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The Aucanquilcha Volcanic Cluster (AVC) is the erupted part of a magmatic
system with a complex and long-lived history. The AVC lies at 21°S in the high Andes
and is built on thick continental crust. The thick crust in the area combined with the
prolonged magmatic activity make it an excellent natural laboratory for examining long-
term evolution of a continental arc volcanic system. The eruptive products deposited over
the last 11 million years of volcanic activity preserve snapshots of the developing,
dominantly dacitic, magmatic system and gives indications of the processes occurring at
depth. In this study, the textural and compositional diversity of amphiboles from selected
dacites inform the development of the intensive magmatic parameters including pressure,
temperature and volatile content, during the protracted magmatism observed at the AVC.

There are 4 dominant amphibole compositions erupted at the AVC, higher
aluminum magnesiohastingsite, pargasite, and tschermakite and the relatively low
aluminum magnesiohornblende, using the nomenclature of Leake et al., 1997.
Amphiboles in early erupted dacites (11-8 Ma) occur in two compositionally distinct

aluminum populations and have diverse textures. During voluminous dacite volcanism



between 6 and 2 Ma, amphiboles are most strongly compositionally zoned, and while still
displaying textural diversity, some equilibrium textures common in the early and late
stages are rare. In the youngest stage (1-0.24 Ma), amphiboles in many dacites have two
compositional populations distinguished by alunimum; equilibrium crystals with thin or
no reaction rim are most common in the amphiboles from this stage.

Changes in CI, F and S and stable isotopes of the system were used as indicators
of the evolution of the magmatic system. Fluorine increases in amphiboles over the 11
million year magmatic history independent of amphibole composition, implying a
system-wide increase in F. Sulfur and chlorine in amphiboles correlate well with
aluminum in amphibole: low aluminum amphiboles have low S (up to 40 ppm), whereas
higher aluminum amphiboles had sulfur contents from 70-160 ppm. Amphiboles with
lower aluminum have lower Cl contents than amphiboles with higher aluminum.

Coupled amphibole geothermometry and geobarometry are utilized in this study
to investigate pressure and temperature of the magmas at the AVC. Amphiboles from the
early group are consistent with eruption of dacite from discrete magma batches: some
residing at shallow levels of ~1-2 kbar and ~700-800 °C and some deeper at ~4-6.5 kbar
and ~750-850 °C. It is interpreted that with time, the dacitic magma reservoir becomes
integrated at relatively shallow levels (1.8-3.5 kbar and ~800-900°C). In waning,
increasingly silicic stage of volcanism (~1-0.24 Ma), dacite magma is erupted from a

shallow and cooler system of ~0.5-1.8kbar and ~700-800 °C.
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Dynamics of a Long-lived Magmatic System as Indicated by Variations in Amphibole
Composition and Textures in Dacites Erupted over 11 M.y. at the Aucanquilcha Volcanic

Cluster, Central Andes, Chile



Introduction:

The Aucanquilcha Volcanic Cluster of northern Chile has been active for the last
11 million years (Grunder et al., 2008). Eruptive products from the 11 million year
lifespan of the system give snapshots of intensive parameters of the magma that inform
the life-cycle of a long-lived volcanic system. Prolonged activity at a single volcanic
cluster provides a natural laboratory for tracking the development and maturation of long-
lived magmatic systems as sampled by successive volcanoes. Recent work in the
processes related to pluton growth has led to a paradigm shift away from large pots of
homogenous magma towards a model of incrementally emplaced plutons (Glazner, 2003,
Paterson, 1995, Coleman 2003, 2004, Lipman 2007). Some of the questions to ask with
respect to long-lived silicic volcanism include: At what depth in the crust is the magma
being staged? To what degree is the magma interacting with crust or is it cannibalizing its
own plutonic precursors? For how long do these processes occur? How do volatile
contents and compositions change over the lifespan of the system?

In this study, I will investigate amphiboles in selected dacites that span the 11
million year history of the system. I build on the major and trace element evolution of the
Aucanquilcha Volcanic Cluster (AVC), a long-lived volcanic system in the Central
Andes (Grunder et al., 2008) and use amphiboles in dacites as an indicator of the
evolution of the entire system. The evolution in textures and composition of amphiboles

in dacites from the evolving granitoid plutonic complex are used to infer the pressure,



temperature, and volatile evolution of the plutonic underpinnings as they evolve over the
magmatic system’s 11 million year history.

By considering the textural and compositional diversity of amphiboles over a
restricted bulk composition, I aim to unravel the magmatic conditions that lead to
compositional homogeneity but textural heterogeneity. Work on Pinatubo (Holtz, 2005;
Scailliet and Evans, 1999), Unzen, Mt. St. Helens (Rutherford and Devine, 1988; Carroll
and Wyllie, 1990), as well as studies of synthetic samples and other natural
dacite/granodiorite compositions (Naney 1983), have constrained phase relations in
compositions similar to the AVC. These studies have shown that amphiboles form at
temperatures from 675 to 975 °C , with water contents above 3.75 wt%. An increase in
pressure from 200 to 800 MPa expands the stability of amphibole and restricts the
pyroxene stability field.

For this study, a temporally representative suite of amphiboles was chosen to
track the 11 million year evolution of the system. Texture, composition and volatile
content of amphiboles were analyzed as indicators of magmatic conditions at the time of
amphibole crystallization and speak to the complex and prolonged magmatic history at

the AVC.

Geologic Setting:

The Aucanquilcha Volcanic Cluster (AVC) includes ~20 Miocene to recent

volcanoes and is located at 21°S. In this region of northern Chile, the Nazca Plate



subducts below the South American Plate at a rate of ~8mm/yr with a dip angle of
approximately 25° (Geise et al., 1998) (Figures 1 & 2). The Aucanquilcha Volcanic
Cluster (AVC) is part of the Central Volcanic Zone of the Andes and has been active for
~11 million years (Grunder et al., 2008). Here the continental crust is exceptionally thick
(>60km, Geise et al., 1998) and the isotopic character of the volcanic rocks of the Central
Volcanic Zone indicates extensive interaction between magma and crust (e.g., Woerner
1988; Davidson, 1992; Schmitz 2001). The AVC sits at the northern boundary of the
Altiplano Puna Volcanic Complex, that overlies a magma body as inferred from a seismic
low velocity zone (see Zandt et al., 2003). This zone of seismic wave attenuation lies
between 17 and 30 km depth and has been linked to a Miocene ignimbrite flare-up in the
back-arc region.

The AVC has an areal extent of ~700-km?” and is mainly composed of andesite
and dacite lavas (~57 to 69 wt. % SiO;) and a small ash-flow tuff. The eruptive volume
of the system is ~327+20 km’ (Figure 3). A majority of this volume was erupted between
6 and 2 Ma as dacite. (Figures 4 & 5) (Table 1). The AVC makes up a calc-alkaline suite,
slightly enriched in potassium, but within the range reported for the Central Volcanic
Zone. Forty **Ar/* Ar ages for the AVC range from 10.97+0.35 to 0.24+0.05 Ma and
define four major, 1-3 million year pulses of volcanism.

The first pulse of magmatism (~11-8 Ma, Alconcha Group) defines a crudely
bimodal pyroxene andesite and dacite suite and produced 7 volcanoes (~42km”) and the
4-km’ Ujina Ignimbrite. After a possible two million year hiatus, the second pulse of

volcanism (~6-4.2 Ma, Gordo Group) produced at least 5 volcanoes with compositions
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Table 1.

Approximate Volume Cumulative
Volcanic Center Age (M.y.) (kmd) sum (km®)
Tuco 11 1.1 1.1
Alconcha 10.5 15.7 16.8
ji Coscalito, Coasa 8.8 14.1 30.9
Qo Ujina Ignimbrite 8 4.5 35.4
9 g Amincha 7.99 4.6 40
<0 Achupella, Inca 7.5 6.4 46.4
S Puquois 5.6 6.8 53.2
o Gordo 5.5 36.9 90.1
9 |LasBolitas 5.3 5.5 95.6
-g Paco Paco 4.3 5.5 101.1
o Pabellon 4.1 9.4 110.5
Platform 3.55 100 210.5
Mino 3.3 14.5 225
o Polan 3.3 12.5 237.5
() Pampas 3.3 0.9 238.4
° La Luna 3.3 18.7 257.1
% Casisca Flow 3.3 0.5 257.6
o Tres Monos 3 29.2 286.8
o Chaihuiri 2.3 3.1 289.9
S Azufrera 0.92 21.1 311
3 |Rodado 0.85 9.1 320.1
§ Cumbre Negro 0.45 0.7 320.8
< | Angulo 0.1 5.8 326.6

Age relations are based on Ar/Ar age dates as well as stratigraphic relations
and are taken from Grunder et al., 2008.

10



11

ranging from pyroxene-bearing andesite to dacite. The third pulse (~3.8-2.0 Ma, Polan
Group) represents the most vigorous activity in the history of the AVC, with eruption of
at least another 5 volcanoes, broadly distributed in the center of the AVC, and composed
dominantly of biotite-amphibole dacite; andesites at this stage occur as magmatic
inclusions rather than lavas. Mino, which lies at the periphery of the system is an
exception and erupts dominantly andesites. The fourth pulse and most recent activity (1
Ma to recent) is in the center of the AVC at Volcan Aucanquilcha, a potentially active
composite volcano made of biotite-two amphibole dacite with andesite and dacite
magmatic inclusions.

Four major patterns mark the evolution of the system. 1) The oldest centers occur
on the periphery and the younger centers towards the middle of the AVC, creating a
bulls-eye pattern of volcanism. 2) the compositions erupted are more homogeneous in
time and more silicic. 3) There is an increase in the eruptive volume of material as the
system matures and becomes dominantly dacitic. 4) Over time, the mineral assemblage
changes from being dominantly anhydrous, two pyroxene+/- olivine with lesser
hornblende, to assemblages with abundant amphibole and biotite. (Figure 3 & 6).

Grunder et al. (2008) interpret this progression of anhydrous to hydrous, low
volume to voluminous and decreasing age towards the center of the cluster to reflect the
growth of an integrated and evolved middle to upper crustal granitoid magma reservoir
after several million years of fitful volcanism-similar to that described by Zandt, 1999,
for the nearby APVC. The evolutionary succession of the AVC is mimicked by other

long-lived intermediate volcanic systems, like eastern-central Nevada (Gans et al., 1989,
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Grunder, 1995) and Yanacocha, Pert (Longo, 2005). The episodic and long-lived history
of the AVC also finds an analog in the 10-m.y. history and incremental growth of the

Tuolumne Intrusive Series (Coleman et al., 2004; Glazner et al., 2004) (Figures 7 & 8).

Approaches to the problem:

Dacitic compositions are erupted over the entire 11 million year history of the
AVC, and were thus selected for investigation. In addition the onset of dominantly dacitic
eruptions coincides with an increase in the volume of eruptive material. In this study I
look at amphiboles at this restricted bulk composition to determine the evolution of dacite
magmas over the 11 million year history of the volcanic system. Whole rock and modal
variability in the volcanic systems are combined with variations in amphibole
composition, texture and volatile content, to track the depth and temperature at which
dacites are forming and to infer the evolution of the magmatic underpinnings of the

Aucanquilcha Volcanic Cluster.

Changes in whole rock composition and eruptive volume:

The evolution of the dacites over time are combined with the known eruptive
history of the system. Changes in bulk composition and volume of eruptive products can
be correlated to the dacitic history determined in this study from amphiboles. Changes in
the eruptive volume of a system can be used as a proxy for the heat budget of the system.
Homogenization over time of the erupted products implies an amalgamation of magma

inputs and crustal melts, or some other MASH-type process (Melting, Assimilation,
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Figure 7.

Cumulative eruptive volume of the AVC compared to analogous
intermediate volcanic systems including East-Central Nevada and
Yanacocha, Peru. (Data from Grunder, 1995 & 2008, and Longo
2005.) In all three systems, the increase in eruptive volume is
associated with an increase in the eruption of dacitic
compositions, and a transition to a more hydrous mineral
assemblage.
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Storage and Homogenization), which leads to the homogenization of the magma source.
It remains unclear whether the apparent density cap present in the Polan Group forms as a
function of repeated (but disconnected) magmatic pulses which results in an area of

thermally mature and similar crust, or if there is actually a large liquid silicic reservoir.

Amphibole compositions:

The general formula for an amphibole is A2)B2CsT302(OH, F, Cl),. Common cations

for each site are listed below.

A site: empty, Na, K
B site: Ca, Na
C site: A1V, Ti, Cr, Fe*™*, Mn, Mg
T site: Si, Al'Y

Variations in the complex structure of amphibole can be taken as indicators of the
pressure, temperature, composition and fO,. Zoned amphiboles most likely record
convecting or pulsing within a chamber with amphibole stable conditions (Femenias,
2006). Compositionally diverse amphiboles within a sample imply stalling or mixing of
magmas within the magmatic plumbing system. Variations in amphibole composition
from the core to rim may indicate the effects of degassing, crystallization or mixing of

magmas.



17

Amphibole textures, mode size and habit:

Texture:

Variations in the presence and thicknesses of reaction rims on amphiboles, as well
as the presence of completely reacted amphiboles can be used as indicators of the time
that the amphibole-bearing dacitic magmas experienced in or out of equilibrium (Browne,
2006). Abundant disequilibrium textures imply changes in pressure, temperature and
water content of the magma after the crystallization of amphibole. Work on amphiboles
from Mt. St. Helens has shown the amount of time needed to form rims on amphiboles is
on the order of days to weeks (Rutherford and Devine, 1988). Abundant equilibrium
textures will imply that amphibole-bearing dacites travel quickly to the surface and
experience less time out of equilibrium. Textural heterogeneity implies mixing and/or

stalling of magmas.

Mode:

Phase equilibrium of granodioritic compositions similar to the AVC have been
constrained by Naney (Figure 9). Observed mineral assemblages can be compared to
these phase diagrams to estimate ranges of temperatures and water content of the parent

magmas.

Size and habit:



Temperature 'C

1300 -

; _:' Rimmed Hb

@ Hb cored with px

/m/ Hb cored with bt

E Hb cored with plag or melt
U Equilibrium hb

1100

800 -

700 A

Bt

600 - . , . . . . . . .
0 2 4 6 8 10 12 14 16 18 20

Wit% H20

Figure 9. Simplified phase stability diagram of a granodiorite
composition at 800MPa after Naney, 1983.

Px=pyroxene, Plag=Plagioclase, Hb=Hornblende (amphibole) and
Bt=Biotite. Equilibrium amphiboles form within the amphibole stability
range. Amphiboles cored with pyroxene may form by either a decrease in
temperature or an increase in water. Hornblendes cored with biotite may
form with increases in water or temperature. Amphiboles cored with
plagioclase or melt may form over a wide range of magmatic conditions.
Rimmed amphiboles form in various magmatic conditions; the
composition of the rim is important in determining the magmatic
conditions which contributed to rim formation which could include,
increases or decreases in temperature, or decreases in water content.
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Mineral size and crystal habit can be indicators of magmatic conditions. Rapidly cooled
magmas will host many small crystals, whereas thermally stable magmas generally form

fewer, larger crystals.

Amphibole volatiles:

Volatiles in amphiboles can be used as a proxy for the volatile composition of the
melt at the time of amphibole crystallization (Sato, 2004).

Fluorine can be used as an indicator cannibalism of magmatic precursors--fluorine
is left in the magma as other CI and water more readily fractionate into the vapor phase.
Increases in the fluorine content might then be related to differentiation to F-rich magma
or to the assimilation of hydrothermally altered crust.

Changes in water, chlorine and sulfur between samples may be related to changes
in the magmatic system. Changes within individual mineral grains from core to rim, and
variations within a sample of these volatiles could be particularly helpful to determine if
the crystals have experienced degassing, mixing or assimilation of distinct volatile
sources. If the variations of Cl from core to rim in amphiboles correspond to changes in
the ratio of [Mg/(Mg+Fe)] (the Mg#), then we could relate these changes to fractional
crystallization, (and or mixing). Decoupling of Mg# and Cl in amphibole may simply

indicate that a Cl-rich fluid phase was not lost during amphibole crystallization.
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Amphibole Thermometry and Barometry

Plagioclase-amphibole geobarometer and thermometer can be utilized to determine the
pressure and temperature of amphibole formation. Investigation of amphibole-bearing
dacitic magmas over the lifespan of the volcanic system will provide snapshots through
time of the formation of dacitic magmas at a long-lived volcanic system and how (if at

all) the system varies over time.

Methods:

Amphibole-bearing dacites (and some silicic andesites) were chosen for this study
to track the evolution of the system.

Over the life of the AVC, the eruptive products range in SiO, from 57-69 wt %.
(Figures 5 & 6). Because dacites are common throughout the volcanic history of the
AVC, they were chosen as a monitor of the evolution of the system.

Whole rock major element and trace element data were compiled from Klemetti,
2005 and McKee, 2002 (Table 2).

Dacites spanning the 11 million year history of the AVC were examined
petrographically. Amphiboles in thin sections were counted and categorized texturally
(by core and rim types) using a petrographic microscope at 2x magnification.

Amphibole-bearing samples were selected for amphibole mineral analysis.
Microprobe analyses of thin sections and grain mounts were performed on the Cameca

SX-100 at Oregon State University. The mineral phases targeted included, amphibole,
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plagioclase and minor biotite and pyroxene. (See appendix for complete data.) Back
scatter electron (BSE) images of some amphibole and plagioclase crystals were also
taken (See appendix for a catalog of all BSE images). Co-existing textural amphibole-
plagioclase pairs were identified and selected for analysis and use for geobarometry and
geothermometry after Holland Blundy, 1994, and Anderson and Smith, 1995.

Volatiles including Cl, F, S and CO,, as well as hydrogen isotope data on selected
amphibole grains were acquired using the SIMS housed at the Department of Terrestrial
Magnetism, Carnegie Institute of Washington in D.C., where amphibole mineral
separates from selected dacites (and one mafic inclusion) were mounted on indium,
polished and coated with a thin film of gold. Standards of glass, and amphibole were run
throughout the analyses and used to standardize and correct the data (Table 3). (See
appendix for details on data correction procedure for SIMS data.)

To measure the stable isotopes of hydrogen and oxygen in mineral phases, 0.2-0.4
microgram aliquots of hornblende and amphibole were wrapped in silver packets ablated
in the stable isotope line housed at Oregon State University, Wilkinson Hall, Room119B
modeled after Sharp, 2001. The isotope values of the resultant gases were measured on
the TCEA housed at Oregon State University, College of Oceanic and Atmospheric
Sciences Burt Hall (Table 4). Water values were not reported in this study as the laser
treatment does not liberate all water in the mineral, only that which is contained at the
hydroxyl site (Sharp 2001). Algorithms for the conversion of oxygen stable isotopes in
hydroxyl groups to stable isotope values in the mineral are reported in Zheng 1993.

(Values used for hydroxyl correction are reported in the stable isotope discussion, Table



Table 3.

Volatile and stable isotope data collected on amphiboles from the AVC using SIMS.

(See text for details about collection and correction of D/H data.)

Sample # H20 wt% CO2ppm Fppm Sppm Clppm D/H
S |AP17#2 1.28 2.78 1259 | 40.5 528 [-148
£ |AP17#3 0.72 2.93 1493 | 93.6 266 -72
VM10#1 1.24 3.06 1981 | 77.2 188
VM10#2 0.91 4.16 2392 | 97.3 209
VM10#3 0.99 4.33 1909 | 114.3 | 260 [-143
2 |VM10#4 1.04 3.06 2192 | 99.2 217
S |VM10#5 1.20 5.74 2251 | 90.4 199 |-168
2 AP2-98#1 1.65 4.19 2875 | 99.2 312
o
?/g; AP2-98#2 1.56 3.53 2795 | 904 319 | -118
AP2-93#1 1.54 10.16 3256 | 13.9 247 |[-145
‘; AP2-93#2 2.49 33.58 7022 | 162.7 | 627 |-123
o |AP2-92#1b 1.53 1130.09 [ 3450 | 194 367
N |AP2-92#2 1.53 3.61 3544 | 11.5 318 | -119
AP2-77#2 1.52 2.82 2803 | 11.9 815 |-119
AP2-77#3 1.64 2.20 3609 | 14.1 549
AP2-61#1 217 2.01 4184 | 17.7 574 -73
AP2-61#2 2.12 2.74 4051 | 18.6 610 -41
AP2-61#3 2.1 2.38 4134 | 17.8 595
AP2-61#4 2.12 2358.50 | 4079 [ 24.6 565
S AP2-60#1 1.56 5.10 3783 | 1011 203 [-164
-‘—é’ AP2-60#2 1.58 15.41 3536 | 166.4 | 448
g : AP2-60#3 1.66 4.18 3451 | 98.6 505 [-147
§ o |AP2-60#4 1.68 5.86 3361 | 99.2 209
<| ® |AP2-60#5 1.43 4.65 3480 | 86.0 394
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TABLE 4.

Stable Isotopes from amphibole, biotite and plagioclase from the AVC

Volcan Aucanquilcha samples are divided here into 4 eruptive stages after

Klemetti, 2005

*Corrected TCEA Oxygen isotope values are reported in Table 6, and treated in

the discussion.

**Plagioclase oxygen values are reported and discussed in Klemetti 2005.

D/H %o
Sample # Center (TCEA) | Oxygen %o (TCEA)* [Mineral
AP2| 61|Stage 4 -60.5 -3.72 Bt
AP2| 61|Stage 4 -53.4 -3.82 Bt
AP2| 93|Stage 3 -47.6 -2.11 Bt
AP2| 93|Stage 3 -12.5 -2.89 Bt
AP2| 25|Stage 1 -22.1 0.04 Bt
AP| 39|Stage 1 -70.1 -2.32 Bt
AP| 39|Stage 1 -76.5 -0.11 Bt
AP 8|Platform -67.1 2.14 Bt
AP| 37|Paco Paco -61.7 1.23 Bt
AP| 37|Paco Paco -69.0 -0.71 Bt
D/H %o
Sample # Center (TCEA) | Oxygen %o (TCEA)* [Mineral
AP2| 61|Stage 4 -56.3 1.14 Hb
AP2| 93|Stage 3 -70.7 -1.60 Hb
VM99| 10[Mino -53.3 0.56 Hb
AP 17| Tuco -38.9 -1.75 Hb
D/H %o
Sample # Center (SIMS) |Mineral
VM10#3 Mino -143  [Hb
VM10#5 Mino -168 [Hb
AP17#2 Tuco -148 Hb
AP17#3 Tuco -72 Hb
AP2-98#2 Stage -118 |Hb
AP2-93#1 Stage 3 -145 [Hb
AP2-93#2 Stage 3 -123  [Hb
AP2-60#1 Stage 4 -164  [Hb
AP2-60#3 Stage 4 -147 Hb
AP2-92#2 Stage 3 -119 Hb
AP2-77#2 Stage 4 -119  |Hb
AP2-61#1 Stage 4 -73 Hb
AP2-61#2 Stage 4 -41 Hb
Oxygen %o
Sample # Center (WSU)** [Mineral
AP2-47 Stage 1 5.73 plag
AP2-96 Stage 2 6.23 plag
AP2-100 Stage 2 6.02 plag
AP2-92 Stage 3 6.47 plag
AP2-77 (gmi) |Stage 4 6.66 plag
AP2-61 | Stage 4 6.57 |plag
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5.) Reported oxygen isotope values of plagioclase from Klemetti are also treated in the
discussion.

RESULTS:

Amphibole Textures and Textural Abundance:

Amphiboles in dacites at the AVC can be categorized by the textural variations
among cores and rims, and help to define the thermal and magmatic history of the AVC
(Figure 10). There are three major types of rims: 1) euhedral crystals without reaction
rims, which we refer to as plain or equilibrium rims; 2) thin reaction rim (< 25 p); 3)
thick reaction rims (>25 ). There is a 4™ type of rim that is not common, but when
present is abundant (ex. AP-00-61B)—this rim texture consists of euhedral small
amphibole, pyroxene and oxide crystals along the rim of larger amphibole phenocrysts,
similar to the “gabbroic rims” described by McKee. This texture is most common in the
two quenched mafic inclusions (QMI), and in the andesites of Mino. There are three
types of cores in the AVC amphiboles: 1) equilibrium; 2) hollow or glass in the center; 3)
cored by other, usually mafic, phases- commonly biotite or pyroxene. Nearly all rim
types are found associated with all core types (Figure 11). Of course as petrographic thin
sections are a two-dimension rendering of a three-dimensional system, some textures,
(particularly hollow-cores) may be under-represented in the textural categories.
Additionally, some rim thicknesses may have been over-estimated.

In the Alconcha Group (11-8 Ma), all core types are observed (Figure 12). Most

rims are thin or thick. AP-00-17-Tuco has two major textural populations the first with
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Figure 11.

Summary of textural variability of amphiboles in dacites at the AVC.

red amphiboles are most common in the Gordo and Aucanquilcha groups, however in

rdo the amphiboles are most commonly cored with pyroxene (px), whereas at Aucanquilcha
otite (bt) is more common in the cores. Older samples overall have more thick rims, and a
ater distribution of textural types than the younger samples. In Polan, where amphibole

»mes a dominant phase, the textural variety of amphibole decreases. At Aucanquilcha
phibole is common, but overall is smaller and makes up a smaller modal percentage than
ther groups.

29
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plain cores and thin and thick rims: only a few amphiboles were noted to have melt or
hollow cores in this sample. The second population of larger amphiboles is less abundant
and commonly cored by pyroxene + plagioclase. AP-00-82-Amincha, had only 5
amphiboles in the section (although there is more amphibole in the groundmass, these
were not detectable at the scale of these observations.) The amphibole phenocrysts
present had either plain or hollow cores with thin or no rim. In AP-00-03 there are no
amphiboles with thick rims, most have thin rims with plain or hollow cores.

In the Gordo Group amphiboles (6-4.2 Ma), textural diversity is maintained
(Figure 13). Amphiboles from the Gordo Group are most commonly cored with pyroxene
and sometimes olivine. Amphiboles with thin or thick rims are more common than plain-
rimmed amphiboles. Those grains cored with mafic phases always have thin or thick
rims. Both AP-00-37 and AP-00-31, from Paco Paco, possess very few amphibole
phenocyrsts that are cored with mafic phases; this volcanic center is dominated by plain
amphiboles with thin or thick rims. AP-00-86-Gordo displays greater textural variety
than Paco Paco.

By the time of the Polan Group (3.6-2.4 Ma), the textural diversity has diminished
(Figure 14). Amphiboles cored with mafic phases, or hollow, are uncommon; most
amphiboles have thin or no rims. An exception to the textural homogeneity observed in
the Polan Group is the andesite center, Volcan Mino, which lies at the periphery of the
AVC. Volcano Mino’s amphiboles generally have thin or thick rims and exhibit all core

types. Pyroxene is the most common mafic phase found in the core of the Mino
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amphiboles. Amphiboles that are hollow or have melt in the core when present at Mino
always have thin or thick rims (this study and McKee, 2002) (Figure 15).

In the youngest phase of volcanism, the Aucanquilcha Group, the amphiboles are
texturally diverse (Figure 16). At Volcan Aucanquilcha amphibole is more abundant than
in most of the earlier dacites and all core and rim types are represented; amphiboles with
normal or hollow cores are the most abundant. Many Volcan Aucanquilcha samples
contain two textural populations, one of larger reacted amphibole phenocrysts with thin
to thick rims and another, more numerous population with hollow or normal cores, which
have thin or plain rims. Volcan Aucanquilcha is divided into four eruptive stages. The
second stage, (sample AP2-98), is dominated by normal cores with plain rims. Samples
from the third stage, (AP2-93 and AP2-92) have dominantly normal core types with thin
rims. In the third stage, amphiboles with melt or hollow cores are more common than in
the previous stages. In samples AP2-60 and AP2-61-, from the final stage of Volcan
Aucanquilcha, the majority of amphiboles display plain rims, and have all core types
represented with plain rims. Only 4 of the >250 amphiboles counted in these samples
have thick rims.

Two quenched andesitic inclusions from the AVC were analyzed for textural
variability; one from the Platform (AP-00-61B), and another from the final stage of
Volcan Aucanquilcha (AP2-77). In these samples, the matrix consisted of interlocking
needles of amphibole and plagioclase as well as euhedral oxides. The matrix was not
counted in this study, however ground mass amphiboles were all noted to have plain or

very thin rims with plain and sometimes hollow cores. The larger phenocrysts in the
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samples displayed a variety of both core and rim types-and most do not appear to be in

equilibrium with the matrix (Figure 17).

Textural Summary:

Overall at the AVC amphiboles are most texturally diverse early and late in the
history of the system. The least textural variability is in the Polan Group (with the
exception of Volcan Mino which lies at the periphery of the cluster).

The distribution of textural type varies with time. In the Alconcha Group,
amphiboles with thin to thick rims and normal cores are most abundant; when
amphiboles are cored with a mafic phase it is most often pyroxene. In the Gordo Group,
there is a peak in the distribution at thin-rimmed amphiboles with plain cores, and
variability is limited to variations in rim types. Amphiboles at this stage, are cored with
pyroxene. In the Polan Group, amphiboles cored with mafic phases are not observed, and
amphiboles that are hollow or have melt quenched in the cores are proportionally less
represented than in other stages. Volcan Aucanquilcha has a greater proportion of
hollow/equilibrium amphiboles than any other stage. At Volcan Aucanquilcha,
amphiboles with plain rims dominate and hollow amphiboles are more common than in
earlier stages; amphiboles when cored are most commonly cored with biotite as a mafic

phase.

Amphibole size and mode:

In addition to the texture of the amphiboles, the approximate size of the

amphiboles, as well as the mineral assemblage of the host dacite were investigated. In the
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earliest stages of volcanism, (Alconcha and Gordo Groups) amphiboles are overall less
abundant and when present compose <5 modal percent in andesites-dacites. In this age
group, andesites and dacites mainly contain a two-pyroxene mineralogy with olivine and
or amphibole less common. As noted previously these amphiboles generally display an
array of textures and compositions indicating variable conditions at a restricted whole
rock composition.

During the time of the Polan group, more hydrous and shallower mineral
assemblages are found, and a compositionally homogenous dacite becomes the dominant
erupted composition. At this time large zoned amphiboles become abundant and overall
phenocryst content increases in these lavas, with amphiboles>>than pyroxene and usually
>5 modal percent when present. These amphibole phenocrysts are also some of the
largest observed at the AVC. Mino, like the rest of Polan has large amphibole
phenocrysts, however it is equally common to find large “amphibole” phenocrysts that
have been completely replaced with with pyroxene, opaque oxides and plagioclase.
Unlike the Polan Group-which is not commonly cored with mafic phases, Mino
amphiboles are commonly cored with pyroxene.

During the Aucanquilcha stage, amphiboles are very common, though due to their
small size, they tend to make up a smaller overall modal percentage of phenocrysts.
Biotite at this stage becomes abundant (and sometimes dominant) over amphibole as a
mafic phase. Amphiboles in this stage are often smaller than in previous stages, and most

commonly display equilibrium and hollow core textures with very thin or plain rims.

39



Amphibole Composition:

Just as textures in amphiboles vary throughout the evolution of the AVC, so do
the compositions of the amphiboles in dacites. Magnesiohastingsite is the most common
amphibole, at the AVC followed by tschermakite, magnesiohornblende, paragsite and
edenite (Figure 18). For this classification, stoichiometry was determined using the
method and nomenclature described in Leake et al., 1997. (A discussion of this process
and a sample calculation are included in the Amphibole Appendix.) All amphibole
compositional types are found over the range of dacite compositions selected for this
study, so that on a first order, the variations in amphibole composition are not solely tied

to whole-rock compositional variability (Figure 19).

Aluminum:

The aluminum content in the amphiboles range from Alry 1.0-2.4 (Figure 20). In
the Alconcha and Aucanquilcha groups, the total aluminum range in the amphiboles is
greater than in the Gordo and Polan groups. Additionally, the Alconcha and
Aucanquilcha groups have multiple populations of amphiboles each with a limited Al
range: individual amphibole grains do not span a large compositional range. The large
range in Alre in these groups results from the existence of compositionally distinct
amphiboles, which collectively span a large compositional range that is also mimicked in

alkalis and Ti.
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In contrast, to the Alconcha and the Aucanquilcha Groups, whose individual
grains are restricted in composition, the range in Aly, of the Polan group (and less so in
the Gordo group) is reflected in individual grains that make up a single population. In
other words, in the Polan Group, individual amphiboles reflect the entire Aly, range—

and together, amphiboles define a single variable population.

Alkalis:

In the Alconcha, Polan and Aucanquilcha Group, (Na+K), increases with Al
In the Gordo Group alkalis remain constant independent of changes in total Al, however
there are variations from core to rim in alkalis particularly in (AP-00-34 Paco Paco)

(Figure 21).

Titanium:

Alro generally covaries with Ti though less steeply in the Alconcha group. The
steepness of the variation between Al and Ti in amphiboles has been used as a proxy for
the influence of temperature and fO, changes on amphiboles (Selles, 2006; Bachmann,
2002). (Figure 22). An exception to the covariation of Alrand Ti is seen in the sodic
amphiboles from sample AP2-61 from the last eruption of Volcan Aucanquilcha. In this
study, AP2-61 is the only sample with sodic, rather than sodic-calcic amphiboles that is

erupted from the AVC.
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Volatiles in amphibole:

Sulfur:

Sulfur measured using SIMS ranges from 11 to 168 ppm. High and low S populations
correlate to high and low Al populations. Samples with low Al have S<60ppm, and

samples with high Alyy have S>80ppm. (Figure 23)

Fluorine:

There is a significant increase in the proportion of F in amphibole over the 11 million
year history of the system independent of amphibole composition (Figures 24 & 25). F
increases from 1250 to 1500 ppm from early groups, 1900 to 2400 ppm at Polan time and

increases further to 2800 to 4200 ppm at Aucanquilcha.

Chlorine:

Cl in amphiboles ranges from 200 to 1800 ppm. Low aluminum amphiboles show
a range of Cl from 300-1800ppm whereas higher aluminum amphiboles have more
restricted and overall lower CI (200-500 ppm) (Figure 26).

Both low and high aluminum amphiboles show both increases and decreases in
chlorine from the core to rim. Low aluminum amphiboles often (but not always) show
decreasing Cl towards the rim (AP-00-17-3). Higher aluminum amphiboles are also
variable with no systematic chlorine correlations from core to rim; with some increasing

(AP-00-16-6), some decreasing (AP-00-82-4) and some remaining more or less constant
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in Cl from core to rim (AP-00-04-4). In the Polan Group, CI concentrations oscillate from
core to rim, however the overall range of Cl variation in a single grain is small. The Polan
Group overall has the lowest and most restricted chlorine of amphiboles in dacites. (The

two QMI have the highest Cl concentrations measured for this study.)

Water:
The water concentration in amphiboles (measured using SIMS) varies from 0.6-
1.5 wt% H,O in the early groups to 1.5-2.5 wt% at Volcan Aucanquilcha. Amphiboles
with >2wt % H,0O have the lowest aluminum and samples with <lwt% H>O had high

aluminum (Figure 27).

SIMS stable isotope data:

AD values on amphiboles throughout the history of the system range from —168
%0 to —41 %o (£ 8 %o). Correlation to aluminum in amphibole overall is poor but on the
whole, low aluminum amphiboles have less depleted (less negative) 3D values than the

high aluminum amphiboles (Table 3, Figure 28).

Other Stable isotopes--amphibole, biotite and plagioclase:

Oxygen isotope values reported by Klemetti 2005 in plagioclase range from 6.1 to

6.4, some of the lowest reported in the literature for the area.
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In this study, oxygen and hydrogen isotopes were measured on selected samples and their
values are reported in the discussion. The isotopic value of fluids in equilibrium with the
measured oxygen and hydrogen isotopes in amphibole, biotite and plagioclase were
calculated at different temperatures based on the fractionation constants list in Table 5.

The results of these calculations are reported in Table 6.

Plagioclase Compositions:

Plagioclase in the Alconcha Group range from Anyy-Ang,. (Figure 29).
Plagioclase in the Gordo group span a similar but more restricted range, as determined by
petrography and microprobe analyses by Layne Bennett (unpublished undergraduate
research project, Oregon State University). Plagioclase from the Polan Group (excluding
Mino which is more variable) range from Ansg-Anzg. Plagioclase compositions at Volcan
Aucanquilcha have been reported to range from An,;-Any (Klemetti, 2005). This is not a
comprehensive assessment of plagioclase variation at the AVC as most points for this
study were selected as textural pairs to amphibole for geothermometry and geobarometry,
(Table 7). For a more detailed reporting of plagioclase at the AVC see McKee, 2002,

Klemetti 2005, and Plag data in appendix.
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Plagioclase ternary diagrams show selected plagioclase compositions
from the AVC. As most plagioclase were selected as textural pairs to
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amphiboles, they do not necessarily encompass the entire
compositional range of plagioclase for each age group. For a more
detailed discussion of plagioclase compositions at Volcan
Aucanquilcha and Mino see Klemetti, 2005 and McKee, 2002.



TABLE 5. Fractionation constants used in stable isotope calculations 57
Table Mineral-Water Oxygen isotope fractionations. where 10° In Omineral-water)= A+ B(106/Tz). An is mole
fraction of anorthite in feldspar. For Zheng, 10° In 0 ineratwaten= A% 109T>+ B*10°/T+ C.
Mineral Experimental A B C Reference
Range
Plagioclase 350-800 (-3.41- 2.91-.76An O’Neil and
.014An) Tavlor. 1967
Feldspar 500-800 -3.7 3.13-1.04An Bottinga and
Javoy, 1973
Hornblende 0-1200 3.89 -8.56 2.43 Zheng, 1993
Pargasite 0-1200 3.77 -8.99 2.51 Zheng, 1993
Biotite 0-1200 3.84 -8.76 2.46 Zheng, 1993

Table Oxygen isotope fractionation between the whole mineral and the hydroxyl group where 1043 In a=A
x 10%T* + (B x 10%/T) +C.

Mineral Experimental |A B C Reference:
Range

Biotite 0-1200 1.14 4.89 -2.08|Zheng, 1993

Hornblende |0-1200 1.22 5.21 -2.22|Zheng, 1993

Table Constants for the fractionation of hydrogen isotopes between minerals and water according to the
ineral-water)— A+ B(106/T2) .

equation 10° In o,

Mineral |Experimental A B Reference:
Range
Biotite 450-800 -2.8 -21.3|Suzuoki and
Epstein. 1976
Hornblende |450-800 7.9 -23.9|Suzuoki and

Epstein, 1976

All minerals

1000 In 0 (mineratonaien= 28.2-22.4(108/ T2+ (2X 01

4y, 68X50)

Where X is mole fraction of element in

Suzuoki and
Epstein, 1976

mineral
Ferroan 350-850 -23.1+/-2.5 Graham et al,
Pargasitic 1984
Hornblende
Ferroan 850-950 1.1 -31|Graham et al,
Pargasitic 1984
Hornblende

Fractionation constants used for the calculation of fluids in equilbrium with
mineral phases, sources cited in tables.
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Plagioclase-Amphibole Geobarometry and Geothermometry:

Coexisting pairs of plagioclase and amphibole were analyzed on the microprobe
and barometry and thermometry of the magmatic system were determined after Holland
and Blundy 1994 and Anderson 1995 (Figure 30) (Table 7). Pairs were selected to have
textural relationships reflecting likely equilibrium. These textures include a) plagioclase
inclusion in amphibole, b) intergrown plagioclase amphibole pairs and in a few cases, ¢)
groundmass plagioclase were paired with the rims of equilibrium amphiboles.

The following equations were used to iteratively calculate pressure and

temperature for plagioclase amphibole pairs reported (Table 7).

Temperature iteration:

Temperature (+/- 30) = (78.44+Y pp.an-33.6X"\a-(66.8-2.92P)* XM2y,

+78.5X ™ A4+9.4X"\2)/(0.0721-R*In((27X 2 X s X P19, /64X M4 2 X Lo X189 41))

Where Y ap-anis given by: Xap>0.5 then Y ap-an=3.0 kJ, otherwise, Y ap-
An=12.0(2.0 Xap-1)+3.0 kJ: and where T is temperature in Kelvin, P is the pressure in
kbar and X* denotes the molar fraction of species in the crystallographic site. (Holland

and Blundy, 1994)

Pressure iteration:

P(kbar)(+/- 0.6 kbar) = 4.76 Al(total) — 3.01 — {[T-675]/85}*{0.53 Al(total) +

0.005294 [T-675]}



61

"SMOLIE UM [IIM PAJOU Ik S103sueI) 9qoIdoIdTA (S661 WS PUB UOSIOPUY
pue 661 ‘Pue[[OH pue Apunjg 101e) (0 -/+) QY S1°T Pue (0¢-/+) D 95, d1e ared s1y) 107 1/d pare[nofe)

"t 93e1§ ‘eyd[mbueony UBJ[OA WO AIOWOIRq PUB ANQWOWIAYI093 WOIJ Pajoafas aseoorded-ojoqrydury

e droqrydury-ase[do1sde[q dAneIudsdaday]
"0€ dan3ig




62

Where T is in C and Al(total) is the stoichiometric total of all Al in amphibole (Anderson

and Smith 1995).

Summary of barometry and thermometry results:

Overall the amphiboles in dacites form anywhere from 0.7 kbar to 6.4 kbar, over a
range of temperature from 715-915 °C. This represents a depth in the crust of ~2 to 20
kilometers. In the Alconcha Group, there are two amphibole pressure populations, the
first a shallower amphibole with low temperatures (750-800 °C) and a higher pressure
amphibole population of similar temperatures. These distinct amphibole populations
imply that amphiboles crystallize in two distinct P/T regimes and thus either mixing of
distinct magmas or stalling and differentiation in the crust is required (Figure 31).

In the Polan Group, calculated pressures for amphiboles range from ~1-3 kbar and
~ 775-875 °C. (At Mino this value is 1.5-4.7 kbar with temperatures from 800-875°C).

At Aucanquilcha amphiboles in dacites (not QMI) range in temperature from
~725-875 °C (similar to the earliest stages of volcanism). However, unlike the earliest
eruptions, the calculated pressures are shallower (~0.5-3 kbar) and in general more
restricted than the Alconcha and Gordo Group. The highest calculated temperatures come

from amphiboles in the quenched mafic inclusion AP-00-61B, (and less so AP2-77.)
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DISCUSSION:

Amphibole Pressure, Temperature and Composition:

The variation of calculated pressure and temperature of amphiboles in dacites from
the volcanic cluster inform the development of the magmatic plumbing at the long-lived
AVC. In the Alconcha Group, the magma is staged over a wide range of pressure and
temperatures. The thermal, barometric and compositional heterogeneity observed early in
the system in erupted dacites imply greater variability in the staging of the magmatic
system. Pyroxene cored amphiboles common in the early stages of the system indicate
that warmer, more mafic magmas were flushed by cooler or more hydrous magmas.

As the system matured into the Polan Group amphiboles indicate crystallization over
a more restricted pressure range in an overall thermally coherent area in the crust.
Concentric zoning of amphiboles from the Polan Group indicate stirring, convection and
/or differentiation of a host silicate liquid. This thermal, barometric and compositional
coherence also coincides with centralizing of volcanic vents towards the heart of the
system, and an increase in the volume of erupted material. At this stage, dacite is the
dominant eruptive product, and andesites become present only as inclusions in dacites.
Cored amphiboles at this stage are uncommon. Only at Mino, (on the periphery of the
system) do we find cored amphiboles, and andesites erupting as lavas during this
dominantly dacitic eruptive period.

The spatial distribution of eruptive products as well as the dominance of dacitic

eruptions implies the presence of a density filter, or lid of material, which prevents less

64



65

differentiated material from escaping. This could be due to, 1) the presence of a dacitic
magma body or, 2) a zone of ‘thermally matured crust’ or crystal mush. This thermally
mature crust would have been processed by repeated injections of material (and heat)
over at least 7 million years of protracted volcanism and while not forming a coherent
liquid body, may form a heated crustal zone that is similar compositionally and
physically. This crustal zone when heated by subsequent injections could provide
material and pathways for future eruptions. Whether the AVC supports a zone of crystal
mush or a coherent magma body, the textural, thermal and compositional data on
amphiboles indicate that at the time of the Polan Group, erupted mineral grains
experienced prolonged equilibrium in a silicate liquid. At Aucanquilcha, the system
becomes increasingly silicic and dacites erupt only from shallower areas in the crust.
Texturally these young amphiboles are diverse and reacted amphiboles are commonly
found in the same sample with rapidly crystallized hopper-textured amphiboles, implying
that an amphibole-bearing reservoir is being flushed. At this stage, amphiboles are most
commonly cored with biotite implying that the system has cooled, or lost water due to
degassing, and it is the flushing of the system with warmer or more hydrous pulses of
magma which prompt eruption.

The amphibole pressure and temperature data combined with the amphibole textural
data from dacites indicate a transition of magmatic depths and physical regimes. Initially
the dacitic magmas are sourced from variable depths as well as variable temperature
regimes within the crust. Overtime the system becomes more thermally coherent, and the

magmas are sourced over a relatively restricted depth. Most amphiboles from this stage
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indicate periods of stagnation or stewing at or near equilibrium- a texture that is not
found in earlier (or later) stages.

Temperatures of erupted amphiboles in dacites are variable throughout the life of the
system but have the largest range early and late. These changes in amphibole
temperatures are consistent with a model that involves initially heterogeneous crust
intruded by batches of magma, resulting in thermally mature crust after repeated
injections. Temperatures are highest during the Polan time when single complexly zoned
amphiboles indicate stirring (on a scale of ~1kbar) of the magmatic reservoir. While
temperatures are consistently the highest at this stage, the temperature range is the most
restricted of any group indicating a coherent and voluminous system. The high
temperatures in the Polan aged samples are consistent with high Ti in zircon (Walker
personal communication).

Variations in aluminum versus various cations in amphiboles have been used by
various authors as indicators of intensive parameters in magma like pressure,
temperature, fO, as well as composition of the melt. In this study it is borne out that
aluminum alone in amphibole is not a proxy for pressure and that it is key to pair
amphibole data with information from equilibrium phases, in this case plagioclase (c.f.
Bachmann 2004) (Figure 32). In the case of the AVC, an assumption that Al is a proxy
for pressure could lead to the assumption that the Volcan Aucanquilcha amphiboles are
barometrically distinct, when in fact they appear to come from similarly shallow

reservoirs, distinguished instead by differences in temperature.
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Figure 32.
Aluminum total vs age combined with calculated pressure vs. age.

In previous studies, total aluminum has been used as a proxy for
pressure of amphibole formation. This dataset emphasizes the
importance of using other factors to calculate the pressure associated
with amphibole formation: in this case the composition of paired
plagioclase was used to determine the pressure of amphibole formation.
An assumption that aluminum in amphibole is a proxy for pressure of
amphibole formation could lead to inaccurate interpretations regarding
the pressure (and inferred depth) of amphibole formation, particularly
in the youngest amphiboles from the AVC.



Volatile Discussion:

Volcan Aucanquilcha consistently taps a shallower reservoir than the Polan
Group, and unlike the earliest Alconcha Group, amphiboles from deeper magmatic
reservoirs are not erupted. Over the 11 million year history of the AVC, F increases
independent of amphibole composition. The increase in F over the life of the magmatic
system indicates that the same area in the crust is being tapped, and that this area is likely
to be F-rich and hydrothermally altered. It appears that the top of the magmatic system,
enriched in F (during the Polan time) is now at the same level in the crust as the source of
the Aucanquilcha dacites, implying that they system is cannibalizing the plumbing
system and surrounding crust of the precursory stages. This is supported by the presence
of old (>11 million year) xenocrystic zircon crystals present in the young lavas (Walker,
personal communication).

Unlike fluorine concentrations, which change temporally, chlorine and sulfur
concentrations appear dependent on amphibole composition. Cl concentrations are
variable, but more restricted for high aluminum amphiboles than low aluminum
amphiboles. Variations in CI from core to rim can be related to eruption dynamics. At the
AVC, correlation of Cl to Mg/(Mg+Fe) in some samples indicate simultaneous degassing
of Cl and crystallization, whereas in other samples, Cl and Mg# seem to be decoupled
speaking to the complexity of the large-scale magmatic systems.

Like chlorine, sulfur in amphiboles seems to be tied to aluminum content, with
low aluminum amphiboles having significantly less S than high aluminum amphiboles.

These low sulfur samples are inferred to come from shallower depths as all low
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aluminum amphiboles in this study were shallow. Despite the fact that high aluminum
samples can form in either high or low pressure regimes, the samples measured on SIMS
with high sulfur correspond to mineral samples with high calculated pressures (ex. AP-
00-17). This is also true for samples from Volcan Aucanquilcha. Overall the amphiboles
from Volcan Aucanquilcha form shallower than in other stages, however within the same
rock sample, the mineral with the lower calculated pressure has lower S, than the
amphibole with the higher calculated pressure (and S). This connection within a sample
between calculated pressure and S content suggests the loss of S as a vapor phase as the
magma ascends, or the crystallizationof an S-bearing phase as the magmas reach

shallower areas within the crust.

Stable isotope discussion:

The calculated temperatures of amphiboles can then be used to select the likely
range of isotopic values for fluids in equilibrium with the mineral phases.
The fluid in equilibrium with AP2-61 has hydrogen isotopes that range from —28 to —37
%o in biotite, and —39 %o in amphibole as measured on the TCEA. The range of 6D in
amphibole from AP2-61 as measured on SIMS ranges from —24 to —58 %o. (Values
measured on the TCEA commonly fall within the range of SIMS samples, most likely
because the SIMS analyses are on individual grains, whereas the TCEA analyses are
performed on multiple grains—of variable compositions.) These are the heaviest 6D

values recorded at the AVC, and imply the onset of a hydrothermal system and the
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assimilation of hydrothermally altered crust. In some of the oldest samples (eg. AP-00-
17), 6D of fluid in equilibrium ranges from —57 to —137 %o reinforcing the idea that
initially the magmatic system is interacting with isotopically distinct and relatively
undegassed reservoirs.

Oxygen isotopes in biotites at AP2-61 range from 7.5-8.0 %o, with a fluid in
equilibrium of 10-10.5 %o. Values for fluid in equilibrium with amphiboles in the same
sample have equilibrium fluid values from 5.1 %o to 5.5 %o. The calculated water in
equilibrium with plagioclase is 7.1 %o, and this sample overall has some of the heaviest
8'%0 (and 8D) for Volcan Aucanquilcha. The heavy values for oxygen isotopes reinforces
the notion that the most recent volcanic activity involves the incorporation of

hydrothermally altered crust, and possibly its own magmatic precursors.

Conclusions:

Correspondence of amphibole texture and composition:

Overall, it was found that there is no correlation between textural type and
compositional variation of the amphibole, i.e. thin-rimmed mineral grains are not always
of the same compositional type (Figure 33). Textural variations within a single sample
could however be correlated to compositional variations. For example, in sample

APO0017-Tuco, ‘disequilibrium’ type textures are found as compositional outliers for
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amphiboles within the volcanic center. This pattern is repeated in other age groups
(Figure 34), where amphiboles with disequilbrium textures including thick rims and cores

of other mineral phases are often compositionally distinct from equilibrium amphiboles.

Evolution of the magmatic underpinnings of the AVC

The changes in the amphiboles over time inform the development of the volcanic
underpinnings at the AVC. An apparent lid or density cap develops over the system by
the time of the Polan Group as indicated by, 1) the homogeneity in eruptive products, 2)
the homogeneity in amphibole textures, and compositional zonation of the phase and 3)
the generally restricted pressure and the warmer, more stable temperatures calculated for
this stage.

The transition to an integrated magma system at shallow levels corresponds to an
increase in the abundance and occurrence of amphiboles in dacite. Early in the evolution
of the system amphiboles initiate in thermally and barometrically discrete regions. In
time, coincident with an increase in the eruption rate, it appears that the magma system
becomes more integrated and erupts thermally distinct yet barometrically similar
amphiboles. At the final stage of volcanism, where equilibrium textures are most
abundant, amphiboles in dacites form in relatively shallow reservoirs, consuming the
magmatic precursors at variable temperatures.

The thermal evolution of the system is also reflected in the textrual changes in

amphiboles in dacites over the 11 mllion year life of the volcanic system (Figure 35).
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Early eruptions sample diverse reservoirs with distinct pressure and temperature regimes.

Over time, as the crust is heated by successive batches of magma, thermal contrast in the
crust decreases and dacite bearing amphiboles erupt from a limited pressure and
temperature range. These observed evolution implies either 1) the presence of a large
magma chamber to feed the large volume eruptions of the Polan Group that is relatively
homogeneous, or 2) a zone of mature crust-treated by repeated injections of material in
which the resultant magmatic processes result in an end-product that is compositionally

homogenous.
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