
AN ABSTRACT OF THE THESIS OF

Madhusudhanan Anantha for the degree of Doctor of Philosophy in

Computer Science presented on June 1, 2007.

Title: Gray Codes and Their Applications

Abstract approved:

Bella Bose

An n-bit Gray code is an ordered set of all 2n binary strings of length n. The

special property of this listing is that Hamming distance between consecutive vectors

is exactly 1. If the last and first codeword also have a Hamming distance 1 then the

code is said to be cyclic. This dissertation addresses problems dealing with the design

and applications of new and existing types of both binary and non-binary Gray codes.

It is shown how properties of certain Gray codes can be used to solve problems arising

in different domains. New types of Gray codes to solve specific types of problems are

also designed. We construct Gray codes over higher integral radices and show their

applications. Applications of new classes of Gray codes defined over residue classes of

Gaussian integers are also shown. We also propose new classes of binary Gray codes

and prove some important properties of these codes.

c©Copyright by Madhusudhanan Anantha

June 1, 2007

All Rights Reserved

Gray Codes and Their Applications

by

Madhusudhanan Anantha

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 1, 2007
Commencement June 2008

Doctor of Philosophy thesis of Madhusudhanan Anantha presented on June 1, 2007

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Madhusudhanan Anantha, Author

ACKNOWLEDGMENTS

I would like to thank my parents and my grand mother for being so supportive and

helpful throughout the course of my doctoral study. Without their support none of

this would have been possible. I would also like to record my sincere thanks to the

invaluable and able help and guidance of my first teacher, my late grand father. He

was instrumental in directing me to choose computer science as my field of study. My

extended family has also played an important role in helping me during my study

and I convey my sincerest thanks to them.

I would like to express my sincere appreciation to my major professor, Dr. Bose,

for his valuable ideas which put me in the right direction. Also, He was available

anytime despite his busy schedule to help me out. He was also instrumental in

showing me how analyze and work with a research problem.

I would like to express my sincere gratitude to Dr. Mary Flahive, for her valu-

able help and guidance and a careful reading of my thesis to improve the quality of

presentation and for serving in my committee.

I would also like to express my sincere gratitude to Dr. Ben Lee and Dr. Thinh

Nguyen, for serving in my committee.

I would like to convey my sincere thanks to my girl friend, Melissa Morales-

Warming. I would also like thank my fellow graduate students and friends, Mad-

husudhanan Srinivasan, Sriraam Natarajan, Robin Abraham for their help in making

my stay at corvallis all the more pleasant and enjoyable with their delightful company.

I want to thank all the helpful staff members of the School of E.E.C.S, particularly,

Nancy Brown, Ferne Simendinger for their invaluable assistance in scheduling exams

and Nancy Bremner for taking care of my payroll.

TABLE OF CONTENTS (Continued)

Page

Chapter 1: Introduction 1

Chapter 2: Background 4

2.1 Automatic Repeat Request (ARQ) protocols 4

2.2 Code Combining . 6

2.3 Lee Distance Metric . 8

2.3.1 Single Radix Case . 8
2.3.2 Mixed Radix Case . 9
2.3.3 Hamiltonian Cycles in Toroidal Networks 10

2.4 Circulant Graphs . 10

Chapter 3: Code Combining for Unidirectional Errors 13

3.1 Determining Type of Error . 16

3.1.1 Constant Weight Codes . 16
3.1.2 Berger Codes [5],[24] . 17
3.1.3 Borden Codes [10] . 17

3.2 Determining Error Type For Codes Proposed by Bose and Lin [9] . . 18

3.2.1 Method 1 . 19
Code Construction . 19
Determining Error Type . 20

3.2.2 Method 2 . 33
Code Construction . 33
Determining Error Type . 34

Chapter 4: Mixed Radix Codes 38
4.0.3 Method 1 . 38

Note . 39
4.0.4 Method 2 . 43

4.1 Edge Disjoint Hamiltonian Cycles in Multi-dimensional Tori 45

TABLE OF CONTENTS (Continued)

Page

4.1.1 Cross Product of Graphs . 45
4.1.2 Edge Disjoint Hamiltonian Cycles when n = 2 46
4.1.3 Edge Disjoint Hamiltonian Cycles when n = 2r 48

Chapter 5: Algorithms for Generating Gray Codes 53
5.0.4 Transition Sequence . 53

Proof of Correctness . 59
Proof of Correctness . 62

Chapter 6: Binary Gray code 64

6.1 Lee Distance Gray Codes . 64

6.2 Main Results . 67

6.2.1 Constant Weight Vectors . 67
6.2.2 New Classes of Binary Gray Codes 75

Chapter 7: Edge Disjoint Hamiltonian Cycles 78

7.1 Edge Disjoint Hamiltonian cycles when n > 3 78

7.1.1 When n = 2m and n > 3 . 79
7.1.2 When n = 2m + 1 and n > 3 80

7.2 Edge Disjoint Hamiltonian cycles when n = 3 83

7.2.1 Choosing the Exchange Edges 84
Exchange Edges when kis are odd 88
Exchange Edges when kis are even 109

Chapter 8: Gray codes over Gaussian Integers 113

8.1 Gaussian Graphs . 113

8.2 Structure of a Gaussian graph . 119

8.3 Edge Disjoint Hamiltonian Cycles . 128

TABLE OF CONTENTS (Continued)

Page

8.4 Algorithms to generate A1
π and A2

π 133

Chapter 9: Conclusions and Future Work 136

Bibliography 137

LIST OF FIGURES
Figure Page

2.1 Stop-and-Wait Protocol. 5

2.2 Go-Back-N Protocol. 6

2.3 Selective Repeat Protocol. 6

3.1 Code Combining for Unidirectional Errors 15

4.1 A Hamiltonian cycle in C6 × C4 using Method 1 41

4.2 A Hamiltonian cycle in C9 × C7 × C3 using Method 2 44

4.3 Four Edge Disjoint Hamiltonian Cycles in a 5 × 3 × 3 × 3 Torus . . . 51

7.1 3 Edge Disjoint Hamiltonian Cycles in a 5 × 3 × 3 Torus 85

7.2 H1
k3×k2×3 and H3

k3×k2×3 graphs . 90

7.3 H1
k3×k2×k1

before exchange . 91

7.4 H1
k3×k2×k1

after exchange . 92

7.5 H3
k3×k2×k1

after exchange . 93

7.6 H1
k3×k2×k1

after exchange . 94

7.7 H3
k3×k2×k1

after exchange . 95

7.8 H1
k3×k2×k1

graph after exchange of edges in ζ 103

7.9 H3
k3×k2×k1

graph after exchange of edges in ζ 109

7.10 H1
k3×k2×k1

graph after exchange of edges in ζ + φ 110

7.11 H3
k3×k2×k1

graph after exchange of edges in ζ + φ 111

8.1 Edge Disjoint Hamiltonian cycles in G3+4i 117

8.2 Residue classes in Gπ=a+bi . 119

8.3 Wrap-around where α1 − α2 ≡ 1 mod π in Gπ=a+bi 121

8.4 Wrap-around where α1 − α2 ≡ i mod π in Gπ=a+bi 121

LIST OF TABLES

Table Page

2.1 Code Combining for asymmetric errors 7

3.1 Unidirectional error correction example 14

3.2 Possible values of check error vector for S = 35 + l 24

3.3 Valid Combinations of Errors when l = 2b1 + . . . + 2bj for 0 → 1 errors 31

3.4 Adding 2 to V2 when bj > 1 . 32

3.5 Adding 2 to V2 when bj = 1 . 33

5.1 Transition sequences of Gray codes defined using f1, f2 and f3 54

6.1 Binary Gray code obtained from F 77

8.1 Gray codes over G3+4i . 118

GRAY CODES AND THEIR APPLICATIONS

CHAPTER 1

INTRODUCTION

An n-bit binary Gray code is an ordered set of all 2n binary strings of length n.

The special property of this listing is that Hamming distance (number of bits that are

not equal) between consecutive vectors is exactly 1. If the last and first codewords

also have a Hamming distance 1 then the code is said to be cyclic. For higher radix

(≥ 3) Gray codes, any two consecutive radix k strings differ in exactly one digit by

±1.

Over the last 4-5 decades binary Gray codes have found applications in diverse

areas [21, 38]: VLSI testing [37], signal encoding [33], ordering of documents on

the shelves [31], data compression [36], statistics [20], graphics and image process-

ing [2], processor allocation in the hypercube [17], hashing [23], computing the per-

manent [34], information retrieval [15], puzzles such as the Chinese rings and towers

of Hanoi [25], designing efficient combinatorial algorithms [34, 41, 35], etc. A large

number of Gray code related patents in diverse areas have been granted in the last

three decades and almost all of them are, in one way or another, based on the original

reflected Gray code ideas.

This dissertation addresses problems dealing with the design of new types of Gray

codes for certain problems and new applications of existing types of both binary and

non-binary Gray codes over various distance metrics. It is shown how properties of

certain Gray codes can be used to solve problems arising in different domains. Design

2

of new types of Gray codes to solve specific types of problems is also shown. Results

already obtained in this direction are shown.

This dissertation is organized as follows. Chapter 2 introduces all the background

information required to understand the results obtained in this proposal. We then

detail the results which we have been obtained so far in Chapters 3, 4, 5, 6, 7 and 8.

We then conclude in the final section.

In Chapter 3, we show how the transition sequence of the Binary Reflected Gray

code can be used to identify the type of error in unidirectional channels when Bose-

Lin codes are used. This is an interesting connection between the characteristics of

two seemingly unrelated constructions.

Chapter 4 discusses new constructions of mixed radix Gray codes and shows how

they correspond to Hamiltonian cycles in a corresponding mixed radix toroidal net-

work in Lee distance metric. The construction of independent sets of Gray codes and

how these correspond to edge disjoint Hamiltonian cycles in their corresponding tori

is shown when the number of dimensions, n, is a power of 2.

We show how the minimal change property of Gray codes proposed in Chapter

4 can be used to obtain efficient algorithms to visit each of the kn × kn−1 × k2 × k1

length n mixed radix vectors in turn in Chapter 5.

In Chapter 6, we define a new class of binary Gray codes using a simple mapping

of the digits of a radix 4 Lee distance Gray code to binary vectors. The resultant

code is of even length. We prove that the important property of minimal change in

the number of bits going from one vector to another of same weight in the new binary

Gray code holds. We also show how the mapping function proposed for radix 4 Lee

distance Gray code can be extended to higher radices (k ≥ 4 and k = 2r) for some

r, r > 2.

The approach we use to solve the problem of finding edge disjoint Hamiltonian

3

cycles in toroidal networks with arbitrary number of dimensions, n, where n > 0

and n 6= 2r is explained in Chapter 7. In particular, we show how we can use the

construction of edge disjoint Hamiltonian cycles when n = 2 and 3 to recursively

solve the problem for arbitrary values of n ≥ 4.

The problem of defining a subclass of Circulant graphs using Gaussian integers is

discussed in Chapter 8. We are interested in embedding a Hamiltonian cycle in this

graph and finding edge disjoint Hamiltonian cycles. The proposed solution to this

problem is by defining a new class of Gray codes over equivalence classes modulo a

Gaussian integer. We show a simple construction of edge disjoint Hamiltonian cycles

for this graph as a Gray code over the equivalence classes modulo a Gaussian integer

. We also give efficient algorithms for generating these Gray codes.

4

CHAPTER 2

BACKGROUND

2.1 Automatic Repeat Request (ARQ) protocols

There are two major error control techniques in any data communication: 1) Forward

error correction (FEC) and 2) Automatic repeat request (ARQ). ARQ protocols can

be classified into three main types: stop-and-wait ARQ, go-back-N ARQ, and selective

repeat ARQ [30, 40]. They are briefly summarized below. The proposed error control

techniques can be used with any of these basic protocols.

• Stop-and-Wait protocol: This is the simplest of the ARQ protocols. After

transmitting the codeword, the transmitter will wait for an acknowledgment. If

the transmitter receives ACK, it then sends the next codeword. If either the

timeout time expires without receiving an acknowledgment, or the transmitter

receives NAK, the transmitter re-transmits the same codeword. This procedure

continues until ACK is received. So, buffering is not necessary at both the

receiver and the transmitter. The main disadvantage of using this scheme is

that the transmitter is idle while waiting for the acknowledgment, resulting in

a low throughput performance. Stop-and-wait ARQ is useful in some computer

applications such as interprocessor transfer in multiprocessing systems, where

the round trip delay is extremely low. Figure 2.1 explains this protocol.

• Go-Back-N ARQ protocol: If there is some buffering available in the transmitter

and not necessarily at the receiver, go-back-N ARQ protocol can be used. In this

5

protocol, the transmitter sends the codewords in a continuous stream without

waiting for an acknowledgment from the receiver. If the receiver detects an error

in a received word, it requests a retransmission for this word by sending NAK

to the transmitter. At this point, all subsequent incoming words are ignored

until the transmitter retransmits the requested word and the receiver receives

it. Therefore, buffering is not necessary at the receiver. When the transmitter

resends a word, it also resends all subsequent words (which were ignored by

the receiver after detecting the first erroneous word). This makes buffering

necessary at the transmitter. Figure 2.2 explains this protocol.

• Selective-Repeat ARQ protocol: If some buffering is available at both the trans-

mitter and the receiver, Selective-Repeat ARQ protocol can be used. In this

protocol, the transmitter sends the words in a continuous stream without wait-

ing for acknowledgment from the receiver. If the receiver detects an error in

one of the received words, it requests a retransmission for this word by sending

NAK to the transmitter. At this point, the transmitter resends the required

word and then resumes transmitting the new codewords. So, buffering is nec-

essary at both sides. Figure 2.3 explains this protocol.

2 4

3 4

ACK

Time

Error

NAK

ACK

ACK

ACK

ACK

2

0

0

1

1

2

E

3

FIGURE 2.1: Stop-and-Wait Protocol.

6

ACK 0

Error

ACK 1

Time

NAK 2
Frames Discarded by Data Link Layer

ACK 6

ACK 5

ACK 4

ACK 3

ACK 2

9876543

D D

4 232

E1

1

0

0

84 76532

ACK 7

FIGURE 2.2: Go-Back-N Protocol.

24

ACK 1
ACK 1
ACK 4

ACK 5
ACK 6
ACK 7

ACK 8
ACK 9
ACK 1

0
ACK 1

1
ACK 1

2
Frames Buffered by Data Link Layer

3

15

Error

Time

3 2 5 64

E 6

ACK 0
ACK 1

NAK 2

5

8 9 10 11 12 137 140

0

1

1

2

8 9 10 11 12 137 14

ACK 1
3

FIGURE 2.3: Selective Repeat Protocol.

2.2 Code Combining

ARQ protocols, as discussed above, retransmit a packet repeatedly until it is received

correctly. For noisy channels repeated retransmissions can decrease the throughput

efficiency of the system. Packets which cause retransmission requests can be stored

7

i Yi Zi

0 0000000000000

1 0100010010001 0100010010001

2 0100101010001 0100111010001

3 0100101000101 0100111010101

TABLE 2.1: Code Combining for asymmetric errors

and combined with additional retransmissions of the packet, thus creating a single

packet that is likely to be the correct version of the transmitted word. In code

combining, individual symbols from identical copies of a packet are combined to

create a packet with more reliable constituent symbols.

Consider for example, code combining for asymmetric errors. In case of binary

asymmetric errors only one type of error, that is, either 1 → 0 or 0 → 1 is possible.

This type of error characteristic is typical of optical channels where only 1 → 0 errors

are possible. In this case, we use a register Z initialized to the all-zero vector. Each

time an erroneous word, Y , is received, a bit-by-bit OR operation is performed with

Z and the result is stored back in Z. This stops until Z or Y is free of errors. Note

that Z stores the results of previous retransmissions of Y .

Example 1. Let the transmitted word be X = 0100111010101 and Yi, i = 1, 2, 3, . . .

be the received word at the i-th time assuming errors in all Yj, j = 1, 2, 3, . . . , i − 1.

Each time a received Y has errors code combining is done as shown in Table 2.1.

Thus, after 3 transmissions all errors are corrected. The underlined bits in each

transmission are the bits in error.

In the case of symmetric errors only portions of a packet which was received in

8

error are re-transmitted and in these cases code combining is not used.

2.3 Lee Distance Metric

2.3.1 Single Radix Case

Let A = (anan−1 · · · a1) be an n digit radix k vector. The Lee weight of A is defined

as

WL(A) =
n∑

i=1

|ai|,

where |ai| = min(ai, k − ai)

The Lee distance between two vectors A and B is denoted by DL(A,B) and is defined

to be WL(A−B). That is, the Lee distance between two vectors is the Lee weight of

their digit-wise difference mod k. For example, when k = 4, WL(321) = min(3, 4 −

3) + min(2, 4− 2) + min(1, 4− 1) = 1 + 2 + 1 = 4, and DL(123, 321) = WL(202) = 4.

Let DH(A,B) be the Hamming distance between two vectors A and B, i.e. the

number of positions in which A and B differ. Then DL(A,B) = DH(A,B) when

k = 2 or 3, and DL(A,B) ≥ DH(A,B) when k > 3. In the rest of the paper, if the

value of k is not mentioned then it is assumed that k ≥ 3; when k = 2, it will be

explicitly mentioned.

In a Lee distance Gray code C, the set of kn vectors are arranged in a sequence

such that two adjacent vectors are at a Lee distance one. In this sequence, if the first

and the last words are also at a distance of 1, then the code is called a cyclic Gray

code; if not it is a non-cyclic Gray code. Cyclic Lee distance Gray codes correspond

to Hamiltonian cycles in k-ary n-cube [12].

9

2.3.2 Mixed Radix Case

Let A = anan−1 · · · a1 be an n-dimensional mixed radix vector over ZK , where K =

kn × kn−1 × · · · × k1, i.e., all xi ∈ Zki
, for i = 1, 2, · · · , n. The Lee weight of A in

mixed radix notation is defined as

WL(A) =
n∑

i=1

|ai|,

where |ai| = min(ai, ki − ai), for i = 1, 2, · · · , n.

The Lee distance between two vectors A and B is denoted by DL(A,B) and is defined

to be WL(A − B). That is, the Lee distance between two vectors is the Lee weight

of their digit-wise difference. In other words, DL(A,B) =
∑n

i=1 min(ai − bi, bi − ai),

where (ai−bi) and (bi−ai) are mod ki operations. For example, when K = 4×6×3,

WL(321) = min(3, 4 − 3) + min(2, 6 − 2) + min(1, 3 − 1) = 1 + 2 + 1 = 4, and

DL(120, 321) = WL(202) = 3.

Let DH(A,B) be the Hamming distance between two vectors A and B, i.e. the

number of positions in which A and B differ. Then DL(A,B) = DH(A,B) when

ki = 2 or 3, for all i, and DL(A,B) ≥ DH(A,B) when ki > 3 for some i. In the rest

of the paper, if the value of ki is not mentioned then it is assumed that ki ≥ 3; when

ki = 2, it will be explicitly mentioned.

In a Lee distance Gray code C, the set of K = kn × kn−1 × · · · × k1 vectors over

Zkn
×Zkn−1

× · · ·×Zk1
are arranged in a sequence such that two adjacent vectors are

at a Lee distance one. In this sequence, if the first and the last words are also at a

distance of 1, then the code is called a cyclic Gray code; if not it is a non-cyclic Gray

code. Further, when kn = kn−1 = · · · = k1 the resultant code is called single radix

Gray code; if ki 6= kj for some i 6= j then it is called a mixed radix Gray code.

10

2.3.3 Hamiltonian Cycles in Toroidal Networks

Cyclic single radix and mixed radix Gray codes correspond to Hamiltonian cycles in

the k-ary n-cube and the n-dimensional torus Tkn×kn−1×···×k1
graphs, respectively, and

these two graphs are described below.

A k-ary n-cube graph (Ck
n) and an n-dimensional torus (Tkn,kn−1,··· ,k1

) are 2n-

regular graphs containing kn and kn × kn−1 × · · · × k1 nodes, respectively. Each node

in Ck
n is labeled with a distinct n-digit radix-k vector while each node in Tkn×kn−1×···×k1

is labeled with a distinct n-digit mixed radix vector. If u and v are two nodes in the

graph, then there is an edge between them iff DL(u, v) = 1. From the definition of

Lee distance, it can be seen that every node in a Ck
n or a Tkn×kn−1×···×k1

shares an

edge with two nodes in every dimension, resulting in a regular graph of degree 2n.

In addition, the shortest path between any two nodes, u and v has length DL(u, v).

Note that Ck
n is an n-dimensional hypercube, Qn, when k = 2; in this case, each node

is adjacent to exactly n other nodes. It is easy to verify that cyclic single radix and

mixed radix Gray codes corresponds to Hamiltonian cycles in Cn
k and Tkn×kn−1×···×k1

,

respectively.

2.4 Circulant Graphs

Circulant graphs are a popular interconnection network topology used for decades in

the design of computer and telecommunication networks. The term circulant comes

from the nature of its adjacency matrix; a matrix is Circulant if all its rows are periodic

rotations of the first one. Recent research in design of interconnection networks for

on-chip multiprocessors [19] has shown that a sub-class of circulant graphs called

Dense Gaussian graphs is a suitable topology.

In the remainder of this section, we will briefly introduce circulant graphs and

11

then give a deeper insight in to the properties of Dense Gaussian graphs.

A circulant graph with N vertices and jumps {j1, j2, . . . , jm} is an undirected

graph in which each vertex n, 0 ≤ n ≤ N − 1, is adjacent to all the vertices n ± ji,

with 1 ≤ i ≤ m. We denote this graph as CN(j1, j2, . . . , jm). It is clear that a circulant

graph CN(j1, j2, . . . , jm) is connected if and only if gcd(j1, j2, . . . , jm, N) = 1

In a degree four circulant graph there can be, at most, 4d different nodes at

distance d from any node. Thus, for a given diameter k the maximum number of

nodes of a CN(j1, j2) graph is:

N ≤ 1 + 4
k∑

d=1

d = 1 + 4

(
k(k + 1)

2

)
= 2k2 + 2k + 1 (2.1)

Graphs containing such a maximum number of nodes can be denoted as dense

degree 4 circulants. Different authors have shown that CN(k, k + 1) graphs with

N = 2k2 + 2k + 1 are dense degree 4 circulants.

We now show why such a graph with maximum number of nodes can exist. We

first need the following definitions. For integers a and a′ , we denote [a, a′] the interval

of all integers n with a ≤ n ≤ a′. Under this notation the vertex set, V , is [0, N − 1].

We also define the set ξl as

ξl = {(x, y) ∈ Z
2||x| + |y| ≤ l} (2.2)

where x and y are integers, and the accessing function fN from Z
2 to V as follows

fN(x, y) = xj1 + yj2 mod N (2.3)

The value given by the accessing function fN on (x, y) is the node reached from

node 0 after x number of j1-hops and y number of j2-hops in the graph CN(j1, j2).

Given the diameter of the CN(j1, j2) graph, k. The set, ξk, is the domain that should

be considered for fN to find out all those nodes that are within the distance k from

node 0. The following Lemma is shown here for the sake of completeness.

12

Lemma 2.4.1. [6] For each k, the cardinality of ξk is 2k2 + 2k + 1. Therefore, a

circulant graph of degree 4 and diameter k cannot have more than 2k2 +2k +1 nodes.

Proof. [6] For each x with −k ≤ x ≤ k there are 2(k − |x|) + 1 valid values of y to

have (x, y) ∈ ξk. Thus the cardinality of ξk is

k∑

i=−k

2(k − |i|) + 1 = 2k2 + 2k + 1 (2.4)

Therefore, we can obtain a circulant graph with j1 = k and j2 = k + 1 with

N = 2k2 + 2k + 1. Note that k > 1 and GCD(k, k + 1) = 1.

For our purposes we consider just circulant graphs CN(j1, j2) with N = j2
1 + j2

2 .

In these particular cases, the circulant is connected if and only if gcd(j1, j2) = 1. As

2k2 + 2k + 1 = k2 + (k + 1)2, dense circulant graphs Ck2+(k+1)2(k, k + 1) are included

in this family as a special member.

13

CHAPTER 3

CODE COMBINING FOR UNIDIRECTIONAL ERRORS

The main idea is briefly explained below. Let X be the transmitted codeword and

let Yi, i = 1, 2, . . . , be the received word at the i-th time, assuming errors in each

Yj’s, for all j = 1, 2, . . . , i− 1. It is assumed that the errors are independent from one

transmission to the next. The code combining operation is done as follows.

Z0 = (0 . . . 0),
Zi = Yi ∨ Zi−1

Z ′
i = Z ′

i−1



 for 1 → 0 errors, and (3.1)

Z ′
0 = (1 . . . 1),

Z ′
i = Yi ∧ Z ′

i−1

Zi = Zi−1



 for 0 → 1 errors, for i = 1, 2, 3,

Here, ∨ and ∧ are digit-by-digit OR and AND operations, respectively. The

receiver requests retransmission of a codeword until Zi or Z ′
i is not in error. Code

combining can reduce the average number of retransmissions in noisy channels [32].

Example 2. We consider a system using a binary Borden code [10] of length 10,

capable of detecting up to 4 unidirectional errors. Thus, the weights of the codewords

are 0, 5 and 10. Suppose a codeword of weight 5, 1111100000, is transmitted. When

no more than 2 unidirectional errors occur, the received word will be of weight 3,

4, 5, 6 or 7. So, a received word of any of these weights can only correspond to a

transmitted codeword of weight 5. The receiver can also easily decide if 1 → 0 or

0 → 1 errors have occurred. Then, the bit-by-bit OR or bit-by-bit AND operations

14

i Yi Zi Z ′
i error type

0 00000 00000 11111 11111

1 11100 00000 11100 00000 11111 11111 1 → 0

2 11111 10100 11100 00000 11111 10100 0 → 1

3 11010 00000 11110 00000 11111 10100 1 → 0

4 00111 00000 11111 00000 11111 10100 1 → 0

TABLE 3.1: Unidirectional error correction example

can be performed as shown in Table 3.1. Thus, after 4 transmissions, the errors are

corrected.

Note that after each step of code combining, the number of errors in the resultant

word will either decrease or remain the same but will never increase.

The main advantage of the t-unidirectional error detecting (t-UED) codes is that

by using only a few check bits, a large (exponential, in terms of these check bits)

number of asymmetric/unidirectional errors can be detected. This is not the case for

symmetric error detection. In fact, a t (symmetric) error detecting code of length n

requires approximately t
2
log2 n check bits, whereas a t-UED code, regardless of the

length of the code, requires only O(log t) check bits. Thus, the proposed error control

techniques provide low cost alternative methods.

The operations required for code combining in case of unidirectional errors are

as already defined above. The hardware logic circuits to perform these operations

are shown in Figure 3.1. A system using an ARQ protocol with a t-UED code is

capable of correcting up to Emax =
⌊

t
2

⌉
unidirectional errors. This is achieved by code

combining. Before proving this in Theorem 3.0.2, we state some required definitions

15

and a useful theorem.

Let X and X ′ be any two n-bit vectors. Then X and X ′ are unordered if

N(X,X ′) ≥ 1 and N(X ′, X) ≥ 1, where N(Y, Z) is the number of 1 to 0 crossovers

from an n-bit vector Y to another n-bit vector Z. Then the Hamming distance be-

tween Y and Z is DH(Y, Z) = N(Y, Z) + N(Z, Y). If N(X,Y) = 0 we say Y covers

X.

Theorem 3.0.1. [10, 9] A code C is capable of detecting t unidirectional errors iff

∀X,X ′ ∈ C, X and X ′ are either unordered or DH(X,X ′) ≥ t + 1.

0 0 0

101

Receiver

Transmitter

ACK/NAK

Error Detection

0 1 Errors

1

0 0 0

000

Receiver

ACK/NAK

Error Detection

1 0

1 0 Errors

X

Xr

Zr

Xr

Z ′
r

FIGURE 3.1: Code Combining for Unidirectional Errors

16

Theorem 3.0.2. Let C be a t-UED code used with diversity combining operations

given by equation (1). This scheme can correct up to Emax = ⌊ t
2
⌋ unidirectional

errors.

Proof. At the receiver, the decoder must know whether the received word has 1 → 0

errors or 0 → 1 errors, if any, and then perform the OR or AND diversity combining.

Let X ∈ C be the transmitted codeword and Y be the received word. If the errors

are of the 1 → 0 type and their number e ≤ ⌊ t
2
⌋, then X covers Y and DH(X,Y) = e.

Further there is no X ′ ∈ C such that Y covers X ′ and DH(Y,X ′) ≤ ⌊ t
2
⌋. In order

to prove this, let us assume that it does cover some X ′ ∈ C with DH(Y,X ′) ≤ ⌊ t
2
⌋.

Then, X will also cover X ′ and DH(X,X ′) ≤ t. But this contradicts the condition

required for detecting t unidirectional errors.

Thus, if the number of unidirectional errors is less than or equal to Emax = ⌊ t
2
⌋,

the decoder can decide what type of errors, 1 → 0 or 0 → 1, have occurred in

the received word. Then, these errors can be corrected using OR or AND diversity

combining operations.

Even though the above theorem shows the error correcting capabilities of any t-

UED code, some simple schemes need to be developed in order to decide the type of

errors within a received word, and then correct these errors. We now show how this

decision can be taken for various unidirectional codes.

3.1 Determining Type of Error

3.1.1 Constant Weight Codes

These codes are also known as m-out-of-n codes. In these codes, each and every

codeword has weight m, where m ≤ n and n is the size of the codeword. The

number of codewords is
(

n

m

)
. These codes are capable of detecting any combination

17

of unidirectional errors. Let X ′ be the received word and w(X ′) be the weight of X ′.

The type of error can be identified as follows

w(X ′) > m ⇒ 0 → 1 error

w(X ′) < m ⇒ 1 → 0 error

3.1.2 Berger Codes [5],[24]

These are systematic All Unidirectional Error Detecting(AUED) codes. The check

value of the codeword is obtained by counting the number of 0’s in the information

part and expressing the value in binary. Let k be the number of information bits and r

be the number of check bits. Then r = ⌈log2(k + 1)⌉. Let X = IC be the transmitted

word where I is the information part and C is the check part. The syndrome S from

the received word X ′ = I ′C ′ is calculated as follows

S = I ′
0 − ν(C ′) (3.2)

where ν(C ′) is the decimal value of the check and I ′
0 is the number of 0’s in I ′’s.

The type of error can be identified as follows

I ′
0 − ν(C ′) = 0 ⇒ no error

I ′
0 − ν(C ′) > 0 ⇒ 1 → 0 error

I ′
0 − ν(C ′) < 0 ⇒ 0 → 1 error

3.1.3 Borden Codes [10]

Borden codes are optimal t-Unidirectional Error Detecting (t-UED) non-systematic

codes. The value t is the maximum number of errors that can be detected. For a

18

code length n, all the codewords have weight, w where

w ≡
⌊n

2

⌋
mod (t + 1) (3.3)

Example 3. When n = 20 and t = 4,

w ≡ 10 mod 5 ≡ 0 mod 5 ≡ 15 mod 5 ≡ 5 mod 5 ≡ 20 mod 5 (3.4)

Thus, this code consists of 20 bit vectors with weights 0, 5, 10, 15 and 20. The

number of codewords, nc, is

nc =

(
20

0

)
+

(
20

5

)
+

(
20

10

)
+

(
20

15

)
+

(
20

20

)
(3.5)

Since this code is a 4 error detecting code, by Theorem 3.0.2 it can be seen that up

to 2 errors can be corrected using diversity combining. Note that the weight difference

between any pair of codewords is at least 5. For a vector with weight x where x ∈

{0, 5, 10, 15, 20}, if there are at most two (0 → 1) errors then the weight increases up

to x+2. For a weight x+5 codeword there must be at least 3 (1 → 0) errors to get to

x+2. Thus for any codeword if there are at most 2 (0 → 1) errors then the weight of

the received word is unique. Similarly in case of (1 → 0) errors, the minimum weight

possible is x−2 and there must be at least 3 (0 → 1) errors from x−5 to get to x−2.

Thus, for a given weight, wre, of the received word, there is a codeword with unique

weight, wc. If wc − wre > 0 then the error is of (1 → 0) type and if wc − wre < 0 it

is of (0 → 1) type as long as the number of errors is ≤ 2.

3.2 Determining Error Type For Codes Proposed by Bose and Lin [9]

These are systematic t-UED codes. In the preceding codes deciding whether 0 → 1

or 1 → 0 errors have occurred in the received word is easy. However for the codes

19

given in [9], even though making this decision is simple its derivation is not straight

forward. We show how this can be done for codes constructed using Method 1 and

Method 2 in [9].

3.2.1 Method 1

Code Construction

Let k be the number of information bits and r be the number of check bits. The

length of the codeword is given by n = k + r. Let I0 and I1 be the number of 0’s and

1’s respectively in the information bits.

When r = 2 or 3, the check symbols are generated as follows. Count the number

of 0’s in the information part and take mod 2r; i.e., when r = 2, CS = I0 mod 4 and

when r = 3, CS = I0 mod 8. When r = 2 and r = 3, the code can detect up to 2 and

3 errors respectively. Thus, the maximum number of errors these codes can correct

is Emax = 1.

For r ≥ 4, let (cr−1, cr−2, . . . , c0) be the r-bit check symbol. Divide the check bits

into two parts with cr−1, cr−2 in the first part and the remaining (r − 2) bits in the

other part. The bits in the first part can be only 10 or 01, whereas the remaining

(r − 2) bits can be any of the 2r−2 possible binary (r − 2) tuples. Thus, the number

of check symbols is 2 × 2r−2 = 2r−1. The check symbols are generated as follows.

Count the number of 0’s in the information symbol and take modulo 2r−1. Express

this number as an r − 1 bit binary number (cr−2cr−3 . . . c0). Then the check will be

(cr−1cr−2 . . . c0) = (cr−2cr−2 . . . c0) i.e., the MSB of check cr−1 is the complement of

cr−2. Codes constructed using this method are capable of detecting up to 2r−2 + r−2

errors. By Theorem 3.0.2, the maximum number of errors that can be corrected using

20

diversity combining is

Emax =

⌊
2r−2 + r − 2

2

⌋
(3.6)

Determining Error Type

Let X be the transmitted word and let Y be the received word. Let I0 and I0
′ be

the number of 0’s in the information parts of X and Y respectively. Let ν(C0) and

ν(C0
′) be the decimal values of the check parts of X and Y respectively.

First the case when r = 2 or 3 is considered. Note that Emax = 1 in both of these

cases. Syndrome S is calculated as follows

S = (I ′
0 − ν(C ′)) mod 2r (3.7)

where ν(C) maps a binary vector to its decimal value. Since only one error is

allowed, it can be either in the information part or in the check. For 1 → 0 error, the

syndrome will be:

1. Error in the information part:

S ≡ (I ′
0 − ν(C ′)) mod 2r

≡ ((I0 + 1) − ν(C)) mod 2r

≡ 1 mod 2r

2. Error in the check part:

S ≡ (I ′
0 − ν(C ′)) mod 2r

≡ (I0 − ν(C − 2i)) mod 2r

≡ 2i mod 2r

where i = {0, . . . , r − 1} for r = 2, 3.

21

Similarly for 0 → 1 error:

1. Error in the information part:

S ≡ (I ′
0 − ν(C ′)) mod 2r

≡ ((I0 − 1) − ν(C)) mod 2r

≡ −1 mod 2r ≡ (2r − 1) mod 2r

2. Error in the check part:

S ≡ (I ′
0 − ν(C ′)) mod 2r

≡ (I0 − ν(C + 2i)) mod 2r

≡ −2i mod 2r ≡ (2r − 2i) mod 2r

where i = {0, . . . , r − 1} for r = 2, 3.

Thus,

1. when r = 2,

S = 1 ⇒ 1 → 0 error

S = 3 ⇒ 0 → 1 error

S = 2 ⇒ c′1 = 0 ⇒ 1 → 0 error

c′1 = 1 ⇒ 0 → 1 error

22

2. when r = 3,

S = {1, 2} ⇒ 1 → 0 error

S = {6, 7} ⇒ 0 → 1 error

S = 4 ⇒ c′2 = 0 ⇒ 1 → 0 error

c′2 = 1 ⇒ 0 → 1 error

Now we consider the case with r ≥ 4. In some cases the type of error can be

decided by the value of syndrome alone and in other cases by both the syndrome and

the received check. When one of the two most significant bits of the check is in error,

the error type can be easily decided. In the rest of the analysis, it is assumed that

these two bits are not in error.

Again the syndrome S is calculated as

S ≡ (I ′
0 − ν(C ′)) mod 2r−1 (3.8)

The values of syndrome are:

1. 1 → 0 Errors.

• Errors only in the information part: Since S ≡ (I ′
0 − ν(C ′)) mod 2r−1, S

will be in the range , 1 ≤ S ≤ Emax = 2r−3 +
⌊

r−2
2

⌋

• Errors only in the check: In this case 1 ≤ S ≤ (2r−2 − 1)

• Errors in both information and check parts: The maximum value of syn-

drome occurs when all the least significant (r − 2) bits of the check are in

error and Emax − (r − 2) information bits are in error. Thus,

2 ≤ S ≤ (Emax − (r − 2)) + (2r−2 − 1)

= 3.2r−3 −

⌈
r − 2

2

⌉
− 1

23

2. 0 → 1 Errors (Here the values of syndromes are the complement of the above

cases).

• Errors only in the information part: Since S ≡ (I ′
0 − ν(C ′)) mod 2r−1, S

will be in the range

(2r−1 − 1) ≥ S ≥ 2r−1 − (2r−3 +

⌊
r − 2

2

⌋
)

= 3.2r−3 −

⌊
r − 2

2

⌋

• Errors only in the check: In this case 2r−2 + 1 ≤ S ≤ (2r−1 − 1)

• Errors in both information and check parts: The maximum value of syn-

drome occurs when all the least significant (r− 2) of the check are in error

and Emax − (r − 2) information bits are in error. Thus,

(2r−1 − 2) ≥ S ≥ 2r−1 − (Emax − 2) − (2r−2 + 1)

= 2r−3 +

⌈
r − 2

2

⌉
+ 1

Let Smin = 2r−3 +
⌈

r−2
2

⌉
and Smax = 2r−1 − 2r−3 −

⌈
r−2
2

⌉
= 3.2r−3 −

⌈
r−2
2

⌉

It can be seen from the above calculation that for 0 → 1 errors the syndrome, S,

cannot be less than or equal to Smin and for 1 → 0 errors S cannot be greater than

or equal to Smax. Thus we have the following result

Theorem 3.2.1. For r ≥ 4 and S satisfying the following conditions, the type of

error is given as

1. 1 ≤ S ≤ Smin ⇒ 1 → 0 errors,

2. Smax ≤ S ≤ 2r−1 − 1 ⇒ 0 → 1 errors.

24

When the syndrome is in the range Smin + 1 ≤ S ≤ Smax − 1, the type of error

can be decided based on both the syndrome, S, and the received check.

Before giving the main results, we take an example and explain the theory behind

the results. Suppose r = 8 and so the code can detect up to 35 errors. Then by

Theorem 3.2.1 if the syndrome is between 1 to 35 the errors are of 1 → 0 type and

if it is from 93 to 127 they are of 0 → 1 type. Now suppose S = 36. For 0 → 1

errors only two possible cases of error values can result in this value of S. They are

63 and 62 (i.e., the least 6 bits of the check must be 111 11x, where x is a don’t care

condition). In general for S = 35 + l the number of possible values of the check error

vector is as shown in Table 3.2.

l 1 2 3 4 5 6 7 8 9 10 11 12 13 . . .

of 2 4 4 6 8 8 8 10 12 12 14 16 16 . . .

possible

error

vectors(A)

Minimum 62 60 60 58 56 56 56 54 52 52 50 48 48 . . .

Value of

ν(C ′
r−2)

= 64 − A

TABLE 3.2: Possible values of check error vector for S = 35 + l

In the above table, ν(C ′
r−2) represents the decimal value of the least r − 2 check

25

bits. For example, when l = 4, the 6-bit error value can be 111111, 111110, 111101,

111100, 111011 and 111010 (i.e., the error vector must be one of the six highest 6

bit binary vectors). If the received check bit value is less than 111010 then the total

number of errors must be greater than Emax = 17 to maintain syndrome. Therefore,

the the error must be of 1 → 0 type if the received check bit value is less than 111010.

Otherwise, it must be of 0 → 1 type. Thus, for a given l, if we can calculate the

number of 0 → 1 error patterns that can result in this syndrome, we can decide the

type of error. From the above table two important points can be observed.

1. When l = 2q − 1, the number of error patterns is 2q.

2. The number of times A remains the same for consecutive values of l follows the

sequence ̺ = (1, 2, 1, 3, 1, 2, 1, 4, 1, 2, . . .).

There is a close relationship between the Binary Reflected Gray Code (BRGC)

and the sequence ̺. If we write down the sequence of bit transitions from one vector

to the next in a BRGC listing, we get 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2,

1, Thus the above sequence is same as the bit transition sequence of a BRGC.

Now the main results are given in the following two theorems.

Theorem 3.2.2. Suppose S = (Smin + l) mod 2r−1, where Smin + l ≤ 2r−2 i.e.,

Smin < S ≤ 2r−2. Let C ′ = (c′r−1c
′
r−2 . . . c′0) be the received check bits and the decimal

value of the least (r − 2) check bits is ν(C ′
r−2). For l = 1, the errors are of 0 → 1

type if ν(C ′
r−2) ≥ 2r−2 − 2, otherwise they are of 1 → 0 type. For l > 1 such that

the condition l > (2b1 − 1) + (2b2 − 1) + . . . + (2bj − 1), where bi’s are chosen as the

maximum values and b1 > b2 > . . . > bj, if ν(C ′
r−2) ≥ 2r−2 − (2b1 + 2b2 + . . . + 2bj + 2)

then the errors are of 0 → 1 type. Otherwise the errors are of 1→ 0 type.

26

In the above theorem, some explanation is required for what we mean by maximum

bj’s. Suppose l = 29, even though 29 > (24 − 1) + (23 − 1) and 29 > (24 − 1) + (22 −

1) + (21 − 1) they do not satisfy the condition mentioned. The only set of values for

bj’s that satisfy the conditions is 29 > (24 − 1) + (23 − 1) + (22 − 1) + (21 − 1). Since

(2b1−1) > (2b2−1)+(2b3−1)+. . .+(2bj −1) for b1 > b2 > . . . > bj there is a unique set

of integers, b1, b2, . . . , bj such that for a given l, l > (2b1 −1)+(2b2 −1)+ . . .+(2bj −1).

Further, suppose (2b1−1)+(2b2−1)+. . .+(2bj−1) and (2d1−1)+(2d2−1)+. . .+(2di−1)

are two consecutive integers in a sequence, γ, where each integer can be represented

in the above form (γ = (1, 3, 4, 7, 8, 10, 11, 15, 16, 18, . . .)). Then

(2d1 + 2d2 + . . . + 2di) − (2b1 + 2b2 + . . . + 2bj) = 2. (3.9)

The following example explains Theorem 3.2.2.

Example 4. Let r = 8. Suppose the syndrome S = 56. Since in this case Smin = 35,

the value of l is 21. Where 21 = l > (24−1)+(22−1)+(21−1). Let the received check

be 01001100. Since (001100)2 = 12 < 26− (24 +22 +21)+2 = 40 the errors are of the

1 → 0 type. On the other hand, if the received check is 01011110 then the errors must

be of the 0 → 1 type. This is because (011110)2 = 50 > 26 − (24 + 22 + 21 + 2) = 40.

Theorem 3.2.3. Suppose S = (Smax − l) mod 2r−1, where Smax − l > 2r−2 i.e.,

2r−2 < S < Smax. Let C ′ = (c′r−1c
′
r−2 . . . c′0) be the received check bits and the decimal

value of the least (r − 2) check bits be ν(C ′
r−2). For l = 1, the errors are of 1 → 0

type if ν(C ′
r−2) < 2, otherwise it is of 0 → 1 type. For l > 1 such that the condition

l > (2b1 −1)+(2b2 −1)+ . . .+(2bj −1), where bi’s are chosen as the maximum values

and b1 > b2 > . . . > bj, if ν(C ′
r−2) < (2b1 + 2b2 + . . . + 2bj + 2) then the errors are of

1 → 0 type. Otherwise the errors are of 0 → 1 type.

In the rest of this section we will prove Theorem 3.2.2. The proof for Theorem

27

3.2.3 is similar to that of Theorem 3.2.2. The following lemmas are useful for proving

the theorems.

Lemma 3.2.1. Let x be an integer that can be represented using q bits and its weight

is w(x). Then the weight of the integer x + 2q will be 1 + w(x).

Proof. Suppose X = (xq−1xq−2 . . . x0), xi ∈ {0, 1}. Then, 2q +X = (1xq−1xq−2 . . . x0).

Thus, w(2q + X) = 1 + w(X).

Lemma 3.2.2. Suppose S = (Smin + l) mod 2r−1, where 1 < l ≤ 2r−2 and l =

(2b1 − 1) + (2b2 − 1) + . . . + (2bj − 1), where bi’s are such that b1 > b2 > . . . > bj.

Let C ′ = (c′r−1c
′
r−2 . . . c′0) be the received check bits and the decimal value of the least

(r− 2) check bits be ν(C ′
r−2). Then if ν(C ′

r−2) ≥ 2r−2 − (2b1 + 2b2 + . . .+ 2bj) then the

errors are of 0 → 1 type. Otherwise, it is of 1 → 0 type.

Proof. Suppose the errors are of 0 → 1 type. Let eI be the number of errors in the

information part and E be the check error vector i.e., C ′ = C ⊕E. Then, syndrome,

S, will be

S = (Smin + l) = (I ′
0 − ν(C ′)) mod 2r−1

= (I0 − eI − (ν(C) + ν(E))) mod 2r−1

= −(eI + ν(E)) mod 2r−1

Since eI + ν(E) < 2r−1, we have

Smin + l = 2r−1 − (eI + ν(E)) (3.10)

Thus eI = 2r−1 − Smin − l + ν(E). Suppose ν(E) = 2r−2 − x. Then

eI = 2r−1 − Smin − l − (2r−2 − x)

= 2r−2 − 2r−3 −

⌈
r − 2

2

⌉
− l + x

= (Emax − l + x) − (r − 2)

28

where Emax = 2r−3 +
⌊

r−2
2

⌋
is the error correcting capability of the code. Then, the

total number of errors will be

eI + w(2r−2 − x) = (Emax − l + x) − (r − 2) + w(2r−2 − x) (3.11)

Note that, for the given value of l, the total number of errors must be ≤ Emax. The

following table shows, for a given value of the syndrome and the error vector value, the

number of errors in the check, the number of errors in the information part and the

total number of errors. The error vector values in the first column are in decreasing

order starting with 2r−2 − 1. Thus, the values in the third column, the number of

errors in the information part, are in increasing order. The number of errors in the

check part (column 2) can be obtained using Lemma 3.2.1. The values in column 4,

the total number of errors, are monotonically increasing. From the table it can be

seen that if the error vector value is 2r−2− (2b1 +2b2 + . . .+2bj) then the total number

of errors is Emax − bj < Emax since bj ≥ 1. Thus it is a valid combination. If the

error vector value is 2r−2 − (2b1 + 2b2 + . . . + 2bj + 1) then the total number of errors

is Emax + 1 > Emax. This value of check cannot, thus, be included. Therefore, the

received check value must be ≥ 2r−2 − (2b1 + 2b2 + . . . + 2bj) for 0 → 1 errors if the

total number of errors ≤ Emax.

Value of Number of Number of Total Number

Check Error Errors in Check Errors in Info of Errors

2r−2 − 1 r − 2 (Emax − l + 1) (Emax − l + 1)

−(r − 2)

2r−2 − 2 r − 3 (Emax − l + 2) (Emax − l + 1)

−(r − 2)

2r−2 − 3 r − 3 (Emax − l + 3) (Emax − l + 2)

Continued on next page

29

Value of Number of Number of Total Number

Check Error Errors in Check Errors in Info of Errors

−(r − 2)

2r−2 − 4 r − 4 (Emax − l + 4) (Emax − l + 2)

−(r − 2)

2r−2 − 5 r − 3 (Emax − l + 5) (Emax − l + 4)

−(r − 2)

...
...

...
...

2r−2 − 2b1 r − 2 − b1 (Emax − l + 2b1) (Emax − l+

−(r − 2) 2b1 − b1)

2r−2 − 2b1 − 1 (r − 3) (Emax − l + 2b1 + 1) (Emax − l + 2b1)

−(r − 2)

2r−2 − 2b1 − 2 (r − 4) (Emax − l + 2b1 + 2) (Emax − l + 2b1)

−(r − 2)

2r−2 − 2b1 − 3 (r − 4) (Emax − l + 2b1 + 3) (Emax − l + 2b1 + 1)

−(r − 2)

2r−2 − 2b1 − 4 (r − 5) (Emax − l + 2b1 + 4) (Emax − l + 2b1 + 1)

−(r − 2)

2r−2 − 2b1 − 5 (r − 4) (Emax − l + 2b1 + 5) (Emax − l + 2b1 + 3)

−(r − 2)

...
...

...
...

2r−2 − 2b1 − 2b2 (r − b2 − 3) (Emax − l + 2b1 + 2b2) (Emax − l + 2b1

−(r − 2) +2b2 − b2 − 1)

2r−2 − 2b1 (r − 4) (Emax − l + 2b1+ (Emax − l + 2b1

Continued on next page

30

Value of Number of Number of Total Number

Check Error Errors in Check Errors in Info of Errors

−2b2 − 1 2b2) − (r − 2) +2b2 − 1)

...
...

...
...

2r−2 − 2b1 (r − b3 − 4) (Emax − l + 2b1+ (Emax − l + 2b1

−2b2 − 2b3 2b2 + 2b3) +2b2 + 2b3−

−(r − 2) b3 − 2)

2r−2 − 2b1− (r − 5) (Emax − l + 2b1 (Emax − l + 2b1+

2b2 − 2b3 − 1 +2b2 + 2b3 + 1) 2b2 + 2b3 − 2)

−(r − 2)

...
...

...
...

2r−2 − 2b1 − 2b2 (r − b4 − 5) (Emax − l + 2b1 (Emax − l + 2b1 + . . .

−2b3 − 2b4 + . . . + 2b4) +2b4 − b4 − 3)

−(r − 2)

...
...

...
...

2r−2 − 2b1− (r − 2) (Emax + 2b1+ (Emax − l + 2b1+

. . . − 2bj−1 − 1 −(j − 1) . . . + 2bj−1 + 1 . . . + 2bj) − (j − 1)

−(r − 2)

...
...

...
...

2r−2 − 2b1− (r − 2)− (Emax − l + 2b1+ (Emax − l + 2b1+

. . . − 2bj (j − 1) − bj . . . + 2bj) − (r − 2) . . . + 2bj − bj) − (j − 1)

= (Emax − bj) < Emax

2r−2 − 2b1− (r − 2) − j (Emax − l + 2b1+ (Emax − l + 2b1+

. . . − 2bj − 1 . . . + 2bj + 1) . . . + 2bj + 1 − j)

Continued on next page

31

Value of Number of Number of Total Number

Check Error Errors in Check Errors in Info of Errors

−(r − 2) = Emax + 1 > Emax

TABLE 3.3: Valid Combinations of Errors when l = 2b1+

. . . + 2bj for 0 → 1 errors

Lemma 3.2.3. Suppose (2b1−1)+(2b2−1)+. . .+(2bj−1) and (2d1−1)+(2d2−1)+. . .+

(2di−1) are two consecutive integers, where b1 > b2 > . . . > bj and d1 > d2 > . . . > di.

Let l > (2b1−1)+(2b2−1)+. . . (2bj−1) ≥ 1. If Emax−l+2b1+2b2+. . .+2bj+1−j ≤ Emax

then Emax − l + 2d1 + 2d2 + . . . + 2di − di − (i − 1) ≤ Emax.

Proof. Since Emax − l + 2b1 + 2b2 + . . . + 2bj + 1 − j ≤ Emax if we can show that

Emax−l+2d1 +2d2 +. . .+2di−di−(i−1) ≤ Emax−l+2b1 +2b2 +. . .+2bj +1−j (3.12)

then it will imply the result. We can simplify equation (3.12) as follows.

2d1 + 2d2 + . . . + 2di − di − (i − 1) ≤ 2b1 + 2b2 + . . . + 2bj + 1 − j (3.13)

⇒ 2d1 + 2d2 + . . . + 2di − di − (i − 1) ≤ 2d1 + 2d2 + . . . + 2di − 2 + 1 − j

⇒ −di − (i − 1) ≤ −1 − j

⇒ di + (i − 1) ≥ j + 1 (3.14)

Now we have to only show that equation (3.14) always holds to complete the

proof. Let V1 = (2d1 + 2d2 + . . . + 2di) and V2 = (2b1 + 2b2 + . . . + 2bj). Note that bi’s

and di’s are bit indices with 1’s in the binary representation of V2 and V1 respectively.

Thus, j and i are the weights of V2 and V1 respectively.

32

As already noted in equation (3.9)

V1 = V2 + 2 (3.15)

Also, d1 > d2 > . . . > di and b1 > b2 > . . . > bj. If we consider a bit vector

representing V2, it can be seen that bj is the least index with a 1 in it. First we will

consider the case when bj > 1.

V2 = 2b1 2b2 . . . 2bj

V2 = b1 b2 . . . bj 0 . . . 0

1 1 . . . 1

V1 = 2d1 2d2 . . . 2dj 21

TABLE 3.4: Adding 2 to V2 when bj > 1

Adding 2 to V2 in this case increases the weight of the resultant vector, w(V1) =

w(V2) + 1 and the least index with a 1 in V1 is 1 as can be seen from table 3.4. Thus,

i = j + 1 and di = 1. Therefore, the result follows.

Now consider the case where bj = 1. Note that bj cannot be less than 1. Let x+1

be the next lowest index in V2 which has a value 0. This means there are x 1’s from

bj to x + 1.

Adding 2 to V2 when bj = 1 sets all bits < (x + 1) to 0’s and the bit x + 1 to 1

and hence the least index with a 1 in V1 is x + 1 as can be seen from table 3.5. Thus,

i = (j + x − 1). Since di > x the result follows.

Proof of Theorem 3.2.1: Suppose (2b1−1)+(2b2−1)+. . .+(2bj −1) and (2d1−1)+

(2d2 − 1) + . . . + (2di − 1) are two consecutive integers that can be represented in this

33

b1 b2 . . . bj

1 1 . . . 0 111︸︷︷︸
x−1

1

2d1 2d2 2di 0 . . . 0 0

TABLE 3.5: Adding 2 to V2 when bj = 1

form, where b1 > b2 > . . . > bj and d1 > d2 > . . . > di. Then (2d1 + 2d2 + . . . + 2di)−

(2b1 + 2b2 + . . . + 2bj) = 2. When l > (2b1 − 1) + (2b2 − 1) + . . . + (2bj − 1), even with

error vector value 2r−2 − (2b1 + 2b2 + . . . + 2bj + 2) = 2r−2 − (2d1 + 2d2 + . . . + 2di), the

total number of errors will be Emax− l+2b1 +2b2 + . . .+2bj +1−j ≤ Emax and so from

Lemma 3.2.3, Emax − l + 2d1 + 2d2 + . . . + 2di − di − (i− 1) ≤ Emax. Now, if the error

vector value is 2r−2 − (2d1 +2d2 + . . .+2di +1) then the total number of errors will be

Emax− l+2d1 +2d2 + . . .+2di +1− i > Emax for (2d1 −1)+(2d2 −1)+ . . .+(2di −1) ≥

l > (2b1 − 1) + (2b2 − 1) + . . . + (2bj − 1). This completes the proof.

3.2.2 Method 2

Code Construction

Let k be the number of information bits and r be the number of check bits. The

length of the code is n = k+r and I0 and I1 be the number of 0’s and 1’s respectively

in the information part.

For r ≥ 5, let (cr−1cr−2 . . . c0) be the r-bit check symbol. Divide the check bits

into two parts with (cr−1cr−2cr−3cr−4) in the first part and the remaining (r−4) in the

other part. The bits in the first part take any one of the 2-out-of-4 vectors, namely,

34

0011, 0101, 0110, 1001, 1010, or 1100, whereas the last four bits take any one among

the 2r−4 binary (r − 4) tuples. Thus, there are 6 × 2r−4 distinct check symbols. Let

CS = I0 mod (6× 2r−4). Thus, CS is (r− 1) bits long. The 3 most significant bits of

CS can be {000, 001, 010, 011, 100, 101} in binary or {0, 1, 2, 3, 4, 5} in decimal. Now

define any one-to-one function f from {0, 1, 2, 3, 4, 5} to the 2-out-of-4 code. One

simple function is f(i) ≤ f(j) for i < j where 0 ≤ i, j ≤ 5; i.e., f(000) = 0011,

f(001) = 0101, f(010) = 0110, f(011) = 1001, f(100) = 1010 and f(101) = 1100.

The concatenation of these 2-out-of-4 codes to the least significant (r − 4) bits gives

us the check symbol CS.

Codes constructed using this method are capable of detecting up to 5.2r−4+(r−4)

unidirectional errors. By Theorem 3.0.2, the maximum number of errors that can be

corrected using diversity combining is

Emax =

⌊
5.2r−4 + r − 4

2

⌋
(3.16)

Determining Error Type

Let X be the transmitted word and let Y be the received word. Let I0 and I0
′ be

the number of 0’s in the information parts of X and Y respectively. Let ν(C0) and

ν(C0
′) be the decimal values of the check parts of X and Y respectively.

For r ≥ 5, in some cases the type of error can be decided by the value of the

syndrome alone and in other cases by both the syndrome and the received check.

When any of the four most significant bits are in error the type of error can be easily

deduced as shown in Section 3.1.1. This is because the four most significant bits form

a 2-out-of-4 code. In the rest of the analysis, it is assumed that these four bits are

not in error. The syndrome is calculated as

35

S ≡ (I ′
0 − ν(C ′)) mod 6.2r−4 (3.17)

The values of syndrome are:

1. 1 → 0 Errors.

• Errors only in the information part: Since S ≡ (I ′
0 − ν(C ′)) mod 6.2r−4, S

will be in the range , 1 ≤ S ≤ Emax = 5r−5 +
⌊

r−4
2

⌋

• Errors only in the check: In this case 1 ≤ S ≤ (2r−4 − 1)

• Errors in both information and check parts: The maximum value of syn-

drome occurs when all the least significant (r − 4) bits of the check are in

error and Emax − (r − 4) information bits are in error. Thus,

2 ≤ S ≤ (Emax − (r − 4)) + (2r−4 − 1)

= 7.2r−5 −

⌈
r − 4

2

⌉
− 1

2. 0 → 1 Errors (Here the values of syndromes are complement of the above cases).

• Errors only in the information part: Since S ≡ (I ′
0 − ν(C ′)) mod 6.2r−4, S

will be in the range

(6.2r−4 − 1) ≥ S ≥ 6.2r−4 − (5r−5 +

⌊
r − 4

2

⌋
)

= 7.2r−5 −

⌊
r − 4

2

⌋

• Errors only in the check: In this case 5.2r−4 + 1 ≤ S ≤ (6.2r−4 − 1)

• Errors in both information and check parts: The maximum value of syn-

drome occurs when all the least significant (r− 2) of the check are in error

36

and Emax − (r − 4) information bits are in error. Thus,

(6.2r−4 − 2) ≥ S ≥ 6.2r−4 − (Emax − 4) − (2r−4 + 1)

= 5.2r−4 +

⌈
r − 4

2

⌉
+ 1

Let Smin = 5.2r−5 +
⌈

r−4
2

⌉
and Smax = 6.2r−4 − 5.2r−5 −

⌈
r−4
2

⌉
= 7.2r−5 −

⌈
r−4
2

⌉

It can be seen from the above calculation, for 0 → 1 errors the syndrome, S,

cannot be less than or equal to Smin and for 1 → 0 errors S cannot be greater than

or equal to Smax. Thus we have the following result

Theorem 3.2.4. For r ≥ 5 and S satisfying the following conditions, the type of

error is given as

1. 1 ≤ S ≤ Smin ⇒ 1 → 0 errors

2. Smax ≤ S ≤ 6.2r−4 − 1 ⇒ 0 → 1 errors

When the syndrome is in the range Smin + 1 ≤ S ≤ Smax − 1, the type of error

can be decided based on both the syndrome, S, and the received check.

We now state the main results of this section in the following two theorems. The

proofs of these theorems are similar to those already proved in Section 3.2.1. The

maximum constraint for the values of bj is as already specified in Theorem 3.2.2.

Theorem 3.2.5. Suppose S = (Smin + l) mod 6.2r−4, where Smin + l ≤ 6.2r−5 i.e.,

Smin < S ≤ 6.2r−5. Let C ′ = (c′r−1c
′
r−2 . . . c′0) be the received check bits and the

decimal value of the least (r − 4) check bits be ν(C ′
r−4). For l = 1, the errors are of 0

→ 1 type if ν(C ′
r−4) ≥ 2r−4−2, otherwise it is of 1 → 0 type. For l > 1 and satisfying

the condition l > (2b1 − 1) + (2b2 − 1) + . . . + (2bj − 1), where bi’s are chosen as the

maximum values and b1 > b2 > . . . > bj, if ν(C ′
r−4) ≥ 2r−4 − (2b1 + 2b2 + . . . + 2bj + 2)

then the errors are of 0 → 1 type. Otherwise the errors are of 1→ 0 type.

37

Example 5. Let r = 10. By Theorem 3.2.4, if the syndrome is from 1 to 163, the

errors are of 1 → 0 type and if it is from 221 to 383 they are of 0 → 1 type. Suppose

the syndrome S = 184. Since in this case Smin = 163, the value of l is 21. Now

21 = l > (24 − 1) + (22 − 1) + (21 − 1). Let the received check be 0101001100. Since

(001100)2 = 12 < 26 − (24 + 22 + 21) + 2 = 40 the errors are of the 1 → 0 type. On

the other hand, if the received check is 0101101110 then the errors must be of the 0

→ 1 type. This is because (101110)2 = 46 > 26 − (24 + 22 + 21 + 2) = 40.

Theorem 3.2.6. Suppose S = (Smax − l) mod 6.2r−4, where Smax − l > 6.2r−5 i.e.,

6.2r−5 < S < Smax. Let C ′ = (c′r−1c
′
r−2 . . . c′0) be the received check bits and the

decimal value of the least (r − 2) check bits be ν(C ′
r−4). For l = 1, the errors are of

1 → 0 type if ν(C ′
r−4) < 2, otherwise it is of 0 → 1 type. For l > 1 and satisfying

the condition l > (2b1 − 1) + (2b2 − 1) + . . . + (2bj − 1), where bi’s are chosen as the

maximum values and b1 > b2 > . . . > bj, if ν(C ′
r−4) < (2b1 + 2b2 + . . . + 2bj + 2) then

the errors are of 1 → 0 type. Otherwise the errors are of 0 → 1 type.

38

CHAPTER 4

MIXED RADIX CODES

Let K = knkn−1 · · · k1 be an n-dimensional vector where ki is the radix in dimen-

sion i and ki ≥ 3 for 1 ≤ i ≤ n. Method 4.1 produces a cyclic Gray code if all ki’s

are odd (or all are even). Method 2 gives a cyclic Gray code if at least one of the ki’s

is even and a non-cyclic Gray code if all ki’s are odd.

Let R = (rnrn−1 · · · r1) be an n digit vector, where 0 ≤ ri ≤ ki − 1 for i =

1, 2, · · · , n. R is said to be in mixed-radix notation, and the corresponding integer

value of R is given by

I(R) = r1 + r2k1 + r3k1k2 + · · · + rnk1k2 · · · kn−1

= r1 +
n∑

i=2

(
ri

i−1∏

j=1

kj

)

For example, if K = 854, then I(442) = 2 + 4 × 4 + 4 × 5 × 4 = 98

4.0.3 Method 1

Assume that ki is odd for 1 ≤ i ≤ n, and that the dimensions are ordered such that

kn ≥ kn−1 ≥ · · · ≥ k1. Also define

ri =





ri, if ri+1 is odd

ki − 1 − ri, otherwise

Arrange the n-dimensional vectors in a lexicographic order, i.e., X = (xn, xn−1, · · · ,

x1) < Y = (yn, yn−1, · · · , y1) if I(X) < I(Y). Then, f1, which maps the vectors in

39

mixed radix representation arranged in a lexicographic order to a cyclic Gray code,

is defined as follows.

f1(rn, rn−1, · · · , r1) = (gn, gn−1, · · · , g1)

where

gn = rn, and

for 1 ≤ i ≤ n − 1, gi =





(ri − ri+1) mod ki, if ri+1 < ki

ri, otherwise.

(4.1)

The inverse function for f1 is

f−1
1 (gn, gn−1, . . . , g1) = (rn, rn−1, . . . , r1)

where

rn = gn, and

for n ≥ i > 1, ri−1 =





(ri + gi−1) mod ki−1 if ri < ki−1

r̃i−1 otherwise.

(4.2)

In the above equation, r̃i−1 is defined as

r̃i−1 =





ki−1 − 1 − gi−1 if ri−1 is even

gi−1 otherwise.

Note

When all ki’s, i = 1, 2, · · · , n, are even, a similar Gray code can be described. Again

assume kn ≥ kn−1 ≥ · · · ≥ k1.

Define

ri =





ri, if ri+1 is even

ki − 1 − ri, otherwise.

Then

40

f2(rn, rn−1, · · · , r1) = (gn, gn−1, · · · , g1)

where

gn = rn, and

for 1 ≤ i ≤ n − 1, gi =





ri − ri+1, if ri+1 < ki

ri, otherwise

(4.3)

The inverse function for f2 can be defined as follows

f−1
2 (gn, gn−1, . . . , g1) = (rn, rn, . . . , r1) (4.4)

where

rn = gn, and

for n ≥ i > 1, ri−1 =





(ri + gi−1) mod ki−1 if ri < ki−1

r̃i−1 otherwise

(4.5)

In the above equation, r̃i−1 is defined as

r̃i−1 =





ki−1 − 1 − gi−1 if ri−1 is odd

gi−1 otherwise

Theorem 4.0.7. Method 4.1 proposed above produces a Lee distance Gray code, when

ki ≥ 3, for i = 1, 2, · · · , n, and ki’s odd (or ki’s even).

Proof. The proof is given when all ki’s, i = n, n − 1, · · · , 1 are odd. A similar proof

can be obtained when they are all even.

• Case 1:

f1(000 · · · 0) = 0000 · · · 0

f1(kn − 1, kn−1 − 1, · · · , k1 − 1) = (kn − 1, kn−1 − 1, kn−2 − 1, · · · , k1 − 1)

41

1 20 3

0

1

2

3

4

5

FIGURE 4.1: A Hamiltonian cycle in C6 × C4 using Method 1

when ki+1 > ki for i = 1, 2, . . . , n−1. Now for i = n−1, n−2, · · · , 1, ki − 1 = 0

because (ki+1 − 1)’s are all even. Further, if some ki+1 = ki it can be shown

that f1(kn − 1, kn−1 − 1, · · · , k1 − 1) = (kn − 1, 0, 0, 0, · · · , 0). Thus, the first

and the last words are at a distance of 1.

• Case 2: Let X and Y be two consecutive numbers in the mixed radix rep-

resentation and let m be the first index from left in which X and Y differ;

i.e.,

X = {xnxn−1 · · ·xm+1}
∗ xm {(km−1 − 1)(km−2 − 1) · · · (k1 − 1)}∗

Y = {xnxn−1 · · ·xm+1}
∗ (xm + 1) {00 · · · 0}∗

where the segment marked by a ∗ may or may not exist depending on the value

of m. Let f1(X) = anan−1 · · · a1 and f1(Y) = bnbn−1 · · · b1. f1(X) and f1(Y)

42

are considered in three segments: (a) between dimensions n and m + 1, (b)

dimension m, and (c) between dimensions m− 1 and 1. It is shown below that

ai = bi for i 6= m and that DL(am, bm) = 1. This shows DL(f1(X), f1(Y)) = 1.

(a) [n ≥ i ≥ m + 1]: For this range, xi = yi and so ai = bi.

(b) [i = m]:

case i [xm+1 < km]: In this case, am = xm − xm+1 and bm = xm + 1 − xm+1,

thus DL(am, bm) = 1.

case ii [xm+1 ≥ km]: Here am = xm and bm = xm + 1. Further, if xm+1 is

even,

xm = km − 1 − xm and

xm + 1 = km − 1 − (xm + 1)

= xm − 1

On the other hand, if xm+1 is odd, then xm = xm and xm + 1 = xm+1.

In both cases, DL(am, bm) = DL(xm, xm + 1) = 1.

(c) [m − 1 ≥ i ≥ 1]: Since each ki − 1 is even and ki − 1 ≥ ki−1 − 1, it can

be verified that am−2 = am−3 = · · · = a1 = 0. Further bm−2 = bm−3 =

· · · = b1 = 0. Now, it will be shown that am−1 = bm−1 by considering the

following three cases.

case i [xm+1 < km−1]: Then am−1 = km−1−1−xm and bm−1 = 0−(xm+1) =

km−1 − xm − 1. So am−1 = bm−1.

case ii [xm + 1 = km−1 and so xm = km−1 − 1]: am−1 = km−1 − 1 − xm =

km−1 − 1 − km−1 − 1 = 0; bm−1 = 0 since km−1 is odd. Thus, in this

case also am−1 = bm−1.

43

case iii [xm + 1 > km−1]: If xm + 1 is even (and so xm is odd) then am−1 =

km−1 − 1 and bm−1 = 0 = km−1 − 1; On the other hand, if xm+1 is odd

(and so xm is even) then am−1 = km−1 − 1 = 0 and bm−1 = 0. Thus in

both cases am−1 = bm−1.

Further, it is easy to verify that f1 is a one-to-one function. Therefore, f1 produces

a cyclic Gray code.

As we have mentioned earlier, a Gray code over kn × kn−1 × · · · × k1 corresponds

to an appropriate Hamiltonian cycle in the torus Tkn
× Tkn−1

× · · · × Tk1
. Figure 4.1

and Figure 4.2 show Hamiltonian cycles generated using Method 4.1 in C6 × C4 and

C9 × C7 × C3, respectively.

4.0.4 Method 2

This method was first described in [14]. For completeness we describe the code’s

mapping function here. An efficient algorithm to generate this code is described in

Chapter 5. Assume that at least one of the ki’s is even. Without loss of generality,

assume that the dimensions are ordered so that if ki is even and kj is odd, then i > j.

Let l be the index of the lowest even dimension. That is, the dimensions are ordered

as follows.

even︷ ︸︸ ︷
kn · · · kl

odd︷ ︸︸ ︷
kl−1 · · · k1

Now, letting ri = ki − 1 − ri, and r′i =
∑l

j=i+1 rj, f3 is defined as follows.

f3(rn, rn−1, · · · , r1) = (gn, gn−1, · · · , g1),

44

8** 6**

0** 1** 3**2** 4**

5**7**

0

1

2

3

4

5

6

0

1

2

3

4

5

6

0 1 2

FIGURE 4.2: A Hamiltonian cycle in C9 × C7 × C3 using Method 2

where

gn = rn, and

gi =





ri, if ri+1 is even

ri, otherwise
for (n − 1) ≥ i ≥ l

gi =





ri, if r′i is even

ri, otherwise
for (l − 1) ≥ i ≥ 1

(4.6)

The inverse function for f3 can be defined as follows.

f−1
3 (gn, gn−1, . . . , g1) = (rn, rn−1, . . . , r1) (4.7)

45

where

rn = gn

for n − 1 ≥ i ≥ 1; ri =





gi if

(
n−1∑

j=i+1

gj

)
is even

ki − 1 − gi otherwise

4.1 Edge Disjoint Hamiltonian Cycles in Multi-dimensional Tori

In this section we show the construction of edge disjoint Hamiltonian cycles in toroidal

networks when n = 2 and n = 2r for some r ≥ 0. We use the Gray codes constructed

using f1 (or f2) as the base cycle. The torus network is a popular parallel processor

interconnection network topology. Some efficient communication algorithms can be

designed based on edge disjoint Hamiltonian cycles (for example, all-to-all broadcast).

Firstly, we introduce some concepts in graph theory to understand the constructions

in this section.

4.1.1 Cross Product of Graphs

Given graphs G1 = (V1, E1) and G2 = (V2, E2), define the cross product of G1 and

G2, denoted by G1 × G2, as the graph G = (V,E), where

V = {(u, v)|u ∈ V1, v ∈ V2}, , and

E = {((u1, v1), (u2, v2))|(u1, u2 ∈ E1 and v1 = v2),

or (u1 = u2 and (v1, v2) ∈ E2)}

A cycle of length k is denoted by Ck, and each node in Ck is labeled with a radix

k number, 0, 1, . . . , k−1. There is an edge between vertices u and v iff DL(u, v) = 1.

46

The k-ary n-cube (Cn
k) and a n-dimensional torus (Tkn,kn−1,...,k1

) can alternatively

be defined as the product of cycles as follows:

Cn
k =

Ck × Ck × . . . × Ck︸ ︷︷ ︸ = ×n
i=1Ck

n times

Tkn,kn−1,...,k1
= Ckn

× Ckn−1
× . . . × Ck1

The above definition demonstrates a useful topological property of a Cn
k : a Cn

k

can be recursively defined in terms of smaller k-ary cubes.

Cn
k =





Ck, if n = 1

Ck × Cn−1
k , if n > 1.

4.1.2 Edge Disjoint Hamiltonian Cycles when n = 2

Theorem 4.1.1. In a 2-dimensional toroidal network, the edges not used by the

Hamiltonian cycle corresponding to the Gray Code generated using f1 (or f2) forms

another Hamiltonian cycle.

Proof. The second Hamiltonian cycle is given by the following sequence of edges and

these edges are not in Gray code generated by f1 (or f2).

47

Column Number Nodes

0 (0, 0), (1, 0), (2, 0), . . . , (k1 − 1, 0)

1 (k1 − 1, 1), (k1, 1), . . . , (k2 − 1, 1), (0, 1), (1, 1), . . . , (k1 − 2, 1)

2 (k1 − 2, 2), (k1 − 1, 2), . . . , (k2 − 1, 2), (0, 2), (1, 2),

2 . . . , (k1 − 3, 2)

...
...

i (k1 − i, i), (k1 − i + 1, i), . . . , (k2 − 1, i), (0, i), (1, i),

i . . . , (k1 − i − 1, i)

...
...

(k1 − 2) (2, k1 − 2), (3, k1 − 2), . . . , (k2 − 1, k1 − 2),

(k1 − 2) (0, k1 − 2), (1, k1 − 2)

(k1 − 1) (1, k1 − 1), (2, k1 − 1), . . . , (k1 − 1, k1 − 1)

(k1 − 1) and 0 (k1, k1 − 1), (k1, 0), (k1 + 1, 0), (k1 + 1, k1 − 1), . . .,

(k2 − 1, 0), (k2 − 1, k1 − 1), (0, k1 − 1), (0, 0)

In the above table each consecutive pair of nodes represents an edge. Each row

in the table represents the order in which nodes in the respective column are visited.

The last node of a row i will be adjacent to the first node in row i + 1. In the last

row the the edges alternate between dimension 0 and k1 − 1. Also, the last node of

the cycle is (0, 0).

A mapping function, f ′, which maps vectors in a lexicographic order, (x2, x1), to

their corresponding codewords, (g2, g1) can be defined for the second cycle described

above, as follows.

1. When 0 ≤ x2.k1 + x1 ≤ k1 − 1:

f ′(x2, x1) = (g2, g1)

48

where

g2 = x1

g1 = x2 = 0

2. When k1 ≤ x2.k1 + x1 < (k1.k2 + 2(k2 − k1)):

Let p = (x2.k1 + x1 + k1 − 1)

Let (y2, y1) be such that, p = y2.k2 + y1 where 0 ≤ y1 ≤ k2 − 1. Then,





g1 = y2

g2 = (y1 − y2 + k1) mod k2

3. When (k1.k2 + 2(k2 − k1)) ≤ x2.k1 + x1 ≤ (k2.k1 − 1)):

Let b = (k1.k2 + 2(k2 − k1)) mod 4, then:





g1 = 0 if (x2.k1 + x1) mod 4 = b or b + 1

g1 = k1 − 1 if (x2.k1 + x1) mod 4 = b + 2 or b + 3

and

g2 =

(⌈
d

2

⌉
+ k1

)
mod k2

where,

d = (x2.k1 + x1 − b)

4.1.3 Edge Disjoint Hamiltonian Cycles when n = 2r

First, we explain how to obtain 4 edge disjoint Hamiltonian cycles from a 4 dimen-

sional torus. Let

49

Tk4×k3×k2×k1
= Ck4

× Ck3
× Ck2

× Ck1
(4.8)

Here ki’s are all odd (or all even).

Ck4
× Ck3

is a two dimensional torus and so it can be decomposed into two edge

disjoint Hamiltonian cycles H1 and H2 of length k4 × k3 as described in Theorem

4.1.1. These two Hamiltonian cycles give two Gray codes and so if any two vectors

are adjacent in one Gray code they are not adjacent in the other. We can write

Ck4
× Ck3

= H1
k4×k3

+ H2
k4×k3

(4.9)

Similarly we can write

Ck2
× Ck1

= H1
k2×k1

+ H2
k2×k1

(4.10)

where H1
k2×k1

and H1
k2×k1

are two edge disjoint cycles of length k2 × k1 obtained

from Ck2
×Ck1

using Theorem 4.1.1. Consider the two graphs G1 = H1
k4×k3

×H1
k2×k1

and G2 = H2
k4×k3

× H2
k2×k1

. Both G1 and G2 have the same number of nodes and

the node labels are the same. The row labels of G1 (and G2) are the Gray codes

corresponding to H1
k4×k3

(and H2
k4×k3

) respectively. Similarly the column labels of

G1 (and G2) are from H1
k2×k1

(and H2
k2×k1

) respectively. We will show that G1 and

G2 are edge disjoint.

Suppose (X = (x4, x3, x2, x1), Y = (y4, y3, y2, y1)) is an edge in G1. If X and Y

differ in one of the least significant two digits then (X,Y) is a row edge. This row

edge cannot be a row edge in G2. This is so because the vectors (x2, x1) and (y2, y1)

are adjacent in the Gray code corresponding to H1
k2×k1

and hence they cannot be

adjacent in the Gray code corresponding to H2
k2×k1

. Similarly if X and Y differ in

one of the two most significant digits then this forms a column edge in G1. Again,

using an argument similar to that for a row edge it can be seen that if (x4, x3) and

50

(y4, y3) are adjacent in G1 they cannot be a column edge in G2. Finally from each of

H1
k4×k3

× H1
k2×k1

and H2
k4×k3

× H2
k2×k1

we can obtain two edge disjoint Hamiltonian

cycles. These can be written in terms of graph decomposition as follows.

Tk4×k3×k2×k1
= Ck4

× Ck3
× Ck2

× Ck1
(4.11)

= (Ck4
× Ck3

) × (Ck2
× Ck1

) (4.12)

= (H1
k4×k3

+ H2
k4×k3

) × (H1
k2×k1

+ H2
k2×k1

) (4.13)

= (H1
k4×k3

× H1
k2×k1

) + (H2
k4×k3

× H2
k2×k1

) (4.14)

= (H1
k4×k3×k2×k1

+ H3
k4×k3×k2×k1

) (4.15)

+ (H2
k4×k3×k2×k1

+ H4
k4×k3×k2×k1

) (4.16)

Example 6. Consider a T5×3×3×3 toroidal network. Four edge disjoint cycles, H1,

H2, H3 and H4 can be generated by decomposing the graph into two 2-dimensional

toroidal networks, (T 1
15×9 and T 2

15×9), of size 15 × 9. These two toroidal networks,

T 1
15×9 and T 2

15×9, are edge disjoint. Now, functions f1 and f ′ can be applied to these

T15×9 graphs to obtain 2 edge disjoint cycles from each graph respectively. These cycles

are shown in Figures 4.3(a) and 4.3(b) respectively. The graph in Figure 4.3(a) is

obtained by the cross product H1
5×3 × H1

3×3. The graph in Figure 4.3(b) is obtained

by the cross product H2
5×3 × H2

3×3 where H1 and H2 are the Gray codes obtained by

using f1 and f ′ in the 5 × 3 and 3 × 3 graphs.

In this case, the n edge disjoint cycles can be recursively constructed as described

in the following theorem.

Theorem 4.1.2. It is possible to construct n edge disjoint Hamiltonian cycles for an

n-dimensional torus network Tkn,kn−1,...,k1
where n = 2r and ki ≥ 3, for 1 ≤ i ≤ n.

51

40

41

42

32

31

30

20

22

21

11

10

12

02

01

00

10 1100 01 02 12 21 22 20

02

42

40

30

32

22

12

11

01

41

31

21

20

10

00

01 1100 10 20 21 12 0222

(a) H1(Solid Lines) and H3 (Dotted Lines) (b) H2 (Solid Lines)

and H4(Dotted Lines)

FIGURE 4.3: Four Edge Disjoint Hamiltonian Cycles in a 5 × 3 × 3 × 3 Torus

Proof. The following proof does not depend on the parities of ki’s and can thus be

applied to Gray codes constructed using either f1 or f2. The proof is by induction on

n.

• Base: When n = 2, this theorem is reduced to Theorem 4.1.1

• Induction Hypothesis: Assume that there are n edge disjoint Hamiltonian

cycles in Tkn,kn−1,...,k1
say, H1

kn×kn−1×...×k1
, H2

kn×kn−1×...×k1
, . . . , Hn

kn×kn−1×...×k1
for

n = 2r, i.e., Tkn,kn−1,...,k1
= H1

kn×kn−1×...×k1
+H2

kn×kn−1×...×k1
+. . .+Hn

kn×kn−1×...×k1
.

52

Here, G1+G2 indicates the union of two edge disjoint graphs, G1 and G2, where

the graphs have the same set of nodes.

• Induction Step: Now, consider the case for n′ = 2n = 2r+1. A Tk2n,k2n−1,...,k1

can be decomposed as

Tk2n,k2n−1,...,k1
= Ck2n

× Ck2n−1
, . . . , Ck1

= (Ck2n
× Ck2n−1

× . . . × Ckn+1
) × (Ckn

× Ckn−1
× . . . × Ck1

)

= (H1
k2n×k2n−1×...×kn+1

+ H2
k2n×k2n−1×...×kn+1

+ . . .

+ Hn
k2n×k2n−1×...×kn+1

) ×

(H1
kn×kn−1×...×k1

+ H2
kn×kn−1×...×k1

+ . . . + Hn
kn×kn−1×...×k1

)

= (H1
k2n×k2n−1×...×kn+1

× H1
kn×kn−1×...×k1

)

+ (H2
k2n×k2n−1×...×kn+1

× H2
kn×kn−1×...×k1

) +

. . . + (Hn
k2n×k2n−1×...×kn+1

× Hn
kn×kn−1×...×k1

)

= (H1
k2n×k2n−1×...×k1

+ Hn+1
k2n×k2n−1×...×k1

)

+ (H2
k2n×k2n−1×...×k1

+ Hn+2
k2n×k2n−1×...×k1

) +

. . . + (Hn
k2n×k2n−1×...×k1

+ H2n
k2n×k2n−1×...×k1

)

Now, (H i
k2n×k2n−1×...×kn+1

× H i
kn×kn−1×...×k1

) is a two dimensional torus of size

(k2n × k2n−1 × . . .× kn+1)× (kn × kn−1 × . . .× k1) and this is edge disjoint from

(Hj

k2n×k2n−1×...×kn+1
×Hj

kn×kn−1×...×k1
) for i 6= j. From each (H i

k2n×k2n−1×...×kn+1
×

H i
kn×kn−1×...×k1

), two edge disjoint Hamiltonian cycles can be constructed using

Theorem 4.1.1. Thus, 2n disjoint Hamiltonian cycles can be constructed for

Tk2n,k2n−1,...,k1
.

53

CHAPTER 5

ALGORITHMS FOR GENERATING GRAY CODES

In this chapter we derive efficient algorithms for generating the Gray codes defined

by f1, f2 and f3. All these algorithms are efficient in the the sense that the time

taken to transform one codeword to the next is bound by a constant. The following

algorithms extend the idea of efficiently generating the transition sequence of the

respective code and then adding the logic to correctly derive the value of the digit

that changes. As it turns out the transition sequences of all the three codes are of the

same structure, though the logic required to derive the value of the digit that changes

is different.

5.0.4 Transition Sequence

Let a Gray Code listing of all the kn.kn−1.k1 vectors over Zkn
.Zkn−1

.Zk1
be

represented as C = (c1, c2, . . . , ckn.kn−1.....k1
). The transition sequence of C is defined

as Γkn−1,kn−2,...,k1
= (γ1, γ2, . . . , γkn.kn−1.....k1−1), where γi is the digit that changes in C

between gi and gi+1, for 1 ≤ i < kn.kn−1.k1.

Example 7. Table 5.1 shows the Gray codes constructed using f1, f2 and f3 in

Z5×3, Z6×4 and Z6×3 respectively and their corresponding transition sequences. The

transition sequences are of the same structure.

For two digits, the transition sequences of the Gray codes defined using f1, f2 and

f3 are of the form.

Γk2,k1
= ((1)k1−12)k2−1(1)k1−1

54

i C5×3(f1) Γ5×3

1 00 1

2 01 1

3 02 2

4 12 1

5 10 1

6 11 2

7 21 1

8 22 1

9 20 2

10 30 1

11 31 1

12 32 2

13 42 1

14 41 1

15 40

i C6×4(f2) Γ6×4

1 00 1

2 01 1

3 02 1

4 03 2

5 13 1

6 10 1

7 11 1

8 12 2

9 22 1

10 23 1

11 20 1

12 21 2

13 31 1

14 32 1

15 33 1

16 30 2

17 40 1

18 41 1

19 42 1

20 43 2

21 53 1

22 52 1

23 51 1

24 50

i C6×3(f3) Γ6×3

1 00 1

2 01 1

3 02 2

4 12 1

5 11 1

6 10 2

7 20 1

8 21 1

9 22 2

10 32 1

11 31 1

12 30 2

13 40 1

14 41 1

15 42 2

16 52 1

17 51 1

18 50

TABLE 5.1: Transition sequences of Gray codes defined using f1, f2 and f3

55

In the above equation, the exponential term is the number of times the pattern

occurs repetitively. Let Γkn,kn−1,...,k1
be the generalized transition sequence of a mixed

radix Gray code constructed using any of the functions defined in this paper. This

sequence can be recursively defined as follows.

Γkn,kn−1,...,k1
= ((Γkn−1,kn−2,...,k1

) n)kn−1 Γkn−1,kn−2,...,k1
(5.1)

Γk1
= (1)k1−1 (5.2)

We are interested in efficiently generating the codewords of the Gray codes succes-

sively from one vector to the next. It is sufficient to be able to generate Γkn,kn−1,...,k1

efficiently and this can be done using a stack as follows: the stack initially contains

(k1 − 1) 1’s, (k2 − 1) 2’s, . . ., (kn − 1) n’s with the 1’s on top. The algorithm pops off

the top element i, and then, when i > 1, (ki−1−1) copies of (i−1)’s, (ki−2−1) copies

of (i − 2)’s, . . ., (k1 − 1) copies of 1’s are pushed onto the stack. The sequence of

the values popped in each iteration forms the transition sequence of the code. Notice

that the stack operates in a highly restricted manner since when j > 1 is placed in

the stack we know a priori that j − 1, . . . , 1 elements will be placed above it.

To efficiently implement this functionality we use an array (τn, τn−1, . . . , τ0) as the

stack as follows [7]: τ0 points to the top of the stack and for j ≥ 1, the value of τj is

the element below j on the stack if j is on the stack. If j is not on the stack, then the

value of τj cannot affect the computation and its value can be reset to j +1, since we

know that when j + 1 is put on the stack, the element above it must be j. Moreover,

since the elements i − 1, i − 2, . . . , 1 will be put on the stack when i is removed, we

need only to set τi−1 ← τi, assuming that τj was reset when j was removed for all j,

i − 2 ≤ j ≤ 1. Finally, if i 6= 1, the elements i − 1, . . . , 1 are put on the stack using

the assignment τ0 ← 1.

Note that the array, τ = (τn, τn−1, . . . , τ1), has only one copy of each digit.

56

We avoid storing multiple copies of digit indices by using a counter array, c =

(cn, cn−1, . . . , c1). Each element ci in the counter array keeps track of the number

of times i has been generated. Once a bit index j has been generated kj − 1 times,

cj is reset to 0.

Consider the following code fragment. This is precisely the part of code that

generates the transition sequence and is same for all codes shown in this paper. To

prove that it generates the correct transition sequence, we need to show that the

sequence of values of the variable i is Γkn,kn−1,...,k1
.

while τ0 < q + 1 do





i ← τ0

output i

τ0 ← 1

if (ci ≥ (ki − 2))





then





τi−1 ← τi

τi ← i + 1

ci ← 0

else
{

ci ← ci + 1

(5.3)

Consider the above while loop when started with τj = αj, 0 ≤ j ≤ q, where

αj = j + 1 for 0 ≤ j < q, αq ≥ q + 1, and cj = 0, 0 ≤ j ≤ q. The counter array, ci,

for 1 ≤ i ≤ n, maintains a count of the number of times the corresponding digit has

occurred in the sequence of transition indices generated so far. The radix array, ki,

0 ≤ i ≤ n, represents the radices of the corresponding digits.

Thus, we are done if we demonstrate that the above loop produces the sequence

Γkq ,kq−1,...,k1
stopping with τj = j + 1 for 1 ≤ j ≤ q, τ0 = αq ≥ q + 1 and cj = 0,

0 ≤ j ≤ q . When q = 1, the value of c1 < k1 − 2, τ0 is reset to 1 (else part of the if),

and the stack state is not changed. When c1 = k1 − 2, (k1 − 1) 1’s have been inserted

57

and the then part of if part is executed with i = 1 as follows.

τ0 ← (τ1 = 2)

τ1 ← 1 + 1

c1 ← 0

(5.4)

When the above statements are executed the algorithm terminates leaving τ1 = 2,

τ0 = αq ≥ 2 and c1 = 0, obviously satisfying the above conditions and Γk1
has been

generated.

Suppose the hypothesis is true for some q = n − 1. Consider what happens when

q = n. Since the hypothesis for q = n− 1 is also satisfied, we know by induction that

Γkn−1,kn−2,...,k1
is produced leaving τj = j + 1 for 1 ≤ j ≤ n − 1, τ0 = αn−1 = n and

cj = 0 for 0 ≤ j ≤ (n − 1). The next iteration produces n and since cn = 0 ≤ kn − 2

the else part is executed leaving the stack at τj = j + 1 for 0 ≤ j ≤ n − 1 and

cn is incremented to 1. Then, again by induction, we know that Γkn−1,kn−2,...,k1
is

produced. The next iteration again produces n and this process repeats until n has

been produced kn − 1 times. Now cn = kn − 2, the then part of the if is executed

leaving τj = j + 1 for 0 ≤ j < n − 1 and sets τn−1 = αn = n + 1 with cj = 0 for

0 ≤ j ≤ n − 1. Then by induction Γkn−1,kn−2,...,k1
is produced for the last time. After

this, τ0 = αn ≥ n + 1 leaving τj = j + 1 for 1 ≤ j ≤ n − 1 and cj = 0 for 0 ≤ j ≤ n

and hence

Γkn,kn−1,...,k1
= ((Γkn−1,kn−2,...,k1

)n)kn−1 Γkn−1,kn−2,...,k1

has been produced.

We use an array G = (gn, gn−1, . . . , g1) to store the current vector. In each it-

eration the value of gi, where i is the digit to be updated in that iteration, has to

be either incremented or decremented as defined in Equation 4.1. To implement this

functionality, we use a parity array (pn, pn−1, . . . , p1) to decide whether a digit has to

be incremented or decremented and another array (πn, πn−1, . . . , π1) to decide when

58

the corresponding update function ((ri − ri+1) mod ki or ri) has to be applied. Next

we show the algorithms for generating the Gray codes.

Algorithm 1. Algorithm for generating the Gray code defined by f1 :

for j = 0 to n + 1 do





gj ← 0

τj ← j + 1

ci ← 0

pi ← 0

πi ← 0

i ← 0

while i < n + 1

do





output gn, . . . , g1

i ← τ0

if (πi < ki)





then {gi ← (gi + 1) mod ki

else if (pi = 1)





then {gi ← (gi + 1)

else {gi ← (gi − 1)

τ0 ← 1

if (ci ≥

(ki − 2))





then





τi−1 ← τi

τi ← i + 1

ci ← 0

pi ← pi

πi ← πi + 1

if ((πi = ki+1)

and (i < n))
then





πi ← 0

pi ← pi

else
{

ci ← ci + 1

59

Proof of Correctness

To prove that the algorithm is correct we need to show that it generates the correct

transition sequence of the Gray code in variable i and the logic for setting the value

of gi, for n ≥ i ≥ 1, sets the correct values so as to generate the code. As already

proved, i contains the correct value of the digit that has to change in each iteration.

It has to be shown that Algorithm 1 also sets the values of gi correctly in each

iteration. Note that ki is odd, for n ≤ i ≤ 1, and the code chooses between reflection

and rotation of digits to obtain gi depending on the value of ri+1 and ki. The array,

G = (gn, gn−1, . . . , g1), holds the current codeword. The array, Π = (πn, πn−1, . . . , π0)

holds the lexicographical value of the digit i + 1, for n < i ≤ 1, for calculating the

value of gi. This value is used as defined in Equation 4.1 to decide when the respective

operation has to be applied to the ith digit. Also, a parity array P = (pn, pn−1, . . . , p1),

is defined to handle the reflective case. When pi = 1, gi is in a sequence of values in

ascending order; otherwise it is in a sequence of values in descending order.

For n − 1 ≥ i ≥ 1, consider the if statements in Equations 5.5 and 5.6. These

occur in the code in the order they are listed and only the relevant portions of the

code are shown.

if (πi < ki)





then {gi ← (gi + 1) mod ki

else if (pi = 1)





then {gi ← (gi + 1)

else {gi ← (gi − 1)

(5.5)

The above if statement, in Equation 5.5, uses the lexicographical value, ri+1 stored

as πi to choose the type of operation to be applied to gi. If πi < ki then, by equation

4.1, gi = (ri − ri+1) mod ki. This effectively translates to an addition 1 to gi mod ki.

On the other hand when πi ≥ ki, we use the parity bit to decide whether gi occurs

in lexicographic order or is reflected. This proves that the correct function is applied

60

to gi provided that πi has the correct value for i in each iteration.

if (ci ≥ (ki−2))





then





pi ← pi

πi ← πi + 1

if ((πi = ki+1) and (i < n)) then





πi ← 0

pi ← pi

else
{

ci ← ci + 1

(5.6)

The next part of the proof shows that πi and pi are correctly set by the second if

statement. Let bi, for n > i > 1, be a block of vectors such that gn, gn−1, . . . , gi+1 are

the same. The number of blocks of bi in a single block of bi+1 is equal to ki+1. When

ordered lexicographically, these blocks are labeled starting with 0 to ki+1 − 1. As can

be seen from Equation 5.6, πi is incremented each time ki−1 × ki−2, . . . , k1 vectors

have been generated and is reset to 0 when π = ki+1. Thus, πi holds the correct index

of the current block, bi, in a single block of bi+1.

Since all ki’s are odd, we know that (ki+1 − ki) is even. The first ki blocks use

rotation operation for gi , this corresponds to πi < ki. The next (ki+1 −ki) blocks are

reflected. This implies that for the first value of gi+2, when the first block of reflected

vectors is generated, pi = 1. But for the next value of gi+2 it starts with pi = 0

(as shown in Example 8). But we need a consistent value of pi to know if gi is to

be incremented or decremented. Thus, we need to complement pi one more time to

ensure that this is so. This is implemented in the inner if in Equation 5.6. Thus the

values of πi and pi are correctly updated. Thus, this combination of if statements

set the values of gi’s correctly.

When i = n, the else part of the first if is always executed because πn = 0. Since

n appears kn−1 times in the transition sequence, the values of gn are (0, 1, . . . , kn−1).

It can thus be seen that gn is also set correctly. This completes the proof.

61

Example 8. When ki = 3 and ki+1 = 7, consider the Gray code listing and the corre-

sponding value of pi between two consecutive bi+1 blocks. Columns 1 and 2 represent

the blocks of vectors for consecutive values of gi+2

πi gi pi

0 fR(πi) 0

1 fR(πi) 1

2 fR(πi) 0

3 fRe(πi) ↓ 1

4 fRe(πi) ↑ 0

5 fRe(πi) ↓ 1

6 fRe(πi) ↑ 0

πi gi pi

0 fR(πi) 1

1 fR(πi) 0

2 fR(πi) 1

3 fRe(πi) ↓ 0

4 fRe(πi) ↑ 1

5 fRe(πi) ↓ 0

6 fRe(πi) ↑ 1

gi+2 = ν gi+2 = ν ± 1

(5.7)

where fR refers to the rotation part of f1 and fRe refers to reflection. As can

be seen from the above table, the relation between value pi and whether gi is in

ascending order (denoted by ↓), is not consistent (pi = 1 implies ascending order in

the first column (gi+2 = ν) whereas pi = 1 implies descending order in the second

(gi+2 = ν ± 1)). Also, rotation is applied when πi < ki and reflection is applied

otherwise.

Algorithm 2. Algorithm for generating the Gray code defined by f2 :

62

for j = 0 to n + 1 do





gj ← 0

τj ← j + 1

ci ← 0

pi ← 0

πi ← 0

i ← 0

while i < n + 1 do





output gn, . . . , g1

i ← τ0

if (πi < ki)





then {gi ← (gi + 1) mod ki

else if (pi = 0)





then {gi ← (gi + 1)

else {gi ← (gi − 1)

τ0 ← 1

if (ci

≥ (ki − 2))





then





τi−1 ← τi

τi ← i + 1

ci ← 0

pi ← pi

πi ← πi + 1

if ((πi = ki+1)

and (i < n))
then

{
πi ← 0

else
{

ci ← ci + 1

Proof of Correctness

Since all ki’s are even the extra complementation operation for pi is not required.

Otherwise the proof of this algorithm is similar to the one shown above. Also, when

63

pi = 0, gi is in a sequence of digits in ascending order. Otherwise it is in a sequence

of digits in descending order.

64

CHAPTER 6

BINARY GRAY CODE

6.1 Lee Distance Gray Codes

Let R = (rnrn−1 · · · r1) be an n digit vector, where 0 ≤ ri ≤ k−1 for all i = 1, 2, · · · , n.

For example, if k = 4, then I(301) = 3 × 4 × 4 + 0 × 4 + 1 = 49. Arrange all the

n digit vectors of radix k in lexicographic order, i.e., X = (xn, xn−1, · · · , x1) < Y =

(yn, yn−1, · · · , y1) iff I(X) < I(Y). Then, fl, which maps the vectors arranged in a

lexicographic order to a cyclic Gray code, is defined as follows [12].

fl(rn, rn−1, · · · , r1) = (gn, gn−1, · · · , g1)

where

gn = rn, and

for 1 ≤ i ≤ n − 1, gi = (ri − ri+1) mod k

(6.1)

The inverse function for fl is

f−1
l (gn, gn−1, . . . , g1) = (rn, rn−1, . . . , r1)

where

rn = gn, and

for n > i ≥ 1, ri =

(
n∑

j=i

gj

)
mod k

(6.2)

The n-digit k-ary Lee distance Gray code, Lk(n), can also be recursively defined

as given in [39]. The k-ary Gray code of 1 digit is given by

Lk(1) = L0
k(1) = [0, 1, . . . , k − 1]T (6.3)

65

where T denotes transpose. Let

Li
k(1) = [k − i, k − i + 1, . . . , k − i − 1]T (6.4)

be obtained by cyclically shifting the elements of Lk(1) by i places. Note that Li
k(1)

is a k-ary Gray code whose first entry is k − i. Now we can define a k × 1 column

vector with each entry equal to j as

jk = [j, j, . . . , j]T (6.5)

Then Lk(2) is defined by

Lk(2) =




0k L0
k(1)

1k L1
k(1)

...
...

(k − 1)k Lk−1
k (1)




(6.6)

To extend this definition for an n-digit, k-ary Gray code starting with the all zero

vector, we need the following notation:

Lk(n) = L0
k(n) = [l0(n), . . . , lkn−1(n)]T (6.7)

where li(n) is the (i+ 1)th n digit vector in Lk(n) and l0(n) is the all 0 n digit vector

in the same listing, and

Lm
k (n) = [lm0 (n), . . . , lmi (n), . . . , lmkn−1(n)]T (6.8)

where

lmi (n) = li(n) + m.lkn−1(n) mod k (6.9)

the product of a n digit vector with an integer m ≤ k − 1, is to be considered

component wise multiplication of two elements of Zk modulo k.

66

In terms of the notation, Lk(n) can be obtained from Lk(n − 1) as follows.

Lk(n) =




0kn−1 L0
k(n − 1)

1kn−1 L1
k(n − 1)

...
...

k − 1kn−1 Lk−1
k (n − 1)




(6.10)

when n > 1 then Lk(n) has k blocks of length kn−1 each. Lm
k (n) is an arrangement

obtained by cyclically shifting blocks by m and by simultaneously giving m cyclic

shifts within each block.

The Lee distance gray code of radix 4 for n ≥ 3, can then be defined as follows using

Equation (6.10).

L4(n) =




04n−1 L0
4(n − 1)

14n−1 L1
4(n − 1)

...
...

34n−1 Lk−1
4 (n − 1)




(6.11)

The n digit Lee distance Gray code over Z4 under the mapping F : Z4 → Z2
2 where

F(0) → 00, F(1) → 01, F(2) → 11 and F(3) → 10 gives a binary Gray code of

length 2n. Under this mapping Lee distance between any two codewords is equal to

the Hamming distance between them.

Example 9. Table 6.1 shows the 2 digit Lee distance Gray code constructed using

Equation (6.1) in column 1 and the corresponding binary Gray code obtained by ap-

plying F in column 2. Column 3 lists the 4 bit BRG code which is obviously different

from the binary code obtained from F .

67

Let the set of binary vectors obtained by applying F from L4(n) be denoted by

GB(N), where N = 2n, can be defined recursively, using Equation (6.12), as follows.

GB(N + 2) =




002n−2 G(0)
B (N)

012n−2 G(1)
B (N)

112n−2 G(2)
B (N)

102n−2 G(3)
B (N)




(6.12)

where G(i)
B (N) is obtained by first constructing L(i)

4 (N/2) code as defined in Equation

(6.11) and then mapping the digits of the code under F to the corresponding binary

vectors. The base case of this recursion occurs when N = 2 and is defined as

GB(2) =




00

01

11

10




(6.13)

6.2 Main Results

6.2.1 Constant Weight Vectors

Let the listing of vectors in GB(N) which contains the same number of 1’s, w, be

GB(N,w). In this listing, vectors of the same weight w are listed in the order they

appear in GB(N). It can be shown that consecutive vectors in GB(N,w) differ exactly

in two bits. This is a property that the GB(N) code shares with the binary reflected

Gray code [7]. To simplify the proof, it is helpful to define GB(N,w) in a recursive

manner analogous to the recursive definition of GB(N): for N > w > 0 and N is

even.

When w ≥ 2,

68

GB(N,w) =




00 G(0)
B (N − 2, w)

01 G(1)
B (N − 2, w − 1)

11 G(2)
B (N − 2, w − 2)

10 G(3)
B (N − 2, w − 1)




(6.14)

when w = 1,

GB(N, 1) =




00 G(0)
B (N − 2, 1)

01 G(1)
B (N − 2, 0)

10 G(3)
B (N − 2, 0)


 (6.15)

and GB(N, 0) = 0N , GB(N,N) = 1N . Here, G(i)
B (N,w) represents the set of all weight

w vectors of length N , listed in the order they appear in G(i)
B (N).

Theorem 6.2.1. Successive codewords in GB(N,w) differ in exactly 2 bits

Proof. The proof is by induction on N . The values of N are even and start with 2

as already defined in Equation (6.11). When N = 2 and w can be either 0, 1, or 2.

When w = 2 or w = 0 the theorem holds trivially. When w = 1, the two possible

vectors are 01 and 10 in that order. Thus the theorem holds for N = 2.

Suppose it is true for some N > 2 and w, 0 ≤ w ≤ N . It must be shown that the

theorem holds for N + 2 and w, 0 ≤ w ≤ N + 2. If w = 0 or w = N + 2 it is trivially

true since GB(N+2) contains only one codeword with no 1-bits and only one codeword

with N + 2 1-bits. For 1 ≤ w ≤ N , the theorem holds by the inductive hypothesis if

successive codewords are both in 00GB(N), 01G(1)
B (N), 11G(2)

B (N) or 10G(3)
B (N). Thus

the only case left is to show that the last codewords with w 1-bits in one group of

GB(N) differs in exactly two bits from the first codeword with the subsequent group

when 1 ≤ w ≤ N + 1. From Equation (6.10) it can be seen that four such cases arise

where this has to be proved.

69

We can define these sets of the last and first vectors of the respective groups as follows:

B1 → { last vector of 00GB(N −2, w) and first vector of 01G(1)
B (N −2, w−1) }, B2 →

{last vector of 01G(1)
B (N − 2, w − 1) and first vector of 11G(2)

B (N − 2, w − 2)}, B3 →

{last vector of 11G(2)
B (N − 2, w − 2) and first vector of 10G(3)

B (N − 2, w − 1)} and

B4 → {last vector of 10G(3)
B (N − 2, w − 1) and first vector of 00G(0)

B (N − 2, w)} are

considered as separate cases in that order to complete the proof.

1. When w = 1.

In this case, only vectors with most significant bit (msb) two bits set to 00, 01

or 10 are possible.

(a) Consider the last vector in 00GB(N) and the first in 01G(1)
B (N). They are

00 10 0N−2 (6.16)

01 00 0N−2 (6.17)

From the above equations it is seen that these vectors differ by exactly 2

bits.

(b) Consider the last vector of 01G(1)
B (N) and the first vector of 10G(3)

B (N).

01 00 0N−2 (6.18)

10 00 0N−2 (6.19)

(c) Consider the last vector of 10G(3)
B (N) and the first vector of 00G(0)

B (N).

10 0N−2 00 (6.20)

00 0N−2 01 (6.21)

From the above equations it is seen that these vectors differ by exactly 2

bits.This completes the proof when w = 1.

70

2. When 2 ≤ w ≤ N + 1.

(a) Vectors from B1

i. When 2 ≤ w < N

• w is odd : The last vector of the group 00GB(N) is of the form

00 10 0N−w−1 1w−1

= 00 10 0N−w−1 11 1w−3 (6.22)

The first vector of the group 01G(1)
B (N) is of the form

01 10 0N−w−1 01 1w−3 (6.23)

From equations (6.22) and (6.23) it can be seen that vectors differ

in exactly 2 bits.

• w is even: The last vector of the group 00GB(N) is of the form

00 10 0N−w−2 10 1w−2 (6.24)

The first vector of the group 01G(1)
B (N) is of the form

01 10 0N−w 1w−2

= 01 10 0N−w−2 00 1w−2 (6.25)

From equations (6.24) and (6.25) it can be seen that vectors differ

in exactly 2 bits.

ii. when w = N

The last vector of the group 00GB(N) is of the form

00 11 1N−2 (6.26)

71

The first vector of the group 01G(1)
B (N) is of the form

01 10 1N−2 (6.27)

From equations (6.26) and (6.27) it can be seen that vectors differ in

exactly 2 bits.

(b) Vectors from B2

i. When 3 < w ≤ N + 1

• w is odd : The last vector of the group 01G(1)
B (N) is of the form

01 11 0N−w+1 1w−3

= 01 11 0N−w+1 11 1w−5 (6.28)

The first vector of the group 11G(2)
B (N) is of the form

11 11 0N−w+1 01 1w−5 (6.29)

From equations (6.28) and (6.29) it can be seen that vectors differ

in exactly 2 bits.

• w is even: The last vector of the group 01G(1)
B (N) is of the form

01 11 0N−w 10 1w−4 (6.30)

The first vector of the group 11G(2)
B (N) is of the form

11 11 0N−w+2 1w−4

= 11 11 0N−w 00 1w−4 (6.31)

From equations (6.30) and (6.31) it can be seen that vectors differ

in exactly 2 bits.

72

ii. when w = 2

The last vector of the group 01G(1)
B (N) is of the form

01 10 0N−2 (6.32)

The first vector of the group 11G(2)
B (N) is of the form

11 00 0N−2 (6.33)

From equations (6.32) and (6.33) it can be seen that vectors differ in

exactly 2 bits.

iii. when w = 3

The last vector of the group 01G(1)
B (N) is of the form

01 11 0N−2 (6.34)

The first vector of the group 11G(2)
B (N) is of the form

11 10 0N−2 (6.35)

From equations (6.34) and (6.35) it can be seen that vectors differ in

exactly 2 bits.

(c) Vectors from B3

i. When 3 ≤ w ≤ N

• w is odd : The last vector of the group 11G(2)
B (N) is of the form

11 01 0N−w+1 1w−3

= 11 01 0N−w−1 00 1w−3 (6.36)

The first vector of the group 10G(3)
B (N) is of the form

10 01 0N−w−1 01 1w−3 (6.37)

73

From equations (6.36) and (6.37) it can be seen that vectors differ

in exactly 2 bits.

• w is even: The last vector of the group 11G(2)
B (N) is of the form

11 01 0N−w 10 1w−4 (6.38)

The first vector of the group 10G(3)
B (N) is of the form

10 01 0N−w 1w−2

= 10 01 0N−w 11 1w−4 (6.39)

From equations (6.38) and (6.39) it can be seen that vectors differ

in exactly 2 bits.

ii. when w = 2

The last vector of the group 11G(2)
B (N) is of the form

11 00 0N−2 (6.40)

The first vector of the group 10G(3)
B (N) is of the form

10 01 0N−2 (6.41)

From equations (6.40) and (6.41) it can be seen that vectors differ in

exactly 2 bits.

iii. when w = N + 1

The last vector of the group 11G(2)
B (N) is of the form

11 01 1N−2 (6.42)

The first vector of the group 10G(3)
B (N) is of the form

10 11 1N−2 (6.43)

74

From equations (6.42) and (6.43) it can be seen that vectors differ in

exactly 2 bits.

(d) Vectors from B4

i. When 2 ≤ w ≤ N

• w is odd: The last vector of the group 10G(3)
B (N) is of the form

10 0N−w−1 00 1w−1

= 10 0N−w−1 00 1w−1 (6.44)

The first vector of the group 00G(0)
B (N) is of the form

00 0N−w−1 01 1w−1 (6.45)

From equations (6.44) and (6.45) it can be seen that vectors differ

in exactly 2 bits.

• w is even: The last vector of the group 10G(3)
B (N) is of the form

10 0N−w 10 1w−2 (6.46)

The first vector of the group 00G(0)
B (N) is of the form

0N−w+2 1w

= 00 0N−w 11 1w−2 (6.47)

From equations (6.46) and (6.47) it can be seen that vectors differ

in exactly 2 bits.

75

6.2.2 New Classes of Binary Gray Codes

In this section, we define the new class of Gray codes, Gk, where k ≥ 4 and k is a

power of 2. The construction of Gk for any radix k satisfying the afore mentioned

properties is as follows.

Firstly, we define a mapping function, Fk, which maps the digits in a radix k number

system to its corresponding log2(k)-bit binary BRGC vector. Fk can be defined as

follows.

Fk : {0, 1, 2, . . . , k − 1} → Z
log2(k)
2

i 7→ i ⊕

⌊
i

2

⌋
(6.48)

where i is the binary vector representation of a radix k number and ⊕ is the bit-by-bit

exclusive-OR operation.

Next, we construct the n digit Lee distance Gray code using Equation 6.1. Now we

replace the corresponding digits in the Gray code with their respective binary vectors

using Fk. Now we have to show that resulting log2(k).n bit listing of vectors forms a

binary Gray code.

Theorem 6.2.2. Given a value k, k ≥ 4 and k = 2r for some r ≥ 2 and any n-digit

Lee distance Gray code over k. If we replace the digits of Zk under Fk the resultant

set of vectors form a binary Gray code of length log2(k).n bits.

Proof. It is based on the following fact:

for all X,Y ∈ Zn
k , DL(X,Y) = 1 =⇒ DH(X,Y) = 1 (6.49)

Let i be the position where X differs from Y , and xi and yi the corresponding com-

ponents of X and Y respectively. Then

76

DL(X,Y) = 1 =⇒ WL(X − Y) = |xi − yi| (6.50)

=⇒ xi = yi ± 1 mod k. (6.51)

The rightmost =⇒ follows by analyzing the two possible cases which can happen in

the equation

|x − y| = min{(x − y) mod k, k − [(x − y) mod k]} = 1, (6.52)

with x, y ∈ Zk = {0, 1, 2, ..., k − 1}. In fact, if |x − y| = (x − y) mod k then

|x − y| = (x − y) mod k = 1 =⇒ x = y + 1 mod k. (6.53)

If instead, |x − y| = k − [(x − y) mod k] then

|x − y| = k − [(x − y) mod k] = 1 (6.54)

=⇒ (x − y) mod k = k − 1 (6.55)

=⇒ x = y − 1 mod k. (6.56)

Now, let Fk(X) and Fk(Y) be the images of X and Y through the function Fk defined

in Equation (6.48). Since

• Fk defines a cyclic binary Gray code and

• xj = yj if j 6= i and xj = yj ± 1 mod k if j = i,

it follows,

DH(Fk(X),Fk(Y)) = DH(Fk(xi),Fk(yi)) (6.57)

= DH(Fk(yi ± 1 mod k),Fk(yi)) (6.58)

= 1 (6.59)

77

L4(3) GB(6) BRG(6)

000 00 00 00 00 00 00

001 00 00 01 00 00 01

002 00 00 11 00 00 11

003 00 10 10 00 00 10

013 00 01 10 00 01 10

010 00 01 00 00 01 11

011 00 01 01 00 01 01

012 00 01 11 00 01 00

022 00 11 11 00 11 00

023 00 11 10 00 11 01

020 00 11 00 00 11 11

021 00 11 01 00 11 10

031 00 10 01 00 10 10

032 00 10 11 00 10 11

033 00 10 10 00 10 01

030 00 10 00 00 10 00

130 01 10 00 01 10 00

...
...

...

301 10 00 01 10 00 10

302 10 00 11 10 00 11

303 10 00 10 10 00 01

300 10 00 00 10 00 00

TABLE 6.1: Binary Gray code obtained from F

78

CHAPTER 7

EDGE DISJOINT HAMILTONIAN CYCLES

So far, we have described how to generate 2 edge disjoint Hamiltonian cycles in a

Tk2×k1
. We also showed how this approach can be used to decompose torus networks

with n = 2r (Chapter 4). In this chapter we describe the approach we propose

to generate edge disjoint Hamiltonian cycles when the number of dimensions, n, is

greater than 2 and n 6= 2r for any r. In the remaining analysis it is assumed that the

radices are either all odd or all even and they are arranged so that kn ≥ kn−1 ≥ . . . ≥

k1.

7.1 Edge Disjoint Hamiltonian cycles when n > 3

Assume that there is a way to generate 3 edge disjoint Hamiltonian cycles in a

Tk3×k2×k1
graph . For higher dimensions, we first recursively decompose the given

torus into tori of smaller dimensions. The base case of this recursion occurs when

n = 2 or 3. We have already shown how we can obtain two edge disjoint Hamil-

tonian cycles in a 2 dimensional torus. Later in this section we show how 3 edge

disjoint Hamiltonian cycles can be obtained in a 3 dimensional torus. In the rest of

this section, we show how we decompose higher dimensional tori when the number of

dimensions is even or odd. For the inductive hypothesis we assume that for a given n

we can obtain
⌈

n
2

⌉
edge disjoint Hamiltonian cycles from the

⌈
n
2

⌉
dimensional torus.

79

7.1.1 When n = 2m and n > 3

In this case 2m edge disjoint Hamiltonian cycles can be generated as follows.

Ck2m×k2m−1×...×k1
= (Ck2m

× Ck2m−1
× . . . × Ckm+1

)

×(Ckm
× Ckm−1

× . . . × Ck1
)

[Partition into two m dimensional tori]

= (H
′(1)
k2m×k2m−1×...×km+1

+ H
′(2)
k2m×k2m−1×...×km+1

+ . . . + H
′(m)
k2m×k2m−1×...×km+1

) × (H
′(1)
km×km−1×...×k1

+

H
′(2)
km×km−1×...×k1

+ . . . + H
′(m)
km×km−1×...×k1

)

[By Inductive Hypothesis obtain m

edge disjoint cycles in each torus]

= (H
′(1)
k2m×k2m−1×...×km+1

× H
′(1)
km×km−1×...×k1

)

+(H
′(2)
k2m×k2m−1×...×km+1

× H
′(2)
km×km−1×...×k1

)

+ . . . + (H
′(m)
k2m×k2m−1×...×km+1

× H
′(m)
km×km−1×...×k1

)

[Combining pairs of cycles, one from each group to

get m 2 dimensional edge disjoint tori]

= (H1
k2m×k2m−1×...×k1

+ H
(m+1)
k2m×k2m−1×...×k1

)

+(H2
k2m×k2m−1×...×k1

+ H
(m+2)
k2m×k2m−1×...×k1

)

+ . . . + (Hm
k2m×k2m−1×...×k1

+ H
(2m)
k2m×k2m−1×...×k1

)

[obtain 2m edge disjoint cycles 2 from each

2 dimensional tori(Theorem 4.1.1)]

Each (H
′(i)
k2m×k2m−1×...×km+1

× H
′(i)
km×km−1×...×k1

) is a 2 dimensional torus with (k2m ×

k2m−1 × . . .× km+1) nodes in one dimension and (km × k2m−1 × . . .× k1) nodes in the

80

other. We can obtain 2 Hamiltonian cycles of length k2m × k2m−1 × . . . × k1 by the

construction described in Chapter 4. Thus 2m edge disjoint Hamiltonian cycles can

be obtained from the m components.

For example, when k = 6 we can obtain 6 edge disjoint Hamiltonian cycles as follows.

Tk6×k5×...×k1
= (Ck6

× Ck5
× Ck4

) × (Ck3
× Ck2

× Ck1
)

= (H
′(1)
k6×k5×k4

+ H
′(2)
k6×k5×k4

+ H
′(3)
k6×k5×k4

)

×(H
′(1)
k3×k2×k1

+ H
′(2)
k3×k2×k1

+ H
′(3)
k3×k2×k1

)

= (H
′(1)
k6×k5×k4

× H
′(1)
k3×k2×k1

) + (H
′(2)
k6×k5×k4

× H
′(2)
k3×k2×k1

)

+(H
′(3)
k6×k5×k4

× H
′(3)
k3×k2×k1

)

= (H0
k6×k5×...×k1

+ H3
k6×k5×...×k1

) + (H1
k6×k5×...×k1

+ H4
k6×k5×...×k1

)

+ (H2
k6×k5×...×k1

+ H5
k6×k5×...×k1

)

7.1.2 When n = 2m + 1 and n > 3

In this case 2m + 1 edge disjoint Hamiltonian cycles can be generated as follows.

81

Ck2m+1×k2m×...×k1
= (Ck2m+1

× Ck2m
× Ck2m−1

× . . . × Ckm+1
)

×(Ckm
× Ckm−1

× . . . × Ck1
)

[Partition into one m + 1

and one m dimensional tori]

= (H
′(1)
k2m+1×k2m×...×km+1

+ H
′(2)
k2m+1×k2m×...×km+1

+ . . . + H
′(m+1)
k2m+1×k2m×...×km+1

) × (H
′(1)
km×km−1×...×k1

+

H
′(2)
km×km−1×...×k1

+ . . . + H
′(m)
km×km−1×...×k1

)

[By Inductive Hypothesis obtain m + 1

edge disjoint cycles in one torus and m in the other]

= ((H
′(1)
k2m+1×k2m×...×km+1

+ H
′(m+1)
k2m+1×k2m×...×km+1

) × H
′(1)
km×...×k1

)

+(H
′(2)
k2m×k2m−1×...×km+1

× H
′(2)
km×km−1×...×k1

)

+ . . . + (H
′(m)
k2m×k2m−1×...×km+1

× H
′(m)
km×km−1×...×k1

)

[Combining pairs of cycles, one from each group to

get one 3 dimensional torus and m − 1

2 dimensional edge disjoint tori]

= (H1
k2m+1×k2m×...×k1

+ H
(m+1)
k2m+1×k2m×...×k1

+H
(2m+1)
k2m+1×k2m×...×k1

)

+(H2
k2m+1×k2m×...×k1

+ H
(m+2)
k2m+1×k2m×...×k1

)

+ . . . + (Hm
k2m+1×k2m×...×k1

+ H
(2m)
k2m+1×k2m×...×k1

)

[obtain 3 edge disjoint cycles from first group and

2m − 2 edge disjoint cycles 2 from each

2 dimensional tori (Theorem 4.1.1)]

82

The first component, ((H
′(1)
k2m+1×k2m×...×km+1

+ H
′(m+1)
k2m+1×k2m×...×km+1

)×H
′(1)
km×km−1×...×k1

),

is a 3 dimensional torus. We would like to provide a construction to obtain 3 edge dis-

joint Hamiltonian cycles from this component. The remaining (H
′(i)
k2m×k2m−1×...×km+1

×

H
′(i)
km×km−1×...×k1

) are 2 dimensional torus networks with (k2m × k2m−1 × . . . × km+1)

nodes in one dimension and km × km−1 × . . . × k1 nodes in the other. We obtain 2

Hamiltonian cycles of length k2m ×k2m−1 × . . .×k1 from each component by the con-

struction described in Chapter 4. Thus 2m + 1 edge disjoint Hamiltonian cycles can

be obtained as 2(m− 1) from the 2 dimensional tori and 3 from the first component.

For example, the five cycles in Tk5×k4×...×k1
can be obtained as follows

Tk5×k4×...×k1
= (Ck5

× Ck4
× Ck3

) × (Ck2
× Ck1

)

= (H
′(1)
k5×k4×k3

+ H
′(2)
k5×k4×k3

+ H
′(3)
k5×k4×k3

) × (H
′(1)
k2×k1

+ H
′(2)
k2×k1

)

= ((H
′(1)
k5×k4×k3

+ H
′(2)
k5×k4×k3

) × H
′(1)
k2×k1

) + (H
′(3)
k5×k4×k3

× H
′(2)
k2×k1

)

= (H0
k5×k4×...×k1

+ H3
k5×k4×...×k1

+ H4
k5×k4×...×k1

+

+ (H1
k5×k4×...×k1

+ H2
k5×k4×...×k1

)

Thus, from the above constructions we can see how we can decompose higher dimen-

sional torus networks recursively in to those with 2 or 3 dimensions. We have already

shown how we can construct 2 edge disjoint Hamiltonian cycles in a 2 dimensional

torus. Now, if we have a method to construct 3 edge disjoint Hamiltonian cycles in

a 3 dimensional torus then we can use this construction, along with that of the 2

dimensional case, to obtain edge disjoint Hamiltonian cycles in networks with arbi-

trary number of dimensions. This construction is not straightforward and in the next

section we briefly show the approach we plan to use to solve this problem.

83

7.2 Edge Disjoint Hamiltonian cycles when n = 3

The problem of finding three edge disjoint Hamiltonian cycles in a Ck3
× Ck2

× Ck1

can be solved as follows. Firstly, we can decompose a Tk3×k2×k1
graph as follows.

Tk3×k2×k1
= Ck3

× Ck2
× Ck1

(7.1)

= (Ck3
× Ck2

) × Ck1
(7.2)

= (H1
k3×k2

+ H2
k3×k2

) × Ck1
(7.3)

= (H1
k3×k2×k1

+ H2
k3×k2×k1

+ H3
k3×k2×k1

) (7.4)

In the above, H1
k3×k2

and H2
k3×k2

are two Gray codes in Zk3×k2
obtained using the

construction for the two dimensional case as described above. That is, H1
k3×k2

and

H2
k3×k2

are two edge disjoint Hamiltonian cycles in Tk3×k2
graph (Equation 7.3).

The cross product of the Tk3×k2
graph with Ck1

results in a graph with cardinality

(k3 × k2) × k1. Consider the cross product of H1
k3×k2

, which is equivalent to Ck3×k2
,

with Ck1
(Equation 7.3). We can obtain two edge disjoint Hamiltonian cycles over the

Tk3×k2×k1
graph by considering one dimension as having k3 × k2 nodes labeled using

H1
k3×k2

and the other by labels of Ck1
. In this graph we can obtain two edge disjoint

Hamiltonian cycles using the construction for the two dimensional case (Figures 7.1

(a) and (b)). The remaining edges in Tk3×k2×k1
, H3

k3×k2×k1
, unfortunately, do not

result in a Hamiltonian cycle (Figure 7.1 (c)). Also between them, the three cycles

partition all the edges in Tk3×k2×k1
.

In order to generate three edge disjoint Hamiltonian cycles, some edges in H1
k3×k2×k1

or H2
k3×k2×k1

must be exchanged with those in H3
k3×k2×k1

. The edges that will be

removed from H1
k3×k2×k1

or H2
k3×k2×k1

are called exchange edges. However, selecting

proper exchange edges is not straightforward; note that the Hamiltonian property of

H1
k3×k2×k1

or H2
k3×k2×k1

must be maintained even after the exchange of edges is done.

We propose to use some horizontal edges in the H1
k3×k2×k1

graph in (Figure 7.1 (a))

84

as the exchange edges to make H3
k3×k2×k1

Hamiltonian. The problem now, is finding

the proper set horizontal edges to exchange so that we can obtain three edge disjoint

Hamiltonian cycles for any k3, k2, k1 (Equation 7.4).

Example 10. Consider the problem of finding 3 edge disjoint Hamiltonian cycles in

a T5×5×3 network. First, we consider the two most significant dimensions. We apply

the construction of the 2-dimensional case to obtain to edge disjoint cycles, H1
5×3 and

H3
5×3, of length 15 (as in Equation (7.3)). Next, we consider H1

5×3 × C3 and apply

the construction of the 2-dimensional case to obtain two edge disjoint Hamilton cycles

in T5×3×3. Figure 7.1(a) shows these cycles in the left component and the remaining

edges in T5×3×3 (i.e., those not used by H1
5×3×3 and H2

5×3×3) are shown in the right

component.

Note that the first two cycles in Figure 7.1(a) are Hamiltonian but the third cycle is

not. This cycle can be made Hamiltonian by exchanging edges from this cycle with

those in the first cycle.

Now if we exchange edges (000,001), (100,101), (101,102) and (201,202) from cycle

1 with edges (000,100), (001,101),(101,201), and (202,102) we see that the resultant

graph has three edge disjoint Hamiltonian cycles (Figure 7.1(b)).

Even though it was easy in this case, the selection of exchange edges which will result

in three edge disjoint Hamiltonian cycles is not straight forward and this is the problem

we are interested in solving. In general we need to pick 2(k1 − 1) exchange edges.

7.2.1 Choosing the Exchange Edges

In this section, we show how to choose the exchange edges. In particular, we pick

horizontal edges to exchange from H1
k3×k2×k1

with some vertical edges from H3
k3×k2×k1

.

We need to exchange 2(k1 − 1) edges and we think of this as being accomplished in

85

00

01

03

04

14

10

11

12

13

23

24

20

21

22

32

33

34

30

31

41

42

43

44

40

02

0 1 2 0 1 2 0 1 2

20

00

10

30

40

41

01

11

21

31

32

42

02

12

22

23

43

13

14

24

34

44

04

33

03

(a) 2 edge disjoint Hamiltonian cycles and a partial cycle

00

01

03

04

14

10

11

12

13

23

24

20

21

22

32

33

34

30

31

41

42

43

44

40

02

0 1 2 0 1 2 0 1 2

20

00

10

30

40

41

01

11

21

31

32

42

02

12

22

23

43

13

14

24

34

44

04

33

03

(b) 3 edge disjoint Hamiltonian cycles

FIGURE 7.1: 3 Edge Disjoint Hamiltonian Cycles in a 5 × 3 × 3 Torus

86

(k1 − 1) steps where in each step a pair of two edges is exchanged between these

graphs. As it turns out we need to consider the cases where kis are all odd or all

even separately. Before, we show the set of edges that need to be exchanged we

briefly mention some of the properties of the Tk3×k2×k1
graph that would help in

understanding the rationale behind the choice of exchange edges.

Firstly, we observe that the labeling of one dimension of the H1
k3×k2×k1

graph consists

of a Gray code G1
k3×k2

and in H3
k3×k2×k1

using the other edge disjoint Hamiltonian

cycle G2
k3×k2

. Thus, two nodes which are adjacent in H1
k3×k2×k1

are not in H3
k3×k2×k1

.

Now, consider the sequence of words ψ = {00, 10, 20, . . . , (k3 − 2)0, (k3 − 1)0}. Note

that this sequence of nodes appear at consecutive positions in the Gray code G2
k3×k2

and are hence not adjacent to each other in G1
k3×k2

. We will now show some important

properties of ψ.

Lemma 7.2.1. In the Gray code G1
k3×k2

, if we number the listing starting from 0 to

(k3 × k2) − 1. The difference in position of occurrences of any pair of consecutive

words in ψ is even if kis are all odd.

Proof. By the definition of the two dimensional Gray code, G1
k3×k2

, it can be seen that

the least significant digit is shifted upwards by one position between two blocks of

vectors with the same most significant digit. Also, each of the k2 values occur exactly

once for a given value of the MSB digit. This implies that it takes k2 + 1 positions

for the LSB digit to repeat. Since, k2 is odd the result follows.

The following lemma follows from the previous one, as a corollary.

Lemma 7.2.2. In the Gray code G1
k3×k2

, if we number the listing starting from 0 to

k3 ×k2 −1. The difference in position of occurrences of any pair of consecutive words

in ψ is odd if kis are all even.

87

Choosing the right set of exchange edges is not straightforward. In general, we are

interested in exchanging k1 − 1 pairs of edges and we view this as a process accom-

plished in k1 − 1 steps. At the end of each step we aim to preserve the following

property: H1
k3×k2×k1

is still a Hamiltonian cycle over k3 × k2 × k1 and exactly k3 × k2

nodes are added to H3
k3×k2×k1

.

Firstly, we observe from the construction of, H1
k3×k2×k1

, the values in the least sig-

nificant digit follow a specific pattern of change. For some values of (v3, v2), of the

radices k3 and k2, the LSB digit is a cyclic shift and for the remainder for a given

(v3, v2) the digit values are either in ascending or descending order alternatively. In

this case if for a given (v3, v2) the LSB digits are in ascending order, it is denoted as

(v3, v2) ↑ and when they are in descending order as (k3, k2) ↓

When I(v3, v2) ≥ k1, the LSB digits alternatively increase and decrease starting with

the first sequence in ascending order. When I(v3, v2) < k1, then digit are cyclically

shifted upward starting with an ascending order listing. Obviously, for (v3, v2) = (0, 0)

the LSB digits are in ascending order.

Lemma 7.2.3. The sequence of LSB digit values for (v3, v2) = (1, 0) is always in

descending order in H1
k3×k2×k1

.

Proof. This proof applies to any k irrespective of whether it is even or odd. Consider

88

the following table

k3, k2 k1

00 {0, 1, . . . , k1 − 1}

01 {k1 − 1, 0, 1, . . . , k1 − 2}
...

...

0(k1 − 1) {1, 2, 3, . . . , k1 − 1, 0}

1(k1 − 1) {0, 1, 2, . . . , k1 − 1}(↑)

10 {k1 − 1, k1 − 2, . . . , 1, 0}(↓)
...

...

(7.5)

which lists the H1
k3×k2×k1

cycle starting with node (000). In the last two lines the

pattern of change for digits k3, k2 itself is due to the fact that they are labeled from

H1
k3×k2

and the proof follows.

The following two lemmas follows from Lemmas 7.2.1 and 7.2.2.

Lemma 7.2.4. When kis are odd, the order in which the LSB digit changes in

H1
k3×k2×k1

for the nodes in τ , is as follows: τ = {(00) ↑, (10) ↓, (20) ↓, . . . , (k3−1, 0) ↓}

Lemma 7.2.5. When kis are even, the order in which the LSB digit changes in

H1
k3×k2×k1

for the nodes in τ , is as follows: τ = {(00) ↑, (10) ↓, (20) ↑, . . . , (k3−2, 0) ↑

, (k3 − 1, 0) ↓}

Exchange Edges when kis are odd

As already mentioned we need to exchange k1−1 pairs of edges to make H3
k3×k2×k1

to

make it a Hamiltonian cycle. Here k1 is odd and the number of pairs to be exchanged

is even.

89

The set of edges that need to be exchanged between H1
k3×k2×k1

and H3
k3×k2×k1

graphs

where k is odd is as follows.

When k1 = 3,

ϕ =





[000, 001] [000, 100]

[100, 101] [001, 101]

[101, 102] [101, 201]

[201, 202] [202, 102]





(7.6)

In the above equation edges are represented by pairs of nodes they connect as [N1, N2]

where Ns are the node labels. The edges in the first column belong to H1
k3×k2×k1

and

those in the second belong to H3
k3×k2×k1

. The edge in the first column is exchanged

with that in the second.

Theorem 7.2.1. For k1 = 3 if we pick as exchange edges those that belong to ϕ,

H1
k3×k2×k1

is still Hamiltonian and H3
k3×k2×k1

is also turned into a Hamiltonian cycle.

Proof. From Figure 7.2 (a) and (b) it is clear that the set of exchange edges result in

3 Hamiltonian cycles after the exchange in a Ck3
× Ck2

× C3 torus graph.

For k1 > 3, firstly we define a set of exchange edges ζ as follows

ζ =
{[(k1 − j)0j, (k1 − j)0(j + 1)] [(k1 − j)0j, (k1 − j + 1)0j] ,

([(k1 − j + 1)0j, (k1 − j + 1)0(j + 1)] [(k1 − j)0(j + 1), (k1 − j + 1)0(j + 1)]}

(7.7)

for all j where, 2 ≤ j ≤ k1 − 2. Here the edges in the first column belong to

We now briefly show the intuition behind choosing ζ the way we have. From Lemma

7.2.4 we see that the for nodes of the form x0 the LSB digit is always in the decreasing

order. This means that the direction of visit is from (k1 − 1) to 0 (Figure 7.3). For

90

00

01

02

12

10

11

21

22

20

00

30

00

01

02

10

20

00

10

20

30

0 1 2

1(k2 � 2)
0(k2 � 1)1(k2 � 1)

30
(k3 � 1)0

...

...

...

2(k2 � 2)2(k2 � 1)
...

...

...

...

...

k1 k3; k2

0(k2 � 1)

......

......
(k2 � 1)0

(a) before exchange

00

01

02

12

10

11

21

22

20

00

30

00

01

02

10

20

00

10

20

30

0 1 2

1(k2 � 2)
0(k2 � 1)1(k2 � 1)

30
(k3 � 1)0

...

...

...

2(k2 � 2)2(k2 � 1)
...

...

...

...

...

k1 k3; k2

0(k2 � 1)

......

......
(k2 � 1)0

(b) after exchange

FIGURE 7.2: H1
k3×k2×3 and H3

k3×k2×3 graphs

91

some x0 and (x+1)0 in H1
k3×k2×k1

, which are not adjacent. We know that these nodes

are adjacent in H3
k3×k2×k1

. Consider what happens when we pick a pair horizontal

edges of the form

[(x0q, x0(q + 1)), ((x + 1)0q, (x + 1)0(q + 1))] (7.8)

from H1
k3×k2×k1

and exchange it with a pair of the edges of the form

[(x0q, (x + 1)0q), (x0(q + 1), (x + 1)0(q + 1))] (7.9)

from H3
k3×k2×k1

. Before this exchange the order of visit of these nodes in H1
k3×k2×k1

is

(Figure 7.3)

...
: : :: : : : : :: : :

: : :: : :: : : : : :

k1 � 1(q + 1)q210

(x + 1)(k2 � 1)
x0x1
(x + 1)0

FIGURE 7.3: H1
k3×k2×k1

before exchange

92

x0(q + 1),x0q, x0(q − 1), . . . , x00 (7.10)

x10,x11, x12, . . . , x1(k1 − 1) (7.11)

... (7.12)

x(k2 − 1)0,x(k2 − 1)1, x(k2 − 1)2, . . . , x(k2 − 1)(k1 − 1) (7.13)

(x + 1)0(k1 − 1),(x + 1)0(k1 − 2), . . . , (x + 1)0(q + 1), (x + 1)0(q), . . . (7.14)

.

x0x1
(x + 1)(k2 � 1)(x + 1)0

...
: : :: : : : : :: : :

: : :: : :: : : : : :

k1 � 1(q + 1)q210

FIGURE 7.4: H1
k3×k2×k1

after exchange

93

After the exchange it is (Figure 7.4)

x0(q + 1), (x + 1)0(q + 1) , . . . , (x + 1)0(k1 − 1) (7.15)

x(k2 − 1)(k1 − 1), x(k2 − 1)(k1 − 2) , . . . , x(k2 − 1)0 (7.16)

... (7.17)

x1(k2 − 1), x1(k1 − 2) , x1(k1 − 3), . . . , x10 (7.18)

x00, x01 , . . . , x0q, (x + 1)0q, . . . (7.19)

It can also similarly seen that after the exchange we have added exactly one cycle of

k3 × k2 to the base cycle in H3
k3×k2×k1

(Figure 7.5).

q q + 1

x0(x + 1)0

k1 � 1
: : :

: : : : : :

: : :

FIGURE 7.5: H3
k3×k2×k1

after exchange

94

Now, consider what happens when we exchange the following edges from H1
k3×k2×k1

.

[(x0q, x0(q + 1)), ((x + 1)0q, (x + 1)0(q + 1))] (7.20)

[(x0(q + 1), (x)0(q + 2)), ((x − 1)0(q + 1), (x − 1)0(q + 2))] (7.21)

are exchanged with the following in H3
k3×k2×k1

(Figures 7.6 and 7.7).

[(x0q, (x + 1)0q), (x0(q + 1), (x + 1)0(q + 1))] (7.22)

[(x0(q + 1), (x − 1)0(q + 1)), (x0(q + 2), (x11)0(q + 2))] (7.23)

0 3 (x� 1)0
x0
(x+ 1)0

q q + 1 q + 2 k1 � 1q � 1
...
...

: : : : : :

FIGURE 7.6: H1
k3×k2×k1

after exchange

Following in this manner, we can see how this choice of edges helps in making the

H3
k3×k2×k1

cycle of size k3 × k2 × (k1 − 3) nodes while maintaining the Hamiltonian

property of H1
k3×k2×k1

. We will later see how the remaining two cycles can be added.

Next, we prove that when we exchange those edges in ζ of H1
k3×k2×k1

with those in

H3
k3×k2×k1

. We first list the nodes starting from 000 for the cycle H1
k3×k2×k1

which is

as follows.

95

0 1 q q + 1 q + 2 k1 � 1q � 1

x0

0(k2 � 1)

00
(x� 1)0
(x+ 1)0
...

...
: : :: : :

: : : : : :

FIGURE 7.7: H3
k3×k2×k1

after exchange

k3, k2 k1

00 0, 1, 2, . . . , k1 − 1

01 k1 − 1, 0, 1, . . . , k1 − 2

...
...

0(k1 − 1) 1, 2, . . . , (k1 − 1), 0

0(k1) 0, 1, 2, . . . , (k1 − 1)

0(k1 + 1) (k1 − 1), (k1 − 2), . . . , 0

...
...

0(k2 − 1) (k1 − 1), (k1 − 2), . . . , 0

1(k2 − 1) 0, 1, 2, . . . , (k1 − 1)

Continued on next page

96

k3, k2 k1

10 (k1 − 1), (k1 − 2), . . . , 0

11 0, 1, 2, . . . , k1 − 1

...
...

20 (k1 − 1), (k1 − 2), . . . , 0

...
...

(k3 − 1)0 (k1 − 1), (k1 − 2), . . . , 0

Note that the last node in each row is adjacent to the first node of the following row

and this listing is a Hamiltonian cycle.

The nodes of H3
k3×k2×k1

can be listed as

k3, k2 k1

00, 10, 20, . . . , (k2 − 1)0, . . . , 0(k2 − 1) 0

00, 10, 20, . . . , (k2 − 1)0, . . . , 0(k2 − 1) 1

00, 10, 20, . . . , (k2 − 1)0, . . . , 0(k2 − 1) 2

...
...

00, 10, 20, . . . , (k2 − 1)0, . . . , 0(k2 − 1) (k1 − 1)

(7.24)

In the above the listing each row constitutes a cycle with the first node in each

row being adjacent to the last in the same row. Obviously the above listing is not

Hamiltonian.

Theorem 7.2.2. When the set of exchange edges as defined by, ζ, are exchanged the

following invariants holds after exchange of each pair of edges

• H1
k3×k2×k1

remains a Hamiltonian cycle

• Exactly one cycle of length k3 × k2 nodes is added to H3
k3×k2×k1

.

97

Proof. Here, we think of the process of exchange as a step-by-step process where we

exchange a pair of edges from H1
k3×k2×k1

with a pair of edges in H3
k3×k2×k1

in each

step. We consider as steps the different values of j and the pair of edges is given

by those in ζ for the corresponding value of j. The proof, then, is by induction on

j. Before the exchange we note that H1
k3×k2×k1

is a Hamiltonian cycle and H3
k3×k2×k1

contains k1 disconnected cycles of length k3 × k2. Thus, the state before exchange, in

H1
k3×k2×k1

and H3
k3×k2×k1

are as in Equations 7.2.1 and 7.24 respectively.

Now consider the base case of the induction when j = 2. The edges picked for

exchange from H1
k3×k2×k1

are [(k1 − 2)02, (k1 − 2)03] and [(k1 − 1)02, (k1 − 1)03]. The

edges removed from H3
k3×k2×k1

are [(k1 − 2)02, (k1 − 1)02] and [(k1 − 2)03, (k1 − 1)03].

After removing these edges we add the edges removed from H1
k3×k2×k1

to H3
k3×k2×k1

,

we have

k3, k2 k1

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) 0

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) 1

00, 10, 20, . . . , (k1 − 2)0 2

(k1 − 2)0, (k1 − 3)0, . . . , 00, 0(k2 − 1), . . . , (k1 − 1)0 3

(k1 − 1)0, k10, . . . , 0(k2 − 1) 2

...
...

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) (k1 − 1)

(7.25)

From the above equation, it can be seen that the cycle with k1 = 3 has been added to

the cycle with k1 = 2. Now consider, what happens to H1
k3×k2×k1

after adding edges

from H3
k3×k2×k1

, we have

98

k3, k2 k1

00 0, 1, 2, . . . , k1 − 1

01 k1 − 1, 0, 1, . . . , k1 − 2

...
...

0(k1 − 1) 1, 2, . . . , (k1 − 1), 0

0(k1) 0, 1, 2, . . . , (k1 − 1)

0(k1 + 1) (k1 − 1), (k1 − 2), . . . , 0

...
...

0(k2 − 1) (k1 − 1), (k1 − 2), . . . , 0

1(k2 − 1) 0, 1, 2, . . . , (k1 − 1)

10 (k1 − 1), (k1 − 2), . . . , 0

...
...

20 (k1 − 1), (k1 − 2), . . . , 0

...
...

(k1 − 2)0 (k1 − 1), (k1 − 2), . . . , 3

(k1 − 1)0 3, 4, . . . , (k1 − 1)

(k1 − 1)(k1 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

(k1 − 2)1 k1 − 1, k1 − 2, . . . , 0

(k1 − 2)0 0, 1, 2

(k1 − 1)0 2, 1, 0

...
...

(k2 − 1)0 (k1 − 1), (k1 − 2), . . . , 0

...
...

Continued on next page

99

k3, k2 k1

(k3 − 1)0 (k1 − 1), (k1 − 2), . . . , 0

From the above equation it can be seen that H1
k3×k2×k1

is still a Hamiltonian cycle.

Assuming that the hypothesis holds up to some value of j = γ − 1, where 2 < γ <

k1 − 2, we have to show that the induction hypothesis holds for j = γ.

The edges picked for exchange from H1
k3×k2×k1

are [(k1 − γ)0γ, (k1 − γ)0(γ + 1)] and

[(k1 − γ + 1)0γ, (k1 − 1)0(γ + 1)]. The edges removed from H3
k3×k2×k1

are [(k1 −

γ)0γ, (k1 −γ +1)0γ] and [(k1 −γ)0(γ +1), (k1 −γ +1)0(γ +1)]. After removing these

edges we add the edges removed from H1
k3×k2×k1

to H3
k3×k2×k1

, we need to consider

the case where γ is even and odd separately. Firstly, when γ is odd, we have

k3, k2 k1

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) 0

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) 1

00, 10, 20, . . . , (k1 − 2)0 2

(k1 − 2)0 3

(k1 − 2)0, (k1 − 1)0, . . . , 0(k2 − 1), . . . , (k1 − 4)0 4

...
...

(k1 − γ − 1)0 γ − 2

(k1 − γ − 1)0, . . . , 0(k2 − 1), 00, . . . (k1 − γ − 3)0 γ − 1

(k1 − γ − 3)0, (k1 − γ − 4), . . . , 00, . . . , (k1 − γ − 2)0 γ

(k1 − γ − 2)0 γ − 1

(k1 − γ − 2)0, . . . , (k1 − γ − 3)0 . . . 00, 0(k2 − 1), . . . (k1 − γ − 4)0 γ − 2

...
...

(k1 − 1)0, k10, . . . , 0(k2 − 1) 2

Continued on next page

100

k3, k2 k1

...
...

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) (k1 − 1)

and in the case where γ is even, we have

k3, k2 k1

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) 0

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) 1

00, 10, 20, . . . , (k1 − 2)0 2

(k1 − 2)0 3

(k1 − 2)0, (k1 − 1)0, . . . , 0(k2 − 1), . . . , (k1 − 4)0 4

...
...

(k1 − γ − 4)0, k1 − γ − 3)0, . . . , 00, 0(k2 − 1), . . . , (k1 − γ − 2)0 γ − 2

(k1 − γ − 2)0 γ − 1

(k1 − γ − 2)0, (k1 − γ − 2), . . . , 00, . . . , (k1 − γ − 1)0 γ

(k1 − γ − 1)0, (k1 − γ − 2)0, . . . , 00, 0(k2 − 1), . . . , (k1 − γ − 3)0 γ − 1

(k1 − γ − 3)0 γ − 2

...
...

(k1 − 1)0, k10, . . . , 0(k2 − 1) 2

...
...

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) (k1 − 1)

(7.26)

From both the cases shown above (Equations 7.2.1 and 7.26) we can see that one

cycle with k3 × k2 nodes with LSB digit equal to γ is added to the existing cycle.

In the H1
k3×k2×k1

graph the addition of edges removed leads to

101

k3, k2 k1

00 0, 1, 2, . . . , k1 − 1

01 k1 − 1, 0, 1, . . . , k1 − 2

...
...

0(k1 − 1) 1, 2, . . . , (k1 − 1), 0

0(k1) 0, 1, 2, . . . , (k1 − 1)

0(k1 + 1) (k1 − 1), (k1 − 2), . . . , 0

...
...

0(k2 − 1) (k1 − 1), (k1 − 2), . . . , 0

1(k2 − 1) 0, 1, 2, . . . , (k1 − 1)

10 (k1 − 1), (k1 − 2), . . . , 0

...
...

20 (k1 − 1), (k1 − 2), . . . , 0

...
...

(k1 − γ − 1)0 k1 − 1, k1 − 2, . . . , γ + 1

(k1 − γ)0 k1 − 1

(k1 − γ)(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

(k1 − γ − 1)0 0, 1, . . . , γ

(k1 − γ)0 γ

(k1 − γ + 1)0 γ, γ + 1, . . . , k1 − 1

(k1 − γ + 1)(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

(k1 − γ)0 0, 1, . . . , γ − 1

Continued on next page

102

k3, k2 k1

(k1 − γ + 1)0 γ − 1

...
...

(k1 − 2)0 3

(k1 − 1)0 3, 4, . . . , k1 − 1

(k1 − 1)(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

(k1 − 2)0 0, 1, 2

(k1 − 1)0 2, 1, 0

(k1)0 0, 1, 2, . . . , k1 − 1

...
...

(k3 − 1)0 k1 − 1, k1 − 2, . . . , 0

From the above it can be seen that exactly one cycle is added to H3
k3×k2×k1

while

maintaining the Hamiltonian property of H1
k3×k2×k1

.

The complete set of exchange edges when the radices are odd is then given by

φ = ϕ + ζ (7.27)

where φ is the set of edges to be exchanged when k > 3 and + indicates the set

concatenation operation of the sets represented by ϕ and ζ.

To prove this we start with the state we have after the edges in ζ have been exchanged.

The state of H1
k3×k2×k1

after this is as shown in Figure 7.8

The numerals I and II in Figure 7.8 represent the order of visit (between nodes in

the same row) by the H1
k3×k2×k1

cycle starting with 000. The corresponding listing of

nodes is as follows.

103

III

III

III

0 1 2 3 4

III

III

II I

k1 � 4 k1 � 3 k1 � 2

20
30
40

k1 � 1

(k1 � 3)0
(k1 � 2)0
(k1 � 1)0
(k3 � 1)0 ...

...

...

...

...

...
...
......
...

... ...
...

: : :

: : :
: : :
: : :
: : :

: : :
: : :
: : : ...

FIGURE 7.8: H1
k3×k2×k1

graph after exchange of edges in ζ

k3, k2 k1

00 0, 1, . . . , k1 − 1

01 k1 − 1, 0, 1, . . . , k1 − 2

Continued on next page

104

k3, k2 k1

...
...

10 k1 − 1, 0, 1, . . . , k1 − 2

...
...

2(k2 − 1) 0, 1, . . . , k1 − 1

20 (k1 − 1)

30 (k1 − 1)

3(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

20 0, 1, . . . , k1 − 2

30 k1 − 2

...
...

(k1 − γ − 1)0 k1 − 1, k1 − 2, . . . , γ + 1

(k1 − γ)0 k1 − 1

(k1 − γ)(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

(k1 − γ − 1)0 0, 1, . . . , γ

(k1 − γ)0 γ

(k1 − γ + 1)0 γ, γ + 1, . . . , k1 − 1

(k1 − γ + 1)(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

(k1 − γ)0 0, 1, . . . , γ − 1

(k1 − γ + 1)0 γ − 1

...
...

(k1 − 2)0 3

Continued on next page

105

k3, k2 k1

(k1 − 1)0 3, 4, . . . , k1 − 1

(k1 − 1)(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

(k1 − 2)0 0, 1, 2

(k1 − 1)0 2, 1, 0

(k1)0 0, 1, 2, . . . , k1 − 1

...
...

(k3 − 1)0 k1 − 1, k1 − 2, . . . , 0

The state of H3
k3×k2×k1

after the exchange is as shown in Figure 7.9

Note the we need to add the two cycle whose LSB digits are equal to 0 and 1 (Figure

7.9) to the existing cycle in order to make H3
k3×k2×k1

Hamiltonian. The corresponding

listing of nodes is as follows.

k3, k2 k1

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) 0

00, 10, 20, . . . , (k2 − 1), . . . , 0(k2 − 1) 1

00, 10, 20, . . . , (k1 − 2)0 2

(k1 − 2)0 3

(k1 − 2)0, (k1 − 1)0, . . . , 0(k2 − 1), . . . , (k1 − 4)0 4

...
...

50, 60, . . . , 0(k2 − 1), 00, 10, . . . , 30 k1 − 3

30 k1 − 2

30, 40, . . . , 0(k2 − 1), 00, 10, 20 k1 − 1

20, 10, 00, 0(k2 − 1), . . . , 40 k1 − 2

Continued on next page

106

k3, k2 k1

40 k1 − 3

...
...

(k1 − 1)0, k10, . . . , 0(k2 − 1) 2

Now, we will consider what happens when exchange edges as picked from φ which

belong to H3
k3×k2×k1

are added after edges which belong to H1
k3×k2×k1

, as given in φ,

are removed. This is illustrated in Figure 7.10.

It can be seen that the Hamiltonian property of H1
k3×k2×k1

is maintained. The corre-

sponding listing on nodes that are visited is as follows.

k3, k2 k1

00 0

10 0

11 0, 1, 2, . . . , k1 − 1

12 k1 − 1, k1 − 2, . . . , 0

...
...

2(k2 − 1) 0, 1, . . . , k1 − 1

20 (k1 − 1)

30 (k1 − 1)

3(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

20 0, 1

10 1

00 1, 2, . . . , k1 − 1

01 k1 − 1, 0, 1, . . . , k1 − 2

Continued on next page

107

k3, k2 k1

...
...

10 k1 − 1, k1 − 2, . . . , 2

20 2, 3, . . . , k1 − 2

30 k1 − 2

...
...

(k1 − γ − 1)0 k1 − 1, k1 − 2, . . . , γ + 1

(k1 − γ)0 k1 − 1

(k1 − γ)(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

(k1 − γ − 1)0 0, 1, . . . , γ

(k1 − γ)0 γ

(k1 − γ + 1)0 γ, γ + 1, . . . , k1 − 1

(k1 − γ + 1)(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

(k1 − γ)0 0, 1, . . . , γ − 1

(k1 − γ + 1)0 γ − 1

...
...

(k1 − 2)0 3

(k1 − 1)0 3, 4, . . . , k1 − 1

(k1 − 1)(k2 − 1) k1 − 1, k1 − 2, . . . , 0

...
...

(k1 − 2)0 0, 1, 2

(k1 − 1)0 2, 1, 0

(k1)0 0, 1, 2, . . . , k1 − 1

Continued on next page

108

k3, k2 k1

...
...

(k3 − 1)0 k1 − 1, k1 − 2, . . . , 0

Now consider the state of the H3
k3×k2×k1

shown in Figure 7.11. It can seen that it is

now a Hamiltonian cycle.

The corresponding listing of nodes is as follows.

k3, k2 k1

00 0

00, 0(k2 − 1), . . . , 10 1

20, 30, . . . , (k1 − 2)0 2

(k1 − 2)0 3

(k1 − 2)0, (k1 − 1)0, . . . , 0(k2 − 1), . . . , (k1 − 4)0 4

...
...

50, 60, . . . , 0(k2 − 1), 00, 10, . . . , 30 k1 − 3

30 k1 − 2

30, 40, . . . , 0(k2 − 1), 00, 10, 20 k1 − 1

20, 10, 00, 0(k2 − 1), . . . , 40 k1 − 2

40 k1 − 3

...
...

(k1 − 3)0, (k1 − 4)0, . . . , 00, 0(k2 − 1), . . . , (k1 − 1)0 3

(k1 − 1)0k10, . . . , 0(k2 − 1), 00, 10 2

10 1

10, 20, . . . , 0(k2 − 1) 0

(7.28)

109

0 1 2 3 4 k1 � 3 k1 � 2
302040
1000

(k1 � 2)0(k1 � 3)0
(k1 � 1)0
(k1 � 4)0

k1 � 1

... ...

(k3 � 1)0
(k3 � 2)0...

...

: : :

FIGURE 7.9: H3
k3×k2×k1

graph after exchange of edges in ζ

Exchange Edges when kis are even

As already mentioned we need to exchange k1 − 1 pairs of edges to make H3
k3×k2×k1

to make it a Hamiltonian cycle. Here k1 is even the number of pairs to be exchanged

is odd.

The set of edges that need to be exchanged between H1
k3×k2×k1

and H3
k3×k2×k1

graphs

where k is odd is as follows.

When k1 = 2,

β =





[010, 011] [010, 110]

[110, 111] [011, 111]



 (7.29)

110

III

III

0 1 2 3 4

III

III

II I

III

I

I II

III

k1 � 4 k1 � 3 k1 � 2 k1 � 1

20
30
40

(k1 � 3)0
(k1 � 2)0
(k1 � 1)0
(k3 � 1)0

......
...
...
...
.........
... ...

...
...
...
...
...
...

: : :

: : :
: : :
: : :

: : :
: : :
: : :
: : :
: : :: : :

FIGURE 7.10: H1
k3×k2×k1

graph after exchange of edges in ζ + φ

The edges in the first column belong to H1
k3×k2×k1

and those in the second belong to

H3
k3×k2×k1

. For k > 3, firstly we define a set of exchange edges η as follows

111

0 1 2 3 4 k1 � 3 k1 � 2
302040
1000

(k1 � 2)0(k1 � 3)0
(k1 � 1)0
(k1 � 4)0

k1 � 1

... ...

(k3 � 1)0
(k3 � 2)0...

...

: : :

FIGURE 7.11: H3
k3×k2×k1

graph after exchange of edges in ζ + φ

When k1 ≥ 4,

η = {
[(k1 − j)0j, (k1 − j)0(j + 1)] [(k1 − j)0j, (k1 − j + 1)0j]

[(k1 − j + 1)0j, (k1 − j + 1)0(j + 1)] [(k1 − j)0(j + 1), (k1 − j + 1)0(j + 1)]
}

(7.30)

for all j where, 1 ≤ j ≤ k1−2. Here the edges in the first column belong to H1
k3×k2×k1

and those in the second belong to H3
k3×k2×k1

.

The following theorem is similar to the one in the odd case. The proof is very similar

to the one for the odd case. The difference is that we step through 2 values of j in

each step of induction to utilize the fact that for every alternate pairs of nodes of the

form x0 and (x + 2)0 the direction is always decreasing.

Theorem 7.2.3. When the set of exchange edges as defined by, η, are exchanged the

112

following invariants holds after exchange of each pair of edges

• H1
k3×k2×k1

remains a Hamiltonian cycle

• Exactly one cycle of length k3 × k2 nodes is added to H3
k3×k2×k1

.

Thus the complete set of exchange edges is given by

φ = β + η (7.31)

where + indicates the set concatenation operation of the sets represented by ϕ and

ζ. The proof of this is very similar to the one already discussed of the odd case.

113

CHAPTER 8

GRAY CODES OVER GAUSSIAN INTEGERS

Increasing the number of transistors per chip has led to the design of multiprocessors

in a single die. These chips containing multiple processor cores are denoted on-chip

multiprocessors (CMPs). Large scale systems such as Piranha [4] and IBM Power 4

[11] combine multiple CMPs to obtain higher performance. With current technology,

on-chip networks have to be arranged in two dimensions. In [19], it is shown that

Dense Gaussian graphs are a suitable topology for this application. In this chapter,

we consider a labeling of nodes in this graph using Gaussian integers.

We show how a Gray code, under a distance metric D, over this labeling corresponds

to a Hamiltonian cycle in this graph and also show the existence of two edge disjoint

Hamiltonian cycles. This is important to allow efficient all-to-all broadcast and for

fault-tolerant communication [13].

The rest of this chapter is organized as follows. First we introduce Gaussian graphs

and specify various properties of the graph that we are interested in. We then show an

example of edge disjoint Hamiltonian cycles in a G3+4i graph and the corresponding

Gray codes. The construction of the Hamiltonian cycles as Gray codes is then shown.

Some simple algorithms for generating these codes are then presented.

8.1 Gaussian Graphs

Now, we focus our attention on the relationship between the previously mentioned

(in Chapter 2) subfamily of circulant graphs of degree 4 and a new family of graphs

114

whose nodes are labeled by a subset of Gaussian integers

The Gaussian integers Z[i] is the subset of complex number with integer real and

imaginary parts, that is

Z[i] = {x + yi|x, y ∈ Z}

Z[i] is an Euclidean domain and the norm is defined as:

N : Z[i] → Z
+

x + yi 7→ x2 + y2

Then, for every α, π ∈ Z[i] with π 6= 0 there exist q, r ∈ Z[i] such that α = qπ + r

with N (r) < N (π). This means that there exists an Euclidean division algorithm for

Gaussian integers analogous to that of rational integers.

Typically, we denote the set of remainders of the division by any integer N 6= 0 as

ZN . This set is usually called as the integers modulo N . In an analogous way we can

consider Z[i]π, i.e. the Gaussian integers modulo π. It is well known that the number

of residue classes modulo a Gaussian integer π 6= 0 is equal to N (π) and various

representations of these residue classes as points in an complex plane are given in

[29].

A distance metric was proposed for graphs whose nodes were labeled with the residue

classes of a Gaussian integer, π [18]. The Gaussian integer, π, can be of any value

and is not necessarily of prime norm.

Definition 8.1.1. [18] For α, β ∈ Z[i]π, consider γ = x + yi in the class of β − α

with |x| + |y| minimum. The distance D between α and β is

D(α, β) = |x| + |y|

115

Theorem 8.1.1. [18] D defines a distance over the quotient ring Z[i]π.

A new family of circulant graphs of degree four whose nodes are labeled by Gaussian

integers and their adjacency is determined by the distance D as previously defined.

Definition 8.1.2. [18] Given π = a + bi with gcd(a, b) = 1. Define the graph Gπ =

(V,E) where:

1. V = Z[i]π is the node set, and

2. E = {(α, β) ∈ V × V |D(α, β) = 1} is the edge set.

Gπ is the Gaussian graph generated by π.

Theorem 8.1.2. [18] Let π = a + bi ∈ Z[i] such that gcd(a, b) = 1. We have

CN (π)(a, b) and Gπ are isomorphic graphs. The graph isomorphism is

Φ : ZN (π) → Z[i]π

j 7→ x + yi mod π

where j ≡ ax + by mod N (π).

Proof. [18] We have to prove that Φ is a bijection that preserves the distances. Firstly,

note that the set of solutions of the Diophantine equation

aX + bY = s(a2 + b2)

is {(X,Y) = (sa + bt, sb − at)|t ∈ Z}.

Φ is a mapping. Let j ∈ Z such that j ≡ ax + by mod N and h ≡ j mod N . We

have to prove that Φ(j) ≡ Φ(h) mod π. Suppose that h ≡ ax′ + by′ mod N . Then,

assuming the hypothesis, we have that a(x−x′)+b(y−y′) ≡ 0 mod N , that is, there

exists s ∈ Z verifying a(x−x′)+b(y−y′) = sN . Now, if a(x−x′)+b(y−y′) = s(a2+b2)

116

then (x− x′) + i(y − y′) ≡ 0 mod π. We have that (x− x′) + i(y − y′) = (sa + bt) +

(sb − at)i = s(a + bi) + t(b − ai) = s(a + bi) − it(a + bi)= (s − ti)(a + bi). which

concludes this part of the proof, since s − ti ∈ Z[i].

Φ is injective. We are going to prove that Φ(j) ≡ Φ(h) mod π, with j, h ∈ ZN ,

implies that j ≡ h mod N . Let Φ(j) = x + yi, Φ(h) = x′ + y′. Then, (x − x′) +

(y − y′)i = απ with α ∈ Z[i]. Let α = α1 + α2i. Thus, (x − x′) + (y − y′)i = απ

= (α1a − α2b) + (α1b + α2a)i, so we get

x − x′ = α1a − α2b) ⇒ a(x − x′) = α1a
2 − α2ab

y − y′ = α1b + α2a) ⇒ b(y − y′) = α1b
2 − α2ab

Now, a(x − x′) + b(y − y′) = α1(a
2 + b2), with α1 ∈ Z, that is, j ≡ h mod N .

Also, it can easily proved that Φ is surjective.

The proof of the above theorem is included for the sake of completeness. With the

above definitions we see that we can label this graph using Gaussian integers. In the

following section we give an example where we show a Gaussian graph satisfying the

aforementioned properties and a set of edge disjoint Hamiltonian cycles.

Example 11. Figure 8.1 shows the graph G3+4i and how the nodes are labeled. The

wrap-around edges are valid in the graph because the residue class of the difference in

the labels of the nodes they connect is 1 under D. The connection pattern of these

graphs will be explained in detail later. The dotted and thick shaded edges in the graph

correspond to the edge disjoint Hamiltonian cycles in this graph.

As can be seen from the above example we can now define these edge disjoint Hamil-

tonian cycles as two independent Gray codes over the set of Gaussian integers Z[i]π.

117

0+0i−3+0i

−3+3i 0+3i 3+3i

3+1i

FIGURE 8.1: Edge Disjoint Hamiltonian cycles in G3+4i

In this Gray listing, any two consecutive labels, α, β ∈ Z[i]π, differ by distance 1 as

defined using the distance metric D. Let the first Gray code (denoted by thick lines)

be denoted as G1
3+4i and the second by G2

3+4i. Then these Gray codes are defined as

shown in Table 8.1.

In this paper, we are only interested in Gaussian integers of the form γ = a + ib

where gcd(a, b) = 1, b > a ≥ 1. When a = 0, this graph is isomorphic to the two

dimensional torus graph [12]. Hence we can use the construction in [13] to obtain two

edge disjoint Hamiltonian cycles.

118

G1
3+4i G2

3+4i

0 + 0i 0 + 0i

−3 + 3i 0 + 1i

−2 + 3i 0 + 2i

−1 + 3i 0 + 3i

0 + 3i −3 + 0i

1 + 3i −3 + 1i

2 + 3i −3 + 2i

3 + 3i −3 + 3i

−3 + 2i 1 + 1i

−2 + 2i 1 + 2i

−1 + 2i 1 + 3i

0 + 2i −2 + 0i

1 + 2i −2 + 1i

G1
3+4i G2

3+4i

2 + 2i −2 + 2i

3 + 2i −2 + 3i

−3 + 1i 2 + 1i

−2 + 1i −2 + 2i

−1 + 1i −2 + 3i

0 + 1i −1 + 0i

1 + 1i −1 + 1i

2 + 1i −1 + 2i

3 + 1i −1 + 3i

−3 + 0i 3 + 1i

−2 + 0i 3 + 2i

−1 + 0i 3 + 3i

0 + 1i 0 + 0i

TABLE 8.1: Gray codes over G3+4i

119

8.2 Structure of a Gaussian graph

In this section we will briefly introduce the representation used for residue classes of

Gaussian integers and the connectivity patterns of the graph, Gπ under the distance

metric, D.

We assume that π = a + bi with gcd(a, b) = 1 and a ≥ 0, b > a. We are interested

in labeling the nodes of the Gaussian graph, Gπ, using a complete residue system

modulo π. There are different equivalent representations of the complete residue

system modulo π [29]. In this paper we use a representation referred to as Utah

representation [29].

i

a+(b−1)i

a+(b−a)i

−(b−1)+(b−1)i

−(b−1)+0i reals

0+(b−a)i

0+0i

b−a

0+(b−1)i

b x b points a x a points
a

FIGURE 8.2: Residue classes in Gπ=a+bi

Figure 8.2 shows the labeling scheme we propose for the a2 + b2 nodes of Gπ. Gπ

is a degree 4 regular graph. In general each node is connected to two nodes whose

120

labels differ by ±i mod π and two nodes whose labels differ by ±1 mod π. For the

nodes which do not lie in the border of either squares the connection pattern is simple

and each node connects to four nodes in its vicinity (Figure 8.1). For the nodes in

the border two connections (one direction in real and one direction in imaginary) are

simple and re to two nodes in the vicinity. The other two links are wrap around

links, one each in the remaining directions in each dimension. The general pattern of

connectivity for these links is as shown in Figures 8.3 and 8.4.

Definition 8.2.1. A link in Gπ is said lie in the real dimension if and only if the two

nodes it connects, α1 and α2 satisfy the following relation.

α1 − α2 ≡ ±1 mod π

Definition 8.2.2. A link in Gπ is said lie in the imaginary dimension if and only if

the two nodes it connects, α1 and α2 satisfy the following relation.

α1 − α2 ≡ ±i mod π

From the above definitions it can be seen that the horizontal edges in Gπ lie in the real

dimension and vertical edges lie in the imaginary dimension. Figures 8.3 and 8.4 show

the wrap-around edges in the real dimension and imaginary dimensions respectively.

Note that each node in the border of Gπ has one wrap-around link in Figure 8.3 and

one in Figure 8.4 respectively. This shows the connectivity structure of Gπ. We show

that these wrap-around links are adjacent under the distance metric, D and they

lie in the real dimension. Lemmas 8.2.1 and 8.2.2 prove that nodes connected by

wrap-around edges in Figure 8.3 are adjacent.

Lemma 8.2.1. Let α1 = a1 + ib1 and α1 = a2 + ib2 be any two Gaussian integers in

residue class of π = a + ib where (b − 1) ≥ b1 ≥ (b − a) and b1 − b2 = (b − a) and

121

i

a+(b−1)i−(b−1)+(b−1)i
0+(b−1)i

0+0i

reals

0+(b−a)i

−(b−1)+(a−1)i

−(b−1)+(a−2)i

−(b−1)+(a−3)i

a+(b−2)i

a+(b−3)i

a+(b−a)i

−(b−1)+0i

0+1i

0+(b−a−1)i

−(b−1)+(a+1)i

−(b−1)+(a)i

FIGURE 8.3: Wrap-around where α1 − α2 ≡ 1 mod π in Gπ=a+bi

i

reals

0+(b−a)i

0+0i

b−a

a

−1+0i−(b−2)+0i

−(b−1)+0i

0+(b−1)i

−(b−1)+(b−1)i

a+(b−a)i1+(b−a)i

−(b−a)+(b−1)i

........

−(b−a−2)+(b−1)i−(b−a−1)+(b−1)i (a−1)+(b−1)i a+(b−1)i........

........

...

FIGURE 8.4: Wrap-around where α1 − α2 ≡ i mod π in Gπ=a+bi

122

a1 = a and a2 = −(b − 1). Then, D(α1, α2) = 1.

Proof. The Gaussian integers, α1 and α2, under the given assumptions can be ex-

pressed as follows:

α1 = a + i(b − k)

α2 = −(b − 1) + i((b − k) − (b − a))

= −(b − 1) + i(a − k)

where 1 ≤ k ≤ a. Now,

α1 − α2 = (a + b − 1) + i(b − a) (8.1)

To find the residue class of α1 −α2 we first find the quotient of (α1 −α2)/π and then

subtract it from α1 − α2 to find the remainder.

q =
α1 − α2

π
=

(a + b − 1) + i(b − a)

a + ib
(8.2)

=

(
(a + b − 1) + i(b − a)

a + ib

) (
a − ib

a − ib

)
(8.3)

q =

[
a(a + b − 1) + b(b − a)

a2 + b2

]
− i

[
b(a + b − 1) − a(b − a)

a2 + b2

]
(8.4)

In Equation 8.4, [x] denotes rounding to the closest integer. Now we will show that

the q is equal to 1 − i.

First consider the real part of the Gaussian integer in Equation 8.4. Under the

specified rounding operation, the equation will evaluate to 1 if and only if 1
2
(a2+b2) ≤

a(a + b − 1) + b(b − a) ≤ (a2 + b2). We will now prove that this is the case.

Assuming to the contrary that a(a + b − 1) + b(b − a) > (a2 + b2) is true, we get

123

⇒ a(a + b − 1) + b(b − a) > (a2 + b2) (8.5)

⇒ a2 + ab − a + b2 − ba > (a2 + b2) (8.6)

⇒ −a > 1 ⇒ a < −1 (8.7)

Thus from Equation 8.7 we see that our assumption is true only for a < −1. In our

case we have a ≥ 1. Therefore a(a + b − 1) + b(b − a) ≤ (a2 + b2).

To prove that 1
2
(a2 + b2) ≤ a(a + b− 1) + b(b− a) we start by assuming the contrary.

Thus, we get

⇒ a(a + b − 1) + b(b − a) <
1

2
(a2 + b2) (8.8)

⇒ 2a2 + 2ab − 2a + 2b2 − 2ba < (a2 + b2) (8.9)

⇒ (a2 + b2) < 2a (8.10)

Clearly from Equation 8.10, this is again impossible when a ≥ 1 and b > a . Therefore,

the real part of q rounds to 1.

Following an approach similar to that for real part, we assume that b(a + b − 1) −

a(b − a) > (a2 + b2), we get

⇒ b(a + b − 1) − a(b − a) > (a2 + b2) (8.11)

⇒ b2 + ab − b + a2 − ba > (a2 + b2) (8.12)

⇒ −b > 1 ⇒ b < −1 (8.13)

Again this is not true as we have b > 1.

Now to show that b(a + b− 1)− a(b− a) ≥ 1
2
(a2 + b2), we start by assuming that this

is not true.

124

⇒ b(a + b − 1) − a(b − a) <
1

2
(a2 + b2) (8.14)

⇒ 2b2 + 2ab − 2b + 2a2 − 2ba < (a2 + b2) (8.15)

⇒ (a2 + b2) < 2b (8.16)

Equation 8.16 is not true for b > 1. Thus the imaginary part also rounds to 1. Thus,

q = 1 − i. Now, let us find the residue class of α1 − α2.

r = (a + b − 1) + i(b − a) − [(a + ib)(1 − i)] (8.17)

= (a + b − 1) + i(b − a) − [(a + b) + i(b − a)] (8.18)

= −1 (8.19)

Now to see the minimality of this rounding technique, firstly observe that q remains

same when rounding to next highest integer for Equation 8.4. If we are rounding to

the next lowest integer we get q = 0 (in Equation 8.4).

r = (a + b − 1) + i(b − a) (8.20)

and so,

D(α1, α2) = |(a + b − 1)| + |(b − a)| (8.21)

= 2b − 1 (8.22)

Obviously this is greater than the distance when r = 1 for b > 1.

Lemma 8.2.2. Let α1 = a1 + ib1 and α1 = a1 + ib1 be any two Gaussian integers in

the residue class of π = a + ib where 0 ≤ b1 ≤ (a− 1) and b2 = b1 + a and a1 = 0 and

a2 = −(b − 1). Then, D(α1, α2) = 1.

125

Proof. The Gaussian integers, α1 and α2, under the given assumptions can be ex-

pressed as follows

α1 = 0 + ik

α2 = −(b − 1) + i(k + a)

where 0 ≤ k ≤ (a − 1). Now,

α1 − α2 = (b − 1) − ia (8.23)

To find the residue class of α1 −α2 we first find the quotient of (α1 −α2)/π and then

subtract it from α1 − α2 to find the remainder.

q =
α1 − α2

π
=

(b − 1) − ia

a + ib
(8.24)

=

(
(b − 1) − ia

a + ib

)(
a − ib

a − ib

)
(8.25)

q =

[
a(b − 1) − ab)

a2 + b2

]
− i

[
b(b − 1) + a2

a2 + b2

]
(8.26)

In Equation 8.26, [x] denotes rounding to the closest integer. Now we will show that

the q is equal to −i.

First consider the real part of the Gaussian integer in Equation 8.26. Under the

specified rounding operation, the equation will evaluate to 0 if and only if a(b− 1)−

ab < 1
2
(a2 + b2). We will now prove that this is the case.

Assuming that a(b − 1) − ab ≥ 1
2
(a2 + b2) is true, we get

⇒ a(b − 1) − ab ≥ (a2 + b2) (8.27)

⇒ −a ≥ (a2 + b2) (8.28)

126

Clearly Equation 8.28 is not true given a ≥ 1. Therefore a(b − 1) + a2 < 1
2
(a2 + b2)

and the real part of q under this rounding scheme will evaluate to 0.

Following an approach similar to one in Lemma 8.2.1, we assume that b(b− 1)+a2 >

(a2 + b2). We get

⇒ b(b − 1) + a2 > (a2 + b2) (8.29)

⇒ b2 − b + a2 > (a2 + b2) (8.30)

⇒ −b > 1 ⇒ b < −1 (8.31)

Thus, our assumption is not true as we have b > 1.

Now to show that b(b − 1) + a2 ≥ 1
2
(a2 + b2), we start by assuming that this is not

true.

⇒ b(b − 1) + a2 <
1

2
(a2 + b2) (8.32)

⇒ 2b2 − 2b + 2a2 < (a2 + b2) (8.33)

⇒ (a2 + b2) < 2b (8.34)

Equation 8.34 is not true for b > 1. Thus the imaginary part rounds to 1. Thus,

q = −i. Now, let us find the residue class of α1 − α2.

r = (b − 1) − ia − [(a + ib)(−i)] (8.35)

= (b − 1) − ia − [b − ia] (8.36)

= −1 (8.37)

Now we prove the minimality of this rounding scheme. Firstly if we apply rounding

to next highest integer is used then, q = 1− i. For this value if we calculate the value

of r, we get

127

r = (b − 1) − ia − [(a + b) + i(b − 1)]

= −3a + b + 1

and so,

D(α1, α2) = | − 3a| + |b| + 1 (8.38)

= 3a + b + 1 (8.39)

Obviously this is greater than the distance when r = 1 for b > 1.

Similarly considering the case of rounding to next lowest integer we get q = 0 and

r = (b − 1) − ai in this case. Thus distance in this case is

D(α1, α2) = |(b − 1)| + | − a| (8.40)

= a + b − 1 (8.41)

Again this is greater than 1 when a ≥ 1 and b > a. Thus rounding-to-closest-integer

is the rounding scheme where D is minimized.

The following two Lemmas are for nodes connected by wrap-around links shown in

Figure 8.4. The proofs of these Lemmas are similar to those of Lemmas 8.2.1 and

8.2.2 and are hence omitted. The interesting aspect of these wrap-around edges is

that they lie in the imaginary dimension.

Lemma 8.2.3. Let α1 = a1 + ib1 and α1 = a1 + ib1 be any two Gaussian integers in

the residue class of γ = a + ib where −(b − 1) ≤ a1 ≤ 0 and a1 − a2 = a and b1 = 0

and a2 = (b − 1). Then, D(α1, α2) = 1.

128

Lemma 8.2.4. Let α1 = a1 + ib1 and α1 = a1 + ib1 be any two Gaussian integers in

the residue class of γ = a + ib where 0 < a1 ≤ a and a1 − a2 = b and b1 = (b− a) and

a2 = (b − 1). Then, D(α1, α2) = 1.

8.3 Edge Disjoint Hamiltonian Cycles

In this section we show the construction of two edge disjoint Hamiltonian cycles in

a Gaussian graph, Gπ, where the nodes are labeled using the residue classes modulo

π = a + ib where a and b are as already assumed.

As already defined, a Gray code, Aπ, is a listing of all residue classes modulo a

Gaussian integer, π = a+ ib, where gcd(a, b) = 1 and b > a ≥ 1. The special property

of this listing is that for any pair of consecutive vectors, α and β, D(α, β) = 1. Under

these conditions the first Gray code, A1
π, is defined as follows

A1
π

−(b − 1) + 0i

−(b − 2) + 0i

...
...

...

(−1) + 0i

0 + 0i

−(b − 1) + (a mod b)i

−(b − 2) + (a mod b)i

...
...

...

(−1) + (a mod b)i

0 + (a mod b)i if (a mod b) < (b − a)

1 + (a mod b)i

Continued on next page

129

A1
π

...
...

...

a + (a mod b)i if (a mod b) ≥ (b − a)

−(b − 1) + (2a mod b)i

−(b − 2) + (2a mod b)i

...
...

...

(−1) + (2a mod b)i

0 + (2a mod b)i if (2a mod b) < (b − a)

1 + (2a mod b)i

...
...

...

a + (2a mod b)i if (2a mod b) ≥ (b − a)

...
...

...

−(b − 1) + ((b − 1)a mod b)i

−(b − 2) + ((b − 1)a mod b)i

...
...

...

(−1) + ((b − 1)a mod b)i

0 + ((b − 1)a mod b)i if ((b − 1)a mod b) < (b − a)

1 + ((b − 1)a mod b)i

...
...

...

a + ((b − 1)a mod b)i if ((b − 1)a mod b) ≥ (b − a)

Lemma 8.3.1. Given a ≥ 0 and b > a, where gcd(a, b) = 1. The least multiple of a

divisible by b is ba. Also, {0a, 1a, . . . , (b − 2)a, (b − 1)a} are all unique modulo b.

Theorem 8.3.1. The Gray code defined by A1
π forms a Hamiltonian cycle in the Gπ

graph.

130

Proof. To show that A1
π forms a Hamiltonian cycle we must show that each node in

Gπ is visited exactly once and all nodes are visited and between every two consecutive

nodes, α1, α2, D(α1, α2) = 1.

By Lemma 8.3.1, we see that each row is visited exactly once. All node labels are

visited exactly once within each row (Equation 8.3) . Thus, each node in a row is

visited exactly once and each row is visited exactly once.

We will now show that the distance between any pair of consecutive nodes, α1, α2 in

A1
π is 1.

1. Firstly, we consider nodes that differ only in the real part. That is, let α1 =

γ1 + iσ1 and α2 = γ2 + iσ2 be such that σ1 = σ2. In this case, β = α1−α2 = ±1.

Since β = ±1 is a unit in Z[i]π this is also an equivalence class for β. For any

two nodes α1 6= α2, β is the equivalence class for which D is minimum. Thus,

D(α1, α2) = 1.

2. Consider the case when both the real and imaginary parts are not equal. There

are two sub cases we need to consider.

(a) Let α1 = γ1 + iσ1 and α2 = γ2 + iσ2 be such that σ1 = (p − 1)a mod b

and σ2 = pa mod b. If σ1 ≥ (b − a) then σ1 > σ2 and γ1 = a, γ2 =

−(b − 1). The two nodes thus satisfy the conditions of Lemma 8.2.1 and

thus D(α1, α2) = 1.

(b) Let α1 = γ1 + iσ1 and α2 = γ2 + iσ2 be such that σ1 = (p − 1)a mod b

and σ2 = pa mod b. If σ1 ≤ (a − 1) then σ1 < σ2 and γ1 = 0 and

γ2 = −(b−1). The two nodes thus satisfy the conditions for Lemma 8.2.2.

Therefore, D(α1, α2) = 1.

Also, the first and last nodes in A1
π satisfy the conditions for Lemma 8.2.1 and

131

hence are at a distance 1. This shows the cyclic property of A1
π. Note that

links considered in case 1 correspond to those in a row. While those in case 2

correspond to links going from one row to another. This proves that G1
π forms

a Hamiltonian cycle in Aπ.

Note that the wrap around edges and horizontal edges used by A1
π lie in real dimen-

sion. No edges which lie in the imaginary dimension are used. The second Gray code,

A2
π, can be defined as follows

A2
π

a + (b − 1)i

a + (b − 2)i

...
...

...

a + (b − a + 1)i

a + (b − 1)i

M(b) + (b − 1)i

M(b) + (b − 2)i

...
...

...

M(b) + (b − a + 1)i

M(b) + (b − a)i if M(b) > 0

M(b) + (a − 1)i

...
...

...

−M(b) + (0)i if M(b) ≤ 0

M(2b) + (b − 1)i

Continued on next page

132

A2
π

M(2b) + (b − 2)i

...
...

...

M(2b) + (b − a + 1)i

M(2b) + (b − a)i if M(2b) > 0

M(2b) + (a − 1)i

...
...

...

M(2b) + (0)i if M(2b) ≤ 0

...
...

...

M((a + b − 1)b) + ((b − 1)i

M((a + b − 1)b) + ((b − 2)i

...
...

...

M((a + b − 1)b) + (b − a + 1)i

M((a + b − 1)b) + (b − a)i if M((a + b − 1)b) > 0

M((a + b − 1)b) + (a − 1)i

...
...

...

M((a + b − 1)b) + (0)i if (−1 ×M((a + b − 1)b)) ≤ 0

where M(p) = −1 × [(p mod (a + b)) − a].

Theorem 8.3.2. The Gray code defined by A2
π forms a Hamiltonian cycle in the Gπ

graph.

The proof of Theorem 8.3.2 is similar to that of Theorem 8.3.1. Note that A2
π uses

only edges in the imaginary dimension.

Theorem 8.3.3. The Hamiltonian cycles defined by Gray codes, A1
π and A2

π are edge

disjoint.

133

Proof. We prove this fact by contradiction. If (A)1
π and A2

π are not edge disjoint,

then there is a pair of consecutive nodes (i.e., an edge) in one listing which is also

consecutive in the other. Let these nodes be ζ1 = α1 + iβ1 and ζ2 = α2 + iβ2 where

ζ1, ζ2 ∈ Z[i]π. From Theorems 8.3.1 and 8.3.2 it can be seen that (A)1
π uses only edges

in the real dimension, this implies that

ζ1 − ζ2 ≡ ±1 mod π. (8.42)

Also, (A)2
π uses only edges in the imaginary dimension, this implies that

ζ1 − ζ2 ≡ ±i mod π. (8.43)

The above equations will have to then imply that

±i ≡ η = ζ1 − ζ2 ≡ ±1 (8.44)

That is there exists a η ∈ Z[i]π that is equivalent to both ±i and ±1. This would

then imply that ±1 ≡ ±i. This is clearly a contradiction because ±1,±i are units

in Z[i]π and are not equivalent. Therefore, under the given construction, A1
π and A2

π

are edge disjoint.

We now have the nodes labels for the edge disjoint Hamiltonian cycles, A1
π and A1

π,

in Gπ=a+ib. Now, we can obtain the corresponding the node labels of the edge disjoint

Hamiltonian cycles in the isomorphic CN(j1, j2) graph, where j1 = a, j2 = b and

N = j2
1 + j2

1 by finding a j such that j ≡ ax+ by mod N is satisfied for a node label

x + iy in either A1
π or A2

π. This is a simple reverse mapping and is already defined in

Theorem 8.1.2.

8.4 Algorithms to generate A1
π and A2

π

In this section we present simple and efficient algorithms to visit each node of Gπ using

the Gray codes defined by A1
π and A2

π. These algorithms are optimal in the sense

134

that they take time proportional to a constant number of operations to transform one

code word to the next. The correctness of the algorithms is easy to verify.

Algorithm 3. Algorithm for generating Gray code defined by A1
π

t ← 0; l ← 0

i ← −(b − 1)

c ← 0

while c < b do





t ← (t + a) mod b

if t < (b − a)





then l ← 0

else l ← a

while i ≤ l do





output i, t

i ← i + 1

c ← c + 1

i ← −(b − 1)

(8.45)

The algorithm uses t and i to store the imaginary and real parts of the node label

that is currently visited. To calculate the running time, firstly we observe that to visit

each node in a row takes constant time (Internal while loop). This is so because only

one operation (i ← i + 1) is needed. Next we observe that to set up for visiting the

next row the algorithm takes exactly 4 steps (all statements excluding the internal

while). Therefore, the time to go from one vector to the next is either 4 steps or 1

step. Thus it takes a constant time to transform one vector to the next.

Algorithm 4. Algorithm for generating Gray code defined by A2
π

135

t ← 0; l ← 0

i ← (b − 1)

c ← 0

while c < (a + b) do





t ← (t + b) mod (a + b)

if t > 0





then l ← (b − a)

else l ← 0

while i ≤ l do





output t, i

i ← i − 1

c ← c + 1

i ← (b − 1)

(8.46)

136

CHAPTER 9

CONCLUSIONS AND FUTURE WORK

In this proposal for research we have considered the design of new classes of Gray

codes and applications of existing Gray codes for new applications. We have shown

new constructions of Gray codes along with their applications. We have also shown

how existing constructions can be applied to the solution of new problems.

In the construction for generating edge disjoint Hamiltonian cycles in toroidal net-

works, we assume that the radices are either odd or all are even. This is a slightly

restrictive assumption. In the future we would investigate if the methods we have

proposed here can be extended to networks with a mix of even and odd radices. Also,

we would like to investigate further with extensions to dense gaussian network to

if there are advantages in extending the topology to higher dimensions. We could

then develop elegant methods to construct edge disjoint Hamiltonian cycles in this

network.

137

BIBLIOGRAPHY

[1] S. Al-Bassam and B. Bose, “Asymmetric/Unidirectional Error Correcting and

Detecting Codes”, IEEE Trans. Computers, Vol. C-43, May 1994, pp. 590-597.

[2] D. J. Amalraj, N. Sundararajan, and G. Dhar, “A data structure based on Gray

code encoding for graphics and image processing”, SPIE: International Society

for Optical Engineering, pages 65–76, 1990.

[3] M. Bae and B. Bose, “Lee distance Gray codes and edge disjoint Hamiltonian

cycles in toroidal networks”, 12th IEEE International Parallel Processing Sym-

posium, pages 365–370, May 2000.

[4] L. A. Barroso et al, “Piranha: A Scalable architecture Based on Single-Chip

Multiprocessing”, International Symposium on Computer Architecture, pp.282-

293, 2000.

[5] J. M. Berger, “A note on Error-Detecting Codes for Asymmetric Channels” ,

Information and Control, vol. 4, March 1961, pp. 68-73.

[6] R. Beivede, E. Herrada, J. L. Balcázar and A. Arrubarrena. “Optimal Distance

Networks of Low Degree for Parallel Computers”, IEEE Transactions on Com-

puters, Vol. C-40, No. 10, pp 1109-1124, 1991.

[7] J. R. Bitner, G. Ehrlich and E. M. Reingold, “Efficient Generation of the Binary

Reflected Gray Code and its Applications” Communications of the ACM, Volume

9, Number 19, September 1976.

138

[8] M. Blaum, “Codes for Detecting and Correcting Unidirectional Errors”, IEEE

Computer Society Press, Los Alamitos, CA, 1993.

[9] B. Bose and D. J. Lin, “Systematic Unidirectional Error-Detecting Codes”, IEEE

Trans. Computer, vol. C-34, November 1985, pp. 63-69.

[10] J. Borden, “Optimal Asymmetric Error-Detecting Codes”, Information and

Control, vol. 53, April 1982, pp. 66-73.

[11] F. T. Boesch and J. Wang, “Piranha: Reliable Circulant Networks with Mini-

mum Transmission Delay”, IEEE Transactions on Circ. Systems, 32:pp.188-197,

1985

[12] B. Bose, R. Broeg, Y. Kwon, and Y. Ashir, “Lee Distance and Topological

Properties of k-ary n-cubes”, IEEE Transactions on Computers, 44(8):1021–

1030, August 1995.

[13] M. Bae and B. Bose, “Edge Disjoint Hamiltonian Cycles in k-ary n-cubes and

Hypercubes”, IEEE Transactions on Computers, 10:1271–1284, 2003.

[14] R. Broeg, B. Bose and V. Lo, “Lee Distance, Gray codes and the torus”, Telecom-

munication Systems, 10:21–32, 1998.

[15] C. C. Chang, H. Y. Chen, and C. Y. Chen, “Symbolic Gray codes as a data

allocation scheme for two disc systems,” Computer Journal, 35(3):299–305, 1992.

[16] M. Cohn, “Affine m-ary Gray codes”, Information and Control, vol 6, pp 70–78,

1963.

139

[17] M. Chen and K. G. Shin, “Subcube allocation and task migration in hypercube

machines”, IEEE Transactions on Computers, 39(9):1146–1155, 1990.

[18] C. Martinez, R. Beivede, J. Guitterez and E. Gabidulin, “On the Perfect t-

Dominating Set Problem in Circulant Graphs and Codes Over Gaussian Inte-

gers”, ISIT 2005, Adelaide, 2005.

[19] C. Martinez,E. Vallejo, R. Beivede, C. Lzu and M. Moreto, “Dense Gaussian Net-

works: Suitable Topologies for On-chip Multiprocessors”, International Journal

of Parallel Programming, Vol-34, No. 3, June 2006.

[20] P. Diaconis and S. Holmes, “Gray codes for randomization procedures”, Statistics

and Computing, 4:287–302, 1994.

[21] D. E. Knuth, “The Art of Computer Programming, Volume 4, Fascicle 2: Gen-

erating all Tuples and Permutations”, Addison Wesley, 2005

[22] M. C. Er, “On Generating N -ary Reflected Gray codes”, IEEE Transactions

on Computers, 33(8):739–741, 1984.

[23] C. Faloutsos, “Gray codes for partial match and range queries”, IEEE Transac-

tions on Software Engineering, 14(10):1381–1393, 1988.

[24] C. V. Freiman. Optimal Error Detecting Codes for Completely Asymmetric Bi-

nary Channels, Information and Control, vol. 5, March 1962, pp. 66-71

[25] Martin Gardner, “Curious properties of the Gray code and how it can be used

to solve puzzles,” Scientific American, 227(2):106–109, 1972.

140

[26] E. N. Gilbert, “Gray codes and paths on the n-cube”, Bell Systems Technical

Journal, 37:815–826, 1958.

[27] F. Gray, “Pulse Cose Communication”, U.S. Patent 2632058, March 1953.

[28] F. Gray, “Pulse Code Communications”, U.S Patent 2632058, March 1953.

[29] J. .H. Jordan and C. J. Potratz, “Complete Residue Systems in the Gaussian

Integers”, Mathematics Magazine, Vol-38, No. 1, Jan 1965, pp. 1-12.

[30] S. Lin and D. J. Costello, Error Control Coding: Fundamentals and Applications,

Prentice Hall, Second Edition, 2004.

[31] R. M. Losee, “A Gray code based ordering for documents on shelves: Classifica-

tion for browsing and retrieval”, Journal of the American Society for Information

Science, 43(4):312–322, 1992.

[32] L. Tallini, S. Elmougy and B. Bose, Analysis of Plain and Diversity Combining

ARQ Hybrid Protocols over the m(≥2)-ary Asymmetric Channel, (Submitted)

IEEE Transactions on Information Theory.

[33] J. E. Ludman, “Gray code generation for MPSK signals”, IEEE Transactions

on Communications, 29:1519–1522, 1981.

[34] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms for Computers and Cal-

culators, Academic Press, 1978.

[35] E. Reingold, J. Nievergelt, and N. Deo, Combinatorial Algorithms - Theory and

Practise, Prentice Hall, 1977.

141

[36] D. Richards, “Data compression and Graycode sorting,” Information Processing

Letters, 22:210–205, 1986.

[37] J. Robinson and M. Cohn, “Counting sequences”, IEEE Transactions on Com-

puters, C-30:17–23, 1981.

[38] C. Savage, “A Survey of Combinatorial Gray Codes,” SIAM REV., 39(4):605–

629, December 1997.

[39] B. D. Sharma and R. K. Khanna, “On m-ary Gray Codes”, Information Sciences,

vol 15, pp 31–43, 1978.

[40] S. B. Wicker, Error Control Systems for Digital Communications and Storage,

Prentice Hall, 1995.

[41] H. S. Wilf, Combinatorial Algorithms: An Update, Society for Industrial and

Applied Mathematics, Philadelphia, Pennsylvania, 1989.

