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The order of the practical system (e.g. nuclear power
plants, electrical power network and chemical plant) 1is
quite large. However, there are many limitations in com-
puting facilities for the large system. Because of these
limitations, it is often necessary to reduce the order of
the large system using an approximation.

Here the simple iterative technique which is free of
certain shortcomings of the previous method is proposed
for the approximation of large linear systems by a low-
order model. A measure of the goodness of the model is the
value of the integral-square error between the step responses
of the exact and the simplified system.

The proposed technigue consists of a two-step iterative

scheme. In the first step, the optimum residues are



obtained by the minimization of the objective function,
while the poles (or eigenvalues) are kept constant. In

the second step, the poles (or eigenvalues) are optimized
while the residues remain fixed. This procedure is con-
tinued cyclically until the objective function is satisfac-
torily minimized.

The necessary and sufficient conditions for existence
of an optimum are satisfied in each step. The residues,
poles (or eigenvalues) and objective functions always con-
verge monotomically. The resulting reduced-order model
obtained by this method is stable if the original system is
stable. The method can be applied not only to single-
variable systems, but also to systems.with repeated poles
(or eigenvalues) and to multivariable systems. The results
are superior to those obtained previously in the steady-
state and transient responses, and the value of the
integral-square error.

Illustrative examples are presented.

-ii-



Simplification of Large Linear Systems Using
Two-Step Iterative Method

by

Fumihiro Frank Shoji

A THESIS
submitted to

Oregon State University

in partial fulfillment of
the requirements for the
degree of
Electrical Engineer
Completed October 3, 1979

Commencement June 1980

-iii-



APPROVED:

Redacted for Privacy

Professor, Department of Electrical and Computer
Engineering, in charge of major

Redacted for Privacy

Head,‘./‘Department'.of Electrical and Computer
Engineering

Redacted for Privacy

Dean o\‘Graduate ScFool

Date thesis presented October 5, 1979

Typed by Deanna L. Cramer for Fumihiro Frank Shoji .

_.iv_.



ACKNOWLEDGEMENTS

I would like to express my sincere thanks to Dr. R. R.
Mohler and Dr. T. C. Hsia for their guidance and help
throughout the course of this work.

I express thanks to my family for their enduring

patience and understanding.

- -



Abstract

Title Page

TABLE OF CONTENTS

Approval Page.

Acknowledgements

List of Figures.

List of Tables

CHAPTER I.

1

1.

.1

2

INTRODUCTION
Statement of Problem

A Survey of Reduced-Order Modeling
Technigues .. o e e e

1.2.1 Simplification in Frequency-Domain.

1.2.2 Simplification in Time-Domain

Consideration of Reduced-Order Modeling
Techniques

CHAPTER II. MODEL REDUCTION BY MEANS OF TWO-STEP

ITERATIVE METHOD.

2.1 Philosophy of Approach

2.

2

Two-Step Itarative Method.
2.2.1 Simplification of Transfer Function

2.2.2 Simplification of Linear Time-
Invariant System.

CHAPTER III. EXAMPLES OF SIMPLIFICATION OF SYSTEM

CHAPTER IV. CONCLUSIONS.

REFERENCES

-7]-

vii

viii

21
21
22

23

87

91



Figure

[0))

LIST OF FIGURES

Block diagram of a feedback system

Results of Example 1-(1i) .
Integral-square errors, optimum res1dues and
optimum poles versus lterations for first-
order reduced models of a fourth-order
system.

Results of Example 1-(1) . .
Unit-step response characterlstlcs of the
iterative optimization procedure from a
fourth-order system into first-order
models.

Results of Example 1-(ii). . .
Integral-sguare errors, optlmum res1dues
and optimum poles versus lterations for
second-order reduced models of a fourth-
order systam.

Results of Example 1-(1i).
Comparlson of unit-step responses accordlng
to various methods of second-order reduc-
tion of a fourth-order system.

Results of Example 3 e e e e e e e e e
Integral-sguare errors, optimum residues
and optimum poles versus iterations for
second-order reduced models of a third-
order system with double poles (for ¢ =
0.01).

Results of Example 3 . . .
Integral-sguare errors, optlmum reSLaues
and optimum poles versus iterations for
second-order reduced models of a third-
order system with double poles (for ¢ =
0.001).

-vii-

54

61

64

74



LIST OF TABLES

Table Page
1 Results of Example 1-(i) . . . . e« « « . 52

Optimum residues, optimum poles and
integral-square errors versus iterations
for first-order reduced models.

2 Results of Example 1-(i) . . . . . .« « 55
Comparison of the iterative metdod w1th
other techniques: Reduction from a
fourth-order system to first-order
models.

3 Results of Example 1-(ii). . . . . . « « . 60
Optimum residues, optimum poles and
integral-square errors for successive
iterative steps for second-order reduced
models of a fourth-order system.

4 Results of Example 1-(ii). . . . . . . 62
Comparlson of the iterative method w1th
various second-order reduced models of a
fourth-order system.

Results of Example 1-(ii). . . . . « « .« . 65
Numerical representations of unlt step
responses accordlng to various methods
of reduction of a fourth-order system
into second-order models.

wm

6 Results of Example 2 . . . . e« . 67
Simplification of a fourth order gas—
turbine system to second-order models.

7 Results of Example 3 . . . e e e . 72
Reduction of a thlrd-order system w1th
double poles into second-order models
by the two-step iterative method, for
1.

e = 0.

8 Results of Zxample 3 . . e o« o« . 73
Reduction of a thlrd~order system w1th
double poles into second-order models
by the two-step iterative method, for
€=10.001.

-viii-



SIMPLIFICATION OF LARGE LINEAR SYSTEMS USING
TWO-STEP ITERATIVE METHOD

CHAPTER I. INTRODUCTION

For many processes (e.g. nuclear power plants, electri-
cal power networks and chemical plants), the order of the
system 1s quite large. Thus for the large system, there are
many limitations in computing facilities. Implementation on
a digital computer is prohibitive in terms of time used,
cost of computation and available space. For reasons such
as these limitations, it is often desirable and sometimes
necessary to reduce the order of the large system by means
of an approximation.

A number of papers have been presented about the reduc-
tion of the system. These methods have their own advantages
and disadvantages. However, the point to which one approxi-
mate model is superior to another can be decided in the
light of the measure of performance of the same task.

The following criterion is used to define a measure of
guality of an approximation. The integral-square error
between the step responses of the exact and simplified

models is used.



1.1 Statement of Problem

In many cases the dynamic behavior of the physical
system is represented by the state-variable equations or

transfer function matrices (or transfer functions) .
Given:

(a) The original mathematical system is given by an

nth-order transfer function matrix.

H (s)] = [A2m+l ST+ A2m S + ...+ A225 + Azl]

n-1 , -1
X [Aln+l S + A S + ... + AlZ S + All]

(1-1)
where Aij are constant matrices and m £ n.
For a single-variable system of course ma:rix coeffi-

cients and matrix inversion are replaced by a constant
coefficients and division respectively.

(b) An exact (v-input, w-output) nth-order linear
time-invariant system is described by the state-variable

equation.

g = A xXx + Du

n
fa vt
»

L £ (1-2)

where x is an n dimensional vector

Y is a w dimensional vector



A is an n Xx n matrix
D is an n X v matrix
H' is a W x n matrix

A prime denotes the transpose.
Assume that

Du=20 £t < 0

=D t >0 (1-3)

It is assumed in Eg. (l1l-2) that the eigenvalues of A have

negative-real parts.

Problem:

(c¢) It is desired to find an 2th-order (2 << n)

simplified transfer function matrix, given by

i P X A k-1 2 .2
{Hl(s)] = (A2k+ls + A2ks + ... + Azzs + A21]
~ 2 A =1 ~ 2 -1
X [All+ls + Alls + ... + Alzs + All]
(1-4)

where Aij are constant matrices and k £ 1.
(d) To find a simplified model of a reduced-order

(2 << n) in the form of

k=2

1%
+
o>

0

(1-5)

1>

A1
¥, = Hy

where AO is an 2 x % matrix



A

BO is an 2 x v matrix

A

HO is a w X 2 matrix.

1.2 A Survey of Reduced-Order Modeling Techniques

There is generally an implicit constraint on the
simplification process. One is that the simplified-model
is computationally simpler than an original system. The
other is that the simplified~-model must retain those
features of the original system which are considered impor-
tant. Various techniques for the reduction of the linear
system, developed during the past decade or so, can be
classified into two main categories, namely:

(1) Simplification in fregquency-domain.

(ii) Simplification in time-domain.

In this section these methods are summarized and results

of previocus works are discussed.

1.2.1 Simplification in Frequency-Domain

At present three methods are available for the
frequency~-domain model reduction technigues. They are:
(1) Continued-fraction-expansion method
(ii) Moment-matching method
(iii) Hsia's method.
The first method is due to Chen and Shieh in which system
transfer function is reduced by truncating coefficients o2

its continued-fraction-expansion [9]. The idea behind this
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is as follows. Consider the typical feedback system shown

in Figure 1 with the overall transfer function given by

_ Y(s) _ G(s)
Hp(s) = U(s) ~ 1 + G(s)H(s) (1-86)

G
w
ND
)
n
r<
o
Y

H(s)

Figure 1. Block diagram of a feedback system.

Dividing the numerator and denominator in eg. (1-6) by G(s)

we have:

Eg. (1-7) can be considered as the simplest continued-
fraction-expansion. It is easily seen that when G(s) is
high, the overall gain can be approximated by l1/H(s). In
other words, H(s) dominates the behavior of the system. 1In
general, the continued-fraction will be obtained as follows

(second Cauer form is shown as an example).



[9))

- L(s) _ 1
Hn(s) = TG T N T (1-8)
1 %% . 1
hy + -__‘_"141——1
s -
where hj, j =1,2, ... are the coefficients in the continued-

fraction-expansion.
It should be noted that the most dominant term is hl
and the seceond influence tarm is hz/s. As the coeifficients in
the continued-£fraction descend lower and lower in position,
they are less and less important as far as their influencs
on the pgerformance of the system is concerned. This observa-
tion, is the general base for the simplificaticn technigues
which will pe developed in the continued-fraction-expansion.
Several continued-fraction forms can be considersad,
aowever, there are three major Zorms. Consider a raticnal

transfer function of a single-variable systam:

m m-1
! .37 + a,_s .. 3 + a
5 (s) = Z(s) _ azm_:_“.a omS + azza 21
n T o n-1 -
U(s) 31,415 a;,s .. 2,55 * aq,
(1-9)
where aij are constants, m < 2.
The first Cauer form (Weiberg, 19542 [21]) is;
1
I (s) = 3 (1-10)
I . - L
hla + — T
al +
2 nts 1
L33 + T
h' . -



The second Cauer form (Weiberg, 1962 [21]) is;

[
o g

B2 1
S

3 h

fa, 2
S

The mixed Cauer form (Shieh and Goldman,

(1-11)

1974 [21]) is:

H () = - (1-12)
k,+kis +
17%1 K, y
—=+ky o+ -
S k,+kls +
37°3 K,
1 1
—+k! +
S 4

In the same fashion, the multivariable system can be ex-

pressed by a transfer function matrix:

H_(s)] = [A2m+lsm + A sm"l + ... + A

2m 22

n n—-1

+
X [Aln+ls A, s + ... + A,,s + A

in 12

where Aij are constant matrices, m < na.

s + A

-1
11!

In this case, the coefficients in the three Cauer

forms are replaced by matrix coefficients and the division

in the continued-fraction process 1is replaced by a matri

inversion.

The first-matrix Cauer form is:

(H,(s)] = (s + [H) + (Hys + H) + 7t

-1

-1,-1,-1
(1-14)



The second-matrix Cauver form is:

Hy(s)] = (8] + [(H, £+ Hy + (5, £+ [ 174774747t

2 s 3 4 s (1-15)
The mixed-matrix Cauer form is;
(H,(s)] = [ky + kis + [k, = + k! + [k, + k! = (1-16)
4 1 1 2 s 2 3 3 s
TR TIE TR NS R RS R RS

where hi, hi and ki are matrix coefficients of constant.

To evaluate the matrix coefficients of the mixed-matrix

Cauer form, ki and ki, the matrix Routh algorithm can be

used (Shieh and Goldman ([21]).

BiqBipeeeeeninn. S
Y -1 t -1
<1 = Ap1Bs7 ki = Api1Ron
ByqBAgyeieies By
X, = A, AT k! = A, ALL
%2 21 31\\\ %2 2n“*3n-1
PRk RRRL S|
(1-17)
A
n-11""n n-13
k = A a~l \\\.k = A"l
n-1 n-11"nl //// n-1 n-13"n2
AnlAnZ
- -1 1.1
“n Anfntil j:>> “n An2An+ll
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Thus ki and ki in Eq. (1-16) are evaluated by the first and
last column of the Routh table. Akz in the Routh table (1l-

17) are obtained using the following relationship.

= - 1 - L
Bie = B5o2 a1 T Ryo2Byo1 el T Ri2Ryny

j = 3/4 s ow n+l, 2=l’2,
and (1-18)
k' = A_. (A "o k= (a )"t
P ol p+l 1 ) P AP(n+2-p) “p+l n+l-p
det Ap+ll # 0 : det Ap+l a+l-p # 0
P = lr2r

The matrix coefficients of the second-matrix Cauer form is
simply obtained by letting ki equal zero and relacing ki by
Hy in eq. (1-17) and (1-18).

Whereas the first-matrix Cauer form is similar to the

second-matrix Cauer form, the matrix coefficients of eg. (1l-

13) should be modified so that the matrix Routh algorithm

of eq. (1-17) and (1-18). By defining a new matrix coeffi-
cients Bjj,eg. (1-13) can be rewritten as follows:
_ m m=-1 -
(H (s)] = [By;s + B,,s + ... + By S + Byl (1-19)
n n-1 -1
X [Blls_ + BlZS + ... + Blns + Bln+l]
where
Bli = Al(n+2-y) 1= 120 ...omtl
B2 T A2(m+1-9) I T L% m
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The matrix coefficients can be evaluated by the following

matrix Routh algorithm.

Bjp T By-2 g+1 7 Hyo2Byoy gap 373,420
2=1,2,...n
(1-20)

-1 -
p = Blp(Bp+ll) p=1l,2,....

det Bp+l 1 # 0

The state-space eguation for the second-matrix Cauer form

has been formulated by Chen and Shieh [9] as follows;

X = A X + B u

(1-21)
y =0C'x
where
HiH, (H))H, (Hy)H (H)Hy
HiHy (Hj+H3)H, (Hy+H3)H, (H{FHHy,
A= - . L
HiH, (H +Hj)Hy (H#Hj#H ) Hg ... (H)<Hy+H)Hy
HiHy, (Hy+H3)H, (Hl+H3+H5)H6...(Hl+H3+...+H2n_l)H2n
. -
B = [I, I, ..., I]
C' = [(Hy, Hy, ..., Hy]
X' = IXppeX0 ceer Xyl

A prime denotes the transpose.
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The n is the order of the matrix transfer function of eq.
(1-19) and [I] and [Hi] are the identity matrix and matrix
coefficients of dimension m x m respectively. This method
can be applied to the transfer function which has repeated
poles (Chen and Shieh [91).

Hutton and Friedland proposed the Routh approximation
based on the first Cauer form [3l]. Shamash shows that the
continued-fraction-expansion is also applied to the reduc-
tion of a discrete~time system. The discrete transfer
function is given by the Z-transform ([19]. The second
technique is a moment-matching one which consists of the
power-series expansion of the given system transfér func-
tion (23].

2 m
By ¥ Byps F AssST + e By S

H (s) = (msn) (1-22)

) 2 n
l + Al2s + Al3s + ... + Al n+ls

where A, are constant cocefficients and m < n.
Hq(s) may be expanded in a series of positive powers

of s as follows

5 (s) = J C.s* (1-23)
. i
1=0

where the constants Ci are related to the moments M; by the

relation

1 -
C, = (-1) T M. (1-24)

1

By direct division, one can get from (1-22)
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2 oA .S+ L. (1-25)

- R3S+ Ayys 51

Hn(s) = A2l

The coefficients A, are given by the relation

A (1-26)

ke = Pr-181 241 T Br-1 041

The above algorithm gives a set of moments Mi (or Ci) for

the original system. Assuming the unknown simplified-model

as:
Ay +Ayys + Ayps? 4 Lo+ 4, S
HZ(S) = — - 2 — ;l< Z (1_27)
1 + AlZS + Al3s + ... + Al, 2+ls

Using eq. (1-23), (1-25) and (1-26) the following relation

is obtained.

[ch column
1
_ = - [ - - - -
s 0 0 | By 31
| A A
- {
c, <, 0 0 | A, 3,
| )
c, -, -C, | 0
* |
o -
) ) .,f-(k+1>th row )
\ - . . | 3 2
G || TSe1 Sz e G e OL _A1_2+l_+_A21<:1__
{
“ert] (T “%%-1 1 S | 0110 °
] |
Se2] | TS ™% T ! 71 ° 50 °
. . . Il |
I . i . .
) ) ) l...=Cy O O .
Cxenl | TSere1 T2 R O_i_o e
|
! (1-28)

Solving eq. (1-28) the unknown coefficients Akz in the re-

duced model are obtained.
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M. Lal and R. Mitra establish the equivalence of the
moment-matching and simplification by continued-fraction-
expansion and truncation (25]. They give the coefficients
relationship between these methods.

The other method is due to Hsia, which is based on the
requirement that the magnitude ratio of the frequency res-
ponses of the simplified-model and the original system
deviate the least at various frequencies [13]. Let the

magnitude of the frequency function

v = (RO |2 _ M(3W) M (=5w)
L(jw) A(Iw) A(=3w)
M, + M w2 + M w4 + ...,
_ 0 2 4
AO + Azw + A4w + .

where H(Jw) 1is an original system, and

L(jw) 1s a simplified model

1 2 -
24 w®) gy m(2AR) (g |
M, = § (-1)%* 1
! - t '
22 k=0 k! (22-k) ! | s=0
k
1) = S s
ds’
AZQ 1s defined similarily M7L’ replacing M by A.
It is required that A(w) = 1 and A(w) are expanded in
Taylor series. From the condition A(w) = 1, we obtain
M = A 2 =1,2, ... (1-30)

22
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Solving egq. (1-30), the stable set of solutions are chosen.

1.2.2 Simplification in Time-~Domain

Model reduction can also be accomplished in the time
domain. Two main ideas have appeared in the time-domain
technigue, namely, Davison's method and Acki's method.

The principle of Davison's method is neglect eigén-
values of the original system which are the farthest from
origin and retain only the dominant eigenvalues (l]. By

the similarity transformation
X =P z (1-31)

Egq. (l1-2) can be rewritten by

EAN ALy
3 ll Tl Ryl Z_J + 271z (1-32)
- L Jim

Z . . .
where J 1s an 2 x 2 matrix and chosen eigenvalues are
the same as the predominant eigenvalues of A.

N7 is an (n-2) x (n-2) matrix

It is assumed that "J whose eigenvalues have negligible
effect on the system response. From eg. (1-32), the re-

ducaed-order model is given by

2, = ~J 22 + first 2 rows of P—lB u (1-33)

This is the same as the solution of eqg. (1-2).



]
1
X
2
- -l+e>\lt
. Al
X
n
--l+e)\2't
T
2
-l+eknt
B
n
Then,

. ~
Ny

»

] 1w,
[NYe) l‘“‘:)_l IS?Q

‘n

*n

—

1 2
(¢lbl+¢lb2+..

(¢%bl+¢§b2+..

42
bl.¢nb2+...

(o

.+¢ib2+..

P b+, .

1,
+®nol+"'

neglecting terms of the type

.+¢?bn) +

.+¢2bn) +

+9. b )

nn

(1-34)
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where k =21 +1, ...,n

Chidambara suggested that term (1-35) cannot be completely
neglected because (1-35) has, in general, significant
contributions to the response [2]. The steady-state res-
ponse of the 2th-order reduced model will, in general, be
significantly different from that of the exact system. To

overcome this problem he introduced the R matrix as

lewe
1
q
N
+
Q

¥, = [k, + Rl 2, (1-36)

where R is a constant matrix to be determined such that it

minimizes the integral-square error between the step res-

ponse of the exact Eex(t) and of the reduced model, él(t)
and (Eex - 32) > 0 as t - =,

In the methods based on the aggregation principle, a

reduced-order model
2z, = F z, + B u (1-37)

is obtained for the system described by eg. (1-2), where the
2-dimensional z, vector (2 << n) is related to the n-
dimensional x vector through the aggregation matrix C, as

(Aoki [8]).

z, ()

[
O
Ix
a

(1-38)
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where C is an % x n constant matrix, & << n, and rank-

C = 2 is assumed.
The dynamic exactness is achieved if and only if

FC = CA
(1-40)

G = CB
The matrix F will be referred to as the aggregated matrix
or aggregation of A. Eg. (1-38) and (1-40) imply that
z(t) is a linear combination of certain modes of x(t). 1In
this case, the eigenvalues of F are the eigenvalues of A

corresponding to those modes of x(t) which are retained

Thus the notion of aggregation for a linear system is
a generalization of 'Davison's method' for simplifying the
dyvnamics of linear systems by retaining the dominant modes.

1.3 Consideration of Reduced-Order
Modeling Technigues

As shown in a previous section, a number of methods
have appeared in the literature for developing a lower-
order model. These methods have their own advantages and
disadvantages. To investigate the superiority among these
methods, the step responses of the simplified-models are
computed to the same original system. An objective func-
tion is shown as an integral-square error between these

responses.
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From the consideration of the computational results,
the following can be stated:

(1) On the measure of goodness of the approximation -

By computing the unit-step responses of the various
methods, it is concluded that the second Cauer form in the
continued-fraction-expansion and Hsia's method yields a
small value of the obﬁective function compared with all the
other methods.

(ii) On the time responses of the time-domain

technigues -

In a transient-state, Davison's model, neglecting the
non-dominant eigenvalues, responds close to the original
system for the unit-step input.

While the modified Davison's model due to Chidambara
is close to the original system in a steady-state.

The previous time-domain technigques are interpretable
in the freguency-domain so that the denominator polynomial
of the transfer function is prespecified and only the
numerator polynomial is subject to the approximation.
Therefore, the time-domain technigques need to be changed so
that the numerator polynomial as well as the denominator
polynomial can be approximated.

(iii) On the stability of the continued-fraction-
expansion method

The continued-fraction-expansion method has a drawback

in that the reduced-order model may be unstable even though
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the original system is stable. This is because the approxi-
mation does not necessarily give a stable model.

To overcome this instability, Shieh and Wei introduced
the dominant eigenvalue concept to the Routh algorithm and
obtained the stable reduced-order model [32], which is
called 'Mixed method'. Routh approximation due to Hutton
and Friedland also gives a stable reduced-order model [31l].

However, these methods do not give satisfactory small
values of the objective function, in the sense of error
criterion. The stability condition on the reduced-order
model obtained by the continued-fraction-expansion method
must be considered.

(iv) ©On a multivariable system -

The present time-domain techniques are very hard to
apply to a multivariable system. However, the frequency-
domain technigues ars applicable. A more successful model
is desired so as to minimize the integral-square =rror be-
tween the step responses of the reduced-order model and of
the exact system.

(v) On a system with repeated eigenvalues (or poles) -
Using the similarity transformation to the original
system, the original system transforms into Jordan canonical
form. The system can be considered as two separate plocks;
one is a block which has non-repeated eigenvalues, and the

other is +he block with repeated eigenvalues. There are

dominant eigenvalues for the block with non-repeated
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eigenvalues. However, for the block with repeated eigen-
values, the procedure breaks down. Therefore, the present
time-domain technigues, neglecting the non-dominant eigen-
values, can not be applied for this system.

The continued-fraction~-expansion method can be used.
The model obtained by this method, however, does not give
satisfactory results in the sense of the integral-sguare

error.
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CHAPTER II. MODEL REDUCTION BY MEANS
OF TWO-STEP ITERATIVE METHOD

As mentioned above, there are many drawbacks of the
previous methods. In this chapter, the basic philosophy
of a new approach for the model reduction of a large linear
system is shown. The new technigue is simple and improves
on the wvarious disadvantagés of the existing reduced-order
modeling technigues. In Chapter III, illustrative examples

are presented.

2.1 Philosophy of Approach

The proposed technique is based on the philosophy that
a good reduced-order model must be close to the original
system of both the steady-state and transient responses.

To achieve this goal, the proposed method consists of
a two-step iterative scheme. 1In the first step, the steady-
state response is improved. This is obtained by optimizing
the residues so as to minimize the objective function while
the poles (or eigenvalues) are kept constant. The objec-
tive function is the value of the integral-square error be-
tween the step responses of the exact and simplified
system.

In the second step, the transient response is developed.
This result is obtained by optimizing the poles (or eigen-

values) while the residues remain fixed.
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These two steps are continued cyclically until the
objective function is satisfactorily minimized. The
necessary and sufficient conditions for existence of an
optimum are satisfied in each step. The residues, poles
(or eigenvalues) and objective functions always converge
monotonically.

This method gives a stable reduced-order model if the
original system is stable. The method can be applied not
only to single-variable systems but also to systems with
repeated poles (or eigenvalues) and to multivariable sys-
tems. The results are superior to those obtained pre-
viously in the steady-state and transient responses, and

the integral-square error.

2.2 Two-Step Iterative Method

The proposed technique is applied to the reduction of
a transfer function and state-space systems. The objective

function to be minimized has the form
Jo = | (y,. - yz) dt (2-1)

for a single-variable case
where Yn is the step response of the original system

§t 1s the step response of the reduced-order model

The superscript 'i' denotes the number of iterative
steps (i=0,1,2,...).

The subscript '2'is the order of the reduced model.
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For a multivariable system

Jy = [ e qe dt (2-2)
0
it _ 21 i ~i
where e = [el ey ew]
A1 A1
e. = - . =l’2/ 2
i Yn,] erj J

W 1s the number of the system outputs
A prime denotes the transpose

Q is a positive-definitive weighting matrix.

2.2.1 Simplification of Transfer Function

In this section, consider the simplification of the
single-variable system (single-input, single-output) and the
multivariable system (v-input,w=-output). There are no
essential differences for the simplification procedure among
these systems.

For the case of the multivariable system, the system
equation and the solution have forms of the matrix and vec-
tor respectively, otherwise all the procedure is the same
as the single-variable system.

The system with repeated poles is also reduced here.

1. Single-Variable System

Consider a single-variable system with the transfer

function

S +...+a225+a21

S + ... F a,.s

*a,
(2-3)

12



where The poles are at s = xl,xz, cee A25A2+l’ ... A_ and

N

SERSYREE
transfer function and the remaining (n-2%) poles

Al are the dominant poles of the

are assumed to have negligible effect on the
transient response.
All the coefficients in the transfer function are

constants and m £ n.

Here it is assumed in eg. (2-3) that all the poles are real,
distinct and lie in the negative-real part in a complex
plane.

The proposed method can be applied for the system with
complex poles by optimizing both real-parts and imaginary-
parts of residues and poles (or eigenvalues) at each step.

An lth-order (& << n) transfer function to be found

is in the form of

1 k al k"l al Ai
i 32k+ls + 45, S + +ay,s + a5,
Hy(s) = 3 7, a1 _2-1 1 i (2-4)
12+15  * &1,s + + 81,8 + &7
where The poles are at s = Xi,ﬁ;, “o Xz (real, distinct)

and lie in the negative~real part in the com-
plex plane.

All the coefficients in eqg. (2-4) are constants and
k < 2.

'i'is an iteration number (i = 0,1,2, ...).

The time-domain solution of eg. (2-3) for the unit-step
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input is represented by

v (t) = a,+a eklt+a e

n 0% 2 (2-3)

Assume that the unit-step response of the approximate-model

in the ith-step has the form

. . oAl . o1 R
o1 21 ~l_Alt ~L A3t ~i A it
yZ(t) =ay * aje + ase + ...t oaje (2-6)
where 1i=0,1,2,
In each step the residues (&8, &1, ey &z) and poles

(Xi,i;, e eey ii) are found through a minimization of the

objective function, eq. (2-1).

A. Computational Procedure

The General computational procedure by the two-step

iterative method is summarized as follows:

Step 1: Initial step (i=0)

The approximate-model is assumed to nave the same

dominant poles as the exact system.

10 = (2-7)
~0'_ 20 20 0
where A~ = [A] A5 ... Xz]
A= DA A, e Ay

In order that the objective function, eq. (2-1) be a finite,

it is necessary that (yn - §E) - 0 as t - » in each
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iterative step. This condition gives

Ai _
ay = &, (2-8)

for all i (i=0,1,2, ...)

where &8 is the first residue of the approximate-model,
shown in eqg. (2-6).
a4y is the first residue of the original system,

represented by eqg. (2-5).

The general recursive £formulae for the optimum residues and

poles are computed next.
Step 2: Residue optimization (i=N)

The unit-step response of the approximate-model at

the Nth-step is, setting i=N in eqg. (2-6),

A . aN AN

yg = &g + &?ekl + &gekzt + + &?eklt (2-9)
where the initial condition is prescribed by eg. (2-8)

~N _ _

ay = 9 (2-10)

A

The pole vector, AN, is kept the same as EN-l

in the pre-
vious step.

The residue vector, éN, of the approximate system is
determined by minimizing the objective function, eg. (2-1).
This is derived by a differentiation of the objective func-

tion with respect to éN, so that
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5(a%)

where

=0

0 is the 2 null vector
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(2-11)

Then a set of lth-order simultaneous equations is obtained.

In this step the following two equations are used.

A

E
o 3
o
(A
o
>
]

| >
]

where

AN'

- XN'l
AN <N *N
[xl Kz AZ]
~N=-1 ~N-1 N-1
[Kl KZ Xz
= N
- 1
| 1
aN=1 aN=1, 6 «N-1
Al Al +K2
2 1
aN=-1, 6 ~N-1 ~N-1
,Az +Al /\2
2
aN=-1 sN-1 sN-1,6 «N-1
KZ +Kl AZ +K2
5y &) &§1

(2-12)

(2=-13)
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e
F}QQ

g=1 Al + A

e~
FQ

i3
>
f
>

~N

Solving eq. (2-13), the residue vector, & is obtained.
Eq. (2-12) and (2-13) are used in the first iterative step

(N=1) and thereafter.
Step 3. Pole optimization (i = N+1)

The solution of the approximate-model is, letting

TN+1 L, AN+1 N+1
§§+l = a§+l+a§+lekl t+a§?leA2 RPN JOR Al
(2-14)
* ~ . - AR ]
The residue vector gN+l is fixed. The pole vector le-
will be optimized. Let
~N+ AN+
ANFL AN L gL - (2-15)
SN+L , Co . .
where 241 is assumed to be small, and it is obtained

within the context of the necessary condition £for the

existence of an optimum, defined by the vanishing of all



the first derivatives of the objective function, eq.

so that
3 Jg
3 (43N = 8
where 0 is the 2 null vector.

The recursive formulae in this step are as follows:

AN+1 ~N
a = g

~ ' A ~ -~
where aN+l - [QN+1 aN+l aN+l]
= 1 2 2
&N' - [&N &N &N]
a 1 > e
$N+1'AXN+1 - %N+l
AN AL A D
al 4a2 4al
&N, 3 ~N  oN, 3 «N, N, 3
2(x]) (Al+22) (Al+il)
e a5 4a]
~N 2N, 3 AN, 3 N, «N, 3
$N+l _ (Rz Al) Z(Kz) (A2+A2)
~N ~N “~N
4al 4a2 ay
AN 2N, 3 N, =N, 3 ~N, 3
(KZ+/ l) (/\2+A2) Z(AQ.) i
AN=1"' _ SN+L |, oN+1 A SN+1
AA = {AAl AA2 A/\Z ]

{
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(2-1),

(2-16)

(2-17)

(2-18)
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_ N
n o '3 o
) N 2 ) N rN 2
= D = 3\ A
g=1 (Al+xq) r=1 (Al+xr)
~N
% aa ) % a.
=L (5+r % r=1 (Naad) 2
r =2 X
n o 2 Ay
) N 2 ) N r\z 2
g A = AN Al
_?—l (A +kq) r=1 (A +Ar).-
To obtain eqg. (2-18), the approximation
~N+1
S 2RI e (2-19)
where r = 1,2, ... %
is used.
AN+1

The pole vector, A\ is given by a solution of eq.
(2-18) . These equations, eqg. (2-17) and (2-18), are

applicable with N=2 and so on.
Step 4: 1=(N+2)th-step

For the (N+2)th step, set N=N+2 and go to step 2.
This procedure is repeated through a succession of stages
until the objective function becomes sufficiently small.
The sufficient condition for an extreme value to exist
is that the second derivatives of the objective function
does not change sign. The second derivative of the objec-
tive function is evaluated for a confirmation of this

condition.
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With respect to residue vector, the second derivative

of the objective function becomes

B 1
ST 0 . 0
1
1
82Js Xg‘l
~7 = : - : (2-20)
3(a™)
1
0 SR~
— 7

Since the original system is stable, all the poles
have negative-real parts. The increments of the poles are
very small, hence the poles at the Nth~step have also
negative-real parts. Therefore, the right side of eq.

.

(2-20) is always positive-definite matrix.

yeMH2 T (2-21)

where 0 is the 2 null vector.

Eq. (2-21) shows that a local minimum will exist at

the optimum point.

With respect to the pole vector, the second derivative

of the objective function becomes
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Nk
K ’ ’
1
(&5) 2
0 ToN, 3
2 (A3)
325, _ 2
a(A2N+l)2
(a2
0 T3
2 (3,

Since all the poles lie in the negative-real part 1in a
complex s-plane,the right side of EZg. (2-22) is always
positive-definite matrix.

327
S

_— > 9 (2-23)
3 (arNFLy 2

where 0 1s the % null vector.

From eqg. (2-23) the sufficient condition for a minimum to
exist at the optimum point is satisfied.

It is found from eq. (2-21) and (2-23) that in these
steps there exist minimum values of the objective function

at the optimum points.

2. Multivariable System

The original system is represented by an nth-order
transfer function matrix instead of a scalar transfer

function.
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omS + ...+ Azzs + Azi]

n n-1 -1
S + ...+ Alzs + All]

(2-24)

where the coefficients of s are constant matrices and

m < n.

It is necessary to find the lth-order (2 << n) function

matrix.
~1 _ 2l k ~1 k-1 ~1 ~1
[HQ(S)] = [A2k+ls + A2ks + L. Azzs + A212
S 2 ~1 _1-1 2l A1l ;-1
X [All+ls + Alzs + ...+ Alzs + All]
(2-25)

where all the coefficients are constant matrices and

k £ 2

The solution of the exact system, eg. (2-24) and the
reduced-order model, eqg. (2-25) are given in the vector

form respectively.

XA = [Yn,l Yn,2 co. . Yn,w] (2-26)
B h, 6, 8 (2227

where w 1s a number of system outputs

1 is an iteration number (i=0,1,2, ...).

In this case the objective function to be minimized is used

in eg. (2= 2) replacing eg. (2- 1) for a single-variable
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system. Minimizing eq. (2?2) with respect to the residues
and poles, the similar simultaneous equations are obtained
in the case of a single-variable system. Solving these
simultaneous equations, the optimum residues and poles are
yielded.

An illustrative example is shown in example 2.

3. System with Repeated Poles

In the system with repeated poles, the denominator of
the transfer function can be separated by the product of
the non-repeated poles and the repeated poles. There are
dominant poles for the part of non-repeated poles. How-
ever, the dominant poles cannot be selected for the part of
the repeated poles because all the poles have the same
values.

Since the proposed method is based on the selection of
the dominant poles in the initial step, the method is not
able to apply this system directly. But the method is also
applicable for the system by the modification of the
original system.

In this case the part of the repeated poles in the
original system are made slightly different from =ach
other. These poles are used as the dominant poles in the
original system.

lLet the poles in the original system have k-repeated

poles and (n-k) non-repeated pocles:
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(2-28)

= A A

k+1’ “k+2’ "7

There are no dominant poles for the k-repeated poles.
Now the 2th-order reduced model (& << n, and 2 2 k) 1is
required. In the initial iterative step, the poles to be

fixed are chosen as follows:

/\O - -
Al = A + <1
ig = A+ e,
(2-29)
«0 _ -
Ak = \ + €y

where ¢. (i=1,2,

i .., K) are arbitrarily small numbers

A superscript '0' denotes the initial step.

For (2-k), the dominant poles are chosen in the reduced-
order model. With eg. (2-29), the reduced-order model is

made to have no repeated poles. As long as the set of

m

i
(1i=1,2, ... k) consist of sufficiently small elements, then

the reduced-order model is nearly identical in terms of the

objective function regardless of the value of <.

i
(i=1,2,...k). After setting up the initial condition as
eq. (2-29), a similar iterative scheme 1is carried out,

which is shown in example 3.
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2.2.2 Simplification of Linear Time-Invariant System

The same iterative method is applicable even if the
original linear time-invariant system is described by state-
variable equations. The optimization in the control-vector
is equivalent to the optimization in the output-vector be-
cause they both give the same effect to the output. There~
fore, there are two ways of simplification: one way is by
the optimization of the control-vector, and the other is by

the optimization of the output-vector.

1. Single-Variable System

Assume that an nth-order linear time-invariant system

can be written as:

g:

)
1%
+
Yo
=}

(2-30)

10
I%

¥q =

where A 1s an n x n matrix

la
[

[clc2 cee Gy wan C ]

n
4" = [d;¢dy ... d, ... d_]
and
du =0, t <0
=d, tz20

The eigenvalues of A have negative-~real parts in the com~

plex plane and are distinct. The proposed method can be
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used for the system with real eigenvalues and complex eigen-
values.

Suppose it is desired to find a simplified-model of a

reduced order (2 << n) in the form of

21 _ 4l Al i
X = Ay X f §o u
(2-31)
S PN BPS §
Yg—ﬁoi{.

where ﬁé isan 2 x ¢ matrix
A subscript '0' denotes the simplified-model in the
x-domain
A subscript 'l' signifies the output of the 1th-

order reducsd model.

A. Computational Procedurs

The application of a similarity transformation x = P_2

n—-
to the original system, eg. (2-30) results in
Z=42+bu
(2-32)
vy, =h'z
A . . .0
where A =P T AD_ = {-l °
n n \O /\2
l' Ry
Y
p' =271 a'= (b, b b b_]
b -t 1 5 .- Dy ... b



The solution of eqg. (2-32) is,

n b n
k k Akt
y =-1 +—h + ) <Z2h e (2-33)
Rog21 M K g2 A K
To facilitate their later use, let
bm = T; {m=1,2, ... n) {(2-34)

then the solution of eg. (2-32) is rearranged into the form

By by o'kt (2-35)

L<

1}

]
e~

lo)]

o

+
o3

1

The ith-order reduced model in the ith-step is obtained by
the elimination of the non-dominant eigenvalues and the use

of eq. (2-34), then

zl = it gl + él 4
(2-36)
§i - ﬁi'ii
z - T -
~1 »
. ) A 0 0
A1 _ =1 &1 _ ‘1 . ° .
where A~ = P2 A Pz = i Aé )
0 °XZ
i' -1 Ai' i i i
_6_ - Pz g - [Bl 62 ooooooooo 62,]
= [iigi X;B; ..... A;Et], from eq.
(2=24) ’
alt _ ai! _ el oAl ~1
2 - E. pz - Lﬂl hz oooooo hz,]
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Pl is an 2 x 2 matrix and is a truncation of the

n x n modal matrix.

The solution of eq. (2-36) is

Amt (2-37)

i) Control-vVector Optimization

Step l: Initial step (i=0)

Assume that the reduced-order model, eq. (2-36) has

the same dominant eigenvalues as the original system, eqg.

(2-32).

. 130 10 20 _ L. , }
diag(iy %, ... 371 = daiagldy A, ... A, (2-38)

The first residue and output-vector are fixed for all steps

2 . . .
=i ol _ ~i _ . _
-1 byhy=2;-= ag for all i (2-39)
m=1 _
at' = A for all i (2-40)
Step 2: Residue optimization (i=N)

The state-space eguations are, setting i=N in eq.

(2-36),and using eg. (2-40),

zﬁ RN ZN - §Nu
(2-41)

-
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— -
where XT 9 0
~N
0 A
AN-— : 2.
0 KZ
_ _
AN' _ oN 2N ~N
b -[bl b2 bZ]
_ AN=N +N =N ~N=yy
= [Ai%l \2 b2 /\’2',32‘1
n =[hl h2 hl]

The solution of eg. (2-41) is, using eqg. (2-40)

m

% 2 N
y? = -) bﬁ h + VY b h e m® (2-42)
m=1 m=

The eigenvalues of the diagonalized model are considered

fixed.

The control-vector, b is optimized through eg. (2-1).

Idg

N

=0 (2-43)

3(b™)

foy)

where 0 is the 2 null vector.

Since eq. (2-9) is similar to eqg. (2-42), wherein QN in
eq. (2-11) is replaced by 5 A' in eq. (2-43). The Nth-

step optimum solution is obtained as follows.

~N N

diagliy Ay .. i?j = diag[XN'l aN=-1 N-1,

l A « o /\l
(2=-44)
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N

Then, eq. (2-13), replacing QN by b A', that is

Wt ay = N (2-45)

where &N and fN are given by eq. (2-13).

Eq. (2-44) and (2-45) are effective in the first iterative

step (N=1) and thereafter.
Step 3: Eigenvalue optimization (i=N+1)

The state-space equations in the (N+1l)th-step are

expressed as:

N+1 ~N+1

e M (2-46)
§§+l - i' §N+l
where F&T+1 g . . . }
AN+L _ 0 X§+l
[P i
N A IO
- [XT+1 5T+l i§+l S§+l o i§+l b§+l]
A' = (A; A, f, 1

The solution of eq. (2-46) is, using eqg. (2.40),
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2 2 TN+1
~N+1 =N+1n ~N+1~ Am Tt
v =-9% B "Ch_+ ) b " h (2-47)
2 21 m m mel ™ m
The contral-vector B is kept constant.
The eigenvalues in the RN+1 are assumed to be given by
N+1 o~N+1 N+1
dlag[\l A Xz ]
_ N AN+1 N ARD +1 oN N+1
= diag(iy+a4] Ay AR T L ,\Z+AX2 1 (2-48)

To obtain A2N+l, the following differentiation is evaluated.
3Jd
S
— =0 (2-49)
3 (aiN+Y

where 0 is the 1 null vector.

The resulting equation is the same as eqg. (2-18), replacing

éN by §N h'. Solving ag. (2-49), the optimum AZ§+1 are
obtained.
The recursive formulae in the (N+1) th-step are,
Nt = BN (2-50)
- ' -
where b.\I+l - [bN+l bN+l bN+l]
= 1 2 2
-N' _ N N =N
5 = [k 5 6]
AV+1~A2N+1 - %N+l (2=-51)
where $N+l and #V*L are given by eg. (2-18), replacing

Eq. (2-50) and (2-51) are used for N+2 and so on.
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Step 4: 1i=(N+2)th-step
Set N=N+2 and go to step 2.

This procedure is repeated until the objective.func-
tion is satisfactorily minimized.

The original x-domain reduced-order model shown by eqg.
(2-31) is obtained through the following transformation to

these steps.

Aé = Pzﬁi Pgl
= e, 81 =5, 2t BY) (2-52)
e b e

where 1i=0,1,2, ..., N, N+1,

The necessary and sufficient conditions for existence of an
optimum are satisfied in each step which is proved the same

as for reducing the transfer function.

ii) OQutput-Vector Optimization

The output-vector and eigenvalues are optimized
through the objective function, and the control-vector is

kept constant for all steps.
i [(\ ~L

i A1 -
a7 n; ... nz] (2=-53)

where 1i=0,1,2,
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b* = b  for all i (2-54)
ALt A i ~i

b® = (b by ... Dbjl

' = [b; b, ... b,]

Interchanging the roles of the control-vector and output-
vector in the control-vector optimization, similar

equations are obtained to those in case (i).

2. Multivariable System

The original nth-order linear time-~invariant system

(v-=input, w-output) can be written as:

g = A X + D u
(2=55)

In
where A is annxn matrixwith real and discinct eigenvalues

Dis an n x v matrix

H' is a w X n matrix

It is desired to find an lth-order simplified model.

The solutions of the exact system Y and the simpli-
fied-model, ié, are now in a vector form.

ZA = [yn,l yn,Z v yn,w]
(2-56)

T S i
L= We,1 ¥9,2 ©00 ¥l



45

The objective function to be minimized is used in eg. (2- 2).

Exactly the same procedure is carried out with the multi-

variable transfer matrix.

3. System with Repeated Eigenvalues

Suppose an nth-order system has k repeated eigenvalues.
It is necessary to reduce the system to ith-order (2 << n,
2 2 k). The original system-is transformed into a Jordan

canonical form by x = P 2, and truncating the eigenvalues

of the order greater than 2.
Step 1: 1Initial step (i=0)

The k-repeated eigenvalues are made slightly different
from each other. Hence the reduced-order model no longer
has repeated eigenvalues. Thus the 2th-order model for

the control-vector optimization is:

A0 _ 20 50 ~0
i = Ar Z + Er u

(2=-57)
VQ - o=z Z.

where
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20
Al+el 0 0
~ AO
fo_ o Ro+e,
r
70
Ak+€k
20
Mo+l
~0
° "4
~Q! ~0 ~0 ~0 ~0 ~0
b, = [br,l br,2 br,k “r,k+1 br,l]
e -0 A -0 A0 -0
= [(Kl+€l)br’l (A2+€2)br’2 (Ak+€k)br,k
20 =0 ~0=0
Me+1Pr, k1 *Pr, 0]
20 20 ~0 .
A=Ay = = A ¥ A (k-repeated eigenvalues)
.20 <0 N P
diaglhy 1 Ayyn M= diagli ) Ao Mol
AO'_ Ail _ Al .
h,=h_ =h for all i
a' = (R A By o2yl
Assume &, (1=0,1,2, ...,kK) are arbitrarily small constants.

Thereafter the same iterative step for the case of single-

variable system is computed. In the second step the

. -2 o1
eigenvalues are fixed, and the control-vector b~ are

.
4
-

optimized. In the third step the control wvector é remains

fixed, the eigenvalues are optimized.
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CHAPTER III. EXAMPLES OF SIMPLIFICATION
OF SYSTEMS

In this chapter the computational procedure by the
two-step iterative method is illustrated by examples and

compared with other investigations.
Example 1

Consider the problems of reducing a fourth-order

transfer function into a first-order and second-order

models.
_ s3 + 7 s% + 245 + 24
s + 10 s + 35 s + 30 s + 24
The poles are -1, -2, -3 and -4. The unit-step response

of the original system is;

-t -2t -3t - -4t

Yy =1 -2 - 2 + 2e - 2 (3-2)
thereiore
ay = 1, a, = -1, ay = -1, 2y = 2, 2y = -1
(3-3)
Xl = -1, Az = -2, X3 = -3, x4 = -4

(1) PFirst-Order Reduced Model

Suppose that the original system is to be approximated

by a first-order model with
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. s N A
91 = aé + ai eklt (3-4)

Then the transfer function of the reduced-order model is

given by the form

~1 ~1 ~iai
A (ao + aj)s - aokl
Hl(s) = . (3=5)
s~ AT
1
For given residues and poles in eqg. (2-60), the optimum

.
~

&é, &i and Ai are to be determined through a minimization

of the objective function.

_ A1, 2
J = fo (yy - v7]) " dt (3-6)

A. Computational Procedure

Step l: 1Initial step (i=0)

Assuming the ig has the same value as the original

system,

Let (y, - 91) - 0 as t - =, then

~ i - . -
ay = % for all i (3-8)

The general recursive formulae of the preceeding section

2.2 are applied.
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Residue optimization (i=N)

The approximating function is, putting i=N in eqg.

(3-4)
- oN
AN _ AN AN A7t
yl - C{'O + al e (3"9)
N . . N-1
The Al i1s kept constant, as the previous step Al .  The
&? is optimized using eq. (2-13). Let n=4 and %=1 in the
general recursive formulae.
AN _ oN-1 -
Xl = Al (3-10)
@N'&E = oN (3-11)
where @N = 1
-
1
4 a
/\N _ S
CT Zqzl -l
q
Thus,
N N-1 / ! *2 >3 g )
o) = 2% T et P S * ST |
\Kl *ALAL TP A TR A Ty
(3-12)
Eq. (3-10) and (3-12) are used N=1 and so on.
Step 3: Pols optimization (i=N+1)

The solution of the reduced-order model has the form,

setting i=N+1 in =g. (3-4),
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AN+1
AN+ AN+ AN+
y? 1. ab Ly a? L eAl t (3-13)
The &§+l is fixed as the previous step &?. The XT+1 is
determined by using eqg. (2-18). The general recursive
formulae are as follows:
AN+l _ ~N
@y = a) (3—;4)
T (3-15)
&N
where $N+l = A% 3
2(1])
AN+L é 3q7 ai \
T =2% ) -
a=1 (e ? e ?
17% 171
so that
A\‘]3 AL
4(3) a a a a
A S Tt e T D
Al N SN, N AN 2
ap \MFAL O AptAy ARy ApRa dlAy)
(3-16)
N+1 N ~N+1
Kl = kl + Akl (3=-17)

Step 4: i=(N+2) th-step
Set N=N+2, and go to step 2.

To ascertain the existence of an optimum, the sign of the
second derivative of the objective function (i.e., the
sufficient condition for the existence of an extreme) 1is

checked.
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1
Ast S (3-18)
E(al) Al
327 (&) 2
> Sp— (3-19)
s (aa]th 233

Since X? is negative, both of these derivatives are posi-
tive-definite when the residue and pole are optimum. Thus
a minimum will then exist.

The computational results are listed in Table 1 and
depicted in Figure 2. The effects of the optimization
procedures for i=1,2,3 are shown in Figure 3. Comparisons

with other methods are shown in Table 2.

(ii) Second-Order Reduced Model

Consider the same original system for a reduction to
a second-order model. The unit-step response of the
original system and the residues and poles are given by eq.
(3-2) and eq. (3-3) respectively. The unit-step response

0of the reduced-order model is:

. . ~i ~i
s o_ 21 ~1 ATt ~1 A3t _
Yy = 25 + a] e + a5 e (3=20)
The transfer function is of the form:
AL o~ Ai 20 Ain 1 1 1 oisi ~izd cizici
s - (agrap+ay)s™=(agry+ *1A2+“2A1) FAGATA
2 - 1
(s l)(s—kz)

(3=-21)

The objective function to be minimized is:



Table 1.

Optimum residues, optimum poles and integral-
square errors versus iterations for first-order

reduced models.

wm
i

ﬁi(s) ) (&B + &i)s.— &éii
(s - Xi)
ST

e
0 -1.0000 -1.0000 0.0000 .00357107
1 -1.0667 -1.0000 0.0000 .00134720
2 -1.0667 -0.9646 0.0354 .00099558
3 -1.0481 -0.9646 0.0354 .00081727
4 -1.04381 -0.9439 0.0157 .00074352
5 -1.0396 -0.9489 0.0157 .00070593
6 -1.0396 -0.9417 0.0072 .00069003
7 -1.0357 -0.9417 0.0072 .00068134
8 -1.0357 -0.9383 0.0033 .00067847
9 -1.0339 -0.9383 0.0033 .00067672
10 -1.0339 -0.9368 0.0016 .00067597
11 -1.0330 -0.9368 0.0016 .00067559
12 -1.0330 -0.9360 0.0007 .00067543
13 -0.0326 -0.9360 0.0007 .00067535
14 -1.0326 -0.9357 0.0003 .00067531
15 -1 9357 0.0003 .00067530

.0324 -0.
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Table 2. Cowmparison of the iterative method with other technigues: reduction from a
fourth-order system to first-order models,
Orfigknal syslem 4(3) = —4-—«'8»'-'7—’ I8t %‘!?— vo24
8 ¢ L0s ¢+ 353" 1 S50s + 24
unit Step Response Yq < 1 - e b - e_'zL 4 2&—}t - e_“L
) bu,p response\ 2

Reduced Model Unit-Step Response Pransfer Funcrion & Error dc
=5 step R 9., 094890 ~0.0396510.9489 20 6&¢

ors 1-1.039%6e SiD. 6489 0.00070%9 3
i=4 step ~ -0.9489¢ -0.0481510.9489 .

ora 1-1.0481e 3709389 0.00074352
i=3 step _ ~0.9646L -0.0481s10.9646

ori 1-1.0481e 510 9648 0.00081727
i=2 step N .. ~0.9646L —0.0667310.9646

or2 1-1.0667e 310 9¢1¢ 0.00099558
Ngq(isia) ~ .
Second Cauer foruw 1-3 0.9231¢c ?0)55:‘” 0.00105241
(Weiberg: Shieh)
i=1 step - ~0.0667s4 1 - .

ort 1-1.0667¢ RS R 0.00134720
i=0 step -t 1 -

oro l-e ;‘.‘l 0.00357106

Routh Approximation
(Futton & Fiedland) _.,~oage 0
Third Cauer form ¢ T
{Shieh & Goldwman)

. jde

W
Ot
b
;
|

0.15710238
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- - o2 -
Jg = % (yy = v3)° dt (3-22)

A. Computational Procedure

To obtain the residues and poles in the reduced-order
model, set n=4 and 1=2 in eg. (2~7)-(2-18). The results

are summarized as follows:

Step l: Initial step (i=0)

0=
20" _ 20 20
where A = [kl Kz]
AL = a4,
Al— . -
ey = % for all i (3-24)

Step 2: Residue optimization (i=N)

PRI (3-25)
- AN' _ N 2N
where A = [Al Az]
oN=1' sN=1 oN-1
Py = (A7 AT
AN aN aN

3N = (3-26)



where

Solving ag.

Step 3:

&N+l =

AN+1"'
where G+l

1

je2>

AN+

SN+1
?

(3-26), &

Pole optimization

AN

where r A1

is obtained.

(1=N+1)

57

(3=-27)

(3-28)



~ ' o~ ~
A}\N+l - [AAN+1 AAN+l]
- 1 2
AN
4 a 2 a ]
q r
) N -l “N_ <N, 2
g=1 Xl+xq r=1 (A]+AL)
%N+l = -2 X
AN
4 a 2 o
g r
21 Wy rzl (A 43Ny 2
_? 2 g 2 'r’
Solving eq. (3-28), A§N+l is obtained.
Thus,
ANFL N e (3-29)

Step 4: 1=(N+2)th-step

Set N=N+2 and go to step 2.

The sufficient condition for the existence of a minimum
value of the objective function at the optimum point is
investigated.

From 2=2 in eq. (2-20) and (2-22)

1 0 7]
82Js Xf’l )
AN-
i 2
(&P 2
- 0
2 SNE
397 1 N o
— T (32)’ (3-31)
3 (AA ) Q TN T
- (Kz)
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Since eqg. (3-30) and (3-31) are positive-definite matrices,

the sufficient condition is satisfied.

The computational results by the iterative method are
shown in Table 3 and Figure 4.

As shown in Table 4, Figure 5 and Table 5, the itera-
tive method is superior to other methods of model reduction
of the unit-step response in the transient and steady-state

regions, and the value of the objective function.
Example 2

Consider a multivariable gas-turbine system shown in

eq. (3-32)

;‘95164.960‘52+{‘11133616.13o'7s+;‘1808490.2oo
1124082.200 _1501230.668_J 12538178.498]

s%+113225 5

[H4(s)] = 3 >
+1357.275 8 + 3499.750 s + 2525

(3-32)
The unit-step response for eqg. (3-51) has the form

[ -749.755894 | -1.3471t

! - m~ 37
Yy 1] 716.242133 L:1223,504692je

L4 = |y4'3) = |l1005.219207] *

"23.75188"} -1.8735t _ [0.119204] ~10.0047t
204.773557,° 0.962824 |
‘9.643081‘1e-99.9997t
12.549109;

-
T

(3-33)

Assume that the second-order reduced model can be expressed

as:
;o — ~ . = —_— —
~1 ~1 P . Al
. E’;,l - O‘q,l_} AT RIS L EuZ,l;e‘A]jt
Xz yl al O(.l Of.l —,}
2,21 1%0,2 41,2 2,2

(3-34)



able 3.

Optimum residues, optimum poles and integral-square errors for successive
iterative-steps for second-order reduced models of a fourth-order system.

: : : Xi S .
vy = G + 4 e 1t wad @25, Al < o

. ~1 i A1 i Step Response) 2
1 “1 Xl %2 X2 f0<Error /) dt
0 -1.0000 -1.0000 -1.0000 -2.0000 0.22024248
1 -1.2000 -1.0000 0.2000 -2.0000 0.00023915
2 -1.2000 -1.0334 0.2000 -2.5641 0.00014024
3 -1.2239 -1.0334 0.2442 -2.5641 0.00007157
4 -1.2239 -1.0393 0.2442 -2.6655 0.00006676
5 -1.2277 -1.0393 0.2516 -2.6655 0.00006502
6 -1.2277 -1.0411 0.2516 -2.6851 0.00006454
7 -1.2294 -1.0411 0.2543 -2.6851 0.00006433
8 -1.2294 -1.0419 0.2543 -2.6845 0.00006410
9 -1.2308 -1.0419 0.2558 -2.6845 0.00006394
10 -1.2308 -1.0424 0.2558 -2.6789 0.00006372
11 -1.2320 -1.0424 0.2571 -2.6789 0.00006356
12 -1.2320 -1.0429 0.2571 -2.6721 0.00006334
13 -1.2332 -1.0429 0.2583 -2.6721 0.00006318
14 -1.2332 -1.0433 0.2583 -2.6652 0.00006297
15 -1.2344 -1.0433 0.2594 -2.6652 0.00006281
16 -1.2344 -1.0437 0.2594 -2.6584 0.00006261
17 -1.2355 ~-1.0437 0.2605 -2.6584 0.00006245
18 -1.2355 -1.0441 0.2605 -2.6517 0.00006225
19 -1.2367 -1.0441 0.2616 -2.6517 0.00006211
20 -1.2367 ~-1.0446 0.2616 -2.6451 0.00006191

G838
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Table 4.

Comparison of the iterative method with various second-order reduced models of
a fourth-order system.

Original System:

H4(s)

53 + 752 + 24s + 24

s4 + lOs3 + 3552 + 50s + 24
Unit-step Response: Y, 1 - e b o g7t 4 g3t L it
Reduced Model Unit-Step Response Transfer Function f EzigrRespons%)2dt
0

i=5 step
OoP5

i=4 step
or4

1i=3 step
or3

Second Cauer form 1-1

(Weiberg;

N (Hisia)

3

i1=2 step
op2

Shieh)

1-1.
+0.

1-1.
+0.

1-1.
+0.

+0

1-1.
+0.

1-1.
+0.

-1.0393¢t
-26655¢t

2277e
2516e

2239e
2442e”

2239e
2442e”

.2309e”
.2309e

2292e”
2292e”
2
2

1
2

1
2

1.

2

1.

2

.0393t
.6655¢t

.0334¢t

.5641¢t

0435t
.3994¢

0429t
.4032¢t

e—l.0334t
-2.5641t
e

.023952+0.6939s+2.7703

82+3.70488+2.7703

.020352+0.6963s+2.7703

s243.7048s+2.7703

.0203s2+0.7ll7s+2.6497

82+3.59758+2.6497

0.7305s+2.5038
s2+3.44295+42.5037

0.7311s+2.5063

52+3.44618+2.5063

0.7273s+2.6497

52+3.59755+2.6497

.00006502

.00006676

.00007157

.00012404

.00012495

.00014024



Table 4 (continued)

Reduced Model

Unit-Step Response

Transfer Function

IO<

Error

Step ReSponSé>2dt

i=1 step 1-1.2e7 ¢ 0.8s+2
OP1 +0.2e 2t 5243542
N, (lisia) L o
Mixed Method 1 - % e t + % e 2t 9;%333213
(Shieh & Wei) s +3s+2
1 - 1.0972e" ¢ ~0.069452+0.83335+2
Ny (iisia) +0.0278e 2F 5243542
Routh Approxima- 1l - e.o'8279t 0.7947 (s+1)
tion (Futton & x{0.5041 cos (0.3307t) :
FFriedland) - 0.1 sin (0.3307t)} s +1.6557s+0.7947
b, (vavison) S TR R 10833542
S +3s+2
C, (Chidambara) 1 = % e b - % e 2t QL%EEEEiZ
s +3s+2
Third Cauer form 1-0.8843e 0-4289¢ s+2.3014
(Shieh & Goldman) —0.1157e_5'3657t 52+5.79465+2.3014
i=0 step OPO . _ .2
Cl(Chidambra) l - e t . e 2t _7§_i%_
Dy, (Davison) s“+3s+2

0.00023915

0.00033127

0.00113126

0.00114932

0.00792561

0.01144288

0.15485461

0.22024248

€9
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Table 5. Numerical representations of unit-step responses
according to various methods of reduction of a
fourth-order system into second-order models.

Time i=1 step i=2 step i=3 step
(seconds) Exact OPl OP2 OP3
0.0 0.000000 0.000000 - 0.000000 0.020359
1.0 0.578044 0.585612 0.588443 0.583363
2.0 0.850971 0.841261 0.849280 0.846522
3.0 0.947975 0.940751 0.946045 0.944990
4.0 0.981361 0.978088 0.980778 0.980397
5.0 0.993273 0.991924 0.993159 0.993023
6.0 0.997515 0.997027 0.997566 0.997517
Time Second Cauer D, Co C, (Chidambra)
(seconds) Formk/ (Davison) (Chidambra) Dm{(Davison)
0.0 0.000000 0.000000 0.000000 -1.000000
1.0 0.587412 0.651491 0.570886 0.496785
2.0 0.849199 0.874412 0.884172 0.846349
3.0 0.946487 0.954154 0.958099 0.947734
4.0 0.981071 0.983182 0.984682 0.981349
5.0 0.993329 0.993820 0.994378 0.993217
6.0 0.997650 0.997727 0.997933 0.997515
1/ o

=~ Weiberg; Shieh
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The objective function is;

_ a2 RS )

where Q 1is the weighting constant.

The results for Q=1 are shown together with the re-
sults of the second-matrix Cauer form expansion by Chen
(18] in Table 6. The integral—square error is bigger than
other examples, but error percentage (i.e., the error is

normalized by the initial residues) is small.

Example 3

Next it is investigated how well a third-order system
with double poles is approximated by a second-order model.

The original system is

NjulL

H3(s) = (3-36)
(s+1) " (s+3)

The unit-step response cf the original system is

Yy = % - % et - % £ et - f% e” 3¢ (3-37)
= 3 - .5 = -3 = -3
%9 = 3, %1 T T3 % 30 %3 12
(3-38)
A = Ay, = =1, Ay = -3

In the initial step, the repeated poles in the original

system are transformed into two single poles which are



Table 6.

716.242123

755894

Simplification of a fourth-order gas-turbine system to second-order models.

749 -1.3a7ie | 23-7PM88) g ggase |0-119204) 14 gog7e | 2-04308L| g5 gg97¢
Exact e + e + e + e
1005.219207| |-1223.504697 204.773557 0.962824 12.549109
[s o]
f Step Response\2 dt
Model Unit-Step Response o \Error
[ 716.242123] [ -751.385095] [ 26.039264] 4
op1 N o"1-3471e, ,"1.8735L 7. 932244
1005.219207] |-1226.427730) [208.9396424
[ 716.242123] | -751.284095] {_26.039264ﬂ
op2 + o 13477, o 18806t 7.909576
1005.219207] [-1226.427730 208.939647
[ 716.242123] | -752.351699] [ 27.04369 |
oP3 + e 1-3477¢, o 1-8806t 7.808392
1005.219207] |-1226.410759 [209.035801 |
Second-matrix [~ 716.236153] [ -705.416131 [-10.82002 |
Cauer form + e o 1-0062¢t 70.549237
expansion 1005.211092| [-1224.439730] [239. 228637

L9
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slightly different from each other, and they are chosen as
the dominant poles. Therefore, the reduced-order model has

no repeated poles and has a form of

ﬁi(s) ) (ao + o] + az)s (aokl + aOAZ + azkl)s + aoklkz
2 s1 i
(s = A7) (s - Xz) :
(3-39)
The unit-step response of the reduced-order model is
. . o1 A
Sl a1 A1 At ~1 A3t _
Y5 24 + ay e + ay e (3-40)
The objective function is
> i 2
J_ = % (v4 = y3)° dt (3-41)

A. Computational Procedure

The poles and residues in the reduced-order model are

obtained as follows.

Step 1l: Initial step (i=0)

20 _ -
/\l - }\l -+ ,,l
(3-42)
39 =, 4
2 17 &2
Here, let
= = (3-43)

o
.—J
|

|

™
[\
|

!

whers ¢ is an arbitrarily small number.
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ay = o for all i (3-44)
Step 2: Residue optimization (i=N)

The poles are kept constant at the previous step.
oJ

Solving o~ - O @g is obtained.
3(a)
A= R (3-45)
where AV = [i? Xgl
aN-1'" _ (aN-1 »N-1
A = [Al kz ]
pNgN o el (3-46)
where — -
1 2
AN=-1 aN=1 «N-1
N A A +12
w =
2 1
“N-1_oN-1 “N-1
r2 TPy Ao T
AN! A Al
M= ) el
% %og+1 %
q=0 X§‘1+A2 . (i§‘1+xl>2
fN = 2 x
;
; %2g+1 %2
= ~N-1 +N=-1 2
a=0 AT hgg (TR




Step 3: Pole optimization (i=N+1)

The residues are kept constant.

aJd

79

Calculating ___7%:T_ =0, A2N+l is obtained.
3aih
&= N (3-47)
where §N+l = [&§+l &g+l]
AN' _ [AN AN]
N+ 3N+ o+l (3-48)
where ~ N i3 —_
! )
23] (3+sl) 3
~N+1
@ =
AN ~N
4al az
AN, 2aN, 3 N, 3
(A5+AY) 2(A5)
_ 2 1 2 B
AXN+1’ - [AXN+1 A?\\I+l]
- 1 2
-~ :N -
[-% d2q+l % Gr 20L2 n
q=0 (X§+A2q+l)2 r=1 A0 e’
%V+l = -2 x
1l 2 2 &N 249
Z 2g+1 E r _ 2
L A ~ 7 AL
q=0 (x§+xzq+l)2 r=1 (3«02 (Far)’
AL o AN L RN (3-49)
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Step 4: 1i=(N+2)th-step

Set N=N+2 and go to step 2.

These steps satisfy the sufficient condition for the exis-
tence of a minimum in the objective function at the optimum
point.

The numerical solutions for € = 0.01 and = = 0.001 are
listed in Tables 7 and 8, and represented by Figures 6 and
7.

This procedure can be applied for the system with re-
peated poles of any order. The other time-domain techniques
are difficult to apply to the system with repeated voles as
mentioned in section 1.3(v) in Chapter I.

The continued-fraction-expansion method can be used.
For a comparison, the second Cauer form expansion by Chen

(18] is shown.

5 3

H_(s) = = ' (3-50)
3 (s+1)2(s+3) 3 + 7s + 582 + s°
= 1 (3-51)

3 I

=+ —

S 2 1

s 49 +
35 125 . 1
126s

The truncation of the coefficients of orders greater than

four leads to a second-order reduced model.
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Table 7. Reduction of a third-order system with double poles into second-order models
by the two-step iterative method, for ¢ = 0.01.

) . . i . i
S SR S L A N N S
€ = 0.01
) ~i ~1 ~i ~1i Step Response)?2
. 0‘l Xl % A2 {)<Error ‘> at
0 -1.250000 -0.990000 -2.50000 -1.010000 1.201421961000
1 -115.348411 -0.990000 113.785815 -1.010000 0.001810667500
2 -115.348411 -0.960420 113.785815 -0.979100 0.000918579497
3 -113.778780 -0.960420 112.182931 -0.979100 0.000630503496
4 -113.778780 ~-0.951155 112.182931 -0.969428 0.000544522859
5 -113.247361 -0.951155 111.641029 -0.969428 0.000515576228
6 -113.247361 -0.948278 111.641029 -0.966425 0.000507270598
7 -113.078418 -0.948278 111.468825 -0.966425 0.000504396559
8 -113.078418 -0.947388 111.468825 -0.965496 0.000503578500
9 -113.025804 -0.947388 111.415201 -0.965496 0.000503282391
10 -113.025804 -0.947113 111.415201 -0.965209 0.000503196359
11 -113.009550 -0.947113 111.398636 -0.965209 0.000503161881
12 -113.009550 -0.947028 111. 398636 -0.965121 0.000503151964
13 -113.004568 -0.947028 111.393557 -0.965121 0.000503146744
14 -113.004568 -0.947002 111.393557 -0.965093 0.000503144484
15 -113.003071 -0.947002 111.392031 -0.965093 0.000503143400
16 -113.003071 ~-0.946991 111.392031 -0.965085 0.000503142587
17 -113.002651 -0.946994 111.391602 -0.965085 0.000503142301
18 -113.002651 -0.946991 111.391602 -0.965082 0.000503142238
19 -113.002564 -0.946991 111.391511 -0.965082 0.0005031421 36
20 -113.002564 -0.946990 111.391511 -0.965081 0.000503142150




Table 8. Second-order reduced models for € = 0.001.

e = 0.001
[s0]
~1i i ~1 i Step Response) 2

i % Xl % X2 {)<Error P ’> at
0 -1.250000 -0.999000 -2.500000 -1.001000 1.200919034200
1 -1146.612888 -0.999000 1145.050387 -1.001000 0.001816373421
2 -1146.612888 -0.968764 1145.050387 -0.970631 0.000921336958
3 -1130.731887 -0.968764 1129.136055 -0.970631 0.0006307033014
4 -1130.731887 -0.9592914 1129.136055 -0.961121 0.000544075909
5 -1125.356617 -0.9592914 1123.750277 -0.961121 0.000514997475
6 -1125.356617 -0.956354 1123.750277 -0.958169 0.000506807917
7 -1123.647512 -0.956354 1121.037803 ~-0.958169 0.000503930098
8 -1123.647412 -0.955445 1121.037803 -0.957255 0.000503003594
9 -1123.114658 -0.955445 1121.504036 -0.957255 0.000502705051
10 -1123.114658 -0.955164 1121.504036 ~-0.956973 0.000502572221
11 ~1122.949630 -0.9551614 1121.338696 -0.956973 0.000502537734
12 -1122.949630 -0.955077 1121.338696 -0.956886 0.000502519119
13 -1122.898618 -0.955077 1121.287588 -0.956886 0.000502513818
14 -1122.898618 -0.955050 1121.287588 -0.956859 0.000502529800
15 -1122.882870 -0.955050 1121.271809 -0.956859 0.000502528847
16 -1122.882870 -0.955042 1121.271809 -0.956850 0.000502673900
17 ~-1122.878019 -0.955042 1121.266950 -0.956850 0.000502674148
18 -1122.878019 -0.955039 1121.266950 -0.956848 0.000502537861
19 -1122.876526 -0.955039 1121.265453 -0.956848 0.000502537970
20 -1122.876526 -0.9550038 1121.265453 -0.956847 0.000502538919

€L
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ﬁz(S) _ 2—0.27785 + 1.3888 (3-52)
s + 1.7778s + (0.8333

The unit-step response is of the form

¥, = 1.6667 = 1.2000 e"0-8889t 45 5957 cos (0.2079¢%)

+

1.4660 sin (0.2079t)] (3.53)
The integral-square error is
Jr = 2.71445781 (3-54)

As can be seen in Tables 7 and 8, the iterative method is

superior.
Example 4

Reduce a fourth-order linear time-invariant system to
a second-order model. The original system in this example

has the same output as in example 1(ii).

é =A x+du
(3-55)
yqg = &'X
where R 6 =2 Ff
0 -2 2 0 o]
A = é = i ;
0o 0 -3 1 0
0 0 0 -4 1
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By using the modal matrix P4 (x = P4 2),

1 1 -4 3] 1 -1 2 0]
0 1 =2 1 -1 0 1 2 1
P4= P4 = (3"56)
0 0 1 -1 0 0 1 1
0 0 0 1], 0 0 0 1

the original system transforms into a purely diagonal form.

2=A2Z+5bu

(3-57)
vyg =h'z
where =1 0 0 0] (1]
0 =2 0 0 1
1=plap, - b=2,'d =
0 0 -3 0 1
0 0 0 -4 1|
al =cp, = [ 1 2 -5 4]
The unit-step response of eq. (3-57) is;
- - - -4
g, = 1 - e "o e s e L oTeE (3-58)
ao = l, OLl - "l, C{.z = "l, OL3 = 2, C{.4 = "l
(3-59)
Al = -1, Az = =2, A3 = -3, k4 = -4

The second-order reduced model in the ith-step is obtained
by the elimination of the non-dominant eigenvalues, then

using eq. (2-34)
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21 - it Zl + él a
(3-60)
§12. = ﬁl zl
_ A7 0
where A% = Pgl At P, =
1
L
~ 17 aisd
Aq —l Ai bl )\lbl_!
9% = PZ d- = = z
S~ L ci"ik
b ASDS |
I_Z_ 2 2_3
PSANERES _ ol i
P2 is a 2x2 matrix and is truncated the modal
matrix P4, 4x4.
The solution of eqg. (3-60) 1is
Al oAl misd AR cinsiabe
y; = ag + bjhy e 1=+ bsh3 e™? (3-61)

With the control-vector optimization method discussed in
section 2.22(i), the control-vector 5 and eigenvalues A"

are optimized so as to minimize the objective function.

dt (3-62)

A. Computational Procedure

Following section 2.22(i), the optimum control-vector

and eigenvalues are obtained as follows.
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Step 1l: Initial step (i=0)

Assuming that the reduced-order model, eg. (3-60) con-

sists of the dominant eigenvalues of the original system,

eq. (3-55)
Xg 0 A, 0 10l
0l = = l (3-63)
0 A LO K%} _o -ﬂ

The first residue and output-vector are kept constant for

all steps.

&g =ay =1 for all i (3-64)

Aqt

n

—

! (1 2] for all i (3=-65)

1]
1>
1]

By substitution of eqg. (3-63) and (3-64) into eg. (3-61)

A~

the output of reduced-order model is, using bl = -1, and
52 = -2, the truncation of b vector, 4xl into §, 2x1.
7L =1 - e7F - 72 (3-66)

The state-space equation in the Z-domain is

) -1 0 (-1) (=1) 71
20 ( 120 + ( u

0 =2] _(=2) (0.5)

1
!

(3-67)

=
(]
1}
|
o
oD
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Step 2: Control-vector optimization (i=N)

The solution is, setting i=N in eqg. (3-61) and sub-

stituting eq. (3-64) and (3-65) into eqg. (3-61),

(3-68)

The eigenvalues are kept constant. To find §¥, solve

oJ
_; 0. The resulting equation is the replacement of
3(b™) _
AN by BN A' in eq. (2-13).
NN = N (3-69)
The solutions of eg. (3-69), &? and &2 are shown in Table
3.
’\N AN - —N ~ —N A
[ap 9l = [by By by Ayl
(3-70)
_ =N N
= [bl 2b2]

Thus, the recursive formulae in this step are

) 7 N~ 7
ool xf Ly 5
i = (3‘71)
o Y 0 AN-1
REr] 2
From eg. (3=-71)
=N _ =N =N _ 1 b _

The state-space equations are using eg. (3-71)
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AN - A —-N
] AN 1 0 AV lbl
AN _ 1 5N 1
Z = Z + u
- h XN—l - 7N-15N

_ 2 2 2

(3=-73)

= 2128

Step 3: Eigenvalue optimization (i=N+1)

The solution of eg. (2-41) is, set i=N+1 in eg. (3=-61)

??*l =1+ 5] ex§+lt + 253 ex§+lt (3-74)
and

AL LY L el (3-75)
The control-vector is kept constant. A2N+l is obtained by
solving 57Z%§%TT = 0. Replacing QN in eq. (2-18) with

5Y8', the simultaneous equations are obtained.

The recursive formulae are as follows:

§N+l = EN (3"76)
. . -
where 5771 = p¥*t g+
- 1 2
=N =D =N
2" = by 5l
$N+1.A2N+l - %N+l (3=77)
where $N+l and 371 are given by eg. (2-18) and replace @N
by B A . i§+l and i§+l are listed in Table 3.



The state-space equations are:

if*l 0
%N‘i‘l _ 2N+l +
- 0 XN+1 -
L 2
A§+1 = 2]2N+l
where AN+l lN + A2N+l

32

(3-78)

The original x-domain reduced-order model is obtained by

the transformation, eqg. (2-52) with 2=2. As an example,

the first two steps are summarized.

i=lst-step: Control-vector optimization

From the initial step (i=0)

30 01 A 0| -1 o
A ' - !
0=t 20| ' | = ‘ | (3-79)
] B kd IR
. ~1 ~1 .
Solving eq. (3-69), a1 and o, are obtained.
~1 ~l _ -
a] = -1.2, a5y = 0.2 (3-80)
Using eq. (3-79), (3-80), and (3-72), the eigenvalues are
fixed and the control-vector is optimized.
" = - — N
) P} o] [ o] -1 o
Al - |- All =’ 0l = § : (3-81)
o3 0o X L0 -2
_ 2] | 2] 02
=1 _ -1 _ _ sl _ 1 ~1 _ -
by = o] = 1.2, by = 5 35 = 0.1 (3-82)



So that,
Zl - ﬁl zl - él a
A 1
Y% =6z
~ r N
1 -1 Ag 0 -1 0
where A7 = P2 A P2 = ol =
l 0 AZ 0 -2
_ _ _

~O=1" —

N -1 - -1.2)1 ] 1.
~1 -1 1°1 |
E-PZ d = Ao_lt = I:r

1253 [(=2)- 0 0.1) ] to.
At'=c'p, = [1 2] =R' for all i
P, is a truncation of the modal matrix P4

1
-,

§2=

1 -1.2 e

1 -1
P 3
1,

The unit-step response of eq.

t

(3-83)

+ 0.2 ea-Zt

is

2

(

=

2

-

33

3-83)

(3-84)

(3-85)

The original x-domain reduced-order model is obtained by

inverse transformation.

where

21l A1 1
Ay x° + §O u
A1r A1
Ly X
A1o-1 _r‘l
2 A P2 =
_0

(3-86)



84

—-' —
7951 1.0
A1 el 1°1
bl =2, pl=p =
By T P2 2 TFyli0z2 0.2
A2P2 -0
SRS RR
hy =h" Py~ = (1 1]

The output §% is not affected by the transformation.

i=2nd-step: Eigenvalue optimization

The control-vector §2 is fixed. The eigenvalues are
°J
optimized using eq. (2-18). Solving eg. (2-18), A; =0,
9 5 .3 .2 3 (AA%)
replacing a” by 5 A, 4X] and 41 are obtained.
2 2 -
AR] = -0.0334, AR5 = -0.5641 (3-86)
From the previous step
<\l - 4‘0 - - ~1 = «0 - - -
AL = AL S 1, Ay = Ay = =2 (3-88)
and the relationship,
§N+l - EN + A_‘X_N+l
22 . el 2 7
B 0| R+ af 0
. 2} =! ' ' 1 2?
0 Agj 0 PIRIERY]
-1.0334 0 W
= (3-89)
L 0 -2.5641
5% = 5t (3-90)
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where 52 5t 1.2
52 _ 1 =1 _ 1
B - 2| Bt -
22, 25 0.1
Thus
_2-2 - KZ 22 + §2 a
5 (3-91)
A2 2'75
yy=10"2
where ~2 — =
a2 Al 0 -1.0334 0 '
A = 2 = ‘
LO )\2 _O -2.5641_[
[22=2 sl 2, =11
2 _ APy (A + 4A]) bl}
= 7 |22z2 s 1 22, =1
_}2bgj (A + 840 by
[{-1 - 0.0334)+(1.2) (‘1.2406‘
(-2 - 0.5641)-(0.1) | =0.2564
A% =8 =1 2]
The unit-step response of eg. (3-91) 1is
92 =1 - 1.2 g7103E L g g o72.38518 (3-92)
The reduced-order model in the x-domain is:
22 _ a2 22 2
X = Ay x * §o u
(3-93)
A2 _ p2'22
v, = by X
~-1.5307]
where 5 5 1 _ [-1.0334 1.5307]
R T P2t Fa T
0 -2.5641



0.9836

bg = P2 _b_z =
-0.2564

A2' a2t -1
RS =A% P3T =1 1]

The state-space equations of the succeeding steps are

obtained similarly.

86
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CHAPTER IV. CONCLUSIONS

As discussed in the preceeding chapter, the proposed
method is superior to other methods in the sense of the
integral-square error as shown in Table 2.

Since the poles (or eigenvalues) are shifted slightly,
the reduced-order model is stable if the original system
is stable.

For the case of system with complex poles (or eigen-
values), both real parts and imaginary parts of residues
and poles (or eigenvalues) are optimized respectively at
each step.

The method can be easily extended to the reduction of
other types of the large linear system, for example, a

discrete-time system, an unknown original system and so

on.

The other characters of the proposed methed are as
follows:

1) In each iterative step, there exists a minimum of the
objective function. The necessary and sufficient
conditions for existence of an optimum are satisfied
in each step.

2) The iterative scheme improves the steady-state and

transient responses cyclically as depicted in Figure
2, so that the method gives a good approximation

for both responses.



3)

4)
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A satisfactorily reduced-order model is attained after
few iterative steps.
The proposed method is also effective to the multi-
variable system. As shown in Table 6, the method is
superior to the matrix continued-fraction-expansion
method.
As shown in Tables 7 and 8, and Figures 6 and 7, the
method can be applied for the system with repeated
poles (or eigenvalues) by making the repeated poles
(or eigenvalues) slightly different in the reduced-
order system. This is found in comparison to the re-
sult obtained by the second Cauer form expansion method
shown 1in (3-54) with the results of Tables 7 and 8.
The residues and poles (or eigenvalues) converge
monotonically with the iterative steps.
As shown in Tables 1, 3, 7, and 8, the integral-sguare
error decreases monotonically as the number of the
iterative steps increase.
The integral-square error consists of the difference
between the exact and approximate solutions. These
solutions have in the form of exponential function.
The difference of the exponential functions does not
converge into a constant. Ther=fore the integral-
square error converges into a very small value after
a large number of iterations, therszafter it fluctuates

around this value. The approximate-model at this step
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might be the best approximation of the original system
in the two=-step iterative method. This is the limita-
tion of the proposed method.

The fluctuation is found in Tables 7 and 8 for the
reduction of a third-order system with double poles

into a second-order model. As shown in Table 7, for

(L]

= 0.01, the integral-square error decreases mono-
tonically until the 19th iteration. However, after

the 19th iterative step, the error fluctuates around

Jr = 0.0005031421 (4-1)

This is found from Table 7:

Number of Integral-square
Iteration Error
(1) (Jr)
18 0.000503142238
19 0.000503142136 (4-2)
20 0.000503142150

The approximate-model around the l1l9th-step will give
the best apvroximation of the original systam.
For ¢ = 0.001 in Table 8, the error fluctuates

around
J_ = 0.0005025
r

After the 15th iteration.



30
While the residues and poles still converge montoni-
cally.
The similar fluctuation occurs to the reduction of

the other high-order systems.
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