

AN ABSTRACT OF THE DISSERTATION OF

William Curran for the degree of Doctor of Philosophy in Robotics and Computer

Science presented on June 5, 2017.

Title: High-Dimensional Reinforcement Learning with Human Feedback

Abstract approved:

William D. Smart Prasad Tadepalli

State-of-the-art personal robots need to perform complex manipulation tasks to be viable

in complex scenarios. However, many of these robots, like the PR2, use manipulators

with high degrees of freedom. High degrees of freedom are desirable from a functionality

standpoint, but make the learning task more difficult by adding a high-dimensional state

space. The problem is made worse in bimanual manipulation tasks. Our proposed ap-

proach is to scale existing reinforcement learning techniques to learn in high-dimensional

robot control problems.

We propose reducing the state space by using demonstrations to discover a repre-

sentative low-dimensional manifold in which to learn. This allows the agent to converge

quickly to a good policy. We call this Dimensionality-Reduced Reinforcement Learn-

ing (DRRL). However, when performing dimensionality reduction, sometimes important

state information is lost. We extend this work by first learning in a single dimension, and

then transferring that knowledge to a higher-dimensional space. By using our Iterative

DRRL (IDRRL) framework with an existing learning algorithm, the agent converges

quickly to a better policy by iterating to increasingly higher dimensions. IDRRL is

robust to demonstration quality and can learn efficiently using few demonstrations.

We use Principal Component Analysis (PCA) for our linear dimensionality reduc-

tion in DRRL and IDRRL. However, linear dimensionality reduction assumes that the

underlying data can be represented by a lower dimension linear subspace. Robot state

spaces typically include velocities and accelerations, whose equations of motion are inher-

ently nonlinear. Standard linear dimensionality reduction techniques cannot accurately

represent complex nonlinear structures. However, nonlinear dimensionality reduction

techniques are too computationally complex to use online. To overcome these limita-

tions, we introduce a novel approach to dimensionality reduction based on a system of

cascading autoencoders (CAE), producing the new algorithm IDRRL-CAE.

Optimization is useful, but fast learning doesn’t help if the objective function is

deceptive or difficult to define mathematically. In many cases, roboticists may not be able

to predict all scenarios their robots may experience, and thus cannot design an objective

function for every case apriori. In these situations it may be helpful to incorporate

human feedback. To give effective feedback, users need an interface that is intuitive,

time insensitive, and incorporates both fine-grained and coarse feedback.

To incorporate human feedback in our learning, we use timeline interfaces. Timeline

interfaces that allow you to move backward and forward through a video have been

used by video editors for years. They are simple and designed for both non-experts

and video editing experts. These interfaces allow a user to cut, concatenate, rewind,

fast forward, and perform many other tasks on videos. They speed up the editing

process by decoupling the timescale of the editing process from the timescale of the

video being edited. These same concepts can be used in human feedback mechanisms for

robot control systems. Current human feedback mechanisms require the user to quickly

respond to robot actions, work in only discrete spaces, or only allow for either coarse or

detailed feedback. The timeline interface paradigm naturally accounts for fine-grained

state spaces, does not require quick human feedback, allows the user to make both coarse

and fine-grained edits to video, and decouples the speed of the video from the speed of

feedback. In this dissertation we present a proof-of-concept movie reel interface that

uses this timeline interface paradigm.

c©Copyright by William Curran
June 5, 2017

All Rights Reserved

High-Dimensional Reinforcement Learning with Human Feedback

by

William Curran

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of

the requirements for the

degree of

Doctor of Philosophy

Presented June 5, 2017

Commencement June 2017

Doctor of Philosophy dissertation of William Curran presented on June 5, 2017.

APPROVED:

Co-Major Professor, representing Robotics

Co-Major Professor, representing Computer Science

Head of the School of Mechanical, Industrial and Manufacturing Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of my
dissertation to any reader upon request.

William Curran, Author

TABLE OF CONTENTS
Page

1 Introduction 1

2 Background 6

2.1 Reinforcement Learning . 6

2.1.1 Policy . 7

2.1.2 Reward Function . 12

2.1.3 State Transitions . 14

2.2 Dimensionality Reduction . 14

2.2.1 Principal Component Analysis . 14

2.2.2 Sparse Random Projection . 15

2.2.3 Kernel PCA . 16

2.2.4 Dimensionality Reduction for Reinforcement Learning 17

2.3 Transfer Learning . 19

2.3.1 Multi-Task Learning . 20

2.3.2 Inter-Task Learning . 21

2.4 Learning from Demonstration . 21

2.4.1 Data Acquisition . 22

2.4.2 Policy Derivation . 24

2.5 Human Feedback . 27

2.5.1 Human Feedback Mechanisms . 27

2.5.2 Human Feedback Integration . 28

3 Experimental Domains 30

3.1 Mountain Car . 30

3.2 Mario Benchmark Problem . 31

3.3 Swimmers . 33

3.4 Ball Balancing . 34

4 Dimensionality-Reduced Reinforcement Learning 38

4.1 Dimensionality-Reduced Reinforcement Learning 39

4.1.1 Results and Analysis . 41

4.2 Iterative Dimensionality-Reduced Reinforcement Learning 44

4.2.1 Results and Analysis . 48

4.3 PAC-MDP Analysis . 60

TABLE OF CONTENTS (Continued)
Page

4.3.1 Computational Complexity . 60

4.3.2 Space Complexity . 61

4.3.3 Sample Complexity . 61

4.4 Cascading Autoencoders for IDRRL . 62

4.4.1 Dimensionality Reduction Requirements for Learning 62

4.4.2 Proposed Neural Network Constructions 63

4.4.3 Results and Analysis . 65

5 Movie-Reel Interface 70

5.1 Timeline Interface Paradigm . 70

5.2 Movie-Reel Annotation . 70

5.3 Results and Analysis . 73

5.3.1 Removing Local Maxima . 73

5.3.2 Personalized Feedback . 76

6 Conclusion 78

Bibliography 81

LIST OF FIGURES
Figure Page

1.1 One iteration of the DRRL algorithm. 2

2.1 Tile Coding [43] . 12

2.2 The standard structure of a feedforward artificial neural network with one

hidden layer. 18

2.3 The structure of a simple autoencoder. An autoencoder projects (encodes)

the input space into a smaller set of neurons (code), then reconstructs

its own inputs to find the projection error (decoder). Once trained, the

neural network no longer needs the decoder section and users retain only

the encoder section. 19

3.1 Mountain Car. An underpowered car learns to drive up a steep hill by

using a shorter hill to build up enough inertia. 31

3.2 A screenshot of Mario. 32

3.3 N-link swimmer. The swimmer must learn to leverage the viscous friction

of the water to move quickly to the goal. 34

3.4 Simulated Yaskawa Motoman MH5F Arm balancing a simulated ball (green)

on a frictionless plane (orange). 36

3.5 Physical Yaskawa Motoman MH5F Arm balancing a ball bearing on an

.25m x .5m acrylic sheet. 36

4.1 One iteration of the DRRL algorithm. 39

4.2 The emphasis of each feature relative to the principal component. 42

4.3 Results with lower-dimension manifolds. PCA n represents projecting the

state space to a n-dimensional space. Lines in bold are experiments that

performed better or equal to learning with the full state. Dimensions

greater than 5 performed similarly to the full state space, and were not

included for clarity. Error bars are the variance over 100 statistical runs. . 43

LIST OF FIGURES (Continued)
Figure Page

4.4 We compare Q-Learning to Q-Learning combined with DRRL using good

quality demonstrations. Q-Learning combined with DRRL converged

faster to an optimal solution when learning in the 2 and 3 dimensional

manifold. The single dimensional manifold did not contain enough infor-

mation to learn effectively. 45

4.5 We compare Q-Learning to Q-Learning when combined with IDRRL with

demonstrations of varying quality. IDRRL converged at the same speed

to the optimal solution when given good, bad or random demonstrations.

In Mountain Car 3D IDRRL is robust to suboptimal demonstrations. . . . 49

4.6 In Mountain Car 3D, there is no significant difference in the performance

of IDRRL when using 10,000 or 25,000 demonstration states. 50

4.7 In Mountain Car 4D, Q-Learning with IDRRL scales well with the size of

the state space. 51

4.8 Q-Learning with IDRRL converges faster than standard Q-Learning when

learning a control policy for a 3-link swimmer with 6 state dimensions and

9 actions. 52

4.9 Q-Learning with IDRRL explored half as many states as Q-Learning alone.

This explains the increase in learning speed we demonstrate in the Swim-

mers domain. 53

4.10 A 6-link swimmer is difficult to control due to an extremely large state and

action space. Q-Learning with IDRRL learns a swimmers control policy

quickly in 12 state dimensions and 243 actions per state. 54

4.11 The simulated robot arm learned to balance the ball for 60 seconds when

learning with IDRRL. With standard Q-Learning, the agent improved,

but could not balance the ball for longer than 8 seconds. 55

4.12 The eigenvalues associated with the ball balancing principal components.

The full state space can mostly be represented within the first 4 dimensions. 56

4.13 A visualization of the ball balancing principal component eigenvectors

weighted by the eigenvalue. The full state space can mostly be represented

within the first 4 dimensions. 57

LIST OF FIGURES (Continued)
Figure Page

4.14 The agent learned to “flick” the ball in the roll direction to remove momen-

tum from the system, and move the ball into the center of the plate. Mean-

while, the pitch cycles remained static throughout with differing heights

in the peaks and valleys. 59

4.15 The CAE dimensionality reduction technique trains one autoencoder per

dimension. The first autoencoder uses the original training data as the

desired output, and each additional autoencoder learns to predict cumu-

lative previous autoencoders reconstruction error. 66

4.16 IDRRL-CAE converges faster than IDRRL-PCA or Q-Learning alone.

This is due to CAE projecting the state space onto a non-linear and

accurate representation. As a baseline we compared to sparse random

projections. 67

4.17 The reconstruction root mean squared error at each dimension for Moun-

tain Car 3D using both PCA and CAE. The RMS of CAE is lower for the

first dimension case, meaning that the learning algorithm will be able to

learn more efficiently in this dimension, and bootstrap the next dimension

with that knowledge. 68

4.18 IDRRL-CAE converges faster than using IDRRL-PCA or Q-Learning

alone. This is due to IDRRL-CAE projecting the state space onto a

non-linear and accurate representation. 69

5.1 The user can drag the timeline (a) to select a subset of data. The toolbar

consists of buttons for rewinding, fast forwarding, playing and pausing (b).

The GUI also displays when messages are received and has visualization

of video streams (c). 71

5.2 We added an annotation button (a) to the toolbar. When the user clicks

this button they can drag over the timeline to annotate areas of the robot

state (b). They can double click on this timeline to assign that robot

state rewards. The user can see how the robot is performing over the

entire execution by looking at the graph (c). We also include a GUI to

visualize the state of the robot so the user can easily give feedback (d). . . 72

LIST OF FIGURES (Continued)
Figure Page

5.3 The robot spawns in a random orientation at the start location (S) and

learns a policy to the goal location (G). Without human feedback, it gets

stuck looping near the goal, but on the other side of the wall (black line).

We give the robot negative feedback for initially moving toward the goal,

incentivizing it to move away from the goal and find the positive rewards

(white line). Plus and minus signs represent the distance-to-goal reward

function of the robot. 74

5.4 When the agent is not given feedback, it is able to easily learn a policy

that leads to an overall high reward, but does not reach the goal. We give

the robot feedback to reduce the value of this local maxima and learn the

correct policy. We include error bars for 50 statistical runs. 75

5.5 The path planning algorithm optimally plans the robot to move close to

the stairs and too closely around the corner (dark line). We consider this

behavior dangerous and give the robot feedback to negatively reinforce

these states. The path planner uses this feedback in its cost function and

plans away from both the stairs and the corner (light line). 77

LIST OF TABLES
Table Page

4.1 The eigenvectors associated with the ball balancing principal components.

The numbers in bold are the primary principal components for the most

representative projections. 58

LIST OF ALGORITHMS
Algorithm Page

1 Reinforcement Learning with Tile Coding Generalization 13

2 Tile Coding Approximation . 13

3 Dimensionality-Reduced Reinforcement Learning 40

4 Iterative Dimensionality-Reduced Reinforcement Learning 47

Chapter 1: Introduction

Our ultimate goal is to deploy personal robots into the world, and have members of

the general public retask them without having to resort to explicitly programming them.

Manipulation in the real world is an essential task for personal household robots. Robots

designed for manipulation, such as the PR2, are constructed with high degrees of freedom

to allow them to perform complex motions. For example, the PR2 robot has two 7

degree-of-freedom arms. When learning position and velocity control, this leads to a 14

dimensional state space per arm. Precise execution of manipulation tasks are crucial for

these robots to be viable for personal use, but presents a challenging control problem.

A classical control approach would include modeling the robotic system and leverag-

ing this model to move the robot to a desired target state. However this presents several

problems when the robot is sufficiently complex. Dynamics models are not always avail-

able or sufficiently accurate. If they are available, classical controls approaches may still

not be able to offer an analytical solution. Furthermore, even when a model and an an-

alytical solution are available, the application of this model may be too computationally

complex for real-time control [38, 60, 106].

Learning from demonstration (LfD) methods learn a policy using examples or demon-

strations given by a human to speed up learning a custom task [6]. However, these

demonstrations must be consistent and accurately represent solving the task. These

methods also solve for a specific complex task, rather than solve for general control [6].

In addition, it is often necessary to give tools to a user who wishes to modify how the

robot is executing a task. There are many scenarios in which a robot has learned an

optimal trajectory with respect to an optimization function, but not with respect to

human preference. In this dissertation we present two approaches to directly address the

problems of learning good policies with reinforcement learning in high-dimensional state

spaces and incorporating human feedback in reinforcement learning policies.

The first step in our research goals is to develop an efficient method for teaching the

robot. Reinforcement learning provides a much faster implementation because it offers

model-free reactive control. It can be used in many ways relevant to robot tasks, includ-

2

Figure 1.1: One iteration of the DRRL algorithm.

ing teaching a robot new skills that a human cannot demonstrate, finding novel ways to

reach human-defined goals, and finding solutions to complex dynamics problems with no

analytic formulation [65]. Though reinforcement learning offers a fast and flexible solu-

tion to finding robotic movements, it can be difficult to apply in the high-dimensional

spaces commonly found in robotics. High-dimensional solution spaces significantly in-

crease the time and memory requirements of many learning algorithms, and performance

can suffer when the solution space cannot be fully explored [57].

We introduce two algorithms: Dimensionality-Reduced Reinforcement Learning (DRRL)

and Iterative DRRL. In DRRL we use demonstrations to compute a projection of the

state space to a low-dimensional subspace. In each learning iteration, we project the cur-

rent state into this subspace, compute and execute an action, project the new state into

the subspace, and perform a reinforcement learning update (Figure 1.1). This general

approach has been shown to reduce the exploration needed and accelerates the learning

rate of reinforcement learning algorithms [14, 27].

By learning using DRRL, the agent can learn quickly in the small low-dimensional

subspace. However, this leads to a critical trade-off. By projecting onto a low-dimensional

manifold, we are discarding potentially important data. By adding DRRL to an existing

algorithm, we show that the robot can quickly converge to a good policy much faster.

3

However, since DRRL does not represent all dimensions, it could converge to a subopti-

mal policy.

In many learning domains, poor policies are undesirable. In robotics in particular,

bad controllers can damage the robot. We propose a novel framework, IDRRL, combining

learning from demonstration techniques, dimensionality reduction, and transfer learning.

Instead of learning entirely in one manifold, we iteratively learn in all subspaces by using

transfer learning. The robot can quickly learn in a low-dimensional space d, and transfer

that knowledge from d dimensions to the d + 1 dimensional space using the known

mapping between the spaces.

Our novel approach is a framework to improve other learning algorithms when work-

ing in high-dimensional spaces. It combines the speed of low-dimensional learning and

the expressiveness of the full state space. We demonstrate DRRL and IDRRL converges

quickly and to a better policy than policies learned only in the full dimensional space.

We show this in the Mountain Car domain [41], a common benchmarking problem, the

Swimmers domain [28], an abstraction of a robot control problem, and a Yaskawa Mo-

toman MH5F robotic arm learning to balance a ball bearing on an acrylic plate.

Our early work used Principal Component Analysis (PCA) for its dimensionality

reduction technique. Although this technique worked well, it did not capture the non-

linearities involved in complex robot state spaces. Alternative non-linear dimensionality

reduction techniques were far too computationally expensive to use in this learning frame-

work. This limited the performance of IDRRL when dynamics were highly nonlinear.

We introduce a novel non-linear and fast dimensionality reduction technique using

a cascade of autoencoders. We then use this to extend IDRRL to handle nonlinear

dynamics. We demonstrate the learning speed increase when a Q-learning algorithm is

augmented with IDRRL in the Mountain Car domain and the Swimmers domain.

The second step of our research is to develop an effective mechanism to modify the

objective functions our learning algorithms use. Formulating robot movement in terms

of an objective function is a common approach in robotics. Both reinforcement learning

and path planning optimize trajectories over these functions to perform many robot tasks

[33, 42, 63]. In controlled scenarios, roboticists can easily define these functions since

robots need to minimize predictable parameters, like power usage, or distance-to-goal.

However, in some situations, the exact objective function may not be clear. Or,

the outcome of the optimization might not result in a desirable trajectory because of

4

unforeseen interactions. To alleviate this issue, we believe objective functions need to

consider human preference and avoid locally optimal solutions, but these concepts are

difficult to define mathematically. In many cases roboticists may not be able to predict

all scenarios their robots may experience, and thus cannot design an objective function

for every case apriori. Human feedback can be incorporated to guide robot behavior in

unexpected scenarios.

This dissertation proposes a style of tool humans can use to give this feedback. Many

current feedback mechanisms only use high-level feedback such as voice or drawings,

which are not detailed enough for fine-grained feedback [16, 21], do not account for

continuous spaces [112], or require the user to give time-sensitive feedback [46]. In

this work, we introduce a new interface design for human feedback that leverages a

timeline interface paradigm. This paradigm has exited for years in non-linear video

editing systems [54].

Non-linear video editing systems employ a timeline interface paradigm to allow users

to make edits to film at any point and scan through the video easily. This interface

decouples the speed of the video from the speed of the feedback, allowing for faster

editing. It features multiple levels of feedback, so the user can step through a timeline of

the video and make fine adjustments to small parts of the video or coarse adjustments to

large sections. In this work, we use this timeline interface to allow the interactive design

of objective functions.

This timeline interface paradigm naturally accounts for fine-grained state spaces,

since video is typically at 30-60 frames-per-second. It also allows the user to scan through

a video by fast forwarding, rewinding, and pausing, removing the need to quickly react

as the robot is executing. Users can slowly step through the robot execution, and give

fine-grained feedback, or choose a large area of time and give general feedback.

In this dissertation, we implement a proof-of-concept user interface using the timeline

interface paradigm. We test this interface in a deceptive learning problem. Deceptive

learning scenarios are standard reward design problems in which the agent must navigate

through many negative rewards to find the solution [75]. The agent in this deceptive

problem needs human feedback to modify its objective function to reduce the local

maxima. We also use our interface to modify a planned path associated with dangerous

navigation. In this problem, an agent plans a path close to a descending stairway and

around a sharp corner. A natural human preference is to incentivize the robot to stay

5

away from stairs. We use our interface to incorporate this feedback in the path planner’s

objective function.

The research objectives of this work are to create an end-to-end policy learning and

policy feedback system. We wish to scale existing reinforcement learning techniques to

learn in high-dimensional robot control problems and then incorporate human feedback

in those objective functions to intelligently guide learning.

6

Chapter 2: Background

In our work there is a depth of existing literature we leverage. Our dimensionality-

reduced reinforcement learning algorithms use concepts from the field of reinforcement

learning, dimensionality reduction, transfer learning and learning from demonstration.

Our timeline interface work use ideas from classic video editing techniques to fix many

of the issues we discuss here in existing human feedback mechanisms.

2.1 Reinforcement Learning

Reinforcement learning is a tool within the field of multiagent or single-agent learning

where agents take an action, observe the environment, and receive a reward based on

the new environment [103]. Reinforcement learning addresses the problem of finding an

optimal policy, π∗(s, a) = P (a|s), that maximizes a reward function, R:

J(π) =
∑
s,a

µπ(s)π(s, a)R(s, a) (2.1)

where µπ(s) is the probability distribution over policy π (Section 2.1.3).

To develop this optimal policy, reinforcement learning uses the current state of the

agent, s, the action taken, a, the resultant state, s′, and a reward corresponding to the

system-level success or failure of the state and action, R.

In our reinforcement learning approach, we use the standard formulation of MDPs

[57]. An MDP is a 4-tuple 〈S,A, T,R〉, where S is a set of states, A is a set of actions,

T is a probabilistic state transition function T (s, a, s′), and R is the reward function

R(s, a). Reinforcement learners can learn with and without a model of the environment.

In this work we use stateful reinforcement learning.

There are three main aspects when defining a stateful reinforcement learner: the

policy, the reward function, and the state transitions.

7

2.1.1 Policy

The reinforcement learner’s policy represents the actions an agent should take in each

state. This policy is computed either by a value function representing the quality of a

particular action within the state, or a direct search through the policy-space:

a = π(s) (2.2)

2.1.1.1 Value Function

Learning algorithms based on value functions estimate a value function V π(s) that com-

putes the long-term reward of state s to derive a policy π(s) [58]. There are two common

value function-based methods to estimate V π(s), policy iteration and temporal difference

methods.

2.1.1.2 Policy Iteration

Policy iteration and value iteration are a model-based approaches that require the tran-

sition probabilities T (s′, a, s) (the model) and the reward function R(s, a) to calculate

the value function. Policy iteration consists of alternating between policy evaluation and

policy improvement. Policy evaluation updates the value function by visiting each state

in the current policy, and updating the estimate of V (s) [18]:

V π
i (s)← R(s, π(s)) + γ

∑
s′∈S

T (s, π(s), s′)V π(s′) (2.3)

this update is based on the current value estimates of the successor states V π(s′), the

state transition probabilities T (s, π(s), s′), the current policy π, the reward function

R(s, π(s)) and the discount factor γ. After the policy is evaluated, the policy is then

greedily improved by selecting the best action in every state, according to V (s). Policy

evaluation and policy improvement is repeated until the policy has converged.

Value iteration combines the policy evaluation and policy improvement by directly

updating V (s) every time the state changed [18]:

8

V π
i (s)← max

a∈A

[
R(s, a) + γ

∑
s′∈S

T (s, a, s′)V π(s′)

]
. (2.4)

Policy iteration and value iteration are model-based approaches that require the

transition probabilities T (s′, a, s) (the model) and the reward functionR(s, a) to calculate

the value function. Policy iteration consists of alternating between policy evaluation and

policy improvement. Policy evaluation updates the value function by visiting each state

in the current policy, and updating the estimate of V (s) [18]. Policy improvement then

picks the policy considered optimal. Learning stops when policy improvement converges.

Policy iteration and value iteration guarantee convergence to the optimal solution,

assuming that we have a model of the environment and infinite time [94]. Both ap-

proaches are nearly exhaustive in the search for an optimal policy, and the time com-

plexity includes the size of the state space and action space. In addition, the model of

the environment must be completely accurate in order to avoid accumulation of error.

This makes policy iteration difficult to perform in the continuous and large state spaces

typically seen in the field of robotics.

Alternatively, temporal difference methods use the reward received at each time step

to calculate the difference between the old estimation of the value function and the new

estimation. One such example is Q-Learning [103]. Q-learning updates of the agents

mapping are based on the reward received. Equation 2.5 show the action-value update:

Qt(st, at)← Qt(st, at) + α(R(st, at, st+1) + γmax
a

Q(st+1, a)−Qt(st, at)) , (2.5)

where Qt(st, at) is the updated state-action value table entry for action a and state s,

maxaQ(st+1, a) is the next-best action, α is the learning rate between 0 and 1 (1 causing

the agent to only take the most recent reward into account and 0 causing no update),

and R(st, at, st+1) represents the reward received this time step for taking action a in

state s. In a static environment, if the α term is chosen too high the agent will have a

hard time finding the best long term policy, and if it is set too low an agent will take a

long time to reach the optimal policy. In a constantly changing environment α needs to

be set to a rate close to the rate of change. If set too low the environment will change

faster than the agent is learning the environment, and if set too high the same problems

9

arise as in the static environment [103].

In contrast to policy iteration approaches, the temporal difference learner does not

perform a search of all successor states. The agent is required to arbitrarily explore

previously unseen states or unused actions. In order to find an optimal policy, the agent

visits as much of the state-action space as possible. This can result in large and sudden

modifications to the current policy. This instability is not desired in robotics, since the

robot can be easily damaged. Cautious exploration must be enforced by either avoiding

significant changes in the policy (enforcing stability) [87], or strictly disallowing the

entering of undesired states [34].

Temporal difference methods also guarantee convergence to the optimal solution, with

the same assumptions of infinite time [94]. Since these methods do not require the search

of all successor states, the computational complexity is much lower. Temporal difference

learning methods are the most widely used methods in reinforcement learning due to

the simplicity, minimal amount of computation, and fewer constraints than alternative

methods [103].

Value function approaches are compact, simple, and have been proven to find an

optimal policy [63] under reasonable conditions. However, in order to obtain these op-

timality guarantees, nearly the complete state-action space must be visited, which is

often computationally intractable in robotics. In addition, the value function must be

discretized when used in a continuous state or action space problem, which can lead to

approximation errors. Approximation errors can lead to errors in the value function,

which can propagate throughout the policy [33].

2.1.1.3 Policy Search

Policy search algorithms are the reinforcement learning approach of choice in robotics

[33, 63]. Policy search methods use parameterized policies, rather than a value function,

essentially performing local explorations through policy space.

Parameterized policies enable reinforcement learning to scale to high dimensional

and continuous action spaces by reducing the space of possible policies. Although the

localized policy search removes the convenient optimality guarantees of value function

reinforcement learning, it includes the benefits of better scalability [33, 63], more intuitive

policy initialization with expert knowledge [88], and stability [12].

10

Given that policy π is parameterized by the set of parameters w, the most general

policy representation is:

π(s) = wT θ(s) (2.6)

where θ(s) is a basis function vector, typically linear in simple problems, and nonlinear

with additional free parameters in more complex problems. Alternatively, policies can

be represented by a function approximation, such as a neural network [48].

Similar to value function approaches, policy search repeats a three step process:

exploration of the state space, evaluation of the policy, and the update of the current

policy. The exploration strategy is an important step in policy improvement for all

reinforcement learning approaches and was discussed in the previous section.

There are two types of policy evaluation when performing policy search, step-based

and episodic. The step-based policy evaluation is identical to the iterative policy eval-

uation approach used in value function learning. The quality of an action is given by

the expected future reward of executing an action in a specific state. Value function

approaches can be used in this case, as well as a Monte-Carlo estimation.

The episodic policy evaluation uses the expected return of the entire learning episode

to update the parameter vector w. Rather than updating the value function associated

with a specific state-action pair, episodic policy evaluation evaluates the policy parame-

ters directly.

Once a policy is evaluated, it needs to be updated based on the resultant evalu-

ation of the state-action pair or the policy parameters. Most policy search research

focuses on improving the policy update step with respect to maximizing sample effi-

ciency, minimizing the number of tunable parameters, and increasing learning stability

[33]. There are many mathematical approaches for policy update, including policy gra-

dient [10, 64, 88, 99, 117], expectation-maximization [62, 78], and information-theoretic

approaches [31, 87].

Policy gradient approaches are direct, in that they directly compute the gradient to

maximize policy performance. The REINFORCE algorithm was one of the first policy

search algorithms, performs well, and computes policy updates without explicitly com-

puting gradient estimates [117]. However, these approaches require the user to specify a

learning rate, which can lead to instability or slow learning if not chosen correctly.

11

Expectation-Maximization methods remove the need for a learning rate. Variational

Inference for Policy Search (VIP) is a typical example. It uses inference to autonomously

determine the exploration rate and learning rate [78] but these approaches can potentially

have an unstable learning process as well as tends to converge to local minima [33].

Information-theoretic approaches are considered the best for policy search, as they

combine the benefits from both policy gradient and expectation-maximization approaches

[33]. Information-theoretic approaches bound the distance between the prior policy and

the new policy at each update step, enforcing stability in the learning process, and si-

multaneously updates its policy using expectation-maximization, removing the learning

rate [33].

2.1.1.4 State Generalization

In robotics applications of reinforcement learning, states are defined as continuous pa-

rameters, such as joint angles, voltages, or torques. As a result, it quickly becomes

prohibitively costly for learning approaches to directly represent the state-action value

function. Function approximation techniques remove the need to discretely represent

the value function by using examples to approximate the entire function. In this work,

we use the tile coding function approximation technique, Cerebellar Model Arithmetic

Computers (CMACs) [3].

CMACs partition a state space into a set of overlapping tiles, and maintain the

weights (θ) of each tile. The accuracy of the generalization is improved as the number

of tilings (n) increases. Each tile has an associated binary value (φ) to indicate whether

that tile is present in the current state. The shape of the tile represents the generalization

over the state space. In our work, the shape of all tiles remain the same static value

(Figure 2.1).

To compute the active tiles associated with a state, we need to first normalize the

state between 0− 1 and divide by the generalization factor, g (Algorithm 2). This gen-

eralization factor is a value between 0 and 1 that creates the possibility of generalization

between any two states variables that are within the generalization factor of each other.

We can then compute the active tiles and the estimate of the value function:

12

Figure 2.1: Tile Coding [43]

Qt(s, a) =

n∑
i

θ(i)φ(i) (2.7)

where Qt(s, a) is the estimated value function, θ is the weight vector and φ is a component

vector. Given a learning example, we adjust the weights, θ, of the involved tiles to reduce

the error. We use standard model-free Q-Learning to update our function approximation

(Equation 2.5).

2.1.2 Reward Function

The reward function encompasses the high-level goal of the system. When an agent

takes an action that is good for the system, the reward function ideally returns to the

agent a positive reward proportional to how much it helped the system-level reward.

Reinforcement learners also ideally receive a correspondingly smaller reward when their

actions are detrimental to the system. In this way agents can iteratively update to

converge to the optimal policy according to their reward design. This update is based

on the action-value updates.

Reward functions can be given as a binary success or fail value at the end of an

episode, and can be given iteratively throughout the simulation. Since success in a

robot task involves many actions, rewarding each action is an ideal iterative way for a

13

Algorithm 1 Reinforcement Learning with Tile Coding Generalization

1: function Learn
2: Initialize Q arbitrarily
3: Initialize θ arbitrarily
4: for e← 1 to episodes do
5: s← initialize
6: for t← 1 to timesteps do
7: {Qt, φt} ← Approximate(s, θ)
8: a← maxaQt(st, a) with probability 1− ε otherwise a← random
9: Take action a, observe r and s′

10: {Qt+1, φt+1} ← Approximate(s′, θ)
11: δ ← r + γmaxaQt+1(s

′, a)−Qt(s, a)
12: θ[φt]← α

nδ
13: s← st+1

14: end for
15: end for
16: end function

Algorithm 2 Tile Coding Approximation

1: function Approximate(s, θ)
2: sn ← norm(s)
3: sn ← sn

g
4: φ← GetT iles(sn, n)
5: Q←

∑n
i θ(i)φ(i)

6: return {Q,φ}
7: end function

14

reinforcement learner to quickly converge. This approach of guiding the learning process

with intermediate rewards is called reward shaping.

2.1.3 State Transitions

State transitions can be computed using a mathematical model or ignored by learning

directly on the robot. Many intractable reinforcement learning problems can be made

possible through the use of a model-based approach. Requiring fewer learning examples

on the real robot is desirable, as robots need long execution times, manual intervention,

and maintenance. However, models must be created from real-world data or computing

the physical model of the dynamics. If the model is not accurate, model errors can

accumulate and invalidate the learned policy.

2.2 Dimensionality Reduction

A core aspect of this work is the dimensionality reduction algorithm we use in DRRL

and IDRRL. It needs to be fast enough for real-time execution and effective at reducing

the state space. Here we explore multiple dimensionality reduction techniques and discus

the applicability of each with respect to our proposed algorithms. We also give a brief

outline of prior work in dimensionality reduction for learning.

2.2.1 Principal Component Analysis

PCA identifies patterns in data and reduces the dimensions of the dataset with mini-

mal loss of information. It does this by computing a orthogonal transform to convert

correlated data to linearly uncorrelated data. This transformation ensures that the first

principal component captures the largest possible variance. Each additional component

captures the largest possible variance uncorrelated with all previous components. Essen-

tially, PCA represents as much as the demonstrated state space as possible in a lower

dimension.

PCA deconstructs the data into eigenvectors and eigenvalues. For every eigenvec-

tor there is a corresponding eigenvalue. Each eigenvector represents the direction and

the corresponding eigenvalue tells how much variance is represented in that direction.

15

The eigenvector with the highest eigeenvalue is the first principal component, and each

subsequent eigenvector have depreciating eigenvalues.

The PCA transform is given by:

T = XW (2.8)

where X is the demonstrated data, W is a p by p matrix whose columns are eigenvectors

of XTX and p is the number of principal components (in this case, the number of

dimensions).

To transform to any arbitrary dimension, d, we can choose d eigenvectors from W

with the largest eigenvalues to form a p by d dimensional matrix Wd:

Td = XWd (2.9)

We then use reinforcement learning to learn trajectories in the new manifold. All

learning is in a lower-dimensional space. For each learning iteration, we project state x

down to a lower-dimensional space d:

xd = W T
d x (2.10)

2.2.2 Sparse Random Projection

Sparse random projections reduce the dimensionality by projecting the original space

using a sparse random matrix. This technique draws random elements for the transfor-

mation matrix from the distribution:

T (x) =


−
√

s
n ,

1
2s

0, with probability 1− 1
s√

s
n ,

1
2s

where n is the number of components and s is the density recommended by Li et. al

[67]: 1
n .

The projection is identical to PCA and follows Equation 2.9. Since the projection is

a simple matrix multiplication, this technique is fast and easy to use.

16

Linear dimensionality reduction assumes that the underlying data can be represented

by a lower dimension linear subspace. However, robot state spaces typically include ve-

locities and accelerations, whose equations of motion are inherently nonlinear. Standard

linear dimensionality reduction techniques cannot accurately represent complex nonlin-

ear structures which cannot be well represented in a linear subspace. Later, we explore

nonlinear dimensionality reduction techniques to project complex state spaces for learn-

ing.

2.2.3 Kernel PCA

Kernel PCA [73] is a non-linear extension of PCA. The basic idea of Kernel PCA is

to project the linearly inseparable space onto a higher dimensional space where it can

be linearly separable. This nonlinear transformation function is known as the kernel

function. The kernel function maps each point x from a d-dimensional space into an

n-dimensional space, where d < n:

xi → φ(xi) where φ : Rd → Rn (2.11)

The kernel uses φ to map the original space onto a n-dimensional space by calculating

the dot product of the samples:

k(xi, xj) = φ(xi)φ(xj)
T (2.12)

where k is the kernel that creates nonlinear combinations of the original features. The

kernel can be any function, but linear (2.13), d-degree polynomial (2.14), and radial basis

functions are all common (2.15).

k(x, y) = xT y (2.13)

k(x, y) = (γxT y)d (2.14)

k(x, y) = exp(−γ‖x− y‖2) (2.15)

Although Kernel PCA is a powerful dimensionality reduction technique, it will not

work in our application. The pairwise comparison between each point is computationally

17

expensive when initially creating the dimensionality reduction, and will be repeated for

each out-of-sample point. Since we need Kernel PCA to run for each state-action-reward

sample, this pairwise comparison is too expensive and quickly makes this approach com-

putationally intractable.

2.2.4 Dimensionality Reduction for Reinforcement Learning

Previous work in dimensionality reduction focuses on reducing the space for classification

or function approximation. Principal Component Analysis (PCA) [55] is effective in

many machine learning and data mining applications at extracting features from large

data sets [86, 113]. Feature selection, which aims at reducing the dimensionality by

selecting a subset of most relevant features, has also been proven to be an effective and

efficient way to handle high-dimensional data [26].

In our work, we use PCA to discover the low-dimensional representation of the state

space during learning. It does this by computing a transform to convert correlated

data to linearly uncorrelated data. This transformation ensures that the first principal

component captures the largest possible variance. Each additional component captures

the largest possible variance uncorrelated with all previous components. Essentially,

PCA linearly represents as much of the demonstrated state space as possible in a lower

dimension.

Rather than transferring knowledge from a simple representation to a complex one,

Taylor, Kulis, and Sha [108] learn directly which states are irrelevant. They collect data

while the agent explores the environment, calculate a state similarity metric, and ignore

state variables that do not add additional information and scale those that do. Similarly,

Thomas et al. [26] use demonstrations to develop a subset of features from the original

space. The learning algorithm then used this subspace to predict the action that a

human expert would take. Both approaches find state variables to ignore or emphasize.

This works well if there are insignificant state variables, but would have issues where

there are infrequent or non-demonstrated state variables with critically important data.

In our IDRRL framework, we iteratively add additional state information until it learns

in the full state space, essentially combining the speed of low-dimensional learning and

the expressiveness of the full state space.

Similar to our approach, Colomé et al. [27] apply dimensionality reduction techniques

18

Figure 2.2: The standard structure of a feedforward artificial neural network with one
hidden layer.

to exploit underlying manifolds in the state space. They learn probabilistic motor prim-

itives in a low-dimensional space discovered by probabilistic dimensionality reduction.

Bitzer et al. [14] also applies dimensionality reduction to solve reinforcement learning

planning problems in a reduced space that automatically satisfies their task constraints.

Although these approaches greatly accelerate learning, they learn entirely in the low-

dimensional space and could discard potentially important data.

In this work, we introduce a fast non-linear dimensionality reduction technique for

learning, to better accommodate nonlinearities often found in robot dynamics. To this

end, we use neural network autoencoders [9].

A neural network is made up of many connected artificial neurons (Figure 2.2). Each

input into a neuron is multiplied by a learned weight and summed together to create the

activation value, which is then fed into the next neuron as an input. To limit the growth

and size of these activation values, each value is fed into an activation function. Typical

activation functions are sigmoid, hyperbolic tangent and gaussian.

Neural network autoencoders reduce the dimensionality of data by transforming high-

dimensional data into a low-dimensional space (Figure 2.3). It trains by encoding the

high-dimensional data and decoding it back to the original space with the least possible

amount of distortion [9]. Hinton and Salakhutdinov found that you can reduce the

19

Figure 2.3: The structure of a simple autoencoder. An autoencoder projects (encodes)
the input space into a smaller set of neurons (code), then reconstructs its own inputs to
find the projection error (decoder). Once trained, the neural network no longer needs
the decoder section and users retain only the encoder section.

dimensionality of the dataset by extracting important features [50]. They found that

these features were more representative of the full state space than the features found

with PCA.

Many of these autoencoder dimensionality reduction techniques take a very large

input space and reduce the dimensionality with hundreds of neurons and many layers.

In our work, we have a small input space, but need our network construction to be fast,

be able to project the data onto many different dimensions, and encode the maximum

amount of information in the first dimension, with each additional dimension strictly

adding a superset of state space representation. In this dissertation, we introduce a

cascade of autoencoders to fit these three requirements.

2.3 Transfer Learning

As RL problems become more complex, basic techniques may become slow or infeasible.

A significant amount of research in RL focuses on increasing the speed of learning by tak-

ing advantage of certain domain knowledge. Some techniques include agent partitioning,

which focuses mainly on how to divide the problem by the state space, actions, or goals

[56, 92, 30]; generalizing over the state space with techniques such as tile coding [116],

20

neural networks [47], or k-nearest neighbors [72]; and learning with temporally defined

actions, such as options [105]. In contrast, we do not wish to leverage knowledge within

the same problem, but instead transfer knowledge from a low-dimensional problem to a

higher-dimensional one.

The core idea of transfer learning is that experience gained in learning to perform

one task can help improve learning performance in a related, but different, task. If the

relationship between the first (source) task and the second (target) task is not trivial,

there must be a mapping between the two tasks so that a learner can apply the older

knowledge to the new task [109].

The type of knowledge transferred is based on the precision required by the algorithm.

High-precision knowledge, such as < s, a, r, s′ > rollouts or the learned Q-Function can

help fully define an initial policy in the target domain. However, these techniques require

accurate mappings between the source and target task. Higher-level feedback, such as

action advice or shaping rewards are less restricting, but less detailed. In this work, we

have an accurate mapping between the source and target task, so we only focus on the

high-precision knowledge transfer.

2.3.1 Multi-Task Learning

Multi-Task Learning (MTL) problems assume that all domains experienced by the agent

are from the same distribution [109]. This corresponds to the source and target task

have the same state and action representation. MTL approaches are particularly suited

for tasks that remain the same, but with varying dynamics, such as friction.

MTL techniques can greatly speed up learning in tasks with differing parameters

but the same representation. For example, Dimitrakakis and Rothkopf used multi-task

learning to control an inverted pendulum, where the dynamics of the pendulum was

varied across tasks [40]. Deisenroth et al. applied multi-task policy search to control a

robotic manipulator. The arm was required to stack blocks in tasks of varying complexity

[32].

Sutton et al. demonstrated that this technique can be used in a divide-and-conquer

approach [104]. They suggest that the problem can be split into a sequence of subtasks.

The learner can learn the first subtask, and transfer that knowledge to the next subtask.

This approach is similar to our Dimensionality-Reduced Reinforcement Learning in spirit.

21

2.3.2 Inter-Task Learning

It is not always possible for the source and target domain to be from the same distribu-

tion. An inter-task mapping is a general structure that defines how two tasks are related.

The mappings χS and χA are defined as a mapping between state variables and actions

in two tasks, respectively. This technique [109].

[110] developed inter-task mappings for policy search methods and learned these

mappings when they were not available. They test their approach in the RoboCup

Keepaway domain with a varying number of agents, leading to a varying number of

state variables.

In this work, we transfer from a low-dimensional representation to a higher-dimensional

representation. Therefore, the states between representations are not the same. Addi-

tionally, the number of state variables we represent change as we change the number of

dimensions in the problem. To perform the state projection, we compute a mapping us-

ing dimensionality reduction. This mapping is χS , which is what we use during transfer.

Our action representation remains the same, and therefore we do not need to compute

χA.

2.4 Learning from Demonstration

Developing a policy using traditional straightforward reinforcement learning does not

work well in robotics. Finding an optimal or near-optimal solution requires exploration

throughout much of the state space and excessive exploring of the unknown state space

risks damaging the robot. This can be avoided by taking small steps during exploration,

but this brings the additional problem of taking longer to find an optimal solution.

Initializing, or bootstrapping, the policy close to the desired robot behavior removes

many of these problems. One particular approach to policy initialization is Learning

from Demonstration (LfD).

LfD learns a policy using examples or demonstrations provided by a human or a

robotic teacher. These examples are typically state-action pairs that are recorded during

the teacher’s demonstration. These state-action samples are used to initialize a policy

that can then either be directly utilized, or improved using reinforcement learning [6].

There are two main divisions of research within LfD: developing methodology for

22

acquiring the demonstration data, and deriving policies from this data. The data can be

acquired from many different sources, such as another robot, another human, a human

controlling a robot, or even a human controlling the learner robot. The data acquisition

choice heavily affects the difficulty of mapping from real-world data to state-action pairs

and will be discussed in Section 2.4.1.

There are a variety of techniques that LfD algorithms use when deriving a policy.

Machine learning directly maps the demonstrated data to a policy to be sampled (Section

2.4.2.1). This approach attempts to directly learn the teacher’s demonstration. On the

other hand, reinforcement learning uses the demonstrated data to guide learning, rather

than directly learning the demonstration (Section 2.4.2.2). The demonstrated data can

be used to initialize a policy, develop a reward function, and build a state transition

function. This approach takes the demonstrated data and attempts to optimize it.

2.4.1 Data Acquisition

When gathering demonstration data, the choice of demonstrator greatly impacts the

complexity. If the teacher is directly controlling the learning robot, the learner’s execu-

tion can be directly used as demonstration data. However, if the learner is required to

observe, the learner must sense the teacher’s execution and convert it to demonstration

data. This can lead to a large computational overhead. Additionally, if the learner is

not physically similar to the teacher, it may also have to convert demonstration data to

its own action and state space, adding more computational complexity.

There are four different demonstration approaches at different levels of complex-

ity: teleoperation, mimicking, sensors on the teacher, and simply observing the teacher.

Teleoperation removes any complex mapping from the system, making it the most direct

approach for data acquisition. However, teleoperation assumes that the teleoperator has

the ability to properly control the low-level commands of robots. With higher degree of

freedom robots, this teleoperation can become very difficult to perform accurately.

Teleoperation is one of the most commonly used data acquisition techniques [6] and is

often performed by a human with a joystick. Some examples include using teleoperation

demonstrations to control an inverted autonomous helicopter [79], robotic grasp modeling

[107], object grasping [90], and simulated driving [1].

High-level teleoperation such as speech recognition and kinesthetic teaching can also

23

be employed with great success. Natural language processing has been used to allow

a human teacher to verbally teach the robot how to navigate a miniature town [66],

to clarify ambiguous demonstrations [19], and general task training [95]. Kinesthetic

teaching involves humans physically moving the robot’s passive joints through the desired

motions [2].

Mimicking requires the learner to observe the demonstrator, convert the demonstra-

tor’s execution to actions, and then execute those actions. This assumes the learner’s

set of actions are the same as the demonstrator’s set of actions. Therefore, the only ad-

ditional computation comes from observing and mapping from the teachers movements

to demonstration data. Mimicking has been used analyze how biological animals learn

through imitation [35], navigation tasks [77, 81], and to learn arm gestures [82].

By adding sensors directly onto the demonstrator, the learner no longer has to observe

the teacher. Rather than having the learner observe the teacher, the teacher records its

own execution with sensors. This is similar in computational complexity to mimicking,

except the extra computation involves mapping from the demonstration data to the

learner, rather than from the demonstrator to the demonstration data. This is especially

useful when the application requires precise measurements of the teacher. Researchers

have used this technique to teach robots tennis swings [51] and walking patterns [76] by

using human teachers wearing sensors.

Lastly, the most general and computationally expensive data acquisition approach

involves the robot observing the teacher. The learner must extract the teachers state-

action pairs from the observed demonstration. Those state-action pairs then need to

be mapped to the learners set of actions. This leads to an imprecise, computationally

expensive and less reliable approach than other data acquisition methods [6]. However,

this approach is the most general of all techniques. Mimicking requires the learner’s set of

actions to match the teacher’s set of actions, while adding sensors to the teacher requires

expensive sensors to accurately obtain demonstration data. Visual features analyzed

with computer vision have been used to teach human movement, grasping tasks, and

hand gestures [114, 4, 13]. Hybrid approaches combining computer vision with sensors

on the teacher or speech recognition have also been successfully used. A force sensing

glove on the teacher combined with computer vision motion tracking has been used to

teach grasps and other motor skills [68, 70, 115] and visual cues combined with speech

recognition has been used to learn human gestures and object tracking [36, 101].

24

The choice of approach is situationally dependent on the tools available and the users.

Teleoperation is useful in low DoF robots and requires only some training and low cost

tools. Mimicking, sensors on the teacher, and observation all require another robot or

human to first perform the task, which may not always be possible.

2.4.2 Policy Derivation

Now that the learner has acquired demonstration data from the teacher, it can develop

a policy. Many policy derivation approaches exist, but this dissertation will focus on

machine learning and reinforcement learning. Machine learning attempts to develop a

policy as close to the teacher’s demonstration as possible while generalizing to states

unseen by the teacher, and reinforcement learning uses the teacher’s policy to initialize

the policy, help develop the reward function, or build a state transition function, and

then applies reinforcement learning techniques to optimize performance of the task.

2.4.2.1 Machine Learning

Machine learning approaches use function approximation to develop a mapping from the

demonstration states to actions taken. There are two ways to accomplish this: classi-

fication and regression. Using both techniques, the learner can reproduce the teacher’s

policy and generalize to states not encountered by the teacher. These function approxi-

mations take the current state as input, and output a action. The key difference between

classification and regression is small. Classification takes the set of state inputs and out-

puts discrete class labels, and regression takes the set of state inputs and outputs a

continuous value. In the terms of policy derivation, this maps to discrete or continuous

actions. Therefore, classification works well in applications where the robot executes

high-level commands, such as “turn the knob” or “open the door”, or the action space

can be accurately discretized. Regression is a more general technique and works well with

low-level motor primitives which need a continuous input. Each approach has benefits

and issues, as we will now discuss.

Classification techniques require that the action space be discretized into a specific

number of actions. This greatly reduces the generality of the approach. If the ac-

tion space is not discretized enough, the policy will not adequately match the teacher’s

25

demonstration. If the action space is too discretized, the policy may not converge and

will need more data. However, if the actions are discretized correctly, this approach can

learn a policy with much less data than with regression.

Classification approaches use low-level actions include controlling a simulated car

using Gaussian Mixture Models and demonstration requests for unknown parts of the

state space [23], obstacle avoidance using interactive teaching methods [53], and us-

ing bio-inspired memory maps and k-Nearest Neighbors to construct dynamically sized

action-selection mechanisms [97].

High-level actions are useful when sequences of low-level actions have already been

developed. It is much easier to create a policy to accomplish a large task when the action

selections represent a sequence of already learned low-level actions. This approach has

been used to perform a box sorting task by classifying gestures representing prior learned

sequences of actions [96], start a collaborative social dialogue with a robot and a human

to learn a button pressing task [69], and to classify behaviors to perform a multi-robot

ball rolling task by dynamically determining the need for new demonstrations [24].

Regression techniques are more general than classification methods, as the outputs

are continuous actions. Different choices arise when using regression. Rather than choos-

ing how to discretize the action space, in regression the designer must choose when to

perform the policy function approximation. If the approximation is done during run

time, the regression does not need to expend computation to discover state-action pairs

in states that are never visited. However, all of the training data must be stored in

memory. This is known as Lazy Learning [7]. If the approximation is done before run

time, the entire function approximation must be performed using the entire demonstra-

tion data set, including states that will never end up being visited in practice. This is

much more computationally expensive, but is generally performed off-line.

Lazy Learning techniques have been successfully used in practice. Some examples in-

clude using human policy critiquing to successfully intercept a ball [5], learning rhythmic

patterns that robustly cope with external perturbations [52], and learning biped walking

patterns [76]. In large problems with a continuous action and state spaces, the amount of

demonstration data to process at every time step becomes too computationally complex

for real-time robotic movement.

There are many approaches that perform policy function approximation before run

time, with the most common being Neural Networks [114, 39, 74, 89]. Neural Network

26

function approximation has been used to teach a robot the game of Kendama, a game

similar to ball in a cup [74], control ALVINN (Autonomous Land Vehicle In a Neural

Network) to drive in single-lane paved and unpaved roads as well as multi-lane lined and

unlined roads [89], performing a peg in a hole task by preprocessing bad demonstrations

to make them suitable for learning [39] and learning human full-body motion kinematic

patterns [114]. Other approaches have used Gaussian Mixture Regression to teach human

gestures to a humanoid robot via sensors on the teacher [22] and Sparse On-Line Gaussian

Processes to teach an AIBO robot soccer skills through teleoperation [45]. Even though

function approximation of the entire dataset is a computationally complex approach, it

moves the processing from being real-time on the robot to before the execution, making

this approach more ideal for real-time robotics in complex problems.

2.4.2.2 Reinforcement Learning

As mentioned in Section 2.1, reinforcement learning is a tool within the field of multiagent

or single-agent learning where agents take an action, observe the environment, and receive

a reward based on the new environment [103]. This approach requires exploration in

order to improve upon the current policy, but in robotics, exploration is hazardous to

the robot. Alternatively, the robot can learn in simulation, but that requires an accurate

state transition model of the world, T (s′|a, s). When applying reinforcement learning

with LfD, the teacher’s demonstration can help with both approaches. If the robot

is learning in the real world, the teacher’s demonstration can be used to initialize the

reinforcement learning policy, and therefore learning can take small exploratory actions

to improve upon this already accurate policy. If the robot is learning in simulation, the

teacher’s demonstration can be used to both initialize the policy, and be used as data to

construct a state transition function. Reinforcement learning approaches include value

function and policy search, which have both been explained in Section 2. In addition

to policy initialization and state transition derivation, the teacher’s demonstration data

can be used to assist in engineering the reward function in both standard and inverse

reinforcement learning.

In standard reinforcement learning, the reward function is hand-created by the user.

Giving high rewards to states around the goal, and low rewards to states around obstacles

are intuitive choices, but it leads to a sparse reward function. States that are not directly

27

nearby obstacles or the goal are arbitrarily explored, and can lead to damage to the robot.

Teacher demonstrations can be used to prevent blind exploration caused by sparse reward

functions by showing the robot rewarded areas of the state space [100]. Learners have

also been taught to ask for demonstration help when they are in an arbitrary area of the

state space [21, 25] or exchange advice with other agents [83]. Lastly, the user can weigh

the reward function based off of whether the teacher had visited the state [83]. All of

these approaches attempt to alleviate the issues of arbitrary action selection and sparse

reward functions.

An alternative approach is to not build the reward function manually. Inverse Re-

inforcement Learning is a field within Reinforcement Learning that learns the reward

function. LfD can assist in learning the reward function by analyzing the teacher’s

demonstrations. Approaches include simply associating higher rewards to states similar

to those during the demonstration [8], developing a reward function based off of the sim-

ilarity between the demonstrated and learner executed policy [84], and learning rewards

based purely on human feedback [112].

2.5 Human Feedback

Even with training speed improvements, reinforcement learning can take a long time to

converge. Human intervention can accelerate this learning process. There are two key

steps for using human feedback: the mechanism for giving the feedback and how that

feedback is integrated into the learning process.

2.5.1 Human Feedback Mechanisms

Human feedback mechanisms are tools that allow users to give feedback to an agent.

The agent can use this feedback to modify its learned policy based on user preference.

It then executes the newly learned policy, and the user can give additional feedback.

This cycle continues until the agent has learned an adequate policy, as defined by the

user. Researchers have developed a variety of these tools, and focused on making them

both intuitive and detailed. Intuitive feedback tools tend to use mechanisms that are

natural to users, such as voice [21], kinesthetics [2, 21] or drawing [16], while detailed

mechanisms use graphical interfaces that are less natural, but allow for high-fidelity

28

feedback [46, 112]. However, many feedback mechanisms are not detailed enough for

fine-grained feedback, do not account for continuous spaces, or require the user to give

time-sensitive feedback.

The work by Cakmak and Thomaz used Active Learning (AL) and Learning from

Demonstration (LfD) as a mechanism for natural feedback [21]. In that work, the robot

could query the user to guide exploration and learning, while the user could also query

the robot to better understand what was being learned. The robot could also ask the

user to kinesthetically demonstrate how to perform tasks in areas of the state space

of high uncertainty. Boniardi et al. also use this same intuitive style human feedback

[16]. Participants give hand-drawn sketches that are a high-level description of the

environment. This allows the robot to navigate when it is not given a full description of

the scene. While intuitive and time-insensitive, these approaches do not allow the user

to give detailed feedback on important parts of the state space. In our work, the movie

reel interface allows the user to give fine-grained feedback.

Rather than use natural feedback, in the work by Harutyunyan et al. the humans

interactively advise a video game agent via a button that gives the agent positive rewards

[46]. The human gives advice for the first 5 episodes, and then the agent continues

learning on its own for the rest of the trial. The authors find that with this initial

advice, the Mario agent learns a better policy at a faster rate. Thomaz and Breazeal

developed a more advanced interface that lets a human reward the agent with a variety

of rewards during policy execution [112]. In that work, the human can, at any point in

the operation, reward the agent with a scalar reward between -1 and 1. This allows the

human to give continuous feedback over a range of states. However, both of these works

require quick actions by the human. The human must be paying close attention during

the policy execution, and can miss giving feedback on early actions that affect later

states. Our movie-reel interface alleviates this issue by using fast forwarding, rewinding

and pausing.

2.5.2 Human Feedback Integration

Once a human has given feedback, there are a variety of techniques that integrate this

feedback into the learning algorithm. Griffith et al. developed a policy shaping technique

called Advise [44] that leverages human feedback directory by using the feedback as policy

29

labels. They assume that the human adviser knows the different optimal actions in a

state and the state transition of taking an action. They then use these policy labels

to guide learning. Advise effectively incorporates human feedback into the learning

process, but requires the user to understand the effects of taking an action, and knowing

whether those effects are positive or negative. In our work, we require feedback on motor

primitives. Motor primitive actions do not have an intuitive state transition, especially

in higher dimensional problems.

Knox and Stone developed Action Biasing and Control Sharing strategies for using

human feedback to modify the policy [61]. Action Biasing uses positive and negative

human feedback to bias the action selection mechanism of Q-Learning. They add the

human feedback reward to the learned Q-Value when choosing the next action to take.

Alternatively, Control Sharing modifies the action selection mechanism by transitioning

between using the best action during feedback and the learned best action.

30

Chapter 3: Experimental Domains

In this section we will describe the experimental domains we used throughout the dis-

sertation. Early in prototyping this research we used two toy domains, Mountain Car

and Mario (Section 3.1 and Section 3.2). In Mountain Car the agent learns how to drive

an underpowered car up a steep hill and in Mario the agent learns how to play the

Mario video game. Later in this work we used more compelling experiments to prepare

for real-world experiments. For scalability experiments we used Swimmers, where the

agent learned to control the speed and position of an underwater n-link fish using motor

torques (Section 3.3). We control the difficulty of the problem by scaling up the number

of links the agent can control. Last, for our real-world experiment we taught a robot

arm how to balance a ball bearing on an acrylic plate (Section 3.4).

3.1 Mountain Car

To test the efficacy of the algorithms introduced in this work, we apply it to the Moun-

tain Car 3D domain, a common reinforcement learning benchmarking problem [41]. In

Mountain Car, an underpowered car must drive up a steep hill (Figure 3.1). The prob-

lem is engineered such that the car cannot overcome the effects of gravity, and cannot

simply drive up the hill. Since the car starts in a valley, the agent must learn to build

up enough inertia by driving partially up the opposite hill before it is able to make it to

the goal.

In 2D Mountain Car, there are two states defined as the continuous position (−1.2 ≤
x ≤ 0.6) and velocity (−.007 ≤ v ≤ .007) of the car. There are three actions: Accelerate

left, accelerate right, and neutral. The starting state is a random position at a random

velocity. Lastly, the reward is -1 at each time step, and 100 at the goal. The 3D variant

of Mountain Car incorporates these dynamics, but there are also two new states (position

and velocity) and two new actions (accelerate/decelerate) to represent movement across

31

Figure 3.1: Mountain Car. An underpowered car learns to drive up a steep hill by using
a shorter hill to build up enough inertia.

the third dimension. The car moved according to the following dynamics:

ẍ = Action

ẋ = ẋ+ 0.001 ∗ ẍ+−0.0025 ∗ cos(3 ∗ x)

x = x+ ẋ

3.2 Mario Benchmark Problem

The Mario benchmark problem [59] is based on Infinite Mario Bros, which is a public

reimplementation of the original 80’s game Super Mario Bros R©. In this task, Mario needs

to collect as many points as possible, this is done by killing an enemy (10), devouring

a mushroom (58) or a fireflower (64), grabbing a coin (16), finding a hidden block (24),

finishing the level (1024), getting hurt by a creature (−42) or dying (−512). The actions

available to Mario correspond to the buttons on the NES controller, which are (left,

right, no direction), (jump, don’t jump), and (run/fire, don’t run/fire). Mario can take

one action from each of these groups simultaneously, resulting in 12 distinct combined

or ‘super’ actions. The state space in Mario is complex, as Mario observes the exact

locations of all enemies on the screen and their type. He also observes all information

about himself, such as what mode he is in (small, big, fire). Lastly, he has a gridlike

receptive field in which each cell indicates what type of object is in it (such as a brick,

32

Figure 3.2: A screenshot of Mario.

a coin, a mushroom, a goomba (enemy), etc.). A screenshot is shown in Figure 3.2.

The part of the state space the agent considers consists of these variables:

• is Mario able to jump (0− 1)

• is Mario on the ground (0− 1)

• is Mario able to shoot fireballs (0− 1)

• Mario’s current direction, 8 directions and standing still (0− 8)

• enemies closeby (within one gridcell) in 8 directions (28 → 0− 255)

• enemies at midrange (within one to three gridcells) in 8 directions (0− 255)

• whether there is an obstacle in four vertical gridcells in front of Mario (24 → 0−16)

• closest enemy position within 21x21 grid surrounding Mario + 1 for absent enemy

(212 + 1→ 0− 441)

This makes for 3.24 × 1010 possible states, and 4 × 1011 Q-values (12 actions in

each state). The size of the state space is large, but some states are more important

and frequent than others. This variable state importance makes the Mario Benchmark

Problem good for analyzing our dimensionality reduction approach.

33

3.3 Swimmers

The Swimmers domain [28] is a more complex system than Mountain Car, and serves as

an abstraction of a robot arm positioning problem because the goal is to control position

through a simulated viscous fluid using motor torques. It includes complex physics with

a large state and action space. In the Swimmers domain, there is a simple swimmer

(Figure 3.3) connected by joints that moves in a two dimensional pool. The action space

is a torque applied at each joint. The goal of the Swimmers domain is to swim as fast

as possible to the right, by using the friction of the water.

We define the state of the swimmer as the angular position and velocity at each joint,

as well as the center x- and y-velocity. Therefore a n-link swimmer has 2n + 2 states.

The action space consists of the n− 1 control torques at each joint. At each control step

the learner chooses between a −3Nm, 0Nm or 3Nm torque, making 3(n−1) actions. We

reward the swimmer for moving as fast as possible to the right (∆x). In this work we

use a 3-link and 6-link swimmer.

To move the swimmer, the reinforcement learner must learn to control an n-link

object using the torques at each joint. It must learn to leverage the viscous friction and

learn the nonlinear dynamics of the system. The state and action spaces are identical

and involve passive dynamics acting on the agent.

We use the Swimmers domain as an abstraction of a robot arm that we can scale to

high dimensionality. Since we can arbitrarily scale the complexity of the Swimmers, we

can find how our algorithms scale. Swimmers also has a similar state and action space

to a robot arm. The reinforcement learner must learn to control an n-link object using

the torques at each joint. The Swimmers experiments also include a model of viscous

friction. The reinforcement learner must learn to take advantage of the viscous friction

of the water to move.

Coulom [28] modeled the system dynamics of the swimmer according to the following.

Let Gi be the center of mass in between each pair of links Ai−1 and Ai:

Gi =
Ai−1 +Ai

2
, (3.1)

and fi be the force applied by segment i+ 1 to segment i and :

∀i ∈ {1, ..., n} : −fi+1 + fi + Fi = miG̈i, (3.2)

34

Figure 3.3: N-link swimmer. The swimmer must learn to leverage the viscous friction of
the water to move quickly to the goal.

we can now express the state variables as:

f0 = 0

∀i ∈ {1, ..., n} : fi = fi+1 − Fi +miG̈i,

and the system of equations becomes a set of n + 2 linear equations, where n is the

number of links: {
fn = 0,

mi
li
12 θ̈ = det(GiAi, fi + fi−1) + ωi − ui + ui−1

where ωi is the moment at point Gi and ui is the torque that the agent applies to joint

i. Lastly, Coulom’s model of viscous friction calculates the total force and moment at

each moving part:

ωi = −kθ̇i
l3i
12
,

where li is the length for segment i and k is the viscous-friction coefficient. For all

experiments we used standard values of li = 1, mi = 1, and k = 10.

3.4 Ball Balancing

To experimentally validate our learning approach on a real-world robotics platform, we

teach a robotic arm with a plate attachment to balance a ball bearing. We used a 6

degree-of-freedom Yaskawa Motoman MH5F with a F1000 controller with an custom

35

plate end-effector (Figure 3.5). Each link on the robot is a parent to its successor child

link, connected by a constrained revolute joint which maintains a unique reference frame

governing its successor links. In our domain, this robot arm had to learn to balance a

1/8 inch ball bearing on a .25m x .5m plate.

We used Robot Operating System (ROS) to model the robots joints, joint limits,

and kinematics to ensure accurate motion. ROS [91] is a collection of packages that

provides an abstract and fast framework for robot software development. Traditionally,

software development in robotics had been entirely custom-made for each robot, slowing

research and development. Quigley et al. [91] developed ROS to avoid this problem by

using a generic communication infrastructure between high-level and low-level hardware,

essentially abstracting away the hardware layer and allowing users to use the same code

on many different robots.

ROS has a directed graph architecture, where edges represent messages and nodes

represent processes. Nodes perform computation and communicate with each other

by passing strictly-typed data structures called messages. Low-level hardware nodes

either publish messages, such as laser scanner data, or subscribe to messages, such as

motor controls. A roboticist typically builds a high-level node in ROS by subscribing

to messages published by low-level hardware nodes, performing some computation, and

publishing its own message, which is in turn subscribed to by another node. This makes

ROS highly modular and abstract, promoting encapsulation and code reuse.

We define the state of the arm as the angular position and velocity of 4 joints and

the position and velocity of the ball bearing in each dimension. Of the 6 joints, two

corresponded to yaw, which were not useful for the learning problem. For each control

step the learning algorithm chooses an angular acceleration (-0.5 θ
s2

, 0.5 θ
s2

) to apply to

one of the degrees of freedom. The agent must learn to use these 12 state dimensions

and 8 actions to balance the ball for as long as possible. The agent received a reward of

positive 1 for each time step the ball was on the plate and a reward of -1000 if the ball

falls.

For ease-of-application we used a simulated robot for learning of the policy (Figure

3.4) and a physical robot for the execution (Figure 3.5). For each simulated experiment,

we use forward kinematics to determine the position (θ) and velocity (v) of each degree-

of-freedom i at time t at a resolution of ∆t = 0.01 (Equations 3.3).

36

Figure 3.4: Simulated Yaskawa Motoman MH5F Arm balancing a simulated ball (green)
on a frictionless plane (orange).

Figure 3.5: Physical Yaskawa Motoman MH5F Arm balancing a ball bearing on an .25m
x .5m acrylic sheet.

37

¨θ(i)t = action(i)

˙θ(i)t = ˙θ(i)t−1 + ¨θ(i)t ∗∆t

θ(i)t = θ(i)t−1 + ˙θ(i)t− 1 ∗∆t+
1

2
∗ ¨θ(i)t ∗∆t2

(3.3)

We also used forward kinematics to determine the position and velocity of the ball

in the x and y plane. We determined the plate angle from the roll and pitch angles of

the arm (Equation 3.4).

pitch = θ(2) + θ(4)

roll = θ(3) + θ(5)
(3.4)

The ball slid on a frictionless plane according to standard forward kinematics (Equa-

tions 3.5 and 3.6)

ẍt = g ∗ sin(roll)

ẋt = ẋt−1 + ẍt ∗∆t

xt = xt−1 + ẋt−1 ∗∆t+
1

2
∗ ẍt ∗∆t2

(3.5)

ÿt = g ∗ sin(pitch)

ẏt = ẏt−1 + ÿt ∗∆t

yt = yt−1 + ẏt−1 ∗∆t+
1

2
∗ ÿt ∗∆t2

(3.6)

38

Chapter 4: Dimensionality-Reduced Reinforcement Learning

State spaces in robotics problems are often tremendously large as they scale exponen-

tially with the number of state variables and often are continuous. This challenge of

exponential growth is often referred to as the curse of dimensionality [11]. As the num-

ber of dimensions grows, exponentially more data and computation are needed to cover

the complete state-action space. For example, if we assume that each dimension of a

state-space is discretized into 10 levels, we have 10 states per dimension of the state

space, for 10n total states. Evaluating every state quickly becomes infeasible with grow-

ing dimensionality, even for discrete states.

The curse of dimensionality is a notoriously difficult issue in Reinforcement Learning.

In this dissertation we introduce two algorithms: Dimensionality-Reduced Reinforcement

Learning (DRRL) and Iterative DRRL. Both techniques use Principal Component Anal-

ysis to project the state space down to a lower-dimensional manifold. Reinforcement

Learning in this smaller state space reduces the exploration, accelerates the learning

rate, and helps alleviate the curse of dimensionality.

However, if the reduced state space does not fully represent the full state space, the

agent cannot learn an optimal policy (Section 4.1). IDRRL is the iterative version of

DRRL. After the agent learns a policy quickly in the low-dimensional space we transfer

that knowledge to the next, more complex, dimension. Learning continues in this higher-

dimension and is bootstrapped with knowledge learned from earlier dimensions. This

cycle continues until IDRRL is learning in the full state space (Section 4.2).

We show that our optimization speeds up learning when added to an existing algo-

rithm, but we wanted to ensure this addition did not remove any existing PAC-MDP

performance guarantees. We show that DRRL and IDRRL maintains polynomial state,

action and sample complexity, thus retaining PAC-MDP guarantees (Section 4.3).

Our early work used Principal Component Analysis (PCA) as the dimensionality

reduction technique. This technique captured much of the low-dimensional state space

in DRRL and IDRRL, leading to faster learning. However, it did not capture the non-

linearities involved in complex robot state spaces. Alternative non-linear dimensional-

39

Figure 4.1: One iteration of the DRRL algorithm.

ity reduction techniques were far too computationally expensive to use in this learning

framework. This limited the performance of IDRRL when dynamics were highly nonlin-

ear. We developed an extension to IDRRL to use our novel Cascade of Autoencoders

(CAE) dimensionality reduction technique. This is a nonlinear dimensionality reduction

technique with the same guarantees as the PCA dimensionality reduction (Section 4.4).

4.1 Dimensionality-Reduced Reinforcement Learning

To learn in high-dimensional state spaces, our algorithm first computes a mapping be-

tween the full space and a lower-dimensional space. To perform this computation, we

need trajectories across a representative set of the agent’s state space. We can then

use a dimensionality reduction technique to learn the transform. In this work, a variety

of dimensionality reduction techniques are explored, but we use Principal Component

Analysis (PCA).

First, we project the state down onto a low-dimensional manifold. We then com-

pute the action using a reinforcement learning algorithm, and execute that action. The

environment calculates the new state given the executed action, which we then project

that state down to the same lower-dimensional space. We can then perform a learning

40

update (Algorithm 3 and Figure 4.1).

Algorithm 3 Dimensionality-Reduced Reinforcement Learning

1: function Dimensionality-Reduced Reinforcement Learning(d)
2: Initialize Qd arbitrarily
3: for e← 1 to episodes do
4: s← initialize
5: for t← 1 to timesteps do
6: sd ← DimensionalityReduction(s)
7: a← maxaQd(sd, a) with probability 1− ε otherwise a← random
8: Take action a, observe r and s′

9: s′d ← DimensionalityReduction(s′)
10: r ← GetReward(s′)
11: Qd(sd, a)← Update(sd, a, s

′
d, r)

12: s← s′

13: end for
14: end for
15: end function

When learning in a smaller space, reinforcement learning algorithms converge faster.

However, in most cases a low dimensional manifold cannot represent the entire state

space. Therefore, even given infinite time, the converged learning performance in a non-

trivial case will be strictly worse than learning in the full space. This is based on the

reprojection error. The reprojection error represents how much data is lost during the

transformation into the subspace. You compute the reprojected point by transforming

the point into the low-dimensional subspace, then project it back up to the full space.

The error is the difference between the original point and the reprojected point.

If the reprojection error is low, then no information is lost in the transformation,

and the reinforcement learning algorithm improves speed at no cost. Otherwise, there is

some information loss. This leads to a trade-off. By projecting onto a lower-dimensional

manifold, we are throwing away potentially important data. Even so, we experimentally

validate that with our DRRL framework, learning can still converge to a good policy

much faster than the reinforcement learning algorithm alone.

41

4.1.1 Results and Analysis

To analyze the efficacy of DRRL, we test it in the Mario and Mountain Car domains.

Mario has a large discrete state space, and will show the scalability of DRRL. We first

test the applicability of using dimensionality reduction in learning by running PCA on

a variety of Mario demonstrations and analyzing the principal components. We then

demonstrate in both Mario and Mountain Car how DRRL learns faster than standard

Q-Learning, but converges to a worse performance.

4.1.1.1 Mario Benchmark

As a preliminary analysis, we calculated all the principal components of the Mario domain

to see which dimensions PCA weighed the highest during learning (Figure 4.2). The

jump, ground and current direction features are heavily represented in the first few

principal components. This is intuitive, as this state changes frequently throughout a

game of Mario. These features are also fundamental skills required to play a game of

Mario.

PCA also associated features related to enemies within close proximity to Mario

entirely in the last few principal components. These features are only important in very

specific scenarios where Mario needs to quickly react to many nearby enemies. If only

one enemy is nearby, it is also represented in the closest enemy X and closest enemy Y

features.

This analysis legitimizes our approach in the Mario Benchmarking Domain. It

demonstrates that we should initially learn using the fundamental skills required to

play Mario. We will show that we can learn these skills quickly. The skills represented in

the higher principal components are better for strict optimization in specific scenarios.

Analyzing the principal components of the demonstrations is a sanity check as well as

validation of the richness of the demonstration.

Our reinforcement learning agent for Mario is inspired by Liao’s and Brys’ previous

work [20]. We use a Q(λ)-learner with a tabular state representation and α=0.01, λ=0.5,

γ=0.9 and ε=0.05. In the experiments, we run every learning episode on a procedurally

generated level based on a random seed ∈ [0, 106], with difficulty 0. Also, we randomly

select the mode Mario starts in (small, large, fire) for each episode. Making an agent

42

Figure 4.2: The emphasis of each feature relative to the principal component.

learn to play Mario this way helps avoid overfitting on a specific level, and makes for a

more generally applicable Mario agent. Our results are always averaged over 100 different

trials.

When using our approach in the Mario domain, results were as expected. By project-

ing the state down to a low-dimensional manifold (less than 4), the learning algorithm

converged quickly to bad policies (Figure 4.3). However, when using a manifold of 4 di-

mensions or greater, we converged quickly to a much better policy. These are promising

results although these well-performing dimensions may still converge to a suboptimal

policy after more than 5000 episodes.

Since learning was poor within the first two manifolds, it shows us that the jump

and ground features are not informative enough alone to learn an effective Mario policy.

Yet, when projecting onto a 3 or 4 dimensional manifold, we see large increase in policy

performance. In these manifolds, the features jump, ground, current direction, shoot,

closest enemy Y, and obstacles are all represented. It is intuitive that these features are

important for having basic skill in Mario. The remaining features are important, but

43

Figure 4.3: Results with lower-dimension manifolds. PCA n represents projecting the
state space to a n-dimensional space. Lines in bold are experiments that performed
better or equal to learning with the full state. Dimensions greater than 5 performed
similarly to the full state space, and were not included for clarity. Error bars are the
variance over 100 statistical runs.

44

only for fine tuning policies.

4.1.1.2 Mountain Car

In our formulation of Mountain Car we used 16 tiles and a 10n tiling, where n is the

number of state variables. There are 4 state variables and 5 actions in the 3D variant.

We first learn using good demonstrations and single dimensions to test the efficacy of

DRRL. We also show that if the subspace does not represent enough variance in the data,

the learning algorithm will converge to a poor policy. To gather the demonstrations we

learned good and bad policies with Q-Learning and computed random policies. We define

good and bad policies by the reward they received during learning. Good demonstrations

reached the goal within 300 time steps, and bad demonstrations within 500–1000 steps.

Bad demonstrations reached the goal state, just less efficiently.

In 3D Mountain Car there was no single state variable more important than all other

state variables. Our principal components showed that the first two principal components

weighed all of the state variables equally, independent of demonstration quality. Since

the demonstrations explored much of the configuration space of the agent, this showed

us which states were important to the agents general movement.

Learning in only one d-dimensional manifold converged faster than learning in the

full state space (Figure 4.4). DRRL converged to the optimal solution using only 2 or

3 dimensional subspace, rather than the full dimensional space of 4. This tells us that

the Mountain Car domain is simple enough to be learned in a 2 dimensional space. It

also converged very quickly to a poor solution in a 1 dimensional manifold. However, by

using only a single dimension, DRRL does not have a rich enough state space to learn

optimally.

4.2 Iterative Dimensionality-Reduced Reinforcement Learning

To account for this loss of information in the lower-dimensional manifold, we devel-

oped Iterative Dimensionality Reduced Reinforcement Learning (IDRRL). By using it-

erative learning, we transfer what was learned in the low-dimensional space to a higher-

dimensional space. To do this, we use transfer learning. In this work, we want to transfer

all of the knowledge from the source (low-dimension) to the target (higher-dimension)

45

Figure 4.4: We compare Q-Learning to Q-Learning combined with DRRL using good
quality demonstrations. Q-Learning combined with DRRL converged faster to an opti-
mal solution when learning in the 2 and 3 dimensional manifold. The single dimensional
manifold did not contain enough information to learn effectively.

46

task. Additionally, the mapping from the source to the target task (χS(s)) is given

by the dimensionality reduction mapping. This eases the transfer problem greatly. We

only need to choose when to transfer. If we transfer too early, the value function in the

low-dimensional representation is far from optimal. This bad knowledge can be spread

throughout the value function in the high-dimensional case.

We can use any transfer learning approach with IDRRL within the constraints of the

learning algorithm. We use Q-Value Reuse [110]. Q-Value Reuse is a simple technique

applicable when the source and target task both use temporal difference learning, as in

our case. In Q-Value Reuse, a copy of the source task’s value function is retained and

used to calculate the target task’s Q-Value. This computed Q-Value is a combination of

the source task’s saved value function and the target task’s value function:

Q(s, a) = Qsource(χS(s), a) +Qtarget(s, a) (4.1)

where χS is the transfer function between the source and target tasks’ states. This

transfer function is the dimensionality reduction projection. We then compute the Q-

Learning update step as normal, but we only update the target’s value function (line

7-10, Algorithm 4).

To choose when to transfer, we borrow from the definition of convergence in Policy

Iteration [103]. In Policy Iteration, the value function is updated at each iteration until

the policy does not change between updates. We make this policy comparison and ensure

that the most recently executed policy is at least 90% converged (unchanged before and

after an update) before transferring to the higher space (line 17-23, Algorithm 4).

By iteratively transferring the policies learned in the low-dimensional manifold, IDRRL

learns as fast as DRRL without the loss of information. Eventually learning is performed

in the full dimensional space. The computational cost associated with this transfer is

negligible. In each dimension IDRRL performs d matrix multiplications to project the

state down onto each low-dimensional manifold. Although this is a O(dn2) computation,

the size of the matrix is typically small and so the computation is fast.

47

Algorithm 4 Iterative Dimensionality-Reduced Reinforcement Learning

1: function Iterative Dimensionality-Reduced Reinforcement Learning
2: Initialize Qd arbitrarily for all d
3: for e← 1 to episodes do
4: s← initialize
5: for t← 1 to timesteps do
6: Q(s)← {}
7: for i← 1 to d do . Q-Value Reuse
8: si ← DimensionalityReductioni(s)
9: Q(s)← Q(s) +Qi(si)

10: end for
11: a← maxaQ(s, a) with probability 1− ε otherwise a← random
12: Take action a, observe r and s′

13: sd ← DimensionalityReductiond(s)
14: s′d ← DimensionalityReductiond(s

′)
15: r ← GetReward(s′)
16: Qd(sd, a)← Update(sd, a, s

′
d, r)

17: s← s′

18: a′ ← maxa′ Q(sd, a
′) . Convergence Test

19: if a = a′ then
20: δ ← δ + 1
21: end if
22: end for
23: if δ

timesteps ≥ .90 then
24: d← d+ 1
25: end if
26: end for
27: end function

48

4.2.1 Results and Analysis

4.2.1.1 Mountain Car

Combining standard reinforcement learning with IDRRL led the agent to converge faster

with the same converged performance (Figure 4.5). DRRL converged slightly faster than

IDRRL, but IDRRL benefits by eventually learning in the entire state space. This means

IDRRL does not lose any state information to speed up learning. Moreover, it does not

require the algorithm designer to know beforehand which is the best manifold to learn

in.

Since IDRRL represents the state space in low-dimensional and sparse manifolds, it

converges very quickly. With each additional dimension, it starts with a richer state

space and the experience gained from all previous dimensions. By episode 1,000, IDRRL

bootstrapped learning in the full dimensional space, and was near an optimal solution.

This results in much faster convergence than learning entirely in the full dimensional

space (Figure 4.5).

To analyze the robustness of the approach, we varied the quality of demonstration

data as well as the amount. Figure 4.5 shows the relationship between demonstration

quality and performance. There is no significant performance difference between good,

bad, and random demonstrations. IDRRL is robust to demonstration quality because

we are showing the learning algorithm the low-dimensional manifold in which to learn in.

This is alternative to learning from demonstration approaches, where the agent learns

based on the demonstrated policy and learning is susceptible to bad demonstrations.

To test the sample robustness of IDRRL we also varied the amount of demonstra-

tion data. For this analysis, we used random demonstrations and varied the amount

of demonstration data used between 1,000 and 25,000 demonstration states. We only

test with random demonstrations, since demonstration quality was not a factor in perfor-

mance for Mountain Car 3D. None of the random demonstrations reached the goal state,

and each demonstration trajectory was approximately 2,000 samples. The experiment

with 1,000 demonstration points converged slightly slower, and there were no significant

differences between 10,000 and 25,000 states.

IDRRL scales well with the size of the state space. We modified Mountain Car 3D

to add an additional fourth dimension. Mountain Car 4D has 6 continuous states and 7

49

Figure 4.5: We compare Q-Learning to Q-Learning when combined with IDRRL with
demonstrations of varying quality. IDRRL converged at the same speed to the optimal
solution when given good, bad or random demonstrations. In Mountain Car 3D IDRRL
is robust to suboptimal demonstrations.

50

Figure 4.6: In Mountain Car 3D, there is no significant difference in the performance of
IDRRL when using 10,000 or 25,000 demonstration states.

51

Figure 4.7: In Mountain Car 4D, Q-Learning with IDRRL scales well with the size of
the state space.

actions. There are position and velocity states and acceleration/deceleration actions for

each of the x, y and z dimensions. The trends seen previously in Mountain Car 3D are

emphasized with additional states (Figure 4.7). By using IDRRL, the agent converges

much faster to a good solution.

4.2.1.2 Swimmers

In our formulation of Swimmers we used 32 tiles and a 10n tiling, where n is the number

of state variables. There are 6 state variables and 9 actions in the 3-link swimmer and 12

state variables and 243 actions per state in the 6-link swimmer. Similar to our Mountain

Car experiments, we gather demonstrations by learning in the domain with Q-Learning

and collecting demonstrations. These demonstrations represent the best policies found

52

Figure 4.8: Q-Learning with IDRRL converges faster than standard Q-Learning when
learning a control policy for a 3-link swimmer with 6 state dimensions and 9 actions.

with Q-Learning. In swimmers, the performance is measured by how far the swimmer

has moved to the right (∆x). In the 3-link swimmer problem, the best policy performed

well, but in the 6-link problem the policies were highly suboptimal due to the large state

and action space.

The Swimmers Domain is a more complex system than Mountain Car. It includes

complex physics with a large state and action space. This is where IDRRL can greatly in-

crease learning performance when added to an existing algorithm. When adding IDRRL

to Q-Learning, the new learning algorithm can learn a controller for a 3-link Swimmer

faster (Figure 4.8).

IDRRL explored half the number of new states as Q-Learning (Figure 4.9). Although

this is expected in the low-dimensional states, it was unexpected when projected to the

full state space. This demonstrates that IDRRL was able to focus exploration in a high-

53

Figure 4.9: Q-Learning with IDRRL explored half as many states as Q-Learning alone.
This explains the increase in learning speed we demonstrate in the Swimmers domain.

utility area of the state space. This reduces the amount of exploration in the learning

algorithm and speeds up learning.

IDRRL scales effectively to a state space of 12 dimensions with 243 possible actions at

each state (Figure 4.10). By initially projecting the state space onto a manifold, IDRRL

samples many of the actions in a smaller space. It then generalizes what was learned in

the low-dimensional space to the higher-dimensions. This generalization causes IDRRL

to scale well with the size of both the state and action space.

4.2.1.3 Ball Balancing

In our formulation of the ball balancing problem we used 64 tiles and a 8n tiling, where

n is the number of state variables. For IDRRL we gathered demonstrations by collecting

54

Figure 4.10: A 6-link swimmer is difficult to control due to an extremely large state and
action space. Q-Learning with IDRRL learns a swimmers control policy quickly in 12
state dimensions and 243 actions per state.

55

Figure 4.11: The simulated robot arm learned to balance the ball for 60 seconds when
learning with IDRRL. With standard Q-Learning, the agent improved, but could not
balance the ball for longer than 8 seconds.

learned trajectories from Q-Learning. The agent controls the robot by choosing small

accelerations at each joint each time step. To balance the ball, the agent has to correlate

these accelerations to the change in position and velocity of the arm as well as how these

states impact the ball position and velocity.

We simulated the robot arm, ball and plate for 60 seconds. Each episode terminated

when the ball falls, or at the end of 60 simulated seconds. We reward the agent 1 for

each time step the ball remains on the plate and -1000 if the ball falls. Standard Q-

Learning could not learn a policy in which the ball could remain on the plate for the

full 60 seconds. However, by using IDRRL we quickly converged to the optimal solution

(Figure 4.11).

IDRRL performed better than expected, so we analyzed the principal components

56

Figure 4.12: The eigenvalues associated with the ball balancing principal components.
The full state space can mostly be represented within the first 4 dimensions.

in the dimensionality reduction to elucidate the reason. We attribute the increase of

performance to the representational power of the first four dimensions and accurate

associations between different state dimensions. According to the eigenvalues, the first

4 principal components can represent 98% of the variance in the demonstration data

(Figure 4.12 and Figure 4.13). This reduces number of dimensions in the state space by

half.

The strongest evidence for the increased performance are the associations PCA found

between states. The first principal component (Table 4.1, row 1) associates the movement

of the joint positions to the movement of the ball. The rolling joint (joint 5) position

and velocity is positively correlated with the ball position and velocity across the x

plane. This makes intuitive sense, since the rolling joints change the ball along the x

direction. Similarly, there is also a positive correlation between the pitch joints and the

57

Figure 4.13: A visualization of the ball balancing principal component eigenvectors
weighted by the eigenvalue. The full state space can mostly be represented within the
first 4 dimensions.

58

PC
Eigenvector

Arm States Ball States

θ(4) θ(5) θ̇(4) θ̇(5) y x ẏ ẋ

1 -0.1858 0.4815 0.1892 0.3144 -0.3664 0.3950 -0.3365 0.4422
2 0.5299 0.2157 0.2246 -0.0082 0.4164 0.3415 0.4871 0.3082
3 0.3633 -0.0579 0.6145 0.4826 -0.2277 -0.3312 -0.0263 -0.3032
4 0.0154 0.3010 -0.5899 0.6667 0.1567 -0.2222 0.1963 -0.0652
5 -0.6224 0.0582 0.4092 0.1814 0.6343 -0.0421 -0.0037 -0.0686
6 0.0211 0.6697 0.0896 -0.4180 -0.0105 -0.6016 0.0138 0.0775
7 -0.4055 -0.0181 0.1107 -0.0020 -0.4612 0.0103 0.7811 0.0063
8 -0.0152 -0.4188 0.0199 0.1265 0.0285 -0.4523 -0.0035 0.7763

Table 4.1: The eigenvectors associated with the ball balancing principal components.
The numbers in bold are the primary principal components for the most representative
projections.

movement across the y plane. The Motoman arm pitch and roll joints are independent,

causing a negative correlation between the roll impacts and the pitch impacts. Lastly,

the magnitude of rolling joints and movement across the x plane are the largest. This

large magnitude is due to the plate being twice as long across the x dimension than the y

(.5m vs .25m). Since there are no low eigenvector values in the first principal component,

all states are important for the low-dimensional representation. The eigenvalue of this

first principal component represents 41% of the variance in the data, meaning that this

projection is unlikely by itself to learn a good policy, but can learn a rough state transition

to transfer to later principal components.

The rest of the principal components represent variance that previous principal com-

ponents do not represent. The second principal component (Table 4.1, row 2) takes into

account the pitch effect of the arm that the first principal component missed. It corre-

lates the pitch of the arm and some roll with the movement of the ball. This principal

component represents 30% of the data, showing that it is able to extract a lot of variance

in pitch that the first principal component missed.

The third and fourth principal components focus on the impact arm velocity has on

the ball movement (Table 4.1, row 3 and 4). Each of these principal components represent

around 10% of the data, showing that arm velocity is important for representation, but

not as important as arm position.

59

Figure 4.14: The agent learned to “flick” the ball in the roll direction to remove momen-
tum from the system, and move the ball into the center of the plate. Meanwhile, the
pitch cycles remained static throughout with differing heights in the peaks and valleys.

We tested our learned policy in an open-loop implementation on the robot arm. For

the open-loop experiments we wrote 60 seconds of our simulated policy to file and ran it

directly on the robot with no feedback. We found that even with no feedback, the arm

was able to balance the ball for the full 60 seconds.

More interestingly, we found that whether the ball started on the left side, middle,

or right side of the board, the agent was still able to balance the ball. The agent

learned an effective general cyclic policy that moved the ball closer to the middle of the

plate throughout the simulation (Figure 4.14). The agent learned to manipulate the

momentum of the ball by “flicking” the roll of the arm. This essentially created a basin

of attraction in the center of the plate.

60

4.3 PAC-MDP Analysis

There are three metrics to quantify the performance of a reinforcement learning algo-

rithm: computational complexity, space complexity and sample complexity [102]. These

metrics determine if a learning algorithm is effective, and is used in Probably Approx-

imately Correct in Markov Decision Processes (PAC-MDP) analysis. Given the state

space S, action space A, error rate ε, confidence δ, and discount factor γ, an algorithm

is said to be PAC-MDP if:

Definition 4.3.1. An Algorithm A is said to be an PAC-MDP algorithm if, for any ε >

0 and 0 < δ < 1, the per-timestep space complexity and sample complexity of A are

less than some polynomial in the relevant quantities (S,A, 1ε ,
1
δ ,

1
1−γ), with probability

at least 1 − δ. It is efficiently PAC-MDP if we add computational complexity to the

same constraints. [98].

In this section, we show that adding DRRL or IDRRL does not remove the efficient

PAC-MDP classification to an existing learning algorithm.

4.3.1 Computational Complexity

Computational complexity represents the per-timestep computation the algorithm uses

during learning. In our work, the computational complexity relies on the learning al-

gorithm, dimensionality reduction algorithm, and state generalization approach. In this

analysis, we hold the learning algorithm and state generalization approach static, and

analyze the additional computational cost when adding dimensionality reduction.

The additional computational complexity when we apply DRRL to an existing learn-

ing algorithm is based on the dimensionality reduction algorithm. For each learning

iteration, the algorithm projects the current state and the next state onto a low dimen-

sional manifold. For principal component analysis, this is a cost of O(n2) where n is

total number of dimensions (Equation 2.9). Since n is typically low (n ≤ 24), this is a

low additional cost for the increase in performance.

The additional computational complexity when we apply IDRRL to an existing learn-

ing algorithm is larger than in DRRL. In order to apply Q-Value Reuse we need to project

the current state and next state onto each dimension between 1 and the current learning

61

dimension. For principal component analysis, this is a cost of O(dn2) where n is total

number of dimensions and d is the current learning dimension.

Since both DRRL and IDRRL add at most a 2 degree polynomial complexity to the

existing learning algorithm, the algorithm retains its computational complexity PAC-

MDP guarantee.

4.3.2 Space Complexity

Space complexity is the measure of the amount of working storage an algorithm needs.

This depends on how much memory, in the worst case, is needed at any point in the

algorithm. Again, we will hold the learning algorithm and state generalization approach

static, as many are already polynomial.

The additional complexity when we apply DRRL and IDRRL to an existing learning

algorithm is also based on the dimensionality reduction algorithm. For both algorithms,

the the principal component analysis space complexity would be the nxn matrix of

principal components. This is a cost of O(n2), within the polynomial requirements to

maintain efficient PAC-MDP guarantees.

4.3.3 Sample Complexity

The sample complexity of an algorithm directly measures how many times an agent acts

suboptimally (ε). Researchers use sample complexity in PAC-MDP theory to determine

how quickly an agent learns. Here, we show that by adding DRRL or IDRRL to an

existing learning algorithm, the sample complexity remains polynomial.

Definition 4.3.2. Let c = (s1, a1, r1, s2, a2, r2, ...) be a random path generated by exe-

cuting an algorithm A in an MDP, M. For any fixed ε > 0 the sample complexity of A is

the number of timesteps t such that the policy at time t, At, satisfies V At(st) < V ∗(st)−ε
[102].

Strehl, Li, and Littman [102] demonstrated that Q-Value initialization can decrease

the sample complexity while maintaining PAC-MDP guarantees if the action-values are

admissible. Admissible heuristics provide valuable prior knowledge to PAC-MDP RL

algorithms, but the specified prior knowledge does not need to be exact. An initialization

62

heuristic (H) is said to be admissible if:

V ∗(s) ≤ Q∗(s, a) ≤ H∗(s, a) ≤ Rmax
1− γ

(4.2)

where V ∗(s) is the optimal value function, Q∗(s, a) is the optimal action-value function,

H∗(s, a) is the initialization heuristic, and Rmax
1−γ is the maximum possible value.

Mann and Choe [71] extend PAC-MDP theory to intertask transfer learning. They

introduce the concept of weakly admissible heuristics and show that they can still main-

tain PAC-MDP guarantees. To be weakly admissible, a heuristic needs to be admissible

for only one action in each state. They combine weakly admissible heuristics and inter-

task mappings and prove they are also PAC-MDP if for each state s there is an action

ã such that:

V ∗trg(s)− α ≤ Q∗trg(s, ã) ≤ Q∗src(χS(s), χA(ã)) (4.3)

where α is the smallest non-negative value satisfying this inequality.

Q-Value Reuse is the intertask transfer learning technique we use in this work and is

an example of action-value initialization. We still enforce an admissible heuristic to make

use of the optimism in the face of uncertainty bias [17]. This bias has been shown to

reduce the chance of converging to a locally optimal policy. As it stands, Q-Value Reuse

is not admissible. It is guaranteed to be less than Rmax
1−γ , but is not greater than Q∗(s, a).

We remove this issue by simply adding Rmax to each Qsource(χS(s), a) function.

4.4 Cascading Autoencoders for IDRRL

To overcome the limitations of PCA and Kernel PCA, we introduce a novel approach to

dimensionality reduction based on a system of cascading autoencoders. In this section

we explain the structure and function of this dimensionality reduction technique.

4.4.1 Dimensionality Reduction Requirements for Learning

There are three requirements for our dimensionality reduction technique. First, it needs

to be fast. Iterative Dimensionality Reduced Reinforcement Learning uses its dimension-

ality reduction technique at each action selection step. This causes minor increases in

computational complexity but can increase the entire learning runtime by magnitudes.

63

This computational cost means that traditional non-linear dimensionality reduction tech-

niques, such as ISOMAP [111], Kernel PCA [73], Locally Linear Embedding [93], are

computationally infeasible during learning. These techniques were developed to perform

dimensionality reduction as a pre-processing step for large data.

Second, the representation of each dimension needs to be a superset of all dimensions

below it. If the dimensionality reduction does not strictly contain the superset, the learn-

ing algorithm will unlearn the policy learned in the d−1 step. Third, the dimensionality

reduction needs the first dimension to maximally encode information associated with the

state space, and each additional dimension encoding less. This leads to the fastest rate

of learning in the single dimension case, and more informative learning in the higher

dimensions.

In this work, we develop a fast non-linear dimensionality reduction technique with

a cascade of autoencoders (CAE). An autoencoder neural network is an unsupervised

learning technique that learns a reduced representation of its inputs. It contains an

encoder network to transform high-dimensional into a low-dimensional space, and a

similar decoder network that takes the output of the encoder and attempts to reconstruct

the original data (Figure 4.15). These networks are trained by minimizing the difference

between the original data and its reconstructed output. Once the network is trained, the

decoder section of the network is no longer needed, we only use the encoder.

4.4.2 Proposed Neural Network Constructions

We explore three ways to construct the autoencoder for dimensionality reduction in

IDRRL. We could create one neural network per dimension. For example, each network

would encode n inputs into d outputs, where d is the current dimension IDRRL is

learning in. However, this would not satisfy our second requirement. Each autoencoder

would represent more of the state space, but not necessarily a superset of all previous

autoencoders.

To enforce the superset requirement, each dimension would have to remain static

when we increase dimensionality. That is, when we add an additional dimension, all

previous dimension representations do not change. We only learn the most recent au-

toencoder. One autoencoder that encodes n inputs to n − 1 outputs would satisfy this

requirement. We could take d values from the n− 1 outputs and use that as our dimen-

64

sionally reduced space. However, this does not satisfy the third requirement. Since we

are using a single autoencoder, there is no guarantee that the first dimension encodes

the maximum amount of information. In actuality, only the joint encoding layer encodes

this maximum amount of information, which is not what we desire.

The third construction involves cascading n single output autoencoders together.

Each autoencoder encodes the n-dimensional space to a 1-dimension output. Rather

than executing one large autoencoder, this technique requires the execution of many

small autoencoders, and concatenating the outputs (Figure 4.15). This technique is fast,

since these autoencoders are small and the operation can be done in parallel. Since

we concatenate the outputs of each autoencoder, each projection strictly represents a

superset of all lower-dimension projections. Lastly, the first autoencoder represents as

much of the full space as possible in a single dimension. All additional dimensions strictly

add more space representation, but never more than the previous autoencoders.

Each autoencoder after the first dimension calculates an adjustment for the previous

dimensions. Therefore, the addition of all outputs for each dimension produces the

original training data. To train this behavior, we used the IDRRL demonstration as

both the inputs and the desired outputs for the first dimension. However, for subsequent

dimensions we used the cumulative reconstruction error of all previous dimensions as the

desired output:

yd = xtrain − CAE

= xtrain −
d−1∑
i=1

autoencoderi(xtrain)
(4.4)

where yd is the desired output for the autoencoder in dimension d, and xtrain is the

demonstration data. This ensures that each autoencoder learns to encode only what

lower-dimension autoencoders could not. To prevent overfitting to the demonstration

data, we used a validation set that was a uniform grid across the entire state space.

This grid is domain dependent with a complexity trade-off. If the uniform grid is highly

discretized the CAE algorithm is more robust to outliers, but training time grows expo-

nentially with the size of the discretization. In this work, we use a 4-sized grid, leading

to 4n states, where n is the number of state dimensions. Although we ignore training

time, since it is a preprocessing step, the small size of our neural networks result in fast

65

training time.

Furthermore, neural network execution is a sequence of matrix multiplications, which

has polynomial space and time complexity. This ensures that we still maintain PAC-

MDP guarantees.

4.4.3 Results and Analysis

We applied IDRRL-CAE and IDRRL-PCA with Q-Learning to two domains: Mountain

Car 3D and Swimmers. For each experiment we use the following parameter settings

for 20 statistical runs: α = 0.1 and γ = 0.99. Error bars are shown in each graph and

represent error in the mean. If an error bar is not visible, the error was negligible.

In our formulation of Mountain Car we used 16 tiles and a 8n tiling, where n is the

number of state variables. There are 4 state variables and 5 actions in the 3D variant.

Although this is not a high-dimensional problem, we use Mountain Car, a problem with

a known solution, to demonstrate that IDRRL-CAE can reach the same optimal solution

as IDRRL-PCA and Q-Learning at a faster rate.

IDRRL-CAE learns an optimal policy in Mountain Car 3D faster than IDRRL-PCA

and standard Q-Learning (Figure 4.16). We show IDRRL with random projections as a

baseline to demonstrate the usefulness of an accurate projection.

To further analyze why CAE performed better than PCA, we calculated the recon-

struction error for each technique (Figure 4.17). We found that PCA does not recon-

struct the original data as well as CAE in the lower dimensions. This fits well within the

IDRRL framework. IDRRL first learns a coarse solution quickly, and bootstraps that

knowledge in the higher dimensions. The better the dimensionality reduction technique

is at representing the low-dimensional space, the better the coarse solution will be, and

the boostrapping will be more effective.

In our formulation of Swimmers we used 32 tiles and a 2n tiling, where n is the number

of state variables. There are 8 state variables and 9 actions in the 3-link swimmer. Similar

to our Mountain Car experiments, we gather demonstrations by learning in the domain

with Q-Learning and collecting demonstrations. These demonstrations represent the

best policies found with Q-Learning, but are still highly suboptimal. In swimmers, the

performance is measured by how far the swimmer has moved to the right (∆x).

When learning how to control a 3D swimmer, IDRRL-CAE learns a 71% better policy

66

DecoderEncoder

DecoderEncoder

x

x

x0

x1

Ydesired = x

Ydesired = x - x0

…
Figure 4.15: The CAE dimensionality reduction technique trains one autoencoder per
dimension. The first autoencoder uses the original training data as the desired output,
and each additional autoencoder learns to predict cumulative previous autoencoders
reconstruction error.

67

Figure 4.16: IDRRL-CAE converges faster than IDRRL-PCA or Q-Learning alone. This
is due to CAE projecting the state space onto a non-linear and accurate representation.
As a baseline we compared to sparse random projections.

at a faster rate than Q-Learning and a 26% better policy than IDRRL-PCA (Figure 4.18).

Again, this is due to projecting the full state space onto a more representative non-linear

manifold.

68

Figure 4.17: The reconstruction root mean squared error at each dimension for Mountain
Car 3D using both PCA and CAE. The RMS of CAE is lower for the first dimension
case, meaning that the learning algorithm will be able to learn more efficiently in this
dimension, and bootstrap the next dimension with that knowledge.

69

Figure 4.18: IDRRL-CAE converges faster than using IDRRL-PCA or Q-Learning alone.
This is due to IDRRL-CAE projecting the state space onto a non-linear and accurate
representation.

70

Chapter 5: Movie-Reel Interface

We had three requirements when designing our human feedback mechanism. We intend

this mechanism for use in robotics, so it must work in continuous spaces. It also must

tolerate delayed feedback and should not require the user to quickly react. Lastly, it

must incorporate both coarse and detailed feedback.

5.1 Timeline Interface Paradigm

Interfaces for continuous space manipulation have been around for decades in post-

production video editing applications. Video editing software such as iMovie, Windows

Movie Maker, and Blender use a timeline interface paradigm for manipulating video

streams. Video editing software naturally accounts for fine-grained state spaces, since

video is typically at 30-60 frames-per-second. These interfaces are easy to use and have

been used by end-users for editing videos in research [80] and K-12 education [29, 49]

with success. They have also been the subject of multiple user studies associated with

ease-of-use and efficiency [119].

The timeline interface paradigm allows users to edit sections of the video by annotat-

ing, concatenating, cutting, shifting and more. The user can also scan through a video

by fast forwarding, rewinding, and pausing. These features remove the need to quickly

react as the video is playing. Instead, users can make edits at their own pace. They

can slowly step through the video, making small edits, or choose a large swath of video

to make large edits. In this way, the timeline interface paradigm decouples the time of

execution from the speed of editing. This expedites the editing process.

5.2 Movie-Reel Annotation

Incorporating concepts from the timeline interface paradigm into human feedback mech-

anisms accomplishes many of our goals. It works in continuous spaces, gives the user

both coarse and fine-grained control over the executed policy, and does not require timely

71

Figure 5.1: The user can drag the timeline (a) to select a subset of data. The toolbar
consists of buttons for rewinding, fast forwarding, playing and pausing (b). The GUI
also displays when messages are received and has visualization of video streams (c).

feedback. To test this paradigm, we build on the tool rqt bag [15]. Rqt bag (Figure 5.1)

is a ROS package that provides the user with tools for scanning through recorded data,

known as bags.

Rqt bag has key GUI components. There is a timeline at the top of the GUI (Figure

5.1, a.) showing the user how long the bag file is. The user can drag an area of this

timeline to select a subset of data, which is useful for playing a small subset of data

on repeat. The toolbar (Figure 5.1, b.) controls the playhead for fast forwarding,

rewinding, slowing, pausing and playing the bag file. Lastly, the message view section of

the GUI (Figure 5.1, c.) displays when messages are received by the robot, and visualizes

messages. This provides a first-person view from the robot vision system. Throughout

this work, we build heavily upon the rqt bag GUI. We add functionality to annotate

recorded data with rewards, thus enabling rqt bag to be used in Reinforcement Learning

applications.

We augmented the capabilities of rqt bag in multiple ways. The main features we add

are the ability to create and export annotations. The user can use “annotation mode”

to select a subset of the data (Figure 5.2, a.). The user can then drag an area of the

timeline to reward this subset (Figure 5.2, b.). If the robot is making a small mistake,

the user can highlight the respective area of the timeline and annotate it with a slightly

negative reward. In this way, only a few states are given negative feedback. Likewise,

if the robot is making a large mistake, the user can highlight the entire timeline of the

mistake and give many states a large negative reward.

The user doesn’t have to always give negative feedback. If the user would like to

incentivize the robot to move into a specific area of the state space they can use the

same process to give the robot a positive reward on the timeline when the robot is in the

72

Figure 5.2: We added an annotation button (a) to the toolbar. When the user clicks this
button they can drag over the timeline to annotate areas of the robot state (b). They
can double click on this timeline to assign that robot state rewards. The user can see
how the robot is performing over the entire execution by looking at the graph (c). We
also include a GUI to visualize the state of the robot so the user can easily give feedback
(d).

desired state. We add a graph of the feedback below the timeline so the user can easily

see how the robot is performing (Figure 5.2, c.). Lastly, we include a GUI of the robot

state so the user can visualize what the robot is doing (Figure 5.2, d.).

We incorporate this feedback as a reinforcement learning signal or a path planning

cost. Although there are many approaches for human feedback integration, that is not

the focus of this dissertation. To demonstrate the utility of our user feedback technique,

we chose a general reinforcement learning approach, so we use standard reward shaping

[103]. Every learning step, we add the human feedback to the domain reward and use

that cumulative reward during policy updates. For path planning, we simply add the

human feedback to the planners cost function. The planner will incorporate our human

feedback by throwing out high cost trajectories.

73

5.3 Results and Analysis

We test our movie reel interface in two scenarios. First, the robot uses reinforcement

learning to learn a policy to drive between two points. To guide the robot’s learning, we

develop a reward function that uses its distance to the goal. This is a standard reward

function that works in general navigation scenarios. However, this reward function can

potentially lead the agent to a locally optimal solution. We use our movie reel interface

to modify this reward function to lower the local maxima.

In the second scenario we use our movie reel interface to incorporate human preference

in path planning. When robots are navigating, they typically use path planning and

optimize their trajectory by incorporating distance-to-goal and obstacles. This technique

can cause the robot to navigate near dangerous situations, and a human may prefer to

have the robot take a different route. We incorporate this human preference in the

planner’s cost function.

5.3.1 Removing Local Maxima

We use our movie-reel style interface to give human feedback in a learning scenario with

a hard-to-define reward function. In this scenario, the robot is learning a policy in a

deceptive problem [75], where there is a simple locally optimal policy that results in

poor performance. In typical deceptive problems, the robot has to first pass through

a deceptively bad region in order to reach the true goal. This can cause the robot to

find a locally optimal solution, trapping it between the start location and the deceptive

area. We give the robot negative feedback to reduce the value of the local maxima and

positive feedback to incentivize the deceptive region.

We test how efficiently we can incorporate human feedback from our movie reel

interface in a learning scenario. The robot starts with a random policy, and must learn

to move from point S to point G (Figure 5.3). This is a deceptive problem, since the

robot can easily get stuck in local maxima that leads to a poor policy.

The agent learned for 1000 time steps and 200 episodes. We reward the agent based

on the distance it moved towards the goal at each time step, 1000 if it reached the goal

and -10 if it hit a wall. The robot state consists of its position (x, y, θ) and its actions

are the combination of three angular velocities (-1, 0, 1) and three x velocities (forward,

74

Figure 5.3: The robot spawns in a random orientation at the start location (S) and learns
a policy to the goal location (G). Without human feedback, it gets stuck looping near the
goal, but on the other side of the wall (black line). We give the robot negative feedback
for initially moving toward the goal, incentivizing it to move away from the goal and find
the positive rewards (white line). Plus and minus signs represent the distance-to-goal
reward function of the robot.

neutral, reverse).

We gave the robot feedback during episode 10, 50, and 100. We gave coarse feedback

when the robot moved in the correct (Figure 5.3, white line) or incorrect (Figure 5.3,

black line) direction for a long period of time, and fine-grained feedback when it moved

in the correct or incorrect direction for a short period of time. When the agent was not

obviously moving toward or away from the goal, we gave no feedback. Since we wanted

to test quick, yet detailed, feedback we limited our feedback to take no longer than 5

minutes.

When the agent is not given any feedback, it is able to easily find a policy with a

converged performance of around 0 (Figure 5.4). It learns to drive in a circle, moving to-

ward the goal, accumulating positive rewards, then once it gets close to the wall, it moves

away from the goal. By learning this policy, it never reaches the goal. Alternatively,

the correct policy moves away from the goal, accumulating many negative rewards, and

begins receiving positive rewards once it reaches the top of the maze.

When first learning, the agent rarely moves in the correct direction. We give mainly

negative feedback at episode 10. This incentivizes the agent to move away from the goal,

accumulating negative rewards and worse performance according to our reward function.

Since we needed to give coarse feedback at this point, we did not need the full 5 minutes.

At episode 50, the agent consistently moves away from the goal, but not far enough.

75

Figure 5.4: When the agent is not given feedback, it is able to easily learn a policy that
leads to an overall high reward, but does not reach the goal. We give the robot feedback
to reduce the value of this local maxima and learn the correct policy. We include error
bars for 50 statistical runs.

This required us to use a fine-grained feedback approach and we gave both positive and

negative feedback. In this feedback session we used the full 5 minutes. By episode 100,

the agent inconsistently gets to the goal, and the reward signal begins propagating to

earlier states. Once this happens, we do not need to give much feedback, since the agent

has learned to initially move away from the goal and reach the top of the maze. At this

stage, we only had to give a few feedback updates to the robot. By the end of episode

200, the agent gets to the goal nearly every episode.

76

5.3.2 Personalized Feedback

Sometimes navigation with costmaps should result in paths that are not strictly distance-

optimal. The distance-optimal path ignores plans that move the robot close to dangerous

situations, such as near a stairway. The human may prefer the robot to stay away from

these dangerous situations, but the robot may not have the sensing capabilities to detect

them. For example, the robot will need a downward facing sensor to detect a stairway.

We show we can use our movie-reel interface to incorporate this human preference in the

ROS navigation stack.

To simulate this human preference scenario, the robot uses the ROS navigation stack

to optimally plan down a hallway and around a corner. This navigation software uses a

combination of Dijkstra’s planning algorithm for global planning and a weighted com-

bination of distance-to-goal and obstacle costs as a cost function for local planning. In

navigating, the robot moves close to a stairway, and drives closely around a sharp corner

(Figure 5.5, dark line). Although this minimizes the time it takes for the robot to reach

the goal, we consider this dangerous navigation. We use our movie-reel interface to give

the robot feedback to negatively reinforce these undesirable states.

We incorporated this feedback in the ROS navigation local planner by including the

human preference scores into the cost function. The local planner moves around locations

with negative human feedback. The more extreme the negative feedback (a low negative

value vs a high negative value) the more the planner is incentivized to avoid those states.

We give the robot negative feedback in states close to the stairs and close to the

corner. This feedback was easy to give. In a process that took only seconds, we scanned

the robot execution to where the robot moved in front of the stairs and around the

corner. At these points we gave negative feedback. The local planner avoided these

states and the robot navigated away from the stairs and the corner (Figure 5.5, light

line).

77

Figure 5.5: The path planning algorithm optimally plans the robot to move close to the
stairs and too closely around the corner (dark line). We consider this behavior dangerous
and give the robot feedback to negatively reinforce these states. The path planner uses
this feedback in its cost function and plans away from both the stairs and the corner
(light line).

78

Chapter 6: Conclusion

In this dissertation we introduced our DRRL and IDRRL frameworks to improve re-

inforcement learning performance in high-dimensional problems. We also introduced

our movie-reel interface for human feedback on the learning algorithm’s policy. This

end-to-end architecture furthers the field of reinforcement learning and human feedback

mechanisms for robotics by developing efficient and novel algorithms that alleviate ex-

isting issues in both fields discussed in this dissertation.

The DRRL and IDRRL frameworks improve the performance of an existing algorithm

by combining the speed of low-dimensional learning and the expressiveness of the full

state space (Section 4.1 and 4.2). By projecting the state space onto a low-dimensional

manifold, our methods are able to represent a complex state with only a few state vari-

ables. Then, by incrementally transferring the knowledge from low-dimensional spaces

into higher-dimensional ones, IDRRL learns good policies faster than the reinforcement

learning algorithm alone.

We demonstrate in Mountain Car, the Mario Benchmark Problem, Swimmers and our

Ball Balancing domain that by adding IDRRL to an existing learning algorithm we see

an increase in speed of learning and performance (Section 4.2). We attribute the increase

of performance to the representational power of the low-dimensional spaces and accurate

associations between different states that the dimensionality reduction calculated. The

reduction in the state space allows the learning algorithm to quickly find a high-utility

section of the state space. This correspondingly reduced the number of new states IDRRL

needed to explore, and increased learning speed. Additionally, we use demonstrations

to find a low-dimensional manifold, rather than directly bootstrap learning. This leads

our frameworks to be robust to demonstration quality, a classic issue in learning from

demonstration literature [6].

We also show that when adding the DRRL or IDRRL framework to an existing

learning algorithm, we retain efficient PAC-MDP guarantees (Section 4.3). Therefore,

our frameworks retain any polynomial space, time and sample complexity guarantees of

the original algorithm.

79

However, the effectiveness of learning in this low-dimensional subspace is dependent

on the projection. With a projection that accurately represents the high-reward part of

the state space, the learning algorithm is able to find and explore that good part of the

state space quickly. With a poor projection, many dissimilar states are projected onto

the same low-dimensional point. This misleads the learning algorithm and decreases

learning speed in the low-dimensional space.

We introduce the novel CAE dimensionality reduction extension to IDRRL (Section

4.4). IDRRL-CAE learns in a dimensionally reduced space that is representative of the

high-reward area of the full state space. This is due to the fact that autoencoders are

able to learn a non-linear projection onto a low-dimensional manifold with a minimal

loss of information [9]. We cascade many of these autoencoders and use them together as

our dimensionally reduced state space. By using IDRRL-CAE, we reduce the RMS error

of the first dimension. This leads to accurate and fast learning in that low-dimensional

space. We demonstrate that this corresponds to better bootstrapping for the higher

dimensional learning and therefore faster learning.

One important aspect of IDRRL not explored in this work is the extraction of extra

state information. We believe that we could increase the number of state variables in

the learning problem and IDRRL will begin learning by using a combination of the

most representative state variables. IDRRL will leave the less important variables for

the later high-dimensional spaces, after the learning algorithm has already found a high-

utility area of the state space. Although these less important variables may not be useful

for learning the general policy, they may be leveraged by the algorithm for fine-tuning.

In this dissertation we also discussed many of the issues with current human feedback

mechanisms. Current mechanisms often do not work in continuous spaces, rely on quick

feedback from the user, or only allow for either coarse or fine-grained feedback. The

timeline interface paradigm alleviates many of these issues. It exists in many end-user

applications and has been the subject of multiple user studies associated with ease-of-use

and efficiency.

Our framework allows the user to scan through a robot execution by fast forwarding,

rewinding, and pausing. These features remove the need to quickly react as the robot is

executing a plan. Instead, users can give feedback at their own pace. This framework

decouples the time of execution from the speed of giving annotations and expedites the

feedback process.

80

We developed a proof-of-concept GUI for a timeline interface on the rqt bag architec-

ture and test it in two scenarios. In both scenarios, it was easy for us to give feedback.

In the Section 5.3.1, the robot used reinforcement learning to learn a policy to drive

between two points. The robot was in a deceptive maze, and it easily found a locally

optimal solution. We gave the robot feedback to reduce the local maxima and lead the

robot out of the bad policy space. We give the robot feedback at three stages in learning,

and limited ourselves to 5 minutes per feedback session. Although we limited ourselves

to 5 minutes, we only used that full time in the second feedback session. In the first

session the robot mainly needed coarse negative reinforcement and the last session it

only needed a few positive samples.

Human preference plays an important role in objective functions. In the Section 5.3.2,

we used our movie-reel interface to incorporate human preference. In this scenario, ROS

navigation planned a path close to a stairway and quickly around a corner. The robot was

perfectly safe planning close to the stairs. However, if the robot was expensive, or some

sort of autonomous vehicle, the user may react in an unpredictable or dangerous manner

to the robot moving toward the stairs. Incorporating human preference in the objective

function alleviates this issue. We negatively reinforced these states and modified the ROS

path planning algorithm to incorporate that human feedback in its objective function.

The planner then navigated the robot away from the stairs and further away from the

corner. By using our timeline interface, this feedback was quick and effective.

These scenarios had in common difficult to define objective functions. The first

scenario needed two reward functions, one for initially moving away from the goal, and

out of the local optimal, and one for later moving toward the goal. An objective function

that specific will only work in that scenario. However, the more general distance-to-goal

function we used was too general. Many times, these general objective functions cannot

do not work effectively without human feedback.

Future work includes performing a user study to assess the usability of our framework

in a robotics application. Related work addresses the ease-of-use of timeline interfaces

[119], but this could change substantially when end-users are interacting with robots.

This is due to the concept of trust in the human-robot interaction [85].

Human trust in robots depends on multiple factors. As robots become more effective

in everyday scenarios, humans begin to place more trust in them [37]. However, the

transparency of the reasoning behind robot autonomy also plays an important role in

81

trust [118]. Our timeline interface gives end-users an efficient and transparent way to

supply feedback to a robot.

82

Bibliography

[1] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via inverse reinforce-
ment learning. In Proceedings of the Twenty-first International Conference on
Machine Learning, page 1, 2004.

[2] Baris Akgun, Maya Cakmak, Jae Wook Yoo, and Andrea Lockerd Thomaz. Trajec-
tories and keyframes for kinesthetic teaching: A human-robot interaction perspec-
tive. In Proceedings of the Seventh Annual ACM/IEEE International Conference
on Human-Robot Interaction, pages 391–398, 2012.

[3] James Sacra Albus. Brains, Behavior, and Robotics. Byte Books, 1981.

[4] R. Amit and Maja Matarić. Learning movement sequences from demonstration. In
The 2nd International Conference on Development and Learning, pages 203–208,
2002.

[5] Brenna Argall, Brett Browning, and Manuela Veloso. Learning by demonstration
with critique from a human teacher. In Proceedings of the ACM/IEEE Interna-
tional Conference on Human-robot Interaction, pages 57–64, 2007.

[6] Brenna D. Argall, Sonia Chernova, Manuela Veloso, and Brett Browning. A sur-
vey of robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[7] Christopher G. Atkeson, Andrew W. Moore, and Stefan Schaal. Locally weighted
learning. Artificial Intelligence Review, 11(1):11–73, 1997.

[8] Christopher G. Atkeson and Stefan Schaal. Robot learning from demonstration.
In Proceedings of the Fourteenth International Conference on Machine Learning,
pages 12–20, 1997.

[9] Pierre Baldi. Autoencoders, unsupervised learning and deep architectures. In
Proceedings of the 2011 International Conference on Unsupervised and Transfer
Learning Workshop, pages 37–50, 2011.

[10] Jonathan Baxter and Peter Bartlett. Direct gradient-based reinforcement learning:
I. Gradient estimation algorithms. Technical report, National University, 1999.

83

[11] Richard Bellman. Dynamic Programming. Princeton University Press, Princeton,
1957.

[12] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scien-
tific, 2nd edition, 2000.

[13] Aude Billard and Maja Matarić. Learning human arm movements by imitation:
Evaluation of a biologically-inspired connectionist architecture. Robotics and Au-
tonomous Systems, 941:1–16, 2001.

[14] Sebastian Bitzer, Matthew Howard, and Sethu Vijayakumar. Using dimensionality
reduction to exploit constraints in reinforcement learning. In 2010 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems, pages 3219–3225, 2010.

[15] Aaron Blasdel, Tim Field, and Austin Hendrix. rqt bag. http://wiki.ros.org/

rqt_bag.

[16] Federico Boniardi, Abhinav Valada, Wolfram Burgard, and Gian Diego Tipaldi.
Autonomous indoor robot navigation using a sketch interface for drawing maps
and routes. In 2016 IEEE International Conference on Robotics and Automation,
pages 2896–2901, 2016.

[17] Ronen I. Brafman and Moshe Tennenholtz. R-MAX - A general polynomial time
algorithm for near-optimal reinforcement learning. Journal of Machine Learning
Research, 3:213–231, 2003.

[18] Darius Braziunas. POMDP Solution Methods. Technical report, Department of
Computer Science, University of Toronto, 2003.

[19] Cynthia Breazeal, Matt Berlin, Andrew G. Brooks, Jesse Gray, and Andrea Lock-
erd Thomaz. Using perspective taking to learn from ambiguous demonstrations.
Robotics and Autonomous Systems, 54(5):385–393, 2006.

[20] Tim Brys, Anna Harutyunyan, Peter Vrancx, Matthew E Taylor, Daniel Kudenko,
and Ann Nowé. Multi-objectivization of reinforcement learning problems by reward
shaping. In International Joint Conference on Neural Networks, pages 2315–2322,
2014.

[21] Maya Cakmak and Andrea L. Thomaz. Designing robot learners that ask good
questions. In Proceedings of the Seventh Annual ACM/IEEE International Con-
ference on Human-Robot Interaction, pages 17–24, 2012.

[22] Sylvain Calinon and Aude Billard. Incremental learning of gestures by imitation
in a humanoid robot. In Proceedings of the ACM/IEEE International Conference
on Human-robot Interaction, pages 255–262, 2007.

84

[23] Sonia Chernova and Manuela Veloso. Confidence-based policy learning from
demonstration using gaussian mixture models. In Proceedings of the 6th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pages
233:1–233:8, 2007.

[24] Sonia Chernova and Manuela Veloso. Teaching multi-robot coordination using
demonstration of communication and state sharing. In Proceedings of the 7th
International Joint Conference on Autonomous Agents and Multiagent Systems,
pages 1183–1186, 2008.

[25] Jeffery A. Clouse. On integrating apprentice learning and reinforcement learning.
Technical report, University of Massachusetts, 1997.

[26] Luis C Cobo, Peng Zang, Charles L Isbell Jr, and Andrea L Thomaz. Automatic
state abstraction from demonstration. In Proceedings of the 22nd Second Interna-
tional Joint Conference on Articial Intelligence, volume 22, page 1243, 2011.

[27] Adrià Colomé, Gerhard Neumann, Jan Peters, and Carme Torras. Dimensionality
reduction for probabilistic movement primitives. In 2014 IEEE-RAS International
Conference on Humanoid Robots, pages 794–800, 2014.

[28] Rémi Coulom. Reinforcement Learning Using Neural Networks, with Applications
to Motor Control. PhD thesis, Institut National Polytechnique de Grenoble, 2002.

[29] Robyn Cox. Digital Literacies: Social Learning and Classroom Practices. Literacy,
46(1):56–56, 2012.

[30] William J. Curran, Adrian Agogino, and Kagan Tumer. Addressing hard con-
straints in the air traffic problem through partitioning and difference rewards. In
Proceedings of the 2013 International Conference on Autonomous Agents and Mul-
tiagent Systems, pages 1281–1282, 2013.

[31] Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical
relative entropy policy search. Journal of Machine Learning Research, 17(1):3190–
3239, 2016.

[32] Marc Peter Deisenroth, Peter Englert, Jan Peters, and Dieter Fox. Multi-task
policy search for robotics. In Proceedings of 2014 IEEE International Conference
on Robotics and Automation, pages 3876–3881, 2014.

[33] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A Survey on Policy
Search for Robotics. Foundations and Trends in Robotics, 2(1-2):1–142, 2013.

85

[34] Marc Peter Deisenroth, Carl Edward Rasmussen, and Dieter Fox. Learning to con-
trol a low-cost manipulator using data-efficient reinforcement learning. Robotics:
Science and Systems, 7:57–64, 2011.

[35] John Demiris and Gillian M. Hayes. Imitation in animals and artifacts. chapter
Imitation As a Dual-route Process Featuring Predictive and Learning Components:
A Biologically Plausible Computational Model, pages 327–361. MIT Press, 2002.

[36] Yiannis Demiris and Bassam Khadhouri. Hierarchical attentive multiple models
for execution and recognition of actions. In Robotics and Autonomous Systems,
pages 361–369, 2005.

[37] Munjal Desai, Kristen Stubbs, Aaron Steinfeld, and Holly Yanco. Creating trust-
worthy robots: Lessons and inspirations from automated systems. In Proceedings
of the AISB Convention: New Frontiers in Human-Robot Interaction, 2009.

[38] Alexander Dietrich, Thomas Wimbock, Alin Albu-Schaffer, and Gerd Hirzinger.
Reactive whole-body control: Dynamic mobile manipulation using a large num-
ber of actuated degrees of freedom. IEEE Robotics and Automation Magazine,
19(2):20–33, 2012.

[39] Rüdiger Dillmann, M. Kaiser, and A. Ude. Acquisition of elementary robot skills
from human demonstration. In International Symposium on Intelligent Robotics
Systems, pages 185–192, 1995.

[40] Christos Dimitrakakis and Constantin A. Rothkopf. Bayesian multitask inverse
reinforcement learning. In Proceedings of the 9th European Conference on Recent
Advances in Reinforcement Learning, pages 273–284, 2012.

[41] Alain Dutech, Tim Edmunds, Jelle Kok, Michail Lagoudakis, Michael Littman,
Martin Riedmiller, Brian Russell, Bruno Scherrer, Rich Sutton, Stephan Timmer,
Nikos Vlassis, Adam White, Shimon Whiteson, and Dinakar Jayarajan. NIPS
workshop: Reinforcement Learning Benchmarks and Bake-offs II. 2005.

[42] Dave Ferguson, Maxim Likhachev, and Anthony Stentz. A guide to heuristic-
based path planning. In Proceedings of the International Workshop on Planning
under Uncertainty for Autonomous Systems, International Conference on Auto-
mated Planning and Scheduling, pages 9–18, 2005.

[43] Javier Garcıa, Iván López-Bueno, Fernando Fernández, and Daniel Borrajo. A
comparative study of discretization approaches for state space generalization in
the keepaway soccer task. Reinforcement Learning: Algorithms, Implementations
and Aplications. Nova Science Publishers, 2010.

86

[44] Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles Isbell, and An-
drea L Thomaz. Policy shaping: Integrating human feedback with reinforcement
learning. In Advances in Neural Information Processing Systems, pages 2625–2633,
2013.

[45] Daniel H Grollman and Odest Chadwicke Jenkins. Sparse incremental learning for
interactive robot control policy estimation. In IEEE International Conference on
Robotics and Automation, pages 3315–3320, 2008.

[46] Anna Harutyunyan, Tim Brys, Peter Vrancx, and Ann Nowé. Shaping mario with
human advice. In Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, pages 1913–1914, 2015.

[47] Simon Haykin. Neural Networks: A Comprehensive Foundation. Prentice Hall,
2nd edition, 1998.

[48] Verena Heidrich-Meisner and Christian Igel. Neuroevolution strategies for episodic
reinforcement learning. Journal of Algorithms, 64(4):152–168, 2009.

[49] Claudia Hindo, Ken Rose, and Louis M Gomez. Searching for steven spielberg:
Introducing imovie to the high school english classroom: A closer look at what
open-ended technology project designs can do to promote engaged learning. In
Proceedings of the 6th international conference on learning sciences, pages 609–
609, 2004.

[50] Geoffrey Hinton and Ruslan Salakhutdinov. Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507, 2006.

[51] Auke Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imitation with non-
linear dynamical systems in humanoid robots. In IEEE International Conference
on Robotics and Automation, volume 2, pages 1398–1403, 2002.

[52] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Learning rhythmic
movements by demonstration using nonlinear oscillators. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 958–
963, 2002.

[53] Tetsunari Inamura, Masayuki Inaba, and Hirochika Inoue. Acquisition of prob-
abilistic behavior decision model based on the interactive teaching method. In
Proceedings of the Ninth International Conference on Advanced Robotics, 1999.

[54] Wallace Jackson. The Tools of Digital Video: Non-Linear Editing Software, pages
1–10. Apress, Berkeley, CA, 2016.

87

[55] Ian Jolliffe. Principal Component Analysis. Springer Series in Statistics. Springer,
2002.

[56] Michael I. Jordan and Robert A. Jacobs. Hierarchical mixtures of experts and the
EM algorithm. In Proceedings of 1993 International Joint Conference on Neural
Networks, volume 2, pages 1339–1344, 1993.

[57] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
Learning: A Survey. Journal of Artificial Intelligence Research, 4(1):237–285, May
1996.

[58] Shivaram Kalyanakrishnan and Peter Stone. An empirical analysis of value
function-based and policy search reinforcement learning. In Proceedings of The
8th International Conference on Autonomous Agents and Multiagent Systems, vol-
ume 2, pages 749–756, 2009.

[59] Sergey Karakovskiy and Julian Togelius. The Mario AI benchmark and com-
petitions. IEEE Transactions on Computational Intelligence and AI in Games,
4(1):55–67, 2012.

[60] Jin-Oh Kim and Pradeep Khosla. Real-time obstacle avoidance using harmonic
potential functions. IEEE Transactions on Robotics and Automation, 8(3):338–
349, 1992.

[61] W Bradley Knox and Peter Stone. Reinforcement learning from simultaneous
human and MDP reward. In Proceedings of the 11th International Conference on
Autonomous Agents and Multiagent Systems, volume 1, pages 475–482, 2012.

[62] Jens Kober and Jan Peters. Policy search for motor primitives in robotics. Machine
Learning, 84(1-2):171–203, July 2011.

[63] Jens Kober and Jan Peters. Reinforcement Learning in Robotics: A Survey. In
Reinforcement Learning, volume 12, pages 579–610. 2012.

[64] Nate Kohl and Peter Stone. Policy gradient reinforcement learning for fast
quadrupedal locomotion. In Proceedings of the IEEE International Conference
on Robotics and Automation, pages 2619–2624, 2004.

[65] Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell. Reinforcement learn-
ing in robotics: Applications and real-world challenges. Robotics, 2(3):122, 2013.

[66] Stanislao Lauria, Guido Bugmann, Theocharis Kyriacou, and Ewan Klein. Mobile
robot programming using natural language. Robotics and Autonomous Systems,
38(3-4):171–181, 2002.

88

[67] Ping Li, Trevor J. Hastie, and Kenneth W. Church. Very sparse random pro-
jections. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 287–296, 2006.

[68] Jeff Lieberman and Cynthia Breazeal. Improvements on action parsing and action
interpolation for learning through demonstration. In 4th IEEE/RAS International
Conference on Humanoid Robots, volume 1, pages 342–365, 2004.

[69] Andrea Lockerd and Cynthia Breazeal. Tutelage and socially guided robot learning.
In 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems,
volume 4, pages 3475–3480, 2004.

[70] Manuel Lopes and José Santos-Victor. Visual learning by imitation with motor
representations. IEEE Transactions on Systems, Man, and Cybernetics, Part B:
Cybernetics, 35(3):438–449, 2005.

[71] Timothy A. Mann and Yoonsuck Choe. Directed exploration in reinforcement
learning with transferred knowledge. JMLR Workshop and Conference Proceed-
ings: EWRL, 24:59–76, 2012.

[72] José Antonio Mart́ın H., Javier Lope, and Daŕıo Maravall. The kNN-TD reinforce-
ment learning algorithm. In Proceedings of the 3rd International Work-Conference
on The Interplay Between Natural and Artificial Computation: Part I: Methods
and Models in Artificial and Natural Computation. A Homage to Professor Mira’s
Scientific Legacy, pages 305–314, 2009.

[73] Sebastian Mika, Bernhard Schölkopf, Alex Smola, Klaus-Robert Müller, Matthias
Scholz, and Gunnar Rätsch. Kernel pca and de-noising in feature spaces. In
Proceedings of the 1998 Conference on Advances in Neural Information Processing
Systems II, pages 536–542, 1999.

[74] Hiroyuki Miyamoto, Stefan Schaal, Francesca Gandolfo, Hiroaki Gomi, Yasuharu
Koike, Rieko Osu, Eri Nakano, Yasuhiro Wada, and Mitsuo Kawato. A kendama
learning robot based on bi-directional theory. Neural Networks, 9(8):1281–1302,
1996.

[75] Jean-Baptiste Mouret and Stéphane Doncieux. Using behavioral exploration ob-
jectives to solve deceptive problems in neuro-evolution. In Proceedings of the 11th
Annual conference on Genetic and evolutionary computation, pages 627–634, 2009.

[76] Jun Nakanishi, Jun Morimoto, Gen Endo, Gordon Cheng, Stefan Schaal, and
Mitsuo Kawato. Learning from demonstration and adaptation of biped locomotion.
Robotics and Autonomous Systems, 47:79–91, 2004.

89

[77] Ulrich Nehmzow, Otar Akanyeti, Christoph Weinrich, Theocharis Kyriacou, and
Stephen A Billings. Robot programming by demonstration through system identifi-
cation. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 801–806, 2007.

[78] Gerhard Neumann. Variational inference for policy search in changing situations.
In Proceedings of the 28th international conference on machine learning, pages
817–824, 2011.

[79] Andrew Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse,
Eric Berger, and Eric Liang. Autonomous inverted helicopter flight via reinforce-
ment learning. Experimental Robotics IX, pages 363–372, 2006.

[80] Aaron Nichols, Amber Billey, Peter Spitzform, and Catherine Tran. Kicking the
tires: A usability study of the primo discovery tool. Journal of Web Librarianship,
8(2):172–195, 2014.

[81] Monica Nicolescu and Maja Matarić. Experience-based representation construc-
tion: learning from human and robot teachers. In IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, volume 2, pages 740–745, 2001.

[82] Masaki Ogino, Hideki Toichi, Minoru Asada, and Yuichiro Yoshikawa. Imitation
faculty based on a simple visuo-motor mapping towards interaction rule learning
with a human partner. In The 4th International Conference on Development and
Learning, pages 148–148, 2005.

[83] Eugénio Oliveira and Luis Nunes. Learning by exchanging advice. In Design of
Intelligent Multi-Agent Systems, pages 279–313. Springer, 2005.

[84] Mark Ollis, Wesley H Huang, and Michael Happold. A bayesian approach to
imitation learning for robot navigation. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 709–714, 2007.

[85] Hancock P.A., Billings D.R., Schaefer K.E., Chen J.Y., De Visser E.J., and Para-
suraman R. A Meta-analysis of Factors Affecting Trust in Human-Robot Interac-
tion. Human Factors: The Journal of the Human Factors and Ergonomics Society,
53(5):517–527, 2011.

[86] Mykola Pechenizkiy, Seppo Puuronen, and Alexey Tsymbal. Feature extraction
for classification in knowledge discovery systems. In Knowledge-Based Intelligent
Information and Engineering Systems, volume 2773 of Lecture Notes in Computer
Science, pages 526–532. Springer, 2003.

90

[87] Jan Peters, Katharina Mülling, and Yasemin Altün. Relative entropy policy search.
In Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence,
pages 1607–1612, 2010.

[88] Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 2219–2225,
2006.

[89] Dean A. Pomerleau. Efficient training of artificial neural networks for autonomous
navigation. Neural Computation, 3(1):88–97, 1991.

[90] Polly K. Pook and Dana H. Ballard. Recognizing teleoperated manipulations. In
Proceedings of the IEEE International Conference on Robotics and Automation,
pages 578–585, 1993.

[91] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote, Jeremy
Leibs, Rob Wheeler, and Andrew Y. Ng. ROS: An open-source robot operating
system. In ICRA Workshop on Open Source Software, 2009.

[92] Chandra Reddy and Prasad Tadepalli. Learning goal-decomposition rules using ex-
ercises. In Proceedings of the 14th International Conference on Machine Learning,
pages 278–286, 1997.

[93] Sam T Roweis and Lawrence K Saul. Nonlinear dimensionality reduction by locally
linear embedding. Science, 290(5500):2323–2326, 2000.

[94] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall Press, 3rd edition, 2009.

[95] Paul Rybski, Kevin Yoon, Jeremy Stolarz, and Manuela Veloso. Interactive robot
task training through dialog and demonstration. In 2nd ACM/IEEE International
Conference on Human-Robot Interaction, 2007.

[96] Paul E Rybski and Richard M Voyles. Interactive task training of a mobile robot
through human gesture recognition. In IEEE International Conference on Robotics
and Automation, volume 1, pages 664–669, 1999.

[97] Joe Saunders, Chrystopher L. Nehaniv, and Kerstin Dautenhahn. Teaching robots
by moulding behavior and scaffolding the environment. In Human-Robot Interac-
tion, pages 118–125, 2006.

[98] Sham M. Kakade. On the Sample Complexity of Reinforcement Learning. PhD
thesis, University College London, 2003.

91

[99] Chang Shu, Hang Ding, and Ning Zhao. Numerical comparison of least square-
based finite-difference (LSFD) and radial basis function-based finite-difference
(RBFFD) methods. Computers & Mathematics with Applications, 51(8):1297–
1310, 2006.

[100] William D Smart and Leslie Pack Kaelbling. Effective reinforcement learning for
mobile robots. In IEEE International Conference on Robotics and Automation,
volume 4, pages 3404–3410, 2002.

[101] Jochen J Steil, Frank Röthling, Robert Haschke, and Helge Ritter. Situated robot
learning for multi-modal instruction and imitation of grasping. Robotics and au-
tonomous systems, 47(2):129–141, 2004.

[102] Alexander L. Strehl, Lihong Li, and Michael L. Littman. Reinforcement learning in
finite MDPs: PAC analysis. Journal of Machine Learning Research, 10:2413–2444,
2009.

[103] Richard S. Sutton and Andrew G. Barto. Introduction to Reinforcement Learning.
MIT Press, 1st edition, 1998.

[104] Richard S. Sutton, Anna Koop, and David Silver. On the role of tracking in
stationary environments. In Proceedings of the 24th International Conference on
Machine Learning, pages 871–878, 2007.

[105] Richard S. Sutton, Doina Precup, and Satinder Singh. Between MDPs and semi-
MDPs: A framework for temporal abstraction in reinforcement learning.

[106] Takahiro Suzuki and Yuji Ebihara. Casting control for hyper-flexible manipulation.
In IEEE International Conference on Robotics and Automation, pages 1369–1374,
2007.

[107] John D Sweeney and Rod Grupen. A model of shared grasp affordances from
demonstration. In 7th IEEE-RAS International Conference on Humanoid Robots,
pages 27–35, 2007.

[108] Matthew E Taylor, Brian Kulis, and Fei Sha. Metric learning for reinforcement
learning agents. In The 10th International Conference on Autonomous Agents and
Multiagent Systems, volume 2, pages 777–784, 2011.

[109] Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learn-
ing domains: A survey. Journal of Machine Learning Research, 10:1633–1685,
December 2009.

92

[110] Matthew E. Taylor, Shimon Whiteson, and Peter Stone. Transfer via inter-task
mappings in policy search reinforcement learning. In Proceedings of the 6th Inter-
national Joint Conference on Autonomous Agents and Multiagent Systems, pages
37:1–37:8, 2007.

[111] Joshua B Tenenbaum, Vin De Silva, and John C Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319–2323,
2000.

[112] Andrea Lockerd Thomaz and Cynthia Breazeal. Reinforcement learning with hu-
man teachers: Evidence of feedback and guidance with implications for learning
performance. In Proceedings of the 21st National Conference on Artificial Intelli-
gence, volume 6, pages 1000–1005, 2006.

[113] Matthew A Turk and Alex P Pentland. Face recognition using eigenfaces. In IEEE
Computer Society Conference on Computer Vision and Pattern Recognition, pages
586–591, 1991.

[114] Aleš Ude, Christopher G. Atkeson, and Marcia Riley. Programming full-body
movements for humanoid robots by observation. Robotics and Autonomous Sys-
tems, 47:93 – 108, 2004.

[115] Richard M. Voyles. A multi-agent system for programming robots by human
demonstration. Integrated Computer-Aided Engineering, 8:59–67, 2001.

[116] Shimon Whiteson, Matthew E Taylor, and Peter Stone. Adaptive tile coding for
value function approximation. Computer Science Department, University of Texas
at Austin, 2007.

[117] Ronald J Williams. Simple statistical gradient-following algorithms for connec-
tionist reinforcement learning. Machine learning, 8(3-4):229–256, 1992.

[118] Robert H Wortham, Andreas Theodorou, and Joanna J Bryson. What does the
robot think? Transparency as a fundamental design requirement for intelligent
systems. In IJCAI-2016 Ethics for Artificial Intelligence Workshop, 2016.

[119] Panayiotis Zaphiris. Human Computer Interaction: Concepts, Methodologies,
Tools and Applications. Information Science Reference, 2008.

