

AN ABSTRACT OF THE DISSERTATION OF

Qingwei Li for the degree of Doctor of Philosophy in

Electrical and Computer Engineering presented on January 4, 2008.

Title: Efficient VLSI Architectures for MIMO and Cryptography Systems

Abstract approved: __

Zhongfeng Wang

Multiple-input multiple-output (MIMO) communication systems have

recently been considered as one of the most significant technology breakthroughs

for modern wireless communications, due to the higher spectral efficiency and

improved link reliability. The sphere decoding algorithm (SDA) has been widely

used for maximum likelihood (ML) detection in MIMO systems. It is of great

interest to develop low-complexity and high-speed VLSI architectures for the

MIMO sphere decoders.

The first part of this dissertation is focused on the low-complexity and high-

speed sphere decoder design for the MIMO systems. It includes the algorithms

simplification, and transformations, hardware optimization and architecture

development. Specifically, we propose the layered reordered K-Best sphere

decoding algorithm and dynamic K-best sphere decoding algorithm, which can

significantly improve the detection performance or reduce the hardware

complexity. We also present the efficient K-Best sorting architecture, which

greatly simplifies the sorting operation of the K-Best SDA. In addition, we

introduce the early-pruning K-Best SD scheme, which eliminates the unlikely

candidate at early decoding stages, thus saves computational complexity and power

consumptions. For the conventional sphere decoder design, we develop the parallel

and pipeline interleaved sphere decoder architecture, which considerably increases

the decoding throughput with negligible extra complexity. Finally, we design the

efficient radius and list updating units for the list sphere decoder, which increases

the speed of obtaining the new radius and reduces the complexity for generating the

new candidate list.

The wireless communication technologies are widely used for the benefits of

portability and flexibility. However, the wireless security is extremely important to

protect the private and sensitive information since the communication medium, the

airwave, is shared and open to the public. Cryptography is the most standard and

efficient way for information protection.

The second part of this thesis is thus dedicated to the high-speed and

efficient architecture design for the cryptography systems including ECC and Tate

pairing. We propose an efficient fast architecture for the ECC in Lopez-Dahab

projective coordinates. Compared with the conventional point operation

implementations, the point addition and doubling operations can be significantly

accelerated with reasonable hardware overhead by applying parallel processing and

hardware reusing. Moreover, we develop a complexity reduction scheme and an

overlapped processing architecture for the Tate pairing in characteristic three. The

proposed architecture can achieve over 2 times speedup compared with

conventional sequential implementations for the Duursma-Lee and Kwon-BGOS

algorithms.

©Copyright by Qingwei Li

January 4, 2008

All Rights Reserved

Efficient VLSI Architectures for MIMO

and Cryptography Systems

by

Qingwei Li

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented January 4, 2008

Commencement June 2008

Doctor of Philosophy dissertation of Qingwei Li presented on January 4, 2008.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection

of Oregon State University libraries. My signature below authorizes release of

my dissertation to any reader upon request.

Qingwei Li, Author

ACKNOWLEDGEMENTS

First and foremost, I would like to express the sincere gratitude to my

respected advisor, Dr. Zhongfeng Wang for his invaluable advice, incessant

guidance, continuous encouragement, and financial support (through the National

Science Foundation and National Aeronautics and Space Administration)

throughout the course of my study and research at Oregon State University. His

ample knowledge, rigorous working attitude, honest personality and eagerness for

new technology are always my model to follow in my future study and work.

As well, I would like to thank all the people of School of EECS for providing

such an excellent education and research environment. My special thanks go to the

members of my Ph.D. program committee – Dr. Albrecht Jander, Dr. Huaping Liu,

Roger Traylor, and Dr. William Warnes for their advice and help on my Ph.D.

program.

I would also like to thank all my friends and colleagues at Oregon State

University for their friendships and support during my past study life, especially

our group members, Dr. Zhiqiang Cui, Jinjin He, and Lupin Chen for many useful

discussions and help.

Finally, I would like to express my deepest appreciation to my family: my

uncle and aunt in New York City, my parents and my girlfriend in Wuhan, to

whom this thesis is dedicated, for their constant encouragement, support and

unconditional love.

TABLE OF CONTENTS

 Page

1 INTRODUCTION..1

1.1 MIMO Systems ...1

1.1.1 MIMO System Model...1

1.1.2 MIMO System Architecture ...4

1.1.3 MIMO System Detection Methods...4

1.2 Cryptography ..7

1.2.1 Symmetric Key Cryptography..8

1.2.2 Asymmetric Key Cryptography..9

1.2.3 Elliptic Curve Cryptography ..10

1.2.4 Tate Pairing ..11

1.3 Summary of Contributions..13

1.3.1 Improved K-Best Sphere Decoding Algorithms...13

1.3.2 Reduced Complexity K-Best Sphere Decoder Scheme and Sorting

Architecture ..14

1.3.3 Parallel and Pipeline Interleaved Sphere Decoder Architecture.................15

1.3.4 Early-Pruning K-Best Sphere Decoder...16

1.3.5 Efficient Radius&List Updating Units Design for List Sphere Decoders ..16

1.3.6 Fast Point Operation Architecture for Elliptic Curve Cryptography17

1.3.7 Efficient Architecture for the Tate Pairing in Characteristic Three............18

2 IMPROVED K-BEST SPHERE DECODING ALGORITHMS FOR MIMO

SYSTEMS ..19

TABLE OF CONTENTS (Continued)
Page

2.1 Sphere Decoding Algorithms..20

2.1.1 The Sphere Decoding Algorithm..21

2.1.2 SE Enumeration..22

2.1.3 The K-Best Sphere Decoding Algorithm with SE strategy22

2.2 Layer Reordered K-Best SDA ..23

2.3 Dynamic K-Best SDA...28

2.4 Conclusions...30

3 REDUCED COMPLEXITY K-BEST SPHERE DEOCOER SCHEME AND

SORTING ARCHITECTURE..31

3.1 Reduced Complexity K-Best SDA..32

3.2 Improved K-Best Sorting Architecture ...35

3.3 The combination of the Layer Reordered K-Best SDA and Merge Sorting40

3.4 Comprehensive Complexity Analysis...41

3.5 Conclusions...43

4 NEW PARALLEL AND PIPELINE INTERLEAVED SPHERE DECODER

ARCHITECTURE ..44

4.1 Conventional Sphere Decoder Architecture..45

4.2 Parallel Sphere Decoder ..46

4.3 Pipeline Interleaved Sphere Decoder ..49

4.4 Simulation Results ..50

4.5 Conclusions...51

TABLE OF CONTENTS (Continued)

Page

5 EARLY-PRUNING K-BEST SPHERE DECODER ...52

5.1 Early Pruning K-Best SD ..53

5.2 Combined Method with threshold-based SDA ...57

5.3 Conclusions...60

6 EFFICIENT RADIUS AND LIST UPDATING UNITS DESIGN FOR LIST

SPHERE DECODERS..61

6.1 List Sphere Decoder..62

6.1.1 Conventional Sphere Decoding Algorithm ..62

6.1.2 List Sphere Decoder ...62

6.2 Fast Radius Updating Architecture ...64

6.3 Efficient List Updating..68

6.4 Conclusions...71

7 FAST POINT OPERATION ARCHITECTURE FOR ELLIPTIC CURVE

CRYPTOGRAPHY ..73

7.1 Elliptic Curve Cryptography Arithmetic...74

7.1.1 Elliptic Curves ..74

7.1.2 ECC Arithmetic Hierarchy ...76

7.2 Projective Coordinate based point arithmetic ...77

7.2.1 Projective Coordinate ...77

7.2.2 Lopez-Dahab point arithmetic ..78

7.3 Fast Point Operation Architecture...79

TABLE OF CONTENTS (Continued)
Page

7.3.1 Fast point doubling architecture ...80

7.3.2 Fast point addition architecture ..83

7.4 Conclusions...85

8 EFFICIENT ARCHITECURE FOR THE TATE PAIRING IN CHARACTERISTIC

THREE..86

8.1 Tate Pairing Algorithms..87

8.1.1 Tata Pairing ..88

8.1.2 Duursma-Lee & Kwon-BGOS algorithms ...89

8.2 Efficient Tate Pairing Architecture ...90

8.2.1 Efficient arithmetic over finite fields of characteristic 391

8.2.2 Algorithmic simplifications ..95

8.2.3 Fast Tate pairing architecture ...96

8.2.4 Speed analysis and comparison ..97

8.3 Conclusions...99

9 CONLUSIONS ...100

BIBLIOGRAPHY ..103

LIST OF FIGURES

Figure Page

1.1. Symmetric key encryption / decryption scheme..8

1.2. Asymmetric key encryption / decryption scheme..9

2.1. Performance comparisons of ML, 6-Best, 8-Best and 6-Best reordered SD (N=M=4,
64QAM)...26

2.2. Performance comparisons for 6-Best, 6-Best reordered, dynamic K-Best, combined
dynamic reordered, 10-Best SD and ML (N=M=4, 64QAM)....................................29

3.1. Performance comparison of ML, 8-Best, 8-Best reordered, 8-Best reordered SD (J=6),
and 8-Best reordered SD (J=4) (N=M=4, 64QAM)..35

3.2. Block diagram of K-Best lattice decoder..35

3.3. An M stage decoding module of a K-Best SE SDA (M=K=8).36

3.4. Modified architecture of 8x8 merge sorting. ..38

4.1. (a) Parallel SD architecture, (b) Pipeline interleaved SD architecture.47

4.2. Example of tree splitting..48

4.3. Average decoding speedup of proposed sphere decoding architecture (4x4 MIMO
system with 64-QAM modulation). ...50

5.1. Performance comparison of the ML, 12-Best SD, 10-Best LR SD, and 10-Best early-
pruning SD (α=1/4 & α=1/3) (N=M=4, 64QAM). ...56

5.2. Complexity savings of the early-pruning LR 10-Best SD (α=1/4 & α=1/3) compared
with regular 12-Best SD (N=M=4, 64QAM). ..57

5.3. Performance comparison of the ML, 12-Best SD, 10-Best LR SD, 10-Best early-
pruning SD (α=1/3) & combined EP SD (N=M=4, 64QAM).58

5.4. Complexity savings comparison of the early-pruning LR 10-Best SD (α=1/3) &
combined EP-LR 10-Best SD (α=1/3, β=1) (N=M=4, 64QAM).59

6.1. MIMO transmission and iterative receiver model. ..63

6.2. Decoding flows of LSD (DFS—depth first search, CF—candidates found, LU—list
update, RU—radius update)...65

LIST OF FIGURES (Continued)

Figure Page

6.3. Radius update unit for K=1..65

6.4. Radius update unit for K=4, N=16...66

6.5. The 4x4 & 2x2 merge sort unit: C&S—compare & swap...68

6.6. List updating architecture for N=16, K=4..69

7.1. ECC arithmetic hierarchy. ...76

7.2. Parallel architecture for L-D point doubling..80

7.3. Modified parallel architecture for L-D point doubling. ..81

7.4. Timing schedule of the L-P point doubling. ...82

7.5. Parallel architecture for L-D point addition...84

7.6. Timing schedule of the modified L-P point addition...85

8.1. GF(3) adder/subtracter unit. ..92

8.2. Block diagram of the GF(36m) multiplier...93

8.3. Fast mod 3 architecture..94

8.4. (a). Conventional processing scheme for the Duursma-Lee algorithm. (b) Overlapped
processing scheme. ..96

8.5. Overlapped processing scheme for the Kwon-BGOS algorithm.99

LIST OF TABLES

Table Page

1.1 Equivalent Key Sizes between ECC and RSA ...10

3.1 Sorting Complexity Comparison (C&S)...39

3.2 Total Complexity Comparison ...43

4.1 Pipeline Interleaved Data Processing Sequence ...49

6.1 Comparison of Different List Updating Schemes...71

7.1 Comparison of the Computation Cost of Point Operation on Different Projective
Coordinates ..78

8.1 Number of Clock Cycles for One Iteration of the Duursma-Lee Algorithm (Sequential
Processing)...98

8.2. Number of Clock Cycles for One Iteration of the Duursma-Lee Algorithm
(Overlapping Processing)...98

Efficient VLSI Architectures for MIMO and Cryptography

Systems

1 INTRODUCTION

1.1 MIMO Systems

Multiple-input multiple-output (MIMO) communication systems [1][7][18]

have recently been considered as one of the most significant technology

breakthroughs for modern wireless communications, due to the higher spectral

efficiency and improved link reliability they can provide. MIMO techniques have

been proposed as extensions to current wireless communication standards such as

IEEE 802.11n and are part of the emerging standards such as IEEE 802.16.

Therefore, the research in the MIMO systems is very attractive and useful for

contemporary wireless communication industry.

1.1.1 MIMO System Model

It has been well studied in [17] that a multi-antenna array can be employed to

obtain independent fading signals from a rich scattering multi-path channel, and the

receiver can achieve processing gain by applying optimum ratio combining (ORC).

This concept was extended in [1] by employing multi-antenna arrays at both ends

of the communication link, thereby exciting independent paths between each of the

transmit and receive elements.

2

Consider a symbol synchronized and uncoded MIMO system with M transmit

antennas and N receive antennas. The baseband equivalent model for such MIMO

system is

nsHy ~~~~ += , (1.1)

where T
Msss]~ ... ~ ~[~

21=s is the M dimensional transmit signal vector, in which each

component is independently drawn from a complex constellation such as QAM.

Let T
Nyyy]~ ... ~ ~[~

21=y denote the received symbol vector, and T
Nnnn]~ ... ~ ~[~

21=n stands

for an independent identical distributed (i.i.d.) complex zero-mean Gaussian noise

vector with variance σ2 per dimension. Moreover, assume a Rayleigh fading

channel is represented by the MN × channel matrix H
~ , whose elements ijh

~

represent the complex transfer function from the j-th transmit antenna to the i-th

receive antenna, and are all i.i.d. complex zero-mean Gaussian variables with the

variance of 0.5 per dimension. The channel matrix is assumed to be perfectly

known to the receiver, and NM = is assumed in this work.

The complex matrix equation (1.1) can be transformed to its real matrix

representation

nHsy += , (1.2)

i.e., ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ +

−
=

)~(Im
)~(Re

)~(m I
)~(Re

)~(Re)~(Im
)~(Im)~(Re

)~(Im
)~(Re

n
n

s
s

HH
HH

y
y

, (1.3)

where Re(·) and Im(·) denote the real and imaginary part, respectively. Since the

element of H~ are assumed to be i.i.d. Gaussian, H has a full rank of M2 .

The information theoretical capacity of the (M, N) MIMO channel is given

by:

3

]~~det[log2
H

N M
C HHI ρ

+= bits/s/Hz (1.4)

In the above equation, ρ is the average signal-to-noise ratio (SNR) at each

receive antenna, “det” means determinant, NI is the identity matrix and HH~ means

transpose conjugate. This equation assumes that the transmitter does not have any

knowledge of the channel response, and hence distribute its power equally among

the M antennas.

Such MIMO channel corresponds to the creation of multiple paths between

the transmit and receive antennas. The relative power gains of each of these parallel

channel are given by the eigenvalues iλ of the channel covariance matrix HHH~~ . It

is the creation of these parallel channels that gives rise to the high capacities of

MIMO systems. Since all these ‘spatial channels’ are capable of supporting

independent data streams, the overall capacity (suppose MN =) can therefore also

be calculated as the sum of the classical Shannon capacities ()1(log2 SNR+) of

each spatial channel (modified by their individual channel gain) as:

∑
=

+=
N

i
iN

C
1

2)1(log λρ bits/s/Hz, (1.5)

which can be considered as linearly proportional to the antenna number N.

Comparing with the capacity formula in [1] for optimum ratio combining or

receive diversity

]1[log 2
22 NC χρ ⋅+= bits/s/Hz, (1.6)

4

where 2
2Nχ denote a chi-square variant with 2N degrees of freedom, which is

determined by the random channel matrix H~ , the advantage of MIMO system in

spectrum efficiency is clearly demonstrated.

1.1.2 MIMO System Architecture

There are two types of MIMO signaling designed for different priorities such

as high data-rate or high reliability under severe channel conditions.

1) MIMO with space-time coding (the signals transmitted from individual

antennas are correlated/coded) for higher communication reliability.

2) MIMO with spatial multiplexing (the signals transmitted from individual

antennas are independent from each other) for higher data rate.

1.1.3 MIMO System Detection Methods

For the detection of MIMO systems, we assume the receiver has acquired

perfect information of the channel matrix H~ (e.g., through a preceding training

phase or inserting pilots signal and applying channel estimation). Algorithms used

to separate the parallel data streams corresponding to the M transmit antennas can

be divided into the following four categories:

1). Zero-Forcing (ZF) method is a suboptimal linear method based on finding

the inverse of the channel matrix,

yHHHs ⋅= − H
ZF

1H)((1.7)

and then slice the result onto the signal constellations. The detection method

is simple. However, its performance is rather poor due to the noise and

interference from other antennas.

5

 2) Minimum-Mean-Square-Error (MMSE) is another suboptimal linear method

which is similar to zero-forcing. However, in this method, noise term has

been taken into account:

yHHH
I

s ⋅+= − HHN
MMSE SNR

12)((1.8)

 It has intermediate complexity, but requires an accurate estimate of the

noise level present in the system, which is normally hard to obtain in a

practical system.

 3) Ordered Successive Interference Cancellation (OSIC) decoder such as the

V-BLAST algorithm is an iterative application of zero-forcing or MMSE,

effectively implementing iterative interference cancellation. It shows better

performance, but suffers from error propagation and is still suboptimal. It

has five main steps: 1. Ordering--choosing the best channel, 2. Nulling--

using ZF or MMSE, 3. Slicing--making a symbol decision, 4. Cancelling--

subtracting the detected symbol, and 5. Iteration--going to the first step to

detect the next symbol.

 4) Maximum Likelihood (ML) detection, which solves

2minarg Hsys
s

−=
Λ∈ML (1.9)

 where Λ is the lattice defined by having each entry of the 2N dimensional

vector s be taken from the signal constellation, is always the optimum

detection method and minimizes the bit-error-rate (BER). The ML detection

can be conducted via two approaches. A straightforward approach to solve

6

equation 1.9 is an exhaustive search. Unfortunately, the corresponding

computational complexity grows exponentially with the transmission

antenna numbers and constellation sizes. For example, in a 4x4 system

with 16-QAM modulation, 65536 candidate symbols have to be considered

for each received vector. A better approch is the sphere decoding method,

which will be regarded as a new method for MIMO detection.

5) Sphere Decoding (SD) is a reduced complexity algorithm which

implements the ML detection for MIMO system while avoids the

unmanageable complexity of exhaustive search. The main idea is to reduce

the search range from the whole finite lattice space to the lattice within a

hypersphere so as to find out the ML solution for the MIMO system.

Mainly it can be categorized into hard-decision sphere decoding and soft-

decision sphere decoding. Moreover, depending on the search method

among the constellation tree, it can be catagorized into depth-first search

(regular sphere decoding) and breadth-first search (K-Best sphere

decoding). Both of them are applied to real hardware implementations, and

will be discussed later in the details.

Nowadays, the sphere decoding algorithm has been widely used for

maximum likelihood detection in MIMO systems. However, conventional SDA is

very complex for hardware implementations, and the throughputs of current SDA

designs are generally below the requirement of next generation high-speed wireless

communications.

7

The first part of this research is focused on the low-complexity and high-

speed VLSI architecture of sphere decoder designs which intends to achieve the

ML detection for the MIMO wireless systems. It includes the contents from

Chapter 2 to Chapter 6, where we propose the layer-reordering SDA, efficient

sorting architecure for K-Best SDA, early-pruning scheme for K-Best SDA,

parallel and pipeline interleaved SD, and efficient radius and list update units

design for list sphere decoders.

1.2 Cryptography

 The wireless communication technologies, to which MIMO system belongs, are

widely used today by the business organizations, governments, militaries, and civil

residents, because they can offer many benefits such as the portability, flexibility,

increased productivity and lower installation and maintenance costs. Wireless

technologies cover a broad range of different capabilities oriented toward different

uses and needs. For instance, the wireless LAN devices allow users to move their

computers from place to place within the office or home without the need for wires

and without losing network connectivity. Less wiring means greater flexibility,

increased efficiency and reduced wiring costs. Bluetooth functionality also

eliminates cables for printer and other peripheral device connections. The handheld

devices such as PDA and cellular phones allow remote users to exchange voice

information and access to the network service such as wireless email and web

browsing.

However, the risks are inherent in any wireless technology for the reason that

the technology’s underlying communication medium, the airwave, is shared and

8

open to the public, including the intruders and eavesdroppers. Therefore, the

security of the wireless communication is extremely important to protect the private

the sensitive information.

Cryptography is the most standard and efficient way to protect the securities. It

can be used to protect the confidentiality, integrity, authentication, and non-

repudiation. There are two major categories of cryptography schemes, i.e.,

symmetric key cryptography and asymmetric key cryptography.

1.2.1 Symmetric Key Cryptography

The basic encryption/decryption scheme of symmetric key cryptography is

shown in Figure 1.1 [44][55]. In Figure 1.1, plaintext is the original form of the

message that sender wants to send to the recipient. Ciphertext is the encrypted form

of the original message which can be transmitted in an insecure channel such as

wireless media. The sender and the recipient use the same secret key for the

encryption and decryption function. Therefore, it is named symmetric key

cryptography.

Figure 0.1. Symmetric key encryption / decryption scheme.

9

In symmetric key cryptography, the receiver and sender must share the same

private key, which needs to be pre-distributed safely. Such scheme requires extra

key distribution and considerable management cost which is not as convenient as

the asymmetric key cryptography.

1.2.2 Asymmetric Key Cryptography

The basic encryption / decryption scheme of the asymmetric key

cryptography (also known as public key cryptography) is shown in Figure 1.2

[44][55]. The sender uses recipient’s public key for encryption. The recipient can

decrypt the ciphertext using his own private key. In symmetric key cryptography,

each pair of sender and recipient share a secret key, whereas in public key

cryptography, only the sender’s public key is broadcasted to the public, and

multiple senders can use the same public key for encryption and transfer data to the

same recipient.

Figure 0.2. Asymmetric key encryption / decryption scheme.

Public key cryptography is easy for key distribution and key management. A

well-known public-key cryptography algorithm is RSA, which was first introduced

10

by Rivest, Shamir and Adleman in 1977 [45]. The security of RSA is based on

hardness of integer factorization problem. The RSA is commonly used in today’s

security systems.

1.2.3 Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) is an efficient substitution for RSA. It

was originally proposed by Victor Miller at IBM [46] and Neal Koblitz from the

University of Washington [47] independently. The security of ECC is based on the

hardness of solving the elliptic curve discrete logarithm problem (ECDLP).

Comparing with the sub-exponential time it takes to solve the integer factorization

problem, it takes fully exponential time for today’s best algorithm to solve ECDLP.

Compared with RSA, ECC has much smaller key length yet still provides the same

security level. Smaller key length results in faster computation, lower power

consumption, and lower memory / storage usage. Table 1.1 [55] shows the

equivalent key sizes of ECC and RSA [48]. Currently, 1024-bit RSA is standard,

and it is projected that its size will increase to 2048 bits after 2010. Such large key

size will severely affect the cost of RSA implementation; therefore, ECC becomes

a long-term trend which will substitute RSA.

TABLE 0.1 EQUIVALENT KEY SIZES BETWEEN ECC AND RSA

ECC RSA Protection Lifetime

163 1024 until 2010

283 3072 until 2030

409 7680 beyond 2030

11

1.2.4 Tate Pairing

Identity based cryptography (IBC) schemes [64, 65] have recently opened a

new territory for public key cryptography. Using the identity based cryptography

scheme, a sender can derive the public key of a receiver without receiving the

receiver’s certificate issued by a certificate authority (CA). The public key can be

directly derived from the identity of the receiver such as the email address or IP

address. The pairing over the elliptic curve is used to construct the identity based

cryptography schemes. It is a mapping from two points on the elliptic curve to

another multiplicative group. It has special properties of bilinearity. Currently, the

most commonly used pairing methods are Tate pairing [66] and Weil paring [80].

Weil pairing was originally used to attack public key cryptosystems and later was

used for pairing based cryptosystems. It can be computed using either Miller

algorithm [71] or modified Miller’s algorithms [75, 77].

Tate pairing is more efficient than Weil pairing because it requires only one

iteration of Miller’s algorithm instead of two for Weil pairing. Also, it is more than

two times faster than Weil pairing. Currently, Tate pairing is the most popular

method which is used in many identity based cryptography schemes [64, 65].

The best method of Tate pairing calculation before 2002 was presented by

Miller in [71]. In 2002, Galbraith [74] and Barreto [75] greatly simplified the

pairing computation by introducing the triple-and-add BLKS algorithm in

characteristic three. The BLKS algorithm was further modified and developed as

the Duursma-Lee algorithm [69] and the Kwon-BGOS algorithm [70].

12

The second part of this thesis is focused on the high-speed and efficient

architecture for the cryptography systems.

Due to the advantages of ECC over RSA, it is necessary to develop the high-

speed ECC architecture for hardware implementations. The implementation of

ECC mainly relies on the operations at three levels: the scalar multiplication, the

point addition / doubling, and the finite field modulo arithmetic. The projective

coordinate [50][51][52] is more widely used for point operation because it avoids

the costly field inversion operation.

In Chapter 7, we introduce an efficient fast architecture for the Lopez-Dahab

projective coordinates [49]. By applying parallel processing and hardware reusing,

the point addition and doubling operations can be significantly accelerated with

reasonable hardware overhead compared with the conventional point operation

implementations.

Prior implementations of the Tate paring are mainly in software domain [67].

These implementations can only run at low speed due to the high complexity. In

order to boost the speed of IBC to practical level, efficient and high-speed hardware

implementations of Tate paring need to be explored.

In Chapter 8, through exploring the intrinsic property of the Duursma-Lee

algorithm, we propose complexity-reducing schemes and an overlapped processing

architecture. Compared with conventional sequential implementations [68], the

proposed architecture can achieve over 2 times speedup. The proposed method can

be also applied to the Kwon-BGOS algorithm, and similar speedup can be

obtained.

13

1.3 Summary of Contributions

The main contributions in this dissertation are summarized as follows:

1.3.1 Improved K-Best Sphere Decoding Algorithms

The Sphere Decoding Algorithm (SDA) has been used for Maximum

Likelihood (ML) detection in MIMO systems. However, regular SDAs have a

disadvantage that the computational complexity varies with different signals and

channels. Hence the detection throughput is non-fixed, which is not desirable for

real time detection and hardware implementations. For this reason, the K-Best

sphere decoding algorithm is introduced in [5] [6]. Instead of doing depth-first

search, the K-Best SDA uses breadth-first search. At each search layer, only the

best K candidates are kept for the next level search. The K-Best SDA requires less

computational complexity, has fixed throughput, and is suitable for pipelined

hardware implementation.

In Chapter 2 and [16], we first applied the layer reordering method (sorted

QR decomposition) to the K-Best SDA. Hence, we can achieve the same

performance with a smaller K than usual and thus reduce complexity. We then

introduced the dynamic K-Best SDA, which can also reduce complexity by

applying different K values at each layer. We pointed out that such a dynamic K-

Best SDA can be combined with the layer reordering method mentioned above to

obtain more complexity savings.

Simulation results show that by applying sorted QR decomposition for the

channel matrix, and/or introducing dynamic K values for different layers, our

improved algorithms can achieve about 30% complexity reduction for 4x4 64QAM

14

MIMO systems over the traditional K-Best SDA without introducing extra

computational complexity.

1.3.2 Reduced Complexity K-Best Sphere Decoder Scheme and

Sorting Architecture

This part of work is also conducted based on the K-Best sphere decoder

design. The K-Best SDA requires less computational complexity, has fixed

throughput, and is suitable for pipelined hardware implementation. Most of the K-

Best SDA computational complexity lies in the path extension and the sorting

operations (choosing K Best paths among K·Mc paths). Moreover, the sorting part

is more computation intensive when K is large. Therefore, for hardware

implementation, it is critical to reduce the sorting complexity.

Our contributions in Chapter 3 and [22] are as follows: 1) Introduced a

reduced complexity K-Best SDA based on SE strategy. In our decoder design, only

partial path extension needs to be done. Simulations show that for 4x4 64QAM

system, we can save 25% path cost computation and 27% sorting operations with

almost no performance loss. 2) By exploiting the natural partial sorted results

coming from the SE method, we derived a sorting architecture which applied rank

order filters (Batcher’s merge sort algorithm). Such sorting architecture exploits the

natural partial order from SE enumeration, and can significantly reduce the sorting

complexity (around 50%) comparing with bubble sorting algorithm, which is a

significant contribution to the K-Best SDA implementation for MIMO systems.

The improved sphere decoding algorithms discussed in Chapter 2 can be used

to reduce the decoder complexity, i.e., to achieve the same performance, a smaller

15

K value can be used. Moreover, they can be combined with the sorting architecture

to further reduce the computational complexity. We have provided the simulation

results showing these three methods can be combined together to achieve the same

detection performance as regular K-Best SDA with much smaller K values. Also, a

comprehensive complexity analysis has been presented [31] to demonstrate that

even regardless of the memory access time and area savings, our proposed sphere

decoding algorithm and sorting architecture can achieve a total complexity saving

of 68%.

1.3.3 Parallel and Pipeline Interleaved Sphere Decoder

Architecture

The SDA is very complex for hardware implementation. To the best of our

knowledge, the sphere decoder designs published in the literature have lower

throughput than 180Mb/s, which is below the requirement of next generation high-

rate wireless communication systems (over 200Mb/s). Therefore, efficient high-

speed architectures for sphere decoder implementation are really desirable.

 In Chapter 4 and [26], we first proposed a parallel sphere decoding scheme.

In this method, the whole constellation tree is divided into two sub-trees, and the

two processing engines (PE) can conduct depth-first search in parallel and update

the new radius. Thus the decoding throughput is significantly improved.

Considering the parallel architecture needs to double the hardware cost, we further

introduced the pipeline interleaved SD architecture. For this architecture, by

exploiting the similarity and interleaving the data streams for both processing

engines, only one PE is needed with some small interleave control logics. The new

16

sphere decoder has almost the same hardware cost as conventional SD with 44%

improvement of the throughput.

1.3.4 Early-Pruning K-Best Sphere Decoder

The sphere decoding algorithm has been used for maximum likelihood

detection in MIMO systems, and the K-Best sphere decoding algorithm is proposed

for MIMO detections for its fixed complexity and throughput. However, to achieve

near-ML performance, the K needs to be sufficiently large, which leads to large

computational complexity and power consumption in path expansion, sorting, and

path updating.

 In Chapter 5 and [37], we introduced some dynamic early-pruning schemes,

which will eliminate the survival candidates with relatively large partial Euclidian

distances (PEDs) at early stages. These candidates are unlikely to become the ML

solution when the tree searching reaches the final layer. Therefore, such early

pruning can save computation and power consumption without sacrificing the

performance. Our simulation results show that for the 4x4 64QAM MIMO system,

by applying the proposed schemes, about 55% computational complexity can be

reduced with almost no performance degradation.

1.3.5 Efficient Radius and List Updating Units Design for List

Sphere Decoders

The sphere decoder (SD) has been utilized for maximum likelihood (ML)

detection in MIMO systems. In order to improve system performance, the SD is

usually combined with the error correction codes where soft decoding is utilized.

The list sphere decoder (LSD) was introduced to generate a candidate list, which

17

can provide the soft information to the outer decoder. Unlike the conventional

sphere decoder, the LSD has the candidate list updating and new radius generation

units, which causes extra complexity and latency.

In Chapter 6 and [42], we present a novel radius updating architecture, which

can obtain the new radius much faster than the conventional method. Furthermore,

we propose an efficient candidate list updating scheme, which can significantly

save the complexity (without affecting the decoding speed) of updating the

candidate list used to compute the soft information.

1.3.6 Fast Point Operation Architecture for Elliptic Curve

Cryptography

The ECC has higher security strength per bit over RSA, which can offer

potential reduction in storage space, bandwidth and power consumptions. Hence,

the high-speed ECC architecture for hardware implementations becomes necessary,

especially for the scenarios where high speed communications are required. The

implementation of ECC mainly relies on the operations at three levels: the scalar

multiplication, the point addition / doubling, and the finite field modulo arithmetic.

The projective coordinate is more widely used for point operation because it avoids

the costly field inversion operation.

In Chapter 7 and [61], we introduced an efficient fast architecture for the

ECC based on Lopez-Dahab projective coordinate. By applying parallel processing

and hardware reusing, the point addition and doubling operations can be

significantly accelerated compared with the conventional point operation

18

implementations. Analysis shows that, with reasonable hardware overhead, our

architecture can achieve a speedup of 2.5 times for the point addition operation in

Lopez-Dahab projective coordinate and 1.8 times for the point doubling operation,

which facilitates the design of high-speed ECC systems.

1.3.7 Efficient Architecture for the Tate Pairing in Characteristic

Three

Due to the high complexity of the Tate pairing operation, prior

implementations of the Tate paring are mainly in software domain and very few

previous efforts have been devoted to hardware implementation. These

implementations can only run at low speed due to the high algorithm complexity.

In order to boost the speed of IBC to practical level, efficient and high-speed

hardware implementations of Tate paring need to be explored.

In Chapter 8 and [81], we proposed complexity-reducing schemes and an

overlapped processing architecture. Without introducing extra hardware

complexity, compared with conventional sequential implementations, the proposed

architecture can achieve over 2 times speedup, which is a big improvement for the

Tate pairing implementation. The proposed method can be also applied to the

Kwon-BGOS algorithm, and similar speedup can be obtained.

19

2 IMPROVED K-BEST SPHERE DECODING ALGORITHMS

FOR MIMO SYSTEMS

Multiple-input multiple-output (MIMO) systems have attracted considerable

research attentions in the wireless communication area recently. It has been shown

in [1] that extraordinary spectral efficiency near Shannon limit can be achieved in

MIMO systems. However, to achieve optimal maximum-likelihood (ML)

detection, the computational complexity becomes huge when higher modulation

constellations are applied, and it increases exponentially with antenna numbers.

Therefore, the sphere decoding algorithm (SDA) has been introduced in [2-4] to

drastically reduce detection complexity for MIMO systems. The sphere decoder

can be regarded as a depth-first tree search approach with pruning. The SDAs for

MIMO system have two types of searching strategies, i.e., the Fincke-Phost (FP)

method proposed in [2][3] and the Schnorr-Euchner (SE) strategy introduced in [4].

The second method has less computational complexity by re-ordering the

constellation searching at each layer.

Regular SDAs have a disadvantage that the computational complexity varies

with different signals and channels. Hence the detection throughput is non-fixed,

which is not desirable for real time detection and hardware implementation. To

resolve this issue, the K-Best sphere decoding algorithm was introduced in [5] [6].

Instead of doing depth-first search, the K-Best SDA uses breadth-first search. At

each search layer, only the best K candidates are kept for the next level search. The

K-Best SDA has fixed complexity and throughput, and is suitable for pipelined

hardware implementation. The drawbacks of the K-Best SDA are 1) it generally

20

has performance degradation as the ML solution cannot be guaranteed by keeping

the K best candidates during each layer’s search unless K is sufficiently large. 2)

the sorting operations (choosing K Best paths among K·Mc paths, Mc is the

constellation size) account for the major complexity of the K-Best SDA, especially

when K is large.

Our contributions in this Chapter include: 1. Apply the layer reordering

method (sorted QR decomposition) to the K-Best SDA. Hence, we can achieve the

same performance with a smaller K than usual and thus reduce complexity. 2.

Introduce the dynamic K-Best SDA, which can also reduce complexity by applying

different K values at each layer. Such a dynamic K-Best SDA can be combined

with the layer reordering method mentioned above to obtain more complexity

savings.

2.1 Sphere Decoding Algorithms

Based on the system model above, the set {Hs} can be considered as the lattice

Λ(H) generated by H. If the received vector y is considered as a perturbed lattice

point due to the Gaussian noise n, the maximum-likelihood MIMO detection is to

find the closest lattice point MLs for a given lattice Λ(H), i.e.,

2

ML min arg Hsys
s

−=
Ω∈ , (2.1)

where Ω is the set of real entries in the constellation, e.g., }7 ,5 ,3 ,1{ ±±±±=Ω for

64-QAM. Also let Mc denote the one dimensional constellation size (here Mc=8).

21

2.1.1 The Sphere Decoding Algorithm

Equation (2.1) can be re-written as:

 ,min arg)ˆ()ˆ(min argML sRRsssHHsss
ss

TTTT

Ω∈Ω∈
=−−= (2.2)

where R is the upper triangular matrix with non-negative diagonal element such

that HHRR TT = (R can be obtained by applying QR decomposition to H),

yHHHs TT 1)(ˆ −= is the zero-forcing (ZF) solution of s. sss ˆ−= is the distance from

signal candidate to ZF solution. The sphere decoder avoids an exhaustive search by

examining only the lattice points falling inside a hyper-sphere 2rTT <sRRs , with

the radius r large enough to contain the ML solution. Due to the triangular shape of

R, (2.2) can be written as an iterative, monotonically increasing form:

∑ ∑
= =

Ω∈Ω∈
−==

1
2

ML ,)ˆ(min argmin arg
Mi

M

ij
jjij

TT ssr
ss

sRRss (2.3)

where ijr are the elements of upper triangle matrix R. We define the branch cost

function associated with nodes in the i-th layer as

2
2

1

2

)(ˆ)ˆ()(iii
i

i

M

ij
iii

M

ij
jijjij

M

ij
jjij

i
i srbsrsrsrssre −=−−=−= ∑ ∑∑

= +==

ss , (2.4)

where is is the partial vector of s with 0,...,0,0 121 === −isss . ∑ =
=

M

ij jij
i

i sr ˆ)(sρ ,

∑ +=
−=

M

ij jij
i

i
i

i srb
1

)()(ss ρ , (2.5)

and ∑
=

=
k

Mi

i
i

i
k eT)()(ss (2.6)

22

is the partial sum of)(iei s (i.e., partial Euclidean distance (PED)) which is non-

decreasing. The decoding process can be regarded as descending down in a tree in

which each node has Mc branches. If a PED exceeds r2, the entire branch and all its

descendents are pruned.

2.1.2 SE Enumeration

The basic principle of Schnorr-Euchner (SE) strategy was introduced in [4].

When the sphere decoder descends in the tree, for each partial vector, it examines

each possible child symbol/node in the constellation. It has been shown in [13] that

enumerating these symbols in an ascending order according to their distance to the

Babai point will expedite the tree search. Such enumeration ensures that if a node

does not obey the sphere constraint, the following nodes will not satisfy the

constraint either, and can all be pruned.

In [14], a look up table is suggested to implement SE enumeration to avoid

sorting branch cost functions. It is efficient and has been used in our K-Best SDA.

2.1.3 The K-Best Sphere Decoding Algorithm with SE strategy

The search in the tree can also be conducted in a breadth-first approach.

Instead of expanding every node at each layer, we only keep K nodes, which have

the smallest accumulated PEDs. Finally, we will reach K leaves with smallest

PEDs. Each leaf’s path corresponds to a signal vector s. The decoder regards the s

with the smallest PED as the detection result. After our modification, the

mathematical description of K-Best SDA is as following:

1. Preprocessing: compute H-1, QR decomposition H=QR

23

2. SE enumeration: i=M, enumerate each sM among the constellation using the

look up table in [14].

3. Path expansion-1: calculate the branch cost eM(sM) for each sM according to

(2.4). Totally Mc branch costs obtained. Based on (2.3), for i=M, PED

)()(M
M

M
M eT ss = .

4. Find K partial vectors: Sort the Mc PED and find the smallest K partial

vector M
ks

5. Survival path update: update)(i
i sρ and)(i

ib s in (2.5)

6. Path expansion-2: i=i-1. For each surviving partial vector 1+i
ks from the last

layer, (Kk ≤≤1), enumerate iks , among the constellation using look up table,

iks , is the i-th element of ks . Calculate the branch cost)(i
kie s for each iks , .

Compute PEDs)()()(1
1

i
ki

i
ki

i
ki eTT sss += +

+ .

7. Sorting: Sort the KMc PEDs. Select K partial vectors i
ks which have the

smallest PEDs among the KMc.

8. Path update: update)(i
ib s and go to step 6.

9. Check termination condition: if i=1, output the vector s with smallest cost

2.2 Layer Reordered K-Best SDA

The K-Best SDA has constant throughput and is desirable for pipelined

hardware implementations. However, it is sub-optimal compared with ML

detection, and has performance loss in general. Before introducing our layer

reordered K-Best SDA, let us analyze the reason that causes such performance

24

degradation. Assume we have two candidate symbols 1s and 2s , both are M-

dimensional vectors. For the above MIMO model, the total cost functions are

∑= =
1

1)()(11 Mi ieT ss and ∑= =
1

22)()(1 Mi ieT ss , respectively. Suppose 1s is the ML

solution, then we have)()(2111 ss TT < . The K-Best SDA should select 1s as the

candidate instead of choosing 2s . However, the K-Best SDA is making decision

based on PEDs)(
1

i
iT s and)(2

i
iT s , 1,,1, L−= MMi . If at some early stage i,)(

1

i
iT s

is not among the K smallest PED (although the total sum of)(1
i

ie s is minimum, its

partial sum is not always minimum), and candidate i

1
s will be discarded. In other

words, even though we select the K-Best PED at early layers, the excluded PEDs

are still possible to become the minimum PED at final layer after accumulating the

cost metrics of the remaining stages. Thus the errors at early layer will propagate

and make the decoder miss the ML solution.

Normally, to obtain near-ML performance, a large K value is used for sphere

decoding, and this will introduce large complexity including the PEDs

computation, sorting, and path updating. Our approach here is to introduce some

schemes which can significantly improve the detection performance even using

smaller K values; therefore, the complexity of the whole sphere decoder can be

reduced by avoiding using large K values.

To improve the K-Best SDA performance for small K, we intend to reduce the

possibility that the SDA excludes the ML solution at early stages. One approach is

reordering the layer. The idea is to permute the columns of channel matrix H.

Therefore, the order of the elements of vector s to be decoded by the sphere

25

decoder is altered accordingly. In this way, the PEDs of different vectors 1s and 2s

have been re-distributed, while maintaining the total cost (i.e.,)(11 sT and)(21 sT

remains the same) [16]. Hence the decoding at early stages has been changed. If we

can find such reordering schemes that reduce the possibility of missing ML

solution at early stage, the performance can be improved.

Supposing some layer reordering can re-distribute the PEDs such that the

differences of PEDs of vectors 1s and 2s ()()(
21

i
i

i
i TT ss −) at early layer are enlarged,

we can claim the K-Best decision at layer i is more reliable than the decision before

reordering. The reason is that if)()(
21

i
i

i
i TT ss < and the difference is enlarged, it is

less likely that after accumulating the cost metrics of the remaining layers,

)()(2111 ss TT > (the less likely the remaining cost can change the early order).

Hence, the K-Best candidates at early layers are more likely to be the real K-Best

solutions. And such reordering approach may improve the detection performance.

From (2.6) the difference between PEDs is the partial sum of the difference

between the branch cost function)(sie . Hence, increasing the difference of)(sie is a

good approach. Notice from (2.4), if by reordering the layer we can put larger iir for

early layers (i is large) and smaller iir for lower layers, the difference of PEDs at

early layers are increased, thus SDA performance can be improved.

In [7] a sorted QR decomposition method was introduced. The idea is to find the

permutation of H that minimizes each iir with i running from 1 to M. Therefore it

intends to maximize diagonal elements jjr in the succeeding step ij > . For details,

readers can refer [7].

26

Wubben [7] only applied this method to decode layered space time codes by

using successive cancelling. Such reordering method can be combined with QR

decomposition. It introduces negligible extra complexity. In our research, we found

such sorted-QR decomposition method can also be applied to sphere decoding. Our

approach is to apply this method to the K-Best SDA. We perform the reordering

when decomposing H, and after decoding, we can permute the detected vector s

reversely to recover the original order. It should be noticed that the extra

computation complexity for the new method is negligible compared with the

traditional K-Best SDA.

Figure 2.1. Performance comparisons of ML, 6-Best, 8-Best and 6-Best
reordered SD (N=M=4, 64QAM).

Figure 2.1 shows some simulation results by applying the layer reordered K-

Best SDA. The MIMO system used 4x4 antennas, the constellation is 64QAM. By

27

decoupling the complex constellations, the real model used is an 8x8 8PAM MIMO

system. Figure 2.1 compares the performance (symbol error rate) of the ML

detection, the normal K-best SDA (K=8 and K=6), and the layer reordered K-Best

SDA (K=6) at different SNRs ()/ 0NEs . We can see the traditional 8-Best SDA (at

SNR=32dB) has about 1dB performance loss compared with ML detection, and is

1.8dB better than the 6-best SDA. By applying our reordering scheme, the

performance of our re-ordered 6-Best SDA has almost the same performance as the

conventional 8-Best SDA, which means it brings us about 1.8dB performance gain.

Therefore, we can use 6-Best re-ordered SDA to replace the normal 8-Best

SDA. According to the algorithm in Section 2.1.3, for each surviving candidate, we

only need to compute the first 6 PEDs among its 8 child nodes. And we need to sort

out the 6 survivors with the smallest PEDs out of 6x6=36 candidates compared to

sorting 8 out of 8x8=64. Afterwards, the path update effort is also reduced from 8

to 6. The only extra complexity is after decoding, we need to permute the detected

vector s reversely to recover the original order, which is negligible. Hence, with the

same performance, the path expansion and path updating complexity can be

reduced by around 25%, and the sorting complexity was reduced by 60% (for

bubble sort, 35+34+33+32+31+30=195, 63+62+61+60+59+58+57+ 56=476,

195/476=40.96%).

Such layer reordered K-Best SDA can be applied to any MIMO K-Best SDA

with better performance and negligible complexity.

28

2.3 Dynamic K-Best SDA

Based on the discussion in section 2.2, the approach to improve the K-Best SDA

performance for small K values is to reduce the possibility of excluding ML

solution at early stages. A useful method is to change the K value (dynamic K) at

different decoding layers.

The idea is, at the early stages, to use larger K values to ensure the ML solution

is included in the K-Best candidates. The reason is that at the early stage i (i is

large), there are i-1 layers left. Therefore, the partial Euclidean distance has another

i-1 branch cost metrics to accumulate before reaching the final total cost. It is more

likely to miss the ML solution at early layers. Increasing K here can reduce such

possibilities. As the decoder descends in the tree (searching lower layers), the PED

is close to the final result. Hence it is less likely to miss the ML solution in the K-

Best candidates. As a result, we can reduce the K value at later stage to reduce

complexity while maintaining performance.

There is not a fixed law regarding how to dynamically adapt K values at

different layers. They are determined by extensive simulations. For our simulations,

we use 4x4 64QAM MIMO systems. After constellation decoupling, the resulting

system is an 8x8 8PAM system. Here we use 3] 4 5 6 7 8 9 8[=K at different

layers, from first layer to the last layer. The simulation result is shown in Fig. 2.2.

From the simulation result shown in Figure 2.2, it can be seen that applying

dynamic K-Best SDA can obtain much better performance than original 6-Best

SDA (about 2dB improvement). The result is even better than the layer-reordered

6-Best SDA, and regular 8-Best SDA. Therefore, such dynamic K-Best scheme can

29

be used to replace the original 8-Best SDA design with much less complexity and

better performance.

Figure 2.2. Performance comparisons for 6-Best, 6-Best reordered, dynamic K-
Best, combined dynamic reordered, 10-Best SD and ML (N=M=4, 64QAM).

Moreover, the dynamic K-Best can be combined together with the reordered K-

Best SDA to obtain even better performance. In the simulation results shown in

Figure 2.2, it can be noticed that the combined dynamic-6 & reordered SDA can

achieve almost the same performance as the regular 10-Best SDA, which is already

very close to the ML detection. However, the complexity is much less than the

normal 10-Best (see Section 3.4 for detailed complexity analysis). This result has

enlighten us that for large complexity MIMO systems it is possible to apply such

combined sphere decoding algorithm to considerably reduce the computational

complexity while maintaining the detection performance.

30

According to the above analysis and simulation results, this novel dynamic K-

Best method can obtain better performance or decrease computational complexity

for hard decision sphere decoding. Moreover, for 3] 4 5 6 7 8 9 8[=K , the K

value is changing at each layer. Such irregularity may be not desirable for hardware

implementations. In the real hardware design, we can use

4] 4 6 6 6 8 8 8[=K , which has almost the same performance but more

regularity.

2.4 Conclusions

We have introduced some improved K-Best sphere decoding algorithms, which

include layer reordered K-Best SDA, dynamic K-Best SDA, and the combined K-

Best SDA. All these algorithms can improve the detection performance, or reduce

the computational complexity compared with the traditional K-Best SDA. Among

these algorithms, the reordered K-Best SDA is most promising for its negligible

extra complexity and flexibility to combine with any other K-Best sphere decoding

algorithms.

31

3 REDUCED COMPLEXITY K-BEST SPHERE DEOCOER

SCHEME AND SORTING ARCHITECTURE

The Sphere Decoding Algorithm (SDA) has been used for achieving

maximum likelihood (ML) detection for today’s Multiple-Input Multiple-Output

(MIMO) systems. Regular SDAs have a disadvantage that the computational

complexity varies with different signal constellations and channels. Hence the

detection throughput is non-fixed, which is not desirable for real time detection and

hardware implementations. To resolve this issue, the K-Best sphere decoding

algorithm was introduced in [5] [6]. Instead of doing depth-first search, the K-Best

SDA uses breadth-first search. At each search layer, only the best K candidates are

kept for the next level search. The K-Best SDA requires less computational

complexity, has fixed throughput, and is suitable for pipelined hardware

implementation. Most of the K-Best SDA computational complexity lies in the path

extension and the sorting operations (choosing K Best paths among K·Mc paths).

Moreover, the sorting part is more computational intensive when K is large.

Therefore, for hardware implementation, it is critical to reduce the sorting

complexity. The basic SE SDA architecture was introduced in [4][9]. In [12], the

SDA complexity can be reduced by applying a probabilistic search approach and

error-performance-oriented fast stopping criterion.

Our contributions in this Chapter are: 1. Introduce a reduced complexity K-

Best SDA based on SE strategy. In our decoder, only partial path extension needs

to be done. Simulation showed when applying layer reordering, our SDA has

almost the same performance as original K-Best SDA, while saving about 25%

32

complexity. 2. Derive a sorting architecture which applied rank order filters

(Batcher’s merge sort algorithm). Such sorting architecture exploits the natural

partial order from SE enumeration, and can significantly reduce the sorting

complexity (around 50%) comparing with bubble sorting algorithm

3.1 Reduced Complexity K-Best SDA

The K-Best SE SDA described above has constant throughput, fixed data path,

and is desirable for hardware implementation. However, the complexity is high

(need to expand K paths to KMc paths at each layer and select K best candidates out

of KMc PEDs). There are some approaches to reduce such complexity.

First, for K>Mc, when performing the path expansion for each node, it is always

necessary to fully expand one path at layer i to Mc paths at layer i-1. For this case,

no path expansion complexity can be reduced.

Second, if cMK ≤ , it is not necessary to fully expand a path at last layer to Mc

paths at current layer. Here, only expansion to the first SE enumerated K paths is

sufficient. The reason is that after SE enumeration, the branch costs and the PEDs

of the last KM c − paths are already larger than the first K paths. Therefore, none of

them will become one of the K survival paths after the path expansion and sorting.

In such cases, the path expansion complexity can be reduced to K from Mc for each

node, and the total sorting complexity can be reduced to sort K smallest PEDs out

of 2K instead of KMc.

Moreover, for cMK ≤ , more complexity is possible to be reduced. To expand

one path to K paths is the sufficient condition to obtain the K smallest PEDs after

33

sorting. However, it is not always necessary. Suppose the final K best paths at layer

i-1 have the distribution Kjjj ,...,, 21 , where mj is the number of survival paths

(among the total K survival paths) expanded from the m-th candidate i
ms of the

previous layer i, and KjjjK +++= ...21 .

Let)max(max mjj = , Km ≤≤1 . Obviously we have Kj ≤max . For such case it is

sufficient that we expand each path from the last layer into maxj SE enumerated

paths (the same reason here, any later path than maxj which has larger PED cannot

be among the K survival paths). In this way, we can further reduce the path

expansion complexity from K to maxj , and the sorting complexity from K out of

2K to K out of maxjK ⋅ .

However, here maxj is not constant, varied with different channel and signals, and

is unknown to us. To reduce complexity, we can only use some constant J (less

than K) as a guess for maxj . If J is too small, it might be less than maxj and may

introduce performance degradation. On the other hand, if J is too large, not much

complexity can be saved. Following are some discussion on this method:

1. There is no fixed law to select proper J value here. One way is empirical by

trying different values with simulation.

2. Dynamic values iJ can be used for decoding at layer i. According to the

discussing in [16], a good approach is to make iJ large for bigger i (early

layers) and use smaller iJ for later layers. This can minimize the

probability of missing ML solution at early stages, and reduce performance

loss. Using dynamic iJ can further reduce the complexity.

34

3. The disadvantage of using of dynamic iJ at each layer is that it will break

the regularity which normal K-Best SDA has at each stage. This makes it

more difficult for hardware implementation.

Figure 3.1 shows the simulation result by using the complexity reduction

method discussed in this section. The MIMO system used 4x4 antennas, and the

constellation is 64QAM. By decoupling the complex constellations, the real model

used is an 8x8 8PAM MIMO system. We used the sorted QR decomposition here,

which was introduced for decoding layered space-time codes in [7].

The simulation result compares the performance (symbol error rate) of the ML

detection, the normal 8-Best SDA, reordered 8-Best SDA, the reduced reordered 8-

Best SDA (J=6), and reduced reordered 8-Best SDA (J=4) at different SNRs

()/ 0NE s .As stated above, we applied the reordered QR decomposition to K-Best

SDA, and it has been shown the reordered K-Best SDA has better performance

than the normal K-Best SDA. Here we use the result of reordered 8-Best SDA

comparing with normal 8-best (the dashed line). From the result it can be seen that

there is almost no performance difference between original reordered 8-Best SDA

and the modified 8-Best SDA (J=6) (dashed dot line in green). Therefore, by

applying our strategy discussed above, 25% path cost computation complexity and

27% sort operation (8 out of 48 comparing with 8 out of 64) can be saved. If we let

J=4, simulation tells the complexity can further be reduced to less than 50%.

However, there is about 0.3dB performance degradation for such small J.

35

Figure 3.1. Performance comparison of ML, 8-Best, 8-Best reordered, 8-Best
reordered SD (J=6), and 8-Best reordered SD (J=4) (N=M=4, 64QAM).

3.2 Improved K-Best Sorting Architecture

In this section, an efficient sorting architecture has been introduced to K-Best

SDA which can save about 50% sorting efforts.

ŝ outs

Figure 3.2. Block diagram of K-Best lattice decoder.

36

The block diagram of a K-Best SDA, consisting of a preprocessing unit, a pre-

decoding unit, and a decoding unit, is shown in Figure 3.2. The preprocessing unit

is used for the sorted QR decomposition and computing the inverse of H (this pre-

computation only needs to be done once if H does not change). Pre-decoding unit is

to compute the ZF solution ŝ . p is the permutation vector generated by

preprocessing unit. After decoding, sout needs to be permuted reversely to recover

its original order. Decoding module has an M stage pipelined K-Best decoding

structure, whose detail is shown in Figure 3.3.

Figure 3.3. An M stage decoding module of a K-Best SE SDA (M=K=8).

Based on the K-Best SE decoding algorithm described in Section 3.3, the detail

of the decoding unit is shown in Figure 3.3. It has M decoding stages, which can be

implemented in a pipelined fashion, and for each stage there are 3 sub-modules:

path expansion, sorting, and survival path update, corresponding to the step 6, 7, 8

in the algorithm. For the last stage, if only the best path is needed for hard

decision, its structure is the same as in Figure 3.3. If the best K paths need to be

outputted for obtaining soft decoding information, the last stage is the same as the

middle stages.

37

For the K-Best SE decoder at each stage, the sorting operation sub-module

accounts for the major complexity (selecting K paths with smallest PEDs out of

KMc is computational intensive and takes lots of comparisons and swaps

operations, which is time-consuming). Hence, reducing the sorting complexity is

crucial in reducing the complexity of K-Best SDA.

In [6], the bubble sort algorithm is applied to conduct the sorting. However, we

found out that when applying the SE method to the K-Best SDA, by exploiting the

natural partial orders coming with SE enumeration, a smarter sorting architecture

can be adopted to considerably reduce the sorting complexity.

Let K
iii TTT ,...,, 21 denote the K smallest PEDs from layer i. After SE enumeration

(here it can be done using a lookup table [14] instead of doing sorting) and path

expansion (each path expanded to Mc paths), we have KMc partial Euclidean

distances McK
i

K
i

K
i

Mc
iii TTTTTT ,

1
2,

1
1,

1
,1
1

2,1
1

1,1
1 ,...,,,...,,...,, −−−−−− at layer i-1, where nm

iT ,
1− stands for the

PED of the n-th path expanded from the m-th path at layer i. The sorting operation

is to select K smallest PEDs. First, it is not necessary to do fully sorting. Partial

sorting which finds out the K smallest is sufficient. Moreover, based on the SE

enumeration we know Mcm
i

m
i

m
i TTT ,

1
2,

1
1,

1 ... −−− <<< for each Mcm ≤≤1 , which means

the KMc PEDs have been partially ordered in each group (group size Mc, K groups).

Exploiting such property, instead of using the partial bubble sorting, we can use the

modified rank order filter (Batcher’s merge sort algorithm) [15] as the architecture

for the K-Best sorting at each stage, which can significantly reduce the sorting

complexity.

38

Similarly, we take the 4x4 64QAM MIMO system used in the previous section

as an example. After real decoupling, it becomes an 8x8 8PAM system. When 8-

Best SE decoding is used, we have K=Mc=8.

Figure 3.4. Modified architecture of 8x8 merge sorting.
 (4x4 &2x2 merge sort modules are given at right bottom corner)

Figure 3.4 shows the modified 8x8 merge sort architectures, which takes in two

partial sorted arrays (each has 8 entries) and outputs the minimum 8 entries. The

4x4 & 2x2 merge-sort modules are also shown at the right bottom corner. Such

architecture is exactly what we need in the SE K-Best sphere decoder; for each

survival path was expanded to 8 paths with ordered PED after path expansion.

Then we can apply the sorting architecture in Figure 3.4 to complete the sorting

39

job. It should be mentioned that we only show example architecture of 8x8, 4x4

&2x2 merge. Actually this architecture can be easily modified to 3x3, 5x5, 6x6

merge etc. For instance, the 3x3 merge can be developed from the 4x4 merge by

removing the unused C&S modules related to a4 and b4.

The modified merge sort architecture in Figure 3.4 will greatly reduce the

sorting complexity (refer to the results in Table 3.1), and can be used for sorting 8

smallest out of 64 PEDs in the 8-Best SDA. At first, use PEDs 8,1
1

2,1
1

1,1
1 ,...,, −−− iii TTT and

8,2
1

2,2
1

1,2
1 ,...,, −−− iii TTT as the input to the 8x8 merge sort (it has been modified to discard

the remaining 8 larger outputs because they will not be used later). Then the sorted

smallest 8 PEDs can be combined with another 8 PEDs 8,3
1

2,3
1

1,3
1 ,...,, −−− iii TTT as the

merge sort input, and by doing this iteratively, the final 8 smallest PEDs can be

obtained (the merge sorting can also be done in a fully parallel manner, but the

complexity is the same).

TABLE 3.1 SORTING COMPLEXITY COMPARISON (C&S)

 8-Best (8 out of 64) 8-Best (J=6) (8 out of 48)

Bubble sort 63+62+…+56=476 47+46+…+40=348

Proposed sort 20*7=140 16*4+20*3=124

Table 3.1 compares the sorting complexity between bubble sort and our

modified merged sort (the numbers stand for average times of the compare and

swap operations needed. A C&S unit can be implemented with a comparator and a

multiplexer). For instance, for the sorting of 8-best SDA 4x4 64QAM, using bubble

40

sort needs 476 C&S operations. By using our architecture, 7 stages of merge sort

are needed. For each modified 8x8 merge sort, 20 C&S is used (a 8x8 merge sort

need two 4x4 merge sort plus 4 extra C&S. The 4x4 merge sort has 4 or 5 outputs

and needs two 2x2 merge unit plus 2 C&S. Each 2x2 merge unit has 3 C&S. So

totally (2*3+2)*2+4=20 C&S are used). Therefore, by using our modified sorting

architecture, 70% complexity can be saved. The third column stands for a modified

K-Best SD algorithm; J denotes the number of child nodes to be calculated for each

node. Here J=6 means for each node, we only compute the PED of the first 6 child

nodes of the SE enumeration. The simulation result in Figure 3.5 shows this

method has almost the same performance as regular 8-Best SDA while having less

complexity. For this case, we need to use 6x6 merge sort with 8 outputs sorting.

The 6x6 unit contains two 3x3 units plus 4 extra C&S. In this way, the sorting is

further reduced to 124 at each stage, i.e., almost 74% sorting complexity has been

decreased compared with the original 8-Best SDA.

3.3 The combination of the Layer Reordered K-Best SDA and

Merge Sorting

In the above discussions, we introduced the layer reordered K-Best SDA and

Dynamic K-Best SDA, and we showed that these two methods can be combined

together to further increase the detection performance or reduce the decoder

complexity, i.e., to achieve the same performance, a smaller K value can be used..

In Section 3.2, we proposed an improved sorting architecture, which can save about

50% of the sorting efforts. Certainly, this sorting scheme can be applied to the

41

combined K-Best SDA to achieve a significant total complexity savings for the

complete K-Best sphere decoder design.

3.4 Comprehensive Complexity Analysis

In this work, we take the 4x4 64QAM combined 6-Best SDA as an example, to

analyze the complexity savings. As the results shown in Figure 2.2, by applying the

layered reordering and using dynamic K values at different layers

(4] 4 6 6 6 8 8 8[=K), the combined 6-Best SDA has almost the

same performance as the regular 10-Best SDA. The total complexity of the SDA

comes from three major operations: path expansion, sorting, and survival path

update.

1. Path Expansion: As for the regular 10-Best SDA, at the top layer only the

PEDs of the 8 nodes are calculated; at the lower layer, for each survival

candidate, the PEDs of its 8 child nodes need to be computed. Therefore,

10*8=80 PEDs are computed at each layer. Totally, 8+8*8+ (10*8)*6=553

PED calculations are needed. Each PED calculation consists of one

multiplication, two additions and one squaring (if Burg’s approximation [10]

is used, the square operation can be replaced by a MAX). So totally 553

multiplications and 1106 additions are needed. For the dynamic 6-Best SDA,

totally 8+8*8+8*8+8*8+6*6+6*6+6*4+4*4=312 PED calculation are used,

which is 312/553=56.4% of 10-Best.

2. Path Updating: for each survival path, we need to update)(i
ib s according to

(2.5) ()(i
i sρ can be pre-computed), which is used by the computation of PEDs

at lower layers. From (2.5),)(i
ib s is a partial sum which needs M-i

42

multiplications (for 64QAM, sj can only be ±1, ±3, ±5, and ±7, hence the

multiplication can be replace by shift and add), and additions. For normal 10-

Best, totally 8+10*6=68 path are updated, i.e.,

8*1+10*2+10*3+10*4+10*5+10*6+10*7=278 multiplication and additions.

As for combined dynamic 6-Best, 8+8+8+6+6+6+4=46 path are updated, total

8+8*2+8*3+6*4+6*5+6*6+4*7=166 multiplications and additions, which

saves (1-166/278)=40.28%.

3. Sorting: As for the regular 10-Best SDA, each stage we need to sort 10

smallest PEDs out of 10*8=80 (the top layer is just 8 candidates, no sorting,

and the 2nd layer is sorting 10 out of 8*8=64). Totally (63+62+…+54)+

(79+78+… +70)*6=5045 comparisons and swaps. However, for the dynamic

6-Best with merge sorting, the top stage needs no sorting. The 2nd and 3rd stage

is to sort 8 out of 64, so 20*7*2=280 C&S when using our architecture. The

4th stage is to sort 6 out of 48, needs 14*7=98 C&S. The 5th and 6th stage is to

sort 6 out of 36 candidates, 14*5=70 C&S are used. The 7th stage is to sort 4

out of 24, 8*5=40 C&S are needed. The final stage is to sort 4 out of 16, so

needs 8*3=24 C&S. Totally 280*2+98+70*2+40+24=862 C&S units. The

saving is 1-862/5045=83%.

The overall complexity results are shown in Table 3.2.

From the comparison, even regardless the memory access and area savings, our

proposed sphere decoding algorithm and sorting architecture can achieve a total

complexity saving of 68% (here we estimate the complexity of a multiplication by

1, 3, 5 or 7 as 2 additions, a MAX or C&S unit as 1.3 additions).

43

TABLE 3.2 TOTAL COMPLEXITY COMPARISON

 Addition Multiplication MAX C&S

Nor. 10-Best 1384 831 553 5045

Dynamic 6-Best + merge sort 790 478 312 862

Savings 43% 42.48% 43.6% 83%

3.5 Conclusions

In this Chapter, we have introduced a reduced complexity K-Best SDA which

can be used for cMK ≤ cases. By selecting the J value less than K, the total decoder

complexity can be reduced. In addition, the modified merge sort architecture is

presented and applied to the sorting of K-Best SDA at each stage. Such architecture

can be used for the sorting of any K-Best SE lattice decoder while significantly

reducing the sort complexity.

Moreover, the simulation results show that these three methods can be combined

together to achieve the same detection performance as regular K-Best SDA with

much smaller K values. Therefore, when this efficient sorting method is applied,

significant complexity reductions can be realized. Hence, a comprehensive

complexity analysis has been presented to demonstrate that even regardless the

memory access time and area savings, our proposed sphere decoding algorithm and

sorting architecture can achieve a total complexity saving of 68%.

44

4 NEW PARALLEL AND PIPELINE INTERLEAVED

SPHERE DECODER ARCHITECTURE

The sphere decoding algorithm [2][3][4] is a key algorithm to achieve the

optimal ML performance for MIMO systems. The basic principle of SDA is to

avoid the exponentially complex exhaustive search in the signal constellations, by

applying a sphere constraint (only the constellation points within the sphere would

be considered) and transform the ML detection problem into a tree search and

pruning process. Regular SDA conducts a depth-first search in the tree while the K-

Best lattice decoding algorithm [5], a variant of SDA, does a breadth-first tree

search. The latter approach, however, has performance degradation unless K is

sufficiently large. In this work, our discussion is focused on the regular SDA.

SDA is very complex for hardware implementation. To the best of our

knowledge, the sphere decoder designs published in the literature have lower

throughput than 180Mb/s, which is below the requirement of next generation high-

rate wireless communication systems (over 200Mb/s). Therefore, efficient high-

speed architectures for sphere decoder implementation are really desirable.

In this Chapter, we first propose a parallel sphere decoding scheme. In this

method, the whole constellation tree is divided into two sub-trees, and the two

processing engines (PE) can conduct depth-first search in parallel and update the

new radius. Thus the decoding throughput is significantly improved. Considering

the parallel architecture needs to double the hardware cost, we further introduce the

pipeline interleaved SD architecture. For this architecture, by exploiting the

similarity and interleaving the data streams for both processing engines, only one

45

PE is needed plus some small interleave control logics. The new sphere decoder

has almost the same hardware cost as conventional SD with 44% improvement of

the throughput.

4.1 Conventional Sphere Decoder Architecture

The detailed MIMO system model and SDA can be found in [10]. For

convenience in later discussions, some important equations are given as follow,

where we adopt the same notations as [10].

The partial Euclidean distance (PEDs) are given by

2)()1(
1

)()()()(i
i

i
i

i
i eTT sss += +

+ , (4.1)

where 1,,1, K−= TT MMi is the layer number in the tree search, and the branch

cost
2)()(i

ie s can be obtained as follows:

2

1

2)(ˆ)(∑
=

−=
TM

j
jiji

i
i sRye s . (4.2)

We can further decompose the equation to separate the part influenced by is :

2)1(
1

2)()()(iii
i

i
i

i sRbe −= +
+ ss , and (4.3)

∑
+=

+
+ −=

TM

ij
jiji

i
i sRyb

1

)1(
1 ˆ)(s . (4.4)

In the above equations, TM stands for number of antennas (in this work, we

assume the numbers of transmit antennas and receive antennas are equal), matrix R

comes from QR decomposition of channel matrix, vectors ŷ and)(is represent

46

zero forcing solution and partial decoded symbol, respectively. The goal is to find

the symbol s which minimizes)(1 sT . Figure 4.1(a) shows two sphere decoders

working in parallel. For each new node)(is to be examined, the branch cost

computation unit computes)()(i
ie s based on (4.3). According to [10], the ∞l norm

can be used to approximate 2l norm with reduced complexity. Eq. (4.1) can be

rewritten as:

))(,)((MAX)()()1(
1

)(i
i

i
i

i
i eTT sss +

+≈ , (4.5)

where 2
1)(rsT < is the sphere constraint. In Figure 4.1a, the PED update unit

computes the MAX using (4.5) and updates the new PED. The result is passed to

the depth-first tree search control logic that checks the sphere constraints, updates

radius r, does tree pruning and determines which node to be examined next. Finally

)()(i
ib s is updated according to (4.4) for succeeding operations. Then it comes the

new cycle to evaluate another candidate symbol.

4.2 Parallel Sphere Decoder

According to the architecture discussed above, the sphere decoding is actually

an iterative process. Due to the long computation delay associated with the loop,

the clock speed is quite limited. Adding pipeline in the loop can reduce the critical

path length, but it cannot increase the overall throughput. Hence, we propose to use

parallel processing to increase the throughput of sphere decoders.

47

Figure 4.1. (a) Parallel SD architecture, (b) Pipeline interleaved SD architecture.

For instance, for a 4x4 64QAM MIMO system, after real decoupling, the tree

structure becomes 8 layers and every node has 8 child nodes. The conventional SD

is to search the constellation tree and find out the ML solution. In order to facilitate

parallel processing, we can split the constellation tree into multiple sub-trees. For

example, we can divide the nodes at the first layer alternately into two groups, e.g.,

we group them as {-7, -3, 1, 5} and {-5, -1, 3, 7} (according to the constellation

values) and all the nodes below the first layer are kept unchanged. Then as shown

in Figure 4.2, the whole constellation tree is split evenly into two half-size sub-trees

(the shaded nodes form a sub-tree, and the remaining nodes comprise the other sub-

tree). In Figure 4.1(a), we can apply the sphere decoding architecture to both sub-

48

trees to perform sphere decoding in parallel, i.e., PE1 conducts depth-first search

within the constellation subtree1, while PE2 searches the subtree2. To expedite the

searching process, two sub-trees exchange the current sphere radius r with each

other to tighten the sphere more quickly. When a leaf node has been reached, the

sphere decoder updates the new radius, and also passes the new radius to the other

PE; thus the search complexity can be reduced with the faster shrinking radius. The

simulation results are provided in Section 4.4.

Figure 4.2. Example of tree splitting.

Actually, after Schnorr-Euchner (SE) enumeration, it is a better way to group the

first layer nodes according to their indexes in the enumeration. Later in the

simulation results we will show such grouping by indexes has better efficiency.

49

4.3 Pipeline Interleaved Sphere Decoder

The above parallel sphere decoder can increase the decoding speed at the cost of

doubling the hardware, which is not efficient. Considering the depth-first search in

the two sub-trees are independent (the nodes at the first layer were evenly split),

and both of them have exactly the same hardware architecture (both data path and

control), we can exploit the pipeline interleaving technique to save hardware. For

the detailed principles of pipeline interleaving, readers please refer to [15].

TABLE 4.1 PIPELINE INTERLEAVED DATA PROCESSING SEQUENCE

Clock PEA PEB

1 S1 S2

2 S2 S1

3 S1 S2

4 S2 S1

Figure 4.1(b) shows the architecture of a 2-level pipeline interleaved sphere

decoder. It inserts 1-stage pipeline register in the PE, which can reduce the critical

path by half in the ideal case. In this way, the clock speed can be roughly doubled

due to the shorter critical path. However, after applying pipelining, one loop

iteration now takes two clock cycles, which brings no benefit. To facilitate

decoding speedup, we can interleave the data patterns from subtree1 and subtree2

into the odd and even cycle of the processing loop. For example as shown in Table

4.1, at an odd clock cycle, the top part of PE (the part above the pipeline register,

we name it PEA, and the bottom part PEB), processes subtree1 (S1), and the bottom

part processes subtree2 (S2). At the next clock cycle, the data of subtree1 come to

50

the PEB and the data of subtree2 loop back to PEA. In this way, the data of two

sub-trees has been interleaved and processes by PEA and PEB alternately. In brief,

the architecture in Figure 4.1(b) is equivalent to the parallel sphere decoding

architecture of Figure 4.1(a). It should be noted that this pipeline interleaved

architecture does not introduce extra hardware except pipeline registers and small

overhead in control logic.

Hence, by applying such pipeline interleaving technique, the new sphere

decoder can achieve the same throughput as the parallel SD, whereas it has only

small extra hardware compared with the conventional SD.

4.4 Simulation Results

Average Decoding Speedup of Proposed SD

20.00%
25.00%
30.00%

35.00%
40.00%
45.00%
50.00%

55.00%
60.00%

25 27 29 31 33
SNR(Es/N0)

A
ve

ra
ge

 S
pe

ed
up

Group by Indexes
Group by Constellations

Figure 4.3. Average decoding speedup of proposed sphere decoding architecture
(4x4 MIMO system with 64-QAM modulation).

51

Figure 4.3 shows the simulation results of a 4x4 64-QAM MIMO system. We

split the constellation tree in two different ways (according to the 1st layer real

constellation value or the node index after SE enumeration), and applied the

pipeline interleaving sphere decoding scheme. The results show that the latter tree-

splitting method has slightly better performance because it divides the tree more

evenly after SE enumerations. On average, our sphere decoder takes 69.54% total

computational time of a regular sphere decoder when SNR (Es/N0) is 29dB.

Therefore, for this example MIMO system, our proposed architecture provides

43.80% decoding speedup with negligible hardware overhead.

4.5 Conclusions

In this Chapter, an efficient pipeline interleaved sphere decoding architecture

has been presented. Such a scheme can significantly increase the decoding

throughput. For our example 4x4 64-QAM MIMO system, the pipeline interleaved

SD can achieve an average speedup of 44% with negligible hardware overhead

compared with the conventional sphere decoders.

52

5 EARLY-PRUNING K-BEST SPHERE DECODER

The sphere decoding algorithm has been used for maximum likelihood

detection in MIMO systems, and the K-Best sphere decoding algorithm is proposed

for MIMO detections for its fixed complexity and throughput. However, to achieve

near-ML performance, the K needs to be sufficiently large, which leads to large

computational complexity and power consumption in path expansion, sorting, and

path updating. Therefore, it is desirable to reduce the computational complexity and

thus the power consumption for K-Best SD designs.

 In this Chapter, we introduce some dynamic early-pruning schemes, which will

eliminate the survival candidates with relatively large partial Euclidian distances

(PEDs) at early stages. These candidates are unlikely to become the ML solution

when the tree searching reaches the final layer. Therefore, such early pruning can

save computation and power consumption without sacrificing the performance. Our

simulation results show that for the 4x4 64QAM MIMO system, by applying the

proposed schemes, about 55% computational complexity can be reduced with

almost no performance degradation.

 The MIMO system model has already been described in Chapter 1, and the

SDA, SE enumeration and the K-Best SDA has been introduced in Chapter 2. In

Section 5.1, we describe our early-pruning scheme and demonstrate its

improvement with simulations. In Section 5.2, we combine our scheme with a

threshold-based algorithm [20] and show that more complexity saving can be

achieved. Conclusions are drawn in Section 5.3.

53

5.1 Early Pruning K-Best SD

The original K-Best SDA is to conduct the breadth-first tree search, keep the K

paths with smallest PEDs at each layer i until it reaches the bottom layer (i=1), then

output the final path with the smallest total cost. If the path corresponding to the

ML solution is retained among the K survival paths at each stage, then the final

path with smallest cost is the ML solution, and the decoding is correct. Otherwise,

the ML solution would be missed at early stages, and decoder error occurs. Hence,

to reduce the possibility that the ML solution is pruned at early layers, the K value

needs to be sufficiently large (normally≥8). However, this will lead to large

computational complexity and power consumption for path expansion, sorting, and

path update. In this Chapter, we will introduce a scheme that can reduce such

complexity while maintaining the decoding performance.

Supposing the K survival paths at layer i are 1P , 2P ,…, KP . When the sphere

decoder descends one layer (i.e., at layer i-1), the candidates paths are 1P , 2P ,…,

McKP ⋅ after path expansion and sorting. The corresponding PEDs are denoted as 1
1
−iT ,

1
2
−iT , …, 1−i

KMcT , with 1
1
−iT ≤ 1

2
−iT ≤…≤ 1−i

KMcT . The original K-Best algorithm is to keep the

K candidate paths with smallest PEDs among these KMc paths. However, from our

observation, under many circumstances, this condition is too loose.

For instance, let us consider two paths UP and VP (1≤U≤V≤K) at layer i-1.

Suppose their PED difference 11 −− −=Δ i
U

i
V TT is large, i.e., the PED 1−i

VT of path VP is

much larger than the PED 1−i
UT of path UP . After accumulating the branch cost of

54

remaining layers, most probably the final cost 1
VT of path VP is still larger than the

final cost 1
UT of path UP . Based on equation (2.6),

∑ −=
− +=

1

2
11

ij
j

V
i

VV eTT , (5.1)

 ∑ −=
− +=

1

2
11

ij
j

U
i

UU eTT . (5.2)

Unless

∑∑ −=−=
>−

1

2

1

2 ij
j

Vij
j

U ee 11 −− −=Δ i
U

i
V TT , (5.3)

the partial sum of the branch costs of the remaining layers will not change the

original order of the PEDs). This means the path VP is unlikely to become the ML

solution when the sphere decoder descends to the final layer. Hence, we can prune

this path at layer i-1 in advance from further processing, thus save the

computational effort of the lower layers. And since the eliminated node is unlikely

to become the ML solution, such early prune scheme will not affect the decoding

performance.

From the above observation, it is possible to set up a criterion to identify such

paths that are unlikely to become the ML solution, and prune them at early stages.

At layer i, the original K-Best SD will retain the K paths corresponding to smallest

PEDs: iT1 , iT2 ,…, and i
KT . Based on the above analysis, if ii

K TT 1−=Δ is large, then

path KP can be pruned. Therefore, we set a bound

i
K

i TTB ⋅−+⋅=)1(1 αα , (5.4)

55

which is a linear combination of iT1 and i
KT . If the PED of a candidate path is larger

than B, this candidate path is discarded. Here, α is a value determined by

simulations. Such bound, together with the K-Best condition (number of survival

paths), can serve as a stricter condition to prune more nodes at early stages.

In Chapter 2, we proposed a layer reordered (LR) K-Best SDA, which can

improve the performance of the regular K-Best sphere decoders. In fact, such layer

reordering scheme can also be used to reduce the complexity. For example, as for

the 4x4 64QAM MIMO system, the 10-Best SD has almost the same (even slighter

better) performance as 12-Best regular SD. Therefore, we can use the 10-Best LR-

SD to replace the 12-Best regular SD. In this way, 17% complexity can be saved.

In addition, we can combine the early-pruning scheme with the LR-SD in

Chapter 2 to achieve more complexity savings. Figure 5.1 shows the simulation

results by applying our scheme. In this work, we use the 4x4 MIMO systems (4

transmit and 4 receive antennas). The modulation scheme is 64QAM (By

decoupling the complex constellations, the real model used is an 8x8 8PAM MIMO

system). In case of hard-output detection, 1000 independent channel realizations

(packets) of 1000 uncoded 64QAM symbols are transmitted with 250 symbols from

each antenna. Figure 5.1 compares the performance (symbol error rate) of the ML

detection, the normal 12-Best SDA, the 10-Best LR SDA, and our 10-Best early-

pruning LR SDA (α=1/4 and α=1/3) at different SNRs ()/ 0NEs .

From Figure 5.1 we can see the 10-Best layer reordered SD has the same

performance as regular 12-Best SD. And after combining the early-pruning (EP)

scheme with 10-Best LR-SD, when α=1/4, no performance loss can be observed.

56

For α=1/3, the 10-Best EP-LR-SD has 0.15dB performance degradation comparing

with regular 12-Best SD.

Figure 5.1. Performance comparison of the ML, 12-Best SD, 10-Best LR SD, and
10-Best early-pruning SD (α=1/4 & α=1/3) (N=M=4, 64QAM).

Figure 5.2 compares the complexity savings of the 10-Best early-pruning layer-

reordered SD to the normal 12-Best SD at different SNRs. Compared to α=1/4, the

α=1/3 case can achieve more complexity savings (up to 48%). However, the α=1/4

10-Best EP-LR-SD has slightly better performance. Moreover, to save more

complexities, we can set the α value as a function α(i) of the layer i. At later stages,

α(i) can be bigger (the bound becomes tighter) because from equations (5.1) and

(5.2), at later stages fewer remaining branch cost will be added to the PEDs.

57

Therefore, the possibility of condition (5.3) is smaller. From our simulation,

] 0.38 0.38 0.34 0.34 0.3 0.3 0.26 26.0[=α can be used. Such 10-Best EP-

LR SDA can achieve the same saving as α=1/3, while the 0.15dB performance loss

can be avoided.

Total Complexity Saving of Early-Pruning SD

30%

32%

34%

36%

38%

40%

42%

44%

46%

48%

50%

25 27 29 31 33 35

SNR(Es/N0)

C
om

pl
ex

ity
 S

av
in

gs

EP LR SD Saving(α=1/4) EP LR SD Saving(α=1/3)

Figure 5.2. Complexity savings of the early-pruning LR 10-Best SD (α=1/4 &
α=1/3) compared with regular 12-Best SD (N=M=4, 64QAM).

5.2 Combined Method with threshold-based SDA

In [20], a threshold-based K-Best SDA was introduced. At each layer, a

threshold

8/)9(CiCB i ⋅−⋅−= β (5.5)

was used to eliminate candidate nodes with large PEDs, where i stands for the i-th

decoding layer, running from 8 to 1, C is the Euclidean distance between the

58

received signal and the estimation of zero-forcing solution multiplied by the MIMO

channel matrix H. At each decoding layer, the candidates whose PEDs are bigger

than B will be discarded. β is the coefficient determined by simulation. This method

can also save much complexity especially in high SNR regions.

Figure 5.3. Performance comparison of the ML, 12-Best SD, 10-Best LR SD, 10-
Best early-pruning SD (α=1/3) & combined EP SD (N=M=4, 64QAM).

Since the early-pruning scheme we introduced in Section 5.1 is dynamic (based

on the distribution of the PEDs of the survival paths), it is reasonable that we

combine the early-pruned SDA with the SDA in [20]. Here, we can set the

combined bound as

}8/)9(,)1(min{ 1 CiCTTB i
K

i ⋅−⋅−⋅−+⋅= βαα . (5.6)

59

In this way, more computational complexity or power consumption can be saved

without sacrificing the performance. The α value can be set as 1/3 or 1/4 as in

Section IV, and the β value can be set as 1.

Figure 5.3 shows the simulation result of the ML, 12-Best SDA, 10-Best EP-LR

SDA (α=1/3), and the combined 10-Best EP-LR SDA (α=1/3, β=1) for the 4x4 64

QAM system. Compared with the 12-Best SDA, there is almost no performance

(less than 0.2db) loss for the combined methods.

Comp. Saving Comp. of EP SD & Combined EP SD

30%

35%

40%

45%

50%

55%

25 27 29 31 33 35

SNR(Es/N0)

C
om

pl
ex

ity
 S

av
in

gs

EP LR SD Saving(α=1/3) Combined EP LR SD Saving(α=1/3,β=1)

Figure 5.4. Complexity savings comparison of the early-pruning LR 10-Best SD
(α=1/3) & combined EP-LR 10-Best SD (α=1/3, β=1) (N=M=4, 64QAM).

In Figure 5.4, the complexity saving of the combined method has been shown. It

can be seen that more complexity saving (up to 55.5%) can be achieved with the

combined method, especially at high SNR regions.

60

5.3 Conclusions

In this Chapter, by exploiting the intrinsic properties of the K-Best breadth-first

searching algorithm, we have introduced an efficient early-pruning scheme. For our

example 4x4 64QAM MIMO system, when such early-pruning scheme is

combined with the layer reordered SDA, about 47% complexity savings can be

achieved without losing detection performance. This early-pruning scheme can be

further combined with the threshold-based K-Best SDA, thus for the same system,

the total of 55% computational complexity/power consumption can be reduced

compared to the original K-Best SDA.

61

6 EFFICIENT RADIUS AND LIST UPDATING UNITS

DESIGN FOR LIST SPHERE DECODERS

 The sphere decoder (SD) has been utilized for maximum likelihood (ML)

detection in MIMO systems. In order to improve system performance, the SD is

usually combined with the error correction codes where soft decoding is utilized.

The SD needs to provide soft information in order to combine with the channel

code decoder which implements soft decoding Therefore, the conventional SD,

which finds the ML hard decision symbols, needs to be modified. In [8], the list

sphere decoder (LSD) was proposed for iterative decoding schemes. By

conducting search in the sphere, the LSD generates a candidate list instead of only

finding the ML solution. The soft extrinsic information is computed based on the

list of candidates, and then delivered the soft-decoder. Therefore, the key of LSD is

to find out a candidate list by taking the search and pruning approach.

 Differing from the regular SD, the LSD needs to generate a candidate list other

than only the ML solution. This will introduce extra latency in finding out the

sphere radius, and extra complexity for updating the candidate list. The

contributions of this Chapter include the follows: 1) we propose an efficient

architecture, which can compute the new sphere radius in one clock cycle, thus

reduce the decoding latency; 2) we present a low complexity list updating unit,

which can greatly save the complexity for updating the candidate list.

 This Chapter is organized as follows. In Section 6.1, we briefly review the

sphere decoding algorithm and list sphere decoder. Then in Section 6.2, we

describe our fast radius updating architecture and show its improvement. In Section

62

6.3, the new list updating scheme is illustrated. The complexity analysis has also

been provided. Finally, conclusions are drawn in Section 6.4.

6.1 List Sphere Decoder

6.1.1 Conventional Sphere Decoding Algorithm

Based on the MIMO system model described in Section 1.1, an approach to

obtain the ML detection is the sphere decoding. It only examines the point inside a

hyper-sphere around y, i.e.,

Crd =≤−= 22)(Hsys , (6.1)

which is regarded as the sphere constraints (SC). By applying QR decomposition to

H, the right hand side of equation (2.1) can be transformed into a sum of non-

deceasing terms for each layer. Thus the search in the sphere is further transformed

into a tree search. Once the partial Euclidean distance (PED) exceeds C, its children

nodes can all be pruned. The sphere radius (C is the square of the sphere radius. For

the convenience of expression, in this work, we call C radius) is updated every time

a new solution is found. As a result, the complexity of finding ML solution can be

significantly reduced.

6.1.2 List Sphere Decoder

To increase the system performance, the sphere decoder can be combined

with the error correction code which uses soft decoding. An iterative processing

scheme for Turbo code and LDPC code, has been applied to the MIMO systems

[8][23]. The block diagram is shown in Figure 6.1. For this iterative decoding

63

scheme, the MIMO detector needs to generate the soft reliability information (log

likelihood ratio) for feeding into the soft-input-soft-output (SISO) decoder.

Figure 6.1. MIMO transmission and iterative receiver model.

At the receiver side, the inner MIMO detector (sphere decoder) uses the

received symbol vector y and a-priori (intrinsic) information LA1 from the soft

decoder, computes the extrinsic information LE1 for each bit according to the

approximation equation (12) in [8]. Then LE1 is de-interleaved and becomes the

intrinsic information LA2 for the SISO decoder. Based on LA2, the SISO decoder

then calculates the extrinsic information LE2, which will become the intrinsic

information of inner MIMO detector after being interleaved. Thus, one iteration is

completed. To facilitate such iterative decoding, the conventional SD needs to be

modified for soft decoding. The list sphere decoder (LSD) was introduced in [8].

Instead of searching the ML solution within the hyper-sphere, the LSD finds out a

list of most likely symbol vectors (including the ML solution) which has the

64

smallest Euclidean distances (2Hsy −), and computes the soft bit reliability

information based on the candidates list.

6.2 Fast Radius Updating Architecture

For the list sphere decoder, suppose it has a candidate list L of size N. Each

candidate is denoted as)1(NiLi ≤≤ , and the corresponding ED is EDL(i) with

EDL(i)≤ EDL(j) when Nji ≤≤≤1 . The original LSD decoding flow is illustrated in

Figure 6.2(a). At first, the LSD conducts depth-first search at upper layers. When

the tree search reaches the leaf nodes and finds out K candidates: ,1, KiAi ≤≤ two

operation are needed. A) Candidate List Update: the new candidates will be

inserted into the candidate list, and the original candidates with the biggest EDs

will be deleted; B) New Radius Update: the radius will shrink from)(NLED to the

new biggest ED in the list. For the original design, the new radius is updated after

the new list has been generated (it picks up the biggest ED in the new list and

updates radius C). However, this will introduce more latency because only after the

new radius has been computed, the depth-first tree search can resume (the depth-

first search engine needs the new C to check each PED). In this Chapter, we

propose a new LSD decoding flow. In the new flow shown in Figure 6.2(b), the

new radius is computed in advance. Therefore, the depth-first search will continue

after one clock cycle. And the list update operation can be conducted in parallel. In

this way, the DFS and LU can overlap, thus save the latency introduced by the list

updating unit.

65

Figure 6.2. Decoding flows of LSD (DFS—depth first search, CF—candidates
found, LU—list update, RU—radius update).

To elaborate the new radius update unit, first let us consider the simplest case

K=1, i.e., in each search the LSD found one new candidate A. The architecture to

compute new C is presented in Figure 6.3.

Figure 6.3. Radius update unit for K=1.

66

The original radius is)(NLED . When the new ED of candidate A has been

found, it needs to compare with original C. If EDA is bigger, the candidate will be

pruned, and the radius C remains. If EDA is smaller, the bigger value between EDA

and EDL(N-1) will become the new radius.

However, for normal SD decoder design (such as [10]), when search reaches

the bottom level, all the leaves under the same parent node are computed in parallel

to increase the decoding speed. Therefore, more than one new candidate will be

found at the CF phase. For instance, for a 4x4 16QAM MIMO system, 4 new

candidates will be generated at the same time (K=4). Since SE enumeration is used

(refer to [14], a look-up table can be used to avoid sorting), the EDs of the new

candidates A are in ascending order. The radius update unit needs to compute the

new radius quickly for such scenarios.

Figure 6.4. Radius update unit for K=4, N=16.

67

Figure 6.4 shows an example fast radius update architecture for K=4, N=16.

For this situation, the original list size is 16 with EDL(1)≤EDL(2) ≤ …≤EDL(16). Now

the 4 newly computed EDs are EDA(1)≤EDA(2) ≤ EDA(3)≤EDA(4). Therefore, the new

radius should be the 5th largest number in the total 16+4=20 numbers. The

straightforward method is to insert the list A into list L, and select the 5th largest

number. This has large complexity and long latency. The architecture in Figure 6.4

illustrates an efficient way to find out the new radius. Such architecture exploits the

existing order in list L and A, and uses the fastest way to find out the new radius.

First, we need to compare EDA(4) and EDL(12). If EDA(4)< EDL(12), then it means all

the new candidates will be inserted into the candidate list (L13, L14, L15, L16 will be

deleted). And the new radius is EDL(12).Otherwise, the list A and the largest 4

Euclidean distances EDL(13), EDL(14), EDL(15), and EDL(12) (original C) will be sorted

by an efficient 4x4 merge sort unit, and the 5th largest value will be output as the

new C (this value is guaranteed to be the 5th largest among the whole 20 numbers

when EDL(12)> EDA(4)).

Figure 6.5 shows the 4x4 and 2x2 merge sort unit used for the new radius

update architecture. The dotted line part is just used for illustration and can be

omitted in real implementation. C&S stands for compare and swap. The total

hardware for the 4x4 merge unit is 7 C&S (each has a comparator and a multiplex).

And the total hardware for the radius update unit is 8 comparators and 8 MUXs

with the critical path of 3 C&S units.

The above discussion provides an example of designing fast radius update

unit. For different MIMO systems with other K and N values, the merge sort unit

can be simply modified to compute the new radius in one clock cycle. In addition,

68

this 4x4 merge unit can be slightly modified to be re-used for the list updating,

which will be discussed in the following section.

a1
a2
a3
a4
b1
b2
b3
b4

Odd
2x2

Merge

L

H

Even
2x2

Merge

L

H

C&S
H
L

C&S
H
L

a1<a2<a3<a4

b1<b2<b3<b4

C&S
H
L

a1
a2
b1
b2

C&S
H
L

C&S
H
L e2

e3
C&S

H
L

e1

e4

4x4 Merge

2x2 Merge

Figure 6.5. The 4x4 & 2x2 merge sort unit: C&S—compare & swap.

6.3 Efficient List Updating

After the new radius has been computed, the depth-first tree search can

resume. And the candidate list needs to be updated in parallel. The new list will be

used by the next radius and list updating units. Finally, when the whole tree has

been traversed, the final list will be needed by the soft information generation unit

to compute the soft bit reliability information.

In [24], a tree-type comparator (TTC) array was proposed to update the

candidate list. Compared with the fully parallel comparator (FPC) array, the TTC

architecture can significantly save the complexity for 4x4 16QAM MIMO systems.

In this work, based on the same merge architecture, we can create an efficient

69

candidate list updating scheme, which will update the candidate list with smaller

complexity.

Figure 6.6 shows the list updating unit architecture for N=16, K=4 case.

Here, the inputs are the Euclidean distances and history paths coming from list L

(16 entries) and A (4 entries). After updating, the LU unit will generate the new

paths for the 16 candidates with the smallest EDs. The original 4x4 merge unit

needs to be slightly modified since after the comparison of the Euclidean distance,

both the ED values and the corresponding candidate paths need to be swapped.

Hence, the comparator remains, but the extra MUXs for candidate paths need to be

added.

Figure 6.6. List updating architecture for N=16, K=4.

This architecture works as follows: first, the new entries from A are merged

with the biggest 4 entries (L13,L14,L15,L16) in the list L. The four largest entries after

70

merge are discarded, and the other 4 smallest outputs B1,B2,B3,B4 will be further

compared to the middle 4 entries (L5,L6,L7,L8) in the remaining list L of size 12 (the

binary search principle is applied here: start merge from the ½ point). Afterwards,

the smaller 4 outputs are further merged with the L1, L2, L3, L4, thus generate the

smallest 8 entries for the new list. Similarly, the bigger 4 outputs are merged with

L9,L10,L11,L12, which become the other 8 entries for the new list.

The total latency for this list updating architecture is 9 comparison

operations. An interesting point is: the modified merge unit 1 has the same inputs

as the merge unit used for the radius updating unit discussed in the previous

section. Therefore, we can reuse the 4x4 merge unit in the radius updating for both

radius updating and list updating (the 4x4 merge unit in the RU needs to be

changed to the 4x4 modified unit in Figure 6.6, which can swap both the ED and

candidate path). In this way, the list updating latency can be further reduced to 6

comparison operations.

Suppose ED has the word-length of W, the history path has S (for 4x4

16QAM, S=16) bits. Therefore, each 4x4 modified merge unit has 9 comparators,

9W+9S 2-to-1 MUXs for both EDs and history paths. Considering the four merge

units has the same structure, it is possible to reuse one merge unit four times

instead of using 4 merge units, thus the total area is further reduced to 9

comparators and 9W+9S 2-to-1 MUXs plus the extra reuse logic: 8(W+S) 4-to-1

MUXs. For this reuse scheme, the total radius updating and list updating procedure

will take 4 clock cycles (1 clock cycle for radius updating and 3 clock cycles for list

updating). Based on the decoding flow in Figure 6.2, the LU is in parallel with the

depth-first search; therefore such latency will not affect the decoding speed.

71

TABLE 6.1 COMPARISON OF DIFFERENT LIST UPDATING SCHEMES

 # of
Comp.

of 3-to-1
MUXs

of 2-to-1
MUXs

of 4-to-1
MUXs

FPC 64 1856 - -

TTC 16 232 704 -

Merge 9 - 288 256

Table 6.1 compares the complexity of FPC, TTC, and our merge list updating

scheme for the example case (4x4 16QAM MIMO, N=16, K=4, W=16, S=16).

From the result it can be seen that our proposed merge scheme can save about 45%

complexity compared with TTC.

6.4 Conclusions

In this Chapter, we have introduced some new schemes for list sphere

decoder. We have first suggested changing the decoding flow to do the radius

updating before list updating. This will avoid the latency introduced by the radius

updating unit. By exploiting the intrinsic order of the candidate list and the SE

enumeration, we proposed a fast list updating architecture based on the merging of

two partially ordered arrays. For the example 4x4 16QAM N=16 MIMO system,

such radius updating unit can compute the new radius in one clock cycle with the

critical path of 3 comparison operations. In addition, we have presented an efficient

list updating architecture based on the merge sort and binary insertion. For the

same system, by reusing the merge unit in radius updating, this list updating can

72

achieve a 45% complexity saving compared with TTC without affecting the

decoding speed.

73

7 FAST POINT OPERATION ARCHITECTURE FOR

ELLIPTIC CURVE CRYPTOGRAPHY

Public key cryptography has been widely used today for information security

and E-commerce. A well-known public key cryptography scheme is RSA, which

was first proposed by Riverst, Shamir and Adleman in 1978 [45]. The security of

RSA is based on the difficulty of the integer factorization problem. In 1985, Elliptic

curve cryptography (ECC) was introduced by Victor Miller [46] and Neal Koblitz

[47] independently. The security of ECC is based on the hardness of solving the

elliptic curve discrete logarithm problem (ECDLP). Comparing with the sub-

exponential time it takes to solve the integer factorization problem, it takes fully

exponential time for today’s best algorithm to solve ECDLP. Therefore, ECC

delivers much higher security strength per bit than RSA. A typical example is: a

160-bit key ECC has equivalent level of security to a 1024-bit key RSA [48]. For

this reason, ECC offers potential reduction in storage space, bandwidth and power

consumptions, which is very desirable for the security applications in the constraint

devices such as cell phones, PDAs, and smart cards.

Due to the advantages of ECC over RSA, a lot of papers have been published

on the software or hardware ECC implementations, among which the latter one

provides much higher processing speed and is more suitable for real-time

applications. The implementation of ECC mainly relies on the operations at three

levels: the scalar multiplication, the point addition / doubling, and the finite field

modulo arithmetic. The ECC system based on GF(2n) is widely utilized for its

simple field arithmetic and efficient scalar multiplication algorithms. Two different

74

coordinates: the affine coordinate and the projective coordinate can be used for the

ECC where the curve is defined over GF(2n). It was shown in [50][51][52] that the

projective coordinate is more desirable for hardware implementation because it

avoids the costly field inversion operation.

However, the conventional point addition and point doubling algorithms

conduct the operations in sequential and takes many steps (e.g., 14 steps for point

doubling and 22 steps for point addition). In this work, we introduce an efficient

fast architecture for the Lopez-Dahab projective coordinates [49]. By applying

parallel processing and reusing the field multipliers, the point addition and

doubling operations can be significantly accelerated, with reasonable hardware

overhead.

The Chapter is organized as follows: in Section 7.1 the mathematic

background of elliptic curve cryptography and arithmetic hierarchy are reviewed.

Then Section 7.2 describes the projective coordinate and presents its advantages for

the hardware implementation. In Section 7.3, the fast point operation architecture is

proposed, and the speedup analysis is given. Finally, the conclusions are drawn in

Section 7.4

7.1 Elliptic Curve Cryptography Arithmetic

7.1.1 Elliptic Curves

In this work, we will focus on the elliptic curves defined over GF(2n). The

mathematic foundation of ECC is based on the Weierstrass equation for a non-

super singular elliptic curve. The equation in affine coordinate is given as:

baxxxyy ++=+ 232 , (7.1)

75

where)2(, nGFba ∈ and 0≠b . The set of points E(GF(2n)) includes all points (x,

y), where ∈yx, GF(2n), and satisfy equation (7.1), together with the infinity point

O. The set GF(2n) forms an additive abelian group, which is based on the following

definitions with),(11 yxP = ,),(22 yxQ = , and QP ±≠ :

Identity: PPOOP =+=+ .

Negation: for),(, 111 yxxPOP +=−≠

Point addition:),(33 yxRQP ==+ where)2(, 33
nGFyx ∈ ,

 and axxx ++++= 21
2

3 λλ , 13313)(yxxxy +++=λ (7.2)

 with)/()(2121 xxyy ++=λ .

Point doubling:),(2 33 yxRP == , where)2(, 33
nGFyx ∈ ,

 and 2
1

2
1

2
3 / xbxax +=++= λλ , 33

2
3 1

xxxy ++= λ (7.3)

 with 111 / xyx +=λ .

The major task of ECC is to compute the scalar multiplication kP, where

011 kkkkk ll K−= is a positive integer and P is a point on E(GF(2n)). The

computation of kP is performed by applying the “double and add” method:

∑
−

=
−− +++==

1

0
021))2(2(22

l

j
ll

j
j PkPkPkPkkP LL (7.4)

This method requires l doublings and wk-1 additions, where wk is the weight of

binary representation of k. As can be seen from the definition of point addition and

point doubling, each add operation takes 6 finite field additions, 2 finite field

76

multiplications, 1 square, and 1 inversion, and each doubling operation requires 8

finite field additions, 2 multiplications, 1 square, and 1 inversion.

7.1.2 ECC Arithmetic Hierarchy

The elliptic curve operations are performed at three different layers. As

discussed above, the top layer computation of ECC is the scalar multiplication,

which is based on the point addition and point doubling operations.

Figure 7.1. ECC arithmetic hierarchy.

In the middle layer is the point addition and point doubling, which are

denoted as ECC-ADD and ECC-DOUBLE respectively. At the bottom layer is the

finite field operations, which include finite field multiplication, finite field addition,

finite field squaring, and finite field inverse operations.

The complete ECC arithmetic hierarchy is illustrated in Figure 7.1.

77

7.2 Projective Coordinate based point arithmetic

7.2.1 Projective Coordinate

According to the definition of point operations on elliptic curves based on the

affine coordinate, we observe that both the point addition and the point doubling

need a finite field inversion, which is very costly for hardware implementation. In

many finite field arithmetic implementations, the cost-ratio of inversion to

multiplication is more than 8. Therefore, it is desirable if the inverse operation can

be avoided. An alternative method to implement the point arithmetic is to use the

projective coordinate.

A projective plane of the fixed exponential integers (α, β) over GF(2n) is

defined by creating an equivalence relation of the triples),,(~),,(ZYXzyx if

there exists),2(nGF∈λ 0 and ≠λ such that we have),,(),,(ZYXzyx λλλ βα= .

Every point (x, y) on the affine coordinate can be mapped to the projective plane

with)1 ,,(),(: yxyx →φ . From the above definition, every equivalent class of

the triples on the projective plane 0),,,(≠ZZYX can be mapped back to the

affine point by αZXx /= and βZYy /= . Currently, there are three popular

projective coordinates applied to the ECC system, which are: a) the Homogenous

projective coordinate [51] with α =1 and β =1; 2) the Jacobian coordinate and

arithmetic [52] with α =2 and β =3; and 3) the Lopez-Dahab projective coordinate

with α =1 and β =2. In the third case, ZXx /= and 2/ ZYy = . The computation

cost comparison of the point arithmetic based on all the three coordinates is shown

in Table 7.1.

78

TABLE 7.1 COMPARISON OF THE COMPUTATION COST OF POINT OPERATION ON
DIFFERENT PROJECTIVE COORDINATES

 Multiplications Squares

Add 13 1
Homogeneous

Double 7 5

Add 11 4
Jacobian

Double 5 5

Add 10 4
Lopez-Dahab

Double 5 5

For practical implementations, the cost-ratio of the GF(2n) multiplier to the

GF(2n) squaring unit is over 7. Therefore, from the comparison of Table 7.1, the

point arithmetic based on the Lopez-Dahab coordinate is the most efficient for

implementations. This work is focused on the L-D point arithmetic.

7.2.2 Lopez-Dahab point arithmetic

In the Lopez-Dahab projective coordinate, the point (X, Y, Z) (Z≠0) is

corresponding to the point (X/Z, Y/Z2) in the affine coordinate, and the elliptic curve

equation is transformed into the following form:

42232 bZZaXZXXYZY ++=+ . (7.5)

The point addition formula that does not involve the inversion operation can be

derived by converting the point to affine projective as x = X/Z and y = Y/Z2 at first,

then adding the affine points with equation (7.2), and finally clearing the

denominators. Similarly, the L-D point doubling equation can be derived by

converting to affined projective, substituting into equation (7.3) and clearing the

denominators.

79

It should be noted that when using the “double and add” method for the

scalar multiplication kP, the point P is never modified in all the point addition

operations. Therefore, the coordinate of P can be further reduced as)1 ,,(11 YXP = to

simplify the computation. As for two distinct points)1 ,,(11 YXP = and

),,(000 ZYXQ = on the elliptic curve, the result QPZYXR +==),,(222 is

computed by the following steps [49]:

EXFBB
XDBBBZA

YGFDDDAYD
GEGBABAYA
FAFDAAaAC
GBGZAEA
FBFCBBAXB

EYGCACZXA

1
2

20

2
2

0

1

2
22

0

0

101

 16. .8
)(15. .7

)(22. 14. .6
 21. 13. .5
 20. 12. .4
 19.)(11. Z .3
 18. 10. .2
 17. 9. .1

←←
+←←

+←←+←
⋅←+←←
⋅←⋅←←
+←←←
+←⋅←+←

←+←←

 (7.6)

and QR 2= is computed as (c =b1/2 is pre-computed, b is the coefficient in (7.5)):

 10.)(Z .5
)(14. 9. .4

 13. 8. .3
 12.)(7. .2
 11. 6. .1

2

2
2
1

2
1

2
2

22
1

EDDCAA
YDBDAaEXC
BABYDBB
DCDXCBCAcB
DBDCCZA

+←⋅←
+←⋅←←

⋅←←←
⋅←+←⋅←
+←←←

 (7.7)

7.3 Fast Point Operation Architecture

For most of the existing point arithmetic implementations based on Lopez-

Dahab projective coordinate (e.g., [53]), the algorithms discussed above were

implemented in a sequential way. The advantage is that the number of finite field

arithmetic modules can be reduced to minimum (for example, only one adder, one

multiplier and one squaring unit are needed for point addition and doubling).

However, such designs introduce long latency for performing the point operations

80

(the latency of the point doubling is 5TM+5TS+4TA, and the latency of the point

addition is 10TM+4TS+8TA, where TM, TS, TA denote the latency of the finite field

multiplier, squaring unit, and adder respectively), which is not desirable for the

applications where high-speed ECC implementation is required.

7.3.1 Fast point doubling architecture

A popular approach to increase the processing speed (reduce the latency) is to

apply the parallel processing technique. By introducing more processing units

which can operate in parallel, the results can be obtained much faster.

Figure 7.2. Parallel architecture for L-D point doubling.

81

In Figure 7.2, the parallel architecture of the Lopez-Dahab point doubling

algorithm is shown. The number associated with each module corresponds to the

step in (7.7). The critical path is indicated in grey color. We can see the total

latency required to compute Y2 is 3TM+TS+3TA. Assume the timing cost ratio of TM

to TA is r1 (usually around 15), TS to TA is r2 (around 2), the total latency ratio of the

serial architecture of point doubling to the corresponding parallel architecture is

(5r1+5r2+4)/(3r1+r2+3)=1.78 (when r1=15 and r2=2), which is the speedup we have

achieved by applying the parallel architecture.

Figure 7.3. Modified parallel architecture for L-D point doubling.

82

Figure 7.3 shows the modified architecture of the parallel architecture for

point doubling. In this architecture, the Steps 10 and 11 are modified, which is

indicated as Steps 10* and 11*. This modification does not change the final result

of Y2 because the output of Step 11* is the same as Step 11, which equals the sum

of the output of Steps 3, 8, and 9. However, by changing the order of these

additions, Step 10* can be overlapped with multiplier 9, thus the critical path length

becomes 3TM+TS+2TA, which is reduced by the computation delay of one adder, TA.

And the total speedup becomes 1.81 times.

Figure 7.4. Timing schedule of the L-P point doubling.

Based on the above architecture, totally 5 multipliers, 5 squaring units, and 4

adders are used for the fully parallel architecture. However, this is not necessary.

From Figure 7.3 we can see that at the same time instance, at most two multipliers

are working in parallel. Similarly, at most two squaring units are needed at the

83

same time. If the point doubling implementation has been pipelined and well

scheduled, we can use the schedule shown in Figure 7.4(a) to minimize the number

of finite field arithmetic units, thereby reduce the hardware cost to two multipliers,

two squaring units and one adder.

Moreover, by using the schedule shown in Figure 7.4(b), we can save another

squaring unit. In this case, the latency is increased by TS, which becomes

3TM+2TS+3TA., and the overall extra hardware is only one GF(2n) multiplier.

7.3.2 Fast point addition architecture

Figure 7.5 shows the parallel architecture for the Lopez-Dahab point addition

arithmetic. Similarly, the number associated with each module corresponds to the

step in equation (7.6). The critical path is indicated in grey color (note the Steps 19

and 21 can be regarded as part of the critical path instead of Steps 18 and 20). The

total latency to calculate Y2 is 4TM+6TA. Using the same notation as the point

doubling discussed above, the total latency ratio of the serial architecture of point

addition over the parallel point addition architecture is (10r1+4r2+8)/ (4r1+6) =2.52

(when r1=15 and r2=2), which is the speedup achieved by using the parallel

architecture for point addition.

From Figure 7.5, we can see 4 multipliers working in parallel are needed for

the point addition operation, and only one squaring unit is necessary. In addition,

since Step 18 and Step 19 are executed in parallel, we need two adders for this

architecture. However, we can delay the addition in Step 19 by TA, which means

Step 19 starts after Step 18 completes. In this way, only one finite field adder is

needed. Thus, the total latency is increased by TA. Considering the GF(2n) adder is

84

a number of XOR gates in parallel, whose latency is very small, the re-scheduling

discussed above becomes meaningful.

Figure 7.5. Parallel architecture for L-D point addition.

For an efficient L-D coordinate based point addition design, we can reduce

the number of multipliers from 4 to 2. The method is to advance the multiplication

of Step 1 by TM−TS, which makes Step 1 complete before Steps 4 and 5 begin.

85

Also, we need to delay the multiplications of Steps 16 and 17 so that they start after

the completion of Step 10. For such a modified architecture, at most two multipliers

are working in parallel at any time instance. Thereby the total number of

multipliers is reduced to two. And the total latency becomes 6TM+4TA, which offers

another trade-off between the area and speed. When r1=15 and r2=2, the speedup

achieved is 1.77. In this case, the major hardware overhead is one GF(2n) multiplier

compared with the sequential implementation. The schedule for this modified

scheme is shown in Figure 7.6.

Figure 7.6. Timing schedule of the modified L-P point addition.

7.4 Conclusions

In this work, a fast architecture for the ECC point arithmetic (point doubling

and point addition) based on the Lopez-Dahab projective coordinate is presented.

This proposed architecture can significantly speed up the ECC computation with

reasonable hardware overhead, which is essential for the applications where high-

speed systems are required.

86

8 EFFICIENT ARCHITECURE FOR THE TATE PAIRING IN

CHARACTERISTIC THREE

Identity-based cryptography (IBC) is a public-key cipher introduced by

Shamir [62] in 1984. In IBC, the public key is derived from user identity (an

arbitrary string) instead of from a relationship with private information as in

conventional schemes, such as RSA. The corresponding private key is created by

binding the user identity with a trusted third party, called private key generator’s

secret key. This system allows any party to encrypt messages or verify signatures

with no prior knowledge on the public keys of other parties. This is extremely

useful in cases where pre-distribution of authenticated keys is inconvenient or

infeasible due to technical restraints. Moreover, such scheme presents a rich set of

functional and security characteristics which are difficult or impossible to realize

by other ciphers. Modern implementations of IBC include Cock’s quadratic

residues scheme [63], Bohen/ Franklin [64] and Sakai’s [65] pairing schemes. The

pairing schemes are based on bilinear mapping over elliptic curves and are faster

for practical implementation than the quadratic residues scheme. There exist two

types of bilinear mapping: the Weil pairing and Tate pairing. Among these two

algorithms, the Tate pairing has lower computational cost. Nevertheless, its

complexity is still very high. Normally a pairing operation takes much longer

(about 5-10 times as long) to compute than the point multiplication in elliptic curve

cryptography. Prior implementations of the Tate paring are mainly in software

domain [67]. These implementations can only run at low speed due to the high

complexity. In order to employ IBC in practical applications, hardware

87

implementations must be employed. A few previous efforts have been devoted to

hardware implementation of Tate pairing. The notable ones include the FPGA

hardware accelerator for Tate pairing over GF(3m) presented in [68]. In order to

boost the speed of IBC to practical level, efficient and high-speed hardware

implementations of Tate paring need to be developed.

The best method of Tate pairing calculation before 2002 was presented by

Miller in [71]. In 2002, Galbraith [74] and Barreto [75] greatly simplified the

pairing computation by introducing the triple-and-add BLKS algorithm in

characteristic three. The BLKS algorithm was further modified and developed as

the Duursma-Lee algorithm [69] and the Kwon-BGOS algorithm [70]. Through

exploring the intrinsic property of the Duursma-Lee algorithm, we propose

complexity-reducing schemes and an overlapped processing technique. Compared

with conventional sequential implementations, the proposed architecture can

achieve over 2 times speedup. The proposed method can be also applied to the

Kwon-BGOS algorithm, and similar speedup can be obtained.

This Chapter is organized as follows: In Section 8.1, the Tate pairing and the

Duursma-Lee & Kwon-BGOS algorithms are introduced. Section 8.2 presents the

overlapping technique and its application to the Tate pairing algorithm. The

processing gain analysis is also provided in this section. At the end, conclusions are

drawn in Section 8.3.

8.1 Tate Pairing Algorithms

In this section, a brief introduction of the Tate pairing in characteristic three

and the Duursma-Lee & Kwon-BGOS algorithms will be given.

88

8.1.1 Tata Pairing

Let E(GF(q)) be an elliptic curve defined over finite field GF(q), where q=3m

and m is a prime number. Let l be a positive integer coprime to q. In practice, l is

usually picked as a large prime such that l divide #E(GF(q)) and l2 does not divide

E(GF(q)). Here #E stands for the number of rational points on the elliptic curve.

Let k be the smallest integer which satisfies l | qk-1. Actually k is the embedding

degree of the curve with respect to l. Let GF(qk) be the smallest extension field of

GF(q) which contains the l-th root of unity. Also, let E[l](GF(q)) denote the

subgroup of E(GF(q)) of all points of order dividing l (l-torsion) and similarly for

the degree k extension of GF(q). Tate pairing of order l is defined in terms of

rational functions over the points of an elliptic curve evaluated in a divisor. It is a

bilinear mapping between E[l](GF(3m)) and E[l](GF(3km)) to the element of the

multiplicative subgroup of GF(3km), i.e., GF(3km)*. Such a bilinear mapping can be

denoted by:

E[l](GF(3m)) × E[l](GF(3km)) → GF(3km)* . (8.1)

It is only defined up to lth power of unity. The quotient group GF(3km)* / (GF(3km)*)l

is isomorphic to the elements of order l in GF(3km)* by raise them to the power

(3km-1)/ l. Now consider the following super-singular elliptic curve on a finite field

of characteristic 3:

E(GF(3m)) : y2 = x3 – x + b, b = ± 1. (8.2)

Similar to [68], we set the embedding degree k to 6. Consider P=(x1,y1) and

Q=(x2,y2) ∈ E[l](GF(3m)), i.e., x1, y1, x2, y2 ∈ GF(3m). The pairing is efficiently

computed in practice by considering the point))3(]([)(6mGFlEQ ∈φ , where φ is a

distortion map of (8.2). The distortion map is defined as

89

),()),(()(2222 yxyxQ σρφφ −== , (8.3)

where ρ, σ ∈ GF(36m) such that ρ3 – ρ – b=0 and σ2+1=0. And GF(q6) is the

quadratic extension GF(q6) = GF(q3)[σ] / [σ2+1], GF(q3)= GF(q)[ρ]/ [ρ3 – ρ – b].

8.1.2 Duursma-Lee & Kwon-BGOS algorithms

Duursma and Lee introduced in [69] a faster Tate pairing algorithm using a

group of order l = q3 + 1 = 33m +1 instead of an order that divides q3 + 1. In this

case, a closed formula for the mapping of equation (8.1) was found. The pseudo

codes for the Duursma-Lee algorithm are shown in Algorithm 1.

Algorithm 1. Duursma-Lee algorithm for calculating
Tate pairing in characteristic three
Input : point P=(x1,y1), Q=(x2,y2)
Output: *)(/*)())((36 qGFqGFQff P ∈= φ

1. begin
2. f ← 1
3. for i =1 to m do
4. 3

11 xx ←
5. 3

11 yy ←
6. bxx ++← 21μ
7. 2

21 μσλ −−← yy
8. 2ρμρλ −−←g
9. gff ⋅←
10. 3/1

22 xx ←
11. 3/1

22 yy ←
12. end for
13. return f
14. end

Another widely used fast Tate pairing algorithm is the Kwon-BGOS

algorithm. The details of this algorithm are given in Algorithm 2.

90

Algorithm 2. Kwon-BGOS algorithm for calculating
Tate pairing in characteristic three
Input : point P=(x1,y1), Q=(x2,y2)
Output: *)(/*)())((36 qGFqGFQff P ∈= φ

1. begin
2. f ← 1
3. 3

22 xx ←
4. 3

22 yy ←
5. mbd ← mod 3
6. for i =1 to m do
7. 9

11 xx ←
8. 9

11 yy ←
9. dxx ++← 21μ
10. 2

21 μσλ −−← yy
11. 2ρμρλ −−←g
12. gff ⋅← 3
13. 22 yy −←
14. 3 mod)(bdd −←
15. end for
16. return f
17. end

As discussed in [69][70], to obtain the compatible result with that for the

BKLS algorithm [75], the output of algorithm 1 and 2 should be powered to (36m-

1)/ l=33m+1.

8.2 Efficient Tate Pairing Architecture

It can be observed from Algorithm 1 and 2 that both the Duursma-Lee and

Kwon-BGOS algorithms for Tate pairing algorithms are very complicated. The major

computations in these algorithms are finite field addition/subtraction,

91

multiplication, cubing and cube root. The speed can be achieved by these

algorithms is limited by the m iterative loops.

8.2.1 Efficient arithmetic over finite fields of characteristic 3

In GF(3m), using polynomial basis representation for field elements leads to

faster implementation of finite field operations than using normal basis

representation [68]. An element in GF(3) can be represented by a digit in the set {-

1, 0,1}, which can be encoded into two bits with the most significant bit as the sign

bit (10 for -1, 00 for 0, 01 for 1). The operations in GF(3) can be easily

implemented by simple combinational logic, or 4-input look-up-tables. Moreover,

the finite field GF(3m) is isomorphic to GF(3)/f(x), where f(x) is a irreducible

polynomial of degree m over GF(3). Therefore, each element of GF(3m) can be

represented by an m-dimension vector over GF(3), i.e., 2m bits binary vector.

The addition/subtraction over GF(3m) can be realized digit-wise with m

adders in GF(3), which can be completed within one clock cycle. As mentioned

above, the sign of element in GF(3) can be inverted by swapping the bits. The

architecture of GF(3) adder/subtracter is show in Figure 8.1. GF(3m) adder is m

such adder in parallel.

The GF(3) adder logic is defined as:) | (̂) | (1221 babat = , tbac ^) | (221 = ,

tbac ^) | (112 = .

Using polynomial basis representation, the cubing in GF(3m) can be

implemented by inserting one zero between each adjacent coefficient then applying

modulo reduction by f(x) to the corresponding polynomial. This process can be also

92

completed in one clock cycle. As for the 9th power (Steps 7&8 of algorithm two),

the operation can be done with two cubing units.

Figure 8.1. GF(3) adder/subtracter unit.

The cubic root function can be realized using the method introduced by

Barreto [72], as long as that the field polynomial 1)(−+= wm xxxf

satisfies 3) (mod wm ≡ . In this case, only bit addition and shift are involved.

The most complicated units in the Tate pairing algorithms are the

multiplications, which includes the multiplications in GF(3m) and GF(36m) (Steps 7,

8, 9 in Algorithm 1, and steps 10, 11, 12 in Algorithm 2). The multiplication of two

elements A, B in GF(3m) can be performed in a digit-serial way: all bits in operand

A are processed in parallel, while operand B is split into ⎡ ⎤Dm / groups (each

group has D digits) and processed serially. Using this digit-serial computation, each

multiplication takes ⎡ ⎤Dm / clock cycles, and the critical path consists of one m by

D digits finite field multiplier. The latency of this multiplier is ⎡ ⎤ mDm tDmt ⋅= / ,

where mDt is the propagation delay of the m by D digit finite field multiplier, and is

93

also the critical path of the whole Tate pairing module. The multiplication in

GF(36m) can be decomposed into operations in GF(3m) by using composite field

arithmetic. According to Karatsuba’s work [73], a GF(36m) multiplier can be

implemented by 56 adders and 18 GF(3m) multipliers connected in parallel. Hence,

the latency for this unit is amm ttt +=6 , where ta stands for the latency introduced

by those adder arrays. The block diagram is shown in Figure 8.2.

Figure 8.2. Block diagram of the GF(36m) multiplier.

Modulo reduction is required in Steps 5 and 14 of Algorithm 2. Considering

16 ≡ 1 (mod 3), Step 5 operation can be implemented in an efficient way as shown

in Figure 8.3(a):

94

Figure 8.3. Fast mod 3 architecture.

Assume d has 12 bits and they are divided into groups of 4 bits: d[11:8],

d[7:4] and d[3:0] (Other length of d can follow similar approach. For instance, if d

has 15 bits, it can be grouped into d[14:12], d[11:8], d[7:4] and d[3:0]). Then

d=d[11:8]*256+d[7:4]*16+d[3:0]. Hence, d≡d[11:8]+d[7:4]+ d[3:0] (mod 3). This

addition can be implemented by 3-to-2 compressor shown in Figure 3(a). Each digit

in the results e and f, has 4 bits. Since 16*f3≡f3 (mod 3), the bit f3 can be moved to

the least significant digit (LSD) position. Therefore, d ≡ e[3:0]+f[2,1,0,3] (mod 3).

To speed up the addition, we use two parallel 4-bit carry look-ahead adders (CLA)

to carry out the addition as shown in Figure 8.3(b). If e+f has no carry out, the

result of the top CLA is selected by the MUX. Otherwise, the result of the bottom

CLA (e+f+1) is selected. The 4-digit output from the CLA is then sent to a 4-input

look-up-table to obtain the ∈ 3) mod (d GF(3) result, which is represented by 2 bits.

95

The modulo reduction in Step 14 can be implemented in an easier way. Since

}1,0,1{−∈d and 1±=b , a 3-input look-up-table can be used for this operation, as

shown in Figure 8.3(c), e.g., when 1 ,1 =−= bd , it outputs 13 mod)(=− bd .

8.2.2 Algorithmic simplifications

Following the Duursma-Lee algorithm directly, the implementation of Step 7

needs two GF(3m) multipliers, one GF(36m) multiplier, and one GF(36m) adder. In

addition, Step 8 needs another GF(36m) multiplier and two GF(36m) adders. These

computations have very high hardware complexity.

It can be derived that Steps 7 and 8 can be combined into one step by using

an approach similar to that proposed in [76]:

22
21 ρμρμσ −−−−← yyg . (8.4)

Using the property of the distortion mapping: ρ, σ ∈ GF(36m) such that ρ3 – ρ

– b=0 and σ2+1=0, and the field extension GF(36m) = GF(33m) [σ] / [σ2+1],

GF(33m)= GF(3m) [ρ]/ [ρ3 – ρ – b], the polynomial basis of GF(36m) can be

expressed as

},,,,,1{},,,,,{ 22543210 σρρσρρσββββββ = . (8.5)

By using this basis, (8.4) can be re-written as

54321
21

0222
21)0()1()0()()()(ββββμββμρμρμσ +−++−+−+−=−−−−← yyyyg (8.6)

Accordingly, Steps 7 and 8 can be merged into a single step, which only requires

two GF(3m) multiplications. Compared with the conventional implementation, this

modified approach saved two GF(36m) multiplier (which equals 18 GF(3m)

multipliers and 56 GF(3m) adders), and two GF(36m) adders (which is equivalent to

6 GF(36m) adders each).

96

8.2.3 Fast Tate pairing architecture

It can be observed from Algorithm 1, the Duursma-Lee algorithm consists of

the initialization phase (Steps 1-3) and the m-iteration loop phase (Steps 4-11). The

loop phase accounts for the major part of the overall complexity. Speeding up the

loop phase is critical to achieve high speed implementation of the Tate paring. In

previous software and hardware co-processor design [68], the computations in the

loop are carried out serially, as shown in Figure 8.4(a). The serial computation can

only achieve very limited throughput. In order to increase the throughput to next

higher level, novel schemes need to be developed to achieve parallel computation.

Figure 8.4. (a). Conventional processing scheme for the Duursma-Lee algorithm.
(b) Overlapped processing scheme.

We propose to schedule the computations in the Duursma-Lee algorithm in an

over-lapped manner. Our proposed scheduling scheme is illustrated in Figure

8.4(b). The major modifications made in our scheme are as follows:

97

(a) As discussed earlier, Step 7 and Step 8 are merged as Step 7-8 to reduce

complexity and increase speed.

(b) Since there is no data dependency between Step 5 and 6, they can be

carried out simultaneously. Accordingly, one clock cycle processing

time can be saved. Step 5 only needs the result from Step 4. Hence Step

5 can start right after Step 4. In addition, the cubing unit can be shared

by Step 4 and 5 in a time-multiplexed way. Hence, only one cubing unit

is needed.

(c) Steps 10 and 11 are independent of Step 9 and the merged Step 7-8. In

addition, Step 7-8 and Step 9 involve the finite field multiplication,

which usually takes much longer time than the cubic root operation

(simplified as the finite field addition and shifting). For this reason, Step

10 and 11 can be carried out simultaneously with Step 7-8 and 9,

respectively. Similarly, Step 10 and Step 11 are carried out serially.

Hence one cube root unit can be shared by these two steps.

8.2.4 Speed analysis and comparison

Table 8.1 and 8.2 shows the number of clock cycles needed for each iteration

of Duursma-Lee algorithm by using sequential processing and our proposed

overlapped processing, respectively. C stands for the extra clock cycles introduced

by the extra adders in the Karatsuba decomposition of multiplication in GF(36m)

(normally when D>=5, C=1.When D<=4 C=2). From Table 8.2, it can be observed

that the sequential implementation takes 7+3C+4* ⎡ ⎤Dm / cycles per iteration.

Assume m=97 and D=8, which are typical values for IBC. The sequential processor

98

took 62 clock cycles per iteration, and it takes 97*62=6014 clock cycles in total.

Comparatively, using our proposed overlapped scheme, 2*(1+ ⎡ ⎤Dm /)+C = 29

cycles are needed per iteration and only 97*29=2813 cycles are required in total.

Therefore, our proposed overlapped scheme can achieve a speed up of

6014/2813=2.13. In addition, no extra hardware is introduced by our proposed

scheme.

TABLE 8.1 NUMBER OF CLOCK CYCLES FOR ONE ITERATION OF THE DUURSMA-LEE
ALGORITHM (SEQUENTIAL PROCESSING)

Step Operation Clock cycles

4 3
11 xx ← 1

5 3
11 yy ← 1

6 bxx ++← 21μ 1

7 2
21 μσλ −−← yy 2* ⎡ ⎤Dm / +C+1

8 2ρμρλ −−←g ⎡ ⎤Dm / +C+1

9 gff ⋅← ⎡ ⎤Dm / +C

10 3/1
22 xx ← 1

11 3/1
22 yy ← 1

TABLE 8.2. NUMBER OF CLOCK CYCLES FOR ONE ITERATION OF THE DUURSMA-LEE
ALGORITHM (OVERLAPPING PROCESSING)

Step Operation Clock cycles

4 3
11 xx ← 1

5, 6 3
11 yy ← , bxx ++← 21μ 1

7-8,
10

22
21 ρμρμσ −−−−← yyg , 3/1

22 xx ← ⎡ ⎤Dm /

9, 11 gff ⋅← , 3/1
22 yy ← ⎡ ⎤Dm / +C

99

Similarly the overlapped processing scheme can be applied to the Kwon-

BGOS algorithm as shown in Figure 8.5. It can be derived that similar speedup can

be also achieved in this case without introducing extra hardware requirement.

Figure 8.5. Overlapped processing scheme for the Kwon-BGOS algorithm.

8.3 Conclusions

In this Chapter, efficient computation architectures and an overlapped

processing scheme have been proposed for the Tate pairing over finite field of

characteristic three. The proposed schemes can significantly accelerate the modern

Tate pairing algorithms such as Duursma-Lee and Kwon-BLGS algorithms without

introducing hardware overhead, which are very useful for the dedicated hardware

implementation of the Identity Based Cryptography.

100

9 CONLUSIONS

 In this research, we have proposed high-speed low-complexity solutions to

address various VLSI architecture issues for the MIMO and cryptography systems;

mainly focus on the MIMO sphere decoder designs (including K-Best SD,

conventional SD and list sphere decoder), elliptic curve cryptography and Tate

pairing. The main contributions are summarized as follows.

 For the K-Best sphere decoder designs for MIMO systems, we have three main

contributions.

 First, we apply the sorted QR decomposition and developed the layer

reordering K-Best SDA. Moreover, we introduce the dynamic K-Best SDA, which

applies different K values at each decoding layer. Both methods can significantly

improve the detection performance or reduce the design complexity. Simulation

results showed that for our example 4x4 64QAM MIMO system, about 30%

complexity reduction can be achieved by utilizing these methods.

 Second, by exploiting the natural partial sorted results coming from the SE

enumeration, we derive an efficient sorting architecture based on Batcher’s merge

sort algorithm. Compared with the bubble sorting algorithm, our sorting

architecture saves around 50% sorting complexity, which effectively solves the

bottleneck of the K-Best SDA.

 Third, in Chapter 5 we present the early-pruning K-Best sphere decoder

scheme. Without sacrificing detection performance, about 55% power consumption

or computational complexity can be saved by eliminating the survival candidates

101

with relatively large partial Euclidian distances, which are unlikely to become the

ML solution when the tree searching reaches the bottom layer.

 Meanwhile, for the conventional sphere decoder, we first propose a parallel SD

architecture which splits the constellation tree into two sub-trees. Thereby the two

processing engines can conduct depth-first search and update new radius in parallel.

Moreover, by exploiting the similarity and interleaving the data streams for both

processing engines, we introduce the pipeline interleaved SD architecure, in which

only one PE is needed with very small interleave control logics. Simulations show

that the new architecture achieves an average throughput speedup of 44% with

negligible hardware overhead compared with the conventional sphere decoders.

 In Chapter 6, we introduce some new schemes for list sphere decoder. We first

change the decoding flow to do the radius updating before list updating which will

avoid the latency introduced by the radius updating unit. We also proposed a fast

list updating architecture based on the merging of two partially ordered arrays

which can compute the new radius in one clock cycle. Finally, we have presented

an efficient candidate list updating architecture based on the merge sort and binary

insertion. By reusing the merge unit in radius updating, this architecture can

achieve a 45% complexity saving compared with tree-type comparator without

affecting the decoding speed.

For the elliptic curve cryptography, in Chapter 7, a fast point operation

architecture on the Lopez-Dahab projective coordinate is introduced. By applying

parallel processing and hardware reusing, compared with the conventional point

operation implementations, our architecture can achieve a speedup of 2.5 times for

the point addition operation and 1.8 times for the point doubling operation with

102

reasonable hardware overhead, which facilitates the design of high-speed ECC

systems.

 Finally in Chapter 8, efficient computation architectures and an overlapped

processing scheme are proposed for the Tate pairing over finite field of

characteristic three. Compared with conventional sequential implementations, the

proposed architecture can significantly accelerate (achieve over 2 times speedup)

the modern Tate pairing algorithms such as Duursma-Lee and Kwon-BLGS

algorithms without introducing extra hardware complexity, which are very useful

for the dedicated high-speed hardware implementation of the identity based

cryptography.

103

BIBLIOGRAPHY

[1] G. J. Foschini, “Layered space-time architecture for wireless communication in
fading environment when using multiple antennas,” Bell Labs. Tech. Journal,
vol.2, Autumn, 1996.

[2] U. Fincke and M. Pohst, “Improved methods for calculating vectors of short

length in a lattice, including a complexity analysis,” Math. Comput., vol. 44,
pp. 463-471, April 1985.

[3] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading

channels,” IEEE Trans. on Inform. Theory, vol. 45, no. 5, pp. 1639-1642, July
1999.

[4] C. P. Schnorr and M. Euchner, “Lattice basis reduction: improved practical

algorithms and solving subset sum problems”, Mathematical Programming,
vol. 66, no. 2, pp. 181-191, September 1994.

[5] J. Anderson and S. Mohan, “Sequential coding algorithms: a survey and cost

analysis”, IEEE Trans. on Comm. no. 2, vol. 32, pp. 169-176, Feb 1984.

[6] K. W. Wong, C. Y. Tsui, R. S. K. Cheng, and W. H. Mow, “A VLSI

archetecture of a K-best lattice decoding algorithm for MIMO channels,” IEEE
ISCAS 02, vol. 3, pp. 273-276, 2002.

[7] D. Wübben, R. Böhnke, J. Rinas, V. Kühn, and K. D. Kammeyer, “Efficient

algorithm for decoding layered space-time codes,” Electronics letters. no. 22,
vol. 37, pp. 1348-1540, Oct. 2001.

[8] B. Hochward, and S. Brink, “Achieving near-capacity on a multiple antenna

channel,” IEEE Trans. Inform. Theory, vol. 51, no. 8, pp. 389-399, Mar. 2003.

[9] Zhan Guo, and P. Nilsson, “A VLSI architecture of the Schnorr-Euchner

decoder for MIMO systems,” Proc. IEEE CAS Symposium on Emerging Tech.,
pp. 65-68, June 2004.

[10] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H.

Bolcskei, “VLSI implementation of MIMO detection using the sphere
decoding algorithm,” IEEE Jounal of Solid State Circuits, Nov. 2004.

104

[11] B. Widdup, G. Woodward, and G. Knagge, “A highly-parallel VLSI
architecture for a list sphere detector,” IEEE Inter. Conf. on Comm,, vol. 5, pp.
2720-2725, June 2004.

[12] Wanlun, Zhao and G. B. Giannakis, “Reduced Complexity Closest Point

Decoding Algorithms for Random Lattices,” IEEE Transactions on Wireless
Communications, vol. 5, issue 1, pp. 101-111, 2006.

[13] A. M. Chan and I. Lee, “A new reduced complexity sphere decoder for

multiple antenna systems”, Proceedings of IEEE International
Communications Conference, April 2002.

[14] A. Wiesel, X. Mestre, A. Pages, and J. R. Fonollosa, “Efficient

implementation of sphere demodulation”, IEEE Workshop on Sign. Proc.
Advan. in Wireless Comm., pp. 36-40, 2003.

[15] K. Parhi, VLSI Digital Signal Processing Systems Design and Implementation,

John Wiley & Sons, 1999.

[16] Qingwei Li and Zhongfeng Wang, “Improved K-Best sphere decoding

algorithms for MIMO systems.,” Proc. IEEE International Symposium on
Circuits and Systems, Kos, Greece, 2006.

[17] J. D. Parsons, Mobile Radio Propagation Channel, 2nd Edition, Wiley, 2000.

[18] D. Gesbert, M. Shafi, D. Shiu, P. Smith and A. Naguib, “From theory to

practice: an overview of MIMO space-time coded wireless systems,” IEEE
Journal on Selected Areas in Commun., vol. 21, pp. 281-302, April, 2003.

[19] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closet point search in

lattices”, IEEE Trans. Inf. Theory, vol. 48, no. 8, pp. 2201-2214, Aug. 2002.

[20] Jin Jie, Chi-ying Tsui and Wai-Ho Mow, “A threshold-based algorithm and

VLSI architecture of a K-best lattice decoder for MIMO systems”, Proc. IEEE
ISCAS 2005, pp. 3359-3362, vol. 4, May 2005.

[21] Zhan Guo and P. Nilsson, “Algorithm and implementation of the K-best

sphere decoding for MIMO detection”, IEEE Journal on Selected Area in
Communications, vol 24, issue 3, pp. 491-503, March 2006.

105

[22] Qingwei Li and Zhongfeng Wang, “An improved K-Best sphere decoding

architecture for MIMO systems.” Proc. 40th IEEE Asilomar Conf. on Signals,
Systems, and Computers, Asilomar, CA, 2006.

[23] B. Hassibi and H. Vikalo, “on the sphere-decoding algorithm i. expected

complexity”, IEEE Trans. on Signal Processing, vol. 53, pp. 2806-2818, Aug
2005.

[24] Y. Zhang, J. Tang and K.K. Parhi, "Low-Complexity List Updating Circuits

for List Sphere Decoders", Proc. 2006 IEEE Workshop on Signal Processing
Systems, pp. 28-33, Banff, Canada, Oct. 2006.

[25] D. Garrett, L. Davis, S. ten Brink, and B. Hochwarld, “APP processing for

high performance MIMO systems,”, Proc. IEEE Custom Integrated Circuits
Conf., pp. 271-274, San Jose, CA, Sep. 2003.

[26] Qingwei Li and Zhongfeng Wang, “New sphere decoding architecture for

MIMO Systems.” Proc. IEEE 13th NASA Symposium on VLSI Designs, Post
Falls, Idaho, June 2007.

[27] A. Burg, N. Felber, and W. Fichtner, “A 50 mbps 4x4 maximum likelihood

decoder for multiple-input multiple-output systems with QPSK modulation,”
Proc. 10th IEEE Int. Conf. Electron., Circuits and Systems, (ICECS), pp. 322-
325, Dec. 2003.

[28] G. Rekaya and J.-C. Belfiore, “On the complexity of ML lattice decoders for

the decoding of linear full rate space-time codes,” Proc. IEEE International
Symp. on Info. Theory, pp. 206-208. June 2003.

[29] S. Baro, J. Hagenauer, and M. Witzke, “Iterative detection of MIMO

transmission using a list-sequential (liss) detector,” Proc. IEEE Int. Conf.
Commun. pp. 2653-2657, 2003.

[30] Y. L. de Jong and T. J. Willink, “Iterative tree search detection for MIMO

wireless systems,” Proc. IEEE 56th Veh. Tech. Conf. pp. 1041-1045, Sept.
2002.

106

[31] Qingwei Li and Zhongfeng Wang, “Reduced Complexity K-Best Sphere
Decoder Design for MIMO Systems.” under review at Journal on Circuits,
Systems, and Signal Processing (will be accepted after minor revision).

[32] D. L. Ruyet, T. Bertozzi and B. Ozbek, “Breadth first algorithms for APP

detectors over MIMO channels,” Proc. IEEE Int. Conf. Commun., pp. 926-
930, June 2004.

[33] B. Hassibi, “An efficient square-root algoruthm for BLAST,” Online Bell lab

report, http://mars.bell-labs.com/

[34] P. A. Bengough and S. J. Simmons, “Sorting-based VLSI architecture for the

M-algorithm and T-algorithm trellis decoders,” IEEE Trans. on Commun., vol.
43, pp. 514-522, 1995.

[35] M. O. Damen, H. E. Gamal, and N. C. Beaulieu, “On maximum-likelihood

detection and the search for the closest lattice point,” IEEE Trans. on Info.
Theory, Vol. 49, no. 10, pp. 2372-2388, Oct. 2003.

[36] D. Garrett, L. Davis, S. ten Brink, B. Hochwald, and G. Knagge, “Silicon

complexity for maximum likelyhood MIMO detection using spherical
decoding,” IEEE Jounal on Solid-State Circuits, vol. 39, no. 9, pp. 154401552,
Sept. 2004.

[37] Qingwei Li and Zhongfeng Wang, “Early-Pruning K-Best sphere decoder for

MIMO systems.” Proc. IEEE Workshop on Signal Processing Systems SiPS
2007, Shanghai, Oct. 2007.

[38] A. Paulraj, R.Nabar, and D. Gore, Introduction to Space-Time Wireless

Communications, New York, Cambridge Univ. Press, 2003.

[39] J. Jalden and B. Ottersten, “An exponential lower bound on the expected

complexity of sphere decoding,” Proc. IEEE ICASSP, vol. 4, pp. 393-396,
May 2004.

[40] M. O. Damen, H. El Gamal, and G. Caire, “On maximum likelihood detection

and the search for the closest lattice point,” IEEE Trans. on Info. Theory, vol.
49, no. 10, pp. 2389-2402, Oct. 2003.

107

[41] D. Garrett, G. Woodward, L. Davis, G. Knagge, and C. Nocol, “A 28.8 Mb/s
4x4 MIMO 3G high-speed downlink packet access receiver with normalized
least mean square equalization,” IEEE ISSCC Dig. Tech. Papers, vol. 1, p.
420, Feb. 2004.

[42] Qingwei Li and Zhongfeng Wang, “Efficient Radius and List Updating Units

Design for List Sphere Decoders.” submitted to IEEE International
Symposium on Circuits and Systems ISCAS 2008, Seattle, May 2008.

[43] M. Borgmann and H. Bölcskei, “Efficient matrix inversion for linear MIMO-

OFDM receivers,” Proc. 38th IEEE Asilomar Conf. Signals Syst, Comput. ,
Pacific Grove, CA, Nov. 2004.

[44] Lincoln D. Stein, Web security, Addison-Wesley, <assachusetts, 1997.

[45] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital

signatures and public-key cryptosystems,” Communications of the ACM 21
1978, pp. 120-126.

[46] Victor S. Miller, “Use of elliptic curves in cryptography”, in Advances in

Cryptology CRYPTO’85, pp. 417-426, New York, Springer-Verlag, 1986.

[47] Neal Koblitz, “Elliptic cure cryptosystems,” Mathematics of Computation, vol.

48, no. 188, pp. 203-209, 1987.

[48] V. Gupta, S. Gupta, S. Chang and D. Stabila, “Performance analysis of elliptic

curve cryptography for SSL”, 3rd ACM workshop on wireless security, pp. 87-
94, 2002.

[49] J. Lopez and R. Dahab, “Improved algorithm for elliptic curve arithmetic in

GF(2n).” Selected Areas in Cryptography-SAC’98, LNCS 1556, pp. 201-212,
1999.

[50] IEEE Standard P1363-2000, “IEEE standard specifications for public-key

cryptography”, Aug, 2000.

[51] G. Agnew, R. Mullin, and S. Vanstone, “On the development of a fast elliptic

curve processor chip”, Advances in Cryptology CRYPTO’91, pp. 482-487,
New York, Springer-Verlag, 1991.

108

[52] D. V. Chudnovsky and G. V. Chudnovsky, “Sequences of numbers generated

by addition in formal groups and new primality and factorization tests.”
Advances in Applied Mathematics, vol.7, no. 4, pp. 385-434, May 1986.

[53] Y. B. Wang, X.J. Dong, and Z.G. Tian, “FPGA based design of elliptic curve

cryptography coprocessor,” IEEE 3rd International Conference on Natural
Computation, ICNC 2007.

[54] M. Morales-Sandoval and C. Feregrino-Uribe, “On the hardware design of an

elliptic curve cryptosystem”, Proceedings of the 5th Mexican International
Conference in Computer Science (ENC’04), pp. 64-70, 2004.

[55] Jian Huang, “FPGA implementations of elliptic curve cryptography and Tate

pairing over binary field,” M.S. Thesis, Univ. of North Texas, 2007.

[56] D. Hankerson, L. Lopez, and A. Menezes, “Software implementation of

elliptic curve cryptography over binary fields”, Proc. Of the 2nd International
Workshop on Cryptographic Hardware and Embedded Systems, CHES’ 2000,
vol. 1965 LNCS, pp.1-24 August 2000, Springer-Verlag.

[57] K. Lauter, “The advantages of elliptic curve cryptography for wireless

security,” IEEE Wireless Communications, pp. 62-67, 2004.

[58] A. Satoh and K. Takano. “A scalable dual-field elliptic curve cryptographic

processor”, IEEE Transactions on Computers, vol. 52, no. 4, pp. 449-460,
April 2003.

[59] A. Weimerskirch, D. Stebila, and S.C. Shantz, “Generic GF(2m) arithmetic in

software and its application to ECC.” The 8th Australasian Conference on
Information Security and Privacy (ACISP 2003), vol. 2727 LNCS, pp. 79-92,
2003.

[60] Julio Lopez and Ricardo Dahab, “An overview of elliptic curve cryptography”,

Technical report, Institute of Computing, State University of Campinas,
Brazil, May 2000.

[61] Qingwei Li and Zhongfeng Wang, “Fast point operation architecture for

elliptic curve cryptography.” submitted to GLSVLSI 2008. Florida, May 2008.

109

[62] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes.” In

Advances in Cryptology (CRYPTO), Springer-Verlag, LNCS 196 pp. 47-53,
1985.

[63] C. Cocks, “An identity-based encryption scheme based on quadratic residues.”
Cryptography and Coding, LNCS, 2260. pp. 360-363, 2001.

[64] D. Boneh and M. Franklin, “Identity-based encryption from the Weil pairing.”

Advances in Cryptology (CRYPTO) LNCS 2139, pp. 213-229, 2001.

[65] R. Sakai, K. Ohgishi and M. Kasahara, “Cryptosystems Based on Pairings.”

Symposium on Cryptography and Information Security (SCIS), 2000.

[66] G. Grey, M. Muller, and H. Ruck, “The Tate pairing and the discrete logarithm

applied to elliptic curve cryptosystems.” IEEE Trans. on Inform. Theory, no 5,
pp. 1717-1718, 1999.

[67] R. Granger, D. Page, and M. Stam, “Hardware and software normal basis

arithmetic for pairing-based cryptography in characteristic three”, IEEE Trans.
on Computers. vol. 54, no. 7, pp.852-860. July 2006.

[68] P. Grabher and D. Page, “Hardware acceleration of the Tate pairing in

characteristic three”, Cryptographic Hardware and Embedded Systems
(CHES), LNCS, 3659, pp. 398-411, 2005.

[69] I. Duursma and H. Lee. “Tate pairing implementation for hyperelliptic curves

y2=xp-x+d.” Advances in Cryptology –Asiacrypt, LNCS, 2894, pp.111-123,
2003.

[70] S. Kwon. “Efficient Tate pairing computation for supersingular elliptic curves

over binary fields.” Cryptology ePrint Archive http://eprint.iacr.org/2004/303,
2004.

[71] V. Miller, “Short programs for functions on curves,” unpublished manuscript,

1986.

[72] P.S.L.M. Barreto. “A note on efficient computation of cube roots in

characteristic three,” Cryptology ePrint Archive http://eprint.iacr.org/2004/
3035, 2004.

110

[73] A. Karatsuba and Y. Ofman. “Multiplication of multidigit numbers on

automata.” Sov. Phys. Dokl(English translation), vol. 7, no. 7, pp.595-596,
1963.

[74] S. Galbraith, K. Harrison and D. Soldera. “Implementing the Tate pairing.”
Algorithm Number Theory Symposium- ANTS V, vol. 2369 of LNCS, pp. 324-
337. Springer-Verlag 2002.

[75] P.S.L.M. Barreto, H.Y. Kim, B. Lynn and M. Scott. “Efficient implementation

of pairing based cryptosystems.” Advances in Cryptology CRYPTO’ 2002 vol.
2442 of LNCS, pp. 354-368. Springer-Verlag 2002.

[76] T. Kerlins, W. Marnane, E. Popovici, and P. Barreto. “Efficient hardware for

the Tate pairing calculation in characteristic 3.” Cryptographic Hradware and
Embedded Systems – CHES, LNCS, 3659:412-426, 2005.

[77] P.S.L.M. Barreto, S. Galbraith, C. Eigeartaigh, and M. Scott. “Efficient pairing

computation on supersingular abelian varieties.” Cryptology ePrint Archive
http://eprint.iacr.org/2004/375.pdf, 2004.

[78] G. Bertoni, J. Guajardo, S. Kumar, G. Orlando, C. Paar, and T. Wollinger.

“Efficient GF(pm) arithmetic architectures for cryptographic applications.”
Topics in Cryptology - CT RSA, LNCS, 2612:158–175, 2003.

[79] D. Page and N. Smart. “Hardware implementation of finite fields of

characteristic 4.” Cryptographic Hardware and Embedded Systems - CHES,
LNCS, 2523:529–539, 2002.

[80] A Menezes, S. Vanstone, and T. Okamoto, “Reducing elliptic curve logarithms

to logarithms in a finite field,” Proc. of the 33rd ACM Symposium on Theory of
Computing., pp. 80-89, 1991.

[81] Qingwei Li and Zhongfeng Wang, “Efficient architecture for the tate pairing in

characteristic three,” submitted to IEEE Transaction on VLSI.

