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Multiple-input multiple-output (MIMO) communication systems have 

recently been considered as one of the most significant technology breakthroughs 

for modern wireless communications, due to the higher spectral efficiency and 

improved link reliability. The sphere decoding algorithm (SDA) has been widely 

used for maximum likelihood (ML) detection in MIMO systems. It is of great 

interest to develop low-complexity and high-speed VLSI architectures for the 

MIMO sphere decoders.   

The first part of this dissertation is focused on the low-complexity and high-

speed sphere decoder design for the MIMO systems. It includes the algorithms 

simplification, and transformations, hardware optimization and architecture 

development.  Specifically, we propose the layered reordered K-Best sphere 

decoding algorithm and dynamic K-best sphere decoding algorithm, which can 

significantly improve the detection performance or reduce the hardware 

complexity.  We also present the efficient K-Best sorting architecture, which 

greatly simplifies the sorting operation of the K-Best SDA.  In addition, we 

introduce the early-pruning K-Best SD scheme, which eliminates the unlikely 



 

 

candidate at early decoding stages, thus saves computational complexity and power 

consumptions.  For the conventional sphere decoder design, we develop the parallel 

and pipeline interleaved sphere decoder architecture, which considerably increases 

the decoding throughput with negligible extra complexity.  Finally, we design the 

efficient radius and list updating units for the list sphere decoder, which increases 

the speed of obtaining the new radius and reduces the complexity for generating the 

new candidate list. 

The wireless communication technologies are widely used for the benefits of 

portability and flexibility. However, the wireless security is extremely important to 

protect the private and sensitive information since the communication medium, the 

airwave, is shared and open to the public. Cryptography is the most standard and 

efficient way for information protection.  

The second part of this thesis is thus dedicated to the high-speed and 

efficient architecture design for the cryptography systems including ECC and Tate 

pairing. We propose an efficient fast architecture for the ECC in Lopez-Dahab 

projective coordinates. Compared with the conventional point operation 

implementations, the point addition and doubling operations can be significantly 

accelerated with reasonable hardware overhead by applying parallel processing and 

hardware reusing. Moreover, we develop a complexity reduction scheme and an 

overlapped processing architecture for the Tate pairing in characteristic three. The 

proposed architecture can achieve over 2 times speedup compared with 

conventional sequential implementations for the Duursma-Lee and Kwon-BGOS 

algorithms. 
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Efficient VLSI Architectures for MIMO and Cryptography 

Systems 

 

1   INTRODUCTION   

1.1 MIMO Systems 

Multiple-input multiple-output (MIMO) communication systems [1][7][18] 

have recently been considered as one of the most significant technology 

breakthroughs for modern wireless communications, due to the higher spectral 

efficiency and improved link reliability they can provide. MIMO techniques have 

been proposed as extensions to current wireless communication standards such as 

IEEE 802.11n and are part of the emerging standards such as IEEE 802.16. 

Therefore, the research in the MIMO systems is very attractive and useful for 

contemporary wireless communication industry. 

1.1.1 MIMO System Model 

It has been well studied in [17] that a multi-antenna array can be employed to 

obtain independent fading signals from a rich scattering multi-path channel, and the 

receiver can achieve processing gain by applying optimum ratio combining (ORC). 

This concept was extended in [1] by employing multi-antenna arrays at both ends 

of the communication link, thereby exciting independent paths between each of the 

transmit and receive elements.  
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Consider a symbol synchronized and uncoded MIMO system with M transmit 

antennas and N receive antennas. The baseband equivalent model for such MIMO 

system is 

nsHy ~~~~ += ,                                                            (1.1) 

where T
Msss ]~  ... ~  ~[~

21=s is the M dimensional transmit signal vector, in which each 

component is independently drawn from a complex constellation such as QAM.  

Let T
Nyyy ]~  ... ~  ~[~

21=y  denote the received symbol vector, and T
Nnnn ]~  ... ~  ~[~

21=n  stands 

for an independent identical distributed (i.i.d.) complex zero-mean Gaussian noise 

vector with variance σ2 per dimension. Moreover, assume a Rayleigh fading 

channel is represented by the MN ×  channel matrix H
~ , whose elements ijh

~  

represent the complex transfer function from the j-th transmit antenna to the i-th 

receive antenna, and are all i.i.d. complex zero-mean Gaussian variables with the 

variance of 0.5 per dimension. The channel matrix is assumed to be perfectly 

known to the receiver, and NM =  is assumed in this work. 

The complex matrix equation (1.1) can be transformed to its real matrix 

representation 

nHsy += ,                                                 (1.2) 

i.e.,                      ⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡
⎥⎦
⎤

⎢⎣
⎡

⎥⎦
⎤

⎢⎣
⎡ +

−
=

)~( Im
)~( Re

)~( m I
)~( Re 

)~( Re      )~( Im
)~( Im   )~( Re

)~( Im
)~( Re

n
n

s
s

HH
HH

y
y

,               (1.3) 

where Re(·) and Im(·) denote the real and imaginary part, respectively. Since the 

element of H~  are assumed to be i.i.d. Gaussian, H has a full rank of M2 . 

The information theoretical capacity of the (M, N) MIMO channel is given 

by: 
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]~~det[log2
H

N M
C HHI ρ

+=                bits/s/Hz              (1.4) 

In the above equation, ρ  is the average signal-to-noise ratio (SNR) at each 

receive antenna, “det” means determinant, NI  is the identity matrix and HH~  means 

transpose conjugate. This equation assumes that the transmitter does not have any 

knowledge of the channel response, and hence distribute its power equally among 

the M antennas.  

Such MIMO channel corresponds to the creation of multiple paths between 

the transmit and receive antennas. The relative power gains of each of these parallel 

channel are given by the eigenvalues iλ  of the channel covariance matrix HHH~~ . It 

is the creation of these parallel channels that gives rise to the high capacities of 

MIMO systems. Since all these ‘spatial channels’ are capable of supporting 

independent data streams, the overall capacity (suppose MN = ) can therefore also 

be calculated as the sum of  the classical Shannon capacities ( )1(log2 SNR+ ) of 

each spatial channel (modified by their individual channel gain) as: 

∑
=

+=
N

i
iN

C
1

2 )1(log λρ          bits/s/Hz,                                  (1.5) 

which can be considered as linearly proportional to the antenna number N. 

Comparing with the capacity formula in [1]  for optimum ratio combining or 

receive diversity  

]1[log 2
22 NC χρ ⋅+=            bits/s/Hz,                                 (1.6) 
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where 2
2Nχ  denote a chi-square variant with 2N degrees of freedom, which is 

determined by the random channel matrix H~ , the advantage of MIMO system in 

spectrum efficiency is clearly demonstrated.  

1.1.2 MIMO System Architecture  

There are two types of MIMO signaling designed for different priorities such 

as high data-rate or high reliability under severe channel conditions. 

1) MIMO with space-time coding (the signals transmitted from individual 

antennas are correlated/coded) for higher communication reliability. 

2) MIMO with spatial multiplexing (the signals transmitted from individual 

antennas are independent from each other) for higher data rate.  

1.1.3 MIMO System Detection Methods 

For the detection of MIMO systems, we assume the receiver has acquired 

perfect information of the channel matrix H~  (e.g., through a preceding training 

phase or inserting pilots signal and applying channel estimation). Algorithms used 

to separate the parallel data streams corresponding to the M transmit antennas can 

be divided into the following four categories: 

1). Zero-Forcing (ZF) method is a suboptimal linear method based on finding 

the inverse of the channel matrix, 

yHHHs ⋅= − H
ZF

1H )(                                         (1.7) 

and then slice the result onto the signal constellations. The detection method 

is simple. However, its performance is rather poor due to the noise and 

interference from other antennas. 
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 2) Minimum-Mean-Square-Error (MMSE) is another suboptimal linear method 

which is similar to zero-forcing. However, in this method, noise term has 

been taken into account: 

yHHH
I

s ⋅+= − HHN
MMSE SNR

12 )(                              (1.8) 

      It has intermediate complexity, but requires an accurate estimate of the 

noise level present in the system, which is normally hard to obtain in a 

practical system.  

 3)  Ordered Successive Interference Cancellation (OSIC) decoder such as the 

V-BLAST algorithm is an iterative application of zero-forcing or MMSE, 

effectively implementing iterative interference cancellation. It shows better    

performance, but suffers from error propagation and is still suboptimal. It 

has five main steps: 1. Ordering--choosing the best channel, 2. Nulling--

using ZF or MMSE, 3. Slicing--making a symbol decision, 4. Cancelling--

subtracting the detected symbol, and 5. Iteration--going to the first step to 

detect the next symbol. 

 4)  Maximum Likelihood (ML) detection, which solves 

2minarg Hsys
s

−=
Λ∈ML                                     (1.9) 

      where Λ  is the lattice defined by having each entry of the 2N dimensional 

vector s be taken from the signal constellation, is always the optimum 

detection method and minimizes the bit-error-rate (BER). The ML detection 

can be conducted via two approaches. A straightforward approach to solve 
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equation 1.9 is an exhaustive search. Unfortunately, the corresponding 

computational complexity grows exponentially with the transmission 

antenna numbers and constellation sizes.  For example, in a 4x4 system 

with 16-QAM modulation, 65536 candidate symbols have to be considered 

for each received vector. A better approch is the sphere decoding method, 

which will be regarded as a new method for MIMO detection. 

5) Sphere Decoding (SD) is a reduced complexity algorithm which 

implements the ML detection for MIMO system while avoids the 

unmanageable complexity of exhaustive search. The main idea is to reduce 

the search range from the whole finite lattice space to the lattice within a 

hypersphere so as to find out the ML solution for the MIMO system. 

Mainly it can be categorized into hard-decision sphere decoding and soft-

decision sphere decoding. Moreover, depending on the search method 

among the constellation tree, it can be catagorized into depth-first search 

(regular sphere decoding) and breadth-first search  (K-Best sphere 

decoding). Both of them are applied to real hardware implementations, and 

will be discussed later in the details. 

 

Nowadays, the sphere decoding algorithm has been widely used for 

maximum likelihood detection in MIMO systems. However, conventional SDA is 

very complex for hardware implementations, and the throughputs of current SDA 

designs are generally below the requirement of next generation high-speed wireless 

communications.   
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The first part of this research is focused on the low-complexity and high-

speed VLSI architecture of sphere decoder designs which intends to achieve the 

ML detection for the MIMO wireless systems. It includes the contents from 

Chapter 2 to Chapter 6, where we propose the layer-reordering SDA, efficient 

sorting architecure for K-Best SDA, early-pruning scheme for K-Best SDA, 

parallel and pipeline interleaved SD, and efficient radius and list update units 

design for list sphere decoders.  

1.2 Cryptography 

 The wireless communication technologies, to which MIMO system belongs, are 

widely used today by the business organizations, governments, militaries, and civil 

residents, because they can offer many benefits such as the portability, flexibility, 

increased productivity and lower installation and maintenance costs. Wireless 

technologies cover a broad range of different capabilities oriented toward different 

uses and needs. For instance, the wireless LAN devices allow users to move their 

computers from place to place within the office or home without the need for wires 

and without losing network connectivity. Less wiring means greater flexibility, 

increased efficiency and reduced wiring costs. Bluetooth functionality also 

eliminates cables for printer and other peripheral device connections. The handheld 

devices such as PDA and cellular phones allow remote users to exchange voice 

information and access to the network service such as wireless email and web 

browsing.  

However, the risks are inherent in any wireless technology for the reason that 

the technology’s underlying communication medium, the airwave, is shared and 



8 
 

 

open to the public, including the intruders and eavesdroppers. Therefore, the 

security of the wireless communication is extremely important to protect the private 

the sensitive information.  

Cryptography is the most standard and efficient way to protect the securities. It 

can be used to protect the confidentiality, integrity, authentication, and non-

repudiation. There are two major categories of cryptography schemes, i.e., 

symmetric key cryptography and asymmetric key cryptography. 

1.2.1 Symmetric Key Cryptography 

The basic encryption/decryption scheme of symmetric key cryptography is 

shown in Figure 1.1 [44][55]. In Figure 1.1, plaintext is the original form of the 

message that sender wants to send to the recipient. Ciphertext is the encrypted form 

of the original message which can be transmitted in an insecure channel such as 

wireless media. The sender and the recipient use the same secret key for the 

encryption and decryption function. Therefore, it is named symmetric key 

cryptography.  

 

 

Figure 0.1.  Symmetric key encryption / decryption scheme. 
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In symmetric key cryptography, the receiver and sender must share the same 

private key, which needs to be pre-distributed safely. Such scheme requires extra 

key distribution and considerable management cost which is not as convenient as 

the asymmetric key cryptography.  

1.2.2 Asymmetric Key Cryptography  

The basic encryption / decryption scheme of the asymmetric key 

cryptography (also known as public key cryptography) is shown in Figure 1.2 

[44][55]. The sender uses recipient’s public key for encryption. The recipient can 

decrypt the ciphertext using his own private key. In symmetric key cryptography, 

each pair of sender and recipient share a secret key, whereas in public key 

cryptography, only the sender’s public key is broadcasted to the public, and 

multiple senders can use the same public key for encryption and transfer data to the 

same recipient.  

 

 

Figure 0.2.  Asymmetric key encryption / decryption scheme.  

 

Public key cryptography is easy for key distribution and key management. A 

well-known public-key cryptography algorithm is RSA, which was first introduced 
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by Rivest, Shamir and Adleman in 1977 [45]. The security of RSA is based on 

hardness of integer factorization problem. The RSA is commonly used in today’s 

security systems. 

1.2.3  Elliptic Curve Cryptography 

Elliptic Curve Cryptography (ECC) is an efficient substitution for RSA. It 

was originally proposed by Victor Miller at IBM [46] and Neal Koblitz from the 

University of Washington [47] independently. The security of ECC is based on the 

hardness of solving the elliptic curve discrete logarithm problem (ECDLP). 

Comparing with the sub-exponential time it takes to solve the integer factorization 

problem, it takes fully exponential time for today’s best algorithm to solve ECDLP.  

Compared with RSA, ECC has much smaller key length yet still provides the same 

security level. Smaller key length results in faster computation, lower power 

consumption, and lower memory / storage usage. Table 1.1 [55] shows the 

equivalent key sizes of ECC and RSA [48]. Currently, 1024-bit RSA is standard, 

and it is projected that its size will increase to 2048 bits after 2010. Such large key 

size will severely affect the cost of RSA implementation; therefore, ECC becomes 

a long-term trend which will substitute RSA.  

TABLE 0.1  EQUIVALENT KEY SIZES BETWEEN ECC AND RSA 

ECC RSA Protection Lifetime 

163 1024 until 2010 

283 3072 until 2030 

409 7680 beyond 2030 
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1.2.4 Tate Pairing 

Identity based cryptography (IBC) schemes [64, 65] have recently opened a 

new territory for public key cryptography. Using the identity based cryptography 

scheme, a sender can derive the public key of a receiver without receiving the 

receiver’s certificate issued by a certificate authority (CA). The public key can be 

directly derived from the identity of the receiver such as the email address or IP 

address. The pairing over the elliptic curve is used to construct the identity based 

cryptography schemes. It is a mapping from two points on the elliptic curve to 

another multiplicative group. It has special properties of bilinearity. Currently, the 

most commonly used pairing methods are Tate pairing [66] and Weil paring [80].  

Weil pairing was originally used to attack public key cryptosystems and later was 

used for pairing based cryptosystems. It can be computed using either Miller 

algorithm [71] or modified Miller’s algorithms [75, 77].  

Tate pairing is more efficient than Weil pairing because it requires only one 

iteration of Miller’s algorithm instead of two for Weil pairing. Also, it is more than 

two times faster than Weil pairing. Currently, Tate pairing is the most popular 

method which is used in many identity based cryptography schemes [64, 65].   

The best method of Tate pairing calculation before 2002 was presented by 

Miller in [71]. In 2002, Galbraith [74] and Barreto [75] greatly simplified the 

pairing computation by introducing the triple-and-add BLKS algorithm in 

characteristic three. The BLKS algorithm was further modified and developed as 

the Duursma-Lee algorithm [69] and the Kwon-BGOS algorithm [70]. 
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The second part of this thesis is focused on the high-speed and efficient 

architecture for the cryptography systems.   

Due to the advantages of ECC over RSA, it is necessary to develop the high-

speed ECC architecture for hardware implementations. The implementation of 

ECC mainly relies on the operations at three levels: the scalar multiplication, the 

point addition / doubling, and the finite field modulo arithmetic. The projective 

coordinate [50][51][52] is more widely used for point operation because it avoids 

the costly field inversion operation.  

In Chapter 7, we introduce an efficient fast architecture for the Lopez-Dahab 

projective coordinates [49]. By applying parallel processing and hardware reusing, 

the point addition and doubling operations can be significantly accelerated with 

reasonable hardware overhead compared with the conventional point operation 

implementations. 

Prior implementations of the Tate paring are mainly in software domain [67]. 

These implementations can only run at low speed due to the high complexity. In 

order to boost the speed of IBC to practical level, efficient and high-speed hardware 

implementations of Tate paring need to be explored. 

In Chapter 8, through exploring the intrinsic property of the Duursma-Lee 

algorithm, we propose complexity-reducing schemes and an overlapped processing 

architecture. Compared with conventional sequential implementations [68], the 

proposed architecture can achieve over 2 times speedup. The proposed method can 

be also applied to the Kwon-BGOS algorithm, and similar speedup can be 

obtained.       
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1.3 Summary of Contributions 

The main contributions in this dissertation are summarized as follows: 

1.3.1 Improved K-Best Sphere Decoding Algorithms  

The Sphere Decoding Algorithm (SDA) has been used for Maximum 

Likelihood (ML) detection in MIMO systems. However, regular SDAs have a 

disadvantage that the computational complexity varies with different signals and 

channels. Hence the detection throughput is non-fixed, which is not desirable for 

real time detection and hardware implementations. For this reason, the K-Best 

sphere decoding algorithm is introduced in [5] [6].  Instead of doing depth-first 

search, the K-Best SDA uses breadth-first search. At each search layer, only the 

best K candidates are kept for the next level search. The K-Best SDA requires less 

computational complexity, has fixed throughput, and is suitable for pipelined 

hardware implementation.  

In Chapter 2 and [16], we first applied the layer reordering method (sorted 

QR decomposition) to the K-Best SDA. Hence, we can achieve the same 

performance with a smaller K than usual and thus reduce complexity. We then 

introduced the dynamic K-Best SDA, which can also reduce complexity by 

applying different K values at each layer. We pointed out that such a dynamic K-

Best SDA can be combined with the layer reordering method mentioned above to 

obtain more complexity savings.  

Simulation results show that by applying sorted QR decomposition for the 

channel matrix, and/or introducing dynamic K values for different layers, our 

improved algorithms can achieve about 30% complexity reduction for 4x4 64QAM 
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MIMO systems over the traditional K-Best SDA without introducing extra 

computational complexity. 

1.3.2 Reduced Complexity K-Best Sphere Decoder Scheme and 

Sorting Architecture  

This part of work is also conducted based on the K-Best sphere decoder 

design. The K-Best SDA requires less computational complexity, has fixed 

throughput, and is suitable for pipelined hardware implementation. Most of the K-

Best SDA computational complexity lies in the path extension and the sorting 

operations (choosing K Best paths among K·Mc paths). Moreover, the sorting part 

is more computation intensive when K is large. Therefore, for hardware 

implementation, it is critical to reduce the sorting complexity.  

Our contributions in Chapter 3 and [22] are as follows: 1) Introduced a 

reduced complexity K-Best SDA based on SE strategy. In our decoder design, only 

partial path extension needs to be done. Simulations show that for 4x4 64QAM 

system, we can save 25% path cost computation and 27% sorting operations with 

almost no performance loss. 2) By exploiting the natural partial sorted results 

coming from the SE method, we derived a sorting architecture which applied rank 

order filters (Batcher’s merge sort algorithm). Such sorting architecture exploits the 

natural partial order from SE enumeration, and can significantly reduce the sorting 

complexity (around 50%) comparing with bubble sorting algorithm, which is a 

significant contribution to the K-Best SDA implementation for MIMO systems. 

The improved sphere decoding algorithms discussed in Chapter 2 can be used 

to reduce the decoder complexity, i.e., to achieve the same performance, a smaller 
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K value can be used. Moreover, they can be combined with the sorting architecture 

to further reduce the computational complexity.  We have provided the simulation 

results showing these three methods can be combined together to achieve the same 

detection performance as regular K-Best SDA with much smaller K values. Also, a 

comprehensive complexity analysis has been presented [31] to demonstrate that 

even regardless of the memory access time and area savings, our proposed sphere 

decoding algorithm and sorting architecture can achieve a total complexity saving 

of 68%. 

1.3.3 Parallel and Pipeline Interleaved Sphere Decoder 

Architecture  

The SDA is very complex for hardware implementation. To the best of our 

knowledge, the sphere decoder designs published in the literature have lower 

throughput than 180Mb/s, which is below the requirement of next generation high-

rate wireless communication systems (over 200Mb/s). Therefore, efficient high-

speed architectures for sphere decoder implementation are really desirable.  

 In Chapter 4 and [26], we first proposed a parallel sphere decoding scheme. 

In this method, the whole constellation tree is divided into two sub-trees, and the 

two processing engines (PE) can conduct depth-first search in parallel and update 

the new radius. Thus the decoding throughput is significantly improved. 

Considering the parallel architecture needs to double the hardware cost, we further 

introduced the pipeline interleaved SD architecture. For this architecture, by 

exploiting the similarity and interleaving the data streams for both processing 

engines, only one PE is needed with some small interleave control logics. The new 
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sphere decoder has almost the same hardware cost as conventional SD with 44% 

improvement of the throughput. 

1.3.4 Early-Pruning K-Best Sphere Decoder 

The sphere decoding algorithm has been used for maximum likelihood 

detection in MIMO systems, and the K-Best sphere decoding algorithm is proposed 

for MIMO detections for its fixed complexity and throughput. However, to achieve 

near-ML performance, the K needs to be sufficiently large, which leads to large 

computational complexity and power consumption in path expansion, sorting, and 

path updating.  

 In Chapter 5 and [37], we introduced some dynamic early-pruning schemes, 

which will eliminate the survival candidates with relatively large partial Euclidian 

distances (PEDs) at early stages. These candidates are unlikely to become the ML 

solution when the tree searching reaches the final layer. Therefore, such early 

pruning can save computation and power consumption without sacrificing the 

performance. Our simulation results show that for the 4x4 64QAM MIMO system, 

by applying the proposed schemes, about 55% computational complexity can be 

reduced with almost no performance degradation. 

1.3.5 Efficient Radius and List Updating Units Design for List 

Sphere Decoders 

The sphere decoder (SD) has been utilized for maximum likelihood (ML) 

detection in MIMO systems. In order to improve system performance, the SD is 

usually combined with the error correction codes where soft decoding is utilized. 

The list sphere decoder (LSD) was introduced to generate a candidate list, which 
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can provide the soft information to the outer decoder. Unlike the conventional 

sphere decoder, the LSD has the candidate list updating and new radius generation 

units, which causes extra complexity and latency.  

In Chapter 6 and [42], we present a novel radius updating architecture, which 

can obtain the new radius much faster than the conventional method. Furthermore, 

we propose an efficient candidate list updating scheme, which can significantly 

save the complexity (without affecting the decoding speed) of updating the 

candidate list used to compute the soft information. 

 

1.3.6 Fast Point Operation Architecture for Elliptic Curve 

Cryptography 

The ECC has higher security strength per bit over RSA, which can offer 

potential reduction in storage space, bandwidth and power consumptions. Hence, 

the high-speed ECC architecture for hardware implementations becomes necessary, 

especially for the scenarios where high speed communications are required. The 

implementation of ECC mainly relies on the operations at three levels: the scalar 

multiplication, the point addition / doubling, and the finite field modulo arithmetic. 

The projective coordinate is more widely used for point operation because it avoids 

the costly field inversion operation.  

In Chapter 7 and [61], we introduced an efficient fast architecture for the 

ECC based on Lopez-Dahab projective coordinate. By applying parallel processing 

and hardware reusing, the point addition and doubling operations can be 

significantly accelerated compared with the conventional point operation 
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implementations.  Analysis shows that, with reasonable hardware overhead, our 

architecture can achieve  a speedup of 2.5 times for the point addition operation in 

Lopez-Dahab projective coordinate and 1.8 times for the point doubling operation, 

which facilitates the design of high-speed ECC systems. 

1.3.7 Efficient Architecture for the Tate Pairing in Characteristic 

Three 

Due to the high complexity of the Tate pairing operation, prior 

implementations of the Tate paring are mainly in software domain and very few 

previous efforts have been devoted to hardware implementation. These 

implementations can only run at low speed due to the high algorithm complexity. 

In order to boost the speed of IBC to practical level, efficient and high-speed 

hardware implementations of Tate paring need to be explored. 

In Chapter 8 and [81], we proposed complexity-reducing schemes and an 

overlapped processing architecture. Without introducing extra hardware 

complexity, compared with conventional sequential implementations, the proposed 

architecture can achieve over 2 times speedup, which is a big improvement for the 

Tate pairing implementation. The proposed method can be also applied to the 

Kwon-BGOS algorithm, and similar speedup can be obtained.  
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2 IMPROVED K-BEST SPHERE DECODING ALGORITHMS 

FOR MIMO SYSTEMS 

Multiple-input multiple-output (MIMO) systems have attracted considerable 

research attentions in the wireless communication area recently. It has been shown 

in [1] that extraordinary spectral efficiency near Shannon limit can be achieved in 

MIMO systems.  However, to achieve optimal maximum-likelihood (ML) 

detection, the computational complexity becomes huge when higher modulation 

constellations are applied, and it increases exponentially with antenna numbers. 

Therefore, the sphere decoding algorithm (SDA) has been introduced in [2-4] to 

drastically reduce detection complexity for MIMO systems. The sphere decoder 

can be regarded as a depth-first tree search approach with pruning.  The SDAs for 

MIMO system have two types of searching strategies, i.e., the Fincke-Phost (FP) 

method proposed in [2][3] and the Schnorr-Euchner (SE) strategy introduced in [4]. 

The second method has less computational complexity by re-ordering the 

constellation searching at each layer.  

Regular SDAs have a disadvantage that the computational complexity varies 

with different signals and channels. Hence the detection throughput is non-fixed, 

which is not desirable for real time detection and hardware implementation. To 

resolve this issue, the K-Best sphere decoding algorithm was introduced in [5] [6].  

Instead of doing depth-first search, the K-Best SDA uses breadth-first search. At 

each search layer, only the best K candidates are kept for the next level search. The 

K-Best SDA has fixed complexity and throughput, and is suitable for pipelined 

hardware implementation.  The drawbacks of the K-Best SDA are 1) it generally 
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has performance degradation as the ML solution cannot be guaranteed by keeping 

the K best candidates during each layer’s search unless K is sufficiently large. 2) 

the sorting operations (choosing K Best paths among K·Mc paths, Mc is the 

constellation size) account for the major complexity of the K-Best SDA, especially 

when K is large. 

Our contributions in this Chapter include: 1. Apply the layer reordering 

method (sorted QR decomposition) to the K-Best SDA. Hence, we can achieve the 

same performance with a smaller K than usual and thus reduce complexity.  2. 

Introduce the dynamic K-Best SDA, which can also reduce complexity by applying 

different K values at each layer. Such a dynamic K-Best SDA can be combined 

with the layer reordering method mentioned above to obtain more complexity 

savings. 

2.1 Sphere Decoding Algorithms 

Based on the system model above, the set {Hs} can be considered as the lattice 

Λ(H) generated by H. If the received vector y is considered as a perturbed lattice 

point due to the Gaussian noise n, the maximum-likelihood MIMO detection is to 

find the closest lattice point MLs for a given lattice Λ(H), i.e., 

2

ML min arg Hsys
s

−=
Ω∈ ,                                          (2.1) 

where Ω is the set of real entries in the constellation, e.g., }7 ,5 ,3 ,1{ ±±±±=Ω  for 

64-QAM. Also let Mc denote the one dimensional constellation size (here Mc=8). 
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2.1.1 The Sphere Decoding Algorithm 

Equation (2.1) can be re-written as: 

 ,min arg )ˆ()ˆ(min argML sRRsssHHsss
ss

TTTT

Ω∈Ω∈
=−−=                  (2.2)   

where R is the upper triangular matrix with non-negative diagonal element such 

that HHRR TT = (R can be obtained by applying QR decomposition to H), 

yHHHs TT 1)(ˆ −=  is the zero-forcing (ZF) solution of s. sss ˆ−=  is the distance from 

signal candidate to ZF solution. The sphere decoder avoids an exhaustive search by 

examining only the lattice points falling inside a hyper-sphere 2rTT <sRRs , with 

the radius r large enough to contain the ML solution. Due to the triangular shape of 

R, (2.2) can be written as an iterative, monotonically increasing form: 

∑ ∑
= =
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where ijr  are the elements of upper triangle matrix R. We define the branch cost 

function associated with nodes in the i-th layer as 
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is the partial sum of )( iei s (i.e., partial Euclidean distance (PED) ) which is non-

decreasing. The decoding process can be regarded as descending down in a tree in 

which each node has Mc branches.  If a PED exceeds r2, the entire branch and all its 

descendents are pruned. 

2.1.2 SE Enumeration 

The basic principle of Schnorr-Euchner (SE) strategy was introduced in [4]. 

When the sphere decoder descends in the tree, for each partial vector, it examines 

each possible child symbol/node in the constellation. It has been shown in [13] that 

enumerating these symbols in an ascending order according to their distance to the 

Babai point will expedite the tree search. Such enumeration ensures that if a node 

does not obey the sphere constraint, the following nodes will not satisfy the 

constraint either, and can all be pruned. 

In [14], a look up table is suggested to implement SE enumeration to avoid 

sorting branch cost functions. It is efficient and has been used in our K-Best SDA. 

2.1.3 The K-Best Sphere Decoding Algorithm with SE strategy 

The search in the tree can also be conducted in a breadth-first approach. 

Instead of expanding every node at each layer, we only keep K nodes, which have 

the smallest accumulated PEDs. Finally, we will reach K leaves with smallest 

PEDs. Each leaf’s path corresponds to a signal vector s. The decoder regards the s 

with the smallest PED as the detection result. After our modification, the 

mathematical description of K-Best SDA is as following: 

1. Preprocessing:  compute H-1,  QR decomposition H=QR 
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2. SE enumeration: i=M, enumerate each sM among the constellation using the 

look up table in [14].                                      

3. Path expansion-1: calculate the branch cost eM(sM) for each sM according to 

(2.4). Totally Mc branch costs obtained. Based on (2.3), for i=M, PED 

)()( M
M

M
M eT ss = .                                

4. Find K partial vectors: Sort the Mc PED and find the smallest K partial 

vector M
ks  

5. Survival path update: update )( i
i sρ  and )( i

ib s  in (2.5)        

6. Path expansion-2: i=i-1. For each surviving partial vector 1+i
ks from the last 

layer, ( Kk ≤≤1 ), enumerate iks , among the constellation using look up table, 

iks , is the i-th element of ks . Calculate the branch cost )( i
kie s  for each iks , . 

Compute PEDs )()()( 1
1

i
ki

i
ki

i
ki eTT sss += +

+ .                                 

7. Sorting: Sort the KMc PEDs. Select K partial vectors i
ks which have the 

smallest PEDs among the KMc.                                                        

8. Path update: update )( i
ib s  and go to step 6.  

9. Check termination condition: if i=1, output the vector s with smallest cost   

2.2 Layer Reordered K-Best SDA 

The K-Best SDA has constant throughput and is desirable for pipelined 

hardware implementations. However, it is sub-optimal compared with ML 

detection, and has performance loss in general. Before introducing our layer 

reordered K-Best SDA, let us analyze the reason that causes such performance 
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degradation. Assume we have two candidate symbols 1s and 2s , both are M-

dimensional vectors. For the above MIMO model, the total cost functions are 

∑= =
1

1  )()( 11 Mi ieT ss  and ∑= =
1

22 )()(1 Mi ieT ss , respectively. Suppose 1s  is the ML 

solution, then we have )()( 2111 ss TT < . The K-Best SDA should select 1s  as the 

candidate instead of choosing 2s . However, the K-Best SDA is making decision 

based on PEDs )(
1

i
iT s  and )( 2

i
iT s , 1,,1, L−= MMi . If at some early stage i,  )(

1

i
iT s  

is not among the K smallest PED (although the total sum of )( 1
i

ie s is minimum, its 

partial sum is not always minimum), and candidate i

1
s will be discarded. In other 

words, even though we select the K-Best PED at early layers, the excluded PEDs 

are still possible to become the minimum PED at final layer after accumulating the 

cost metrics of the remaining stages. Thus the errors at early layer will propagate 

and make the decoder miss the ML solution. 

Normally, to obtain near-ML performance, a large K value is used for sphere 

decoding, and this will introduce large complexity including the PEDs 

computation, sorting, and path updating. Our approach here is to introduce some 

schemes which can significantly improve the detection performance even using 

smaller K values; therefore, the complexity of the whole sphere decoder can be 

reduced by avoiding using large K values. 

To improve the K-Best SDA performance for small K, we intend to reduce the 

possibility that the SDA excludes the ML solution at early stages. One approach is 

reordering the layer.  The idea is to permute the columns of channel matrix H. 

Therefore, the order of the elements of vector s to be decoded by the sphere 
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decoder is altered accordingly. In this way, the PEDs of different vectors 1s  and 2s  

have been re-distributed, while maintaining the total cost (i.e., )( 11 sT  and )( 21 sT  

remains the same) [16]. Hence the decoding at early stages has been changed. If we 

can find such reordering schemes that reduce the possibility of missing ML 

solution at early stage, the performance can be improved. 

Supposing some layer reordering can re-distribute the PEDs such that the 

differences of PEDs of vectors 1s  and 2s ( )()(
21

i
i

i
i TT ss − ) at early layer are enlarged, 

we can claim the K-Best decision at layer i is more reliable than the decision before 

reordering. The reason is that if )()(
21

i
i

i
i TT ss < and the difference is enlarged, it is 

less likely that after accumulating the cost metrics of the remaining layers, 

)()( 2111 ss TT >  (the less likely the remaining cost can change the early order). 

Hence, the K-Best candidates at early layers are more likely to be the real K-Best 

solutions. And such reordering approach may improve the detection performance. 

From (2.6) the difference between PEDs is the partial sum of the difference 

between the branch cost function )(sie . Hence, increasing the difference of )(sie  is a 

good approach. Notice from (2.4), if by reordering the layer we can put larger iir for 

early layers (i is large) and smaller iir  for lower layers, the difference of PEDs at 

early layers are increased, thus SDA performance can be improved. 

In [7] a sorted QR decomposition method was introduced. The idea is to find the 

permutation of H that minimizes each iir  with i running from 1 to M. Therefore it 

intends to maximize diagonal elements jjr in the succeeding step ij > . For details, 

readers can refer [7]. 
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Wubben [7] only applied this method to decode layered space time codes by 

using successive cancelling. Such reordering method can be combined with QR 

decomposition. It introduces negligible extra complexity. In our research, we found 

such sorted-QR decomposition method can also be applied to sphere decoding. Our 

approach is to apply this method to the K-Best SDA. We perform the reordering 

when decomposing H, and after decoding, we can permute the detected vector s 

reversely to recover the original order. It should be noticed that the extra 

computation complexity for the new method is negligible compared with the 

traditional K-Best SDA. 

 

Figure 2.1.  Performance comparisons of ML, 6-Best, 8-Best and 6-Best 
reordered SD (N=M=4, 64QAM). 

 

Figure 2.1 shows some simulation results by applying the layer reordered K-

Best SDA.  The MIMO system used 4x4 antennas, the constellation is 64QAM. By 
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decoupling the complex constellations, the real model used is an 8x8 8PAM MIMO 

system. Figure 2.1 compares the performance (symbol error rate) of the ML 

detection, the normal K-best SDA (K=8 and K=6), and the layer reordered K-Best 

SDA (K=6) at different SNRs ( )/ 0NEs .  We can see the traditional 8-Best SDA (at 

SNR=32dB) has about 1dB performance loss compared with ML detection, and is 

1.8dB better than the 6-best SDA. By applying our reordering scheme, the 

performance of our re-ordered 6-Best SDA has almost the same performance as the 

conventional 8-Best SDA, which means it brings us about 1.8dB performance gain. 

Therefore, we can use 6-Best re-ordered SDA to replace the normal 8-Best 

SDA. According to the algorithm in Section 2.1.3, for each surviving candidate, we 

only need to compute the first 6 PEDs among its 8 child nodes. And we need to sort 

out the 6 survivors with the smallest PEDs out of 6x6=36 candidates compared to 

sorting 8 out of 8x8=64. Afterwards, the path update effort is also reduced from 8 

to 6. The only extra complexity is after decoding, we need to permute the detected 

vector s reversely to recover the original order, which is negligible. Hence, with the 

same performance, the path expansion and path updating complexity can be 

reduced by around 25%, and the sorting complexity was reduced by 60% (for  

bubble sort, 35+34+33+32+31+30=195, 63+62+61+60+59+58+57+ 56=476,  

195/476=40.96%). 

Such layer reordered K-Best SDA can be applied to any MIMO K-Best SDA 

with better performance and negligible complexity. 
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2.3 Dynamic K-Best SDA 

Based on the discussion in section 2.2, the approach to improve the K-Best SDA 

performance for small K values is to reduce the possibility of excluding ML 

solution at early stages.  A useful method is to change the K value (dynamic K) at 

different decoding layers. 

The idea is, at the early stages, to use larger K values to ensure the ML solution 

is included in the K-Best candidates.  The reason is that at the early stage i (i is 

large), there are i-1 layers left. Therefore, the partial Euclidean distance has another 

i-1 branch cost metrics to accumulate before reaching the final total cost.  It is more 

likely to miss the ML solution at early layers. Increasing K here can reduce such 

possibilities. As the decoder descends in the tree (searching lower layers), the PED 

is close to the final result. Hence it is less likely to miss the ML solution in the K-

Best candidates. As a result, we can reduce the K value at later stage to reduce 

complexity while maintaining performance. 

There is not a fixed law regarding how to dynamically adapt K values at 

different layers. They are determined by extensive simulations. For our simulations, 

we use 4x4 64QAM MIMO systems. After constellation decoupling, the resulting 

system is an 8x8 8PAM system. Here we use 3]  4  5  6  7  8  9  8[=K  at different 

layers, from first layer to the last layer. The simulation result is shown in Fig. 2.2. 

From the simulation result shown in Figure 2.2, it can be seen that applying 

dynamic K-Best SDA can obtain much better performance than original 6-Best 

SDA (about 2dB improvement). The result is even better than the layer-reordered 

6-Best SDA, and regular 8-Best SDA. Therefore, such dynamic K-Best scheme can 
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be used to replace the original 8-Best SDA design with much less complexity and 

better performance. 

 

Figure 2.2. Performance comparisons for 6-Best, 6-Best reordered, dynamic K-
Best, combined dynamic reordered, 10-Best SD and ML (N=M=4, 64QAM). 

 

Moreover, the dynamic K-Best can be combined together with the reordered K-

Best SDA to obtain even better performance.  In the simulation results shown in 

Figure 2.2, it can be noticed that the combined dynamic-6 & reordered SDA can 

achieve almost the same performance as the regular 10-Best SDA, which is already 

very close to the ML detection. However, the complexity is much less than the 

normal 10-Best (see Section 3.4 for detailed complexity analysis).  This result has 

enlighten us that for large complexity MIMO systems  it is possible to apply such 

combined sphere decoding algorithm to considerably reduce the computational 

complexity while maintaining the detection performance. 
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According to the above analysis and simulation results, this novel dynamic K-

Best method can obtain better performance or decrease computational complexity 

for hard decision sphere decoding.  Moreover, for 3]  4  5  6  7  8  9  8[=K , the K 

value is changing at each layer. Such irregularity may be not desirable for hardware 

implementations. In the real hardware design, we can use 

4]  4  6  6  6  8  8  8[=K , which has almost the same performance but more 

regularity. 

2.4 Conclusions 

We have introduced some improved K-Best sphere decoding algorithms, which 

include layer reordered K-Best SDA, dynamic K-Best SDA, and the combined K-

Best SDA. All these algorithms can improve the detection performance, or reduce 

the computational complexity compared with the traditional K-Best SDA. Among 

these algorithms, the reordered K-Best SDA is most promising for its negligible 

extra complexity and flexibility to combine with any other K-Best sphere decoding 

algorithms. 

 

 

 

 

 

 

 



31 
 

 

3 REDUCED COMPLEXITY K-BEST SPHERE DEOCOER 

SCHEME AND SORTING ARCHITECTURE 

The Sphere Decoding Algorithm (SDA) has been used for achieving 

maximum likelihood (ML) detection for today’s Multiple-Input Multiple-Output 

(MIMO) systems. Regular SDAs have a disadvantage that the computational 

complexity varies with different signal constellations and channels. Hence the 

detection throughput is non-fixed, which is not desirable for real time detection and 

hardware implementations. To resolve this issue, the K-Best sphere decoding 

algorithm was introduced in [5] [6].  Instead of doing depth-first search, the K-Best 

SDA uses breadth-first search. At each search layer, only the best K candidates are 

kept for the next level search. The K-Best SDA requires less computational 

complexity, has fixed throughput, and is suitable for pipelined hardware 

implementation. Most of the K-Best SDA computational complexity lies in the path 

extension and the sorting operations (choosing K Best paths among K·Mc paths). 

Moreover, the sorting part is more computational intensive when K is large. 

Therefore, for hardware implementation, it is critical to reduce the sorting 

complexity. The basic SE SDA architecture was introduced in [4][9]. In [12], the 

SDA complexity can be reduced by applying a probabilistic search approach and 

error-performance-oriented fast stopping criterion.  

Our contributions in this Chapter are: 1. Introduce a reduced complexity K-

Best SDA based on SE strategy. In our decoder, only partial path extension needs 

to be done. Simulation showed when applying layer reordering, our SDA has 

almost the same performance as original K-Best SDA, while saving about 25% 
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complexity. 2.  Derive a sorting architecture which applied rank order filters 

(Batcher’s merge sort algorithm). Such sorting architecture exploits the natural 

partial order from SE enumeration, and can significantly reduce the sorting 

complexity (around 50%) comparing with bubble sorting algorithm 

3.1 Reduced Complexity K-Best SDA 

The K-Best SE SDA described above has constant throughput, fixed data path, 

and is desirable for hardware implementation. However, the complexity is high 

(need to expand K paths to KMc paths at each layer and select K best candidates out 

of KMc PEDs). There are some approaches to reduce such complexity. 

First, for K>Mc, when performing the path expansion for each node, it is always 

necessary to fully expand one path at layer i to Mc paths at layer i-1. For this case, 

no path expansion complexity can be reduced. 

Second, if cMK ≤ , it is not necessary to fully expand a path at last layer to Mc 

paths at current layer. Here, only expansion to the first SE enumerated K paths is 

sufficient.  The reason is that after SE enumeration, the branch costs and the PEDs 

of the last KM c − paths are already larger than the first K paths. Therefore, none of 

them will become one of the K survival paths after the path expansion and sorting. 

In such cases, the path expansion complexity can be reduced to K from Mc for each 

node, and the total sorting complexity can be reduced to sort K smallest PEDs out 

of 2K  instead of KMc. 

Moreover, for cMK ≤ , more complexity is possible to be reduced. To expand 

one path to K paths is the sufficient condition to obtain the K smallest PEDs after 
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sorting. However, it is not always necessary. Suppose the final K best paths at layer 

i-1 have the distribution Kjjj ,...,, 21 , where mj  is the number of survival paths 

(among the total K survival paths) expanded from the m-th candidate i
ms of the 

previous layer i, and KjjjK +++= ...21 . 

Let )max(max mjj = , Km ≤≤1 . Obviously we have Kj ≤max . For such case it is 

sufficient that we expand each path from the last layer into maxj  SE enumerated 

paths (the same reason here, any later path than maxj  which has larger PED cannot 

be among the K survival paths). In this way, we can further reduce the path 

expansion complexity from K to maxj , and the sorting complexity from K out of 

2K to K out of maxjK ⋅ . 

However, here maxj is not constant, varied with different channel and signals, and 

is unknown to us. To reduce complexity, we can only use some constant J (less 

than K) as a guess for maxj . If J is too small, it might be less than maxj and may 

introduce performance degradation. On the other hand, if J is too large, not much 

complexity can be saved. Following are some discussion on this method: 

1. There is no fixed law to select proper J value here. One way is empirical by 

trying different values with simulation.  

2. Dynamic values iJ  can be used for decoding at layer i. According to the 

discussing in [16], a good approach is to make iJ large for bigger i (early 

layers) and use smaller iJ  for later layers.  This can minimize the 

probability of missing ML solution at early stages, and reduce performance 

loss. Using dynamic iJ can further reduce the complexity. 
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3. The disadvantage of using of dynamic iJ  at each layer is that it will break 

the regularity which normal K-Best SDA has at each stage. This makes it 

more difficult for hardware implementation. 

Figure 3.1 shows the simulation result by using the complexity reduction 

method discussed in this section. The MIMO system used 4x4 antennas, and the 

constellation is 64QAM. By decoupling the complex constellations, the real model 

used is an 8x8 8PAM MIMO system. We used the sorted QR decomposition here, 

which was introduced for decoding layered space-time codes in [7]. 

The simulation result compares the performance (symbol error rate) of the ML 

detection, the normal 8-Best SDA, reordered 8-Best SDA, the reduced reordered 8-

Best SDA (J=6), and reduced reordered 8-Best SDA (J=4) at different SNRs 

( )/ 0NE s .As stated above, we applied the reordered QR decomposition to K-Best 

SDA, and it has been shown the reordered K-Best SDA has better performance 

than the normal K-Best SDA. Here we use the result of reordered 8-Best SDA 

comparing with normal 8-best (the dashed line). From the result it can be seen that 

there is almost no performance difference between original reordered 8-Best SDA 

and the modified 8-Best SDA (J=6) (dashed dot line in green). Therefore, by 

applying our strategy discussed above, 25% path cost computation complexity and 

27% sort operation (8 out of 48 comparing with 8 out of 64) can be saved. If we let 

J=4, simulation tells the complexity can further be reduced to less than 50%. 

However, there is about 0.3dB performance degradation for such small J. 
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Figure 3.1. Performance comparison of ML, 8-Best, 8-Best reordered, 8-Best 
reordered SD (J=6), and 8-Best reordered SD (J=4) (N=M=4, 64QAM). 

 
 

3.2 Improved K-Best Sorting Architecture 

In this section, an efficient sorting architecture has been introduced to K-Best 

SDA which can save about 50% sorting efforts. 

ŝ outs

 

Figure 3.2. Block diagram of K-Best lattice decoder. 
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The block diagram of a K-Best SDA, consisting of a preprocessing unit, a pre-

decoding unit, and a decoding unit, is shown in Figure 3.2. The preprocessing unit 

is used for the sorted QR decomposition and computing the inverse of H (this pre-

computation only needs to be done once if H does not change). Pre-decoding unit is 

to compute the ZF solution ŝ . p is the permutation vector generated by 

preprocessing unit. After decoding, sout needs to be permuted reversely to recover 

its original order. Decoding module has an M stage pipelined K-Best decoding 

structure, whose detail is shown in Figure 3.3. 

 

Figure 3.3. An M stage decoding module of a K-Best SE SDA (M=K=8). 
 

Based on the K-Best SE decoding algorithm described in Section 3.3, the detail 

of the decoding unit is shown in Figure 3.3. It has M decoding stages, which can be 

implemented in a pipelined fashion, and for each stage there are 3 sub-modules: 

path expansion, sorting, and survival path update, corresponding to the step 6, 7, 8 

in the algorithm.  For the last stage, if only the best path is needed for hard 

decision, its structure is the same as in Figure 3.3. If the best K paths need to be 

outputted for obtaining soft decoding information, the last stage is the same as the 

middle stages. 



37 
 

 

For the K-Best SE decoder at each stage, the sorting operation sub-module 

accounts for the major complexity (selecting K paths with smallest PEDs out of 

KMc is computational intensive and takes lots of comparisons and swaps 

operations, which is time-consuming). Hence, reducing the sorting complexity is 

crucial in reducing the complexity of K-Best SDA. 

In [6], the bubble sort algorithm is applied to conduct the sorting. However, we 

found out that when applying the SE method to the K-Best SDA, by exploiting the 

natural partial orders coming with SE enumeration, a smarter sorting architecture 

can be adopted to considerably reduce the sorting complexity. 

Let K
iii TTT ,...,, 21 denote the K smallest PEDs from layer i. After SE enumeration 

(here it can be done using a lookup table [14] instead of doing sorting) and path 

expansion (each path expanded to Mc paths), we have KMc partial Euclidean 

distances McK
i

K
i

K
i

Mc
iii TTTTTT ,

1
2,

1
1,

1
,1
1

2,1
1

1,1
1 ,...,,,...,,...,, −−−−−− at layer i-1, where nm

iT ,
1− stands for the 

PED of the n-th path expanded from the m-th path at layer i. The sorting operation 

is to select K smallest PEDs. First, it is not necessary to do fully sorting. Partial 

sorting which finds out the K smallest is sufficient. Moreover, based on the SE 

enumeration we know Mcm
i

m
i

m
i TTT ,

1
2,

1
1,

1 ... −−− <<<  for each Mcm ≤≤1 , which means 

the KMc PEDs have been partially ordered in each group (group size Mc, K groups). 

Exploiting such property, instead of using the partial bubble sorting, we can use the 

modified rank order filter (Batcher’s merge sort algorithm) [15] as the architecture 

for the K-Best sorting at each stage, which can significantly reduce the sorting 

complexity. 
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Similarly, we take the 4x4 64QAM MIMO system used in the previous section 

as an example. After real decoupling, it becomes an 8x8 8PAM system. When 8-

Best SE decoding is used, we have K=Mc=8. 

 

Figure 3.4. Modified architecture of 8x8 merge sorting. 
 (4x4 &2x2 merge sort modules are given at right bottom corner) 

 

Figure 3.4 shows the modified 8x8 merge sort architectures, which takes in two 

partial sorted arrays (each has 8 entries) and outputs the minimum 8 entries. The 

4x4 & 2x2 merge-sort modules are also shown at the right bottom corner. Such 

architecture is exactly what we need in the SE K-Best sphere decoder; for each 

survival path was expanded to 8 paths with ordered PED after path expansion. 

Then we can apply the sorting architecture in Figure 3.4 to complete the sorting 
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job. It should be mentioned that we only show example architecture of 8x8, 4x4 

&2x2 merge. Actually this architecture can be easily modified to 3x3, 5x5, 6x6 

merge etc. For instance, the 3x3 merge can be developed from the 4x4 merge by 

removing the unused C&S modules related to a4 and b4. 

The modified merge sort architecture in Figure 3.4 will greatly reduce the 

sorting complexity (refer to the results in Table 3.1), and can be used for sorting 8 

smallest out of 64 PEDs in the 8-Best SDA. At first, use PEDs 8,1
1

2,1
1

1,1
1 ,...,, −−− iii TTT and 

8,2
1

2,2
1

1,2
1 ,...,, −−− iii TTT as the input to the 8x8 merge sort (it has been modified to discard 

the remaining 8 larger outputs because they will not be used later). Then the sorted 

smallest 8 PEDs can be combined with another 8 PEDs 8,3
1

2,3
1

1,3
1 ,...,, −−− iii TTT as the 

merge sort input, and by doing this iteratively, the final 8 smallest PEDs can be 

obtained (the merge sorting can also be done in a fully parallel manner, but the 

complexity is the same). 

TABLE 3.1  SORTING COMPLEXITY COMPARISON (C&S) 

 8-Best (8 out of 64) 8-Best (J=6) (8 out of 48) 

Bubble sort 63+62+…+56=476 47+46+…+40=348 

Proposed  sort 20*7=140 16*4+20*3=124 

 

Table 3.1 compares the sorting complexity between bubble sort and our 

modified merged sort (the numbers stand for average times of the compare and 

swap operations needed. A C&S unit can be implemented with a comparator and a 

multiplexer). For instance, for the sorting of 8-best SDA 4x4 64QAM, using bubble 
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sort needs 476 C&S operations. By using our architecture, 7 stages of merge sort 

are needed. For each modified 8x8 merge sort, 20 C&S is used (a 8x8 merge sort 

need two 4x4 merge sort plus 4 extra C&S. The 4x4 merge sort has 4 or 5 outputs 

and needs two 2x2 merge unit plus 2 C&S. Each 2x2 merge unit has 3 C&S. So 

totally (2*3+2)*2+4=20 C&S are used). Therefore, by using our modified sorting 

architecture, 70% complexity can be saved. The third column stands for a modified 

K-Best SD algorithm; J denotes the number of child nodes to be calculated for each 

node. Here J=6 means for each node, we only compute the PED of the first 6 child 

nodes of the SE enumeration. The simulation result in Figure 3.5 shows this 

method has almost the same performance as regular 8-Best SDA while having less 

complexity. For this case, we need to use 6x6 merge sort with 8 outputs sorting. 

The 6x6 unit contains two 3x3 units plus 4 extra C&S. In this way, the sorting is 

further reduced to 124 at each stage, i.e., almost 74% sorting complexity has been 

decreased compared with the original 8-Best SDA. 

 

3.3 The combination of the Layer Reordered K-Best SDA and 

Merge Sorting 

In the above discussions, we introduced the layer reordered K-Best SDA and 

Dynamic K-Best SDA, and we showed that these two methods can be combined 

together to further increase the detection performance or reduce the decoder 

complexity, i.e., to achieve the same performance, a smaller K value can be used.. 

In Section 3.2, we proposed an improved sorting architecture, which can save about 

50% of the sorting efforts. Certainly, this sorting scheme can be applied to the 
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combined K-Best SDA to achieve a significant total complexity savings for the 

complete K-Best sphere decoder design. 

3.4 Comprehensive Complexity Analysis 

In this work, we take the 4x4 64QAM combined 6-Best SDA as an example, to 

analyze the complexity savings. As the results shown in Figure 2.2, by applying the 

layered reordering and using dynamic K values at different layers 

( 4]  4  6  6  6  8  8  8[=K ), the combined 6-Best SDA has almost the 

same performance as the regular 10-Best SDA.  The total complexity of the SDA 

comes from three major operations: path expansion, sorting, and survival path 

update. 

1. Path Expansion: As for the regular 10-Best SDA, at the top layer only the 

PEDs of the 8 nodes are calculated; at the lower layer, for each survival 

candidate, the PEDs of its 8 child nodes need to be computed. Therefore, 

10*8=80 PEDs are computed at each layer. Totally, 8+8*8+ (10*8)*6=553 

PED calculations are needed. Each PED calculation consists of one 

multiplication, two additions and one squaring (if Burg’s approximation [10] 

is used, the square operation can be replaced by a MAX).  So totally 553 

multiplications and 1106 additions are needed. For the dynamic 6-Best SDA, 

totally 8+8*8+8*8+8*8+6*6+6*6+6*4+4*4=312 PED calculation are used, 

which is 312/553=56.4% of 10-Best. 

2. Path Updating: for each survival path, we need to update  )( i
ib s  according to 

(2.5) ( )( i
i sρ  can be pre-computed), which is used by the computation of PEDs 

at lower layers.  From (2.5), )( i
ib s  is a partial sum which needs M-i 
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multiplications (for 64QAM, sj can only be ±1, ±3, ±5, and ±7, hence the 

multiplication can be replace by shift and add), and additions. For normal 10-

Best, totally 8+10*6=68 path are updated, i.e., 

8*1+10*2+10*3+10*4+10*5+10*6+10*7=278 multiplication and additions. 

As for combined dynamic 6-Best, 8+8+8+6+6+6+4=46 path are updated, total 

8+8*2+8*3+6*4+6*5+6*6+4*7=166 multiplications and additions,   which 

saves (1-166/278)=40.28%. 

3. Sorting:  As for the regular 10-Best SDA, each stage we need to sort 10 

smallest PEDs out of 10*8=80 (the top layer is just 8 candidates, no sorting, 

and the 2nd layer is sorting 10 out of 8*8=64). Totally (63+62+…+54)+ 

(79+78+… +70)*6=5045 comparisons and swaps. However, for the dynamic 

6-Best with merge sorting, the top stage needs no sorting. The 2nd and 3rd stage 

is to sort 8 out of 64, so 20*7*2=280 C&S when using our architecture. The 

4th stage is to sort 6 out of 48, needs 14*7=98 C&S. The 5th and 6th stage is to 

sort 6 out of 36 candidates, 14*5=70 C&S are used. The 7th stage is to sort 4 

out of 24, 8*5=40 C&S are needed. The final stage is to sort 4 out of 16, so 

needs 8*3=24 C&S. Totally 280*2+98+70*2+40+24=862 C&S units. The 

saving is 1-862/5045=83%.  

The overall complexity results are shown in Table 3.2. 

From the comparison, even regardless the memory access and area savings, our 

proposed sphere decoding algorithm and sorting architecture can achieve a total 

complexity saving of 68% (here we estimate the complexity of a multiplication by 

1, 3, 5 or 7 as 2 additions, a MAX or C&S unit as 1.3 additions). 
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TABLE 3.2  TOTAL COMPLEXITY COMPARISON 

 Addition Multiplication MAX C&S 

Nor. 10-Best 1384 831 553 5045 

Dynamic 6-Best + merge sort 790 478 312 862 

Savings 43% 42.48% 43.6% 83% 

 

3.5 Conclusions 

In this Chapter, we have introduced a reduced complexity K-Best SDA which 

can be used for cMK ≤ cases. By selecting the J value less than K, the total decoder 

complexity can be reduced. In addition, the modified merge sort architecture is 

presented and applied to the sorting of K-Best SDA at each stage. Such architecture 

can be used for the sorting of any K-Best SE lattice decoder while significantly 

reducing the sort complexity.  

Moreover, the simulation results show that these three methods can be combined 

together to achieve the same detection performance as regular K-Best SDA with 

much smaller K values. Therefore, when this efficient sorting method is applied,  

significant complexity reductions can be realized. Hence, a comprehensive 

complexity analysis has been presented to demonstrate that even regardless the 

memory access time and area savings, our proposed sphere decoding algorithm and 

sorting architecture can achieve a total complexity saving of 68%. 
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4 NEW PARALLEL AND PIPELINE INTERLEAVED 

SPHERE DECODER ARCHITECTURE 

The sphere decoding algorithm [2][3][4] is a key algorithm to achieve the 

optimal ML performance for MIMO systems.  The basic principle of SDA is to 

avoid the exponentially complex exhaustive search in the signal constellations, by 

applying a sphere constraint (only the constellation points within the sphere would 

be considered) and transform the ML detection problem into a tree search and 

pruning process. Regular SDA conducts a depth-first search in the tree while the K-

Best lattice decoding algorithm [5], a variant of SDA, does a breadth-first tree 

search. The latter approach, however, has performance degradation unless K is 

sufficiently large. In this work, our discussion is focused on the regular SDA. 

SDA is very complex for hardware implementation. To the best of our 

knowledge, the sphere decoder designs published in the literature have lower 

throughput than 180Mb/s, which is below the requirement of next generation high-

rate wireless communication systems (over 200Mb/s). Therefore, efficient high-

speed architectures for sphere decoder implementation are really desirable. 

In this Chapter, we first propose a parallel sphere decoding scheme. In this 

method, the whole constellation tree is divided into two sub-trees, and the two 

processing engines (PE) can conduct depth-first search in parallel and update the 

new radius. Thus the decoding throughput is significantly improved. Considering 

the parallel architecture needs to double the hardware cost, we further introduce the 

pipeline interleaved SD architecture. For this architecture, by exploiting the 

similarity and interleaving the data streams for both processing engines, only one 
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PE is needed plus some small interleave control logics. The new sphere decoder 

has almost the same hardware cost as conventional SD with 44% improvement of 

the throughput. 

4.1 Conventional Sphere Decoder Architecture 

The detailed MIMO system model and SDA can be found in [10]. For 

convenience in later discussions, some important equations are given as follow, 

where we adopt the same notations as [10]. 

The partial Euclidean distance (PEDs) are given by 

2)()1(
1

)( )()()( i
i

i
i

i
i eTT sss += +

+ ,          (4.1) 

where 1,,1, K−= TT MMi  is the layer number in the tree search, and the branch 

cost 
2)( )( i

ie s can be obtained as follows: 
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i
i sRye s .                                        (4.2) 

We can further decompose the equation to separate the part influenced by is : 
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In the above equations, TM  stands for number of antennas (in this work, we 

assume the numbers of transmit antennas and receive antennas are equal), matrix R 

comes from QR decomposition of channel matrix, vectors ŷ  and )(is  represent 
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zero forcing solution and partial decoded symbol, respectively. The goal is to find 

the symbol s which minimizes )(1 sT .  Figure 4.1(a) shows two sphere decoders 

working in parallel. For each new node )(is  to be examined, the branch cost 

computation unit computes )( )(i
ie s  based on (4.3).  According to [10], the ∞l  norm 

can be used to approximate 2l  norm with reduced complexity. Eq. (4.1) can be 

rewritten as: 

))(,)((MAX)( )()1(
1

)( i
i

i
i

i
i eTT sss +

+≈ ,                                 (4.5) 

where 2
1 )( rsT <  is the sphere constraint. In Figure 4.1a, the PED update unit 

computes the MAX using (4.5) and updates the new PED. The result is passed to 

the depth-first tree search control logic that checks the sphere constraints, updates 

radius r, does tree pruning and determines which node to be examined next. Finally 

)( )(i
ib s is updated according to (4.4) for succeeding operations. Then it comes the 

new cycle to evaluate another candidate symbol. 

4.2 Parallel Sphere Decoder 

According to the architecture discussed above, the sphere decoding is actually 

an iterative process. Due to the long computation delay associated with the loop, 

the clock speed is quite limited. Adding pipeline in the loop can reduce the critical 

path length, but it cannot increase the overall throughput. Hence, we propose to use 

parallel processing to increase the throughput of sphere decoders. 
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Figure 4.1.  (a) Parallel SD architecture, (b) Pipeline interleaved SD architecture. 

 

For instance, for a 4x4 64QAM MIMO system, after real decoupling, the tree 

structure becomes 8 layers and every node has 8 child nodes. The conventional SD 

is to search the constellation tree and find out the ML solution. In order to facilitate 

parallel processing, we can split the constellation tree into multiple sub-trees. For 

example, we can divide the nodes at the first layer alternately into two groups, e.g., 

we group them as {-7, -3, 1, 5} and {-5, -1, 3, 7} (according to the constellation 

values) and all the nodes below the first layer are kept unchanged. Then as shown 

in Figure 4.2, the whole constellation tree is split evenly into two half-size sub-trees 

(the shaded nodes form a sub-tree, and the remaining nodes comprise the other sub-

tree).  In Figure 4.1(a), we can apply the sphere decoding architecture to both sub-
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trees to perform sphere decoding in parallel, i.e., PE1 conducts depth-first search 

within the constellation subtree1, while PE2 searches the subtree2. To expedite the 

searching process, two sub-trees exchange the current sphere radius r  with each 

other to tighten the sphere more quickly. When a leaf node has been reached, the 

sphere decoder updates the new radius, and also passes the new radius to the other 

PE; thus the search complexity can be reduced with the faster shrinking radius. The 

simulation results are provided in Section 4.4. 

 

 

Figure 4.2.  Example of tree splitting.  

 

Actually, after Schnorr-Euchner (SE) enumeration, it is a better way to group the 

first layer nodes according to their indexes in the enumeration. Later in the 

simulation results we will show such grouping by indexes has better efficiency. 
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4.3 Pipeline Interleaved Sphere Decoder 

The above parallel sphere decoder can increase the decoding speed at the cost of 

doubling the hardware, which is not efficient. Considering the depth-first search in 

the two sub-trees are independent (the nodes at the first layer were evenly split), 

and both of them have exactly the same hardware architecture (both data path and 

control), we can exploit the pipeline interleaving technique to save hardware. For 

the detailed principles of pipeline interleaving, readers please refer to [15]. 

TABLE 4.1  PIPELINE INTERLEAVED DATA PROCESSING SEQUENCE 

Clock PEA PEB 

1 S1 S2 

2 S2 S1 

3 S1 S2 

4 S2 S1 

 

Figure 4.1(b) shows the architecture of a 2-level pipeline interleaved sphere 

decoder. It inserts 1-stage pipeline register in the PE, which can reduce the critical 

path by half in the ideal case. In this way, the clock speed can be roughly doubled 

due to the shorter critical path. However, after applying pipelining, one loop 

iteration now takes two clock cycles, which brings no benefit. To facilitate 

decoding speedup, we can interleave the data patterns from subtree1 and subtree2 

into the odd and even cycle of the processing loop. For example as shown in Table 

4.1, at an odd clock cycle, the top part of PE (the part above the pipeline register, 

we name it PEA, and the bottom part PEB), processes subtree1 (S1), and the bottom 

part processes subtree2 (S2). At the next clock cycle, the data of subtree1 come to 
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the PEB and the data of subtree2 loop back to PEA.  In this way, the data of two 

sub-trees has been interleaved and processes by PEA and PEB alternately. In brief, 

the architecture in Figure 4.1(b) is equivalent to the parallel sphere decoding 

architecture of Figure 4.1(a). It should be noted that this pipeline interleaved 

architecture does not introduce extra hardware except pipeline registers and small 

overhead in control logic. 

Hence, by applying such pipeline interleaving technique, the new sphere 

decoder can achieve the same throughput as the parallel SD, whereas it has only 

small extra hardware compared with the conventional SD. 

4.4 Simulation Results 
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Figure 4.3.  Average decoding speedup of proposed sphere decoding architecture 
(4x4 MIMO system with 64-QAM modulation). 
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Figure 4.3 shows the simulation results of a 4x4 64-QAM MIMO system. We 

split the constellation tree in two different ways (according to the 1st layer real 

constellation value or the node index after SE enumeration), and applied the 

pipeline interleaving sphere decoding scheme. The results show that the latter tree-

splitting method has slightly better performance because it divides the tree more 

evenly after SE enumerations. On average, our sphere decoder takes 69.54% total 

computational time of a regular sphere decoder when SNR (Es/N0) is 29dB. 

Therefore, for this example MIMO system, our proposed architecture provides 

43.80% decoding speedup with negligible hardware overhead. 

4.5 Conclusions 

In this Chapter, an efficient pipeline interleaved sphere decoding architecture 

has been presented. Such a scheme can significantly increase the decoding 

throughput. For our example 4x4 64-QAM MIMO system, the pipeline interleaved 

SD can achieve an average speedup of 44% with negligible hardware overhead 

compared with the conventional sphere decoders. 
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5 EARLY-PRUNING K-BEST SPHERE DECODER  

The sphere decoding algorithm has been used for maximum likelihood 

detection in MIMO systems, and the K-Best sphere decoding algorithm is proposed 

for MIMO detections for its fixed complexity and throughput. However, to achieve 

near-ML performance, the K needs to be sufficiently large, which leads to large 

computational complexity and power consumption in path expansion, sorting, and 

path updating. Therefore, it is desirable to reduce the computational complexity and 

thus the power consumption for K-Best SD designs. 

 In this Chapter, we introduce some dynamic early-pruning schemes, which will 

eliminate the survival candidates with relatively large partial Euclidian distances 

(PEDs) at early stages. These candidates are unlikely to become the ML solution 

when the tree searching reaches the final layer. Therefore, such early pruning can 

save computation and power consumption without sacrificing the performance. Our 

simulation results show that for the 4x4 64QAM MIMO system, by applying the 

proposed schemes, about 55% computational complexity can be reduced with 

almost no performance degradation.  

    The MIMO system model has already been described in Chapter 1, and the 

SDA, SE enumeration and the K-Best SDA has been introduced in Chapter 2. In 

Section 5.1, we describe our early-pruning scheme and demonstrate its 

improvement with simulations. In Section 5.2, we combine our scheme with a 

threshold-based algorithm [20] and show that more complexity saving can be 

achieved. Conclusions are drawn in Section 5.3.  
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5.1 Early Pruning K-Best SD 

The original K-Best SDA is to conduct the breadth-first tree search, keep the K 

paths with smallest PEDs at each layer i until it reaches the bottom layer (i=1), then 

output the final path with the smallest total cost. If the path corresponding to the 

ML solution is retained among the K survival paths at each stage, then the final 

path with smallest cost is the ML solution, and the decoding is correct. Otherwise, 

the ML solution would be missed at early stages, and decoder error occurs. Hence, 

to reduce the possibility that the ML solution is pruned at early layers, the K value 

needs to be sufficiently large (normally≥8). However, this will lead to large 

computational complexity and power consumption for path expansion, sorting, and 

path update. In this Chapter, we will introduce a scheme that can reduce such 

complexity while maintaining the decoding performance. 

Supposing the K survival paths at layer i are 1P , 2P ,…, KP . When the sphere 

decoder descends one layer (i.e., at layer i-1), the candidates paths are 1P , 2P ,…, 

McKP ⋅  after path expansion and sorting. The corresponding PEDs are denoted as 1
1
−iT , 

1
2
−iT , …, 1−i

KMcT , with 1
1
−iT ≤ 1

2
−iT ≤…≤ 1−i

KMcT . The original K-Best algorithm is to keep the 

K candidate paths with smallest PEDs among these KMc paths.  However, from our 

observation, under many circumstances, this condition is too loose. 

For instance, let us consider two paths UP  and VP  (1≤U≤V≤K) at layer i-1. 

Suppose their PED difference 11 −− −=Δ i
U

i
V TT  is large, i.e., the PED 1−i

VT of path VP  is 

much larger than the PED 1−i
UT  of path UP . After accumulating the branch cost of 
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remaining layers, most probably the final cost 1
VT of path VP  is still larger than the 

final cost 1
UT  of path UP . Based on equation (2.6),  

∑ −=
− +=

1

2
11

ij
j

V
i

VV eTT ,                                                   (5.1) 

           ∑ −=
− +=

1

2
11

ij
j

U
i

UU eTT .                                                    (5.2) 

Unless 

∑∑ −=−=
>−

1

2

1

2 ij
j

Vij
j

U ee 11 −− −=Δ i
U

i
V TT ,                            (5.3) 

the partial sum of the branch costs of the remaining layers will not change the 

original order of the PEDs). This means the path VP  is unlikely to become the ML 

solution when the sphere decoder descends to the final layer. Hence, we can prune 

this path at layer i-1 in advance from further processing, thus save the 

computational effort of the lower layers. And since the eliminated node is unlikely 

to become the ML solution, such early prune scheme will not affect the decoding 

performance. 

From the above observation, it is possible to set up a criterion to identify such 

paths that are unlikely to become the ML solution, and prune them at early stages. 

At layer i, the original K-Best SD will retain the K paths corresponding to smallest 

PEDs: iT1 , iT2 ,…, and i
KT . Based on the above analysis, if ii

K TT 1−=Δ  is large, then 

path  KP  can be pruned. Therefore, we set a bound 

i
K

i TTB ⋅−+⋅= )1(1 αα ,                                     (5.4) 
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which is a linear combination of iT1  and i
KT . If the PED of a candidate path is larger 

than B, this candidate path is discarded. Here, α is a value determined by 

simulations. Such bound, together with the K-Best condition (number of survival 

paths), can serve as a stricter condition to prune more nodes at early stages. 

In Chapter 2, we proposed a layer reordered (LR) K-Best SDA, which can 

improve the performance of the regular K-Best sphere decoders. In fact, such layer 

reordering scheme can also be used to reduce the complexity. For example, as for 

the 4x4 64QAM MIMO system, the 10-Best SD has almost the same (even slighter 

better) performance as 12-Best regular SD. Therefore, we can use the 10-Best LR-

SD to replace the 12-Best regular SD. In this way, 17% complexity can be saved. 

In addition, we can combine the early-pruning scheme with the LR-SD in 

Chapter 2 to achieve more complexity savings. Figure 5.1 shows the simulation 

results by applying our scheme. In this work, we use the 4x4 MIMO systems (4 

transmit and 4 receive antennas). The modulation scheme is 64QAM (By 

decoupling the complex constellations, the real model used is an 8x8 8PAM MIMO 

system). In case of hard-output detection, 1000 independent channel realizations 

(packets) of 1000 uncoded 64QAM symbols are transmitted with 250 symbols from 

each antenna. Figure 5.1 compares the performance (symbol error rate) of the ML 

detection, the normal 12-Best SDA, the 10-Best LR SDA, and our 10-Best early-

pruning LR SDA (α=1/4 and α=1/3) at different SNRs ( )/ 0NEs . 

From Figure 5.1 we can see the 10-Best layer reordered SD has the same 

performance as regular 12-Best SD. And after combining the early-pruning (EP) 

scheme with 10-Best LR-SD, when α=1/4, no performance loss can be observed. 
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For α=1/3, the 10-Best EP-LR-SD has 0.15dB performance degradation comparing 

with regular 12-Best SD. 

 

Figure 5.1.  Performance comparison of the ML, 12-Best SD, 10-Best LR SD, and 
10-Best early-pruning SD (α=1/4 & α=1/3) (N=M=4, 64QAM). 

 

Figure 5.2 compares the complexity savings of the 10-Best early-pruning layer-

reordered SD to the normal 12-Best SD at different SNRs. Compared to α=1/4, the 

α=1/3 case can achieve more complexity savings (up to 48%). However, the α=1/4 

10-Best EP-LR-SD has slightly better performance. Moreover, to save more 

complexities, we can set the α value as a function α(i) of the layer i. At later stages, 

α(i) can be bigger (the bound becomes tighter) because from equations (5.1) and 

(5.2), at later stages fewer remaining branch cost will be added to the PEDs. 
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Therefore, the possibility of condition (5.3) is smaller. From our simulation, 

] 0.38 0.38 0.34 0.34 0.3 0.3 0.26 26.0[=α  can be used. Such 10-Best EP-

LR SDA can achieve the same saving as α=1/3, while the 0.15dB performance loss 

can be avoided. 
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Figure 5.2.  Complexity savings of the early-pruning LR 10-Best SD (α=1/4 & 
α=1/3) compared with regular 12-Best SD (N=M=4, 64QAM). 

 

5.2 Combined Method with threshold-based SDA 

In [20], a threshold-based K-Best SDA was introduced. At each layer, a 

threshold 

8/)9( CiCB i ⋅−⋅−= β                                          (5.5) 

was used to eliminate candidate nodes with large PEDs, where i  stands for the i-th 

decoding layer, running from 8 to 1, C is the Euclidean distance between the 
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received signal and the estimation of zero-forcing solution multiplied by the MIMO 

channel matrix H. At each decoding layer, the candidates whose PEDs are bigger 

than B will be discarded. β is the coefficient determined by simulation. This method 

can also save much complexity especially in high SNR regions. 

 

Figure 5.3.  Performance comparison of the ML, 12-Best SD, 10-Best LR SD, 10-
Best early-pruning SD (α=1/3) & combined EP SD (N=M=4, 64QAM). 

 

Since the early-pruning scheme we introduced in Section 5.1 is dynamic (based 

on the distribution of the PEDs of the survival paths), it is reasonable that we 

combine the early-pruned SDA with the SDA in [20]. Here, we can set the 

combined bound as 

}8/)9(,)1(min{ 1 CiCTTB i
K

i ⋅−⋅−⋅−+⋅= βαα .             (5.6) 
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In this way, more computational complexity or power consumption can be saved 

without sacrificing the performance. The α value can be set as 1/3 or 1/4 as in 

Section IV, and the β value can be set as 1. 

Figure 5.3 shows the simulation result of the ML, 12-Best SDA, 10-Best EP-LR 

SDA (α=1/3), and the combined 10-Best EP-LR SDA (α=1/3, β=1) for the 4x4 64 

QAM system. Compared with the 12-Best SDA, there is almost no performance 

(less than 0.2db) loss for the combined methods. 
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Figure 5.4. Complexity savings comparison of the early-pruning LR 10-Best SD 
(α=1/3) & combined EP-LR 10-Best SD (α=1/3, β=1) (N=M=4, 64QAM). 

 

In Figure 5.4, the complexity saving of the combined method has been shown. It 

can be seen that more complexity saving (up to 55.5%) can be achieved with the 

combined method, especially at high SNR regions. 
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5.3 Conclusions 

In this Chapter, by exploiting the intrinsic properties of the K-Best breadth-first 

searching algorithm, we have introduced an efficient early-pruning scheme. For our 

example 4x4 64QAM MIMO system, when such early-pruning scheme is 

combined with the layer reordered SDA, about 47% complexity savings can be 

achieved without losing detection performance.  This early-pruning scheme can be 

further combined with the threshold-based K-Best SDA, thus for the same system, 

the total of 55% computational complexity/power consumption can be reduced 

compared to the original K-Best SDA. 
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6 EFFICIENT RADIUS AND LIST UPDATING UNITS 

DESIGN FOR LIST SPHERE DECODERS  

  The sphere decoder (SD) has been utilized for maximum likelihood (ML) 

detection in MIMO systems. In order to improve system performance, the SD is 

usually combined with the error correction codes where soft decoding is utilized.     

The SD needs to provide soft information in order to combine with the channel 

code decoder which implements soft decoding Therefore, the conventional SD, 

which finds the ML hard decision symbols, needs to be modified. In [8], the list 

sphere decoder (LSD) was proposed for iterative decoding schemes.  By 

conducting search in the sphere, the LSD generates a candidate list instead of only 

finding the ML solution. The soft extrinsic information is computed based on the 

list of candidates, and then delivered the soft-decoder. Therefore, the key of LSD is 

to find out a candidate list by taking the search and pruning approach. 

   Differing from the regular SD, the LSD needs to generate a candidate list other 

than only the ML solution. This will introduce extra latency in finding out the 

sphere radius, and extra complexity for updating the candidate list. The 

contributions of this Chapter include the follows: 1) we propose an efficient 

architecture, which can compute the new sphere radius in one clock cycle, thus 

reduce the decoding latency; 2) we present a low complexity list updating unit, 

which can greatly save the complexity for updating the candidate list. 

  This Chapter is organized as follows. In Section 6.1, we briefly review the 

sphere decoding algorithm and list sphere decoder. Then in Section 6.2, we 

describe our fast radius updating architecture and show its improvement. In Section 
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6.3, the new list updating scheme is illustrated. The complexity analysis has also 

been provided. Finally, conclusions are drawn in Section 6.4. 

6.1 List Sphere Decoder 

6.1.1 Conventional Sphere Decoding Algorithm 

Based on the MIMO system model described in Section 1.1, an approach to 

obtain the ML detection is the sphere decoding. It only examines the point inside a 

hyper-sphere around y, i.e.,   

Crd =≤−= 22)( Hsys  ,                                   (6.1) 

which is regarded as the sphere constraints (SC). By applying QR decomposition to 

H, the right hand side of equation (2.1) can be transformed into a sum of non-

deceasing terms for each layer. Thus the search in the sphere is further transformed 

into a tree search. Once the partial Euclidean distance (PED) exceeds C, its children 

nodes can all be pruned. The sphere radius (C is the square of the sphere radius. For 

the convenience of expression, in this work, we call C radius) is updated every time 

a new solution is found. As a result, the complexity of finding ML solution can be 

significantly reduced. 

 

6.1.2 List Sphere Decoder 

To increase the system performance, the sphere decoder can be combined 

with the error correction code which uses soft decoding. An iterative processing 

scheme for Turbo code and LDPC code, has been applied to the MIMO systems 

[8][23]. The block diagram is shown in Figure 6.1.  For this iterative decoding 
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scheme, the MIMO detector needs to generate the soft reliability information (log 

likelihood ratio) for feeding into the soft-input-soft-output (SISO) decoder. 

 

 

Figure 6.1.  MIMO transmission and iterative receiver model. 

 

At the receiver side, the inner MIMO detector (sphere decoder) uses the 

received symbol vector y and a-priori (intrinsic) information LA1 from the soft 

decoder, computes the extrinsic information LE1 for each bit according to the 

approximation equation (12) in [8]. Then LE1 is de-interleaved and becomes the 

intrinsic information LA2 for the SISO decoder. Based on LA2, the SISO decoder 

then calculates the extrinsic information LE2, which will become the intrinsic 

information of inner MIMO detector after being interleaved. Thus, one iteration is 

completed. To facilitate such iterative decoding, the conventional SD needs to be 

modified for soft decoding. The list sphere decoder (LSD) was introduced in [8]. 

Instead of searching the ML solution within the hyper-sphere, the LSD finds out a 

list of most likely symbol vectors (including the ML solution) which has the 



64 
 

 

smallest Euclidean distances ( 2Hsy − ), and computes the soft bit reliability 

information based on the candidates list. 

 

6.2 Fast Radius Updating Architecture 

For the list sphere decoder, suppose it has a candidate list L of size N. Each 

candidate is denoted as )1( NiLi ≤≤ , and the corresponding ED is EDL(i) with 

EDL(i)≤ EDL(j) when Nji ≤≤≤1 . The original LSD decoding flow is illustrated in 

Figure 6.2(a). At first, the LSD conducts depth-first search at upper layers. When 

the tree search reaches the leaf nodes and finds out K candidates: ,1, KiAi ≤≤ two 

operation are needed. A) Candidate List Update: the new candidates will be 

inserted into the candidate list, and the original candidates with the biggest EDs 

will be deleted; B) New Radius Update: the radius will shrink from )(NLED to the 

new biggest ED in the list. For the original design, the new radius is updated after 

the new list has been generated (it picks up the biggest ED in the new list and 

updates radius C). However, this will introduce more latency because only after the 

new radius has been computed, the depth-first tree search can resume (the depth-

first search engine needs the new C to check each PED).  In this Chapter, we 

propose a new LSD decoding flow. In the new flow shown in Figure 6.2(b), the 

new radius is computed in advance. Therefore, the depth-first search will continue 

after one clock cycle. And the list update operation can be conducted in parallel. In 

this way, the DFS and LU can overlap, thus save the latency introduced by the list 

updating unit. 
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Figure 6.2.  Decoding flows of LSD (DFS—depth first search, CF—candidates 
found, LU—list update, RU—radius update). 

 

To elaborate the new radius update unit, first let us consider the simplest case 

K=1, i.e., in each search the LSD found one new candidate A. The architecture to 

compute new C is presented in Figure 6.3. 

 

 

Figure 6.3.  Radius update unit for K=1. 
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The original radius is )( NLED . When the new ED of candidate A has been 

found, it needs to compare with original C.  If EDA is bigger, the candidate will be 

pruned, and the radius C remains. If EDA is smaller, the bigger value between EDA 

and EDL(N-1) will become the new radius. 

However, for normal SD decoder design (such as [10]), when search reaches 

the bottom level, all the leaves under the same parent node are computed in parallel 

to increase the decoding speed. Therefore, more than one new candidate will be 

found at the CF phase. For instance, for a 4x4 16QAM MIMO system, 4 new 

candidates will be generated at the same time (K=4). Since SE enumeration is used 

(refer to [14], a look-up table can be used to avoid sorting), the EDs of the new 

candidates A are in ascending order. The radius update unit needs to compute the 

new radius quickly for such scenarios. 

 

 

Figure 6.4.  Radius update unit for K=4, N=16. 
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Figure 6.4 shows an example fast radius update architecture for K=4, N=16. 

For this situation, the original list size is 16 with EDL(1)≤EDL(2) ≤ …≤EDL(16). Now 

the 4 newly computed EDs are EDA(1)≤EDA(2) ≤ EDA(3)≤EDA(4). Therefore, the new 

radius should be the 5th largest number in the total 16+4=20 numbers. The 

straightforward method is to insert the list A into list L, and select the 5th largest 

number. This has large complexity and long latency. The architecture in Figure 6.4 

illustrates an efficient way to find out the new radius. Such architecture exploits the 

existing order in list L and A, and uses the fastest way to find out the new radius. 

First, we need to compare EDA(4)  and EDL(12). If EDA(4)< EDL(12), then it means all 

the new candidates will be inserted into the candidate list (L13, L14, L15, L16 will be 

deleted). And the new radius is EDL(12).Otherwise, the list A and the largest 4 

Euclidean distances EDL(13), EDL(14), EDL(15), and EDL(12) (original C) will be sorted 

by an efficient 4x4 merge sort unit, and the 5th largest value will be output as the 

new C (this value is guaranteed to be the 5th largest among the whole 20 numbers 

when  EDL(12)> EDA(4)). 

Figure 6.5 shows the 4x4 and 2x2 merge sort unit used for the new radius 

update architecture. The dotted line part is just used for illustration and can be 

omitted in real implementation. C&S stands for compare and swap. The total 

hardware for the 4x4 merge unit is 7 C&S (each has a comparator and a multiplex). 

And the total hardware for the radius update unit is 8 comparators and 8 MUXs 

with the critical path of 3 C&S units.  

The above discussion provides an example of designing fast radius update 

unit. For different MIMO systems with other K and N values, the merge sort unit 

can be simply modified to compute the new radius in one clock cycle. In addition, 
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this 4x4 merge unit can be slightly modified to be re-used for the list updating, 

which will be discussed in the following section. 
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Figure 6.5.  The 4x4 & 2x2 merge sort unit: C&S—compare & swap. 

 

6.3 Efficient List Updating 

After the new radius has been computed, the depth-first tree search can 

resume. And the candidate list needs to be updated in parallel. The new list will be 

used by the next radius and list updating units. Finally, when the whole tree has 

been traversed, the final list will be needed by the soft information generation unit 

to compute the soft bit reliability information. 

In [24], a tree-type comparator (TTC) array was proposed to update the 

candidate list. Compared with the fully parallel comparator (FPC) array, the TTC 

architecture can significantly save the complexity for 4x4 16QAM MIMO systems. 

In this work, based on the same merge architecture, we can create an efficient 
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candidate list updating scheme, which will update the candidate list with smaller 

complexity. 

Figure 6.6 shows the list updating unit architecture for N=16, K=4 case.  

Here, the inputs are the Euclidean distances and history paths coming from list L 

(16 entries) and A (4 entries). After updating, the LU unit will generate the new 

paths for the 16 candidates with the smallest EDs. The original 4x4 merge unit 

needs to be slightly modified since after the comparison of the Euclidean distance, 

both the ED values and the corresponding candidate paths need to be swapped. 

Hence, the comparator remains, but the extra MUXs for candidate paths need to be 

added. 

 

 

Figure 6.6.  List updating architecture for N=16, K=4. 

 

This architecture works as follows: first, the new entries from A are merged 

with the biggest 4 entries (L13,L14,L15,L16) in the list L. The four largest entries after 
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merge are discarded, and the other 4 smallest outputs B1,B2,B3,B4 will be further 

compared to the middle 4 entries (L5,L6,L7,L8) in the remaining list L of size 12 (the 

binary search principle is applied here: start merge from the ½ point). Afterwards, 

the smaller 4 outputs are further merged with the L1, L2, L3, L4, thus generate the 

smallest 8 entries for the new list. Similarly, the bigger 4 outputs are merged with 

L9,L10,L11,L12, which become the other 8 entries for the new list. 

The total latency for this list updating architecture is 9 comparison 

operations. An interesting point is: the modified merge unit 1 has the same inputs 

as the merge unit used for the radius updating unit discussed in the previous 

section. Therefore, we can reuse the 4x4 merge unit in the radius updating for both 

radius updating and list updating (the 4x4 merge unit in the RU needs to be 

changed to the 4x4 modified unit in Figure 6.6, which can swap both the ED and 

candidate path). In this way, the list updating latency can be further reduced to 6 

comparison operations. 

Suppose ED has the word-length of W, the history path has S (for 4x4 

16QAM, S=16) bits. Therefore, each 4x4 modified merge unit has 9 comparators, 

9W+9S 2-to-1 MUXs for both EDs and history paths. Considering the four merge 

units has the same structure, it is possible to reuse one merge unit four times 

instead of using 4 merge units, thus the total area is further reduced to 9 

comparators and 9W+9S 2-to-1 MUXs plus the extra reuse logic: 8(W+S) 4-to-1 

MUXs. For this reuse scheme, the total radius updating and list updating procedure 

will take 4 clock cycles (1 clock cycle for radius updating and 3 clock cycles for list 

updating). Based on the decoding flow in Figure 6.2, the LU is in parallel with the 

depth-first search; therefore such latency will not affect the decoding speed. 
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TABLE 6.1  COMPARISON OF DIFFERENT LIST UPDATING SCHEMES 

 # of 
Comp.

# of 3-to-1 
MUXs 

# of 2-to-1 
MUXs 

# of 4-to-1 
MUXs 

FPC 64 1856 - - 

TTC 16 232 704 - 

Merge 9 - 288 256 
 

Table 6.1 compares the complexity of FPC, TTC, and our merge list updating 

scheme for the example case (4x4 16QAM MIMO, N=16, K=4, W=16, S=16). 

From the result it can be seen that our proposed merge scheme can save about 45% 

complexity compared with TTC. 

 

6.4 Conclusions 

In this Chapter, we have introduced some new schemes for list sphere 

decoder. We have first suggested changing the decoding flow to do the radius 

updating before list updating. This will avoid the latency introduced by the radius 

updating unit. By exploiting the intrinsic order of the candidate list and the SE 

enumeration, we proposed a fast list updating architecture based on the merging of 

two partially ordered arrays. For the example 4x4 16QAM N=16 MIMO system, 

such radius updating unit can compute the new radius in one clock cycle with the 

critical path of 3 comparison operations. In addition, we have presented an efficient 

list updating architecture based on the merge sort and binary insertion. For the 

same system, by reusing the merge unit in radius updating, this list updating can 
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achieve a 45% complexity saving compared with TTC without affecting the 

decoding speed. 
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7 FAST POINT OPERATION ARCHITECTURE FOR 

ELLIPTIC CURVE CRYPTOGRAPHY  

Public key cryptography has been widely used today for information security 

and E-commerce. A well-known public key cryptography scheme is RSA, which 

was first proposed by Riverst, Shamir and Adleman in 1978 [45]. The security of 

RSA is based on the difficulty of the integer factorization problem. In 1985, Elliptic 

curve cryptography (ECC) was introduced by Victor Miller [46] and Neal Koblitz 

[47] independently.  The security of ECC is based on the hardness of solving the 

elliptic curve discrete logarithm problem (ECDLP). Comparing with the sub-

exponential time it takes to solve the integer factorization problem, it takes fully 

exponential time for today’s best algorithm to solve ECDLP. Therefore, ECC 

delivers much higher security strength per bit than RSA. A typical example is: a 

160-bit key ECC has equivalent level of security to a 1024-bit key RSA [48]. For 

this reason, ECC offers potential reduction in storage space, bandwidth and power 

consumptions, which is very desirable for the security applications in the constraint 

devices such as cell phones, PDAs, and smart cards. 

Due to the advantages of ECC over RSA, a lot of papers have been published 

on the software or hardware ECC implementations, among which the latter one 

provides much higher processing speed and is more suitable for real-time 

applications. The implementation of ECC mainly relies on the operations at three 

levels: the scalar multiplication, the point addition / doubling, and the finite field 

modulo arithmetic. The ECC system based on GF(2n) is widely utilized for its 

simple field arithmetic and efficient scalar multiplication algorithms. Two different 
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coordinates: the affine coordinate and the projective coordinate can be used for the 

ECC where the curve is defined over GF(2n). It was shown in [50][51][52] that the 

projective coordinate is more desirable for hardware implementation because it 

avoids the costly field inversion operation. 

However, the conventional point addition and point doubling algorithms 

conduct the operations in sequential and takes many steps (e.g., 14 steps for point 

doubling and 22 steps for point addition). In this work, we introduce an efficient 

fast architecture for the Lopez-Dahab projective coordinates [49]. By applying 

parallel processing and reusing the field multipliers, the point addition and 

doubling operations can be significantly accelerated, with reasonable hardware 

overhead. 

The Chapter is organized as follows: in Section 7.1 the mathematic 

background of elliptic curve cryptography and arithmetic hierarchy are reviewed. 

Then Section 7.2 describes the projective coordinate and presents its advantages for 

the hardware implementation. In Section 7.3, the fast point operation architecture is 

proposed, and the speedup analysis is given. Finally, the conclusions are drawn in 

Section 7.4 

7.1 Elliptic Curve Cryptography Arithmetic 

7.1.1 Elliptic Curves 

In this work, we will focus on the elliptic curves defined over GF(2n). The 

mathematic foundation of ECC is based on the Weierstrass equation for a non-

super singular elliptic curve. The equation in affine coordinate is given as: 

baxxxyy ++=+ 232 ,                                        (7.1) 
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where )2(, nGFba ∈  and 0≠b . The set of points E(GF(2n))  includes all points (x, 

y), where ∈yx,  GF(2n), and satisfy equation (7.1), together with the infinity point 

O. The set GF(2n) forms an additive abelian group, which is based on the following 

definitions with ),( 11 yxP = , ),( 22 yxQ = , and QP ±≠ : 

Identity:     PPOOP =+=+ . 

Negation:    for ),(, 111 yxxPOP +=−≠  

Point addition: ),( 33 yxRQP ==+   where  )2(, 33
nGFyx ∈ ,  

                    and  axxx ++++= 21
2

3 λλ ,  13313 )( yxxxy +++=λ          (7.2) 

                     with )/()( 2121 xxyy ++=λ . 

Point doubling: ),(2 33 yxRP == , where )2(, 33
nGFyx ∈ , 

                    and 2
1

2
1

2
3 / xbxax +=++= λλ , 33

2
3 1

xxxy ++= λ               (7.3) 

                     with 111 / xyx +=λ . 

The major task of ECC is to compute the scalar multiplication kP, where 

011 kkkkk ll K−=  is a positive integer and P is a point on E(GF(2n)).  The 

computation of kP is performed by applying the “double and add” method: 

∑
−

=
−− +++==

1

0
021 ))2(2(22

l

j
ll

j
j PkPkPkPkkP LL                        (7.4) 

 

This method requires l doublings and wk-1 additions, where wk is the weight of 

binary representation of k. As can be seen from the definition of point addition and 

point doubling, each add operation takes 6 finite field additions, 2 finite field 
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multiplications, 1 square, and 1 inversion, and each doubling operation requires 8 

finite field additions, 2 multiplications, 1 square, and 1 inversion. 

7.1.2 ECC Arithmetic Hierarchy 

The elliptic curve operations are performed at three different layers. As 

discussed above, the top layer computation of ECC is the scalar multiplication, 

which is based on the point addition and point doubling operations. 

 

 

Figure 7.1.  ECC arithmetic hierarchy. 

 

In the middle layer is the point addition and point doubling, which are 

denoted as ECC-ADD and ECC-DOUBLE respectively. At the bottom layer is the 

finite field operations, which include finite field multiplication, finite field addition, 

finite field squaring, and finite field inverse operations.  

The complete ECC arithmetic hierarchy is illustrated in Figure 7.1. 
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7.2 Projective Coordinate based point arithmetic 

7.2.1 Projective Coordinate 

According to the definition of point operations on elliptic curves based on the 

affine coordinate, we observe that both the point addition and the point doubling 

need a finite field inversion, which is very costly for hardware implementation. In 

many finite field arithmetic implementations, the cost-ratio of inversion to 

multiplication is more than 8. Therefore, it is desirable if the inverse operation can 

be avoided. An alternative method to implement the point arithmetic is to use the 

projective coordinate. 

A projective plane of the fixed exponential integers (α, β) over GF(2n) is 

defined by creating an equivalence relation of the triples ),,(~),,( ZYXzyx  if  

there exists   ),2( nGF∈λ  0   and ≠λ  such that we have ),,(),,( ZYXzyx λλλ βα= . 

Every point (x, y) on the affine coordinate can be mapped to the projective plane 

with  )1 ,,(),(: yxyx →φ . From the above definition, every equivalent class of 

the triples on the projective plane 0),,,( ≠ZZYX  can be mapped back to the 

affine point by αZXx /=  and βZYy /= . Currently, there are three popular 

projective coordinates applied to the ECC system, which are: a) the Homogenous 

projective coordinate [51] with α =1 and β =1; 2) the Jacobian coordinate and 

arithmetic [52] with α =2 and β =3; and 3) the Lopez-Dahab projective coordinate 

with α =1 and β =2. In the third case, ZXx /= and 2/ ZYy = .  The computation 

cost comparison of the point arithmetic based on all the three coordinates is shown 

in Table 7.1. 
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TABLE 7.1  COMPARISON OF THE COMPUTATION COST OF POINT OPERATION ON 
DIFFERENT PROJECTIVE COORDINATES 

 Multiplications Squares 

Add 13 1 
Homogeneous 

Double 7 5 

Add 11 4 
Jacobian 

Double 5 5 

Add 10 4 
Lopez-Dahab 

Double 5 5 
 

For practical implementations, the cost-ratio of the GF(2n) multiplier to the 

GF(2n) squaring unit is over 7. Therefore, from the comparison of Table 7.1, the 

point arithmetic based on the Lopez-Dahab coordinate is the most efficient for 

implementations. This work is focused on the L-D point arithmetic. 

7.2.2 Lopez-Dahab point arithmetic 

In the Lopez-Dahab projective coordinate, the point (X, Y, Z) (Z≠0) is 

corresponding to the point (X/Z, Y/Z2) in the affine coordinate, and the elliptic curve 

equation is transformed into the following form: 

42232 bZZaXZXXYZY ++=+ .                            (7.5) 

The point addition formula that does not involve the inversion operation can be 

derived by converting the point to affine projective as x = X/Z and y = Y/Z2 at first, 

then adding the affine points with equation (7.2), and finally clearing the 

denominators. Similarly, the L-D point doubling equation can be derived by 

converting to affined projective, substituting into equation (7.3) and clearing the 

denominators. 
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It should be noted that when using the “double and add” method for the 

scalar multiplication kP, the point P is never modified in all the point addition 

operations. Therefore, the coordinate of P can be further reduced as )1 ,,( 11 YXP =  to 

simplify the computation. As for two distinct points )1 ,,( 11 YXP =  and 

),,( 000 ZYXQ =  on the elliptic curve, the result QPZYXR +== ),,( 222  is 

computed by the following steps [49]: 

EXFBB
XDBBBZA

YGFDDDAYD
GEGBABAYA
FAFDAAaAC
GBGZAEA
FBFCBBAXB

EYGCACZXA

1
2

20

2
2

0
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2
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0
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)(  15.        .7

)( 22.        14.    .6
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 20.      12.          .4
 19. )(  11.         Z .3
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⋅←+←←
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+←⋅←+←
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                  (7.6) 

and QR 2=  is computed as (c =b1/2 is pre-computed, b is the coefficient in (7.5)): 

     10.  )(Z  .5
)(  14.      9.     .4

 13.                8.      .3
 12.  )(  7.    .2
 11.                6.      .1

2

2
2
1

2
1

2
2

22
1

EDDCAA
YDBDAaEXC
BABYDBB
DCDXCBCAcB
DBDCCZA

+←⋅←
+←⋅←←

⋅←←←
⋅←+←⋅←
+←←←

                (7.7) 

7.3 Fast Point Operation Architecture 

For most of the existing point arithmetic implementations based on Lopez-

Dahab projective coordinate (e.g., [53]), the algorithms discussed above were 

implemented in a sequential way. The advantage is that the number of finite field 

arithmetic modules can be reduced to minimum (for example, only one adder, one 

multiplier and one squaring unit are needed for point addition and doubling). 

However, such designs introduce long latency for performing the point operations 
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(the latency of the point doubling is 5TM+5TS+4TA, and the latency of the point 

addition is 10TM+4TS+8TA, where TM, TS, TA denote the latency of the finite field 

multiplier, squaring unit, and adder respectively), which is not desirable for the 

applications where high-speed ECC implementation is required. 

7.3.1 Fast point doubling architecture 

A popular approach to increase the processing speed (reduce the latency) is to 

apply the parallel processing technique. By introducing more processing units 

which can operate in parallel, the results can be obtained much faster. 

 

Figure 7.2.  Parallel architecture for L-D point doubling. 
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In Figure 7.2, the parallel architecture of the Lopez-Dahab point doubling 

algorithm is shown. The number associated with each module corresponds to the 

step in (7.7). The critical path is indicated in grey color. We can see the total 

latency required to compute Y2 is 3TM+TS+3TA.  Assume the timing cost ratio of TM 

to TA is r1 (usually around 15), TS to TA is r2 (around 2), the total latency ratio of the 

serial architecture of point doubling to the corresponding parallel architecture is 

(5r1+5r2+4)/(3r1+r2+3)=1.78 (when r1=15 and r2=2), which is the speedup we have 

achieved by applying the parallel architecture. 

 

Figure 7.3. Modified parallel architecture for L-D point doubling. 
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Figure 7.3 shows the modified architecture of the parallel architecture for 

point doubling. In this architecture, the Steps 10 and 11 are modified, which is 

indicated as Steps 10* and 11*.  This modification does not change the final result 

of Y2 because the output of Step 11* is the same as Step 11, which equals the sum 

of the output of Steps 3, 8, and 9. However, by changing the order of these 

additions, Step 10* can be overlapped with multiplier 9, thus the critical path length 

becomes 3TM+TS+2TA, which is reduced by the computation delay of one adder, TA. 

And the total speedup becomes 1.81 times. 

 

 

Figure 7.4. Timing schedule of the L-P point doubling. 

 

Based on the above architecture, totally 5 multipliers, 5 squaring units, and 4 

adders are used for the fully parallel architecture. However, this is not necessary. 

From Figure 7.3 we can see that at the same time instance, at most two multipliers 

are working in parallel. Similarly, at most two squaring units are needed at the 
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same time. If the point doubling implementation has been pipelined and well 

scheduled, we can use the schedule shown in Figure 7.4(a) to minimize the number 

of finite field arithmetic units, thereby reduce the hardware cost to two multipliers, 

two squaring units and one adder. 

Moreover, by using the schedule shown in Figure 7.4(b), we can save another 

squaring unit. In this case, the latency is increased by TS, which becomes 

3TM+2TS+3TA., and the overall extra hardware is only one GF(2n) multiplier. 

7.3.2 Fast point addition architecture 

Figure 7.5 shows the parallel architecture for the Lopez-Dahab point addition 

arithmetic. Similarly, the number associated with each module corresponds to the 

step in equation (7.6). The critical path is indicated in grey color (note the Steps 19 

and 21 can be regarded as part of the critical path instead of Steps 18 and 20). The 

total latency to calculate Y2 is 4TM+6TA. Using the same notation as the point 

doubling discussed above, the total latency ratio of the serial architecture of point 

addition over the parallel point addition architecture is (10r1+4r2+8)/ (4r1+6) =2.52 

(when r1=15 and r2=2), which is the speedup achieved by using the parallel 

architecture for point addition. 

From Figure 7.5, we can see 4 multipliers working in parallel are needed for 

the point addition operation, and only one squaring unit is necessary. In addition, 

since Step 18 and Step 19 are executed in parallel, we need two adders for this 

architecture.  However, we can delay the addition in Step 19 by TA, which means 

Step 19 starts after Step 18 completes. In this way, only one finite field adder is 

needed. Thus, the total latency is increased by TA. Considering the GF(2n) adder is 
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a number of XOR gates in parallel, whose latency is very small, the re-scheduling 

discussed above becomes meaningful. 

 

 

Figure 7.5.  Parallel architecture for L-D point addition. 

 

For an efficient L-D coordinate based point addition design, we can reduce 

the number of multipliers from 4 to 2. The method is to advance the multiplication 

of Step 1 by TM−TS, which makes Step 1 complete before Steps 4 and 5 begin. 
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Also, we need to delay the multiplications of Steps 16 and 17 so that they start after 

the completion of Step 10. For such a modified architecture, at most two multipliers 

are working in parallel at any time instance. Thereby the total number of 

multipliers is reduced to two. And the total latency becomes 6TM+4TA, which offers 

another trade-off between the area and speed.  When r1=15 and r2=2, the speedup 

achieved is 1.77. In this case, the major hardware overhead is one GF(2n) multiplier 

compared with the sequential implementation. The schedule for this modified 

scheme is shown in Figure 7.6. 

 

 

Figure 7.6.  Timing schedule of the modified L-P point addition. 

 

7.4 Conclusions 

In this work, a fast architecture for the ECC point arithmetic (point doubling 

and point addition) based on the Lopez-Dahab projective coordinate is presented. 

This proposed architecture can significantly speed up the ECC computation with 

reasonable hardware overhead, which is essential for the applications where high-

speed systems are required. 
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8 EFFICIENT ARCHITECURE FOR THE TATE PAIRING IN 

CHARACTERISTIC THREE 

Identity-based cryptography (IBC) is a public-key cipher introduced by 

Shamir [62] in 1984. In IBC, the public key is derived from user identity (an 

arbitrary string) instead of from a relationship with private information as in 

conventional schemes, such as RSA. The corresponding private key is created by 

binding the user identity with a trusted third party, called private key generator’s 

secret key. This system allows any party to encrypt messages or verify signatures 

with no prior knowledge on the public keys of other parties. This is extremely 

useful in cases where pre-distribution of authenticated keys is inconvenient or 

infeasible due to technical restraints. Moreover, such scheme presents a rich set of 

functional and security characteristics which are difficult or impossible to realize 

by other ciphers. Modern implementations of IBC include Cock’s quadratic 

residues scheme [63], Bohen/ Franklin [64] and Sakai’s [65] pairing schemes. The 

pairing schemes are based on bilinear mapping over elliptic curves and are faster 

for practical implementation than the quadratic residues scheme. There exist two 

types of bilinear mapping: the Weil pairing and Tate pairing. Among these two 

algorithms, the Tate pairing has lower computational cost. Nevertheless, its 

complexity is still very high.  Normally a pairing operation takes much longer 

(about 5-10 times as long) to compute than the point multiplication in elliptic curve 

cryptography. Prior implementations of the Tate paring are mainly in software 

domain [67]. These implementations can only run at low speed due to the high 

complexity. In order to employ IBC in practical applications, hardware 
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implementations must be employed. A few previous efforts have been devoted to 

hardware implementation of Tate pairing. The notable ones include the FPGA 

hardware accelerator for Tate pairing over GF(3m) presented in [68]. In order to 

boost the speed of IBC to practical level, efficient and high-speed hardware 

implementations of Tate paring need to be developed. 

The best method of Tate pairing calculation before 2002 was presented by 

Miller in [71]. In 2002, Galbraith [74] and Barreto [75] greatly simplified the 

pairing computation by introducing the triple-and-add BLKS algorithm in 

characteristic three. The BLKS algorithm was further modified and developed as 

the Duursma-Lee algorithm [69] and the Kwon-BGOS algorithm [70]. Through 

exploring the intrinsic property of the Duursma-Lee algorithm, we propose 

complexity-reducing schemes and an overlapped processing technique. Compared 

with conventional sequential implementations, the proposed architecture can 

achieve over 2 times speedup. The proposed method can be also applied to the 

Kwon-BGOS algorithm, and similar speedup can be obtained. 

This Chapter is organized as follows: In Section 8.1, the Tate pairing and the 

Duursma-Lee & Kwon-BGOS algorithms are introduced. Section 8.2 presents the 

overlapping technique and its application to the Tate pairing algorithm. The 

processing gain analysis is also provided in this section. At the end, conclusions are 

drawn in Section 8.3. 

8.1 Tate Pairing Algorithms 

In this section, a brief introduction of the Tate pairing in characteristic three 

and the Duursma-Lee & Kwon-BGOS algorithms will be given. 
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8.1.1 Tata Pairing 

Let E(GF(q)) be an elliptic curve defined over finite field GF(q), where q=3m 

and m is a prime number. Let l be a positive integer coprime to q. In practice, l is 

usually picked as a large prime such that l divide #E(GF(q)) and l2 does not divide 

# E(GF(q)). Here #E stands for the number of rational points on the elliptic curve. 

Let k be the smallest integer which satisfies l | qk-1. Actually k is the embedding 

degree of the curve with respect to l. Let GF(qk) be the smallest extension field of 

GF(q) which contains the l-th root of unity. Also, let E[l](GF(q)) denote the 

subgroup of E(GF(q)) of all points of order dividing l (l-torsion) and similarly for 

the degree k extension of GF(q). Tate pairing of order l is defined in terms of 

rational functions over the points of an elliptic curve evaluated in a divisor. It is a 

bilinear mapping between E[l](GF(3m)) and E[l](GF(3km)) to the element of the 

multiplicative subgroup of GF(3km), i.e., GF(3km)*. Such a bilinear mapping can be 

denoted by: 

E[l](GF(3m)) × E[l](GF(3km)) →  GF(3km)* .                       (8.1) 

It is only defined up to lth power of unity. The quotient group GF(3km)* / (GF(3km)*)l 

is isomorphic to the elements of order l in GF(3km)* by raise them to the power 

(3km-1)/ l. Now consider the following super-singular elliptic curve on a finite field 

of characteristic 3: 

E(GF(3m)) : y2 = x3 – x + b,   b = ± 1.                              (8.2) 

Similar to [68], we set the embedding degree k to 6. Consider P=(x1,y1) and 

Q=(x2,y2) ∈  E[l](GF(3m)), i.e., x1, y1, x2, y2 ∈  GF(3m). The pairing is efficiently 

computed in practice by considering the point ))3(]([)( 6mGFlEQ ∈φ , where φ  is a 

distortion map of (8.2). The distortion map is defined as 
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),()),(()( 2222 yxyxQ σρφφ −== ,               (8.3) 

where ρ, σ ∈  GF(36m) such that ρ3 – ρ – b=0 and σ2+1=0. And GF(q6) is the 

quadratic extension GF(q6) = GF(q3)[σ] /    [σ2+1], GF(q3)= GF(q)[ρ]/ [ρ3 – ρ – b]. 

8.1.2 Duursma-Lee & Kwon-BGOS algorithms 

Duursma and Lee introduced in [69] a faster Tate pairing algorithm using a 

group of order l = q3 + 1 = 33m +1 instead of an order that divides q3 + 1. In this 

case, a closed formula for the mapping of equation (8.1) was found.  The pseudo 

codes for the Duursma-Lee algorithm are shown in Algorithm 1. 

Algorithm 1. Duursma-Lee algorithm for calculating 
Tate pairing in characteristic three 
Input : point P=(x1,y1), Q=(x2,y2) 
Output: *)(/*)())(( 36 qGFqGFQff P ∈= φ  

1. begin 
2.    f ← 1 
3.  for i =1 to m do  
4.     3

11 xx ←  
5.     3

11 yy ←  
6.     bxx ++← 21μ  
7.     2

21 μσλ −−← yy  
8.     2ρμρλ −−←g  
9.     gff ⋅←  
10.     3/1

22 xx ←  
11.     3/1

22 yy ←  
12.    end for 
13.    return f 
14.  end 

 

Another widely used fast Tate pairing algorithm is the Kwon-BGOS 

algorithm. The details of this algorithm are given in Algorithm 2. 
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Algorithm 2. Kwon-BGOS algorithm for calculating 
Tate pairing in characteristic three 
Input : point P=(x1,y1), Q=(x2,y2) 
Output: *)(/*)())(( 36 qGFqGFQff P ∈= φ  

1. begin 
2.    f ← 1 
3.   3

22 xx ←  
4.   3

22 yy ←  
5.   mbd ←  mod  3 
6.  for i =1 to m do  
7.     9

11 xx ←  
8.     9

11 yy ←  
9.     dxx ++← 21μ  
10.     2

21 μσλ −−← yy  
11.     2ρμρλ −−←g  
12.     gff ⋅← 3  
13.     22 yy −←  
14.     3  mod )( bdd −←  
15.    end for 
16.    return f 
17.  end 

 

As discussed in [69][70], to obtain the compatible result with that for the 

BKLS  algorithm [75], the output of algorithm 1 and 2 should be powered to (36m-

1)/ l=33m+1. 

8.2 Efficient Tate Pairing Architecture 

It can be observed from Algorithm 1 and 2 that both the Duursma-Lee and 

Kwon-BGOS algorithms for Tate pairing algorithms are very complicated. The major 

computations in these algorithms are finite field addition/subtraction, 
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multiplication, cubing and cube root.  The speed can be achieved by these 

algorithms is limited by the m iterative loops. 

8.2.1 Efficient arithmetic over finite fields of characteristic 3 

In GF(3m), using polynomial basis representation for field elements leads to 

faster implementation of finite field operations than using normal basis 

representation [68]. An element in GF(3) can be represented by a digit in the set {-

1, 0,1}, which can be encoded into two bits with the most significant bit as the sign 

bit (10 for -1, 00 for 0, 01 for 1). The operations in GF(3) can be easily 

implemented by simple combinational logic, or 4-input look-up-tables. Moreover, 

the finite field GF(3m) is isomorphic to GF(3)/f(x), where f(x) is a irreducible 

polynomial of degree m over GF(3). Therefore, each element of GF(3m) can be 

represented by an m-dimension  vector over  GF(3), i.e., 2m bits binary vector. 

The addition/subtraction over GF(3m) can be realized digit-wise with m 

adders in GF(3), which can be completed within one clock cycle. As mentioned 

above, the sign of element in GF(3) can be inverted by swapping the bits. The 

architecture of GF(3) adder/subtracter is show in Figure 8.1. GF(3m) adder is m 

such adder in parallel. 

The GF(3) adder logic is defined as: ) | ( ̂ ) | ( 1221 babat = ,  tbac  ^ ) | ( 221 = , 

tbac  ^ ) | ( 112 = . 

Using polynomial basis representation, the cubing in GF(3m) can be 

implemented by inserting one zero between each adjacent coefficient then applying 

modulo reduction by f(x) to the corresponding polynomial. This process can be also 
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completed in one clock cycle. As for the 9th power (Steps 7&8 of algorithm two), 

the operation can be done with two cubing units. 

 

 

Figure 8.1.  GF(3) adder/subtracter unit. 

 

The cubic root function can be realized using the method introduced by 

Barreto [72], as long as that the field polynomial 1)( −+= wm xxxf  

satisfies 3) (mod wm ≡ . In this case, only bit addition and shift are involved. 

The most complicated units in the Tate pairing algorithms are the 

multiplications, which includes the multiplications in GF(3m) and GF(36m) (Steps 7, 

8, 9 in Algorithm 1, and steps 10, 11, 12 in Algorithm 2). The multiplication of two 

elements A, B in GF(3m) can be performed in a digit-serial way: all bits in operand 

A are processed in parallel, while operand B is split into ⎡ ⎤Dm /  groups (each 

group has D digits) and processed serially. Using this digit-serial computation, each 

multiplication takes ⎡ ⎤Dm /  clock cycles, and the critical path consists of one m by 

D digits finite field multiplier. The latency of this multiplier is ⎡ ⎤ mDm tDmt ⋅= / , 

where mDt is the propagation delay of the m by D digit finite field multiplier, and is 
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also the critical path of the whole Tate pairing module. The multiplication in 

GF(36m) can be decomposed into operations in  GF(3m) by using composite field 

arithmetic. According to Karatsuba’s work [73], a GF(36m) multiplier can be 

implemented by 56 adders and 18 GF(3m) multipliers connected in parallel. Hence, 

the latency for this unit is amm ttt +=6 , where ta stands for the latency introduced 

by those adder arrays. The block diagram is shown in Figure 8.2. 

 

 

Figure 8.2.  Block diagram of the GF(36m) multiplier. 

 

Modulo reduction is required in Steps 5 and 14 of Algorithm 2. Considering 

16 ≡ 1 (mod 3), Step 5 operation can be implemented in an efficient way as shown 

in Figure 8.3(a): 
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Figure 8.3.  Fast mod 3 architecture. 

 

Assume d has 12 bits and they are divided into groups of 4 bits: d[11:8], 

d[7:4] and d[3:0] (Other length of d can follow similar approach. For instance, if d 

has 15 bits, it can be grouped into d[14:12], d[11:8], d[7:4] and d[3:0]). Then 

d=d[11:8]*256+d[7:4]*16+d[3:0]. Hence, d≡d[11:8]+d[7:4]+ d[3:0] (mod 3). This 

addition can be implemented by 3-to-2 compressor shown in Figure 3(a). Each digit 

in the results e and f, has 4 bits. Since 16*f3≡f3 (mod 3), the bit f3 can be moved to 

the least significant digit (LSD) position. Therefore, d ≡ e[3:0]+f[2,1,0,3] (mod 3). 

To speed up the addition, we use two parallel 4-bit carry look-ahead adders (CLA) 

to carry out the addition as shown in Figure 8.3(b). If e+f has no carry out, the 

result of the top CLA is selected by the MUX. Otherwise, the result of the bottom 

CLA (e+f+1) is selected.  The 4-digit output from the CLA is then sent to a 4-input 

look-up-table to obtain the ∈ 3) mod (d GF(3) result, which is represented by 2 bits. 
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The modulo reduction in Step 14 can be implemented in an easier way. Since 

}1,0,1{−∈d  and  1±=b , a 3-input look-up-table can be used for  this operation, as 

shown in Figure 8.3(c), e.g., when 1 ,1 =−= bd , it outputs 13 mod )( =− bd . 

8.2.2 Algorithmic simplifications 

Following the Duursma-Lee algorithm directly, the implementation of Step 7 

needs two GF(3m) multipliers, one GF(36m) multiplier, and one GF(36m) adder. In 

addition, Step 8 needs another GF(36m) multiplier and two GF(36m) adders. These 

computations have very high hardware complexity. 

It can be derived that Steps 7 and 8 can be combined into one step by using 

an approach similar to that proposed in [76]: 

22
21 ρμρμσ −−−−← yyg  .                         (8.4) 

Using the property of the distortion mapping: ρ, σ ∈  GF(36m) such that ρ3 – ρ 

– b=0 and σ2+1=0,  and the field extension GF(36m) = GF(33m) [σ] / [σ2+1], 

GF(33m)= GF(3m) [ρ]/ [ρ3 – ρ – b], the polynomial basis of GF(36m) can be 

expressed as 

},,,,,1{},,,,,{ 22543210 σρρσρρσββββββ = .           (8.5) 

By using this basis, (8.4) can be re-written as 

54321
21

0222
21 )0()1()0()()()( ββββμββμρμρμσ +−++−+−+−=−−−−← yyyyg     (8.6) 

Accordingly, Steps 7 and 8 can be merged into a single step, which only requires 

two GF(3m) multiplications. Compared with the conventional implementation, this 

modified approach saved two GF(36m) multiplier (which equals 18 GF(3m) 

multipliers and 56 GF(3m) adders), and two GF(36m) adders (which is equivalent to 

6 GF(36m) adders each). 
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8.2.3 Fast Tate pairing architecture 

It can be observed from Algorithm 1, the Duursma-Lee algorithm consists of 

the initialization phase (Steps 1-3) and the m-iteration loop phase (Steps 4-11). The 

loop phase accounts for the major part of the overall complexity. Speeding up the 

loop phase is critical to achieve high speed implementation of the Tate paring. In 

previous software and hardware co-processor design [68], the computations in the 

loop are carried out serially, as shown in Figure 8.4(a). The serial computation can 

only achieve very limited throughput. In order to increase the throughput to next 

higher level, novel schemes need to be developed to achieve parallel computation. 

 

 

Figure 8.4. (a). Conventional processing scheme for the Duursma-Lee algorithm. 
(b) Overlapped processing scheme. 

 

We propose to schedule the computations in the Duursma-Lee algorithm in an 

over-lapped manner. Our proposed scheduling scheme is illustrated in Figure 

8.4(b). The major modifications made in our scheme are as follows: 
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(a) As discussed earlier, Step 7 and Step 8 are merged as Step 7-8 to reduce 

complexity and increase speed. 

(b) Since there is no data dependency between Step 5 and 6, they can be 

carried out simultaneously. Accordingly, one clock cycle processing 

time can be saved. Step 5 only needs the result from Step 4. Hence Step 

5 can start right after Step 4. In addition, the cubing unit can be shared 

by Step 4 and 5 in a time-multiplexed way. Hence, only one cubing unit 

is needed. 

(c) Steps 10 and 11 are independent of Step 9 and the merged Step 7-8. In 

addition, Step 7-8 and Step 9 involve the finite field multiplication, 

which usually takes much longer time than the cubic root operation 

(simplified as the finite field addition and shifting). For this reason, Step 

10 and 11 can be carried out simultaneously with Step 7-8 and 9, 

respectively. Similarly, Step 10 and Step 11 are carried out serially. 

Hence one cube root unit can be shared by these two steps. 

8.2.4 Speed analysis and comparison 

Table 8.1 and 8.2 shows the number of clock cycles needed for each iteration 

of Duursma-Lee algorithm by using sequential processing and our proposed 

overlapped processing, respectively. C stands for the extra clock cycles introduced 

by the extra adders in the Karatsuba decomposition of multiplication in GF(36m) 

(normally when D>=5, C=1.When D<=4 C=2). From Table 8.2, it can be observed 

that the sequential implementation takes 7+3C+4* ⎡ ⎤Dm /  cycles per iteration. 

Assume m=97 and D=8, which are typical values for IBC. The sequential processor 
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took 62 clock cycles per iteration, and it takes 97*62=6014 clock cycles in total. 

Comparatively, using our proposed overlapped scheme, 2*(1+ ⎡ ⎤Dm / )+C = 29 

cycles are needed per iteration and only 97*29=2813 cycles are required in total.  

Therefore, our proposed overlapped scheme can achieve a speed up of 

6014/2813=2.13. In addition, no extra hardware is introduced by our proposed 

scheme. 

TABLE 8.1 NUMBER OF CLOCK CYCLES FOR ONE ITERATION OF THE DUURSMA-LEE 
ALGORITHM (SEQUENTIAL PROCESSING) 

Step Operation Clock cycles 

4 3
11 xx ←  1 

5 3
11 yy ←  1 

6 bxx ++← 21μ  1 

7 2
21 μσλ −−← yy  2* ⎡ ⎤Dm / +C+1 

8 2ρμρλ −−←g  ⎡ ⎤Dm / +C+1 

9 gff ⋅←  ⎡ ⎤Dm / +C 

10 3/1
22 xx ←  1 

11 3/1
22 yy ←  1 

TABLE 8.2. NUMBER OF CLOCK CYCLES FOR ONE ITERATION OF THE DUURSMA-LEE 
ALGORITHM (OVERLAPPING PROCESSING) 

Step Operation Clock cycles 

4 3
11 xx ←  1 

5, 6 3
11 yy ← , bxx ++← 21μ  1 

7-8, 
10 

22
21 ρμρμσ −−−−← yyg , 3/1

22 xx ← ⎡ ⎤Dm /  

9, 11 gff ⋅← , 3/1
22 yy ←  ⎡ ⎤Dm / +C 
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Similarly the overlapped processing scheme can be applied to the Kwon-

BGOS algorithm as shown in Figure 8.5. It can be derived that similar speedup can 

be also achieved in this case without introducing extra hardware requirement. 

 

 

Figure 8.5.  Overlapped processing scheme for the Kwon-BGOS algorithm. 

 

8.3 Conclusions 

In this Chapter, efficient computation architectures and an overlapped 

processing scheme have been proposed for the Tate pairing over finite field of 

characteristic three. The proposed schemes can significantly accelerate the modern 

Tate pairing algorithms such as Duursma-Lee and Kwon-BLGS algorithms without 

introducing hardware overhead, which are very useful for the dedicated hardware 

implementation of the Identity Based Cryptography. 
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9 CONLUSIONS 

 In this research, we have proposed high-speed low-complexity solutions to 

address various VLSI architecture issues for the MIMO and cryptography systems; 

mainly focus on the MIMO sphere decoder designs (including K-Best SD, 

conventional SD and list sphere decoder), elliptic curve cryptography and Tate 

pairing.  The main contributions are summarized as follows. 

 For the K-Best sphere decoder designs for MIMO systems, we have three main 

contributions.  

 First, we apply the sorted QR decomposition and developed the layer 

reordering K-Best SDA. Moreover, we introduce the dynamic K-Best SDA, which 

applies different K values at each decoding layer. Both methods can significantly 

improve the detection performance or reduce the design complexity. Simulation 

results showed that for our example 4x4 64QAM MIMO system, about 30% 

complexity reduction can be achieved by utilizing these methods. 

 Second, by exploiting the natural partial sorted results coming from the SE 

enumeration, we derive an efficient sorting architecture based on Batcher’s merge 

sort algorithm. Compared with the bubble sorting algorithm, our sorting 

architecture saves around 50% sorting complexity, which effectively solves the 

bottleneck of the K-Best SDA. 

 Third, in Chapter 5 we present the early-pruning K-Best sphere decoder 

scheme. Without sacrificing detection performance, about 55% power consumption 

or computational complexity can be saved by eliminating the survival candidates 
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with relatively large partial Euclidian distances, which are unlikely to become the 

ML solution when the tree searching reaches the bottom layer.  

  Meanwhile, for the conventional sphere decoder, we first propose a parallel SD 

architecture which splits the constellation tree into two sub-trees. Thereby the two 

processing engines can conduct depth-first search and update new radius in parallel. 

Moreover, by exploiting the similarity and interleaving the data streams for both 

processing engines, we introduce the pipeline interleaved SD architecure, in which 

only one PE is needed with very small interleave control logics. Simulations show 

that the new architecture achieves an average throughput speedup of 44% with 

negligible hardware overhead compared with the conventional sphere decoders. 

 In Chapter 6, we introduce some new schemes for list sphere decoder. We first 

change the decoding flow to do the radius updating before list updating which will 

avoid the latency introduced by the radius updating unit. We also proposed a fast 

list updating architecture based on the merging of two partially ordered arrays 

which can compute the new radius in one clock cycle. Finally, we have presented 

an efficient candidate list updating architecture based on the merge sort and binary 

insertion. By reusing the merge unit in radius updating, this architecture can 

achieve a 45% complexity saving compared with tree-type comparator without 

affecting the decoding speed. 

For the elliptic curve cryptography, in Chapter 7, a fast point operation 

architecture on the Lopez-Dahab projective coordinate is introduced. By applying 

parallel processing and hardware reusing, compared with the conventional point 

operation implementations, our architecture can achieve a speedup of 2.5 times for 

the point addition operation and 1.8 times for the point doubling operation with 
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reasonable hardware overhead, which facilitates the design of high-speed ECC 

systems. 

   Finally in Chapter 8, efficient computation architectures and an overlapped 

processing scheme are proposed for the Tate pairing over finite field of 

characteristic three. Compared with conventional sequential implementations, the 

proposed architecture can significantly accelerate (achieve over 2 times speedup) 

the modern Tate pairing algorithms such as Duursma-Lee and Kwon-BLGS 

algorithms without introducing extra hardware complexity, which are very useful 

for the dedicated high-speed hardware implementation of the identity based 

cryptography.  
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