVES AND CURRENT

1. INTRODUCTION

1.1 Background

The interest in wave forces on cylinders continues to be strong

because the subject knowledge is important, yet incomplete, for the

design of ocean structures. The main focus for this thesis is on new

information regarding the forces from periodic waves, current and

waves, and surface roughness effects, for horizontal cylinders.

1.1.1 Horizontal Cylinders in Periodic Waves

Since Morison et al. (1951) proposed the well-known Morison

equation, most studies on this subject emphasized wave forces on

vertical cylinders or similar conditions (either oscillating a cylin-

der in still water or generating a planar oscillatory flow past a

stationary cylinder). Vertical cylinders are of most importance

because they are usually support members and they constitute the main

portion of the projected elevation area of a platform. Horizontal

cylinders have been of less importance, so wave force information on

them is scarce. However, as designs are increasingly refined for

large, expensive structures, the forces on horizontal cylindrical

members are becoming more important.

The flow and resulting force characteristics around a horizontal

cylinder are different from those for a vertical cylinder, or the

similar cases mentioned above. The axis of a vertical cylinder lies

on the same plane as that of the undisturbed velocity vector and the
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vortex wake formed on one half wave cycle will sweep past the body

during a subsequent half cycle. To evaluate the force that is in-

line with the direction of wave propagation, only the horizontal

component of the time-dependent velocity and acceleration are usually

considered. The vertical forces from the vertical wave motion are

parallel to the cylinder axis and consitute mostly skin friction drag

which is negligible compared to the form drag of the in-line and

vortex-induced transverse forces. The in-line force, which consists

of the drag and the inertia force, can be predicted by the Morison

equation. The vortex-induced transverse force with uncertain magni-

tude, phase and sign is normal to the plane of the velocity vector

and the in-line force.

For a horizontal cylinder with its axis parallel to the wave

crests, the velocity vectors rotate around the cylinder in an ellip-

tic motion. In this case, the drag force (which is in-line with the

velocity vector) is not always in line with the inertia force (which

is in-line with the acceleration vector). The vortex wake formed

over a horizontal cylinder rotates, depending on Q (the orbital shape

parameter, which is the ratio of the maximum vertical velocity to the

maximum horizontal velocity), around the cylinder which is different

from that for a vertical cylinder. Under this circumstance, the

vortex-induced force, which is customarily defined to be perpendicu-

lar to the velocity vector, is not always normal to the inertia force

and is in the same plane of the velocity vector, i.e., in the same
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plane of the drag and the inertia forces. This makes the already

complicated hydrodynamic force problem more complicated.

This thesis concentrates on the forces on horizontal cylinders.

1.1.2 Current Effect on Wave Forces

It is well known that there are currents generated by wind,

earth gravity, tides and waves in the open sea. The interaction

between waves and currents are often considered in oceanography and

engineering, e.g. Longuet-Higgins (1961) and Ismail (1983). The

existence of a current for a cylinder in waves will cause a bias to

the wake structure around the cylinder. Thus, the forces will differ

from those on a cylinder in purely wavy flow or in steady flow.

However, the forces on cylinders in waves and current are nearly

impossible to determine experimentally because laboratories cannot

generate waves superimposed on currents at a Reynolds number suffi-

ciently large. In the field, it is not possible to control the waves

and current independently and it is difficult to separate the current'

effects from the wave measurements.

Engineering designers and some researchers use the simple super-

position principle for waves and current because it is expedient.

Some studies (Chandler and Hinwood, 1982; Ismail, 1983; Knoll and

Herbich, 1980) have shown this approximation to be sufficiently valid

for most design purposes. This principle is used in this study.



4

1.1.3 Marine Roughness Effect on Forces

Marine structures act as artificial substrata for marine plants

and animals. Marine growth can be found, more or less, on most of

the offshore structures in the world. Heideman et al. (1979)

reported there were 1 inch barnacles attached to the Ocean Test

Structure just 8 months after the installation of the structure.

Ralph and Troake (1980) described marine growth on North Sea oil and

gas platforms with respect to water depth. Sharma (1983) reported on

the marine growth on the Hondo platform in the Santa Barbara Channel

and suggested the marine growth thickness and height for future

structures near the Hondo platform after comparing the data reported

by Nath (1981b) from two other platforms near Santa Barbara. Nath

(1983c and 1985b) also reported the 1-, 2-, and 3-year accumulations

of marine growth from the CHEVRON SOUTH PASS 77"B" platform in the

Gulf of Mexico.

Heaf (1979) discussed the effects of marine growth on the load-

ing of a structure in five ways: (i) increased effective diameter,

(ii) increased drag coefficient due to the roughness, (iii) increased

mass and hydrodynamic added mass leading to a low natural frequency

and an increased dynamic amplification factor, (iv) increased struc-

tural weight, and (v) a change in the hydrodynamic instability from

the mass change and the vortex shedding frequency changes.

In this thesis, the influence on some aspects of marine biofoul-

ing on hydrodynamic forces on horizontal cylinders either in waves or

under waves plus current will be studied.
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1.2 Literature Review

There are a number of excellent reviews and summaries on the

studies of the wave-induced forces on marine structures, e.g.

Sarpkaya and Isaacson (1981), Hogben et al. (1977), Lin and Nath

(1980), Fallon (1984), etc. In this section, it is intended to give

necessary information for later discussion and a short review of some

important literature that will be cited in later chapters.

1.2.1 Planar Oscillatory Flow and Vertical Cylinders in Waves

The planar oscillatory flow around a cylinder is a fundamental

and important condition to study and understand for the complex prob-

lem of hydrodynamic forces. A cylinder in such flow can be con-

sidered to be an extreme case for a horizontal cylinder in shallow

water periodic waves where the vertical ambient velocity is zero

(n=0).

There are two orthogonal forces on a cylinder in planar oscilla-

tory flow: the in-line force and the transverse force. "In-line"

means co-linear with the flow direction and "transverse" means normal

to it and the cylinder axis.

The in-line force on slender cylinders is usually determined by

the Morison equation, which is a linear combination of a velocity-

dependent drag term and an acceleration-dependent inertia term.

pDL pltD
2
L

F
2 d

ulul +
4

C
m
u (1.2.1-1)

in which F = the in-line force acting on the cylinder, which is

uniform over the length considered,
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L = the length of the cylinder on which the uniform

force acts,

p = the fluid density,

D = the diameter of the cylinder,

u,u = the velocity and acceleration of the water particle,

respectively, and

Cd,Cm = the drag and inertia force coefficients.

The force coefficients may be determined from the Fourier-averaged

method, least squares method, and maximum kinematics and dynamics

method, and force-phase method. A lot of research work has been done

for planar oscillatory flow using the Morison equation, including

those done by Sarpkaya (1976), Garrison (1980), Yamamoto and Nath

(1976) and Bearman et al. (1981). They showed that Cd and Cm cor-

relate well with Keulegan-Carpenter number, K (=upT/D), and frequency

parameter a (=p2/vT). In the above parameters, T is the wave period,

v is kinematic viscosity, and p represents the maximum value.

The differences between vertical cylinders in periodic waves and

cylinders in planar oscillatory flow are the velocity gradient along

the vertical cylinder axis and the orbital water particle motion

around vertical cylinders. The horizontal velocities encountered by

a vertical cylinder in periodic waves vary with depth except for

shallow water waves. Besides, due to the orbital motion of the fluid

particles, the wake and vortices generated during one half wave cycle

might not be swept back to the same elevation of the cylinder during

the next half cycle, i.e., the vortices could move downward (after

crests pass) or upward (after troughs pass). In addition, the small
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axial skin drag force, which is induced by the vertical velocity,

acts on the surface of the cylinder and generates local disturbances,

which are greater if the surface is rougher. The disturbances will

modify the flow and wake characteristics in some presently unknown

way as discussed by Nath (1983a).

Chakrabarti (1980) showed that Cd and Cm obtained from local

forces on vertical cylinders in waves may be nearly equal to those

from planar oscillatory flow (at least in some regions of K) as seen

in Fig. 1.2.1-1. From this figure, for K > 36, the Cd values from

Chakrabarti are lower than Sarpkaya's planar oscillatory flow data,

but Cm values are higher. For small K, data from these two different

flows match well.

The maximum in-line force coefficients (Cxp
) and the rms in-line

force coefficients (Cxr), defined in Eqs. (1.2.1-2) and (1.2.1-3),

were studied by Sarpkaya (1976, 1986), Bearman et al. (1978,

1985a,b), and Nath et al. (1984b, 1986). These coefficients are

and

F
x

C = p

xp
2
1

pDLu
2

F
x

C
xr

xr 1 pDLu
2

2

(1.2.1-2)

(1.2.1-3)

in which p represents the maximum value and r represents the root-

mean-square value.
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Figure 1.2.1-2 shows the maximum in -line force coefficients from

Nath, et al. (1984b), which correlate quite well with K. In this

figure, Cds is the drag coefficient for steady flow. They also pro-

posed a new technique to obtain Cd and Cm by using maximum force

coefficients and the phase shift.

As to forces on roughened cylinders, only a few studies in the

open literature have been devoted to this topic. Sarpkaya (1976) and

Garrison (1980) reported that Cd increases and Cm decreases as the

relative roughness, e (=e/D) increases for planar oscillatory flow.

Figure 1.2.1-3 shows the results from Sarpkaya (1976). Most studies

of forces on roughened vertical cylinders in the open literature were

conducted by Nath (1983a, 1983b, 1984a, and 1985b). The Cd, Cm, and

C
xp

for the smooth (VSMC), the sand-roughened (VSRC, e =.02), and the

artificially marine-roughened (VAMRC, e =0.09) vertical cylinders are

plotted in Fig. 1.2.1-4 after Nath (1983a). The Cd and the Cxp

increase significantly as the relative roughness increases. The dif-

ference of Cm between the smooth and the sand roughened cylinder is

not clear, but the Cm increases rapidly for the artificially marine-

roughened cylinder.

The transverse force is mainly generated by the asymmetric

vortex shedding and is strongly affected by the resulting pattern and

frequencies. Due to the complexity and irregular nature of this

phenomenon, there is not a widely accepted model that predicts the

transverse force trace (magnitude, phase, and direction).

Most of the studies (e.g. Sarpkaya 1976 and 1986, Yamamoto and

Nath 1976, Isaacson and Maull 1976) used the maximum transverse coef-
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ficient (Cu) and the rms transverse coefficient (Ctr), that have

similar definitions as in Eqs. (1.2.1-2) and (1.2.1-3), to character-

ize the lift force. Figure 1.2.1-5 shows values of Ctp and Ctr

obtained by Sarpkaya (1976 and 1986) were highly correlated with K

and a. Several researchers (Chakrabarti, et al. 1976; Isaacson and

Maull 1976; Maull and Milliner 1978) studied the harmonic transverse

force coefficients, as defined by using Fourier analysis, as follows:

F0(n)
C
t
(n) =

1 2
-2- pDLuu

(1.2.1-4)

Recently, Sarpkaya (1986) presented the first five harmonics of

transverse force coefficients as a function of K as shown in

Fig.1.2.1-6 for 8 =2300. It is clear that Ct(1) is much smaller than

Ct(2). Similar to Ctp, Ct(2) has a maximum value at K=12.

Sarpkaya (1976) found that the maximum transverse force some-

times has the same order as, or is higher than, the maximum in-line

force. Chakrabarti, et al. (1976) also concluded that the resultant

force (vector sum of the in-line force and the transverse force) may

be as much as 60% higher than the in-line force. Sawaragi, et al.

(1976) also reported that the ratio of the maximum resultant force to

the maximum in-line force has a maximum value of 1.4. Thus, the

transverse force is important and should not be neglected in calcula-

tion of the total force on a cylinder.

Sarpkaya (1976) claimed that the maximum transverse force coef-

ficient does not clearly vary with a or e (Fig. 1.2.1-7). But, his

new report in 1986 showed that the rms transverse coefficient
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Fig. 1.2.1-6 Amplitude of the harmonics of transverse froce for a
smooth cylinder in planar oscillatory flow (from
Sarpkaya, 1986).
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increased significantly from the smooth cylinder to the roughened

cylinder as shown in Fig. 1.2.1-8.

Flow visualization is probably one of the most useful tools to

study the role of vortices around cylinders in oscillatory flow.

Several flow visualization experiments under planar oscillatory flow

have been conducted by Bearman, et al. (1981), Sarpkaya and Wilson

(1984), and Williamson (1985). They all concluded that the vortex

shedding patterns are highly correlated with K, which are summarized

herein and sketched in Fig. 1.2.1-9. The capital letters in the

parentheses in the following discussion represent the vortices shown

in Fig. 1.2.1-9.

(0 For K < 3, no vortices could be observed.

(ii) For K=4, there is symmetric pairing of attached

vortices and no resultant transverse force.

(iii) For 4 < K < 8, there is asymmetric pairing of

attached vortices with unequal strength, yielding

resultant transverse forces.

(iv) For 8 < K < 15, a pair of vortices forms in each

half cycle and the larger one (B) sheds. When flow

reverses, (B) is swept back over the cylinder and

makes the new formed vortex (E) on the same side

stronger than (D) on the other side. Thus, the

shedding and backwash of vortices always occurs on

the same half of the cylinder. The smaller

vortices (C) and (D) are always swept on to the

cylinder and disappear.
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(i) K < 3:

(ii) K 4:

(iii) 8 > K > 4:

(iv) 15 > K > 8:

(v) 24 > K > 15:
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D

C

clC

Fig. 1.2.1-9 Vortex shedding patterns for cylinders in planar
oscillatory flow. (The arrows at cylinder centers
indicate the flow direction and the relative
magnitude.)
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(v) For 15 < K < 24, two asymmetric vortices form at

first and the larger one (B) sheds and flows away

with (A), which was formed during the previous half

cycle. The smaller one (C) continues to grow. A

new vortex (D) forms at the same side as (B).

Then, (C) is swept over the shoulder and (D) hits

on the cylinder.

(vi) For K > 24, more vortices are formed and detached

in each half cycle. More pairs of vortices will

move together. As the flow reverses, these

vortices, or pairs, will convect, dissipate, or be

canceled by mixing with the others or the

boundaries.

Sawaragi and Nakamura (1979) and Zdravkovich and Namork (1977) also

conducted flow visualization experiments to observe the flow patterns

for a vertical cylinder in periodic waves at the water surface. The

vortex shedding patterns they observed were similar to those for

planar oscillatory flow sketched in Fig. 1.2.1-9.

Grass et al. (1981) indicated that quantitative measurements of

the positions of the centers of the dominant vortices show up certain

differences between a vertical cylinder in real oscillatory waves and

a cylinder in planar oscillatory flow through the flow visualization

experiments of both conditions. These differences may cause differ-

ences of induced forces.
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1.2.2 Horizontal Cylinders in Periodic Waves

The significant features of a horizontal cylinder with its axis

parallel to the wave crests are that (i) the velocity vector, the

wake and vortices tend to rotate around the cylinder and are not

always swept back onto the cylinder, and (ii) the plane of the

velocity vector is normal to the axis of the cylinder with no axial

component of velocity. Thus, the induced forces, i.e., the drag, the

inertia, and the vortex-induced force, are in the same plane of the

velocity vector and there is no axial force.

It is customary to assume that the drag and inertia components

are in the direction of the velocity and acceleration vectors

respectively and the vortex-induced component is perpendicular to the

velocity vector with unknown sign. Because the acceleration vector

is not necessarily in line with the velocity vector in waves, there

is an angle between the drag force (velocity) and the inertia force

(acceleration) depending on the wave condition and phase angles.

Thus, the vortex-induced force is not normal to the inertia force and

these two forces mix with each other. Because the vortex-induced

force acts, at least until now, with unpredictable magnitude, fre-

quency and sign, this phenomenon makes this problem more complicated.

Neglecting the vortex-induced component, a lot of researchers

used the following vector form of the Morison equation to study the

forces on a horizontal cylinder in waves, e.g. Nath (1982), Teng and

Nath (1983), Ramberg and Niedzwecki (1979,1985), Holmes and Chaplin

(1978), Chaplin (1985a,b), and Bearman et al. (1985a).
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(1.2.2-1)

+
i q

,+
iin which q is the velocity vector and is the total acceleration

vector.

The force coefficients obtained from a large wave flume by

Bearman et al. (1985a) were relatively scattered as shown in Fig.

1.2.2-1. One can see that no clear dependence of force coefficients,

Cd and Cm, on the shape parameter, n, can be found. Because the

Morison equation does not include a term to take the vortex-induced

force into account, the force therefore will appear as noise and will

contaminate the C
d

and Cm values. This is thought to be the main

reason for the scatter of the force coefficients.

Ramberg and Niedzwecki (1983) used a vector form of the Morison

equation with one pair of Cd and Cm in the horizontal direction and

another in the vertical direction. Their experiments, from a small

wave flume, showed no clear trend of Cd and Cm on 52, although the

scatter of their data is less than those from Bearman, et al.

(1985a).

In order to achieve high R and K, a complete range of R, precise

water particle kinematics, and to avoid nonlinearities, some

researchers used alternative experimental techniques to simulate the

condition of a horizontal cylinder in periodic waves. By driving a

cylinder in an elliptical path, in otherwise still water, to simulate

a horizontal cylinder in wave-type orbital flow where 0 < SZ < 1,

Chaplin (1985b) obtained estimates of Cd and Cm, as shown in Fig.

1.2.2-2 for K=14. His results showed the inertia coefficient reduced
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rapidly as Q increased, but Cd decreased with larger c, for large K.

Using the same experimental technique with the particle velocity

measurements under the wave-induced orbital flow around a cylinder,

Chaplin (1981) concluded the direction of the drag force lags, in

time, that of the velocity vector. This time lag will make the drag

force have a component opposing the inertia force, which always leads

the velocity vector by 90° for deep water waves.

Rodenbusch and Gutierrez (1983) conducted experiments in a large

basin (88m x 39m x 3.5m) and their data and results became public in

1985. They towed a large vertical cylinder (D=1m) in still water.

This cylinder was suspended from a bridge, which moved along the long

axis of the basin, and a subcarriage on the bridge, which moved along

the short axis of the basin. They made elliptical oscillations of

the cylinder and used a velocity tracking analysis, which takes the

projection of forces and accelerations on the direction of the veloc-

ity vector into account, to obtain Cd and Ca (=Cm-1). Figure 1.2.2-3

shows their results. In this figure, the Ax and Ay are the ampli-

tudes of the motion in the x and y direction, respectively. The Cd

values they reported decreased with increasing c, but, the Ca values

did not seem to follow any simple pattern. They explained two rea-

sons for this irregularity. One is the interference of the vortex-

induced forces with the inertia force (as discussed at the beginning

of this section). The other reason is that the conditioning for

determining Ca is worse due to the relatively small inertia force

(note that C
a

was obtained from the part of the inertia force which

is in the direction of the velocity vector).
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Sarpkaya (1984) oscillated a horizontal cylinder sinusoidally in

the vertical direction under horizontally planar sinusoidal flow

(both with the same period) in his U tube to simulate a horizontal

cylinder in periodic waves. He determined Cd and Cm from the in-line

force and showed that C
d

decreases and Cm increases as 2 increases

for K < 35. Grass, et al. (1984) conducted experiments similar to

Chaplin's (1985b) but with smaller equipment and estimated Cd and Cm

for the in-line force only. But, they showed both Cd and Cm de-

creased as Q increased. Note that both Sarpkaya's and Grass's force

coefficients can not be directly compared to those from Bearman, et

al. (1985a), Teng and Nath (1985), Chaplin (1985b), and Rodenbusch

and Gutierrez (1983), because the latter are for total forces with

the vector form of the Morison equation.

Without using the Morison equation, Maull and Norman (1978)

obtained, from a small wave flume, the rms force coefficients in both

the horizontal and vertical directions for each harmonic (the wave

frequency is the fundamental frequency). These coefficients in the

horizontal direction were defined as follows

C
xr

(n)

Fxr(n)

2

1
pDLu

2
(1.2.2-2)

in which n is the order of harmonics, ur is the rms horizontal veloc-

ity, and Fxr(n) is the nth harmonic horizontal force. Their results

showed the rms coefficients of the first harmonic horizontal force

are functions of Q and decrease with increasing Q. Bearman, et al.

(1985a) calculated the first harmonic rms coefficient and no trend on



Q was observed, but their data fell in the range of Maull and

Norman's as shown in Fig. 1.2.2-4.

Maull and Norman also conducted flow visualization experiments

by using hydrogen bubbles to observe the vortex shedding pattern

around a horizontal cylinder in waves. They concluded that the

presence of the vertical velocity reduces the horizontal force by

altering the trajectory of the vortices developed and reduces the

vertical force by constraining the movement of the vortices in the

horizontal direction.

The total rms force coefficient, which is defined in Eq.

(1.2.2-3), was estimated by Bearman et al. (1985a) and Chaplin

(1985b) to be

(F2 + F2 )1/2
xr zr

tr 1
pDL(u

2
+ w

2
)

r
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(1.2.2-3)

in which Fzr is the vertical rms force and w
r

is the rms vertical

velocity. Figure 1.2.2-5 shows the Ctr values for K=14 for both

studies. Chaplin showed the Ctr decreased as SI increased for the

simulated orbital flow. The trend for Bearman's data (which were

obtained from periodic waves) is not clear. This shows the differ-

ence between horizontal cylinders in these two flows. Chaplin also

said it would be unreasonable to assume the results from one case

should be directly applicable to the other.

In Fig. 1.2.2-5, Chaplin also presented the rms horizontal force

ceofficient, Cxr. This coefficient clearly decreases as Q increases.
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Grass, et al. (1984) obtained the same result. This coefficient and

the rms vertical force coefficient are defined as

and

F

Cxr

xr
xr 1 2

pDLur

F
zr

C
zr 1

-2- pDLu
2

(1.2.2-4)

(1.2.2-5)

Figure 1.2.2-6 shows that the Cxr and Cxr values obtained from

waves experiments by Ramberg and Niedzwecki (1985) correlates well

with K. But, no clear trend on 7 can be observed, which is not simi-

lar to Chaplin's and Grass's simulated orbital flow.

Teng and Nath (1984) calculated the maximum force coefficient

for horizontal cylinders, which is defined as

F

C=
1.1 1 pDLu

2

2

(1.2.2-6)

In Fig. 1.2.2-7, the Cu values for the smooth cylinder are presented.

It can be seen that the Cu values correlate well with K.

Figure 1.2.2-8 shows the Cd and Cm data for the roughened hori-

zontal cylinders from Teng and Nath (1984). It is clear that Cd

increases as c increases. The Cm values obviously increase for the

barnacle cylinder and no difference between the smooth and sand-

roughened cylinder is observed. This result is similar to that

obtained by Nath (1983a,b) for vertical roughened cylinders as dis-
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Fig. 1.2.2-6 Cxr and C zr of a horizontal cylinder in waves for
various R. R is indicted by the shape of the data
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Fig. 1.2.2-8 Cd and Cm versus K for smooth and roughened horizontal
cylinders in waves (from Teng and Nath, 1984).
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cussed in Section 1.2.1 (Fig. 1.2.1-4). Note that the smooth

cylinder diameter was used to compute the coefficients and K.

1.2.3 Cylinders in Waves and Current

Due to the mean flow of a current, the horizontal velocities

tbward the upstream side of a cylinder are stronger than those toward

the downstream side. This causes a bias of the cylinder wake. The

bias is greater if the current is stronger. If the current velocity

(U) is larger than the maximum oscillatory velocity (uu), the hori-

zontal velocity is always directed in the direction of the current.

Sarpkaya, et al. (1982 and 1984) studied the hydrodynamic forces

on smooth and rough cylinders from combined shallow water waves and

current by moving cylinders with a constant velocity in a planar

oscillatory flow with the motion in-line with the flow. He evaluated

Cd and Cm for the in-line force through Fourier analysis and the

modified Morison equation as

F
pDL p7rD

2
L du

2
C
d
(u+U)1u+Ul +

4 m dt
(1.2.3-1)

The coefficients correlated quite well with both K (=upT/D) and VM

(=UT/D) as shown in Fig. 1.2.3-1 for 5 =1594. It is observed that the

wake bias, resulting from the current, increases Cm and decreases Cd

and, for K larger than 20, the effect of current on force coeffi-

cients and on the calculated in-line force is negligible.

Koterayama (1984) studied experimentally the forces on vertical

cylinders with a constant forward velocity by using two experimental

techniques. One was to move a cylinder in laboratory waves (wave
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force test) and the other was to oscillate a cylinder moving with a

steady translation in still water (surging test). He used Eq.

(1.2.3-1) and a Fourier series expansion to analyze the in-line

force. The steady drag coefficient (Cdo), the oscillating drag coef-

ficient (Cdl) , and the inertia coefficient (Cm) were obtained from

the steady force, the harmonic force in phase with the velocity and

the harmonic force in phase with the acceleration, respectively. The

lift coefficients (C &), which was defined as 1/10 maximum values of

lift forces divided by maximum total velocity square, was also esti-

mated. Figure 1.2.3-2 shows these coefficients verse VM (=UT/D) for

3.8 < K < 6.1. Koterayama concluded that the force coefficients

depend mainly on VM, and the oscillatory drag coefficient is smaller

than the steady drag coefficient and approaches it as VM increases.

Matten (1976) obtained similar conclusions. Besides, the Fourier

drag coefficients are generally smaller for the wave force tests than

for the surging tests due to the 3-D effects, which reduced coherence

and strength of vortices, of the wave tests.

Some researchers (Verley and Moe, 1979; Mercier, 1973; Kato et

al., 1983; Bryndum et al.,1983) oscillated a cylinder in line with a

steady flow which can be used to simulate a cylinder subjected to

(shallow water) waves and current.

Verley and Moe (1979) conducted a sequence of experiments by

oscillating a cylinder, which was attached to a pendulum, in line

with a uniform and constant flow. In their study, the following two

equations were used to analyze the data.
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(1.2.3-2)

(1.2.3-3)

where x and x are the velocity and acceleration of the cylinder.

They studied the inertia coefficient (Cm), the steady drag coeffi-

cient (Cdo) and the oscillatory drag coefficient (Cdl) for both equa-

tions, and found that Eq. (1.2.3-2) is the better formulation. Note

that they split the drag coefficient in Eq. (1.2.3-2) into Cdo and

Cdl by using the similar definitions as just discussed in

Koterayama's (1984) study. Figure 1.2.3-3 shows their results by

using Eq. (1.2.3-2). The dependences of the force coefficients on VM

(=U/TD) and xo/D (=K/I) were observed. The xo is the amplitude of

the displacement.

Bryndum et al. (1983) used a least square method to quantify Cd

and Cm in Eq. (1.2.3-2) and estimated the lift coefficients, Ct.

They concluded that Cd and Ct decrease to as much as 60% and 40%,

respectively, of the values found in wave motion when U/u approaches

0.9.

Teng and Nath (1985) simulated the waves and current condition

by towing horizontal cylinders (smooth and roughened) in waves and

used the following modified Morison equation to describe the forces

on a horizontal cylinder under waves and towing.
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Fig. 1.2.3-3 Force coefficients for a smooth cylinder oscillating in
a steady stream versus K for various UT/D (from Verley
and Moe, 1979).
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(1.2.3-4)

(1.2.3-5)

In the above equations, u is the sum of the wave-induced velocity

(uw) and the current velocity (U).

Figure 1.2.3-4 shows their Cd values for the smooth and the

roughened cylinders against VM (=UT/D). They also found that Cd

approaches that of steady flow as the current velocity increases.

Teng and Nath (1984) studied the maximum total force coefficients

(C ) for smooth and roughened horizontal cylinders and found the

values of Cu against K [=(uwp+U)T/D] for the waves and current case

agree quite well with those for the waves only case as shown in Fig.

1.2.3-5. From this figure, as K gets large, Cu seems to approach the

drag coefficient for steady flow, Cds.

1.3 Scope of This Study

This thesis is about exterior hydrodynamic forces on horizontal

circular cylinders which are slender and rigid.

The forces from laboratory periodic waves were measured for 4

horizontal cylinders with different surface roughnesses for Keulegan-

Carpenter number (K) up to 25. The Reynolds number was in the range

of 3x104 < R < 2x105, and 5 orbital shape parameters (n) ranged from

0.42 to 0.85. The cylinders were smooth, sand-roughened, barnacle-

roughened, and one with rigid artificial sea anemones.
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In this thesis, both amplitudes and phases of harmonic compo-

nents of measured forces are analyzed by using Fourier analysis. The

force coefficients, Cd and Cm, based on the vector form of the

Morison equation, the root-mean-square force coefficients, and the

maximum force coefficients are utilized to illustrate the effects of

roughness, K, and Q.

The wave-to-wave variation of forces on horizontal cylinders in

periodic waves is examined by means of the maximum forces, the root-

mean-square forces and both the amplitudes and phases of harmonic

components of forces.

Waves forces on vertical cylinders are compared with those on

horizontal cylinders.

The cylinders were towed with steady speeds under a fixed wave

condition, which simulates the superposition principle of waves and

current, for the tow speeds up to 4.7 times the maximum wave-induced

velocity. The towing (current) effect on force coefficients is

examined.

Flow visualization experiments were conducted in a small wave

flume to observe flow patterns around stationary horizontal smooth

cylinders in periodic waves.
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2. THEORY AND ANALYSIS

2.1 Governing Parameters

The force on a cylinder is a function of fluid viscosity (v),

cylinder diameter (D), fluid particle velocities (u and w), flow

period (T), roughness height (e), etc. Through dimensional analysis,

the dimensionless force coefficient is considered as a function of

several dimensionless parameters. For horizontal cylinders in peri-

odic waves and current, one possible set of important parameters is

or

C f

u

P

D upT
e

wp
UT U )

= (f y'D' 'u'D'u)
1.1

wu
(2-1)

= f(R, K, e, Q, VM, Ur) (2-2)

in which u and w are the maximum horizontal and vertical velocity

respectively, U is current velocity, uwu is the maximum wave-induced

horizontal velocity, R is the Reynolds number, K is the Keulegan-

Carpenter number, e is the relative roughness, SZ is the shape param-

eter of fluid particle orbit, VM is the Verley-Moe number, and Ur is

the relative velocity. More details and discussion about this analy-

sis can be found in Teng and Nath (1983).

The Reynolds number and Keulegan-Carpenter number for the com-

bined field of waves and current may have several different defini-

tions (see Sarpkaya, et al. 1984). The two dimensionless parameters

used in the present study are defined in the following.
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(2-3)

(2-4)

In the above dimensionless parameters, the maximum velocity is used

to characterize the kinematics. But, this maximum velocity can not

represent the nonlinearity of ocean waves. Thus, two different wave

conditions could have the same maximum velocity (or the same dimen-

sionless parameters). This will cause scatter in the data distribu-

tions when the data are plotted against these parameters.

2.2 The Vector Form of The Morison Equation

As discussed in Section 1.2.2, the forces on a horizontal cylin-

der can be predicted by the vector form of the Morison equation,

which assumes the drag force is in line with the velocity vector and

the inertia force is in line with the acceleration vector. That is,

f pDL girD
2
L

2 Cdqlq 4 CO (2-5)

In the above equation, -4' is the total velocity and the prime

represents the associated Eulerian acceleration.

The total force thus described may be decomposed into the hori-

zontal (x) and vertical (z) direction as

p Tr D
2
L

x 2
u
du

q +
4 m

(2-6)
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(2-7)

The vortex-induced force, which is not included in the above equa-

tion, is regarded as noise to the above forces.

2.3 Least-Squares Method

The time-invariant average force coefficients Cd and Cm in the

vector form of the Morison equation are determined by using the

least-squares method in this study. The least-squares method obtains

the force coefficients by minimizing the total error between the mea-

sured forces and predicted forces. The details of this method can be

found in Teng and Nath (1983). The force coefficients obtained are

and

(AA)(BB) - (DD)(EE)
C
d 1 pDL[(CC)(BB) (DD)

2
]

(CC)(EE) (AA)(DD)
m

-4-
1 2

pirD L[(CC)(BB) - (DD)
2

]

in which

2ff

AA = f [F
xm

u + Fzmw]ltild8

0

1

BB = Iti,12de

(2-8)

(2-9)

(2-10)

(2-11)



CC =

o

DD =

EE =

2n
f

2n
f

2n
f

1+14
lql de

[uu' + wW]Mde

[F u' + F Widexm zm

45

(2-12)

(2-13)

(2-14)
O

In the above expressions, Fxm and Fxm are the horizontal and vertical

measured force, respectively.

Under the same test condition, data of n wave cycles were

recorded (see Section 4.4). The representative Cd and Cm may be

determined from 3 ways: (a) Get Cd and Cm for each wave cycle, and

then average these n pairs of coefficients to obtain an average pair;

(b) Average these n cycles of wave data to obtain an average wave

record, and then obtain coefficients for this mean wave; and (c) Get

one pair of Cd and Cm by using the continuous n wave record as a

whole. In Appendix A, it is proven that the representative pairs of

Cd and Cm from these 3 ways are actually the same.

2.4 Harmonic Analysis

A periodic function f(t) with fundamental period T can be

expressed with a Fourier series as

f(t) = ao + 2 1 (a

n
cosw nt + bnsinwnt)

n=1

in which wn=2nn/T,

T
a
n

=
T
1 2nT nt

J f(t) cos dt
0

n>0

(2-15)

(2-16)
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1
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2n7t
bn = -f f f(t) sin dt
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(2-17)

using complex notation Fn=an-ibn, the above coefficient expressions

can be reduced to the following single equation

1 T

i(2nirt)

Fn
= y f f(t)e dt

0

(2-18)

If the continuous time series f(t) is not known and only equally

spaced samples are given as a discrete time series, i.e. {fj},

j = 0, 1, 2, , (N-1), the following discrete Fourier transform

may be used.

and

1
N-1 i(2 J-)r

F = f.e
n N N.

N-1 i(2T01)
f. = F

n
e

n=0

Since Fn=an-ibn> we can obtain

-4bn
Fn = IF

n
le

(2-19)

(2-20)

(2-21)

in which IFn I (= a
2
+b

2) is the amplitude of the nth harmonic and
n n

cpn(=tan-1(bn/an)) is associated phase angle. Thus,



N-1
f. 1 IF

n
Icos(2117ri=,

N 4n)
n=0
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(2-22)

An FFT algorithm can be used to evaluate the amplitude and phase

of each harmonic of a time series.

In the present study, this harmonic analysis is used to deter-

mine the amplitude and phase of each harmonic of the measured hydro-

dynamic forces (both the horizontal and the vertical), that will be

studied in Sections 5.4 and 6.3.

From Eq. (2-22), the phase of each harmonic is related to a

cosine curve, i.e., that means the phase is the shift between the

profile of a harmonic and a cosine curve. In this study, a whole

periodic wave is defined from peak (wave crest) to peak (see Section

4.3). The measured forces for the associated whole wave are taken

from the same time interval. Thus, the phase of each harmonic of

measured force is related to the wave crest (or the maximum of the

horizontal velocity).

2.5 Kinematics of Fluid Particles

When analyzing the data, the ambient kinematics of fluid parti-

cles are needed. The seventh order stream function wave theory is

used to predict the velocities and accelerations in the present

study. Nath (1981) showed that the stream function theory compares

quite well with the measured kinematics and is adequate for predict-

ing velocities and accelerations of water particles at the center of

a cylinder.

When a steady and uniform current (U) is introduced to the wave

field, the linear superposition principle, which assumes the total
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velocity is the linear combination of current velocity and wave-

induced velocity, is used to predict the kinematics. According to

the linear superposition principle (neglecting the interaction

between waves and current), the water particle velocities under waves

and current are expressed as

and

u(x,z,t) = uw(x,z,t) + U (2-23)

w(x,z,t) = ww(x,z,t) (2-24)

in which the subscript w represents the wave-induced velocity. Since

the total acceleration is used in this study, the acceleration is

modified due to the presence of the current as

and

du
au
w

au
w auwut =

dt
=

at
+ (u

w
+ U)

ax
+ w

w 8z

aw
w

aw
w

aw
w

, dw
dt at

+ (u
w

+ U) + w
w az

(2-25)

(2-26)

Teng and Nath (1983) showed that the stream function theory with

linear superposition principle can predict the kinematics for a

cylinder towed in a wave field (which is used to simulate a cylinder

under waves and current in this study) quite well.



2.6 The Blasius' Equation

By using the unsteady form of the Blasius' equation, Maull and

Milliner (1978) showed the horizontal and vertical forces, X and Z,

on a cylinder due to the movements of the vortices are given by

and

D
2

X = pr {w* + [(z
2
- x

2
)w* + 2xzu*ll

4(x +z
2

)
2

Z = -pr {u* +
D
2

[(x
2

z
2
)u* + 2xzw*)1

4(x
2
+z

2
)
2
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(2-27)

(2-28)

in which r is the strength of the vortex (which is defined as posi-

tive when it is clockwise and negative when it is counter-clockwise),

x and z are the coordinate of the vortex, u* and w* are the hori-

zontal and vertical velocity of the vortex at point (x,z), and D is

the diameter of the cylinder. Figures 2-1 shows the definitions of

these variables.

From the above two expressions, the forces on the cylinder due

to the moving vortices may be predicted. However, the magnitudes of

these forces need precise and detailed values about the strength,

location and velocity of the vortex. These values are almost im-

possible to obtain or measure until now. Thus, it is very difficult

to quantify the forces. However, the direction of forces due to the

motion of the vortex can be judged if the vortex motion can be rough-

ly observed through experiments.
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The force acting on a cylinder due to the motion of vortices is

a summation of forces induced by each individual vortex. However,

according to Eqs. (2-27) and (2-28), only a few vortices that are

close to the cylinder are important. Contributions from most of the

vortices can be neglected due to the weak strength, slow velocity or

far distance from the cylinder.

Fig. 2-1 Definition sketch for vortices around a horizontal cylinder
in waves.
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3. FLOW VISUALIZATION EXPERIMENTS OF
HORIZONTAL CYLINDERS IN WAVES

3.1 Description of Experiment

In order to observe and study the vortex shedding patterns

around a horizontal cylinder in waves, a series of flow visualization

experiments were conducted at the wave flume in Graf Hall at OSU (see

Fig. 3-1). This flume is 40 feet long, 24 inches wide and 26 inches

in depth with a 18 feet long, 1/12 slope beach at one end. Two side-

walls of the flume are constructed of 1/2 inch clear Plexiglas. The

waves, with the wave periods of from about 1 to 3 seconds and wave

height up to 4 inches, depending on the water depth, are generated by

a hinged flap type wavemaker. This wavemaker is driven by a 1/3

horsepower electric motor with an SCR speed control. The generator

stroke is controlled by adjusting a linkage between the electric

motor and the wave generating plate.

The smooth test cylinder, 1.5 inches in diameter and 24 inches

long, is supported by two clear Plexiglas plates at two ends and is

put in the flume horizontally. To avoid the boundary effect, the

cylinder is located at least 4 diameters away from the free surface

and solid bottom. This plastic cylinder has 8 equally-spaced

passageways, that are 1 mm diameter holes drilled on the surface of

the cylinder, around the circumference along the center cross sec-

tion. These holes are connected by 8 plastic tubes, inside the

cylinder, to two sets of glass columns, that contain dye and are

located above the flume as shown in Fig. 3-2. The solution of

potassium permanganate (KMn04) dye can be introduced into the
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Fig. 3-1 Wave flume in Graf Hall at OSU.
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Fig. 3-2 Layout of flow visualization experiments.
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boundary layer through the holes. Each set of glass columns contains

4 individual glass columns. A valve on each glass column controls

the rate of dye released into the flow as necessary. A master con-

trol valve on each set of glass columns controls the ejection of dye

from 4 different holes simultaneously.

A super 8 mm movie camera was used to record the continuous

process of the flow pattern and vortex shedding. After development

and processing, the movie film was examined frame by frame (or by

slow motion) by using the Timelapse data analyzer projector. Also,

still photos were made of the flow at the wave crest, trough and zero

crossings. The layout of this experiment is sketched in Fig. 3-2.

Due to the limitation of the experiment facilities, only a

limited range of experiments, characterized by some dimensionless

parameters, could be conducted. They were:

R (Reynolds number): 1200-5000

K (Keulegan-Carpenter number): 2-13

Sl (shape parameter): 0.2-0.6

3.2 Results

It is possible to show only the influence of SI (from 0.2 to 0.6)

and K (from 3 to 12) on the patterns of vortex shedding. It is hoped

this may give some insight to the flow process around horizontal

cylinders in waves.

From consecutive observations of the flow visualization, the

vortex shedding patterns sometimes vary from cycle to cycle under the

same wave and cylinder conditions. It could have some kind of regu-

larity over a long period. But, only several cycles were observed
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because the water contaminated quickly with the dye (solution of

potassium permanganate). The flow patterns presented here are the

most possible and frequent patterns observed under the specific

conditions.

Figure 3-3 shows some photos of the flow pattern around a hori-

zontal cylinder from the experiment. In the following, the flow

patterns are sketched from the continuous films taken by the movie

camera.

Several typical cases, that contain two values of a (0.25 and

0.5) with different values of K for each 1, are sketched and

described in the following. To give a simple and clear presentation

of the results for the flow visualization experiments, the periphery

of the cylinder is divided into four quadrants as shown in Fig. 3-4.

In this figure, the angular coordinate is also defined so that the

location of formation and movement of a vortex can be easily

described. In Figures 3-5 to 3-10, the arrow in the center of the

cylinder represents the direction of the velocity vector at that

moment. But, the length does not represent the magnitude of the

velocity.

(1) K=10 and Q=0.25 (Fig. 3-5)

At t=0, the vortices associated with quadrant I and II, namely

vortex A and B respectively, start to form and grow with almost the

same strength. The vortex D' from the previous cycle passes above

the top of the cylinder counter-clockwise and moves with the newly

formed A. After t=0, both A and B continue to grow and A is stronger

and moves further than B. The vortex A detaches from the cylinder
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between t=T/8 and t=T/4. The vortex A reaches the maximum distance,

which varies from 2 to 3 diameter of the cylinder (measured from the

center of the cylinder), at t=3/8T. B is always around the periphery

of the cylinder. After t=3/8T, A and B start to reverse due to the

increase of the rightward velocity. The vortex A is swept back and

slightly touches the cylinder at e=60°. The vortex B, which did not

detach during the forward half cycle, moves along the lower periphery

from 150° to 210° during its reversal. Between t=T/2 and t=5/8T, the

vortex A convects over the top of the cylinder and B detaches from

the cylinder at 0=210°. Then, both vortices continue to move to the

right and diffuse rapidly. At t=5/8T, two vortices associated with

quadrant III and IV, namely C and D, start to form and move upward

slightly along the surface of the cylinder due to the presence of the

vertical upward velocity. The vortices C and D grow and move coun-

terclockwise along the surface of the cylinder (from 270° to 360°).

At t=7/8T, D detaches the cylinder at 0=0° and will form a pair with

the vortex formed at the next cycle at quadrant I. The vortex C

becomes weaker and diffuses in the boundary at 0=0° by the end of

this cycle.

(2) K=10 and Q=0.5 (Fig. 3-6)

At t=0, A and B have the same size and pattern of formation.

After t=T/8, A detaches and B does not. At t=T/4, A and B start to

reverse and move downward during the reversal due to the presence of

the vertical water particle velocity. From a series of observation,

the vortex A sometimes hits the cylinder at 0=150° and sometimes

moves below the cylinder (does not hit it) at t=3/8T. The vortex B
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detaches at 0=210° before t=3/8T. The vortices B and A (if A did not

hit the cylinder) continue to move to the right and diffuse. The

vortices C and D form at t=T/2. Both vortices move counterclockwise

along the surface of the cylinder due to the vertical velocity. At

t=7/8T, D detaches the cylinder at the top of the cylinder. The

vortex C sometimes moves above the top of the cylinder (if A hit on

the cylinder) and sometimes moves along the boundary of the cylinder

near 0=00. The vortex B moves upward with the vertical velocity

after t=T/2 and diffuses gradually.

Comparing with Case (1), It is clear that vortices have more

chance to move in the vertical direction due to the increase of c (or

vertical fluid velocity) under the same K. For example, the vortex A

convects away from the cylinder horizontally and reverses back over

the upper half for Q=0.25. For Q=0.5, A moves downward gradually

since its formation and reverses onto or under the lower half

cylinder. Also, the developments of vortices in the horizontal

direction are constrained as Q becomes larger and the reversal of A

and B occurs earlier for large Q.

(3) K=5.5 and 1 =0.25 (Fig. 3-7)

At t=0, the vortices A and B form. A grows and moves to the

left side and detaches at t=T/4. B grows slowly and stays around the

periphery of the surface. Both A and B start to reverse after t=T/4.

B is swept back along the lower surface of the cylinder (from 150° to

220°) and detaches the cylinder before t=T/2. Similar to case (1), A

touches the upper surface of the cylinder (at 8=60°) at t=3/8T and

moves over the top of the cylinder. After t=T/2, A almost dies out
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and B continues to move to the right and diffuses gradually. The

vortices D and C start to form after t=T/2 and move along the surface

counterclockwise due to the upward velocity. D detaches from the

surface after t=7/8T and continues to move to the left. C merges in

the boundary of the surface at about 340°.

With the same Q and smaller K, vortices (e.g., the vortex A) can

not move as far as those with larger K in Case (1). Accordingly, it

reverses back to the cylinder earlier during the flow reversal. The

vortex A hits the cylinder at t=3/8T for K=5.5 and at t=T/2 for K=10.

(4) K=5.5 and Q=0.5 (Fig. 3-8)

The vortices A and B form with significantly unequal size and

strength at t=0. After formation, A grows and moves slightly down-

ward and B does not grow too much due to the relatively strong

vertical velocity. At t=T/4, A detaches from the cylinder and B

still stays around the surface at 0=180°. After its reversal at

t=T/4, A hits on the cylinder at 0=150° and dies out between t=3/8T

and t=T/2. The vortex B detaches from the cylinder due to the

reversal at t=3T/8 and moves to the right upper direction with the

rotation of the velocity vector. D starts to form at t=T/2 and C

starts to form at t=5/8T. D detaches the cylinder from the top

(0 =0°) at t=3T/4. Note that the vortex B is at the right side of D

and moves with D and diffuses. The smaller C, always moves around

the surface of the cylinder from 270° to 360°, is mixed with the

boundary at t=7T/8.

In this case, the flow pattern combines the characters of small

K from Case (3) and large Q from Case (2), that are the increase of
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vertical movements and decrease of horizontal movements. Thus, all

vortices stay around the cylinder.

(5) For Q=0.5 (the same as cases (2) and (4)) and smaller

K(=3.5) (Fig. 3-9)

With smaller K, the vortex A does not detach from the cylinder.

Before t=T/2, A hits the lower left surface (A =150°) of the cylinder

during its reversal. The B and D grow and detach due to the reversal

of the flow. Both vortices rotate, around the cylinder counter

clockwise for about 180°. The vortex A is much larger and stronger

than the vortex B during the first half cycle.

(6) For Q=0.25 (the same as cases (1) and (3)) and larger

K(=12) (Fig. 3-10)

There exists a second vortex E at quadrant I right after the

vortex A detached (at t=T/4). The vortex E reverses to the right

hand side of the cylinder from the top of the cylinder. In this

case, A reverses very slowly toward 0=90° and its strength is

relatively weak as it approaches the surface. The formation and

movement for vortices B, C, and D are almost the same as those for

the same c and smaller K (=10).

Besides the cases sketched and described above, more cases were

conducted. The flow patterns of the rest of the cases are similar to

those just described. The general phenomena observed from all of the

cases in the present study are summarized in the following.
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(i) For all cases, the flow patterns are not symmetric

about t=T/2. Usually, the vortices formed during

the first half cycle (especially, the vortex A)

are stronger than those formed during the second

half cycle.

(ii) Basically, the 4 locations (one in each quadrant)

of vortex formation are similar to those for

planar oscillatory flow (Q=0, see Fig. 1.2.1-9).

The presence of the vertical velocity will shift

the separation point a little and make the formed

vortices move in the vertical direction in some

degree.

(iii) For small values of St, the vortex A hits or passes

over the cylinder at quadrant I (i.e., the upper

half cylinder). For large Q, the vortex A hits on

or passes below the cylinder at quadrant II (i.e.,

the lower half cylinder). The value of Q between

these two conditions is approximately 0.35 in the

present experiments. This value is thought to be

function of R, K, and e/D.

(iv) The vortices B and D, formed at quadrant II and IV

respectively, grow and detach from the cylinder

mainly due to the reversal of the flow instead of

the general detachment process as that in steady

unidirectional flow.
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(v) The vortex B formed at quadrant II always passes

the the lower half of the cylinder during the

reversal due to the downward vertical velocity.

After detachment, B convects to the right (in

quadrant III) for small 2 and convects upward

(toward quadrant IV) for large Q.

(vi) The vortices formed during the second half cycle,

C and D, always move counter- clockwise over the

top half of the cylinder. Then, D detaches from

the top and moves with the newly formed A during

the next cycle at quadrant I. The vortex C merges

in the boundary at 6=3300-360° by the end of this

cycle.

(vii) For large R, the vortex has more opportunity to

move in the vertical direction. And the movement

and growth of vortices in the horizontal direction

are confined due to the relatively stronger verti-

cal velocity of water particle.

(viii) For large K (note that K is based on the maximum

horizontal velocity), the vortex has more oppor-

tunity to grow and move in the horizontal direc-

tion. Also, more vortices could form and grow

with large K (e.g., K > 12 with Q=0.25 in Fig.

3-10). For small K, the dominant vortex A does

not detach and A is much larger and stronger than

B (e.g., K < 3.5 with Q=0.5 in Fig. 3-9).
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(ix) Neither the wake nor the shed vortices rotate or

move synchronously with the velocity vector,

especially for small Q.

Besides, it was observed that the diffused dye slowly moved

toward the wave board during the flow visualization experiments.

This phenomenon is thought to be due to the return current effect in

a closed wave flume.

3.3 Discussion

(1) Comparison With Other's Observations

Comparing the present observations with those from Maull and

Norman (1979) for horizontal cylinders in waves, the vortex shedding

pattern they observed for K=8 and Q=0.3 is almost the same as that

for K=10 and Q=0.25 in Section 3.2. They also presented the flow

pattern for Q=0.79, which is the highest Q value they reached. The

pattern they observed is similar to that observed with the highest

value of n=0.6 in the present study.

(2) Comparison With Observations for Planar Oscillatory Flow

Comparing the present results with small Q(=0.25) with those for

planar oscillatory flow (Q=0) shown in Fig. 1.2.1-9, it is clear that

the differences are significant, especially for the second half

cycle. The flow patterns for planar oscillatory flow (Q=0) are sym-

metric, but those for horizontal cylinders in waves with Q*0 are

not. For Q=0.25, the vortices formed in the first half cycle, A and

B, are stronger and larger than C and D formed in the second half

cycle. Also, during their reversal, A and B convect over the
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cylinder from the upper and lower side respectively, but both C and D

in the second half cycle move from the upper side.

The other important difference between Q=0 and Q*0 is that asym-

metric vortices, that will cause the transverse (lift) force, for the

horizontal cylinder cases (Q*0) occurs at smaller K than that for

planar oscillatory flow (Q=0). Significant asymmetric vortices can

be observed for Q=0.5 at K=3.5 for horizontal cylinders in waves.

But, asymmetric vortices start to form at K > 4 for planar oscilla-

tory flow as shown in Fig. 1.2.1-9. In other words, the presence of

the vertical velocity will accelerate the occurrence of asymmetric

vortices, which causes the unbalanced force called vortex-induced

force.

It is believed that the flow pattern for horizontal cylinders in

waves tends to be similar to that for planar sinusoidal flow as Q

approaches 0.

(3) Interaction Effects Between Vortices

The formation of the vortex D is at t=5T/8 for Q=0.25 and A

reverses over the top of the cylinder in this case. The D forms at

t=T/2 for Q=0.5 while A reverses under the lower half of the cylin-

der. It is clear that the formation of D is delayed if the vortex A

convects over the upper half of the cylinder. In other words, the

vortex A, which is defined as counterclockwise, will retard the

formation of the clockwise D. The same for the lower half cylinder,

the reverse vortex B retards the formation of C. Due to the delay of

formation, the vortex C starts to form at the moment that the water

particles start to move upward. Thus, the growth of C is confined
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and the movement is usually along the surface. Before the end of a

cycle, the vortex C is very close to the boundary of the top of the

cylinder and tends to accelerate the growth of the vortex A in the

next cycle. Note that the vortices A and C have the same sign (coun-

terclockwise). This is considered as one of the reasons for A > B

since there is no vortex will enhance the formation of B. Thus, it

may be concluded when a vortex approaches a location where another

vortex is going to form and grow, the former will enhance the latter

if they have the same sign and the former will retard the latter if

they have the opposite sign.

(4) Asymmetry of Flow Patterns

From all of the observations, the vortices form and grow during

the first half cycle appear stronger than those observed in the

second half one. The vortex A, associated with quadrant I and formed

under the wave crest, is always strongest and thence the dominant

one. The main reason is thought to be the nonlinearity of waves,

which makes the horizontal velocity under the crest (t=0) greater

than that under the trough (t=T/2). The enhancement and retardation

between vortices (interaction effect) will enhance the asymmetry of

the flow pattern around a horizontal cylinder in waves as discussed

in the last paragraph.

The vortex A is always stronger and larger than the vortex B

formed in the second quadrant. The main reason is that the downward

vertical velocity retards the development of B. The interaction

effect discussed in (3) and the small velocity gradient between the

top and the bottom are thought to be possible reasons for A > B.
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Thus, the fact that A > B is getting significant for small K (compare

Fig. 3-6 with Fig. 3-9) and large c (compare Fig. 3-7 with Fig. 3-8).

(5) Effect of Vortex Formation and Movement on Forces

As discussed in Section 2.6, the forces induced by the formation

and movement of vortices can be qualitatively estimated by the

Blasius' equation, i.e., Eqs. (2-27) and (2-28).

From flow visualization and Figs. 3-5 to 3-10, only the vortices

A and B (and E) dominate the flow field during the first half cycle.

The D' from the previous cycle has a minor effect. Thus, the force

induced by the movement of vortices is mainly the summation of the

forces from these vortices. In the second half cycle, the vortices C

and D dominate. The vortices from the previous cycle, i.e. A, B and

E, have minor contributions.

From the observed flow patterns and Eqs. (2-27) and (2-28), the

direction of forces induced by the movement of dominant vortices can

be judged. For example, the vortex A induces downward' forces and B

induces upward forces. There exists a downward forces during the

first half cycle as the effect of A is greater than that of B, and

vice versa.

For large K, more vortices can form and move. These vortices

will modify the induced force in both directions, especially in the

vertical direction. Let us use the vortex E in Fig. 3-10 as an

example. The newly formed E has the same effect as A. In the hori-

zontal direction, A, B and E all induce forces to the left. Thus,

the presence of E will enhance the magnitude of force in this direc-

tion (recall that total force induced by vortex movement is the
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summation of the effects from each individual vortex). But, in the

vertical direction, A induces downward forces and B induces upward

forces. Then, E will induce downward forces again and might change

the sign of the vertical force depending on the relative strength and

velocity. Thus, the presence of the vortex E will change the pattern

and increase the higher harmonics of forces in the vertical direc

tion.
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4. LARGE-SCALE LABORATORY EXPERIMENTS OF FORCE MEASUREMENTS

Actually, the experimental data of force measurements in the

present study came from several research projects conducted at OSU

from 1981 to 1985. Even though the experiment instruments and tech-

niques were improved from time to time, the basic frame of the whole

experimental system was unchanged. In this section, the important

information about the experiments is described. For more details,

the reader is suggested to refer to Nath (1981a, I983b, 1983c,

1984a).

4.1 Wave Tank

The experiments of the present study were conducted at the O.H.

Hinsdale Wave Research Laboratory (WRL) of Oregon State University.

It is a wave flume 340 feet long, 12 feet wide and 15 feet deep in

the test region. Water depths are usually 11.5 feet in the test

region so that 3.5 feet of freeboard exists.

The wave board is a flap-type board which is hinged at the

bottom and is activated by a 150-HP pump with a hydraulic servo

mechanism. Good, repeatable periodic waves can be generated with

periods of from about 1 second to 7 seconds. The wave height (trough

to crest) are limited by incident breaking up to a period of 2.5

seconds, where the wave height is about 5 feet. For periods greater

than 2.6 seconds, the maximum wave heights are limited by either the

still water free board (3.5 feet) or the available energy from the

wave generator. The maximum height for the 6.0 seconds waves is 3

feet. Random waves can also be generated using the on-site PDP-11
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computer to generate the wave spectrum and the transfer function for

the board motion.

A towing carriage, capable of towing up to 500 pounds at speeds

ranging from 0.23 to 11.81 feet per second, is supported by the two

side walls of the flume and is available for towing models. Figure

4-1 shows the carriage on the wave flume. In the present study, a

cylinder subjected to waves and current is simulated by towing the

cylinder with steady velocity in a wave field.

4.2 Test Cylinders

All test cylinders in this study have a nominal diameter of 8

inches (actual diameter is 0.719 feet) and 8.7 feet long. Each

cylinder includes a two-foot long test section at the center portion

and two dummy sections at both ends to minimize the end effect. The

outer shell of each section is made up of two aluminum semi-cylin-

ders. The shells were drilled for bolt holes (which were flush

bolted) so that the shells with different roughness could be easily

changed by removal of these bolts.

The test section is suspended from two 5/8-inch diameter alumi-

num rods that were milled on the ends to receive strain gauges in

such a manner as to measure the total horizontal and vertical forces

on the test section. The gauging length of each rod is 8 inches, and

the construction resulted with this gauge length being a fixed ended

beam. There are four beams total and the strain gauges are arranged

to eliminate any influences from torsion or from off-centered load-

ings of the hydrodynamic forces.
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In this study, four sets of cylinders with different roughness

were examined: (1) the smooth cylinder (abbreviated as HSMC8); (2)

the sand-roughened cylinder (HSRC.02); (3) the barnacle-roughened

cylinder (HBRC.2); (4) the artificially rigid sea anemone cylinder

(HRAN). Figure 4-2 shows the skins of these four types of cylin-

ders. The smooth cylinder has a smooth aluminum surface. The sand-

roughened cylinder was made by gluing sands uniformly on the smooth

aluminum surface and is characterized by relative roughness e/D =

0.023 (e = sand size and D = diameter of the smooth cylinder). The

barnacle-roughened cylinder had dried barnacles randomly glued on and

the e/D = 0.19 is determined by circumferential measurements. The

artificially rigid sea anemone cylinder was constructed by gluing

1-5/16 inches in diameter and 3-3/4 inches wood rods on. It is a 1/3

scale ratio model to the typical structures and anemone in seas. The

spacing between artificially rigid anemones (rods) in a row, which is

parallel to the cylinder axis, is 3 inches. The distance between

rows is 3 inches and there is 1.5 inches distance shift between two

consecutive rows. The details of this model cylinder can be found in

Nath (1984a) and observed in Fig. 4-2. The relative roughness e/D,

which was determined by area projections, is 0.315 for the rigid

anemone cylinder. Table 4-1 summarizes the abbreviation, relative

roughness, effective diameter and name of project of these four test

cylinders. In this table, the effective diameter factor, d, is

defined as the ratio of the effective diameter to the smooth diam-

eter. The effective diameters for the HBRC.2 and HRAN were obtained
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Horizontal barnacle roughened cylinder (HBRC.2)

Horizontal artificially rigid sea anemone cylinder (HRAN)

Fig. 4-2 Test cylinders in this study (continued).
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Table 4-1. Information about test cylinders studied in this thesis.

Test Cylinder Abbreviation e/D
Effective
Diameter

SD*

(5 Project
(Year)

Hori. SMooth HSMC8 - 0.72 1.00 API
Cylinder (0.72)** (1981)

Hori. Sand HSRC.02 0.023 0.75 1.046 API
Roughened Cylinder (0.72) (1984)

Hori. Barnacle
Roughened Cylinder

HBRC.2
0. 19

0.88

(0.72)

1.22 NSF.SG
(1984)

Hori. Artificially 0.99 API
Rigid Sea HRAN 0.315 (0.72) 1.38 (1984)
ANemone Cylinder

The smooth diameter is D. The effective diameter is SD.
The symbol 6 is called the effective diameter factor.

** Values in the parentheses are the smooth diameter D.
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by measuring the projection area. The effective diameter for the

HSRC.02 was calculated by the grain size of uniform sand.

4.3 Measurements and Recording

The horizontal and vertical forces were measured together with

the wave profile and water kinematics for each test run.

The water surface profile was measured with a sonic profiler

mounted in an opening of the carriage directly above the test cylin-

der. The water velocities were measured for each cylinder with Marsh

McBirney current meters. Due to the presence of the cylinder, it is

impossible to measure water velocities at the same position of the

center of the cylinder. Thus, the current meter was placed 1.87

diameters clear of the top of the cylinder to minimize effects on the

current meter from the presence of the cylinder.

The force transducers were carefully calibrated by means of

providing known forces before and after the test. The details of

calibrations can be found in Nath (1981a, 1984a, and 1985b).

Experimental outputs were recorded on digital magnetic tape and

strip chart records. A PDP-11 minicomputer provided software for

multiplexing and initial recording on disk. After the experiment,

data were transferred from disk to tape.

The original approach to digitize the data is to keep the time

interval small enough to avoid aliasing in the frequency domain with

respect to the fundamental wave frequency and the higher harmonics

for any frequencies under consideration. Because the Fast Fourier

Transform (FFT) algorithm was used for processing the data, each

fundamental wave period was digitized at 2N (where N is integer)
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intervals. After complete processing, the data were reduced to 32

increments (with equal spacing) per wave, from which the force coef-

ficients and other desired quantities were calculated.

Because the data in the present study came from different proj-

ects, some of the data were recorded for 10 waves, from which 7 peak-

to-peak waves were chosen and used for data analysis. For some data,

only 4 waves were recorded, from which 3 peak-to-peak waves were

used. The details about waves recorded and used are reported in the

next section.

4.4 Test Conditions

The test conditions of force measurements for the smooth and

roughened cylinders, periodic waves and waves plus current (towing)

are summarized in Table 4-2.

The ranges of governing parameters for the present study are:

R 0.3x105 1.8x105 (up to 5x105 if including current),

K : 2-25 (up to 60 if including currents),

e/D: 0.(HSMC8), 0.02(HSRC.02), 0.19(HBRC.2), 0.315(HRAN),

0.85, 0.67, 0.55, 0.47, 0.42,

VM : 0-40, and

U
r

: 0-4.7.

In this study, horizontal cylinders were towed with steady

velocity U toward the waves. This simulates that the current is in

the direction of wave propagation, i.e., the current velocity is

positive and is added to the wave-induced velocity.
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Table 4-2. Test conditions for force measurements.

Cylinders

Periodic Waves Waves Plus Towing

test
conditions

No. of
runs

No. of
waves

test
conditions

No. of
runs

No. of
waves

HSMC8

T=2.5,3.7,4.6,
5.3,6. sec.

H=.8-4.7 ft.
depends on T

50 3

HSRC02 tt

17 7

T=4.6 sec.
H=4.0 ft
U=0-9.6 ft/sec.

22 3-7*

HBRC.2 It II
14 7

T=3.7 sec.
H=3.5 ft
U=.9-9.2 ft/sec

8 3-7*

HRAN It tt
14 7

T=3.7 sec.
H 3.5 ft
U=2.5-8.5ft/sec

8 3-7*

* depending on tow speed
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Since cylinders were towed into waves, the period experienced by

the cylinder is different from the actual wave period, T, and is

called the apparent period, Tap.

T
ap

1 -
C

(4-1)

in which C is the wave celerity. Thus, the apparent wave period

should be used in the dimensionless parameters K (Eq. 2-3) and VM

instead of the actual period. However, the wave-induced kinematics

must still be predicted by using the actual wave period (see Teng and

Nath 1985).
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5. FORCES ON HORIZONTAL CYLINDERS IN PERIODIC WAVES

In this chapter, the forces on horizontal cylinders in labora-

tory periodic waves are studied in several respects. First, the

variations of measured forces, from wave to wave in a train of

periodic waves, are examined. Then, the forces based on the Morison

equation, the maximum and the rms forces, and the harmonic components

of forces are studied. Finally, the forces between horizontal and

vertical cylinders are compared.

In this study, because the water depth and cylinder elevation

are fixed for all runs, the shape parameter, R, is mainly determined

by the wave period, T. The nonlinearity of waves has a negligible

effect on the determination of R. Herein, the runs with the same

wave period are considered to have the same Q. Note that values of

f3(=D2/Tv) are also the same for runs with the same T. Thus, SI and 5

are related. Table 5-1 presents the R and 13 values for the associ-

ated wave periods used in the present experiments.

Table 5-1. Values of R and $ with respect to T.

T(sec.) f3*

2.5 0.85 1.47x10
4

3.7 0.67 0.99x104

4.6 0.55 0.80x10
4

5.3 0.47 0.69x10
4

6.0 0.42 0.61x104

*based on D = 8" and temperature = 50°F
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5.1 Wave-to-Wave Variations of Forces

From flow visualization experiments (Chapter 3), it is observed

that the wake and the vortex pattern may vary from wave to wave in a

train of periodic waves. Accordingly, the flow induced forces in

both the horizontal and vertical directions may vary from wave to

wave. Besides, in the laboratory, waves can not be repeated per-

fectly in a train of periodic waves. For example, for the wave

heights, the ratios of the standard deviation (a) to the mean value

(m) over a train of periodic waves in this study have values up to

3%. (Note that this ratio (a/m) of measured forces will be used to

show the wave-to-wave variation of forces.) In addition, there could

be other un-identified or unknown reasons for wave-to-wave variation

of forces, e.g., coherence effect.

Figures 5.1-1 and 5.1-2 show two records of wave profile and

force measurements under 7 consecutive waves. From these two exam-

ples, it is clear that wave-to-wave variations exist for both ampli-

tude and phase. In the following sections, the mean values of

measurements of a record of 7 waves are used to quantify the force

coefficients and their tendencies are studied at that time. (For the

smooth cylinder, only 3 waves were recorded for each test run. See

Table 4-1.)

In this section, the wave-to-wave variations of the maximum

force, the root-mean-square (rms) force and the harmonic component of

forces are examined to see whether there is any tendency for these

variations. The standard deviation (a) and the ratio of the standard

deviation to the mean value (a/m) of these forces are used to examine
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the variations. The mean values of these forces will be studied in

Sections 5.3 and 5.4.

In this study, data for the smooth cylinder (HSMC8) only were

recorded for 3 wave cycles. Thus, three roughened cylinders

(HSRC.02, HBRC.2 and HRAN) with 7 waves data are used to analyze the

variations.

Figures 5.1-3 and 5.1-4 present the a/m values of the maximum

force and rms force in both directions for the sand-roughened

cylinder (HSRC.02). In Fig. 5.1-3, the variations of the maximum

horizontal force (empty symbols) are all below 15%. No clear trend

on Q can be observed. The variations of the maximum vertical force

(solid symbols) are higher and seem to increase as K increases or Q

decreases. Variations of rms forces in both directions (Fig. 5.1-4)

are smaller than those of maximum forces. The a/m values of rms ver-

tical forces are all smaller than 0.24 and are higher than those of

rms horizontal forces except the one with the smallest K and largest

Q. For larger K, the variations of horizontal rms forces are all

below 10%.

For both rougher cylinders (HBRC.2 and HRAN), the trend is

almost the same as that for the HSRC.02 as shown in Figs. 5.1-5 and

5.1-6 for the HRAN. One very important difference is that the varia-

tions for the rougher cylinder (HRAN) are clearly smaller than those

for the HSRC.02. The results for the HBRC.2 (which are tabulated in

Appendix B and not shown here for space saving) have the same trend.

The harmonic components of forces in the horizontal and vertical

directions are calculated by using Fourier analysis described in
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Section 2.4. Their mean values will be studied in Section 5.4 and

the wave-to-wave variations of each harmonic force are analyzed here.

The a/m values of the amplitude of the fundamental and the second

harmonic forces for HSRC.02 and HRAN are plotted in Figs. 5.1-7 and

5.1-8, respectively. For large K, the a/m values of the fundamental

harmonic horizontal force for HSRC.02 and HRAN are less than 0.1. In

the vertical direction, the a/m values of the fundamental harmonic of

forces are higher than those in the horizontal direction and the

trend that variations with smaller Q are greater than those with

larger Q is observed.

In Fig. 5.1-8, the a/m values for the second harmonic forces are

much higher than those for the first harmonic force and the values of

variations in both directions seem to have the same order. The a/m

values of the second harmonic horizontal force for small a(< 0.47)

are smaller than those for large Q(> 9.55). This is true for all

three roughened cylinders. Variations of the second harmonic verti-

cal force do not have clear trend on Q.

The standard deviations (a) of the phase angles (see definition

in Section 2.4) of the fundamental harmonic force in the horizontal

and the vertical direction, cpx(1) and (I)z(1), are shown in Fig. 5.1-9.

The (px(1) values are all smaller than 10° and the (1,z(1) has greater

variations (up to 20°). Combining the variations of phase angles

with amplitude variations discussed above, it is concluded that the

fundamental harmonic forces in the horizontal direction have less

variation than those in the vertical direction. Furthermore, the

phases for the second harmonic force are extremely scattered. Thus,
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the wave-to-wave variations of the second harmonic forces (both

amplitude and phase) are much greater than those of the fundamental

harmonic forces, especially for the phase. Since the second harmonic

forces come mainly from the effect of vortex shedding, a relatively

large amount of variations of forces comes from the vortex shedding

phenomena.

From the flow visualizations in Chapter 3, the principle forma-

tion and movement of vortices are in the horizontal direction for a

horizontal cylinder in waves. Thus, their induced forces are mainly

in the vertical direction. Compared with the horizontal forces, the

vertical forces contain more vortex-induced forces and less the first

harmonic forces depending on c. It is one of the reasons that the

variations of the maximum and rms forces in the vertical direction

are greater than those in the horizontal direction as shown in Figs.

5.1-3 to 5.1-6 (because the vortex-induce forces contain more varia-

tions).

Besides the wave-to-wave variation of measured forces, Nath

(1986) examined the variability of force coefficients, Cd and Cm,

from wave to wave for vertical cylinders in waves. He reported that

the wave-to-wave variation of C
d

and Cm is probably due to subtle

differences in the phase between the ambient flow conditions and the

force measurements, which are due to the vagaries of vortex shedding.

According to the above discussions, the wave-to-wave variation

of forces from the present data has the following characteristics:

(1) The vortex shedding phenomena have great contribution

to the wave-to-wave variation of forces.
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(2) The variation of the horizontal force is smaller than

that of the vertical force, partly because the vortex

shedding effect in the horizontal direction is

smaller than in the vertical direction.

(3) The variations of forces for the rougher cylinders

(HBRC.2 and HRAN) are smaller than those for the

sand-roughened cylinder (HSRC.02).

(4) In general, as SI decreases, the variation of hori-

zontal forces decreases and the variation of vertical

forces increases.

In spite of the variations discussed in this section, the mean

values of forces are used and studied in the later sections.

5.2 Forces Predicted by The Morison Equation

The force coefficients, Cd and Cm, for the HSMC8, HSRC.02,

HBRC.2 and HRAN are shown in Figs. 5.2-1 to 5.2-4. The results for

the smooth cylinder have considerable scatter. However, it seems

that C
d

values with the smallest shape parameter (2=0.42) are greater

than those with larger Q. Bearman, et al. (1985a) also presented the

values of Cd and Cm for a smooth horizontal cylinder in waves from a

larger wave tank. The upper and lower bound of their data are shown

as dashed lines in Fig. 5.2-1. In spite of the similar scatter,

their Cd values are in the same range of the present data and Cm

values are a little higher. The possible reason for the difference

is the different B values between these two studies. The a values

for Bearman, et al.'s data are higher than those for the present



98

C
d

4.

.8

.6

4.

2.

Cm

1.

.8

.6

.4

O St= 0.85
A Q= 0.67
Q= 0.55 HSMC8
o= 0.47
Q= 0.42

----Bearman, et al (1985a)

\
c, \

o
\..

-.4-,
0,----

es-
B ° ....

%

Dot /\ t
0 , / leA / 0

0

...'

1

.
'''

l
°I / /

-I
\ at

... I --A
p

1

1

la
/

......"

/

.

/

Alb, 0.1

A
1

o t i
I

A
r

,

1

I

...,
A

2 6 8 10

K

I I (it iti

1

20 40

HSMC8
',.. .\ ... _ _ __ _
0\

',.. ........-........ \ - ... %,..
'`.. ....." ..., ON

O \ LA
O 8 A N

A AzAhh.
o0

A A t A,

0
.6:

A B
A oe

A cIP a ee

.2
2

1 1 1 1 1 1 1 1

4 6 8 10 20

K

40

Fig. 5.2-1 Cd and Cm versus K with various c for HSMC8 in periodic
waves.



99

data. For planar oscillatory flow (Q=0), Sarpkaya (1976) also showed

that the Cm values were higher for larger B values.

The force coefficients for roughened cylinders shown in Figs.

5.2-2 to 5.2-4 have fewer data points and seem to have less scatter.

The data with smaller Q are greater than those with large Q,

especially for Cm and smallest Q. Both Cd and Cm increase as the

relative roughness, e/D, increases. Note that the smooth cylinder

diameter is used to evaluate force coefficients for roughened

cylinders here. If the effective diameters (see Section 4.2.) are

desired to use, the Cd values should be divided by the effective

diameter factor 6 (Table 4-1) and the Cm values are divided by 6 2
.

By examining the force traces of measured data and values pre-

dicted by the vector form of the Morison equation with the best

fitted Cd and Cm, it seems that the vector form of the Morison equa-

tion can not predict the forces on a horizontal cylinder (both the

phase and magnitude) quite well, especially for large K and small

Q. Figures 5.2-5 and 5.2-6 show two examples of the comparison

between measured and predicted forces.

To examine the forces predicted by the vector form of the

Morison equation, the root-mean-squared error, which is defined as

Eq. (5.2-1), and the ratio of the maximum predicted total force to

the maximum measured total force [(F
P

)
P
/(F

m
)
P

] are used.

T

T-
f [ (F F )2 + (F F )

2
jdt

1

xm xp zm zp
E
rms (F

p
)
measured

(5.2-1)
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in which Fxm is the measured horizontal force, Fxp is the predicted

horizontal force, Fzm and Fzp are the vertical measured and predicted

forces, and (F
p
)measured is the maximum total (horizontal + vertical)

measured force.

Table 5-2 shows the range, mean and standard deviation of these

two parameters over all the test runs for each test cylinder. From

this table, the Morison equation underpredicted the maximum total

force and generated relatively large root-mean-square errors. Also,

it seems that predictions for the roughened cylinders are a little

better than those for the smooth cylinder.

The main weakness of the vector form of the Morison equation in

predicting forces on a horizontal cylinder in waves is the lack of a

term to take the force due to the vortex shedding into account.

Thus, when determining Cd and Cm, this vortex induced force is intro-

duced into the drag and inertia term as noise and makes the force

coefficient scattered. From flow visualization experiments (Chapter

3) and Section 5.1, the vortex shedding affects the vertical force

more severely than the horizontal force. Thus, predictions of forces

in the vertical direction are usually worse than those in the hori-

zontal direction. One extreme example is the prediction for Q=0.

Under this condition, the horizontal force can be predicted by the

Morison equation quite well, but the vertical force, which now is

mostly an asymmetric vortex-induced force, cannot be predicted by

this equation at all.

As mentioned in section 1.2.2, the vortex-induced force (with

unknown magnitude, angle and sign) on a horizontal cylinder in waves
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Table 5-2. rms error and maximum force ratio for forces predicted
by the vector form of the Morison equation in waves.

test

cylinder

E
rMS

(rms error)

(F )
P Pi/(Fm)0

range mean
standard
deviation

range mean
standard
deviation

Smooth Cylinder
(HSMC8)

0.14-0.44 0.303 0.062 0.66-0.97 0.79 0.08

Sand Cylinder
(HSRC.02)

0.20-0.35 0.259 0.034 0.69-0.93 0.82 0.06

Barnacle Cylinder
(HBRC.2)

0.16-0.30 0.217 0.043 0.72-1.00 0.88 0.07

Anemone Cylinder
(HRAN) 0.21-0.26 0.222 0.031 0.80-0.99 0.88 0.06
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is mixed with the drag and inertia force. Generally, it is almost

impossible to separate the vortex induced force from the drag and

inertia force. However, for Q=0 (cylinders in shallow water waves

or planar oscillatory flow), the vortex induced transverse force is

independent of the in-line (drag and inertia) force that is predicted

by the Morison equation. In this case, the drag and the inertia

force associated with the force coefficients will not be contaminated

by the vortex-induced transverse force. That is the main reason why

the reported data for Q=0 (e.g. Sarpkaya 1976, Chakrabarti 1980)

possess less scatter and the in-line force can be predicted better

than those for the present study (0 < n < 1) and those from Bearman,

et al. (1985a).

If the vector form of the Morison equation is used, only a rela-

tively small amount of second harmonic forces can be predicted due to

the nonlinearity of the flow. Figures 5.2-7 and 5.2-8 show the

spectral plots of the measured forces, related to the time plots of

Figs. 5.2-5 and 5.2-6, for the smooth cylinder. From these two ex-

amples, it is clear that both the second harmonics of the horizontal

and vertical force are relatively significant. In other words, the

vector form of the Morison equation fails to predict the second

harmonic forces which are thought to be mainly due to the vortex

shedding phenomena. The significance of the second harmonics will be

studied in detail in Section 5.4.2.

From the results of the flow visualization experiments, it is

clearly observed that the rotation of the wake around a horizontal

cylinder in waves is not always synchronized with the velocity
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vector. For small SI, the wakes do not truly rotate around the

cylinder. They just fluctuate in a small region on one side of the

cylinder due to the relatively small vertical velocity during the

first half cycle of the wave motion and then fluctuate in a small

region on the other side of the cylinder during the second half

cycle. Similar results can be found from the flow visualization

experiments of Maull and Norman (1979). Chaplin (1984) and Grass, et

al. (1984) also concluded that there is a time lag between the rota-

tion of the wakes and the velocity vector.

The vector form of the Morison equation assumes the force on a

horizontal cylinder is the vector combination of drag force (which is

in-line with the velocity vector) and inertia force (which is in-line

with the acceleration vector). Due to the lag and un-synchronization

between the wake rotation and the velocity vector, the vector form of

the Morison equation can not accurately describe the drag and inertia

force. As sketched in Fig. 5.2-9, when the rotation of the wake and

the velocity vector are not synchronized, the instantaneous drag

force (mostly form drag due to the wake) will have a component per-

pendicular to the velocity vector. This component will be counted as

the inertia force instead of the drag force according to the vector

form of the Morison equation and will contaminate the determination

of force coefficients.

Rodenbusch and Gutierrez (1983) used the forces projected in the

instantaneous velocity direction (that include all the drag force and

a portion of the inertia force) and the least square technique to

determine Cd and Ca (=Cm-1) for horizontal cylinders in orbital
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Fig. 5.2-9 Forces and kinematics on a horizontal cylinder in
periodic waves.
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oscillatory flow (see Section 1.2.2 for more details). Due to the

unsynchronization between the velocity vector and the wake, the Cd

and Cm
they obtained should be contaminated more or less as discussed

above and shown in Fig. 5.2-9.

From the above discussion, it may be concluded that the vector

form of the Morison equation underpredicts the maximum force on a

horizontal cylinder up to 20% and produces rms errors of from 15% to

40% due to the lack of a term taking the vortex induced force into

account and due to the unsynchronization between the wake and the

velocity vector. Because of the above weaknesses, even if good

correlations between forces coefficients and governing parameters are

obtained, the force predictions (both amplitude and phase) by using

the vector form of the Morison equation will not be much better in a

wide range of conditions. For example, if the correlation between

parameters (K and 0 and force coefficients (Cd and Cm) is very good

in Fig. 5.2-1, the prediction of forces shown in Fig. 5.2-5 and Fig.

5.2-6 will not improve too much.

However, the vector form of the Morison equation is widely used

in the practical engineering design and research work. From an engi-

neering point of view, this equation is still an acceptable approxi-

mation providing an appropriate factor of safety is also applied in

order to approximate the maximum forces well, on a statistical basis.

Sarpkaya (1984) and Grass, et al. (1984) calculated Cd and Cm

from the horizontal force (they called it in-line force) of a hori-

zontal cylinder in simulated orbital flow (see Section 1.2.2 for

details). Their Cd and Cm cannot be compared directly with the
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present data because the present data are obtained from the total

(horizontal and vertical) force. It is known that the vertical force

sometimes has the same magnitude as the horizontal force, depending

on Q. Thus, it is very important to consider the vertical force and

include it into the total force.

Grass, et al. (1984) and Chaplin (1985b) oscillated a cylinder

in an elliptic or circular path in still water to simulate a hori-

zontal cylinder in waves (see Section 1.2.2). One very important

difference between these simulations and large, real wave conditions

is the nonlinearity of the waves. Besides, in the real waves, the

wake and vortices rotate more or less around the cylinder as observed

in the flow visualizations (Chapter 3) for a large enough Q. That

means that the wake encounter effect is weak, especially for deep

water waves. But, for a cylinder oscillating elliptically in still

water, the cylinder will encounter its own wake or vortices due to

its own motion in the still water. These differences could cause the

difference of the induced forces between these two cases.

5.3 Maximum and Root-Mean-Square Forces

From the last section and Table 5-2, it is shown that the vector

form of the Morison equation underpredicts the maximum force and gen-

erates large rms error. The maximum force and the root-mean-square

(rms) force are very important for the practical engineering design.

In this section, these two forces will be studied directly from the

measured forces. Besides their importance in design, these two

values have the advantage that they are relatively insensitive to the

phase or phase shift between two different components. It is well
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known that the C
d

and Cm in the Morison equation are very sensitive

to the phase (see Nath 1986) and, thus, they always have considerable

scatter.

The rms force coefficients in the horizontal and in the vertical

direction, the total rms coefficient, and the maximum total force

coefficient are designated as Cxr, Czr, Ctr and Cu, respectively, and

are defined in the following.

Cxr

F
xr

xr 1 2
pDLur

C
zr

-2-

1 2
pDLur

F
zr

C
tr

2

1
pDL(u

2
w
2
)

F

r r

=
1 2

(F2 F2 )1/2
xr zr

(5.3-1)

(5.3-2)

(5.3-3)

(5.3-4)

in which the subscripts p and r represent the maximum and the root-

mean-square value respectively. The Fu is the maximum of the total

force (the vector sum of the horizontal and vertical force). Because

the above coefficients all contain the first power of the diameter,

D, in the denominators, the coefficients are modified by dividing the

effective diameter factor, 6, (see Table 4-1 for 6 values for

roughened cylinders) if the effective diameters are desired to be

used.

Figures 5.3-1 to 5.3-4 present the above coefficients versus K

for the smooth cylinder (HSMC8) in waves. In Fig. 5.3-1, the Cxr



10

9

6

7
C

C

xr

zr

6

5

4

3

2

1

0
0

114

0

8 (6\

0

JISMC8
O Q=0,85
A Q=0.67
o Q=0.55

Q=0.47
0=0.42
Bearman et al(1979 & 1985b)
for planar oscillatory flow
(Q=0)

Bearman at al(1985a) for
vertical cylinders in waves

0

0 A
et, A A--A A

A Si ItI A 004
1

00

10

9

7

6

5

4

3

2

00

5 10 15
K

20 25

Fig. 5.3-1 Cxr versus K for various R for HSMC8 in waves.

30

0

o
0

0
0

AR
A
8

6A.
. c 44.4

g 0 AI, ift

5 10 15
K

20 25

Fig. 5.3-2 Czr versus K for various n for HSMC8 in waves.

30



8

7

6

t r

5

4

3

2

1

0

L

O

oo\

0\

IISMC8

Bearman et al(1985a)

\CD A NA" ".
% 's A 0

,42, ,..,

A '
A'

A
n, a.,

4 AAA",.
-.... 42 ti ®0 go

0 5 10 15 20 25

Fig. 5.3-3 Ctr versus K for various ft for HSMC8 in waves.

10

4

3

2

Cu

.7

.5

0

0

1 I 1 I T II

(ID

00 0
ea.
A

L..114,3A

A p
All

iloprro

HSMC8

o c =0.85
L. O=0.67

o=0.55
C=0.47
O=0.42

1 1 1 1 1 1 1 1 1 I 1 1 I 1 1

1 2 3 4 6 8 10
K

20 30 50

Fig. 5.3-4 Cu versus K for various 2 for HSMC8 in waves.

30

115



116

fits well with K. The values of C
xr

with the smallest Q(=0.42, solid

triangles) are higher than the rest of the data. For Q > 0.42, the

trend of Cxr on Q is not distinguishable. The solid line represents

the values of Cxr from Bearman et al. (1979 and 1985b) for planar

oscillatory flow (Q=0) and the dashed line is the Cxr from Bearman,

et al (1985a) for vertical cylinders in waves. The differences

between cylinders in planar oscillatory flow and vertical cylinders

in waves were discussed in Section 1.2.1. The present data for a

horizontal cylinder in waves are smaller than those for planar oscil-

latory flow (Q=0) and vertical cylinders in waves. It is believed

that the values of Cxr for Q*=0 approach those for Q=0 as Q

approaches 0.

For Czr, all data match well for K > 10. For K < 10, the data

for the largest c( =0.85, open circles) are clearly higher than those

with smaller Q. It is reasonable because the vertical velocity is

relatively large for larger 2 and the vertical force increases

accordingly. Comparing Cxr with Czr, the former is a little larger

than the latter for K > 10. For K <10, the difference increases with

decreasing K for c smaller than 0.85. The reason is that, for small

K and Q, the vertical velocity is too small to make the wake move in

the vertical direction and the form drag in the vertical direction is

small. Because the vertical velocity almost has the same order as

the horizontal velocity for Q=0.85, the difference between Cxr and

Czr is small, even for small K.

The total rms force coefficient, Ctr, has the same trend as Cxr

and the tendency that the values for the smallest Q(=0.42) are higher
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is clearer for Ctr than that for Cxr. In Fig. 5.3-3, the two dashed

lines represent the upper and lower bound of the data from Bearman et

al. (1985a). The present data fit their data for K > 5, but are

lower for K < 5. Again, the difference is probably due to the dif-

ferent B values as discussed in Section 5.2.

In Fig. 5.3-4, the maximum total force coefficient, Cu,

correlates with K and does not have clear trend on Q. Note that C

includes the vortex-induced force which contains great variations in

both amplutides and phases (as discussed in Section 5.1).

Due to limitations of experiments, the smallest Q obtained in

the present study is 0.42. This value is not small enough to make

the flow approach planar oscillatory flow (i.e. Q=0). It is believed

that the data would approach those for planar oscillatory flow if Q

approaches zero.

Figures 5.3-5 to 5.3-8 show the above four force coefficients

against K for three roughened horizontal cylinders (HSRC.02, HBRC.2

and HRAN).

The values of Cxr (Fig. 5.3-5) and Ctr (Fig. 5.3-7) increase

significantly as the relative roughness (e/D) increases. If the

effective diameter is used instead of the smooth diameter, the values

for those with larger relative roughness are still higher. This

shows the effect of roughness on forces (force coefficients). The

trend that the values of Cxr and Ctr with smallest Q(=0.42, solid

triangles) are higher than the rest of the data is clearer for

roughened cylinders.
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From Fig. 5.3-6, the values of Czr correlate well with K for

each cylinder, but no clear trend on a can be observed (Note that

there is only one data point for a=0.85 for all roughened cylin-

ders). Unlike those for Cxr and Ctr, Czr seems not to increase sig-

nificantly as e/D increases, especially for those with small a (solid

symbols). That means, from the present data, the Czr does not vary

significantly among different e/D. One notable phenomenon is that

the Czr
for HBRC.2 (with larger roughness) is a little smaller than

that for HSRC.02. From Fig. 4-2, the roughness of HSRC.02 is uniform

and organized, but the roughness of HBRC.2 is nonuniform and un-

organized. Thus, the spanwise coherence and the induced forces on

HBRC.2 are reduced. This is thought to be the reason that causes Czr

of HSRC.02 is greater than that of HBRC.2 in spite of its smaller

relative roughness. Comparing Fig. 5.3-6 with Fig. 5.3-2, it is

observed that Czr increases from the smooth cylinder to the roughened

cylinders. Thus, the rms vertical force coefficient increases from

smooth cylinders to roughened cylinders, but it does not have a pro-

nounced increase among different roughened cylinders. For planar

oscillatory flow (a=0), Sarpkaya (1976) reported the maximum lift

coefficients (i.e., the maximum vertical force coefficient for a=0)

do not vary among different e/D and-he (1986) showed the rms lift

force coefficients increase from the smooth to the rough cylinder

(see Figs. 1.2.1-7 and 1.2.1-8). This phenomenon and possible

reasons will be studied further in the following section.

Compared with the results of the smooth cylinder (Fig. 5.3-4),

the C
1-1

values for the roughened cylinders presented in Fig. 5.3-8 are
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much higher. No clear difference of C values between the HSRC.02

and HBRC.2 is observed. The values of C for the HRAN are clearly

higher than the HSRC.02 and HBRC.2. It is observed for all three

roughened cylinders that the values of Cu for the smallest Q(=0.42)

are greater than the rest of the data.

5.4 Harmonic Analysis of Forces

In this section, the amplitude and phase of each harmonic com-

ponent (the wave frequency is the fundamental frequency) of the hori-

zontal and vertical forces are analyzed by using Fourier analysis

described in Section 2.4.

Basically, the fundamental harmonic of the forces comes mainly

from the inertia force and the drag force. The higher harmonics of

the forces are composed of the vortex-induced force (due to the

asymmetric vortex motion) and a relatively small amount of nonlinear

Morison force coming from the nonlinearity of waves and the nonlinear

drag term. By conducting a harmonic analysis of the horizontal and

vertical forces, the structure of these forces can be examined.

The amplitudes of each harmonic are normalized by the square of

the maximum horizontal velocity as follows.

amd

F (n)
Cx(n) x

OLup

F (n)
Cz (n) z

1 2

2
pDLu

(5.4-1)

(5.4-2)
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in which n (an integer) represents the order of harmonics. In addi-

tion to the amplitudes, the phase angles of each harmonic are

studied. These angles are designated as (px(n) and (1)z(n), that repre-

sent the phase angles of the nth harmonic force in the horizontal and

vertical direction, respectively. Equations (5.4-1) and (5.4-2)

contain the first power of D. If the effective diameters are

considered, these coefficients should be divided by d.

5.4.1 Fundamental Harmonic

The values of Cx
(1) for HSMC8 with various values of n are

plotted against K in Fig. 5.4.1-1. It is clear that Cx(1) correlates

well with K and, except for Q=0.85, the trend of Cx(1) on Q is not

very clear. The best fit lines for Q=0.85 and Q=0.67 are drawn by

eye for the comparison with the following figure. In Fig. 5.4.1-2,

the relation between C
z
(1) and Q can be drawn, especially for small

K. The C
z
(1) decreases as c decreases because the Morison-type force

(inertia plus drag) in the vertical direction decreases as the Q

decreases (i.e., the relative vertical velocity decreases). For

K < 10, there is a clear discrepancy of Cz(1) between data for Q=0.85

(open circles) and the rest of the data. Similar trend was observed

for Czr in Section 5.3.

In Fig. 5.4.1-2, the best fit lines of Cx(1) for Q=0.85 and

Q=0.67 from Fig. 5.4.1-1 are also drawn. It is clear that, for

K < 10, the Cz(1) with Q=0.85 is very close to Cx(1). However, Cz(1)

with smaller I is much smaller than the associated Cx(1) for small

K. The reason is, for small K and Q, the vertical velocity might be

too small to make the wake move in the vertical direction. It is
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thought that, for K < 10, there is an value between 0.67 and 0.85

that has the vertical velocity strong enough to make the wake rotate

around the cylinder. For K > 10, the values of Cz(1) for all R in

this study are just a little lower than those of Cx(1).

Maull and Norman (1979) used the rms horizontal velocity to

quantify K and Cx(1) and found the dependence of Cx(1) on a. In Fig.

5.4.1-3, the present data were recalculated and plotted with Maull

and Norman's data. Although the present data fall between the upper

and the lower limit of their data, the dependence on R is still not

clear. Bearman et al. (1985a) also reported their data fell between

these limits but no trend on Q could be observed. Now, the question

is why Maull and Norman can find the dependence of Cx(1) on Q, but

this trend can not be clearly found from the present data and

Bearman, et al's data? The difference of B(=D2/Tv) values is thought

to be one of the possible reasons. Although B and a are closely

related for the same test cylinder and cylinder elevation as dis-

cussed at the beginning of this chapter, for the same R, the B values

may vary between different experiments and should be considered as an

important parameter. Maull and Norman conducted the experiment in a

relative small wave flume and the B values were about 200. The

experiments of the present study and of Bearman, et al. were con-

ducted in a large wave tank and 0 values for both studies were over

5000. From the data of planar oscillatory flow from Sarpkaya (1976),

it is also observed that force coefficients (Cd, C m and rms force

coefficient) for different B values are distinguishable for small B.

However, these coefficients are very close to each other between
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different B values for f3 > 3000. That means, for large a values, the

force coefficients under the same K are very close and the dependence

on other parameters is hard to distinguish.

The phase angles (see definition in Section 2.4) for the funda-

mental harmonic of the horizontal and vertical forces for HSMC8 are

plotted in Figs. 5.4.1-4 and 5.4.1-5. The phase angles for the first

harmonic of horizontal forces, cp(1), only vary in a small range.

The trend that cpx(1) for small C2 (e.g. solid symbols) is smaller than

that for large Q (e.g. open symbols) is roughly observed. The 4,(1)

seems to decrease slightly as K increases. It is reasonable because

the drag force tends to dominate as K increases. The cpx(1), contain-

ing mostly the drag and inertia force, should approach 00 as the drag

component becomes very large. The scatter of the phase angle for the

fundamental harmonic of the vertical force (cpz(1)) is more signifi-

cant. However, it is visible that the z(1) values for smaller Q are

smaller.

The values of Cx(1) and Cz
(1) for three roughened cylinders

(HSRC.02, HBRC.2 and HRAN) against K for various values of Q are

shown in Figs. 5.4.1-6 and 5.4.1-7. The Cx(1) increases considerably

as the relative roughness increases and dependence on Q is not clear.

In Fig. 5.4.1-7, the increase of Cz(1), due to the increase of

roughness, is not as rapid as that of Cx(1). The Cz(1) increases

from the smooth cylinder to the sand-roughened cylinder. But, the

Cz(1) does not increase significantly from HSRC.02, HBRC.2 to HRAN,

especially for those with small 7 (solid symbols). The similar trend

was found for Czr in the previous section. For small Q, the vertical
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velocity might be too small to make the wake move toward the vertical

direction. Thus, for small 2, the fundamental harmonic vertical

force coefficients does not vary between different roughened cylin-

ders. However, for the smooth cylinder, the wake is easier to move

due to the smooth boundary of the cylinder. Besides, the tendency

that C
z(1) decreases with decreasing Q is more clear as the relative

roughness increases.

Because no clear dependence of (px(1) and cpx(1) on l for the

roughened cylinders is observed, only one symbol is used to represent

each cylinder in Figs. 5.4.1-8 and 5.4.1-9. Values of (1,x(1) for

three different roughened cylinders agree quite well with one another

(Fig. 5.4.1-8). That means, in this study, the phase angle of the

fundamental horizontal force does not vary due to the change of rela-

tive roughness. Comparing to Fig. 5.4.1-4, the (px(1) for roughened

cylinders is slightly lower than that of the smooth cylinder. That

means, under the same K, forces on roughened cylinders are more drag-

dominant than those on the smooth cylinder.

Although the values of (px(1) for the roughened cylinders have a

little more scatter than those of (1>x(1), the values of 4)x(1) are

still in a small range as shown in Fig. 5.4.1-9. The cpx(1) values

for three roughened cylinders have less scatter than those for HSMC8.

From the present data, the scatter of (p (1) and (1)x(1) for the

roughened cylinders is less than that for the smooth cylinder. Com-

bining this result with the result of Cx(1) and Cx(1), it can be said

that the fundamental harmonic force (mainly the inertia and drag
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force) on the roughened cylinders has less variation than on the

smooth cylinder.

From the above discussions, the characteristics of the funda-

mental harmonic forces of the present data can be summarized as

follows.

(1) Both force coefficient (amplitude) and phase of the

fundamental harmonic horizontal force correlate quite

well with K and the dependence on Q is roughly

observed. In the vertical direction, the fundamental

harmonic force (both coefficient and phase) decreases

as Q decreases.

(2) As the relative roughness increases, the fundamental

harmonic horizontal force increases even if the

effective diameter is used. It reveals that the

roughness significantly increases the fundamental

harmonic of horizontal forces.

(3) The fundamental harmonic vertical force coefficient

increases significantly from the smooth cylinder to

the roughened cylinders. However, this force coeffi-

cient does not have pronounced increase between

roughened cylinders.

(4) The fundamental harmonic forces (especially the

phase) for the roughened cylinders in both directions

have less scatter than those for the smooth cylinder.
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As mentioned at the beginning of this chapter, the fundamental

forces are mainly from the inertia and the drag components. Because

the fundamental forces (force coefficiients and phases) do not have

pronounced scatter, the drag and inertia force should not have great

variation. Thus, the scatter of Cd and Cm shown in Section 5.2. is

thought mainly from the higher harmonic forces.

5.4.2 Higher Harmonics

In this study, only the second and the third harmonic of mea-

sured forces are investigated. To compare the relative importance,

the force coefficients for these higher harmonics (i.e., Cx(n) and

Cz(n), n=2 and 3) are normalized by dividing by the related funda-

mental harmonic force coefficients (Cx(1) and Cz
(1)). These

coefficients are designated as C;(n) and C;(n), respectively and are

called the relative nth harmonic horizontal and vertical force coef-

ficients. The original values of Cx(n) and Cz(n) are listed in

Appendix B.

Figures 5.4.2-1 to 5.4.2-4 present these relative horizontal and

vertical force coefficients of the second and third harmonic for the

smooth cylinder (HSMC8). From Figs. 5.4.2-1 and 5.4.2-2, it is clear

that both relative force coefficients in the horizontal direction,

C'(2) and C'(3) increase as K increases. That coefficients with

smaller Q (solid symbols) are greater than those with larger SI (open

symbols) is roughly observed. Because none of q(2) or q(3) is

greater than 1.0 in this study, none of the second harmonic force

exceeds the fundamental harmonic force and none of the third harmonic

force exceeds the second harmonic force in the horizontal direction.
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When studying the transverse force on a cylinder under planar

oscillatory flow (which is the effect of asymmetric vortex shedding),

several researchers (e.g., Sarpkaya 1976) found the transverse coef-

ficient possess a maximum at K around 10. The C;c(2), which counts

the vortex shedding effect in the horizontal direction, also has a

local maximum at K=9 as shown in Fig. 5.4.2-1.

In the vertical direction, C;(2) increases rapidly from K=2.5

and also reaches the maximum at K=9 as shown in Fig. 5.4.2-3. The

C'(2) for the smaller Si (solid symbols) is clearly greater than that

for the larger Q (open symbols). After the maximum value at K=9,

C'(2) with small Q decreases. The C'(2) with larger Q decreases

mildly and, then, reaches another peak value at K=16. This trend is

similar to the transverse force of a cylinder under planar oscilla-

tory flow as reported by Ikeda and Yamamoto (1981). Actually, the

original data from Sarpkaya (1976) also have this character.

For Q > 0.5, none of C;(2) or C;(3) exceed 1.0. In other words,

the second and the third component will not be larger than the funda-

mental force in the vertical direction for large Q. For Q < 0.5,

some of the C'(2) are greater than 1.0 and that means the second

harmonic force exceeds the fundamental force. It is believed that

C'(2) will increase rapidly as Q decreases below the lowest R value

here (=0.42) because the fundamental harmonic vertical force

decreases and the second harmonic force increases rapidly with

decreasing 2 (decreasing vertical velocity). Note that C;(2)

approaches zero at K=2.5. This result confirms that the asymmetric

vortex shedding starts earlier for horizontal cylinders in waves than
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in planar oscillatory flow (i.e. K=4) as observed in the flow visual-

ization experiments (see Chapter 3).

In Fig. 5.4.2-4, the values of C;(3) for n= 0.42 are much

greater than those for other values of SI including Q=0.47 which is

just a lot higher than 0.42. Thus, a value between 0.42 and 0.47 is

thought to be the critical value of SI that makes the third harmonic

force significant. Comparing with C;(2) in Fig. 5.4.2-3, C;(3) for

Q=0.42 is greater than C;(2) as K > 18. This implies the stronger

third harmonic force (due to the formation and motion of the third

vortex in one half cycle with relatively stronger strength) exists

for small 2 and K > 18.

The phase angles of the second harmonic force ((tox(2) and cpz(2))

for the smooth cylinder (HSMC8) are plotted in Figs. 5.4.2-5 and Fig.

5.4.2-6. No clear trend on Q can be observed. The scatter in these

plots is expected because (i) vortex shedding forces are not so

regular even under planar oscillatory flow as reviewed in Section

1.2, (ii) the second (or higher) harmonic force includes a portion of

the nonlinear force, coming from the wave nonlinearity and nonlinear

drag term (the square of the velocity), and (iii) the phase is very

sensitive even with a small disturbance. However, the rough trend

that these two angles increase with increasing K for K < 10 and then

keep constant is still observable. The phase angles for the third

harmonic force are more scattered than those for the second harmonic

force and are listed in Appendix B.

The relative second and third harmonic force coefficients in the

horizontal direction, C;c(2) and q(3), for roughened cylinders do not
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increase with the increase of roughness as shown in Figs. 5.4.2-7 and

5.4.2-8. That means the higher harmonic horizontal forces increase

at the same rate as the fundamental harmonic horizontal force due to

the increase of e/D. Note that the fundamental harmonic horizontal

force coefficient increases significantly as e/D increases (see

Section 5.4.1). Besides, the C;(2) with smaller c is greater than

that with larger fl, but this tendency does not hold for C;(3).

Similar to those for the smooth cylinder (Figs. 5.4.2-3 and

5.4.2-4), the C;(2) and C;(3) for the roughened cylinders with small

2 are higher than those with large Q as shown in Fig. 5.4.2-9 and

5.4.2-10. None of the second and the third harmonic vertical forces

exceed the fundamental vertical force for large 2 (open symbols). In

general, C;(2) and C;(3) do not vary significantly between different

e/D values except the data with small c near K=15. From the last

section, it was observed that the fundamental vertical force does not

significantly increase due to the increase of e/D. Thus, the higher

harmonic vertical forces are still at the same range between differ-

ent e/D except near K=15. Because no data for roughened cylinders

with small Q are at K=9, the peak value at K=9 found for the HSMC8

can not be verified for the roughened cylinders.

Similar to the smooth cylinder, (px(2) and cpz(2) for the

roughened cylinders have no clear relation with Q and scatter exists

somewhat as shown in Figs. 5.4.2-11 and 5.4.2-12.

In summary, the following characteristics of the higher (second

and third) harmonic forces from the present data can be stated.



2.0

C(2)

1.5

1.0

.5

0.0
0

2.0

HSRC.02

A
A tg 0

o 0=0.85
0-0.67

00 =0.55
0-0.47
0-0.42

1.5

C'(2)

1.0

.5

0.0

2.0

.5

0.0
0

5 10 15
K

20 25 30

0
A

be
a

HBRC.2

A

a

5 10 15
K

20 25 30

A

HRAN

5 10 15
K

20 25 30

142

Fig. 5.4.2-7 C1(2) versus K for various c for roughened cylinders in
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Fig. 5.4.2-8 C;((3) versus K for various Q for roughened cylinders in
waves (all values based on the smooth cylinder
diameter).
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(1) As K increases or Q decreases, the importance of the

higher harmonic forces in both directions increase.

(2) In the horizontal direction, the higher harmonic

forces are all smaller than the fundamental forces.

In the vertical direction, the higher harmonic forces

exceed or approach the fundamental harmonic forces

for small Q and large K.

(3) The higher harmonic horizontal force increase with

the increase of e/D at the same rate as the funda-

mental harmonic horizontal forces.

(4) The relative second and the third harmonic vertical

force coefficients have a maximum at K=9 and K=15.

This is similar to the characteristics of transverse

force coefficients from planar oscillatory flow

(1=0).

(5) Phase angles of the higher harmonic forces are rela-

tively more scattered than those for the fundamental

harmonic forces due to, mainly, the random nature of

the vortex shedding force.

5.4.3 Steady Component

The steady component (D.C. component) of forces on a cylinder is

considered as the result of the flow around the cylinder (see Chaplin

1984) in an open environment or return currents if experiments are

conducted in a closed wave flume (see Nath 1982). According to Kim

(1983), the return current in a closed wave flume has the following

characteristics:
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(i) For a specified wave period T, the return current

increases with the increase of the wave height H.

(ii) With the same wave heights, the return current for

shorter period waves is greater than that for longer

period waves.

The steady components of the measured horizontal and vertical

forces for the HSMC8 in this study are shown in Fig. 5.4.3-1. To

show the influence of H and T directly, steady forces in these

figures are not normalized by any factor.

Because most of the horizontal steady forces are negative, it

reveals that the horizontal steady force in this study is strongly

affected by the presence of return currents that cause negative hori-

zontal steady forces. The steady force with the longer wave period

(or small SI) is smaller than that with shorter period (or large c).

This tendency is due to the character (ii) of the return current

indicated above. According to the character (i), with the same

period (the same symbol), the horizontal steady force should increase

if the wave height increases (i.e., K increases). From Fig. 5.4.3-1,

the force just increases a little as H (or K) increases, especially

for those with longer periods (solid symbols).

For small waves (K < 7), most of the vertical steady force are

positive. One possible reason for this is the viscous effect around

the horizontal cylinder as presented by Chaplin (1984). For K > 7,

the vertical steady forces for longer wave periods are very small and

do not increase with increasing H. For shorter waves, the forces are

negative and the magnitudes are larger than those for longer waves.
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For large K, the vertical steady force is the result of the mean of

the asymmetric vortex-induced force. Because the details of the

asymmetric vortex shedding were not clearly known until now, the ver-

tical steady force induced by them can not be predicted accordingly.

For the sand-roughened cylinder (as shown in Fig. 5.4.3-2), the

horizontal steady forces with small T are in the same level as that

of the smooth cylinder. That means the presence of the roughness

does not have a clear influence on it. The steady forces with larger

T (solid symbols) all become positive, but those with smaller T are

still negative.

Comparing with the result from HSMC8 (Fig. 5.4.3-1), the verti-

cal steady forces for HSRC.02 become positive due to the presence of

the roughness as shown in Fig. 5.4.3-2. The same results hold for

the other two roughened cylinders (HBRC.2 and HRAN) that are tabu-

lated in Appendix B. Thus, the steady vertical forces are mostly

negative for the smooth cylinder but are positive for the roughened

cylinders. The reason for this phenomenon is unknown.

From the present data, the steady component of forces can be

characterized as:

(1) In this study, the horizontal steady force is mainly

due to the return current in the closed wave tank.

(2) Both horizontal and vertical steady force for the

smooth cylinder are smaller for smaller Q (or larger

T).



0

-2.

-3.

2.

Fz(0)

Clb)

-1.

151

HSRC.02

_A

1

A

0 2 4 6 8 10 12 14 16 18 20 22 24

K

HSRC.02

A
1:1

A

EP a

1

0 2 4 6 8 10 12 14 16 18 20 22. 24

K

Fig. 5.4.3-2 Steady horizontal and vertical forces on HSRC.02 in
waves (K based on the smooth cylinder diameter).



152

(3) The vertical steady forces are strongly affected by

the roughness. For large K, these forces are mostly

negative for the smooth cylinder. They become posi-

tive for the roughened cylinders.

5.5 Horizontal vs. Vertical Cylinders

As indicated in Section 1.1 and 1.2, horizontal cylinders and

vertical cylinders in waves have some significant differences in flow

patterns around them and in the induced forces. In this section,

differences and similarities of forces acting on these two cylinders

(horizontal and vertical) in periodic waves are compared and

examined. Note that the forces on vertical cylinders considered here

were measured on a small segment of the cylinders (i.e., local

forces).

Nath (1983a) has reported that both Cd and Cm for the vertical

cylinder are larger than those for the horizontal cylinder for the

smooth and roughened cylinders except that values of Cd between

smooth horizontal and smooth vertical cylinders do not have appre-

ciable differences. Recall that the hydrodynamic forces acting on a

fixed cylinder due to the unsteady flow consist of three components:

the drag, the inertia and the vortex-induced forces. For vertical

cylinders, Cd and Cm are evaluated from in-line forces which include

the drag, inertia and a small portion of vortex-induced force (which

is neglected in the Morison equation). The vortex-induced force

normal to the in-line force is called the transverse force for verti-

cal cylinders and is not involved in determining Cd and Cm. But, the

values of Cd and Cm for the horizontal cylinder are determined from
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all three components (drag, inertia and vortex-induced) as discussed

in Section 5.2. When comparing the Cd and Cm between these two

cylinders, one must keep this difference in mind.

The following data of vertical cylinders used to compare with

those of horizontal cylinders are from Nath (1983b, 1984a). Because

the in-line force on a vertical cylinder and the horizontal force on

a horizontal cylinder are in line with the wave propagation, the term

"in-line force" is used for both cylinders here. Both the transverse

force on a vertical cylinder and the vertical force on a horizontal

cylinder are normal to the direction of wave propagation and the

cylinder axis. Thus, these two forces are called "transverse force"

for simplicity of comparison.

Nath (1983a) defined the maximum in-line force coefficient, Cxu,

as

F
xp

C
xp

pDLu2
2

(5.5-1)

He reported this coefficient is higher for vertical cylinders than

for horizontal ones.

The rms in-line, transverse and total (in-line + transverse)

force coefficients are designated as Cxr, Czr, and Ctr, respectively,

and their definitions are the same as Eqs. (5.3-1) to (5.3-3).

Values of these coefficients for the smooth vertical cylinder are

plotted together with those for the smooth horizontal cylinder

(HSMCS) in Figs. 5.5-1 to 5.5-3. The Cxr values of the vertical

cylinder are higher than those of the horizontal cylinder. On the



i0

9

8

7

C
xr

6

5

4

3

2

1

0
0

154

Vertical Cylinder

o Horizontal Cylinder

0
0

0

o °
o

illb
00
0 cg s

0°000 0
, ...

00 000 0.,
00

0
8o c' cce,

5 10 15 20 25

K

Fig. 5.5-1 Comparison of Cxr between horizontal and vertical
smooth cylinders in waves.

10

9

8

7

C
Zr

6

5

4

3

2

1

0
0

30

0
0

Vertical Cylinder

O Horizontal Cylinder

0
0

CP

08 0 00 0 0.0
cP

00, o)

ipcb° ,

5 10 15

K

20 25

Fig. 5.5-2 Comparison of Czr between horizontal and vertical
smooth cylinders in waves.

30



8

7

6

qtr

5

3

0

155

Vertical cylinder

o Horizontal cylinder

-e-Horizontal cylinder with the
smallest S2 (=0.42) in this
study.

o

0
8000

'4!
00 i

,tg,0, 0 11b
100. 0,10

Or 00
o oo

-e- $ ta
o -eg.0 o

00
o 0,.,

8 0-# 0010 0

0 5 10 15

K

20 25

Fig. 5.5-3 Comparison of Ctr between horizontal and vertical
smooth cylinders in waves.

30



156

other hand, Czr values of the vertical cylinder are smaller than

those of the horizontal one. Thus, the total rms force coefficient

(drag + inertia + vortex-induced) is needed to compare the total

forces between them. In Fig. 5.5-3, the values of Ctr for the verti-

cal cylinder correlate very well with K. These values are higher

than those for the horizontal cylinder and form an upper bound. In

other words, the total rms force acting on the vertical cylinder is

larger than that on the horizontal cylinder. The Ctr values for the

horizontal cylinder with the smallest Q(=0.42) in this study, that

have a cross bar on the representative symbols in Fig. 5.5-3, are

very close to the values of the vertical cylinder at K = 9, 15, 19,

and 23. This implies Ctr values for these two cylinders are getting

closer if Q for the horizontal cylinder becomes smaller.

The maximum total force coefficients for the horizontal cylinder

together with the maximum in-line force coefficients for the vertical

cylinder from Nath (1985a) are shown in Fig. 5.5-4. Note that the

maximum in-line force coefficients, Cxp' for the vertical cylinder

are evaluated from in-line forces only and the transverse force

(induced by vortex shedding) is not included. But, the Cu for the

horizontal cylinder is evaluated from the total (drag, inertia and

vortex-induce force) force. Although the transverse force is not

included, the C xp for the vertical cylinder is still higher and forms

an upper bound of Cu. For vertical cylinders in waves, several

studies (e.g. Chakrabarti, et al. 1976; Sawaragi, et al. 1976)

reported that the maximum transverse force might exceed the maximum

in-line force and the total resultant force might be 1.4 to 1.6 times
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of the in-line force. Sawaragi et al (1976) also reported the phases

between the maximum in-line force and the maximum transverse force

are close to or, sometimes, coincide with each other. With the

transverse force included, the maximum total force coefficient for

the vertical cylinder in periodic waves is, naturally, higher than

that for the horizontal one. It can be concluded that the maximum

total force coefficient for the horizontal cylinder in periodic waves

is smaller than either the maximum in-line or the maximum total force

coefficient for the vertical cylinder. Thus, the in-line maximum

force coefficients for a vertical cylinder can be used to calculate

the total maximum force on a horizontal cylinder for engineering de-

sign and this will be a conservative design for most cases with Q*0.

The force coefficients of the first and the second harmonic

force for both cylinders in both directions are shown in Figs. 5.5-5

and 5.5-6. In the horizontal direction, Cx(1) values for the verti-

cal cylinder are higher than those for the horizontal cylinder and

the values of Cx(2) are at the same level for both cylinders. How-

ever, in the perpendicular direction, both Cx(1) and Cz(2) for the

horizontal cylinder are greater than those for the vertical cylinder.

From the above discussions, the horizontal force on a vertical

cylinder is greater than that on a horizontal cylinder. In the per-

pendicular direction, the force on a vertical cylinder is smaller

than on a horizontal cylinder. Over all, the total force on vertical

cylinders is greater than that on horizontal cylinders. This is also

true for the sand-roughened cylinders. Figure 5.5-7 shows the Ctr
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values for both the horizontal and the vertical sand-roughened

cylinder.

From the flow visualization results in Chapter 3, it is seen

that the wake formed around a horizontal cylinder rotates or moves

around the cylinder (depending on c) and the chance that the wake is

washed back on to the cylinder (wake encounter effect) reduces as Q

increases. Besides, the formation and movement of wake and vortices

around a horizontal cylinder are confined in the horizontal direction

and increase in the vertical direction due to the increase of Q (or

vertical velocity). These are thought to be the main reasons that

cause the difference of forces between vertical and horizontal cylin-

ders discussed above.
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6. FORCES ON HORIZONTAL CYLINDERS UNDER WAVES AND TOWING

As pointed out in Chapter 1, the existence of a current will

bias the flow pattern around a cylinder and, thence, affect the

hydrodynamic force on it. In this study, a horizontal cylinder in

the superposition principle of waves and current is simulated by

towing the horizontal cylinder in waves (see Chapter 4). In this

chapter, the towing (current) effect on wave forces on horizontal

cylinders is studied based on the forces on horizontal cylinders in

waves only (as discussed in Chapter 5) and based on the linear super-

position principle (as described in Section 2.5).

From the test conditions listed in Section 4.4, the sand-

roughened cylinder (HSRC.02) in waves and towing has more data points

and is studied here as a base. The data from the rougher cylinders

(HBRC.2 and HRAN) are compared to those for HSRC.02.

6.1 Forces Predicted by the Morison Equation

The vector form of the Morison equation, Eq. (2-5), with the

linearly superimposed kinematics shown in Eqs. (2-23) to (2-26) is

used to predict forces on horizontal cylinders in waves and towing.

Again, the least square method (Section 2.3) and the smooth cylinder

diameter (D=0.72 ft) were used to determine Cd and Cm. If the

effective diameters are desired to be used, Cd and Cm are modified by

dividing by the effective diameter factor 6 and 6 2
, respectively.

Figure 6.1-1 shows the Cd and Cm of the sand-roughened cylinder

against K for the waves and towing case together with those for the

waves only case. The values of Cd seem to fit quite well between
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these two cases, although they do not overlap. The Cm values for the

waves and towing case are widely scattered, especially for those with

larger tow (current) velocity (equivalently, with larger K). As

indicated by Dean (1976), if the drag forces tend to dominate, the

data are better conditioned for determining Cd, and the Cm values

tend to be contaminated by errors and are scattered. When a cylinder

is towed with steady speed in a wave field, the drag force on the

cylinder increases rapidly as the tow velocity increases and the

inertia force becomes less and less important. Thus, Cm values for

waves and towing are not reliable and are not so important. The Cm

values for the HSMC8 are included here only for interest's sake. A

more detailed discussion about this point can be found in Teng and

Nath (1983).

The values of Cd for HBRC.2 and HRAN are plotted against K in

Figs. 6.1-2 and 6.1-3. As seen, these data all fit well with those

for the waves only case. Thus, the K defined in Eq. (2-3) for waves

and towing [=(U-Fuwp)T/D, in which uwp is the maximum wave-induced

velocity] seems to be acceptable when it is considered as an exten-

sion of the waves only case.

Similarly to the question raised in Section 5.2, how does the

vector form of the Morison equation with the above empirical coeffi-

cients, Cd and Cm, predict the measured forces for the waves and

towing case? Figures 6.1-4 and 6.1-5 show two examples of comparison

between measured forces and forces predicted by the Morison equation

for U=1.80 and 4.94 ft/sec (U/uwp = 0.56 and 1.42, respectively.

From these two examples, it can be seen that predictions in both
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directions for larger U match the measurements better than those for

smaller U. Table 6-1 presents the values of the ratio of the maximum

predicted total force to the maximum measured total force,

(F
P

) /(F
m

) and the rms error as defined in Eq. (5.2-1) for three

roughened cylinders (HSRC.02, HBRC.2 and HRAN) in waves and towing.

Based on these two indicators, it seems predictions of forces on

horizontal cylinders for the waves and towing case by using the

vector form of the Morison equation are much better than those for

the waves only case (see Table 5-2).

The Cd values for all three cylinders are plotted against the

relative velocity, U/uwp, in Fig. 6.1-6. Note that test runs for

each cylinder have almost the same wave conditions (see Table 4-2)

with different tow velocities. For the sand roughened cylinder

(HSRC.02), the Cd value for the waves only case with the same wave

condition is around 1.0 (from Section 5.2). As a cylinder is towed

in the wave field, Cd values become larger than those for the waves

only case for U/uwp < 1.2 and they drop quickly as U/uwp > 1.2. For

HBRC.2 and HRAN, only one data point is below U/uwp =1.2, however,

the values of C
d

for U/uwn > 1.2 are all smaller than that point.

For U/uwp > 1.0, the horizontal velocity, which is always posi-

tive and varies from U-uwp to U+uwp, is in the opposite direction of

the towing and does not reverse. This flow may be called the "uni-

directional oscillatory flow." If the wake and vortices are washed

back upon the cylinder, the actual velocity around the cylinder

increases and, thence, the induced force increases (it is called wake

encounter effect, see Heideman, et. al 1979). For U/uwp > 1.0, the
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Table 6-1. RMS errors and maximum force ratios for forces predicted
by the vector form of the Morison equation under waves
and towing.

Cylinder U K VM U/u
wp

rms
error

(F
P

)

u
(F )
m 0

1.22 26.55 7.30 0.34 0.251 1.01

1.27 26.33 7.58 0.36 0.280 0.91

1.16 24.53 6.96 0.36 0.236 0.91

1.80 29.10 10.44 0.56 0.208 0.93

1.80 27.36 10.44 0.55 0.181 0.98

2.96 32.35 16.18 0.90 0.186 0.91

2.99 32.28 16.32 0.92 0.159 0.97

3.69 34.76 19.46 1.14 0.153 0.92

HSRC.02 3.73 35.38 19.63 1.12 0.170 0.91

(T=4.6sec 4.37 39.03 22.32 1.20 0.114 0.99

H=4.0ft) 4.33 38.68 22.15 1.20 0.140 0.94

4.93 39.84 24.53 1.44 0.115 0.93

4.94 39.86 24.44 1.42 0.081 1.01

5.74 41.71 27.55 1.74 0.088 0.98

6.95 45.48 31.69 2.06 0.091 0.97

6.91 44.95 31.55 2.11 0.078 1.00

8.00 48.09 34.95 2.38 0.079 1.01

8.44 48.96 36.23 2.55 0.082 1.00

8.52 49.94 36.46 2.43 0.116 1.10

9.05 51.18 37.94 2.57 0.103 1.15

9.59 52.02 39.39 2.80 0.116 1.15

mean = 0.14 0.98

standard deviation = 0.06 0.07

2.41 23.39 11.73 1.01 0.18 1.02

3.61 26.49 15.16 1.34 0.12 1.00

HBRC.2 4.57 28.18 18.31 1.85 0.09 0.99

(T=3.7sec 5.94 31.33 22.31 2.47 0.06 1.00

H=3.5ft) 7.07 33.86 25.17 2.90 0.05 1.01

8.28 36.23 28.10 3.46 0.08 0.99

9.14 36.23 29.87 3.80 0.08 0.96

mean = 0.09 1.00

standard deviation = 0.04 0.02

2.49 21.95 11.22 1.05 0.10 0.98

3.57 26.68 15.14 1.31 0.12 0.98

4.60 28.37 18.55 1.89 0.08 0.98

5.95 31.36 22.26 2.45 0.11 0.98

HRAN 6.82 33.39 24.57 2.78 0.11 0.98

(T=3.7sec 8.00 36.29 27.37 3.07 0.14 1.11

H=3.5ft) 8.55 36.87 28.66 3.49 0.14 1.10

8.52 37.07 28.56 3.36 0.12 1.02

mean = 0.12 1.02

standard deviation = 0.02 0.06
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wake and vortices are not washed back upon the cylinder. Under this

circumstance, the wake encounter effect vanishes and the force drops

down.

One might wonder why the Cd does not drop down exactly at

U/uwu = 1.0. For U=uwu, there is an instant that the combined veloc-

ity is zero. Due to deceleration of flow, a portion of formed vor-

tices and wake might have a chance to move back on to the cylinder.

For U/uwu > 1.2, the smallest relative velocity is 0.2 uwu and the

chance for the vortices and wake to move back on to the cylinder is

nil. This needs to be verified in some way; possibly by a flow

visualization experiment.

For large U/uwu, Cd for waves and towing approaches the value of

the steady flow drag coefficient, Cds. Note that Cds is 0.95 for the

HSRC.02, 1.25 for the HBRC.2 and 1.45 for the HRAN (Nath 1984a and

1985b) as marked in Fig. 6.1-6.

Figure 6.1-7 shows the values of Cd for all three roughened

cylinders versus Verley-Moe number (VM = UT/D, see Section 2.1). The

data for the smooth and sand-roughened cylinder from Teng and Nath

(1983, 1985) are plotted in this figure as dashed and solid lines,

respectively. For the HSRC.02, our new data (1984 API project) fit

well with our old data (1982 API project), especially for large VM.

The old data with small tow velocity (VM < 5) decrease and are

smaller than those for the waves only case (Cd=1.0). Matten (1976)

reported that Cd decreases for a very small current, and then

increases as the current increases. Our old data with very small
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currents (about VM=5) seem to have the same trend but the data points

are not enough to support this result.

6.2 Maximum and Root-Mean-Square Forces

The root-mean-square and the maximum force coefficients, i.e.,

and Cu, used in this section have similar definitionsCxr> Czr> Ctrl

as in Section 5.3, i.e., Eqs. (5.3-1) to (5.3-4). The only modifica-

tion is that the total velocity (tow velocity + wave-induced veloci-

ty) is used as the normalization factor instead of the wave-induced

velocity.

Figure 6.2-1 presents the values of the horizontal rms force

coefficient, Cxr, for the sand roughened cylinder (HSRC.02) in waves

and towing. The data for the same cylinder in waves only from

Section 5.3 are plotted as circles. The solid circles represent the

data for waves only that have the same wave period T (equivalently,

the same Q or a) as those for waves plus towing. Recall that all

data of the HSRC.02 in waves and towing have the same wave period

(T = 4.6 sec.) and similar wave height (H = 4 ft). The ranges of

relative velocity, Wuwp, are also marked in this figure. Consider-

ing the data with the same T (or 0, it is clear that the horizontal

rms force coefficient increases as towing is introduced. As tow

velocity continues to increase, it starts to decrease. When the

relative velocity is greater than 1.2, this force coefficient

decreases rapidly. This trend is similar to that for C d
as presented

in Section 6.1.

The vertical and the total rms force coefficients for HSRC.02 in

waves and towing are shown in Figs. 6.2-2 and 6.2-3 with the same
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format as in Fig. 6.2-1. The same trend as Cxr is observed for Ctr.

The Czr just increases a little as the towing is introduced. As tow

velocity increases, it decreases. After U/uwp=1.2, it drops down

rapidly and becomes very small. Over all, it can be said the rms

force coefficients increase as the cylinder is towed into the wave

field, and then they decrease rapidly as the tow velocity is greater

than the maximum waveinduced velocity. A reasonable conjecture is

that the same behavior would be in evidence for waves plus current,

using the linear superposition principle.

The values of Cxr versus K for two rougher cylinders (HBRC.2 and

HRAN) with those for the HSRC.02 are presented in Fig. 6.2-4 and they

correlate well with K. The Cxr for the HRAN is a little higher than

that for HBRC.2, but no difference can be observed if the effective

diameters are used. The values of Cxr for the HSRC.02 seems a little

higher than those for the rougher HBRC.2 and HRAN. The reason is

thought to be the different T (/ or B) used for these cylinders

(T = 4.6 sec. for HSRC.02 and T = 3.7 sec. for HBRC.2 and HRAN).

Thus, some other parameters should be considered when studying hori

zontal cylinders under waves and towing (current).

Actually, the K for waves plus towing [=(U+uwp)T/D] contains VM

(=UT/D) and K for wave only case (uwpT/D). Figure 6.2-5 shows the

values of Cxr versus VM. The Cxr values for these three cylinders

decrease as VM increases. From this figure, it seems that Cxr values

for HSRC.02 are equal to or just a little smaller than those for

HBRC.2 and HRAN although the e/D value for HSRC.02 is much smaller

than for HBRC.2 and HRAN. Note that, for the waves only case, Cxr
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values for HSRC.02 are much smaller than those for the other two

cylinders as shown in Fig. 5.3-5.

Figure 6.2-6 shows these data against relative velocity, U/uwp.

In this figure, the data for HSRC.02, unlike in Figs. 6.2-4 and

6.2-5, are clearly smaller than those for HBRC.2 and HRAN. The

parameter U/uwp indicates the degree of the bias of a wake, i.e., the

larger the U/uwp, the greater the bias. If the U is greater than the

uwp (it is called "uni-directional oscillatory flow," see Section

6.1), the wake forms on the lee side of the cylinder only. Thus,

this parameter is important when the towing (current) effect for a

fixed wave condition is considered.

The values of Czr for three roughened cylinders versus U/uwp are

shown in Fig. 6.2-7. The differences of Czr between different

roughened cylinders are clear. Again, the Czr values drop down sig-

nificantly for U/uwp > 1.2. The total rms force coefficients (Ctr)

for the HBRC.2 and HRAN have the same tendency as Cxr and are not

repeatedly reported here.

The maximum force coefficients, Cu for both the waves only case

and the waves plus towing case are plotted in Figs. 6.2-8 to 6.2-10

for three roughened cylinders, respectively. The data for the waves

only case and for the waves and towing case connect well. Combining

this result with that of C
d in Section 5.1, it is thought the use of

K defined in Eq. (2-3) and the use of U+uwp to estimate kinematics

are acceptable for determining Cd and Cp when the waves and towing

case is considered as an extension of the waves only case. The

results of C for the rougher cylinders HBRC.2 and HRAN seem to
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posses less scatter than those for the HSRC.02 as shown in Figs.

6.2-8 to 6.2-10. It is also observed that dC /dK (the slope of the

best fit line) becomes steep as e/D increases. But, the Cp for the

waves only case increases as e/D increases. Thus, the Cp for the

waves and towing case does not have pronounced increase due to the

increase of e/D.

Figure 6.2-11 shows the C values for all three cylinders versus

relative velocity, U/uwp. It seems that Cp values for three

roughened cylinders under waves and towing are at the same range and

no clear difference is observed. Note that the smooth cylinder

diameter is used to evaluate C and K.

6.3 Harmonic Analysis of Forces

In this section, the forces on horizontal cylinders under waves

and towing are decomposed into harmonic components by using Fourier

Analysis to study towing (current) effect on wave forces.

Intuitively, the steady horizontal force increases rapidly as

the tow (current) velocity increases. The steady horizontal force

coefficients, which are normalized by the square of the towing

velocity (=U2, which is also the maximum of the steady component of

the total velocity square), for all three cylinders (HSRC.02, HBRC.2

and HRAN) are shown in Fig. 6.3-1. Values of this coefficient corre-

late well with U/uwp and decrease rapidly for U/uwp > 1.2. As the

tow velocity becomes very large, the Cx(0) for each cylinder

approaches their associated steady flow drag coefficient, Cds. The

steady flow drag coefficients for these three cylinders marked on the

figure were reported by Nath (1984a,1985b). Thus, for large tow
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velocity, the steady horizontal force for the wave and towing case is

mainly due to the towing and the contributions from waves (uw
2
) and

the cross term between waves and towing (i.e., 2uwU) are very small

and unimportant.

Figure 6.3-2 shows the vertical steady forces (note: it is

dimensional) for all three cylinders. The steady vertical forces,

Fz(0), for the HSRC.02 are all positive and do not increase as U

increases. The values of F
z
(0) for the HBRC.2 are also positive and

increase for VM > 20. But, these forces for the HRAN vary from posi-

tive to negative as U increases. It seems that Fz(0) does not

increase with increase of tow velocity (at most there is a minor

increase) and no general trend for Fz(0) can be found. The reason

for the vagarious trend of Fz(0) between different roughened

cylinders is unknown.

In Fig. 6.3-3, the fundamental harmonic horizontal force coeffi-

cient of the HSRC.02, normalized by the maximum wave-induced velocity

(i.e. u_wp), increases rapidly as K (or U) increases.
That means the

presence of the towing significantly increases the fundamental

harmonic of the horizontal force. Therefore, the square of the total

maximum velocity, (U+uw11) 2 , which includes the tow velocity square

(U
2 ) and the cross term (2Uu_wp ), is used as the normalization factor

in Figure 6.3-4. It is clear that Cx(1) in this figure correlates

quite well with K and seems to connect well with that for the waves

only case.

The fundamental harmonic horizontal force coefficients, Cx(1),

for rougher cylinders (HBRC.2 and HRAN) are plotted in Fig. 6.3-5
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with the data for waves only. The values of Cx(1) for the waves and

towing case still correlate well with K, but can not connect well

with those for waves only, especially for the HRAN. From Figs. 6.3-4

and 6.3-5, the Cx(1) values for the waves only case do increase with

increasing e/D, but the values for the waves and towing case do not

increase as significantly as those for the waves only case. However,

when these values are plotted against U/uwp as shown in Fig. 6.3-6,

the increase of Cx(1) with increaseing e/D is clear. This implies

that (i) the U/uwp is an important parameter for determining the

towing (current) effect; and (ii) one had better consider more param-

eters to determine the force coefficients under waves and towing

(current).

From the above studies, both the steady horizontal force and the

fundamental harmonic horizontal forces increase as the tow velocity

increases. The ratios of the amplitude of the fundamental harmonic

horizontal force to the steady horizontal force, Fx(1)/Fx(0), for all

three cylinders are plotted against the relative velocity, U/uwp, in

Fig. 6.3-7 and they all fit well. From this figure, the fundamental

harmonic force is dominant for U/uwp < 1 and, then, its importance

decreases as the tow velocity increases. This ratio approaches a

constant (about 0.25) for large U. In other words, the rate of

increase of the fundamental harmonic horizontal force is the same as

that of the steady horizontal force for large U. This also implies

that the fundamental harmonic of horizontal forces have a pronounced

increase due to the presence of steady tow.
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The values of C
z
(1) which are normalized by dividing by

(uwu+U)
2

, of the sand roughened cylinder for waves and towing are

plotted in Fig. 6.3-8 and their correlation with K is good. It seems

the connection of C
z
(1) between the waves only case and the waves

plus towing case is smooth. The Cz(1) is very small for large tow

velocity. That means the towing does not siginificantly increase the

fundamental harmonic of vertical forces (note the normalization

factor of Cz(1) includes U 2 and 2Uuwp).

Figure 6.3-9 shows the values of Cz(1) versus U/uwp for three

roughened cylinders. It is clear that the values are higher for the

rougher cylinders. Again, this trend is hard to find if these values

are plotted against K.

The phase angles of the fundamental harmonic of horizontal and

vertical forces, cli(1) and (0z(1), for all three cylinders are plotted

against K in Fig. 6.3-10. These two phase angles correlate very well

with K, especially for large K (or U). Comparing with the results

for waves only case (Figs. 5.4.1-8 and 5.4.1-9), it seems that phase

angles in both directions decreases a little due to the increase of

tow velocity, i.e., the increase of K (or U). For large K, the cpx(1)

approaches 0° and cpz(1) approaches 90°. This means the forces are

dominated by the drag component because these angles show the forces

are in phase with the velocity components.

By examining the magnitudes of the second harmonic force in both

directions for all three cylinders, it seems these forces do not in-

crease too much as the tow velocity increases. That means the towing

of a cylinder (or the presence of a current) in a wave field does not
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significantly increase the second harmonic forces (mostly vortex-

induced force).

The second harmonic force coefficients are normalized by the

associated fundamental force coefficients and are designated as q(2)

and C'(2). Figures 6.3-11 and 6.3-12 present these two coefficients

versus U/uwp for all three cylinders. The C1(2) decreases as U

increases. It seems that the values of q(2) for the HRAN and HBRC.2

are smaller than those for the HSRC.02. Note that C'(2) is normal-

ized by Cx(1). From Fig. 6.3-6, Cx(1) values for the HRAN and HBRC.2

are greater than those for the HSRC.02. Thus, values of Cx(2) do not

have significant increase due to the increase of e/D.

In the vertical direction, C;(2) for the HSRC.02 (Fig. 6.3-12)

reaches the maximum near U/uwp=1.2, and then decreases for

U/uwu > 1.2. Data points for the HBRC.2 and HRAN are not enough to

support this result. Except for U/uwu=1.2, C;(2) values do not

increase as U increases. Since towing of the cylinder does not make

great increase of Cz(1), Cz(2) does not significantly increase. Note

that C'(2)=C
z
(2)/C

z
(1). No clear difference of C'(2) between differ-

ent roughened cylinders can be observed for large tow velocities.

From Figs. 6.3-11 and 6.3-7, the second harmonic of the horizon-

tal force, comparing with the steady horizontal force, is relatively

unimportant as the tow velocity increases (e.g., not over 5% for

U/uwu=2.5) and can be neglected. Meanwhile, from Figs. 6.3-8 and

6.3-12, the second harmonic of the vertical force is relatively small

for large U if compared with the horizontal steady force.
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Due to the small portion of the second harmonic force, compared

to the total force (mainly the steady force), the data are not well

conditioned for determining phase angle. Thus, the phase angles for

the second harmonic forces are not reliable and not presented here.
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7. CONCLUSIONS

The following major conclusions from this study can be drawn.

(1) The flow patterns around a horizontal cylinder in

waves are not symmetric between the forward and the

reverse half wave cycles due to the nonlinearity of

waves, velocity gradient between upper and lower

surface of the cylinder, and the interaction effect

between vortices. In general, the vortices in the

forward half cycle (under the wave crest) are

stronger than those in the second half cycle. In

the forward half cycle, the first vortex formed from

the top half of the cylinder is the largest and

dominant one. The patterns of formation and move-

ment of wake and vortices are dominated by the

dimensionless parameters K and Q.

(2) The vortex shedding phenomena have great contribu-

tions to the wave-to-wave variations of forces.

Thus, variations of the vertical forces, that

contain more vortex-induced forces, are more severe

than those of the horizontal forces. For smaller Q,

variations of horizontal forces are smaller and

variations of vertical forces are greater. It seems

that variations are smaller for the rougher cylin-

ders.
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(3) The flow visualization experiments indicated that

the wake and vortices do not always rotate synchro-

nously with the velocity vector around a horizontal

cylinder, especially for small Q. This fact makes

the force predictions through the use of the Morison

equation (or other techniques based on the instan-

taneous velocity vector) less accurate.

(4) For horizontal cylinders in periodic waves, the vec-

tor form of the Morison equation under-predicts the

maximum forces up to 20% and generates rms errors of

from 15% to 40%. Based on the maximum force predic-

tion and the rms error, the Morison equation force

predictions for a rough cylinder are better than

those for a smooth cylinder and predictions for the

waves and towing case, by assuming the linear super-

position principle, are better than those for the

waves only case. Predictions using the vector form

of the Morison equation have the following inherent

weaknesses: (i) lack of a term taking the vortex-

induced force (mainly higher harmonic forces) into

account, and (ii) wake direction may not be colinear

with the velocity vector. However, the vector form

of the Morison equation is still an acceptable first

approximation for predicting forces on horizontal

cylinders. It is more useful if a factor of safety

is applied to the maximum force determination.
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(5) The rms (horizontal, vertical, and total) force

coefficients correlate well with K and some degree

of dependence of these coefficients on fl is

observed. The maximum total force coefficients,

which include the drag, the inertia, and the vortex-

induced forces, correlate with K and no trend on R

is observed.

(6) Both the force coefficients (amplitudes) and phases

of the fundamental harmonic forces, which are mainly

from the drag and inertia forces, correlate well

with K. Some degree of correlation with SI is also

shown. Thus, it is thought that the scatter of Cd

and Cm as observed in Section 5.2 is largely from

the higher harmonic forces which are mostly due to

the vortex shedding phenomenon.

(7) Both the force coefficients and phases of the higher

harmonic forces (which contain the vortex-induced

forces and the nonlinear Morison forces) have

greater scatter than those of the fundamental

harmonic forces. The higher harmonic forces become

important as K increases or St decreases. None of

the higher harmonic forces exceed the fundamental

harmonic force in the horizontal direction. The

second and third harmonic vertical forces exceed the

fundamental harmonic vertical force for small Q.
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(8) In this study, the horizontal steady force is mainly

due to the return current in a closed wave flume.

For the smooth cylinder, both the horizontal and

vertical steady forces decrease as Q decreases (or T

increases). For roughened cylinders, the vertical

steady force becomes positive.

(9) For small SI and small K, the vertical velocity is

too small to make the wake move in the vertical

direction. Thus, the vertical force is much smaller

than the horizontal force. For larger Q (laboratory

values herein are between 0.67 and 0.81), the verti-

cal velocity is large enough to make the wake rotate

around the cylinder and the vertical (fundamental or

rms) forces have almost the same magnitude as the

horizontal forces.

(10) For a vertical cylinder, the maximum and rms force

coefficients in line with the wave propagation are

greater than those for a horizontal cylinder, due to

(0 the reduction of the wake encounter effect, and

(ii) the confinement of the formation and movement

of wake and vortices. However, the rms vertical

force coefficient of horizontal cylinders is greater

than the rms transverse force coefficient of verti-

cal cylinders. (Note that both are normal to the

axis and to the wave direction.)
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(11) As a cylinder is towed in a wave field, the force

coefficients increase. However, when the tow

velocity is greater than the maximum of the wave-

induced velocity, the flow becomes unidirectional

and oscillatory and the force coefficients decrease

rapidly because the wake and vortices are not swept

back on to the cylinder to enhance the relative

velocity. When a cylinder is towed in waves, the

amplitude of the fundamental harmonic of the hori-

zontal forces strongly increase due to the presence

of towing. The steady component of horizontal

forces is mainly from the tow velocity and its coef-

ficient approaches the steady flow drag coefficient

for large tow velocity.

(12) When the waves and towing case is considered as an

extension of the waves only case, the use of K

(which includes the wave-induced velocity and tow

velocity) and the use of the linear superposition

principle for the kinematics are acceptable for

estimating Cd and Cu. The relative velocity

(U/u1411), which is a measure of flow bias, is an

important parameter.

(13) Generally, force coefficients for rougher cylinders

have less scatter and are more stable than for

smooth cylinders. When the relative roughness in-

creases, the vertical forces on horizontal cylinders
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in waves do not increase as significantly as the

horizontal forces, especially for those with small

Q. The dependences of force coefficients on Q are

clearer for rougher cylinders.

(14) In this study, the data cover a limited range of

parameters, especially for the waves and towing

case. Thus, it is risky to use the present results

for a wider range of conditions.
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APPENDIX A - Similarity of Average Cd and Cm

When data (wave profile, force measurements, etc.) from n con-

secutive waves under the same wave condition are recorded, there are

three ways to obtain a representative Cd and Cm for this flow and

cylinder condition if the least square method is applied (see Section

2.3):

(a) Get Cd and Cm for each wave cycle, and then average

these n pairs of coefficients to get an average pair.

[They are designated as (Cd)a and (Cm)a.]

(b) Average these n cycles of wave data to obtain an

average wave record, and then obtain Cd and Cm for this

representative wave. [(Cd)b and (Cm)b.]

(c) Get one pair of Cd and Cm by using the continuous n

wave record as a whole. [(C
d

)
c

and (Cm )
c'

]

If the n cycles of waves are perfectly repeatable, i.e, the

undisturbed velocity and acceleration used in the Morison equation

are perfectly repeatable from wave to wave, but force measurements

are not necessarily repeatable, the representative pairs of Cd and Cm

from the above three methods are theoretically identical as proven in

the following. The equations for Cd, Cm and associated abbreviations

[AA, BB, etc.] presented in Section 2.3, i.e., Eqs. (2-8) to (2-14)

are used here.

(1) (Cd)a =(Cd)b

The number subscripts (from 1 to n) represent the number of

waves. From Eq. (2-8),
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(AA)
1

(BB)
1
- (DD)

1
(EE)

1
C
dl 1

pDL[(CC)1(BB)1- (DD)1]

C
dl
+ C

d2
+ + C

(C )
d a

n

(AA)
1

(BB)
1
- (DD)

1
(EE)

1
(AA)n(BB)n- (DD)n(EE)n

2-
pDL [ (CC)

1
(BB)

1-
(DD)

2
]

+ +
7 pDL[(CC)n(BB)n- (DD)n2 ]

1

n

Since the undisturbed velocity and acceleration are identical

from cycle to cycle, from Eqs. (2-11) to (2-13), we have

(CC)1 = (CC)2 = = (CC)n = (CC)

(BB)1 = (BB)2 = = (BB)n = (BB)

and

(DD)1 = (DD)2= = (DD)n = (DD).

Thus,

(AA)1(BB)1- (DD)1(EE)1+ + (AA)n(BB)n- (DD)n(EE)n
(C

d
)
a 1

n 7 pDL [(CC)(BB) - (DD)2]

[(AA)1+ + (AA)n] [(EE)1+ + (EE)n]

(BB) (DD)
n

2 pDL[(CC)(BB) (DD)2]
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From Eq. (2-10), it is known that

271-

[F

2ff

f w
5

IF un+FzmnwrgqInde
+...+(AA) I xml

u
I
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2m1 I I
n o 0

n n

2ff

0
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(Note: u
1
= = un = u , wl = = w

n
= w)

Similarly,

Thus,

271. [F
xml

,+...+ F
xmn

] [F
zml

+...+ F
zmn

u + wIrtilde

0

= (AA)

[(EE)1+ + (FE)n]

n
(EE)

(BB)(AA) - (DD)(EE)
(Cd

b
)

d a 1
pDL[(CC)(BB) (DD)2]

(2) (Cd)b = (Cd)c

(BB)(AA) (DD)(EE)

pDL[(CC)(BB) - (DD)
2

I

1

2

Set AA = f A, BB = f B, CC = f C, DD = f D, and EE = I E
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1B1A-1D1E
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In the laboratory, it is very difficult, if not impossible, to

generate a series of waves with exactly the same wave height and

shape. Thus, the undisturbed kinematics are not exactly the same

from wave to wave. However, even with slight variations of wave

heights from wave to wave in this study, it is found that the Cd and

Cm from method (a) and (b) are almost the same. Figure A-1 shows

this result for the HSRC.02 in periodic waves.
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Fig. A-1 Comparisons of Cd and Cm for HSRC.02 from different average methods.
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Table B-1. Data of HSMC8 in waves.

RUN T N K R Cd C
in xr zr Ctr Cx(1) C

z
(1) Cx(2)

278 2.50 1.20 2.75 0.40 0.33 0.93 5.333 4.383 6.903 4.17 3.793 3.711 0.199

280 2.50 1.80 4.16 0.61 1.11 1.58 5.180 4.864 7.106 5.51 4.819 4.249 0.620

281 2.50 2.87 6.69 0.98 0.93 1.03 2.753 2.677 3.840 2.66 2.300 2.070 0.605

283 2.50 3.80 8.53 1.25 0.62 1.19 2.319 2.103 3.130 2.11 2.119 1.674 0.417

284 3.70 1.00 3.87 0.38 0.37 0.91 4.106 1.784 4.477 3.09 2.817 1.195 0.067

285 3.70 2.20 8.45 0.84 0.64 1.09 2.010 1.534 2.529 1.85 1.497 1.059 0.277

286 3.70 3.39 12.64 1.25 0.53 0.84 1.136 1.030 1.533 1.07 0.851 0.638 0.145

287 3.70 4.71 16.64 1.65 0.26 1.13 0.978 0.812 1.271 0.95 0.714 0.540 0.221

288 3.70 4.80 16.89 1.67 0.37 1.10 0.998 0.789 1.272 0.83 0.744 0.533 0.211

289 4.61 1.03 5.17 0.41 0.64 0.84 2.590 1.008 2.780 2.15 1.909 0.733 0.221

290 4.61 1.91 9.63 0.77 0.77 0.94 1.767 1.165 2.117 1.53 1.144 0.729 0.178

291 4.61 3.60 17.74 1.41 0.66 0.64 1.037 0.771 1.293 0.83 0.685 0.456 0.075

292 4.61 4.50 22.03 1.75 0.39 0.93 0.879 0.743 1.151 0.61 0.496 0.338 0.114

293 5.29 0.90 5.38 0.37 0.99 0.82 2.930 1.24e 3.182 2.22 1.838 0.647 0.280

294 5.29 1.65 9.99 0.69 0.51 0.77 1.598 0.943 1.855 1.33 0.926 0.329 0.270

295 5.29 2.90 17.63 1.22 0.45 0.96 1.043 0.786 1.306 0.72 0.591 0.297 0.266

296 5.29 4.00 24.07 1.67 0.43 0.88 0.756 0.684 1.019 0.71 0.335 0.300 0.177

297 6.00 1.25 8.87 0.54 0.96 1.08 2.362 1.195 2.647 2.04 1.431 0.310 0.505

298 6.00 2.08 15.06 0.92 0.62 1.07 1.549 1.092 1.896 1.20 0.777 0.284 0.280

299 6.00 2.75 19.82 1.21 0.60 0.97 1.104 0.937 1.448 1.05 0.536 0.335 0.184

300 6.00 3.16 22.83 1.39 0.59 1.03 1.050 0.751 1.291 0.81 0.490 0.304 0.199

313 2.50 1.20 2.75 0.40 1.05 0.92 5.524 4.728 7.271 4.15 3.948 3.741 0.224

315 2.50 1.75 4.05 0.59 0.71 1.30 5.316 4.931 7.251 4.94 3.881 3.607 0.574

316 2.50 2.65 6.13 0.90 0.81 1.25 3.138 3.071 4.390 2.86 2.567 2.639 0.651

318 2.50 3.82 8.56 1.25 0.21 1.24 2.182 1.947 2.925 2.58 1.891 1.805 0.612

319 3.70 1.00 3.87 0.38 0.21 0.80 3.980 1.539 4.268 3.72 2.659 0.920 0.018

320 3.70 2.11 8.08 0.80 0.60 1.08 2.251 1.671 2.803 2.37 1.510 1.019 0.360

321 3.70 2.90 10.99 1.09 0.69 1.18 1.681 1.343 2.152 1.59 1.287 1.014 0.105

322 3.70 3.91 14.13 1.40 0.05 1.43 1.385 1.169 1.812 1.17 0.999 0.835 0.314

323 3.70 4.15 15.20 1.51 0.40 1.34 1.295 1.015 1.645 1.06 0.987 0.757 0.240

324 4.61 0.88 4.44 0.35 0.82 0.95 3.743 1.415 4.001 3.13 2.604 0.835 0.145

325 4.61 1.78 9.01 0.72 0.79 0.77 2.041 1.349 2.446 1.49 1.202 0.599 0.085

326 4.61 3.62 17.83 1.42 0.53 0.92 1.026 0.755 1.274 0.93 0.684 0.412 0.054

327 4.61 4.37 21.35 1.70 0.54 0.88 0.941 0.770 1.216 0.61 0.513 0.385 0.160

328 5.29 0.94 5.63 0.39 0.87 0.65 2.408 0.691 2.505 1.87 1.550 0.343 0.225

329 5.29 1.72 10.40 0.72 0.70 0.80 1.498 0.850 1.723 1.21 0.945 0.403 0.245

331 5.29 3.95 23.75 1.64 0.47 0.86 0.831 0.738 1.112 0.55 0.364 0.290 0.187

332 6.00 1.30 9.22 0.56 0.67 0.98 2.349 1.562 2.821 1.52 1.249 0.196 0.342

334 6.00 2.70 19.54 1.19 0.73 0.97 1.293 0.887 1.568 0.93 0.626 0.265 0.238

335 6.00 3.15 22.74 1.39 0.56 1.03 1.035 0.724 1.263 0.86 0.498 0.267 0.205

340 2.50 1.23 2.82 0.41 -1.34 0.99 5.855 5.404 7.967 5.90 4.066 4.388 0.846

341 3.70 0.95 3.66 0.36 0.31 0.86 4.301 1.721 4.633 3.42 2.955 1.059 0.056

342 4.61 0.88 4.44 0.35 0.79 0.93 3.506 1.288 3.735 2.97 2.514 0.882 0.110

343 5.29 0.97 5.81 0.40 0.79 0.66 2.219 0.751 2.343 1.63 1.445 0.472 0.230

344 6.00 1.31 9.28 0.57 1.07 1.08 2.378 1.311 2.715 1.65 1.422 0.586 0.514

345 3.70 3.00 11.37 1.13 0.52 0.92 1.478 1.275 1.952 1.28 1.096 0.647 0.109

346 4.61 3.42 16.88 1.34 0.75 0.34 1.077 0.924 1.419 0.77 0.612 0.466 0.063

347 6.00 2.66 19.24 1.17 0.77 0.99 1.352 0.947 1.651 0.89 0.646 0.323 0.268

349 5.29 3.90 23.46 1.62 0.37 0.93 0.785 0.627 1.004 0.59 0.362 0.217 0.224

350 4.61 4.37 21.35 1.70 0.23 1.20 0.906 0.725 1.160 0.64 0.507 0.387 0.150
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RUN

278
280
281
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
313
315
316
318
319
320
321
322
323
324
325
326
327
328
329
331
332
334
335
340
341
342
343
344
345
346
347
349
350

CZ(2)

0.082
0.892
0.840
0.616
0.098
0.526
0.288
0.364
0.345
0.409
0.400
0.177
0.123
0.384
0.305
0.312
0.187
0.513
0.324
0.185
0.126
0.186
0.643
0.853
0.802
0.124
0.614
0.491
0.267
0.425
0.185
0.338
0.205
0.179
0.042
0.341
0.202
0.533
0.131
0.158
0.494
0.122
0.219
0.139
0.596
0.337
0.151
0.192
0.191
0.125

Table B-1. Data of HSMC8 in waves (continued).

Cx(3) Cz(3) 6X(l) 42(1) 1) 6x(2) 42(2) $
x
(3) 02(3)

0.066 0.019 86.659 170.813 280.420 354.154 285.970 5.126

0.094 0.070 81.654 156.457 331.711 74.856 269.499 275.097

0.080 0.093 63.599 153.292 33.023 122.228 258.065 302.186

0.026 0.046 72.396 156.686 35.204 119.199 269.298 321.536

0.201 0.132 86.862 149.115 347.482 278.502 274.992 310.630

0.098 0.062 75.102 136.006 58.041 157.637 308.699 36.225

0.056 0.081 66.861 121.890 55.736 159.997 338.494 95.469

0.106 0.122 79.754 144.333 46.195 179.362 78.884 141.740

0.112 0.134 72.475 127.849 81.614 172.713 38.560

0.095 0.113 78.179 122.285 333.550 53.563 249.715
144.844

0.037 0.068 66.826 116.618 11.630 113.542 358.343
49.518
88.654

0.835 0.103 50.871 67.824 92.095 150.544 341.896

0.055 0.138 68.694 107.871 57.185 104.394 14.912

53.220

0.109 0.140 66.925 110.365 38.346 78.120 194.168

143.797
334.597

0.052 0.092 69.663 91.165 47.005 103.683 226.647.

0.058 0.130 66.255 66.255 58.669 58.669 283.891

6.369
283.891

0.140 0.196 53.379 115.870 68.518 162.407 21.943 121.560

0.166 0.417 62.781 116.623 41.593 68.835 294.491 15.223

0.093 0.265 64.766 97.318 63.919 118.112 336.985 56.589

0.125 0.280 55.956 105.800 78.999 115.367 10.702

0.139 0.255 52.542 105.489 68.432 142.386 10.846

121.260
113.538

0.087 0.057 74.761 160.909 257.832 312.781 286.724 322.265

0.084 0.057 82.995 161.374 320.457 44.598 257.573 226.968

0.091 0.111 74.037 159.451 40.719 139.346 256.968 318.212

0.104 0.070 88.152 171.602 92.302 178.787 282.633 345.326

0.182 0.131 91.314 134.251 124.512 188.642 282.676 24.799

0.037 0.072 76.808 138.678 37.909 148.617 322.784 299.321

0.145 0.088 72.493 125.969 49.030 165.813 334.480 71.028

0.102 0.275 98.946 151.845 75.272 222.494 138.448 194.615

0.141 0.120 76.515 137.269 80.522 180.376 53.515 151.907

0.025 0.168 78.126 109.754 162.574 350.115 40.624 337.466

0.092 0.072 63.691 91.382 21.083 82.221 226.466 348.265

0.045 0.076 63.835 103.400 27.842 111.586 348.583

0.074 0.146 54.591 113.627 35.366 108.475 17.638

109.876
136.350

0.085 0.103 62.605 78.517 67.389 72.184 108.596 302.260

0.074 0.071 58.461 94.297 66.314 151.845 168.770

0.087 0.167 48.571 112.839 65.019 152.998 12.859

292.572
117.138

0.107 0.373 68.769 83.580 66.368 85.099 296.751 7.763

0.076 0.258 46.356 104.453 63.459 118.028 355.377

0.119 0.217 53.500 99.175 81.753 122.969 21.224

128.819

0.411 0.160 113.503 194.018 290.955 35.655 290.756

127.482
38.054

0.181 0.140 89.424 136.924 240.950 246.949 284.527 34.815

0.049 0.157 78.484 116.475 185.364 351.912 227.916 353.787

0.097 0.116 65.978 91.521 26.838 114.843 163.243 284.679

0.023 0.173 57.854 79.859 81.824 225.274 270.507 16.950

0.132 0.102 71.895 118.090 56.063 166.337 311.865 57.905

0.036 0.081 33.009 74.723 353.316 102.916 23.426 106.782

0.078 0.216 46.584 92.808 63.078 137.506 13.145 116.704

0.096 0.122 60.344 106.874 66.199 156.445 27.024 129.294

0.110 0.144 C1.203 139.385 63.221 145.489 89.401 180.085

Fx(0)

0.434
-0.620
-2.374
-2.181
0.034
-0.858 -

-1.733 -

-1.823 -

- 1.249 -

-0.060
-0.729 -

-2.072 -

-2.454 -

0.124
- 0.062 -

-0.130
-0.504 -

0.095
0.026 -

-0.022 -

-0.148 -

0.376
0.076
-2.290
-2.662 -

0.263
-1.128 -

-1.280 -

-1.293 -

-0.991 -

0.255
-0.418 -

-1.613 -

-1.566 -

0.030
-0.087
-0.288 -

0.047
0.112
-0.207
0.179 -

0.247
0.232
0.073

0300.030
-0.830 -

-1.538 -

-0.176
-0.577
-1.024

Fz(0)

.000

.704

.161
.222
.190
.498
.371
.835
.158
.219
.412
. 799

.893
.118
.056
.027
.501
.145
.140
. 200

.023
.090
.441
.289
.200
.060
.463
.713
.385
.723
.247
.102
. 008

.876
.137
.018
.259
.154
.059
.042
.161
.146
.149
.115

.020

.939

.049

.012

.018
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Table B-2. Data of HSRC.02 in waves.

RUN T H K R Cd Cm Ctr
XT Czr

39 4.61
40 3.70
41 3.70
42 3.70
43 4.61
44 4.61
45 4.61
46 4.61
47 5.29
48 5.29
49 5.29
50 4.61
51 6.00
52 6.00
53 6.00
54 4.61

4.24 20.80 1.66 0.97 1.32 1.567 0.998 1.441
2.01 7.70 0.76 1.25 1.09 2.827 1.932 2.355
3.22 12.10 1.20 1.35 0.97 2.203 1.618 1.901
4.17 15.00 1.48 1.02 1.13 1.745 1.322 1.536
4.08 20.00 1.59 1.06 1.36 1.683 1.146 1.579
2.08 10.50 0.84 1.22 1.00 2.255 1.400 2.041
3.29 16.50 1.31 1.15 1.05 1.768 1.096 1.606
4.09 20.00 1.59 1.01 1.24 1.605 0.982 1.459
2.15 13.10 0.90 0.91 1.20 1.843 1.047 1.720
3.12 18.90 1.31 0.97 1.55 1.733 1.253 1.738
3.48 21.00 1.46 1.03 1.40 1.701 1.091 1.642
4.21 20.70 1.64 0.99 1.26 1.565 0.975 1.430
2.11 15.20 0.93 1.42 1.89 2.692 1.659 2.671
2.66 19.30 1.18 1.26 1.74 2.207 1.440 2.223
2.88 20.70 1.26 1.22 1.68 2.085 1.215 2.037
4.08 19.80 1.57 1.06 1.32 1.714 1.078 1.570

RUN Cu Cx(1) Cz(1) Cx(2) Cz(2) Cx(3) Cz(3) 4x(1)

44.02
59.73
44.19
47.17
42.89
47.90
39.82
42.21
49.62
46.46
40.43
43.02
45.72
42.96
41.19
40.96

39 1.05 3.065 4.298 0.755 3.231 0.156 0.186
40 2.43 2.001 1.121 0.226 0.288 0.208 0.256
41 1.74 1.552 1.037 0.311 0.373 0.256 0.334
42 1.43 1.207 0.825 0.236 0.172 0.240 0.270
43 1.22 1.010 0.583 0.229 0.161 0.190 0.234
44 1.72 1.434 0.664 0.041 0.271 0.250 0.308
45 1.27 1.091 0.552 0.168 0.286 0.120 0.160
46 1.10 0.987 0.538 0.154 0.105 0.122 0.152
47 1.38 1.095 0.443 0.260 0.252 0.128 0.226
48 1.44 0.896 0.451 0.423 0.446 0.192 0.218
49 1.41 0.870 0.355 0.361 0.324 0.218 0.174
50 1.12 0.934 0.479 0.137 0.103 0.172 0.224
51 2.16 1.445 0.546 0.367 0.327 0.194 0.438
52 1.70 1.101 0.367 0.404 0.435 0.198 0.234
53 1.74 1.040 0.341 0.408 0.347 0.180 0.230
54 1.23 1.032 0.571 0.203 0.138 0.174 0.178

RUN (1)z(1) (1)x(2) (1)z(2) 4);(3) 4z(3) Fx(0) F
z
(0)

39 114.90 20.46 131.25 47.44 142.42 -0.915 0.275
40 116.55 89.39 181.24 283.47 21.92 0.067 0.580
41 103.13 4.89 119.73 313.90 51.38 -1.856 -0.414
42 113.81 21.11 127.08 32.05 139.42 -1.158 0.390
43 116.32 26.54 134.04 7.42 113.69 -2.440 1.051
44 111.58 350.32 76.69 96.61 337.39 -0.627 0.538
45 111.46 341.06 100.40 343.58 107.60 -1.430 0.345
46 110.01 24.57 151.19 38.80 162.82 -1.081 0.131
47 130.98 70.19 181.66 228.22 311.85 0.269 1.195
48 140.48 44.44 133.96 336.65 98.38 0.047 0.716
49 120.62 44.41 127.22 351.92 106.93 0.389 1.395
50 114.11 23.95 128.17 28.98 150.47 -1.980 0.154
51 154.38 47.41 145.87 349.76 168.54 0.195 0.855
52 142.10 38.99 128.78 336.86 123.87 0.132 0.618
53 127.81 44.07 131.63 342.20 152.16 0.539 0.958
54 120.19 5.37 136.90 50.52 159.31 -1.161 0.078



RUN T

Table B-3.

H K

Data of HBRC.02 in waves.

CxrR C
d

Cm Zr Ctr

51 3.70 2.12 8.0 0.79 1.36 1.72 3.785 2.356 3.067
52 3.70 3.42 12.4 1.23 1.73 1.49 2.765 1.958 2.353
53 3.70 4.44 15.7 1.56 1.12 1.64 2.185 1.297 1.789
54 3.70 4.54 16.2 1.60 1.12 1.71 2.197 1.255 1.787
55 4.61 2.16 11.2 0.89 1.64 1.31 2.837 1.757 2.563
56 4.61 3.37 16.8 1.34 1.39 1.53 2.342 1.134 2.010
57 4.61 4.21 20.1 1.63 1.19 1.88 2.167 0.976 1.844
58 5.29 2.25 13.7 0.95 1.09 1.58 2.340 1.211 2.138
59 5.29 3.22 20.1 1.42 1.13 1.96 2.252 1.051 2.018
60 5.29 3.68 22.3 1.55 1.20 1.72 2.058 0.847 1.808
61 6.00 2.14 15.5 0.41 1.56 2.40 3.330 1.419 3.058
62 6.00 2.76 20.1 1.22 1.49 2.00 2.641 0.933 2.361
63 6.00 2.97 21.2 1.30 1.43 2.27 2.579 1.001 2.333

RUN Cu Cx(1) Cz(1) Cx(2) Cz(2) Cx(3) Cz(3) 4x(1)

67.87
41.29
49.14
47.50
43.28
41.39
46.47
53.05
47.37
39.80
51.39
41.20
42.79

51 2.45 2.694 1.503 0.557 0.728 0.208 0.246
52 1.93 1.887 1.297 0.266 0.283 0.260 0.340
53 1.48 1.536 0.845 0.392 0.349 0.210 0.230
54 1.63 1.596 0.866 0.395 0.304 0.270 0.240
55 1.74 1.727 0.936 0.321 0.518 0.144 0.176
56 1.42 1.463 0.631 0.194 0.216 0.162 0.238
57 1.33 1.335 0.559 0.222 0.113 0.174 0.170
58 1.32 1.362 0.424 0.483 0.596 0.170 0.240
59 1.33 1.179 0.378 0.496 0.428 0.160 0.124
60 1.42 1.042 0.335 0.445 0.279 0.140 0.096
61 1.76 1.826 0.464 0.468 0.529 0.172 0.332
62 1.56 1.301 0.331 0.438 0.234 0.144 0.172
63 1.53 1.279 0.333 0.473 0.320 0.138 0.158

RUN 4Z(1) cpx(2) (I)z(2) 4x(3) 4z(3) F
x
(0)

51 135.34 348.15 89.97 346.79 104.05 -0.635
52 122.54 27.76 147.34 34.98 135.65 -1.607
53 129.51 40.87 129.33 35.86 128.77 -1.442
54 132.54 42.56 140.08 68.16 169.62 0.841
55 130.08 337.24 58.19 290.21 24.08 -0.959
56 122.38 11.15 78.78 353.63 57.10 -1.539
57 125.11 41.23 86.76 54.51 166.38 -1.770
58 151.56 42.35 111.12 309.19 355.96 -0.176
59 139.76 44.44 123.49 355.02 96.28 0.565
60 125.50 43.43 124.11 23.80 185.69 -1.013
61 161.78 42.65 130.71 341.08 11.64 -0.408
62 117.65 48.14 119.01 19.34 188.75 0.539
63 123.37 47.90 126.33 1.87 185.39 0.666

Fz(0)

0.988
1.286
0.756
1.238
1.051
1.137
1.925
0.618
1.411
1.635
1.091
1.405
1.506

220
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RUN T

Table B-4.

H K

Data of HRAN in waves.

R Cd cm
XT Czr C tr14 2.50 3.28 7.80 1.14 1.94 1.46 4.30 3.231 3.062

15 3.70 2.06 7.90 0.78 2.63 1.87 5.08 2.805 3.993
16 3.70 3.39 12.40 1.23 2.10 1.57 3.48 2.013 2.791
17 3.70 4.27 15.20 1.50 1.64 2.19 3.15 1.637 2.492
18 3.70 4.36 16.60 1.60 1.69 2.09 3.11 1.593 2.451
19 4.61 2.13 10.80 0.86 2.59 1.68 4.10 2.236 3.589
20 4.61 3.30 16.60 1.32 2.12 1.85 3.31 1.520 2.815
21 5.29 4.11 24.90 1.72 1.70 2.40 2.87 1.308 2.562
22 5.29 2.24 13.70 0.95 1.68 1.87 3.26 1.248 2.838
23 5.29 3.18 19.50 1.35 1.73 2.26 3.06 1.222 2.672
24 5.29 3.70 22.40 1.55 1.64 2.07 2.66 1.101 2.343
25 6.00 2.18 15.60 0.95 2.14 2.72 4.19 1.492 3.755
26 6.00 2.69 19.70 1.20 1.92 2.78 3.68 1.246 3.276
27 6.00 2.95 22.40 1.90 2.49 3.44 1.218 3.080

RUN C Cx(1) CZ(1) Cx(2) CZ(2) Cx(3) C1(3) x(1)
14 3.52 4.177 3.065 0.556 0.755 0.172 0.160 54.83
15 2.97 3.685 1.998 0.514 0.658 0.214 0.226 51.37
16 2.09 2.418 1.307 0.302 0.365 0.178 0.238 40.95
17 1.95 2.201 1.053 0.452 0.396 0.270 0.334 50.41
18 1.76 2.152 1.015 0.398 0.346 0.292 0.374 46.87
19 2.46 2.682 1.334 0.424 0.607 0.160 0.160 40.04
20 1.91 2.056 0.871 0.291 0.269 0.170 0.234 40.66
21 1.44 1.535 0.638 0.236 0.135 0.172 0.238 42.98
22 1.81 1.959 0.401 0.559 0.639 0.086 0.158 47.48
23 1.69 1.634 0.452 0.619 0.492 0.100 0.126 45.43
24 1.59 1.384 0.461 0.566 0.308 0.160 0.184 41.29
25 2.06 2.237 0.364 0.607 0.643 0.186 0.330 47.51
26 1.89 1.834 0.444 0.691 0.382 0.152 0.170 47.18
27 1.60 1.643 0.445 0.637 0.328 0.174 0.194 40.36

RUN cpz(1) (P(2) 6z(2) ckx(3) coz(3) Fx(0) Fz(0)

14 127.16 30.12 128.43 347.36 139.28 -2.02 1.04
15 119.14 358.42 86.03 19.55 111.91 -0.52 1.91
16 105.19 8.77 104.86 359.67 86.20 -2.93 1.46
17 117.88 20.34 117.13 67.63 156.58 -2.00 2.09
18 115.49 29.62 128.51 62.46 154.18 -1.57 2.50
19 116.84 316.30 46.53 354.03 102.40 -1.45 1.77
20 104.61 329.92 58.96 35.92 148.80 -3.06 1.36
21 106.94 20.81 65.36 59.58 172.18 -3.54 1.22
22 120.31 26.47 108.56 141.54 339.15 -0.34 0.87
23 102.22 31.53 112.96 8.44 123.53 0.19 1.67
24 97.19 44.54 116.26 43.21 168.55 0.48 1.81
25 134.13 22.83 107.28 290.57 8.46 -0.61 1.01
26 106.35 43.86 119.10 13.21 148.92 0.22 1.41
27 94.88 44.79 107.79 17.27 160.43 0.44 1.68



RUN

Table B-5.

T 1 1 R U 911

Data of HSRC.02 under waves and towing.

U/u C C C C C C.(1)
tr

140 d m xr zr
CZ(1)

1 4.6 4.06 20.04 1.59 0.00 0.00 0.00 1.12 1.14 1.659 1.040 1.517 0.79 0.984 0.583

2 4.6 4.17 26.55 2.24 1.22 7.30 0.34 1.31 0.91 2.215 1.140 1.998 1.16 0.692 0.306

3 4.6 4.08 26.33 2.23 L.27 7.58 0.36 1.05 1.73 2.226 1.047 1.982 0.96 0.704 0.227

4 4.6 3.82 24.53 2.08 1.16 6.96 0.36 1.07 0.95 1.976 1.039 1.790 1.16 0.651 0.256

5 4.6 3.77 29.10 2.39 1.80 10.44 0.56 1.22 1.49 L.894 1.190 1.873 1.32 0.526 0.319

6 4.6 3.81 27.36 2.41 1.80 10.44 0.55 1.16 1.84 2.119 1.060 2.000 1.36 0.626 0.311

7 4.6 3.86 32.35 3.02 2.96 16.18 0.90 1.21 1.33 1.882 0.923 1.898 1.27 0.555 0.217

8 4.6 3.82 32.28 3.02 2.99 16.32 0.92 1.19 1.60 1.900 0.788 1.867 1.31 0.572 0.188

9 4.6 3.79 34.76 3.36 3.69 19.46 1.14 1.21 1.77 1.762 0.657 1.753 1.10 0.545 0,153

10 4.6 3.90 35.38 3.43 3.73 19.63 1.12 1.17 1.17 1.696 0.678 1.701 1.35 0.524 0.135

11 4.6 4.24 39.03 3.89 4.37 22.32 1.20 0.97 0.92 1.380 0.360 1.342 1.10 0.427 0.105

12 4.6 4.19 38.68 3.86 4.33 22.15 1.20 1.02 0.84 1.437 0.459 1.418 1.13 0.433 0.111

13 4.6 4.00 39.84 4.08 4.93 24.53 1.44 1.05 1.53 1.388 0.386 1.376 1.14 0.440 0.118

14 4.6 4.05 39.86 4.11 4.94 24.44 1.42 0.98 1.66 1.302 0.279 1.270 1.12 0.409 0.113

15 4.6 3.85 41.71 4.43 5.74 27.55 1.74 1.03 1.66 1.281 0.277 1.267 1.20 0.410 0.108

16 4.6 3.94 45.48 5.09 6.95 31.69 2.06 0.96 2.46 1.154 0.203 1.143 0.88 0.348 0.102

17 4.6 3.83 44.95 5.02 6.91 31.55 2.11 1.00 2.03 1.176 0.203 1.166 0.97 0.362 0.103

18 4.6 3.92 48.09 5.61 8.00 34.95 2.38 1.02 3.51 1.165 0.183 1.157 1.13 0.355 0.095

19 4.6 3.87 48.96 5.81 8.44 36.23 2.55 0.91 3.74 1.040 0.136 1.032 0.97 0.302 0.081

20 4.6 4.09 49.94 5.95 8.52 36.46 2.43 1.01 1.76 1.151 0.211 1.150 1.05 0.308 0.092

21 4.6 4.10 51.18 6.31 9.05 37.94 2.57 0.89 4.98 1.026 0.137 1.019 0.84 0.270 0.084

22 4.6 4.00 52.02 6.47 9.59 39.39 2.80 0.90 4.02 1.001 0.147 0.999 0.84 0.239 0.084

RUN C.(2) Cx(2) C.(3) Cx(3) 9.(1) 9.(1) 9.(2) 9x(2) 9x(3) O(3) F.(0) Fx(0) C.(0) Cx(0)

1 0.221 0.158 0.130 0.186 37.31 102.78 49.51 132.76 8.35 130.22 -1.636 0.421

2 0,263 0.089 0.156 0.326 20.70 101.27 353.61 67.86 298.30 285.14 4.154 0.513 4.003 0.494

3 0.323 0.068 0.164 0.440 36.38 131.05 18.40 178.82 266.37 323.69 6.047 1.526 5.378 1.357

4 0.298 0.122 0.110 0.346 21.23 119.03 349.78 155.23 333.84 248.78 4.227 1.122 4.506 1.196

5 0.228 0.132 0.244 0.360 26.66 109.16 10.63 95.70 36.71 22.14 10.119 2.227 4.480 0.986

6 0.232 0.129 0.262 0.234 32.85 117.81 10.66 103.92 57.58 23.26 10.214 2.035 4.522 0.901

7 0.198 0.147 0.238 0.542 13.32 97.69 8.19 134.78 29.15 166.98 20.470 2.963 3.351 0.485

8 0.196 0.105 0.196 0.314 16.04 112.64 14.71 127.60 18.54 101.21 20.740 1.629 3.327 0.261

9 0.151 0.122 0.286 0.408 13.87 119.13 24.31 106.30 350.23 56.50 28.800 1.755 3.034 0.185

10 0.154 0.133 0.362 0.392 11.94 110.25 25.76 82,09 346.57 44.52 28.207 2.201 2.908 0.227

11 0.124 0.058 0.280 0.236 11.93 99.26 11.30 86.56 309.92 134.56 24.452 1.463 2.383 0.110

12 0.132 0.094 0.260 0.262 7.07 99.75 7.80 82.29 329.28 92.68 28.265 1.462 2.515 0.112

13 0.132 0.074 0.394 0.334 10.50 98.59 356.60 102.92 309.44 152.72 32.899 1.480 2.377 0.087

14 0.122 0.063 0.320 0.222 12.86 97.39 1.80 107.20 321.54 56.49 30.108 1.383 2.247 0.081

15 0.117 0.059 0.344 0.294 10.24 93.01 350.78 108.51 312.51 54.56 39.432 1.956 2.218 0.085

16 0.092 0.045 0.340 0.170 12.79 93.50 4.60 121.26 296.97 66.56 55.142 1.687 2.058 0.050

17 0.095 0.041 0.204 0.252 10.09 92.13 7.95 108.81 318.77 91.55 69.652 1.504 2.092 0.045

18 0.093 0.043 0.252 0.262 4.92 92.89 7.12 101.45 356.28 103.44 94.664 1.054 2.122 0.024

19 0.078 0.035 0.236 0.204 14.71 90.97 28.71 110.45 69.60 139.49 93.867 1.557 1.890 0.031 1v

20 0.060 0.043 0.634 0.306 5.54 91.60 321.42 98.13 285.89 67.83 86.216 1.355 2.131 0.027 N.)

21 0.070 0.038 0.216 0.242 18.13 95.56 45.49 125.65 281.58 133.22 108.706 1.236 1.904 0.022

22 0.036 0.043 0.422 0.346 14.56 90.33 32.88 116.63 240,76 126.37 120.721 0.909 1.883 0.014



Table B-6. Data of HBRC.2 under waves and towing.

RUN T H K R U VR U/u
W1.1

Cd Crti C
I'X

C zr
Ctr C

P
Cx(1) CZ(1) Cx(2)

78 3.7 3.38 23.39 2.45 -2.41 10.8 1.01 1.51 2.55 2.527 1.139 2.378 1.27 0.827 0.476 0.261

79 3.7 3.78 26.49 3.22 -3.61 15.2 1.34 1.34 1.57 1.916 0.631 1.829 1.11 0.588 0.239 0.130

80 3.7 3.47 28.18 3.59 -4.57 18.3 1.85 1.38 2.32 1.766 0.445 1.717 1.15 0.626 0.220 0.114
0.082

81 3.7 3.39 31.33' 4.25 -5.94 22.3 2.47 1.30 3.44 1.539 0.305 1.514 1.08 0.531 0.194

82 3.7 3.44 33.86 4.85 -7.07 25.5 2.90 1.25 3.97 1.421 0.239 1.404 0.84 0.464 0.170 0.073

83 3.7 3.38 36.23 5.44 -8.28 28.1 3.46 1.20 9.37 1.346 0.201 1.335 1.02 0.434 0.152 0.064

84 3.7 2.79 36.23 5.65 -9.14 29.9 3.80 1.30 12.80 1.403 0.204 1.402 1.14 0.451 0.169 0.059

RUN CZ (2) Cx(3) CZ(3) Ox(1) (Dz (1) 4),c(2) $z(2) Ox(3) 4)z(3) Fx(0) Fz(0) Cx(0) CZ(0)

78 0.104 0.264 0.596 36.30 120.92 342.43 26.62 300.05 275.39 18.750 2.821 4.630 0.496
79 0.139 0.240 0.712 15.12 118.60 27.96 58.62 359.43 51.81 32.268 2.043 3.551 0.225
80 0.107 0.230 0.674 18.15 104.25 11.41 83.52 281.13 138.14 44.709 1.924 3.071 0.132
81 0.084 0.242 0.412 19.39 101.96 27.93 113.19 318.20 194.63 67.470 2.436 2.743 0.099
82 0.057 0.124 0.250 18.51 96.89 23.54 111.70 321.21 203.54 90.186 3.124 2.588 0.090
83 0.049 0.288 0.240 34.61 102.98 55.60 130.72 256.56 105.20 118.020 5.587 2.469 0.117
84 0.049 0.538 0.714 32.27 98.62 63.49 134.63 225.74 313.02 150.416 4.431 2.583 0.076



Table B-7. Data of HRAN under waves and towing.

RUN T H K R U VIA Utu
urti

Cd Cm C
xr

Czr C
tr C u

Cx(1) C (1)
Z

Cx(2)

42 3.7 3.36 21.95 2.48 -2.49 11.22 1.05 1.68 2.81 2.733 1.028 2.523 1.30 0.996 0.437 0.260

43 3.7 3.81 26.68 3,21 -3.57 15.14 1.31 1.39 2.75 2.018 0.779 1.957 1.07 0.669 0.352 0.198

44 3.7 3.43 28.37 3.59 -4.60 18.55 1.89 1.50 3.32 1.954 0.473 1.898 1.16 0.728 0.265 0.121

45 3.7 3.43 31.36 4.28 -5.95 22.26 2.45 1.42 4.60 1.702 0.414 1.689 1.08 0.584 0.247 0.094

46 3.7 3.45 33.39 4.72 -6.82 24.57 2.78 1.39 6.62 1.647 0.395 1.647 1.06 0.533 0.248 0.082

47 3.7 3.66 36.29 5.41 -8.00 27.37 3.07 1.33 4.65 1.487 0.328 1.489 0.88 0.409 0.232 0.035

48 3.7 3.45 36.87 5.61 -8.55 28.66 3.49 1.35 8.63 1.492 0.302 1.495 0.90 0.406 0.226 0.032

49 3.7 3.57 37.07 5.64 -8.52 28.56 3.36 1.42 7.78 1.582 0.306 1.581 1.06 0.458 0.221 0.049

RUN Cz(2) Cx(3) Cz(3) 4
x
(1) (0z(1) 4 x(2) $z(2) 4)2(0) l)z(3)

Fx(0) Fz (0) Cx(0) Cz (0)

42 0.165 0.220 0.278 30.19 122.97 23.43 95.04 162.96 37.43 19.223 3.267 4.449 0.756

43 0.143 0.188 0.542 23.68 126.05 30.88 55.39 349.57 48.58 31.964 4.864 3.597 0.547

44 0.114 0.450 0.476 23.22 103.21 25.29 82.39 268.18 75.18 48.688 2.541 3.300 0.172

45 0.149 0.782 0.442 25.44 111.69 24.15 96.19 288.65 273.96 74.57.9 1.759 3.022 0.071

46 0.126 0.348 0.922 33.02 98.81 45.83 111.99 45.90 36.47 95.279 0.899 2.938 0.028

47 0.093 0.566 0.954 25.66 262.12 5.33 106.06 260.74 78.60 124.988 -0.758 2.801 -0.170

48 0.078 0.870 0.984 35.32 93.53 7.86 119.77 284.45 327.74 143.166. -2.317 2.809 -0.045

49 0.075 0.320 0.634 26.73 262.63 39.73 113.44 332.91 71.20 149.701 -2.857 2.958 -0.056


