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We dev eloped and investigated machine learning methods that require

minimal preprocessing of the input data, use few training examples, run fast, and

still obtain high levels of accuracy.

Most approaches to designing machine learning programs are based on the

supervised learning paradigm – training examples are chosen randomly and given

to the learner. We explore the "active learning" paradigm – the learner

automatically selects the more informative training examples. Our domain of

interest is text categorization, but most of the methods developed are quite general.

The purpose of text categorization is to assign each document in a collection

to appropriate categories. Most existing text categorization methods require large

amounts of time to prepare the documents for learning and large numbers of

examples for training. Humans must assign correct categories to documents before

they can be used for training; this costs time and money. Our goal is to develop

machine learning methods that, when compared to other methods currently



available, are more efficient in time and space, use fewer training documents, and

are as accurate.

We dev eloped the Active Learning with Committees (ALC) framework –

inspired by the Query by Committee approach of Freund, Seung, et al. A

"committee" is a group of learners that jointly participate in learning and in

predicting the classes of new examples. We perform minimal preprocessing of the

documents and thus the domain is noisy, high dimensional, and has large numbers

of irrelevant attributes. We use linear threshold learning algorithms to obtain

computational efficiency with respect to these large numbers of attributes, with

specific algorithms being chosen because they also generalize well when large

numbers of attributes are irrelevant.

We dev eloped and analyzed several ALC systems. Our results show that it is

possible to design active learning systems that scale up to large numbers of features

and obtain accuracies comparable to the supervised learning methods while using

an order of magnitude fewer examples and an order of magnitude less time. The

ALC methods developed have run times on the order of seconds, typically use only

5 - 7% of the training documents, and are as accurate as their supervised

counterparts.
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Active Learning with Committees: An Approach To
Efficient Learning in Text Categorization

Using Linear Threshold Algorithms

1. Introduction

In this project, we developed and investigated machine learning methods that

require minimal preprocessing of the input data, use few training examples, run

fast, and still obtain high levels of accuracy. Our domain of interest is text

categorization, but most of the methods developed are quite general and so are

applicable to other domains having large collections of data that change often, that

are composed of very large numbers of examples, that have high dimensionality,

and that contain attribute and class noise.

The purpose of text categorization is to assign each document in a collection

to appropriate categories based on the content of the document. Most existing

methods of text categorization need large amounts of time to prepare the

documents for learning and also need large numbers of examples to analyze in

order to train the system. Many collections of documents are now stored digitally

in computer files. These collections are often very large, and they also frequently

change as documents are added, removed, and updated. It is therefore important to

develop methods that automate the text categorization process, and perform it

quickly and accurately.

The two general approaches to problem solving are "knowledge engineering"

and "machine learning". In the knowledge engineering approach, one designs a

program that directly solves the problem of interest. In machine learning, one uses

a somewhat indirect approach – one designs a system that learns how to solve the

problem of interest. The machine learning approach to text categorization
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generalizes information contained in example documents in order to build a

knowledge base that can then be used to categorize additional documents. Machine

learning is a suitable approach for this task since it allows us to construct a system

that will be able to adjust itself to handle different categories, different types of

documents, and different languages. The use of machine learning in this domain,

however, is difficult due to certain characteristics of the domain — the very large

number of input features, noise, and the large percentage of features that are

irrelevant. As a result, supervised learning often requires extensive preprocessing

of the textual data, long run times for large document collections, and a large

number of training documents. Training documents need to be categorized by a

human, and so needing large numbers of training documents translates into

spending large amounts of time and money.

The goal of this research project was to develop machine learning methods

for text categorization that are efficient in time and space, that use fewer training

documents, and that are accurate. To achieve these goals, we developed the Active

Learning with Committees (ALC) framework. "Active learning" refers to any form

of learning that controls the examples on which the system is trained [Cohn et al.

1994]. A "committee" is a group of several learners that jointly participate in

learning and also in predicting the classes of new examples. The ALC approach is

an overall system structure that is used to guide the problem-solving process. An

ALC system consists of 3 parts: [1]determining which training documents to use

for learning, [2]the actual learning process, and [3]forming the prediction of the

committee.

We will now briefly examine the 3 parts of an ALC system:

1. determining which training documents to use for learning

ALC needs a way of deciding whether or not to use each available training

document. This is the "active learning" aspect of the system. There is a
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stream of candidate training documents coming into the ALC system, but

we want the system to use only a few of them for learning. We hav e

developed several methods for deciding which documents to use for

learning. They are all based on the notion that if each member of the

committee of learners predicts on a document, and if these predictions are

ev enly or almost evenly split, then that document is probably a good one for

the committee to use for learning (since≈1⁄2 of the learners are getting it

wrong – those learners do not "understand" that example and so need to

learn it).

This aspect of ALC was inspired by the Query by Committee approach

[Freund et al. 1992, Seung et al. 1992, Freund et al. 1997]. The Query by

Committee (QBC) approach uses a committee to decide which documents

to use for training. Briefly (details later) QBC works as follows. We start

with a category of interest and a collection of documents. A random subset

of the documents is chosen to be used for training. QBC creates a

committee that contains all possible hypotheses for categorizing the

documents. Each training document is presented to QBC, 2 hypotheses in

the committee are chosen at random, and each predicts whether or not the

document presented is in the category of interest. If the 2 hypotheses

disagree, then the document is assumed to be worthwhile for learning, and

QBC requests the actual status of that document – whether it is or is not in

the category of interest. A human must provide this information. Once

provided, all hypotheses in the committee that are in error are removed

from the committee. Thus QBC provides a mechanism whereby the learner

automatically selects the most informative training documents. Since the

learning process does not use all available training documents, less work

needs to be done by the human whose task it is to categorize the training

documents.
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ALC adapts QBC to domains which contain noise and which also have so

many possible candidate hypotheses that it is not practical to represent each

of them explicitly.

2. the actual learning process

For learning algorithms that form the committee of learners, we needed to

choose methods that are able to handle the very high dimensionality of this

domain. We chose 3 algorithms – perceptron [Weiss and Kulikowski 1990],

winnow [Littlestone 1989], and naive Bayes [Duda and Hart 1973]. These

algorithms all use the same hypothesis space – each algorithm represents

the concept being learned as a hyperplane. The object of the learning

process is to position this hyperplane in the document space so that it

separates the documents that are in the category of interest from those that

are not. Once this has been accomplished, prediction on future documents is

done by simply determining on which side of the hyperplane the new

document is located and then making the corresponding prediction. It turns

out that both the learning and the predicting when using these algorithms is

quite fast, which was another consideration in choosing them.

Like QBC, ALC does use a committee of several learners. However, in

ALC the size of the committee does not change during learning.

3. forming the prediction of the committee.

ALC systems need a way of combining the predictions of the individual

committee members into a single prediction of the committee. One



5

common method of prediction is majority voting, with ties being broken by

a coin toss.

An example of an ALC system follows. The system consists of a committee

of 10 winnow learners. A document is used for training if 5 of the learners predict

that the document is in the category of interest and the other 5 predict that it is not.

Committee prediction is by majority vote. In a typical use of this ALC system, the

user will specify which category is of interest, the system will learn using only a

few of the available examples, and then the system will provide predictions to the

user on previously unseen documents.

In our ALC systems, we do not preprocess the documents except to divide

them up into separate tokens at punctuation and whitespace. More extensive types

of preprocessing are normally used by text categorization systems. Methods

frequently include techniques such as removing common words ("the", "a", "is"),

stemming ("cars"→ "car"), using only the more informative words in each

document, and attribute creation. Such preprocessing usually has as one of its

main purposes the reduction of the domain dimensionality so that the learning

algorithm of choice can better function in a manner that is acceptable in terms of

computational resources and/or in terms of accuracy. Such preprocessing is not

only domain-specific to text categorization, but often is also very specific to the

types of documents in the corpus. There is not any general theory to support these

preprocessing techniques, and in fact each of the various methods seems to be

championed by some and denigrated by others. And finally, such preprocessing

can take quite large amounts of time. We instead have designed the ALC system so

that the choice of which document tokens are in fact relevant is done solely by the

learning algorithm itself. This minimal preprocessing approach makes the overall

system more general and also as an added benefit saves preprocessing execution
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time. It also requires that our systems deal directly with a very noisy high

dimensional domain having large numbers of irrelevant attributes.

In our ALC systems, we use a document representation based on the vector

space model [Salton 1971]. In this model, documents are treated as vectors in ann

dimensional document space. Each dimension measures some characteristic of the

document thought by the system designer to be related to document content. We

create a dictionary containing all tokens used in the entire collection of documents.

We use as document characteristics the existence or non-existence of tokens in each

particular document. Each document is therefore represented by a boolean vector,

where the value of each element in the vector indicates whether (1) or not (0) the

corresponding token appears in that document. The vectors contain as many

elements as there are tokens in the dictionary, with values of 104 to 105 being

typical. The vector is unusually long because of our having done minimal

preprocessing.

Since supervised learning systems have access to all of the training

documents that are available, they are used as baseline systems – systems against

which we compare our efforts. In other words, we would compare the performance

of the system described above with a system also composed of 10 learners, also all

winnows, but using supervised learning.

This project developed ALC methods for text categorization that:

1. are computationally efficient in both time and space – typical run times for

the faster systems are on the order of seconds

2. use only 5 - 7% of the training examples used by corresponding supervised

learning methods

3. obtain accuracy and other measures similar to other systems using similar

learning algorithms
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4. scale up well to full text

In this thesis, we not only developed systems that met our goals, but also

analyzed them as to why they behave as they do and investigated several other

related areas:

1. We examine why ALC systems can result in faster execution time, the use

of fewer examples, and still obtain similar results when compared to their

supervised counterparts. ALC takes advantage of two effects – active

learning and committee prediction. In active learning, one attempts to

select the "more informative" examples and to use only them for learning. If

one considers all of the examples available for training, then certainly some

are more informative than others. By selecting only a few examples, but

ones that are more informative, we place less of a burden on the human that

must provide the correct category information for training documents and

we also get a system that runs faster. Committee prediction takes advantage

of the fact that, if the members make errors independently of one another,

then the committee as a whole can be more accurate that its most accurate

member. We find that the main contribution to ALC is in the active

learning, but that committee prediction is also of benefit.

2. The winnow and perceptron learning algorithms are both amenable to

efficient active learning and are also very similar conceptually and

structurally. There are some key differences, however, so we compared their

performance in our domain. We found that winnow performed better, and

we discuss why this may or may not be what one would expect, and what

specific characteristics of the two algorithms result in winnow being better

in our domain.
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3. Many text categorization algorithms are probability-based, in the sense that

they categorize documents by computing a probability and comparing it to

some threshold value. In such systems, one can essentially get ranked

output of documents for free. We inv estigated ways to obtain ranked output

from committees of winnow and perceptron learners and present results that

show that they are able to do a good job of ranking.

4. We examine the impact of making several modifications to the learning

algorithms we are using.

a. The standard winnow and perceptron algorithms only learn if their

prediction on the training example is in error. For example, if the

document actually is in the category but was predicted not to be,

then winnow (or perceptron) will learn. We inv estigate how the

behavior of these algorithms changes if we alter the definition of

what it means to make an error.

b. We also investigate the effects of completely removing the

restriction of learning only when in error. We allow winnow (or

perceptron) to learn from all examples that are selected as

informative.

c. We also examine the impact on learning of trying to use some of the

readily-available information on training examples that are not

labeled by a human. This is attractive since such examples are in a

sense "free", in that no labeling by a human is required.

We find that the standard definition of mistake seems to work best. We also

find that our approach did not result in our benefitting from the use of

certain information in unlabeled examples. However, we also found that

winnow does better if it is allowed to learn from all selected examples
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rather than learning only when it is in error. We discuss why these

conclusions seem to make sense in this domain.

5. We hav e included the naive Bayes algorithm since it is also a linear

threshold learning algorithm. However, the results using this algorithm are

mixed. Advantages of the algorithm include fast run times and good

performance in spite of the obvious violations of the assumptions on which

it is based. Disadvantages of naive Bayes are that it is supervised and so

uses all training examples. One is tantalized by its good performance and

wants therefore to adapt it to the ALC framework. However, we found that

the structure of the algorithm makes it difficult to achieve active learning

behavior in a manner that is both general and computationally efficient. We

look at some initial results of experiments with a learning algorithm that

uses a committee of naive Bayes learners in the ALC framework and which

therefore uses fewer examples for training than the standard (supervised)

naive Bayes algorithm.

6. We hav e a host of methods that we tried that did not work out very well. We

briefly discuss a few of these that are perhaps of interest to other

researchers. Some of the methods did perform well, but were abandoned

because others worked slightly better. Other methods have recognizable

names and so are ones that one might think ought to do well, but in this

domain they do not, so we discuss the reasons why.
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2. Text Categorization

In this chapter, we discuss what we mean by text categorization, why one

wants to do it, why it is a difficult task, some possible software approaches, why we

are using machine learning, and characteristics of the domain that make text

categorization difficult for machine learning. We also give a general description of

the supervised learning model and discuss several evaluation criteria for supervised

learning methods.

2.1 What is it?

The purpose of text categorization is to assign each document to the

appropriate categories, based on the content of the document. The list of categories

is predetermined. Each document can be in any number of categories, or in none of

them.

A stream of documents in a collection enters the text categorizer. When each

document exits, it will have been assigned categories that represent the content of

the document. The process by which different text categorization systems

determine the meaning of the document is a characteristic that is often of interest.

The meaning of a document is a result of a great many aspects of natural language

– the words used, how they are structured with respect to each other, punctuation,

etc. Surprisingly, many text categorization systems (ours included) are able to do

quite well without using very much of the information available in natural language

text. Our system, for example, uses only the presence or absence of words

themselves and does not use any information on word frequency or order.
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We will use the terms "text categorizer" and "indexer" synonymously. Both

refer to a human or to a mechanized process that assigns content descriptors to

documents.

2.2 Why do it?

Predefined categories are usually topic areas of long term interest (as

opposed to information retrieval, where the queries are more ad hoc). Text

categorization can therefore be used for:

1. routing/filtering documents of interest (such as technical reports, news,

email, newsgroup/mailing list postings) based on user interest profiles.

2. indexing documents – assigning controlled vocabulary category names to

documents for subsequent text retrieval and/or for library organization;

automated indexing is also used as an aid to human text categorizers,

especially if the automated method is able to explain/justify its

categorizations.

3. natural language processing – reducing an infinite set of possible natural

language inputs to a small set of categories is one strategy in common use.

The task of text categorization is difficult for many reasons:

1. Category assignments are based on the meaning of the text. So a highly

accurate categorizer has to, at least at some level, understand the document.

2. Natural language is ambiguous – the same sentence can have multiple

meanings. For example, "A rabbi married my sister" can mean that [1]my

sister was married (to x) at a service performed by a rabbi, or [2]my sister

married a rabbi (at a service performed by y).
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3. There are lots of synonyms – different words with same/similar meanings.

It is good writing style not to repeatedly use the same word for a particular

concept, but instead to use synonyms. But this means that the categorizer

has to deal with a lot of words having similar meanings, since it is meaning

that is used to determine the assigned categories.

4. There are words that are spelled the same but that have different meanings –

homonyms. Thebankof a river,bankas a financial institution, a pile (snow

bank), to bank(turn) an aircraft, tobanka fire . . .  The categorizer must, in

spite of these all being the "same word", be able to distinguish the different

meanings, since meaning is what categorization is based upon.

2.3 Why Use Machine Learning?

The two general approaches to problem solving are "knowledge engineering"

and "machine learning". In the knowledge engineering approach, one creates a

program which solves the problem of interest directly. A knowledge engineering

approach to text categorization would therefore require one to determine a set of

rules that correctly categorizes documents. Determining a specific solution method

would require the development of a significant new theory in order to design a

highly accurate direct solution, and given the effort that has been spent on other

already-existing knowledge engineered systems, this would have been a very

daunting task. We also wanted to develop a system that would be capable of

adjusting itself to handle different topics, different types of documents (newspaper

articles, newsgroup postings, technical reports, etc.) and perhaps even be able to

perform text categorization of documents written in languages other than English.

The machine learning approach is an indirect approach, in that the system

itself learns how to solve the problem of interest. Example documents with

category information ("labels") are provided to a learning program. This program
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then analyses these examples, extracting and generalizing the knowledge they

contain and storing this knowledge in a knowledge base. This knowledge base can

then be used to solve previously-unseen problems. Often the knowledge base is

viewed as a collection of hypotheses, with some ordering imposed on how they are

to be utilized for prediction.

We chose to use the machine learning approach. This allows us to avoid the

knowledge engineering bottleneck of having to acquire, organize, and resolve large

amounts of incomplete and conflicting expert knowledge. Instead we will design a

machine learning system that will compute a solution method that is very accurate.

Also, using machine learning makes the system very flexible. One can potentially

retrain the system with documents on other topics, other types of documents,

documents in other languages, or even on problems that deal with the

categorization of objects that are not documents (such as performing medical

diagnoses, classifying flowers, determining winning chess moves, finding boolean

expressions to fit data).

2.4 Supervised Learning

When most people use the term "machine learning", they are often referring

to a specific type of machine learning called "supervised learning". In this section

we will discuss supervised learning in general and also explain some of the

terminology used in machine learning and how specifically we will be applying

those concepts to text categorization.

Figure 1 shows the basic model used for supervised learning and how it is

applied to the specific domain of text categorization. Raw documents are first

preprocessed, to put them into a form which can be used by the machine learning

algorithm. Text preprocessing includes breaking the text into tokens, which often
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Figure 1. Supervised Learning Model

are loosely call "words". Preprocessing can also include other actions, such as

removal or replacement of some words.

Most machine learning systems represent each document as a feature vector,

where each position (or "feature" or "attribute") in the vector corresponds to a

particular word. For example, the value stored may be the number of times that the

corresponding word appears in the document. We store a 0 or 1 in each position in

the vector – indicating whether or not that word occurs at all in the document. We

do not store any indication of how many times each word was used.

In training mode, the teacher (a human) assigns categories to each training

document. A document that is in a particular category is termed a positive example
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for that category, and a document not in that category is referred to as a negative

example. Alternatively, one speaks of a document that is in the category as being

"in the class" or "in the yes class", and a document not in the category as "not in the

class" or as being "in the no class". This labeling by the teacher is in fact where the

term "supervised learning" comes from. The "supervision" is the provision of the

label by the teacher for all training examples.

The labeled examples are then presented to the learner. The learner is a

program that analyzes the training examples, extracts and generalizes the

knowledge in them, and stores the knowledge in a knowledge base.

Some learners actually learn incrementally from each example. That is, they

may update their knowledge base each time a labeled example is received. An

advantage of incremental learning is that one can stop the learner at any time and it

will have dev eloped at least a portion of a knowledge base. Other learners read

through all of the examples before doing any computations ("batch learners").

Often this approach is more efficient in time and space.

Some learners may go through the set of examples more than once. The

teacher only has to label each example once, but the learner can make as many

passes as it wants through the set of training examples. Each pass is referred to as

an "epoch". Learners that require several epochs often take more time than single-

pass learners, but there can be offsetting advantages to this approach, as we will see

later, such as being better able to choose and utilize informative examples.

Once training has been completed, the resulting knowledge base can be used

to categorize previously unseen documents – documents that have not been

previously labeled by a human or seen by the learner. Figure 2 diagrams this

process. The documents first need to be preprocessed to put them into feature

vector form. Then the predictor program uses the knowledge base to determine the

categories to be assigned to each of these new documents.
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Figure 2. Supervised Prediction Model

Note that the model shown in Figure 2 can also be used to test the ability of

the learner to construct an accurate and generalized knowledge base. After learning

has been completed, additional documents are given to both the predictor and the

teacher. A record is kept of the ability of the predictor to accurately predict – thus

giving us an indication of how well the learner learned.
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Regardless of the learning algorithm used, since the target concepts are

complex, large numbers of labeled examples (usually several thousand) are

typically needed in order to obtain good text categorization results with supervised

learning. Obtaining large training sets for supervised learning is often not practical

or possible. Rarely are documents produced in such a manner as to be already

labeled for free. The labeling of examples takes significant human expertise and

time, and often those resources are not readily available. This is especially true as

collections of documents become larger, more distributed, and more dynamic. This

is our motivation for wanting to decrease the number of training documents needed

for learning.

2.5 Why Text Categorization is Difficult for Machine Learning

Te xt categorization is difficult for machine learning methods for several

reasons:

1. large number of input features

Most machine learning methods do not scale up well, meaning that as one

increases the number of input features (which in our case are tokens),

performance often degrades. This occurs because:

a. For many learning algorithms, increasing the number of features

requires that the algorithm use more training examples in order to

obtain the same level of accuracy (sample complexity). If a

sufficiently large number of examples are not available, then the

algorithm will be unable to extract the knowledge needed in order to

be able to predict accurately.
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b. Having to process a large amount of training data (large number of

features and large number of training examples) results in many

algorithms needing much more time and/or space in order to extract

the knowledge from those examples (time and space complexity).

The resulting performance degradation can result in unacceptably

large run times and/or memory demands.

2. many features are irrelevant

Many words are irrelevant, in the sense that a human categorizer does not

use them in order to decide what a document is about. However, most

machine learning algorithms have difficulties if large numbers of input

features are irrelevant. Most algorithms have difficulty determining that

these features are in fact irrelevant, and instead attempt to include them in

some fashion in the knowledge that they accumulate.

3. attribute and class noise

Attribute noise refers to the fact that some words in a document may not be

what they are actually supposed to be. Words may be misspelled, or the

wrong words may have been used (for example, "there" instead of "their").

Class noise refers to the fact that the categorization done by humans to label

the training examples may contain errors. In other words, some of the

training documents may be accompanied by incorrect labels. The learning

algorithm assumes that the labels provided by the teacher are correct, and

the knowledge base is constructed accordingly. Some learning algorithms
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are better able to handle labeling errors than others, but a high level of

incorrect label values will defeat most learning algorithms.

4. complex target concepts

The target concepts are difficult to learn since they are complex – i.e., the

concepts often require large and/or complicated descriptions to obtain

reasonably accurate approximations. In fact, we do not even know the

general form of the target concepts and so in general we are trying to learn

a good approximation to the target concept as opposed to learning the target

concept itself. This distinction is important to note, since we often could

benefit by knowing the target concept’s form or distribution, in that we

could take advantage of theoretical results that have been developed for

specific families of functions and/or certain types of distributions. Instead,

however, we must choose a reasonable approximating family of functions

and a reasonable approximating distribution and use those, relying on

empirical results to indicate whether or not our assumptions were in fact

reasonable.

2.6 Performance Measures

We need ways to compare various methods of text categorization. How do

we tell which method is best? There are several commonly-used performance

measures that allow us to compare different methods. It is, however, very difficult

to specify one single performance measure for use in all situations, since which

performance measure is most important often depends on the characteristics of the

document collection and on the needs of the user [Hersh 1996].
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Elapsed processor time and the number of training examples used are for us

the main performance measures of interest in our research. We want to have a

system that runs very fast and that uses very few training examples. However, one

obviously needs a fast-running, example-efficient system that provides useful

information to the user. We therefore also need to use performance measures that

are based on the text categorization results actually provided by each system.

Elapsed processor time and number of training examples used are already well-

defined concepts. In the remainder of this chapter, we will examine other

performance measures that we will use – the performance measures that measure

the text categorization capabilities of the various systems. Since the design of our

experiments typically involves running large numbers of trials, we will examine

various methods of computing average behavior for a system as a function of its

performance on a series of a large number of trials. And finally, we will recap

which performance measures we will use and their relative importance to us.

2.6.1 Contingency Table Based Performance Measures

Given a collection of documents and a category of interest, some of the

documents actually are in the category and some are not. Similarly, a particular text

categorization system will predict that some documents are in the category and

some are not. We may therefore summarize the performance of a text

categorization system using a 2x2 contingency table structured as shown in Table 1.

In the text of this thesis, we will use "YES" to mean "document is in the category of

interest" and "NO" to mean "document is not in the category of interest". Context

will be used to indicate whether we are talking about predicted or actual

categorization values.

A comment is in order regarding our use of the word "predict". We use it to

mean the process a system goes through in order to classify or categorize a
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TABLE 1. 2x2 Contingency Table

actual label value
NO YES

predicted NO a b
label
value YES c d

document that it has in general not previously seen. The idea behind our choice of

the word "predict" is that the predicting is done before the system is given the

correct label. Unfortunately, "predict" is also used in computational learning theory

to refer to a particular type of representation-independent learning. Our use of the

word "predict" does not include learning and is synonymous with "classify" or

"categorize".

The a, b, c, andd values in the contingency table are document counts. For

example,c is the number of documents that the system predicted were in the

category but actually were not. One wants the number of correct predictions (a and

d) to be large, and the number of errors (b andc) to be small.

Due to terminology used in medical diagnoses [Weiss and Kulikowski 1990],

some refer tob as the number of false negatives and toc as the number of false

positives. Similarly,a andd are referred to as the number of true negatives and true

positives, respectively.

Since comparing such tables is difficult, several performance measures based

on the contingency table have been developed. These performance measures

compute a single value from the 4 values in the table. They are usually structured

so that they range over [0.0, 1.0] and so that "bigger is better". The process of

transforming 4 values into a single value causes some loss of information, and so
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there are situations where certain performance measures may be preferred over

others.

We use the following performance measures based on the contingency table:

1. Accuracy

Accuracy measures the ability of the system to correctly categorize

documents. Accuracy answers the question: are the documents predicted as

beingYES actuallyYES and are the documents predicted as beingNO actually

NO.

Accuracy is defined as the fraction of documents that are correctly

categorized. In terms of contingency table entries, it is computed as:

accuracy=
a + d

a + b + c + d

if a + b + c + d = 0, thenaccuracy= 0

2. Precision

Rather than giving the user a list of documents that are predicted to be in

the category of interest and another list of documents that are predicted not

to be in the category of interest, most text categorization systems provide

the user with only the first list – the list of documents for which it predicts

YES. Precision measures the ability of the system to categorize asYES only

those documents that are actually in the category.
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Precision is defined thusly: of the documents that are predicted to beYES,

what fraction are actually in the category. It is computed as:

precision=
d

c + d

if c + d = 0, thenprecision= 0

3. Recall

When the user is interested in the documents in a certain category, the user

usually wants most of the documents that are actually in the category to be

predictedYES by the categorizer. Recall measures the ability of the system

to categorize asYES all documents that are actually in the category.

Recall is defined thusly: of the documents that are actually in the category,

what fraction are predicted to beYES. Recall is computed as:

recall =
d

b + d

if b + d = 0, thenrecall = 0

4. Fβ

In actual practice, text categorization systems exhibit precision-recall

tradeoff. That is, for a system that has been tuned for optimal performance,

if an adjustment of parameters causes precision to rise, then recall will fall

(and visa versa). To see why this occurs, consider a document for which

the system is not sure whether to predictYES or NO. If the goal of the system

is to get high precision, then it will predictNO since the computation of
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precision does not include the number ofNO predictions, whether correct or

not (neithera nor b appears in the equation for precision). The system

seeking a high precision rating should only predict asYES those documents

that it is very sure of, so that it has a better chance of having a high

percentage of itsYES predictions being correct.

However, if this same system in the same situation wants to get a high recall

value, it should predictYES since the computation of recall does not include

the number of actualNO documents, whether correctly predicted or not

(neithera nor c appears in the recall computation). The system seeking a

high recall rating should predictYES if there is any uncertainty at all about

the correct categorization of the document, since it then has a better chance

of predictingYES for all documents that are actuallyYES.

When comparing different systems with different values of precision and

recall, one usually has to trade off between the two in order to decide which

is the better system. In comparing 2 systems, one will always favor the one

having higher precisionandhigher recall. But usually the decision is more

difficult – one will normally be faced with having to choose between two

systems where one has higher precision and the other has higher recall.

This in turn has led to performance measures that compute a single value

that incorporates both precision and recall. Usually such measures also

include some indication of the relative importance of precision and recall to

the user.

We use one such measure, which is calledFβ ("eff sub beta") [van

Rijsbergen 1979, Lewis and Gale 1994].Fβ is a function of precision,

recall, and a value calledβ. β is defined as the ratio of the importance of

recall to the importance of precision. It is determined by the needs of the



25

particular user.β can be any value between 0.0 (ignore recall – only

precision is of concern) to∞ (ignore precision – only recall is of concern).

A user with a lowβ value is interested in high precision . . .  in having most

of the documents that are on the list ofYES predictions actually beingYES.

This user wants a list that is mostly relevant documents and does not want

to wade through lots of documents that are actually not relevant.

Unfortunately, this means that some relevant documents are not on the list.

An example: a user just wants to answer a question, so a few good

documents is all that are needed.

A user with highβ is interested in high recall . . .  in finding most of the

relevant documents. This will often mean also having lots of irrelevant

documents included in the list. An example: a user doing a literature survey

probably wants most if not all documents in the category of interest.

Fβ is a generalized measure combining the concepts of precision and recall,

with a specific mechanism (β ) included that incorporates the desires of the

user.

Let p = precision andr = recall.Fβ is computed as:

Fβ =
(β 2 + 1)pr

β 2 p + r

if p = 0 andr = 0, thenFβ = 0

β is fixed, given the characteristics of the user. We will usually useβ values

of 0.5 (precision is twice as important as recall), 1.0 (precision and recall

are equally important), and 2.0 (recall is twice as important as precision).
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As various systems operate, each generates a value of precision and a value

of recall. Each such point (p, r ) is then mapped to a single value by the

equation forFβ . The value ofFβ lies inclusively between the values ofp

(precision) andr (recall).

One can certainly think of simpler equations that combine precision and

recall. Although the form of the equation seems counter-intuitive, this

equation was in fact developed so as to contain the following

characteristics, which are representative of how actual users value the

combined effects of precision and recall. In other words, onceβ has been

determined and is fixed,Fβ reflects how most users will value the tradeoff

that occurs between precision and recall when evaluating several systems:

a. For a givenβ, Fβ is largest whenp = 1 andr = 1.

b. Increasing either precision or recall or both always increasesFβ .

c. Different users have different interests in terms of the relative

weighting of precision and recall. This relative weighting is

expressed in the value ofβ. We therefore want the following to be

true: when
∂Fβ

∂r
=

∂Fβ

∂p
, we want to be at a point (p, r ) where

r

p
= β .

The above equation forFβ has this property.

d. The form of the equation forFβ incorporates the fact that, while the

user wants
r

p
= β , the user also does not want to have the value of

either precision or recall too extreme. There is in most systems a

conflict here, since it is often easier for a system to provide (for

example) very high precisionand very low recall. The willingness

to trade precision for recall (or visa versa) lessens as one engages in

larger trades. That is, while aβ = 1 user near the point (0.6, 0.6) may

be willing to give up 0.01 of precision in order to gain 0.01 in recall,
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this same user is probably not willing to give up 0.20 in precision in

order to gain 0.20 in recall. This decreasing marginal worth is based

on the notion that what most users really want is both high precision

and high recall. For most users, sacrificing too much of one for the

other is undesirable.

e. WhileFβ does contain some assumptions about user behavior, these

assumptions are based on actual observations of user preferences.

Also, the equation forFβ was validated against other measures that

had been proposed, and it was shown to be a generalized form of

those other measures. And finally,Fβ has become a standard

performance measure for those wanting to use one measure that

incorporates both precision and recall.

Figure 3 is a plot ofF1.0. Note thatF1.0 is a maximum when p = r = 1 and is

a minimum when p = 0 or r = 0 (or both). There is an upwards sloping fold

along the lineβ =
r

p
= 1 ==> r = p. Thus, for a given value of (say) p, the

highest value ofF1.0 occurs when r = p.

Figure 4 showsFβ for two rather extreme values ofβ. Note that forF4.0, the

upwards-sloping fold is now along the lineβ =
r

p
= 4 ==> r = 4p and for

F0.25, the fold is along the line r = 0.25p.

A numeric example will help clarify the use ofFβ . Say we have 4 sets of

text categorization results that we want to evaluate. These could be from 4

different systems, or from 4 different operating points of the same system.

We will use theFβ performance measure to determine which set of results is

best. First we will examine the results for aβ = 1 user (precision
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and recall are equally important) and then for aβ = 0.5 user (precision is

twice as important as recall).

Tests are run and yield the following results:

precision recall F1.0 F0.5set of
results

A 0.60 0.50 0.545 0.577
B 0.64 0.46 0.535 0.594
C 0.70 0.40 0.509 0.609
D 0.72 0.36 0.480 0.600

For theβ = 1 user, A is the best since it has the largest value ofF1.0. A has

slightly more precision and/or slightly less recall than the user would

ideally like to hav e, but it is the best of the 4 sets of results that are

available. B, as compared to A, trades 0.04 recall for a 0.04 increase in

precision. This moves the user further away from having equal precision

and recall, but causes only a slight decrease (0.010) inF1.0. Howev er, when

a larger but still equal trade of 0.10 occurs (comparing A and C),F1.0 drops

by a larger relative amount (0.036) in spite of this user still viewing

precision and recall as being equally important. This is because both

comparisons A→B and A→C are moving in the same direction (increasing

precision and decreasing recall with respect to the desired ratio), but the

value of recall is already lower than what the user would like to hav e. This

is an example of decreased marginal worth, which was discussed earlier.

Theβ = 0.5 user will prefer C since it has the highestF0.5 value. Note that D

does have better precision than B, and theβ = 0.5 user weights precision as

being twice as important as recall. In fact, D on the surface appears to give

the user "exactly what is wanted" – a precision to recall ratio of 2.

However, the assumption incorporated into theFβ calculation is that the
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user wants the specified ratioand high values of both precision and recall,

so there is a tradeoff factored into the comparison of C and D. For example,

D obtained additional precision, but at the cost of a decrease in an already

low value of recall, and so the tradeoff included in theFβ equation favored

keeping the precision value in C rather than trading it for an increase in

recall.

5. precision-recall breakev en point

The final contingency table based performance measure that we will

consider is the precision-recall breakev en point [Lewis and Ringuette

1994]. This performance measure is based on the precision-recall tradeoff

that occurs in most systems. The use of this measure, in fact, tacitly

assumes that there is some relatively straightforward way to get the system

to tradeoff precision for recall. As discussed earlier, most users want both

high precision and high recall, but if they do exhibit a preference, then they

usually still do not want to use a system that operates too far from the point

where precision and recall are about equal. This performance measure

simply looks at the system when it has been adjusted so as to operate with

precision and recall being equal; that value of precision (and recall) is the

system’s precision-recall breakev en point. This is a reasonable performance

measure since this is often the point at which the user would like to actually

use the system. It is also often a measure for which it is a challenge for

most systems to achieve a high score. Many systems can operate at high

precision or at high recall, but having them operate at reasonably high

values of both is often much more difficult.

For many systems, the precision-recall breakev en point is a relatively

easy performance measure to compute, since often the method used to
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categorize documents involves computing some measure of certainty as to

whether each document is or is not in the category of interest. Converting

this certainty figure into a prediction ofNO or YES usually involves simply

comparing it to some fixed value which is a parameter of the system. So,

for example, a system may compute a probabilityp (in [0,1]) for each

document it examines. To form theNO or YES prediction, it might simply

comparep to a parameterh. If p > h then predictYES else predictNO. If h is

also a real in [0,1], then by varyingh one can often tune the precision-recall

tradeoff to a quite fine degree of granularity. For example, increasingh will

require that the system be more certain that a document isYES before

making that prediction, so the system will only predictYES for documents

that are highly likely to actually beYES. Thus precision will increase.

However, because the system is now predictingNO for documents that it is

only moderately sure areYES, it will predict NO for more documents that

really areYES, so recall will decrease.

In such a text categorization system with a parameter that is easy to

adjust to get fine gradations in precision-recall tradeoff, one can adjust the

system to operate at a point where precision and recall are equal. This

value of precision (and recall) is the value of the precision-recall breakev en

point. As a practical matter, rather than finding the settings that achieve the

exact precision-recall breakev en point, one often will obtain readings on

either side of the precision-recall breakev en point and then use linear

interpolation to compute the value.

There is a relationship of sorts between the precision-recall breakev en

point andFβ . If one looks at the equation forF1.0 when p = r andp ≠ 0, one

finds thatF1.0 =
(12 + 1)pp

12 p + p
=

2p2

2p
= p = r . That is, at the precision-recall

breakev en point,F1.0 and the precision-recall breakev en point are equal.

However, in generalF1.0 may be larger or smaller elsewhere (for other
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values ofp andr ). The precision-recall breakev en point is a particular value

of F1.0, so about all that one can conclude is that:

min(F1.0) ≤ precision-recall breakev en point≤ max(F1.0)

At this point one might wonder which of these is "the best" measure. In text

categorization, that question does not have one answer that works for everyone.

The reason this is the case, and some cautions, follow:

1. One can not look only at accuracy, since in situations where most

documents areNO, a system can obtain a high accuracy score by always

responding to the user’s inquiry with the (very unhelpful) response "no

relevant documents found".

2. One can not look at only precision or only recall, since often a system that

has a high value for one has a low value for the other. One needs therefore

to look at both, or at some measure that includes the effects of both (such as

Fβ or the precision-recall breakev en point).

An overall example will be help clarify the use of the contingency table

based performance measures that we will be using. Out of 200,000 documents in a

collection of medical papers, 20,000 are on the topic of cancer. A text

categorization system examines the entire collection and predicts that 15,000

documents are on cancer. Of these, 12,000 actually are on cancer. So we hav e:

20,000 180,000

15,000

12,000
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The resulting contingency table is:
act=NO act=YES

pred=NO 177,000 8,000
pred=YES 3,000 12,000

Note that in this and in subsequent examples, we will use the above row and

column labels as memory aids on at least one of the contingency tables in each

example.

The performance measure values for this contingency table are therefore:

1. accuracy:

177, 000+ 12, 000

200, 000
= 0. 945

2. precision:
12, 000

15, 000
= 0. 8

3. recall:
12, 000

20, 000
= 0. 6

4. Fβ :

F0.5 =
(0. 25+ 1) × 0. 8× 0. 6

0. 25× 0. 8+ 0. 6
= 0. 75

F1.0 =
(1. 0+ 1) × 0. 8× 0. 6

1. 0× 0. 8+ 0. 6
= 0. 69

F2.0 =
(4. 0+ 1) × 0. 8× 0. 6

4. 0× 0. 8+ 0. 6
= 0. 63
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5. precision-recall breakev en point:

Assume that we adjust the parameters in the system (to cause precision-

recall tradeoff to occur), and the same text categorization request now giv es

the following results:
act=NO act=YES

pred=NO 171,000 6,000
pred=YES 9,000 14,000

Note that the total number of documents that are actuallyNO and that are

actually YES (180,000 and 20,000 respectively) have not changed, but the

system is now doing a better job at correctly predictingYES documents

(14,000 now versus 12,000 earlier). Unfortunately, the system is also doing

worse at predictingNO documents (171,000 now versus 177,000 earlier). If

we compute precision and recall for this second test, we get:

p =
14, 000

23, 000
≈ 0. 61

r =
14, 000

20, 000
= 0. 8

To compute the precision-recall breakev en point using linear interpolation,

We do the following. We hav e a line p = m r + b defined by 2 points (r, p) =

(0.6,0.8) and (0.8,0.61). Therefore,p = −0. 95r + 1. 37 and so the precision-

recall breakev en point is atp =
b

1 − m
≈ 0. 70. (In a real evaluation, this is

probably a larger interpolation interval than one would like to use.)

Note that any system could have achieved a respectable accuracy of 0.90 by

always predictingNO. Howev er, both its precision and recall would be 0.0. This is in
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fact a problem we encountered in some of the active learning methods that we

developed (and discarded); under certain conditions, the learner would learn to

"just sayNO" and still get a good accuracy score. This is in fact a common problem

with some types of learning algorithms in certain domains.

2.6.2 Averages

Often one performs a series of many tests on the same system, varying some

aspect of the problem that the system is solving (such as the category). An issue

that arises in such situations is how to compute one average value that is

representative of the system’s performance on the entire series of tests. For

performance measures such as elapsed processor time and number of training

examples used, the concept of average is well-defined. However, for performance

measures based on the 4 values in the contingency table, what one means by

"average" is perhaps not so clear. The problem is that each test will have a resulting

contingency table, and there are several ways in which one can combine the data in

these tables to form one single performance measure value. There are two main

approaches to solving this problem [Lewis 1991a]. Basically, one needs to decide

between two ways of computing an average performance measure value:

1. Macroaverage

Compute the performance measure for each test’s contingency table and

then average these performance measure values to get a single value for the

series of tests. This is referred to as the "macroaverage" approach.
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This approach assumes that each text categorization request is equally

important and so deserves equal weighting. Or, in the case of information

retrieval, macroaveraging assumes that each query is equally important.

Macroaveraging is usually used in information retrieval experiments

because it gives equal weight to each user query regardless of how many

documents are retrieved by each query.

2. Microaverage

Combine (add) all of the contingency tables to obtain one "table of totals"

for the series of tests. This table is referred to as the aggregate table – each

entry is the sum of the corresponding entries in all of the trial contingency

tables. Then one computes the performance measure using the aggregate

table. This is referred to as the "microaverage" approach.

Each document-category pair requires that the system make a decision (a

prediction ofYES or NO). This approach assumes that each of these decisions

should be weighted equally.

If one looks at a series of tests, in which one submits several categorization

requests to a system, thenmicroav eraging treats each prediction decision on

each document for each requested category as the case of interest – so each

case is a small part of the entire series of tests. On the other hand,

macroav eraging treats the entire response of the system to each of the

categorization requests as the case of interest, so each case is a much larger

portion of the entire series of tests [Kantor 1999].
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Since microaveraging is usually used in text categorization experiments, we

used microaveraging in this thesis.

As an example of macroaverage and microaverage calculations, consider the

following two contingency tables. They are from two runs of the same system

(each run was made with different parameter settings) on a collection containing

10,000 documents.

act=NO act=YES

pred=NO 5,000 0 3,000 4,000
A: B:

pred=YES 3,000 2,000 2,000 1,000

To demonstrate the differences that can occur with these two approaches for

computing averages, we compute the macroaveraged and microaveraged recall for

the above 2 trials.

r macro =



2, 000

2, 000
+

1, 000

5, 000



2
= 0. 60

r micro =
3, 000

7, 000
= 0. 43

Even in this example with only two tests, the averaging method used makes a

big difference. Macroaveraged recall is assuming that the recall values for each of

the two tests are equally important. Macroaveraged recall does not take into

account the fact that test A contains only 40% as many documents that are actually

YES as test B (A has 2,000; B has 5,000). Microaveraged recall is assuming that

each of the 20,000YES-NO predictions being made by the system is of equal

importance, and in fact microaveraged performance measures look upon the above
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series of tests with a focus on the fact that it isa series. Microaveraging views the

series as the following aggregate table:

act=NO act=YES

pred=NO 8,000 4,000
pred=YES 5,000 3,000

Before introducing the final system evaluation concepts that we will be

using, we need to provide an overview of how the various systems are tested and

also introduce some additional terminology. The various corpora used for testing

typically contain several categories. That is, each document in the collection has

been labeled as being in any number (or none) of a large number of possible

categories. Rather than test using all possible categories, most corpora have an

established set of categories that are used in testing text categorization systems.

We use these categories for our tests so as to allow comparison of our results to

those of others. Each category has a name, but is usually referred to by a unique

category number which we assign to it.

The procedure we use for testing a text categorization system is to first

subdivide all of the documents in the corpus into a training and test set. These two

sets are disjoint. The system learns from the training set and is tested using the test

set. However, during learning one is not allowed to use any aspect of the label

values for documents in the test set.

Testing (using the test set) can occur at any time. We do testingduring

learning so as to be able to plot learning curves. These plots show how

performance measure values change as learning is occurring, and are of interest in

comparing learners for situations where learning may be interrupted at some point

(perhaps by an impatient user demanding to have the system "use what you know
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now"). And of course testing is done at the end of learning so that we can measure

the final performance of the systems.

The assumption is that both the training set and the test set are, on the

av erage, representative of the entire corpus. Most of our experiments create the

training and test sets by randomly splitting the corpus. We use every document in

the corpus in either the training set or the test set. We refer to a particular division

of the corpus into training and test sets as a "split". Some splits are difficult to

accurately learn, because the training set may happen to be not very representative

of the test set. One therefore needs to run tests on many splits and then compute an

av erage of the results in order to get an accurate picture of how the system actually

behaves.

We therefore want to train and test each system on several categories using

several splits. Each execution of the system on a particular category using a

particular split is termed a "trial". Figure 5 outlines the steps in a typical run (series

of trials) using the so-called train-and-test approach.

Once the series of trials shown in Figure 5 has completed, we have a 2x2

contingency table for each trial. We in effect have a 2 dimensional matrix whose

elements are contingency tables. An example will help to demonstrate the situation

that results from a series of trials. Assume that we have a collection containing 500

documents, and we decide to use a training set size of 400 and a test set size of 100.

We are going to run tests on two of the categories in the corpus – categories 1 and

2. For each category, we will use two different training-test set configurations – we

will use two splits, splits 1 and 2. The series of tests therefore contains 4 trials. In

each trial, the system will learn from the training set and then be tested using a test

set of 100 documents. The results of each trial will be a 2x2 contingency table, and

the results of the 4 trials can be thought of as a matrix containing the 4 contingency

tables, with the rows of the matrix representing different splits and the columns

representing different categories.
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for split in split
1
, split

2
, split

3
, . . .

for categor y in category
1
, categor y

2
, categor y

3
, . . .

(star t of this trial)
system learns using the training set
system is tested using the test set
results (2x2 contingency table) are saved
(end of this trial)

end
end
compute and output the results for the series of trials

________________________________________________________________________________________________
Figure 5. Steps in Typical Train-and-Test Run (Series of Trials)

Consider the following example:

category 1 category 2

act=NO act=YES

pred=NO 7 72 21 4
split 1

pred=YES 16 5 53 22

5 1  48 2
split 2

90 4 33 17

Note that there is no requirement that the column totals (the number of

documents for which the actual label isNO, YES) for any trial be equal to those for

any other trial. Each split results in a different test set. Each category within a

particular split has in general a different distribution ofNO andYES labels. These two

facts combine to result in there being no requirement on column totals matching

between any two contingency tables resulting from a series of trials. It is however

true that each contingency table has its entries sum to the same value (100 in the

above example), since there are the same number of documents in each test set.
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Continuing with the above example, we will use recall as the performance

measure that we are computing. The approach is similar for other performance

measures. Letr s,c stand for the recall value for the trial of splits and categoryc.

Then we have:

r1,1 =
5

77
= 0. 064

r1,2 =
22

26
= 0. 846

r2,1 =
4

5
= 0. 800

r2,2 =
17

19
= 0. 895

therefore:

r macro =
0. 064+ 0. 846+ 0. 800+ 0. 895

4
= 0. 651

Microaveraged recall is computed from the aggregate table formed by summing the

contingency tables from all of the trials, which is:

act=NO act=YES

pred=NO 81 79

pred=YES 192 48

Therefore:

r micro =
48

79+ 48
= 0. 378
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It turns out that two other types of averages are useful to us in analyzing

system behavior from a series of trials:

1. Categoryaverage

Each document-category pair requires that the system make a decision (a

prediction of YES or NO). Recall that microaveraging is based on the

assumption that each of these decisions should be weighted equally over all

trials. It is also useful to apply this assumption to all trials for a particular

category. This results in an aggregate contingency table for each category.

One computes the performance measure for each such aggregate table and

then computes the average of those values. We refer to this as the

"categoryaverage".

In the matrix of trial contingency tables (rows are splits, columns are

categories), this results in first forming an aggregate contingency table for

each column and using those tables to compute the performance measure

value for each column, and then taking the average. Essentially one is

microaveraging each column and then macroaveraging the column

performance measure values. The real value of this concept is in being able

to determine how system behavior varies by category (over all splits), which

one can do by looking at the microaveraged values for each column

(category). Some categories may be easier to learn than others, and this

computation gives us that information.
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2. Splitaverage

Correspondingly, one can do the same thing for the splits. That is, compute

an aggregate contingency table for each split (each row of the matrix of trial

contingency tables), compute the performance measure for each of those

tables, and then compute the average. We refer to this as the "splitaverage".

This concept is useful in that it allows one to see how system behavior

varies by split (over all categories). Some splits may result in the training

set being especially poor at representing the test set, while for other splits

the learner may do very well. If there is a large amount of variation in

system behavior for different splits, then we have a situation in which there

is a large amount of variation among different splits in the knowledge the

learner is gaining from the training set as compared to the knowledge

needed to correctly categorize the test set. In such a situation, we need to

run more splits so as to be more confident that our results are representative

of overall system behavior.

We will finish our discussion of performance measures by computing the

categoryaverage and splitaverage for the above example of a 4 trial test series (2

splits x 2 categories). Letr catAve,c stand for the categoryaveraged recall for category

c only. Then:

r catAve =
r catAve,1 + r catAve,2

2

r catAve,1 =
5 + 4

(72+ 1) + (5 + 4)
= 0. 110

r catAve,2 =
22+ 17

(4 + 2) + (22+ 17)
= 0. 866
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therefore:

r catAve =
0. 110+ 0. 866

2
= 0. 488

Note that the intermediate calculations for categoryaveraged recall tell us that, for

this system, recall for category 1 is much worse than for category 2.

Let r splitAve,s stand for the splitaveraged recall for splits only. Then:

r splitAve =
r splitAve,1 + r splitAve,2

2

r splitAve,1 =
5 + 22

(72+ 4) + (5 + 22)
= 0. 262

r splitAve,2 =
4 + 17

(1 + 2) + (4 + 17)
= 0. 875

therefore:

r splitAve =
0. 262+ 0. 875

2
= 0. 569

The intermediate calculations for splitaveraged recall tell us that, for this system,

the splitting process is producing training and test sets with large variations in the

knowledge contained in each. This would be an indication that one would need to

run a large number of splits in order to get average performance measure values

that were representative of the system’s overall behavior.

2.6.3 Splitting

A couple of brief final comments on splitting. We use random splitting and

run several train-and-test trials, each on a different split, and then compute averages

of performance measures. Another approach is to use one of the various standard

resampling techniques such as cross-validation or bootstrapping. However, it is felt



45

by many that, if one has enough data (which we do), then a train-and-test approach

on a random split is easiest to analyze and has very clear theoretical support [Weiss

and Kulikowski 1990]. One such random split does, however, hav e the

disadvantage of ignoring some examples for training. This is why we use multiple

random splits.

Many if not most text categorization researchers use the train-and-test

approach on a single split, which they usually define in their published results.

Such predefined splits are usually not constructed in a random manner – they often

are purposely time-based to simulate real-world data flow (earlier documents are

for training and later ones are for testing), and they often include only documents

that have certain characteristics (such as which categories they belong to, how

many categories they belong to, etc.). While the use of such predefined splits

makes experiments go much faster and makes it easier for different researchers to

compare results, we are concerned that such methods may not give performance

measure estimates that are unbiased, of low variance, and that cover the entire

corpus. We will, when necessary for comparison purposes, use such predefined

splits. While they make comparisons amongst systems easier (or at least, should),

we have a genuine concern as to whether they giv e results indicative of overall

system performance that would be experienced by a general user [Weiss and

Kulikowski 1990].

Another issue that comes up when one uses predefined splits is due to most

predefined splits not using all of the documents in the corpus. Some documents in

the corpus are omitted completely, appearing in neither the training nor the test set,

but rather being placed in an unavailable set. When this occurs, the question arises

as to whether one should shorten the feature vector so that there are only slots for

those tokens that appear in either the training or test set being used, or should one

continue to use the feature vector format that applies to the entire corpus. Most

researchers do in fact shorten the feature vector when using a predefined split,
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effectively treating the training and test sets as a new and smaller corpus. We view

this action as a form of dimensionality reduction, which we do not do. In

particular, our view is that having certain documents flagged as unavailable for a

particular test is a temporary condition. We do not modify the feature vector to

take advantage of this, but instead always use the feature vector that applies to the

entire corpus.

2.6.4 Performance Measures We Will Use

As mentioned before, elapsed processor time and the number of training

examples used are for us the performance measures of greatest interest. We will

generally give the number of training examples used as a percentage of the total

number of examples that are available for training. The elapsed processor time is

given in seconds. The system on which all experiments were performed is an IBM-

compatible 486-DX4-133 PC, 80 Mb of 70ns access time main memory, 5Gb of

11ms seek time hard disk (on 2 disk drives), operating system is Linux version

1.2.13. The programs are written in C++, and the gnu C++ compiler version 2.7.0

was used to compile and link them.

To make sure that our systems are doing a good job of categorizing text, we

also use various contingency table based performance measures. We will use

macroaveraged accuracy, since it is probably the most-often used performance

measure in the field of machine learning. We also want to include microaveraged

recall and microaveraged precision in our evaluations, since these are the

performance measures most often used in the field of text categorization. We will

avoid the dilemma of predicting whether the user favors recall or precision by

examining both, or as is more often the case by examining microaveragedFβ for β

= 1.0. This means that the user wants both good precision and good recall, and

does not want to sacrifice very much of one to get more of the other. We use these
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values ofβ since, from our experience, this makes the resulting systems more

valuable to the user. At least in our research, many systems tested were able to give

good precisionor good recall, but few do well at both. And few users desire

systems that operate at either extreme, since having high precision at all costs

means that one will miss many relevant documents, and having high recall at all

costs means that one will have long lists of documents predicted to beYES that must

be manually filtered to separate out the many documents that are actually

irrelevant.
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3. Previous Research

In this chapter we give an overview of previous relevant research in the areas

of the vector space model, dimensionality reduction methods, supervised learning

algorithms, active learning, bagging, and boosting.

3.1 Vector Space Model

The vector space model for document representation was developed by

Gerard Salton in the 1960’s [Salton 1971, Salton and McGill 1983, Salton 1989].

This model is similar to the nearest neighbor model, which is widely used in

machine learning and in pattern recognition [Aha et al. 1991]. The vector space

model is simple to envision conceptually, and it obtains quite good results. It is the

basis of the majority of existing text categorization and information retrieval

systems, and concepts related to the development of the model are used in most

other systems that are not purely vector space. The development of the model has

spurred many of the advances that have been made over the past 20 years in the

fields of text categorization and information retrieval.

Basically, the vector space model envisions documents as vectors existing in

an n dimensional document space. Each dimension corresponds to some

characteristic that can be attributed to documents. These characteristics are usually

some encoding of the words present in each document, such as the number of

occurrences of each word. One can also encode language structure, document

structure, etc. as characteristics. Typically the number of characteristics (n) is very

large (by machine learning standards) – anywhere from 103 to 107, depending on

how the characteristics are chosen. There are many possibilities as regards choices

of dimensions, and in fact this is an area that differentiates many of the text

categorization systems that are based on the vector space model.
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The vector space model measuressimilarity between two documents by the

cosine of the angle between their vectors. Recallcos(0°) = 1 and cos(90°) = 0.

Therefore, vectors that are collinear or nearly so will have a high cosine similarity

measure, whereas those that have an angle between them that is close to 90° will be

very dissimilar.

One (simple) way that this model can be used for text categorization is by

remembering the vectors corresponding to the documents whose categories are

known, and then determining whether or not the similarity is sufficiently high for a

previously unseen document so as to include it in that category.

While the vector space model makes many assumptions that are known to be

violated by natural languages, it nevertheless performs well. A great number of

tests run on a great number of varying implementations of this model have shown

that it gives quite accurate results [Salton 1971].

3.2 Dimensionality Reduction Methods

Most methods of text categorization that have been applied to collections

with a large vocabulary use one or more methods to reduce the number of words

that are actually "stored" in the representation of each document. This

dimensionality reduction is done to reduce the number of attributes and often to

also attempt to remove irrelevant features. This is typically done in a preprocessing

step that is executed only once for each document in the collection.

We next present a brief discussion of some of the more common

dimensionality reduction methods. Some of these methods are specific to text

categorization and information retrieval, others are generally applicable to a variety

of domains. Note that many systems use a combination of these approaches rather

than just one. We hav e also included comments on how each method can encounter

problems when used to categorize text. The use of dimensionality reduction
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methods is quite common, however, and in fact one of the aspects of our research

that is unusual is that our preprocessing is minimal – we do not do any

dimensionality reduction.

Some of the more common dimensionality reduction methods are:

1. removal of common words ("stoplisting")

Words that appear often are thought by many to not be of any use in text

categorization since they presumably have little differentiating value. One

creates a "stop list" of common words. The stop list is a list of words that

will be ignored – stoplisted words are effectively removed from the

document during the preprocessing step. Examples of words often found

on stop lists: a, an, the, they, to, of, and, . . .  A problem that can occur using

stoplists is that one may in fact remove words that would have been helpful

or even necessary in categorizing the text. For example, removal of certain

prepositions and auxiliary verbs with a stoplist can produce quite different

results in text categorization system behavior [Riloff 1995]. ("Auxiliary

verbs" are verbs accompanying other verb forms in order to indicate tense

or mood – shecouldwalk to work, shewill walk to work.)

As another example, many systems doing stoplisting remove any

"word" that consists only of a single letter. This makes it very difficult to

obtain documents about the C programming language.

2. stemming ("lemmatizing")

Many different words may have a common stem. One can therefore reduce

dimensionality greatly by replacing each word by its stem. The assumption

is that the stem contains the important part of the meaning of the word, so
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stemming should do little to change the meaning of the document as a

whole. For example, the words "banked", "banking", "bank", "banks", and

"banker" all have "bank" as their stem. If we used stemming, then all

occurrences of any of these 5 words would be replaced by "bank".

Stemming is usually done using a stemming algorithm (versus a table

lookup), and there are a great number of stemming algorithms in use [Hull

1996]. However, a potential problem is that in fact some informationis

being lost by the stemming process. For example, if a document contains

the word "banker", then the document may be about finance . . .  it is

probably not about flying airplanes or plowing snow. But if the document is

stemmed, then this information is not available to the learner. There has

been some research in the area of specifically examining the impact of

stemming [Hull 1996]. It has been found that loss of plural noun form by

stemming can greatly impact text categorization [Riloff 1995] and in

general most stemming needs to be much more tailored to the words being

stemmed and to the collection of documents if one does not want to modify

the text so much as to significantly impact text categorization [Church

1995].

Especially in languages that are morphologically more complex than

English (such as Russian), one often finds the term "lemmatize" used to

describe the concept of determining the "base form" of a word. To many

people in linguistics, "stemming" refers only to that aspect of lemmatization

that is accomplished by removing word endings to find the stem. For

example, jumping→jump and loves→love can be accomplished by

stemming, but went→go and thought→think require a lemmatizer.
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3. token "condensation"

Many systems condense several tokens into one token by replacing all

tokens of a particular type by one "reserved" token. For example, one often

finds that tokenizers replace any and all numbers by a reserved token such

as "num" [McCallum and Nigam 1998]. Other systems might replace all

date-like constructs with "date", time-like constructs with "time", etc.

4. attribute/feature selection

There is a host of methods that attempt to use some reasonable criterion for

selecting which attributes will be used in the feature vectors and which will

be omitted. These approaches often tend to be applicable to other domains

(versus stoplisting and stemming, which are specific to text categorization

and information retrieval). Most of these methods perform one of several

mathematical analyses on the training data to determine which features are

of greatest discriminatory value. For example, removing features that have

very high frequencies of occurrence [Apté et al. 1994], removing features

that have very low frequencies of occurrence [Lewis and Ringuette 1994],

concave minimization [Bradley and Mangasarian 1998], category utility

[Devaney and Ram 1997], rough set data reduction [Jelonek et al. 1995],

information gain [Apté et al. 1994, Schütze et al. 1996], various forms of

hill-climbing [Doak 1992], genetic programming [Sherrah 1998], and

breadth first search [Almuallim and Dietterich 1991]. The problem that can

occur when these methods are used with text categorization is: would in fact

the words that were removed hav e been of little or no use in categorizing

the text? This is a difficult question to answer decisively since often the
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results of tests depend greatly on the specific document collection being

used.

5. attribute creation

Several methods reduce dimensionality by creating a new set of features

that are mathematically related to the original set, but that contain many

fewer features. Some of the methods in use are boolean feature generation

[Kudenko and Hirsh 1998], singular value decomposition [Yang and Chute

1994], latent semantic indexing [Berry et al. 1995, Schütze et al. 1996],

connectionist networks [Saund 1989], and computation of eigenvectors or

characteristic vectors [Franklin 1968, Bellman 1970]. Each method

employs its own procedures and has its own corresponding metrics as

regards any restrictions on the new dimensions (such as independence), how

the new dimensions are computed, and how the error introduced by the

dimensionality reduction is measured and minimized. The idea behind all of

these attribute creation methods is that one hopes to find a much smaller set

of new dimensions that can express almost all of the information contained

in the original data. These new dimensions will in general be some

weighted combination of the original dimensions. For example, instead of

having the tokens "computer" and "science", one might have a single

dimension that is "0. 3× computer+ 0. 2× science". Indeed, one of the

disadvantages of this approach is that it is difficult to meaningfully (to a

human) tie the results back to the original documents. Another problem is

that these methods have very high time complexities, usuallyO(n3) or

worse, wheren is a measure of the size of the original corpus.
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Many dimensionality reduction methods are also extremely time consuming

and so are rarely done online. Instead, the computations are performed in batch

mode on the entire document collection. Methods that use this approach must

therefore partition their text categorization activities so that this time consuming

portion of the task has already been done and the results saved when the time

arrives for a user to actually interact with the system. Such a restriction on system

use also makes it more difficult for such systems to respond quickly to changes in

the document collection, such as can occur when individual documents are

updated, removed, or added.

Yang and Chute have dev eloped an approach that combines knowledge

engineering and machine learning technologies by using labeled training data to

obtain associations between document words and the words used to describe the

desired categories [Yang and Chute 1994]. The set of words in the training

documents form a "source vocabulary". The set of words in the category

descriptions form a "target vocabulary". Recall that one form of attribute creation

is to compute a new set of dimensions that is far fewer in number but is able to

express (most of) the information in the original data. They carry this idea a step

further by specifying that the new set of dimensions be the words in the category

descriptions themselves. They employ singular value decomposition to obtain a

mapping from the unrestricted document vocabulary to the restricted document

indexing vocabulary. Categorization can then be performed by using the weights in

the mapping matrix to compute a score for each test document for each category,

with the highest score indicating the category to be predicted for that document.

3.3 Supervised Learning Algorithms

In supervised learning, categorization knowledge is learned from documents

that have already been categorized by a human and stored in a knowledge base.
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One representation for this knowledge base that is especially easy for a human to

understand is a set of if-then rules. Typically the set of if-then rules is given as an

ordered list. Given a document D to categorize, one starts at the top of the list of if-

then rules and evaluates each if-clause. The first if-clause that is true gives one the

predicted label (in the then-clause). One of the if-then rules in the list might be:
If D contains the word ’storm’ and the word ’desert’,
but not the word ’meteorology’ then category is ’war’.

One of the most impressive results in applying machine learning to text

categorization has been obtained by Apté, Damerau, and Weiss, using optimized

rule-based induction. They reported a 0.805 precision-recall breakev en point using

the Reuters-22173 collection [Apté et al. 1994]. However, to achieve this result,

over 10,000 labeled examples were used. Both general and category-specific

feature selection were used. For general feature selection, they sorted all words

and word pairs by frequency and kept the 10,000 most frequent terms. This list was

further reduced by removing function words (high frequency "contentless" words).

Category-specific feature selection was then performed using statistical methods

(such as entropy) to remove additional terms deemed irrelevant to that category.

The decision tree method of constructing a knowledge base examines the

attributes one value at a time, leading one to an eventual decision. For example, to

decide if an animal A is a mammal, one might first ask "Does A lay eggs?". If the

answer is no, then predict mammal. If the answer is yes, then ask "Is A a

platypus?". If the answer is yes, then predict mammal, otherwise predict not

mammal.

Decision trees are the machine learning algorithm of choice for many, and

this method has also been applied to text categorization [Lewis and Ringuette 1994,

Sakakibara et al. 1996]. Lewis and Ringuette did an extensive comparison of

decision tree methods with a Bayesian approach. They concluded that each

approach had its strengths and weaknesses, but that both were accurate enough for
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operational use if feature selection was used as a pre-filter [Lewis and Ringuette

1994]. They experimented with several feature selection methods, including

category-specific information gain, stoplisting, and removal of infrequently-

occurring words.

Both rule learning and decision tree learningneed to do some feature

selection because they perform poorly when there is a large number of irrelevant

features. On the other hand, certain linear threshold learning algorithms seem to

scale better that others when large numbers of attributes are irrelevant.

The perceptron learning algorithm is a widely-used linear threshold learning

algorithm [Rosenblatt 1962, Weiss and Kulikowski 1990]. For examples

represented by a boolean feature vector of lengthn, the perceptron maintains its

hypothesis as a vector ofn weights and a threshold valueθ. One can envision the

threshold and weights as defining the location of a hyperplane. Initial values are

assigned to the weights and toθ. As examples are seen, the weights andθ are

adjusted in an effort to move the hyperplane so that it separates theYES and NO

examples. The weights andθ are adjusted by adding a small constant to each of

them so that the hyperplane moves in the correct direction. The rate at which the

hyperplane moves is determined by parameters of the algorithm. The perceptron is

a mistake-driven learning algorithm, meaning that it learns only when it has

predicted incorrectly.

"Winnow" refers to a quite large family of algorithms [Littlestone 1989].

These algorithms are similar conceptually to the perceptron algorithm, in that they

also attempt to position a hyperplane so as to separate theYES andNO points in then

dimensional document space, and they are also mistake-driven. The winnow

algorithm, however, uses a different method for computing the amount of the shift.

It uses multiplication by a small constant rather than addition to change the

weights, thereby shifting the hyperplane. Also, winnow algorithms typically adjust

only the weights and not the threshold value as learning occurs.
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The naive Bayes learning algorithm is based on the work done by Duda and

Hart [Duda and Hart 1973, Dietterich 1997, Mitchell 1997]. This method estimates

the probability that each feature is present given the class. Then Bayes rule is used

to compute the probability of each class given the feature values present. When an

example is presented for classification, the algorithm multiplies the prior

probability for each class value times the associated conditional probabilities for

each feature value given that class value. One such product is formed for each

possible class value. Whichever product is largest indicates the class value to

predict.

The "naive" aspect of the algorithm is that the algorithm makes no attempt to

ascertain relationships between the features. For example, in a collection of

newspaper articles, the presence of the word "dog" in an article about food might

increase the probability of the presence of the word "hot", as in "hot dog". The

naive Bayes algorithm would not use such information in categorizing an article,

but rather would look at the words "hot" and "dog" as if the occurrence of one were

independent of the presence or absence of the other.

While the naive Bayes algorithm makes seemingly major simplifying

assumptions in calculating the probabilities used to determine its predictions, it

very often achieves quite good results when used for classification in many

different domains [Kononenko 1990, Langley 1993, Singh and Provan 1995,

Domingos and Pazzani 1996, Domingos and Pazzani 1997, McCallum et al. 1998].

Most of our experiments used the perceptron, winnow, and naive Bayes

algorithms, and so these 3 algorithms will be discussed in more detail later.

3.4 Active Learning

"Active learning" in its most general sense refers to any form of learning

wherein the learning algorithm has some degree of control over the examples on
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which it is trained [Cohn et al. 1994]. One active learning approach is the

membership query paradigm, in which the learner can construct new sets of inputs

and request that the teacher provide their labels [Angluin 1988]. The normal

strategy used by the learner is to generate examples that are close to examples for

which it already knows the labels. The idea is to try to map the boundaries of the

solution space regions that define each class. The use of membership queries for

active learning in text categorization would utilize a learner that generates

documents which are slight variations of what a human would write. However,

these artificial documents would be very difficult for a human to meaningfully and

reliably classify.

The other type of active learning is meticulous sampling. In this paradigm,

the teacher has available to it all of the examples. However, the learner carefully

("meticulously") chooses which examples it will use for learning. The idea is that a

series of randomly chosen examples often contains repetitive information, so one

could perhaps use fewer examples if they were selected carefully. Typically the

cycle proceeds as follows. The teacher presents the learner with the feature vector

portion of an example (i.e., the example without the label). The learner examines

the feature vector and then decides whether or not to ask for the label. If the label is

requested, then the example is considered as having been used as a training

example by the learner. The idea behind this way of counting the number of

examples that are actually used is that each label must ultimately be provided by a

human, whereas the feature vector is generated by the action of the preprocessor

program on a pool of already-gathered raw data. Once the data has been gathered

and the preprocessor written, providing feature vectors is relatively inexpensive in

terms of human involvement. However, human effort is required to provide each

label. Since the label is the most expensive portion of the example to provide

incrementally, the example is not counted as having been used by the learner unless

the learner also sees the label.
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Most methods of active learning employing meticulous sampling to decide

whether or not to ask for the label (and thereby use the example) form their

decision by computing some measure of how informative the example might be.

This measure is usually computed based on the current knowledge state of the

learner/s.

Recently there have been some promising results in the active learning area.

Query by Committee (QBC) is a learning method that uses a committee of

hypotheses to decide for which examples the labels will be requested. It also uses

the committee to predict the value of the label. Since QBC exerts some control

over the examples on which it learns, it is one form of active learning. QBC

maintains a committee of all hypotheses consistent with the labeled examples it has

seen so far – a representation of the version space. (Given a hypothesis space and a

set of training examples that have been used, the "version space" is the subset of all

candidate hypotheses that are consistent with those training examples.) Each

unlabeled training example is presented to the algorithm. An even number of

hypotheses (usually 2) is chosen at random, given the attribute values of the

example, and asked to predict the label. If their predictions form a tie, then the

example is assumed to be maximally informative, the algorithm requests the actual

label from the teacher, and the version space is updated [Freund et al. 1992, Seung

et al. 1992, Freund et al. 1997]. Freund, Seung, Shamir, and Tishby analyzed QBC

in detail and showed that the number of examples required in this learning situation

is proportional to the logarithm of the number of examples required for random

example selection learning [Freund et al. 1992].

Cohn, Atlas, and Ladner developed the theory for an active learning method

called selective sampling, and then applied it to some small to moderate sized

problems, as a demonstration of the viability of this new approach [Cohn et al.

1994]. In selective sampling, the learner computes a region of uncertainty based on

the examples it has seen so far, and then draws the next example from that region
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of uncertainty (by querying an oracle). Their results indicate a decrease by a factor

of 2 - 3 in the number of labeled examples needed by the learner for problems

suited to this method. A key issue in determining the applicability of this approach

for any domain is whether or not the learner can generate legal examples, and

whether or not one can efficiently and effectively represent the regions of

uncertainty.

Lewis and Gale developed a method that is conceptually similar to selective

sampling, but it is specifically meant for use with an input stream of candidate

training examples. Their method is calleduncertainty sampling– the learning

algorithm selects for labeling those examples whose membership is most unclear

[Lewis and Gale 1994]. They dev eloped the approximations necessary in order to

determine which examples are most ambiguous to classify. Since the method was

developed for text categorization, it is able to handle noise as well as a large

numbers of features. Their approach greatly reduced the amount of training data

that was needed, often by 2 - 3 orders of magnitude when compared to random

sampling.

Dagan and Engelson proposed a general method, termedcommittee-based

sampling, for selecting examples to be labeled [Dagan and Engelson 1995,

Argamon-Engelson and Dagan 1999]. Their method employs a set of models (the

"committee"). The informativeness of an example (and so the desirability of having

it labeled) is indicated by the entropy of the predictions of the various committee

members. They found that committee-based sampling improved learning

efficiency by significant amounts as long as the desired accuracy was reasonably

high, and that the amount of efficiency gained increased as desired accuracy

increased.



61

While approaches and results vary, all of these studies and others conclude

that active learning improves learning efficiency (decreasing the number of training

examples used) by significant amounts.

3.5 Bagging and Boosting

A problem often encountered in machine learning is that, for a given set of

training and test examples, one may get very different results if one, for example,

removes just one of the training examples. In general, a learning method is termed

"unstable" if small changes in the training-test set split can result in large changes

in the resulting predictor [Breiman 1996b]. A method termed "bagging" (bootstrap

aggregating) will in many such cases result in the ability to predict more accurately

[Breiman 1996a]. Bagging is a method for reusing the training data. If one has a

training set of sizet, then one drawst random examples from it with replacement

(using a uniform distribution), uses thoset examples to learn, and then repeats this

process several times. Since the draw is with replacement, usually the examples

drawn will contain some duplicates and some omissions as compared to the

original training set. Each cycle through the process results in one knowledge base.

After the construction of several knowledge bases, learning ceases. Prediction is

then performed by taking a vote of the predictions of the individual knowledge

bases.

Another method used in machine learning to attempt to get better accuracy

from a training set is called boosting [Schapire 1990]. AdaBoost ("adaptive

boosting") is a practical version of the boosting approach [Freund and Schapire

1995, Freund and Schapire 1996]. Boosting is similar in overall structure to

bagging, except that one keeps track of the performance of the learning algorithm

and forces it to concentrate its efforts on examples that have not been correctly

learned. In AdaBoost, one keeps track of the accuracy of the knowledge base
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resulting from each learning cycle. Instead of choosing thet training examples

randomly using a uniform distribution, one chooses the training examples

randomly but in such a manner as to favor the examples that havenot been

accurately learned in the past. The idea is that successive learners will benefit from

the experience of the earlier learners by focusing on portions of the example space

that those earlier learners were not able to accurately generalize. After several

cycles, one has (as in the case of bagging) several knowledge bases. Learning

ceases, and prediction is then performed by taking a weighted vote of the

predictions of the individual knowledge bases, with the weights being proportional

to each learner’s accuracy on its training set.



63

4. Active Learning with Committees (ALC)

In this chapter, we discuss the goals of our research project, our Active

Learning with Committees (ALC) approach to text categorization, and the main

techniques used.

4.1 Goals and Motivation

In developing text categorization methods, we have the following goals:

1. use fewer training examples

We want our methods to make efficient use of examples, and this is our

motivation for using active learning. The notion is that, by choosing

training examplescarefully, we may be able to learn as much without using

so many examples. The reason for wanting to reduce the number of

examples used is that the labeling of examples must typically be done by a

human, so we are trying to reduce human costs, both in time and money.

2. scale up to large numbers of features (minimal preprocessing)

Any text categorization method that looks at individual tokens in text must

in some way address the problem of the very large number of different

tokens that exist in most natural languages. It is not unusual for the attribute

vectors that represent documents to contain 50,000 – 200,000 elements.

There is, at least initially, a "slot" in the feature vector for every token that

appears in any document in the collection.
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Many machine learning approaches do not scale up well – they do not

perform acceptably when the number of dimensions is increased to such

large values. This problem is usually handled in one of two ways:

a. Use a preprocessing step that will reduce the number of tokens that

one has in the document representation. Examples: stop lists,

stemming, singular value decomposition, latent semantic indexing,

statistical attribute selection, and attribute replacement/creation.

b. Use a machine learning approach that scales up well (and therefore

presumably does some form of attribute filtering itself).

Our goal is to use the latter approach – to use a learning algorithm that

allows one to use the textual data pretty much "as is", with the learning

algorithm itself coping with the high dimensionality directly. We will not

engage in preprocessing that changes the tokens that are in each of the

documents. This minimal preprocessing approach makes the overall system

more general and also as an added benefit saves preprocessing execution

time.

Preprocessing can in general be somewhat tricky anyway, in that one often

forgets that the preprocessing has in a sense changed the problem being

solved. Or, another way to look at it: dramatic preprocessing is putting a

"knowledge engineering approach" front end on the machine learning

system. How can one be sure that this preprocessing is not altering the

original problem in such a manner as to make its solution more difficult or

less robust?

Moreover, most dimensionality reduction methods (with the exception of

stemming and stoplisting) are usually extremely time consuming. Also,
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many forms of preprocessing (especially attribute creation) often result in a

knowledge base that can no longer be tied back to meaningful textual

features (such as specific words), thereby making it difficult if not

impossible to obtain human-comprehensible rules from the knowledge base.

Quite a few preprocessing methods are domain-specific, so one is possibly

adding domain restrictions by including such methods in the overall system.

However, preprocessing that to some degree reduces dimensionality is

certainly the rule rather than the exception in current approaches to text

categorization.

The methods we use to tokenize do not use stop lists or stemming or even a

table lookup. The documents are viewed as a stream of characters which are

typically broken into tokens at white space and punctuation. This is fast,

takes little memory, and results in a representation that can easily be tied

back to the original document.

3. efficient space and time complexity

We want to develop a method that is both space and time efficient, by which

we mean typicallyO(n), where n is a measure of the input size. This

applies to both the learning and the prediction processes. Naturally we

want the system to "run fast" and "not use much memory". But efficient

use of time and space are also, as a practical matter, partially dictated by

our doing minimal preprocessing. We must deal directly with a very high

dimensional domain. For example, some text categorization methods,

operating on the Reuters-22173 corpus, have only 300 - 500 tokens in the

feature vector once preprocessing has occurred. Our system uses all tokens

(approximately 50,000).
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A comment is in order since many methods (ours included) use a 2 step

approach to solving the text categorization problem. The first step does

"preprocessing" and the second step does the "learning". It is often this

second step which is analyzed in detail and which is usually the most

interesting. But to evaluate the overall system, one must include an

examination of what the preprocessing did to the original data and the

resources it took to do it. The modifications made to the documents by the

preprocessor should be detailed so that one can better judge aspects of the

overall system such as [1]the degree to which the preprocessor modified the

original problem, and [2]how specific to the particular corpus being used

the preprocessing method is. Also, it is helpful to know the computational

complexity of the 2 steps. HavingO(n3) preprocessing followed byO(n)

for learning is not the same as having the entire processO(n).

Preprocessing in most systems (ours included) is only done once for a

particular document collection, so in some ways one is justified in not

dwelling too much on its complexity. Howev er, in situations where the

document collection is both large and changing often, having efficient

preprocessing becomes more important.

4. general method

Our goal was to develop methods that are general and that will work on a

variety of types and sizes of documents. In this regard, we have tried to

avoid methods that seem a bit too "contrived". Most machine learning

algorithms have various options as regards the choice of parameter values,

methods used for computing various values, etc. One must be very careful

not to use methods in which one can inadvertently make the method

specific to just one problem (or to a small group of problems) simply by the
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choice of parameter values. We hav e avoided methods that would be hard to

justify in terms of answering "why’s", in an effort to develop methods that

are more defensible and we hope better able to solve large classes of

problems.

5. obtain same accuracy as supervised methods

We want to develop text categorization methods that do all of the above, but

without sacrificing accuracy.

Our goals may appear overly-optimistic. We want to find text categorization

methods that are as good as or better than existing methods when comparisons are

made using run time, the number of training examples used, and contingency table

based performance measures. Elapsed processor time and the number of training

examples used are for us the main driving forces behind our research. We want to

have a system that runs very fast and that uses fewer training examples. It is

important to keep in mind that there are conflicts encountered while developing any

system. Decisions need to be made as to the relative importance of various

performance measures. One would like to do well in all of the performance

measures. However, if that is not possible, one must then make difficult choices.

In order to get fast execution speed and low training example use, we may have to

make sacrifices in terms of other performance measures. Not too much, though –

obviously a system that runs very fast and uses few training examples but provides

little useful information is not desired. Most published results on text

categorization research do not report computational complexity or the elapsed

processor time for the preprocessing or for the test runs. This in a sense places us

at a disadvantage in terms of making comparisons, because we are emphasizing

performance measures that are not considered as important by other researchers
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and therefore usually not reported by them. But yet we may have to make some

sacrifices in the measures that are reported by others in order to reach our goals.

4.2 Overall Approach

From the vector space model we borrow the idea of representing documents

as vectors. Each document is represented as a boolean vector, with each

component indicating whether or not the corresponding token (word) is in that

document. The length of the vector is the number of unique tokens in the entire

document collection. Conceptually, think of each document as being represented

by a data point in ann dimensional space. This is similar to the document

representation used in the vector space model – we are using a "booleanized"

version of the vector space model’s data representation.

The Active Learning with Committees (ALC) approach is defined as follows.

One uses a finite committee of learners, each learner representing a different

hypothesis. Since the learners represent different hypotheses, they will at times

disagree on how a particular example should be classified. Active learning is

achieved by using this disagreement amongst the members to decide whether or not

to see training example labels. Learning occurs by changing some of the

hypotheses. Classification is performed by combining the individual member

predictions to form a prediction of the committee as a whole. Therefore, ALC

consists of three basic parts:

1. deciding whether or not to see the label

2. learning

3. forming the committee prediction
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As there are several methods available for each of these three parts, one can

create a very large number of different ALC systems. We examined a great many

of these systems in our research. We will first give an overview of the general

approach used for each of these three aspects of ALC, and then go into more detail

about each of the techniques used.

4.2.1 Deciding Whether or Not to See the Label

Like the Query by Committee (QBC) approach, we use a committee of

learners. The committee is composed of a finite number of members, each of which

uses the same learning algorithm but which in general is initialized differently, thus

insuring that the members at least initially behave differently from one another.

The learning methods we have dev eloped scale up well with the number of

members since execution time and memory demands are linear in the number of

members. There is a tradeoff between having a small committee (fast execution,

low memory requirements, but not many "different opinions") and a very large

committee.

When an unlabeled example is presented to the committee, the committee as

a whole needs to decide whether or not to ask to see the label. There are several

ways that the committee can do this. In general, some or all of the individual

members of the committee make a prediction on the example – that is, they predict

the label based on the feature vector and on their current knowledge. Those

predictions are then in some manner converted into a decision by the committee as

a whole on whether or not to see the label. If the label is seen ("example is used"),

then the example with its label is presented to each member for learning. However,

depending on the characteristics of the learning algorithm used by the individual
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members, the state of each member, and the example, in general some learners will

learn from the example and some will not.

4.2.2 Learning

We chose perceptron, winnow, and naive Bayes as the main learning

algorithms used with ALC. Conceptually, each of these methods consists of a set of

weights which defines a hyperplane through the space of documents. The weights

are adjusted during learning in an effort (by each committee member) to position

the hyperplane so as to separate the documents that are in the category from those

that are not. As the weights change, the hypothesis represented by each learner

changes. All three of these algorithms are in a class of algorithms called "linear

threshold algorithms". This term comes from the fact that the algorithm is used to

predict one of two values (in our caseYES or NO) based on comparing a linear

function of the attribute values to a threshold value.

Perceptron and winnow learners are, as machine learning algorithms go,

better able than most to handle large numbers of attributes, noise, and large

percentages of irrelevant attributes. As an added benefit, they are simple algorithms

(in time complexity, space complexity, and conceptually). Both are also mistake-

driven.

The naive Bayes learning algorithm, in spite of its somewhat pejorative name

and the seemingly quite drastic nature of the assumptions it makes, does quite well

in classification, and in many different domains. The standard naive Bayes

learning algorithm is a supervised learning algorithm and is normally used in batch

mode (more on this later). We hav e developed from this standard naive Bayes

algorithm a learning algorithm that uses a committee of naive Bayes learners, is

incremental, and can be used in active learning.
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A committee of learners (perceptron, winnow, or naive Bayes) has its

members initialized randomly – meaning that the weights for each member are set

to some random value. As this committee of learners is presented with unlabeled

examples, it decides which examples to use, labels are provided for those examples

that are to be used, and the weights are changed as learning occurs. The main

differences among the 3 learning algorithms we use is the conditions under which

an example whose label has been requested actually causes an adjustment in the

weights and how the weights are actually modified. These differences (and others)

are characteristic of the standard supervised form of each algorithm, and so will be

covered in detail in the following section where we cover the specifics of each

algorithm. Briefly, perceptron and winnow are mistake-driven learning algorithms

– they only adjust their weights if their prediction on the training example was

incorrect. Naive Bayes always adjusts its weights, whether its prediction on the

training example was correct or incorrect. Perceptron modifies its weights

additively, winnow modifies its weights multiplicatively, and naive Bayes modifies

its probabilities by additively modifying the numerator and denominator of a ratio

(weights are a function of these probabilities).

4.2.3 Forming the Committee Prediction

At any time, the committee may be used to predict categories for previously-

unseen documents. To form the prediction of the committee, one in general has

some or all of the individual members of the committee make a prediction, and

then those individual predictions are combined in some manner to form a single

prediction for the entire committee. Generally we use majority voting to determine

the prediction of the committee as a whole.
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4.2.4 ALC Example

There are many methods that can be used for each of the 3 basic components

of an ALC system. A concrete example describing one specific choice for each of

the 3 components may be helpful in clarifying the ALC concept. Say we have a

committee composed of 8 learners:

1. deciding whether or not to see the label:

When an unlabeled example is presented to the committee, each member

predicts the value of the label. If there is an even split (4YES, 4 NO), then we

assume that this example is very informative, since half of the committee is

getting it wrong. The label is requested (and so the example is used)

whenever the vote is an even split.

2. learning:

The committee members learn from the complete example (i.e., the

example with the label) using the winnow algorithm.

3. forming the committee prediction:

The individual committee members predict, and majority vote determines

the prediction of the committee. In case of a tie vote, randomly predictYES

or NO.
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4.2.5 Terminology

In an ALC system, a candidate training example goes through several steps

before it actually impacts learning. We hav e developed a specific terminology to

make this process clear:

1. A training example is "selected" if the system determines that it is an

informative example. The code that decides whether or not to see the label

is deciding which training examples are to be selected.

2. A selected training example is "used" when the system requests its actual

label. The number of training examples used is one of the main

performance measures we are interested in, since it is an indication of how

much work the teacher has to do. Usually (but not always), the label is

requested so that the complete training example (attributes and label) can be

passed to the learner. In such cases, we might say "used for learning" to

make the description flow more smoothly.

3. A selected and used training example is "learned from" when actual

changes in the knowledge base of the learner are made in response to that

example. It is very important to note the distinction between an example

that is used and one that is learned from. As we shall see, some learning

algorithms may ask for the label (and thus use the example) but then decide

not to learn from it.

4. We also make a distinction between examples in the corpus that are

"unused" versus "unavailable". An unused example is a training example

that was not used by the learner – that is, its label was not requested. An

unavailable example is an example in the corpus that was excluded from

both the training and test sets.
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One final comment on the above terminology: for most methods used to

decide whether or not to see the label, selection (deciding that the example is

informative) and use (requesting the label) occur at the same time, and so in those

cases we refer to the example being used (with selection being implied). For the

bagging and boosting methods, however, selection and use occur at different times.

4.3 Main Techniques Used

4.3.1 Supervised Learning

We used the following three learning algorithms in our research: perceptron,

winnow, and naive Bayes. All 3 algorithms were originally developed as supervised

learning algorithms – meaning that each algorithm uses all examples in the training

set. Supervised learning, since it uses all of the training data, provides us with our

"baselines" – the methods to which we will compare the results of other methods.

One of our main goals is to be able to categorize text as well as supervised learning

methods while using far fewer training examples. If the method we are testing uses

multiple epochs, then we will allow the supervised learning algorithm to use the

same number of epochs. Similarly, the committee of supervised learners has the

same number of members and the members are initialized in the same manner as is

the case for the ALC method we are testing.

In an n dimensional space, the equation of a hyperplane is

a1x1 + a2x2 + . . . + anxn = b, equivalently written as→a ⋅ →x = b . A 1-dimensional

hyperplane is a point, a 2-dimensional hyperplane is a line, a 3-dimensional

hyperplane is a plane. We will refer to→a as a vector of weights, and theb value as

the threshold. When one "learns" a hyperplane, one is determining the values of→a

andb so that the hyperplane separates the→x that areYES from the →x that areNO. A
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useful fact about hyperplanes is that→a is orthogonal to the hyperplane. This in fact

comes from the usual definition of orthogonality. Two vectors→a and →x are

orthogonal to each other if→a ⋅ →x = 0 [Lay 1993]. An easy way to see that this

means that→a is also orthogonal to the hyperplane is to consider a hyperplane

passing through the origin, say→a ⋅ →x = 0. Then by the definition of orthogonality,→a

and →x are orthogonal to each other. But the→x are vectors drawn from the origin to

any point in the hyperplane. Since→a is orthogonal to all such→x and all such→x are

what define the hyperplane,→a is orthogonal to the hyperplane. While the

hyperplanes in our domain do not pass through the origin, they can be thought of as

such a hyperplane that has had its coordinates translated, and we will see later that

this does not affect vector size or direction and so does not affect this result.

A hyperplane is a mathematically simple structure (no cross products of

coordinates, no exponents) and so is attractive since it is computationally fast to

manipulate. All of the learning algorithms we are using represent their hypotheses

using a hyperplane. Each algorithm attempts to position this hyperplane in the

space of document data points so that the points representing all of the documents

that are in the specified category lie on one side of the hyperplane, and the points

representing all of the documents that arenot in the category lie on the other side of

the hyperplane. The learning algorithm in effect tries to separate the points into two

clouds, one containing onlyYES documents and one containing onlyNO documents.

Often the clouds ofYES andNO points are not separable with a hyperplane, in which

case the algorithm tries to find a hyperplane that does the best job it can of

separating the clouds.

Tw o of the learning algorithms that we use, perceptron and winnow, attempt

to determine this "best position" for the hyperplane by starting with a hyperplane

that cuts through the points in a random way and then adjusting its location so that

the hyperplane separates the two clouds. This effort will usually be easier if the two

clouds are some distance apart. The distance between the clouds is proportional to
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a "spacing factor" calledδ (delta) which is in (0,1) [Littlestone 1991]. If the clouds

happen to overlap, thenδ is a measure of the distance between the best non-

overlapping portions of the clouds. The rate at which one moves the hyperplane

when trying to find its best position (the "learning rate") usually varies asδ varies.

For example, if the two clouds are quite close together, then one needs to move the

hyperplane a very small amount each time, and so a low learning rate is employed.

Otherwise one will repeatedly overshoot the area between the clouds and

essentially end up with the hyperplane oscillating between positionswithin the

main bodies of the two clouds. Since both algorithms allow the use of multiple

epochs, one might adopt the strategy of making each movement of the hyperplane

very small. However, if the learning rate is small butδ is in fact quite large, then

such a strategy will result in learning that is unacceptably slow.

One final comment onδ. While it is a measure of the distance between the 2

clouds, we also use it as an input parameter to our text categorization system.

Different algorithms then use thisδ value, usually in different ways, to compute a

learning rate that is proportional toδ. This approach avoids our having to give as

parameters the learning rate for each different algorithm in use. Instead we give

one parameter based on our understanding of the corpus as a whole, a relative

measure of how far apart we think the 2 clouds are, and then each learning

algorithm is responsible for using that information to compute any internal learning

rate parameters it needs. The value ofδ is a characteristic of the corpus and how it

was preprocessed, and is usually found through trial and error. Determining the

best value ofδ is referred to as tuning and is an accepted fact of life for algorithms

that have parameterized learning rates. One does not, however, want to useδ to dial

in the correct solution to specific problems. The value ofδ that is used must be the

same for all uses of a particular corpus. Also, one wants systems for which the best

value ofδ is actually a range of values. Since it is not practical to actually compute

δ, one would like to hav e the system be robust to variations inδ. In this way, one is

more confident that the specific value ofδ is not playing too major of a role in the
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quality of the system’s performance, and one is also more confident that the system

will behave reasonably well on other corpora without modifyingδ.

Note that the supervised naive Bayes learning algorithm is different in this

regard. As we will see, the method used to compute the weights that define the

separating hyperplane in the naive Bayes algorithm does not directly involve any

"learning rate" parameter. This in fact is one of the strengths of the supervised

naive Bayes method – one does not need to specify a "learning rate". This is an

advantage since in general one does not knowδ and it is usually not possible to

compute it in a reasonable amount of time.

A few comments are probably in order as regards methods which we can not

use, as a practical matter, because of the nature of the domain and/or our

performing minimal preprocessing. Most mathematical optimization or

approximation methods that one often thinks of (linear programming, multivariate

linear regression, etc.) take timeO(n3) or worse. Many also require that there in

fact be a solution or feasible region. Many are also intolerant of noisy data. The

document collections we deal usually have both attribute and class noise, and they

often have inconsistent categories and so there is often no feasible region. And with

the number of attributes we are dealing with, complexity much greater than

O(n log n) is (as we shall see) barely tolerable, and then only if the constant of

proportionality is very small. Finding the best linear separator (one that minimizes

the number of incorrect classifications) is known in general to be NP-hard [Höffgen

and Simon 1992], so computing the best solution for all cases is not practical in our

domain, and probably not desirable either (due to noise).

4.3.1.1 Winnow

We use a standard version of winnow –WINNOW2in [Littlestone 1988], with

some modifications from [Littlestone 1991]. We will hereafter refer to our
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1. Obtain the next example, which consists of attributes →x and the value of
the actual label.

2. If →w ⋅ →x > θ then predict YES, otherwise predict NO

3. If the actual label and the predicted label are different, then learning
occurs.

a. if the actual label is YES and the predicted label is NO, a promotion
is perfor med:

for i = 1,n wi = wi × α xi

where α > 1

b. if the actual label is NO and the predicted label is YES, a demotion is
perfor med:

for i = 1,n wi = wi × β xi

where 0 < β < 1

________________________________________________________________________________________________
Figure 6. Winnow Learning Algorithm

algorithm as "winnow". The winnow algorithm assigns initial weight values and

then adjusts those weights during learning, at a rate determined by two parameters

α and β. In this version of winnow, the threshold value (θ ) is not changed as

learning occurs.

Figure 6 outlines the steps used in winnow for learning. Each document is

represented by→x, a boolean vector of lengthn, wheren is the number of unique

tokens in the entire document collection.→w is a vector ofn real-valued weights

(w1,w2,
. . . , wn). It can also, in conjunction with the constantθ, be viewed as

defining a hyperplane whose equation is→w ⋅ →x = θ . We discuss later how the value

of θ and the initial values of→w were chosen in our experiments.

Prediction is done by computing whether the point defined by→x is above or

below the current location of the hyperplane. If it is above the hyperplane, then

predict YES, otherwise predictNO. To form the prediction,→w ⋅ →x is computed and
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compared to the threshold valueθ. If the dot product is greater thanθ, then the

document is predicted to be in the category, otherwise it is predicted not to be in the

category.

The winnow algorithm learns by adjusting the weights so that the hyperplane

separates the documents that are in the category from those that are not. The

weight adjustment is done using the multiply operation, so this algorithm uses

multiplicative updating. Note that the weights are adjusted only if the actual and

predicted labels are different. Since learning occurs only if the learner is in error,

this algorithm is mistake-driven. Also note (sinceα 0 = 1 and β 0 = 1) that only

weights corresponding to attributes whose values are 1 are actually changed.

Weight increases are called promotions and tend to move the hyperplane

closer to the origin. Promotions occur when the actual label isYES but the predicted

label isNO. Therefore to get that point above the hyperplane where it presumably

belongs, the hyperplane needs to be moved tow ards the origin. This is done by

increasing the weights along those dimensions for whichxi = 1. Recall that→x, the

feature vector, is a boolean vector, so each element is either 0 or 1. Thus changes

in wi only occur whenxi is 1. Similarly, demotions tend to move the hyperplane

aw ay from the origin by decreasing the weights along those dimensions for which

xi = 1.

The initial values of the weights and the thresholdθ must be greater than 0.

The weight values will remain greater than 0 due to the updating being

multiplicative. This therefore limits the patterns that can be learned by winnow to

those that can be represented using a separating hyperplane defined by positive

weights. That is, the learning is based on those attributes thatare in the document.

This seems intuitively how a human classifies documents – by aggregating the
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impact of the words that are in the document (versus penalizing by those words that

are not in the document).

4.3.1.2 Perceptron

We use a standard form of the perceptron learning algorithm. There are

many similarities between the winnow and perceptron learners. Common features

are:

1. Both algorithms maintain a hypothesis as a set of weights.

2. Each document class is learned separately.

3. A document is classified as being in the category of interest (YES) if the dot

product of the weight vector and the feature vector that represents the

document is greater than a threshold value (θ ).

4. Both algorithms update ("learn") only when a document is misclassified.

5. During learning, only weights corresponding to attributes whose value is 1

are actually changed.

The main difference between perceptron and winnow lies in the way the

weights are updated. The winnow learner uses multiplicative updating (see Figure

6). However, the perceptron learner adds (subtracts) a small constant to the weight

corresponding to eachxi = 1 if a YES (NO) document is classified incorrectly. Thus

the perceptron learner uses additive updating of weights. Additional differences

are [1]the perceptron also updatesθ when learning occurs, and [2]perceptron

weights can be negative. Figure 7 outlines the steps in the perceptron learning

algorithm.
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1. Obtain the next example, which consists of attributes →x and the value of
the actual label.

2. If →w ⋅ →x > θ then predict YES, otherwise predict NO

3. If the actual label and the predicted label are different, then learning
occurs.

a. if the actual label is YES and the predicted label is NO, a promotion
is perfor med:

for i = 1,n wi = wi + α xi

θ = θ − α

where α > 0

b. if the actual label is NO and the predicted label is YES, a demotion is
perfor med:

for i = 1,n wi = wi − α xi

θ = θ + α

where α > 0

________________________________________________________________________________________________
Figure 7. Perceptron Learning Algorithm

Because the weights in the perceptron learner are changed additively, they

can be either negative or positive or zero. Thus the weights andθ can be initialized

to any value (positive, neg ative, or zero). This in turn means that there are no

restrictions on the type of hyperplane that can be represented using perceptron

weights. (Recall that all winnow weights are positive.) Therefore, any linearly

separable data set can be perfectly learned using a perceptron learner, and it turns

out that this can be accomplished in a finite number of steps. This result is usually

referred to as the Perceptron Learning Theorem and is due to [Rosenblatt 1962].

This sounds much more wonderful than it is in practice, since in text categorization

we have significant amounts of noise, we do not know the value ofδ and so can not

compute the value ofα, and often the documents are not linearly separable.

Because winnow adjusts its weights by an amount proportional to the current
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weight values, whereas the perceptron always adjusts the weights by the same

amount, one can see that there will be significant granularity differences between

the two algorithms as learning progresses, and this in turn may impact their

comparative behaviors.

4.3.1.3 Naive Bayes

The naive Bayes algorithm works by looking at how the probability of each

possiblexi value correlates with each possible class value. In our research, thexi

are boolean and so are either 0 or 1. Also, the class value is boolean – its value is

eitherYES or NO.

Figure 8 outlines the steps used in the naive Bayes learning algorithm, as we

have implemented it. As an example, consider how the algorithm works assuming

that it makes one pass through all of the training data. In step #1, it initializes all of

the counts and totals to 0 and then goes through the training examples, one at a

time. For each training example, it is given the feature vector→x and the value of the

label for that document,k. The algorithm goes through the feature vector and

incrementsci ,k for eachxi that is 1. It then incrementstk. In step #2, these counts

and totals are converted to probabilitiesp(xi = j |k) by dividing each count by the

number of training examples in classk. The final step (#3) computes the prior

probabilitiesp(k) as the fraction of all training examples that are in classk. The

resulting conditional and prior probabilities are the knowledge base for the naive

Bayes algorithm – the result of the learning.

Note that the naive Bayes learning algorithm is not mistake-driven. It learns

by adjusting the countsci ,k and totalstk, which in turn allows one to compute the

probabilitiesp(xi = j |k) and p(k). Thus each and every attribute of each and every



83

1. From the training examples, compute the values of ci ,k ("count" of the
number of examples in class k that have xi = 1) and tk ("total" number of
training examples labeled k).

2. Compute the p(xi = j | k) values; p(xi = j | k) is the conditional
probability that xi = j when the class label is k:

p(xi = 1 | k) =
ci ,k

tk

p(xi = 0 | k) = 1 − p(xi = 1 | k)

3. Compute the p(k) values; p(k) is the prior probability that the label is k,
based on seeing only the training examples:

p(NO) =
tNO

tNO + tYES

p(YES) =
tYES

tNO + tYES

________________________________________________________________________________________________
Figure 8. Naive Bayes Learning Algorithm

training example will impact at least some of thep(xi = j |k) and p(k) values, and

thus the algorithm learns from all attributes of all training examples. This is in

contrast to winnow and perceptron, which do not learn (adjust weights) unless their

prediction on the training example was in error, andeven then, they do not adjust

weights except for attributes whose value is 1.

The naive Bayes algorithm is traditionally used in "batch mode", meaning

that the algorithm does not perform the majority of its computations after seeing

each training example, but rather accumulates certain information on all of the

training examples and then performs the final computations on the entire group or

"batch" of examples. The algorithm typically performs step #1 for all training

examples, andthen performs the remaining steps onlyonce. Howev er, note that

there is nothing inherent in the algorithm that prevents one from using it to learn

incrementally. In other words, one can initialize the countsci ,k and the totalstk,
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and then execute all of the steps in Figure 8 on each training example, updating the

counts and totals, and then computing new values of the conditional and prior

probabilities. Obviously computing the various probabilities after each training

example instead of doing it just once after having seen all training examples will

take more time. Doing it in this manner does make it possible to compare the

performance of naive Bayes to other algorithmsduring the learning process, and

this can in turn be of interest if one is investigating a situation in which the user can

halt learning at any time (before the entire training set has been used) and request

that the system proceed with prediction. However, it is important to realize that

such an incremental mode of operation doesnot affect the results that are obtained.

In other words, the knowledge base that results from the incremental mode aftern

training examples have been used is exactly the same as one would have if the

algorithm were used in its more traditional single-batch mode on those samen

training examples. The fact that the incremental version learns as it goes does not

affect what is learned or not learned from each example. This is decidedly not the

case for the winnow and perceptron algorithms. Since they are mistake-driven, the

order in which the training examples are used affects the learned weights.

We next consider how the naive Bayes method uses the probabilities it has

computed in order to classify previously unseen examples. Given a particular

document →x, we would like to computep(YES|→x) and p(NO|→x). We could then

compare these two probabilities, with the one that is larger indicating which class

label value is more likely to be the actual label. We will useℜ to stand for the

probability ratio that we want to compute. Then:

ℜ =
p(YES|→x)

p(NO|→x)
> 1: predict YES

≤ 1: predict NO (1)
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We hav e, from the learning phase of the naive Bayes algorithm, the values of

the p(xi = 0|k) and p(xi = 1|k), so we might expect that we can computep( →x|k).

However, for our classification task we need to computep(k|→x). Bayes Theorem

allows us to perform the necessary inversion:

p(k|→x) =
p( →x|k) p(k)

p( →x)

Therefore:

ℜ =
p(YES|→x)

p(NO|→x)
=

p( →x|YES) p(YES)

p( →x|NO) p(NO)

We hav e the values of p(NO) and p(YES) from the learning phase. To see how we can

obtain the p( →x|k) values, first consider that from the definition of conditional

probability, we can express the conditional probabilities that we want to compute in

terms of joint events [Pearl 1988]:

p( →x|k) =
p( →x, k)

p(k)

Also note that p(→x, k) can be written in component form asp(x1,x2,
. . . , xn,k).

Using the chain rule for probabilities [Pearl 1988]:

p(x1,x2, . . . , xn, k) =

p(x1|x2, . . . , xn, k) p(x2|x3, . . . , xn, k) . . . p(xn−2|xn−1, xn, k) p(xn−1|xn, k) p(xn|k) p(k)

To simplify this expression, consider [Pearl 1988] that the event A is conditionally

independent of event B given event C if:

p(A|B,C) = p(A|C)
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If we assume that, givenk, each of thexi is conditionally independent of the

rest of the attributes, then we can simplify the above chain rule equation

considerably. This in fact is the "naive" assumption that gives this approach its

name. If, givenk, eachxi is conditionally independent of the rest of the attributes,

then each of thep(xi |xi+1, xi+2, . . . , xn, k) terms in the above chain rule expansion is

equal top(xi |k). Therefore the above chain rule result becomes:

p(x1,x2, . . . , xn, k) = p(x1|k) p(x2|k) . . . p(xn−2|k) p(xn−1|k) p(xn|k) p(k)

Therefore, the ratioℜ that we want to compute can be calculated thusly:

ℜ =
p( →x|YES) p(YES)

p( →x|NO) p(NO)

=
p( →x, YES)

p( →x, NO)
(2)

=
p(x1,x2, . . . , xn, YES)

p(x1,x2, . . . , xn, NO)

=
p(x1|YES) p(x2|YES) . . . p(xn−2|YES) p(xn−1|YES) p(xn|YES) p(YES)

p(x1|NO) p(x2|NO) . . . p(xn−2|NO) p(xn−1|NO) p(xn|NO) p(NO)

ℜ =
p(YES)

i=n

i=1
Π p(xi |YES)

p(NO)
i=n

i=1
Π p(xi |NO)

(3)

Note thatp(xi |k) in equation (3) representsp(xi = 1|k) if the i th attribute of the test

example (xi ) is 1 andp(xi = 0|k) if it is 0.

We hav e, from the learning phase of the naive Bayes algorithm, the values of

p(k), p(xi = 0|k), and p(xi = 1|k), for i = 1,n and for k = NO or YES, so we can
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perform the above computation and thereby compute the above ratio ℜ. We then

classify →x asYES if ℜ > 1 andNO if ℜ ≤ 1.

Also note that since we really only need to know the relative sizes of the

numerator and the denominator in the right hand side of equation (3), we do not

have to actually compute the specific value ofℜ.

The naive Bayes classification method is quite granular, in the sense that

relatively large changes in the underlying training data can result in one obtaining

the same prediction on the test examples. One essentially computes the values of

p( →x, k) for the various values ofk, finds the largestp( →x, k), and then chooses that

value ofk as the predicted class value. Thus, while the "naive" assumption made

by this method may be quite drastic for some domains, the method will still

classify correctly as long as the net error in the variousp( →x, k) values does not

result in choosing ak different from the actual class label [Domingos and Pazzani

1996]. This also means that the naive Bayes classifier is quite robust and stable, in

that departures from the naive assumption can be quite large and one can still

obtain the correct classification.

In the actual implementation of the naive Bayes algorithm, we encountered

difficulties in two areas. First, since the Bayes classification algorithm uses a

product operation to compute the probabilitiesp( →x, k), it is especially prone to

being unduly impacted by probabilities of 0. This can occur both forp(k) and for

p(xi = j |k) values. As an example of the former, one might not have any examples

in the training set that are categorized asYES, so p(YES) will be 0, and sop( →x, YES)

will be 0. This can occur when one is dealing with categories that have very few

positive examples in the corpus – the training set may well contain only negative

examples.

Similarly, it is not unusual for some tokens to not appear at all in training

documents that are in a particular category. For example, the word "pickle" might

never occur in training documents that are about skiing. This would result in the
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count (c<pickle>,<skiing=yes>) being 0, and so the corresponding probability

(p(x<pickle> = 1 | < skiing = yes>)) would also be 0. During classification, this will

cause the probabilityp( →x, < skiing = yes>) to be 0, regardless of the other tokens

in the document. In other words, because there were not any training documents

containing pickle that were about skiing, the classifier will always predictNO when

asked about skiing if the document does contain the word "pickle" – no matter

what other words (like "skiing"!) are in the document.

Either of these situations [p(k) = 0 or p(xi = j |k) = 0] can occur as a result

of the fact that our training sets are necessarily of limited size and certainly not all-

encompassing. To avoid this problem, we use two methods. First, we use the m-

estimate method for computing conditional probabilities. And secondly, we employ

certain limit checks.

An approach that partially addresses this problem of zero probabilities is to

use the m-estimate method [Mitchell 1997], also referred to as the beta distribution

method [Cestnik 1990, Neapolitan 1990]. In step #1 of Figure 8, one is computing

counts ci ,k and totalstk. The "straightforward" approach is to initialize these

counts and totals to 0 before any training documents are seen. Then, as training

documents are examined, the appropriate counts and totals are incremented. This

initialization of ci ,k and tk to 0 is in fact the main source of these zero probability

difficulties, since anyci ,k that remains 0 after all of the training documents have

been used will result (step #2 of Figure 8) in the correspondingp(xi = 1|k) being 0.

Similarly, any tk that remains 0 will result in the correspondingp(k) being 0 (in

step #3). In the m-estimate method, one in effect initializes the counts and totals to

non-zero values, based on some prior assumptions and on ones confidence in those

assumptions. The idea behind these methods is that initializing theci ,k and tk to 0

makes no assumptions about the data. If one does in fact have some prior domain

knowledge, then that knowledge can be included in the probability computations if
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one uses the beta distribution. The m-estimate method has two parameters ˆm and

p̂. ci ,k is initialized tom̂ × p̂ (instead of 0), andtk is initialized tom̂ (instead of 0).

For the value of ˆp, we want to use an estimate of the expected value of

p(xi = 1|k). The list of all tokens that are used in the corpus is termed a

"dictionary". Thereforep(xi = 1|k) is the probability that thei th token in the

dictionary appears in a document that is (k = YES) or that is not (k = NO) in the

category of interest. Actually, since we have not seen any training examples yet, we

have no way of distinguishing between an estimate forYES and NO, reg ardless of

category, so we compute just one estimate, forp(xi = 1|k) for eitherk value and for

any category. Say we have a corpus of documents and the average number of

tokens in each document is £ (the average document "length"). The dictionary for

the entire corpus contains-D tokens. Note that the values of £ and-D are easily

obtained during preprocessing of the corpus and their computation does not involve

examining the actual values of attributes or labels of any of the documents.

Observe that if one has-D tokens and is going to draw a token for filling the first

position in a document, then the chance of drawing a particular token is
1
-D

, and so

the chance ofnotdrawing that particular token is:

1 −
1
-D

=
-D − 1

-D

Then for a particular document (independent of category and independent ofk),

assuming that the occurrences of the tokens are independent of the other tokens in

the document, the probability that a particular token (thei th token) isnot anywhere

in the document is the probability that it is not in the first position times the

probability that it is not in the second position times . . .  etc. In other words, it is:



-D − 1

-D



£
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Therefore, the probability that thei th tokenis in the document is:

1 − 

-D − 1

-D



£

This value is the estimated value ofp(xi = 1|k), and so is the value of ˆp for the m-

estimate method. For example, ˆp computed in this manner for the Reuters-22173

corpus for titles only is 0.00047 (-D = 16,600 and £ = 7.78424).

m̂ corresponds to how certain one is that the chosen value of ˆp is actually

correct. If one were not very confident, then one would choose a small value for ˆm,

thereby not greatly influencing the true counts or the true totals. If one were

extremely confident, one might choose an ˆm value that is quite large. Leth = the

number of different values of k; in our case,h = 2. Then initializingci ,k to m̂ × p̂

and tk to m̂ is exactlywhat would have occurred on the average if, before seeing

any training documents, one examined a "pre-training" set ofh × m̂ documents that

contained ˆm documents in each classk and for which eachxi = 1 with probability

p̂ (thus resulting in a count of ˆm × p̂). For this reason, ˆm is often referred to as an

equivalent sample size.

This is a very general initialization method. Note that: [1]if ˆm = 0, then we

get the aforementioned "straightforward" way of initializingci ,k and tk, and [2]if

m̂ = 2 and p̂ = 0. 5, we get a method that is often used and which is usually

referred to as "Laplace’s Law of Succession". In our experiments, we generally

used values of ˆm in the range 0 - 10.

A final comment: the use of the m-estimate method can still result in very

small or even 0 probabilities. Even if ˆm > 0, one can still have values ofp(xi = 1|k)

that are very small. Also, any of thep(xi = 1|k) can be 1 or close to it, in which

case the correspondingp(xi = 0|k) will be 0 or very small. Therefore, one still

needs toalso take some action to handle small probabilities when computations are

performed that involve multiplying large numbers of these probabilities together.
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The method we use is as follows: if the computed value of a probability is 0, we set

it instead to a small positive value – the idea being that the corresponding situation

could occur ("nothing is impossible") . . .  it just happened not to occur in the

training data that was used.

The other problem encountered during the actual implementation of the

naive Bayes algorithm is due to the fact that the feature vector is very long, but

usually not many of the attribute values are 1. This results in a great many 0 values

for xi in a typical →x. For example, in the Reuters-22173 corpus, the feature vectors

are of length 48,446 (the number of unique tokens in the entire corpus), but the

av erage document contains only about 82 different tokens. If the corresponding

p(xi = 0 | k) are very small, then multiplying large numbers of them together can

cause exponent underflow. Our solution to this second problem is to use the

logarithms of the probabilities instead of the probabilities themselves. This also

means that the multiplication done during classification (equation (3) on page 86) is

replaced by addition. Note that this now looks very similar to the equation used by

both winnow and perceptron to compute classification values. Each of those

algorithms predicts by computing whether the point defined by the new document
→x is above orbelow the current location of the hyperplane. To do this,→w ⋅ →x is

computed and compared to the threshold valueθ. If the dot product is greater than

θ, then the document is predicted to be in the category, otherwise it is predicted not

to be in the category. By transforming equation (3) to use log probabilities instead

of the probabilities themselves, we will obtain an evaluation equation for the naive

Bayes classifier that looks very much like computing→w ⋅ →x and comparing it toθ.

To see this, let us modify equation (3) so that we perform the naive Bayes

classification in a different but equivalent manner. We will instead compute a log

difference. First, we define the binary operator <> ("compare") to indicate

comparison and prediction.a<>b means that one compares the numeric values ofa

and b and predictsYES if a > b and NO otherwise. Note that for any expressione,
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(a<>b) and (a + e)<>(b + e) giv e the same result. As an example of the use of the <>

operator, recall how both the winnow and perceptron algorithms compute the

predicted label. They compute→w ⋅ →x and compare it to a threshold valueθ. If the

dot product is greater thanθ, then the document is predicted to be in the category,

otherwise it is predicted not to be in the category. Since→w ⋅ →x can be written as

Σ wi xi , the prediction method for both the winnow and perceptron algorithms can

be expressed asΣ wi xi <> θ.

Recall equation (1):

ℜ > 1: predict YES

≤ 1: predict NO

Since log is a strictly increasing function,a > b ⇔ log(a) > log(b). Also, log(1) =

0. Therefore:
log(ℜ) > 0: predict YES

≤ 0: predict NO

Which, using the <> operator, becomes:

log(ℜ) <> 0 (4)

Recall from equation (2):

ℜ =
p( →x, YES)

p( →x, NO)

Therefore, equation (4) becomes:

log(p( →x, YES)) − log(p( →x, NO)) <> 0

This expression computes the difference between the 2 log probabilities,

compares the result to 0, and forms a prediction which is exactly the same as would

be predicted using equation (3).
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We can computelog(p( →x, YES)) with the following (the numerators of equations (2)

and (3) are equal; take log of both sides):

log(p( →x, YES)) =

log(p(YES)) +
i=n

i=1
Σ {(1 − xi ) log(p(xi = 0|YES)) + (xi ) log(p(xi = 1|YES))}

The (1-xi ) and (xi ) terms are used so that the appropriate log( ) term will be

selected based on the actual value ofxi in the example being classified. Note that

sincexi is 0 or 1, (1-xi ) is correspondingly 1 or 0.

Continuing . . .

log(p( →x, YES)) = log(p(YES)) +
i=n

i=1
Σ {log(p(xi = 0|YES)) − log(p(xi = 0|YES)) xi +

log(p(xi = 1|YES)) xi }

= log(p(YES)) +
i=n

i=1
Σ log(p(xi = 0|YES)) −

i=n

i=1
Σ log(p(xi = 0|YES)) xi +

i=n

i=1
Σ log(p(xi = 1|YES)) xi

Similarly for log(p( →x, NO)).

Therefore:

log(p( →x, YES)) − log(p( →x, NO)) <> 0

becomes:

log(p(YES)) +
i=n

i=1
Σ log(p(xi = 0|YES)) −

i=n

i=1
Σ log(p(xi = 0|YES)) xi +

i=n

i=1
Σ log(p(xi = 1|YES)) xi − log(p(NO)) −

i=n

i=1
Σ log(p(xi = 0|NO)) +

i=n

i=1
Σ log(p(xi = 0|NO)) xi −

i=n

i=1
Σ log(p(xi = 1|NO)) xi <> 0
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This is an admittedly ugly-looking expression. The thing to note is that we

basically have only two kinds of terms. One kind (the first, second, fifth, and sixth

terms) contains only log probabilities, where these probabilities have been

computed by the naive Bayes learning algorithmand do not depend at allon the

particular example→x for which we are trying to predict the label. The remaining

terms contain these same types of log probabilities multiplied byxi – these terms

do depend on the particular example for which we are predicting. Gathering the

terms with xi factors on the left and those without on the right, we get the

following expression:

Σ ai xi <> b (5)

where:
ai = −log(p(xi = 0|YES)) + log(p(xi = 1|YES)) +

log(p(xi = 0|NO)) − log(p(xi = 1|NO))

b = −log(p(YES)) −
i=n

i=1
Σ log(p(xi = 0|YES)) +

log(p(NO)) +
i=n

i=1
Σ log(p(xi = 0|NO))

Since the naive Bayes classification expressionΣ ai xi <> b is of the same

form as the classification expression used by the winnow and perceptron algorithms

(Σ wi xi <> θ ), we have shown that the naive Bayes classifier, like winnow and the

perceptron, can be thought of as attempting to position a hyperplane in such a

manner as to separate theNO andYES documents [Duda and Hart 1973].

We discussed earlier why the perceptron can learn any linearly separable

pattern and why winnow can not. How does naive Bayes perform in this regard? It

turns out that there are linearly separable patterns that the naive Bayes algorithm

can not learn perfectly. For example, consider the family of "at leastm of n"

concepts, in which the yes class is anym or more bits out ofn being 1. Such
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==== starting system # = 1 ===(perceptron, supervised)======

Committee contingency table:
actual label value

0 1
predicted 0 29 0

label
value 1 0 99

committee accuracy = 1
committee precision = 1
committee recall = 1
weights: 0.18163 0.238773 0.295916 0.295916 0.324487 0.295916 0.324487
theta: 0.657143

==== starting system # = 2 ===(incremental naive Bayes, supervised) ======

Committee contingency table:
actual label value

0 1
predicted 0 8 0

label
value 1 21 99

committee accuracy = 0.835938
committee precision = 0.825
committee recall = 1

j k  . . . . . . . . . . . log(p(x[i]=j|k)) . . . . . . . . . . . .
i=1 i=2 i=3 i=4 i=5 i=6 i=7

1 0 -0.6173 -0.6173 -0.6173 -0.6173 -0.6173 -0.6173 -0.6173
0 0 -0.119975 -0.119975 -0.119975 -0.119975 -0.119975 -0.119975 -0.119975
1 1 -0.23976 -0.23976 -0.23976 -0.23976 -0.23976 -0.23976 -0.23976
0 1 -0.372386 -0.372386 -0.372386 -0.372386 -0.372386 -0.372386 -0.372386

________________________________________________________________________________________________
Figure 9. Solution for At Least 3 of 7 Problem

counting concepts are a concise way of describing rules used in medical diagnoses,

where a patient having "at leastm of n" symptoms is likely to have a certain

disease [Spackman 1988]. The "at least 3 of 7" concept can not be learned by the

naive Bayes algorithm, although it is a linearly separable pattern and in fact can be

perfectly learned by a perceptron [Kohavi 1995].

Figure 9 shows excerpts from the output of our system on the "at least 3 of 7

problem". The first system in Figure 9 is a supervised perceptron learner. As can
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be seen from the resulting contingency table, the perceptron has perfectly learned

the concept. The naive Bayes algorithm, however, obtained an accuracy of only

83.6%, since it incorrectly predictsYES ("1") for 21 examples which are actuallyNO

("0").

One final comment on the naive Bayes algorithm. Equation (5) is not

generally the one used when the algorithm is actually in use as a classifier.

Equation (5) is used when we want to compute a single weight for each token, but

the more standard method of computing the classification using log probabilities is

done as follows. Taking the log of both sides (recall that log is a strictly increasing

function), equation (3) becomes:

log(ℜ) = 

log(p(YES)) +

i=n

i=1
Σ log(p(xi |YES))


− 


log(p(NO)) +

i=n

i=1
Σ log(p(xi |NO))



Actually, we do not really need to compute the value of log(ℜ). We just

need to know which is larger, the first term on the right hand side or the second. If

the first term is larger, then we predictYES, otherwise we predictNO. In other words,

we want to compute:



log(p(YES)) +

i=n

i=1
Σ log(p(xi |YES))


<> 


log(p(NO)) +

i=n

i=1
Σ log(p(xi |NO))


(6)

This will give us the same classification decision as equation (3) on page 86, but

using log probabilities.

A small example will help demonstrate how the naive Bayes algorithm works

as represented both in equation (3) and (6), and also show when one might want to

use the weighting equation (5). The example will also serve to demonstrate the

specifics of how documents are converted to feature vectors during preprocessing.

We will use a very small corpus and we will use only the document titles. We are
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interested in whether or not each document is "about pets". Five training

documents have been submitted to a human indexer and labeled. Here are the

document titles and the label given to each by the indexer:

doc# title label
1 Mean Dog Cat Lion YES

2 Ugly Big Dog YES

3 Big Yellow Cat YES

4 Big Ugly Lion NO

5 Big Yellow Mean Mean Mean Lion NO

The dictionary for this corpus therefore contains the following 7 tokens

(listed in no particular order): mean, ugly, dog, big, yellow, cat, and lion. If we use

this ordering for creating our feature vectors, we will then have the following

feature vectors for the corpus:

doc# - - - - - - - - - - - - - - - - - feature vector - - - - - - - - - - - - - - - - -
. . . . . . . . . . . .attributes (tokens) . . . . . . . . . . . . label

mean ugly dog big yellow cat lion
1 1 0 1 0 0 1 1 YES

2 0 1 1 1 0 0 0 YES

3 0 0 0 1 1 1 0 YES

4 0 1 0 1 0 0 1 NO

5 1 0 0 1 1 0 1 NO

The above 5 documents are used as input to the naive Bayes learning algorithm

(ref. Figure 8), with counts and totals initialized to 0 (i.e., we are not using the m-
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estimate method). Naive Bayes will compute the following probability values:

probability . . . . . . . . . . . . . . . .attributes . . . . . . . . . . . . . . . . label
mean ugly dog big yellow cat lion

p(xi=1|0) 1⁄2 1⁄2 0⁄2 2⁄2 1⁄2 0⁄2 2⁄2
p(xi=0|0) 1⁄2 1⁄2 2⁄2 0⁄2 1⁄2 2⁄2 0⁄2
p(xi=1|1) 1⁄3 1⁄3 2⁄3 2⁄3 1⁄3 2⁄3 1⁄3
p(xi=0|1) 2⁄3 2⁄3 1⁄3 1⁄3 2⁄3 1⁄3 2⁄3
p(NO) 2⁄5
p(YES) 3⁄5

Recall that we are replacing probability values of 0 with "a small positive

value". In this example, we will use for that value
0. 01

tNO + tYES

=
0. 01

5
= 0. 002.

Therefore, the above probability values become:

probability . . . . . . . . . . . . . . . .attributes . . . . . . . . . . . . . . . . label
mean ugly dog big yellow cat lion

p(xi=1|0) 0.5 0.5 0.002 1.0 0.5 0.002 1.0
p(xi=0|0) 0.5 0.5 1.0 0.002 0.5 1.0 0.002
p(xi=1|1) 0.33 0.33 0.67 0.67 0.33 0.67 0.33
p(xi=0|1) 0.67 0.67 0.33 0.33 0.67 0.33 0.67
p(NO) 0.4
p(YES) 0.6
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Since we are using log probabilities instead of the probabilities themselves, we

then have as the final results of the naive Bayes learner:

log . . . . . . . . . . . . . . . .attributes . . . . . . . . . . . . . . . . label
probability mean ugly dog big yellow cat lion

log(p(xi=1|0)) -0.301 -0.301 -2.699 0.0 -0.301 -2.699 0.0
log(p(xi=0|0)) -0.301 -0.301 0.0 -2.699 -0.301 0.0 -2.699
log(p(xi=1|1)) -0.477 -0.477 -0.176 -0.176 -0.477 -0.176 -0.477
log(p(xi=0|1)) -0.176 -0.176 -0.477 -0.477 -0.176 -0.477 -0.176
log(p(NO)) -0.398
log(p(YES)) -0.222

Once the naive Bayes learner has been trained using the above 5 documents,

it needs to be tested. We might be tempted to show the degree to which it learned

the 5 training examples by giving each of them to the system to see if the predicted

label is correct. However, this is not a very good "test" in the usual sense, as we

would be using the training data for testing. This is usually a bad idea, because the

purpose of testing is to see how well the learner has generalized the knowledge in

the training examples so that it can accurately predict on previously-unseen

examples. If we use training examples for testing, we may only be testing the

learner’s ability to memorize. So we will test the above learner with the following

2 test documents:

doc# title label

6 Mean Ugly Cat YES

7 Big Yellow Lion NO
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To decide, for example, the prediction for "Mean Ugly Cat" using equation (3), we

would compute:

p(YES)
i=n

i=1
Π p(xi |YES) =

0. 6× 0. 33× 0. 33× 0. 33× 0. 33× 0. 67× 0. 67× 0. 67= 0. 00219

p(NO)
i=n

i=1
Π p(xi |NO) =

0. 4× 0. 5× 0. 5× 1 × 0. 002× 0. 5× 0. 002× 0. 002= 4 × 10−10

Since 0.00219 is larger than 4× 10−10, the naive Bayes algorithm would predictYES

for the document entitled "Mean Ugly Cat". We of course get the same prediction

if we use equation (6):

log(p(YES)) +
i=n

i=1
Σ log(p(xi |YES)) =

−0. 222+ (−0. 477)+ (−0. 477)+ (−0. 477)+ (−0. 477)+

(−0. 176)+ (−0. 176)+ (−0. 176)=

−2. 658

log(p(NO)) +
i=n

i=1
Σ log(p(xi |NO)) =

−0. 398+ (−0. 301)+ (−0. 301)+ 0+ (−2. 699)+

(−0. 301)+ (−2. 699)+ (−2. 699)=

−9. 398

-2.658 is larger than -9.398, so naive Bayes would predictYES.
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==== starting system # = 1 ===(incremental naive Bayes, supervised)=======

Number of training examples used = 5 (2-; 3+)

j k  . . . . . . . . . . . log(p(x[i]=j|k)) . . . . . . . . . . . .
i=1 i=2 i=3 i=4 i=5 i=6 i=7

1 0 -0.30103 -0.30103 -2.69897 0 -0.30103 -2.69897 0
0 0 -0.30103 -0.30103 0 -2.69897 -0.30103 0 -2.69897
1 1 -0.477121 -0.477121 -0.176091 -0.176091 -0.477121 -0.176091 -0.477121
0 1 -0.176091 -0.176091 -0.477121 -0.477121 -0.176091 -0.477121 -0.176091

Committee contingency table (majority (w)):
actual label value

0 1
predicted 0 1 0

label
value 1 0 1

committee accuracy = 1
committee precision = 1
committee recall = 1
committee F(1) = 1

a values:
-0.30103=mean
-0.30103=ugly

3=dog
-2.39794=big
-0.30103=yellow

3=cat
-3=lion

b=-4.34139

high a, in |a| order: dog cat -lion -big
low a, in |a| order: -mean -yellow -ugly

Overfitting test -- testing with only the training
examples that were used:
Committee contingency table (majority (w)):

actual label value
0 1

predicted 0 2 0
label
value 1 0 3

committee accuracy = 1
committee precision = 1
committee recall = 1
committee F(1) = 1

________________________________________________________________________________________________
Figure 10. Solution for Pets Problem
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Figure 10 shows excerpts from the output of our system for the "pets

problem". We see that the learner used 5 training examples and that 2 were

negative (meaning the label wasNO) and 3 were positive (label isYES). Then we see

the results of the learning – the log probabilities that were computed. Next is a

contingency table showing the performance of the trained system on the 2 test

documents ("Mean Ugly Cat" and "Big Yellow Lion"). The table indicates that the

system got both of these test cases correct. The values of some performance

measures based on the contingency table follow. There are then listed values ofa

(weights) andb (threshold). These were computed according to equation (5), with

the a values being listed in the same order as the tokens are represented in the

feature vector. Following theb value is a list of the tokens in order of decreasing

|a|. We use absolute value because we are interested in the magnitude of the effect

that each token has on the prediction. If the token is preceded by a "-", then the

effect is negative. A human solving this problem would most likely quickly decide

that a document is "about pets" if it contains the word "cat" or "dog". We can see

from the tokens sorted by |a| that this is also what the naive Bayes learner

computed. However, the learner also noticed that additional good indicators of a

document being about pets are (in order): no mention of "lions" and not using the

word "big" (all negative training examples contained "big"). The words "mean",

"yellow", and "ugly" were not found to be very useful in classifying documents

(each word occurs once in aYES document and once in aNO document). At the end

of the system output, we see another contingency table, labeled "overfitting test,

testing with only the training examples that were used". As mentioned before,

testing with training data is analogous to only testing students with problems that

have already been solved for them by the teacher. Such an approach may in fact test

their knowledge, but it may also be simply testing their ability to memorize. We,

however, often perform such an "overfitting test" after the completion of the real

testing that uses the test set. This was originally added to the code as a way to

attempt to monitor overfitting, which in a sense is what happens when a machine
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learning algorithm stops generalizing information in the examples and starts

learning aspects of specific training examples (which is not of much use when

predicting on unseen examples) . . .  in a sense, memorizing. The idea behind this

overfitting test is that if the testing done using the training set produces markedly

better results that the testing done using the test set, then it is possibly an indication

that the learner is overfitting. Note that in this case, the overfitting test does

indicate that after learning, the naive Bayes algorithm was also 100% accurate on

the training set.

4.3.1.4 Learning Algorithms Used in ALC

The winnow, perceptron, and naive Bayes algorithms, as discussed earlier,

are all used in supervised learning systems, thus providing "baseline" systems

against which we will compare ALC methods. Recall that the 3 parts of ALC are

deciding whether or not to see the label, learning, and forming the committee

prediction. We will also use each of these 3 algorithms as learners in ALC

systems.

4.3.2 Deciding Whether or Not to See the Label

In our experiments, we used several methods to decide whether or not to see

the label. In this section we discuss the main methods that we developed. These

methods were used in several experiments and so we explain them in some detail

here. Other methods will be covered in the discussion of the experiment in which

each was used.
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Recall that the 3 parts of ALC are deciding whether or not to see the label,

learning, and forming the committee prediction. The methods discussed in the rest

of this section are all methods for deciding whether or not to see the label.

4.3.2.1 QBC-REP

We term this method "QBC-REP" to distinguish it from QBC methods

developed by others. The original form of QBC is not, as will be explained, directly

usable in certain real-world domains (including text categorization), so various

researchers have dev eloped different adaptations of QBC to their particular domain

of interest. We call our QBC-based method QBC-REP.

The original QBC (Query By Committee) approach maintains a committee

that initially contains all possible candidate hypotheses, i.e., a representation of the

version space [Freund et al. 1992, Seung et al. 1992, Freund et al. 1997].k is an

integer-valued parameter for the QBC method. When presented with an unlabeled

example, 2× k members are chosen from the committee at random and each

member is queried and gives its prediction for that example. If their predictions

form a tie, then the example is assumed to be maximally informative, and the label

is requested. Once the label is received,all hypotheses inconsistent with the label

are removed from the committee – not just thek errant voters. Learning occurs by

removing hypotheses from the committee (hypotheses are removed from the

version space). As incorrect hypotheses are removed, the committee decreases in

size.

Once learning has completed, the committee consists of all possible

hypotheses that are consistent with all of the training examples that have been used.

Prediction on previously unseen examples is done by picking any one member of

the committee at random and using its prediction. All members of the committee
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are at this point presumed to be equally good at predicting, since each member is

consistent with all of the training examples that were used.

Most researches use a value ofk = 1, even though the committee may be

quite large (especially initially). That is, whether or not to ask to see the label is

determined by the predictions of only 2 committee members. One may wonder at

the use of such a small value fork. Of course, these member predictions take time,

and especially if the prediction process is fairly complex, one will want to use a

small value ofk. But one might also think that havingk large would make the

voting more representative of the distribution of predictions of the entire

committee, on the average. However, it has been found that makingk larger than 1

does not actually result in very much improvement [Freund et al. 1997].

The motivation for using QBC is that it offers a significant reduction in the

number of examples used as compared to the number used by supervised learning

or by randomly choosing examples. When comparing to the supervised learning

case (which is the comparison case of interest to us), the number of examples used

by QBC is proportional to the logarithm of the total number of training examples

[Freund et al. 1992]. We first offer an intuitive explanation of why QBC behaves as

it does "on the average". Intuitive explanations are by their nature not

mathematically rigorous but instead are meant to give one a feel for why the

observed behavior is occurring. We will then examine a situation where the

performance of QBC will perhaps not be so great.

The following discussion is based on the behavior of the committee and its

members (the hypotheses)on the average. Specific cases may in fact not behave in

exactly this manner, depending on the nature and distribution of incorrect

hypotheses and on the order in which hypotheses are actually randomly selected for

querying. This behavior does occur in the manner described, on the average, if one

considers a large number of cases and has, on the average, incorrect hypotheses

that exhibit a range of incorrect behaviors.
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Consider a committee consisting of all possible hypotheses. We will first

examine the behavior fork = 1. Correct hypotheses will always predict correctly.

Incorrect hypotheses will (unfortunately) vary greatly in their degree of

incorrectness. Generally, an incorrect hypothesis will in fact predict correctly for

some or even a great many training examples, and only be incorrect for certain

types of training examples, perhaps for very few. One can think of incorrect

hypotheses as having expertise in some areas (predicts correctly) and weaknesses

in other areas (predicts incorrectly). A correct hypothesis therefore has no areas of

weakness.

A training example is presented to 2 randomly chosen members of the

committee as a query – each member is asked to predict the label for that example.

If the 2 members’ predictions agree, it means that both members are correct or both

are incorrect on that example. If the 2 members disagree in their predictions, it

means that, on that example, one of the members is correct and one is incorrect.

The example is used by QBC only when the predictions of the 2 randomly chosen

committee members disagree. Therefore, when disagreement occurs and the label

is requested, on the average half of the hypotheses in the committee are incorrect

on that exampleand thus are incorrect hypotheses. All of these incorrect

hypotheses are then removed from the committee. Therefore the committee size

will decrease by a factor of 2, on the average, each time a training example is used.

The assumption is that the choice of the 2 members that were queried was by a

random process and so on the average their predictions are representative

proportionally of the predictions of all members of the committee. The fact that

half of the members queried predicted incorrectly on that example therefore means

that half of the members in the committee as a whole are incorrect on that example

(on the average). After each such reduction in committee size, two things are true.

First, the percentage of remaining members that are correct has increased (and the

percentage of remaining members that are incorrect has decreased). Secondly, the

incorrect hypotheses that remain, since they hav e survived thus far, are on the
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av erage incorrect less often than the incorrect hypotheses that have been removed.

The remaining incorrect hypotheses have more areas of expertise/fewer areas of

weakness than the incorrect hypotheses that have already been removed, at least as

such areas are measured by the training examples. This is true since each member

is equally likely to be chosen to be queried, and the incorrect hypotheses that

remain on the committee have survived all of the preceding rounds of querying and

incorrect hypothesis removal, so they must have been incorrect less often than the

incorrect hypotheses that have not survived. As these query-removal cycles

progress, the committee gets smaller, and it will be increasingly difficult for

subsequent training examples presented to cause a disagreement amongst 2

randomly chosen members and so be used.

To see this, consider that for each query of 2 members (member A and

member B), there are four possible outcomes. LetHM stand for the hypothesis

represented by member M. The four possible outcomes are:

1. HA andHB are both correct hypotheses

In this case, their predictions will always agree (both will beYES or both will

beNO).

The 2 hypotheses will never "disagree".

2. HA is correct andHB is incorrect

In this case, their predictions may agree or disagree.HA will always give a

correct prediction.HB may give the correct prediction or may give an

incorrect prediction, depending on whether the training example presented

is in an area ofHB expertise or weakness.
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The 2 hypotheses will "disagree" only if the training example is in an area

of weakness ofHB.

3. HA is incorrect andHB is correct

(same as above for case #2, but switch roles ofHA andHB).

4. HA andHB are both incorrect hypotheses

In this case, their predictions may agree or disagree. If the training example

is in the area of expertise of bothHA and HB, then their predictions will

agree (and both will be correct). If the example is in an area of weakness of

HA and in an area of weakness ofHB, then their predictions will also agree

(but both will be incorrect). Otherwise, one hypothesis will give a correct

prediction and one will give an incorrect prediction.

The 2 hypotheses will "disagree" only if the training example is in an area

of weakness of exactly one ofHA or HB.

As the committee size decreases, incorrect hypotheses are being removed from the

committee, but the number of correct hypotheses remains constant. Therefore, as

learning occurs, the proportion of hypotheses in the committee that are correct

increases. All of the hypotheses on the committee that are correct will always

predict correctly, when chosen to predict. To get the tie vote needed in order to ask

for the label, 2 randomly chosen members of the committee have to disagree.

From the above list of four cases, one can see that disagreement only occurs when

a training example is in an area of weakness of exactly one of the 2 hypotheses

being queried. In order for a tie vote to occur, one of the randomly chosen
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hypotheses will have to be correct on the example being presented; this will

become increasingly easy to have occur, since the proportion of committee

members that are correct is rising, and the remaining incorrect committee members

have only a few weak areas. The other randomly chosen hypothesis will have to be

incorrect on the example being presented; this will become increasingly difficult to

have occur, since there are fewer incorrect hypotheses and those that remain are

quite often correct in their predictions. It therefore becomes increasingly difficult

for training examples presented to QBC to obtain the tie vote needed to have the

label asked for.

We hav e shown that as examples are used and the committee size decreases,

it becomes increasingly difficult to use an example in the random stream of

candidate training examples that are being presented to the committee. But what

about the examples thatare used – are they of benefit? Those examples are of

benefit since (on the average) each time one is used, half of the remaining

committee members are incorrect on the example and so those incorrect hypotheses

are removed from the committee. Thus even though the rate at which examples are

used drops logarithmically, each example used is (on the average) beneficial in that

it significantly improves the accuracy of the committee by removing additional

incorrect hypotheses from the committee.

The above analysis was fork = 1. By increasing the value ofk, one increases

the number of members that are asked to predict. This takes more time, especially

for learning methods for which prediction is costly, but it does give one more

certainty that any tie vote is representative of the predictions of all of the committee

members.

QBC will not work very well in situations in which the committee is initially

(or after several query-remove cycles) in a state where the (remaining) incorrect

hypotheses are severely skewed towards having very large areas of expertise and

having small and differing areas in which incorrect predictions are made. In such a
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situation, it will be very difficult for QBC to randomly find 2 hypotheses that

disagree, and so QBC may end up not requesting any (more) labels. While this is a

situation in which QBC will not perform well, it is not clear, once a committee

reaches this state, that this is an unacceptable situation. While the committee has

not been reduced to one containing only correct hypotheses, it has been reduced to

one which contains only correct hypotheses and some very accurate and diverse

incorrect hypotheses. Even selecting a hypothesis at random and using that

hypothesis for predicting on unseen examples (such as QBC does) will produce

highly accurate albeit not perfect results. Some aspects of committee voting (to be

discussed later) can also help to overcome this difficulty of having accurate but not

perfect hypotheses in the committee. In fact, we will see that in noisy domains, this

situation is the rule rather than the exception.

Note that QBC is a "complete" method that handles all aspects of the

learning and predicting processes. It specifies how it is to be decided whether or not

to see the label in a training example (2× k members vote, see label if vote is a tie),

how to learn (incorrect hypotheses are removed from the committee), and how to

predict (a random remaining member is used).

There are, however, some difficulties in using the original QBC for certain

domains (including text categorization):

1. QBC needs to maintain, in some form, a representation of all possible

hypotheses consistent with the training data seen so far – some

representation of the version space. Since one needs to be able to remove

individual hypotheses when found to be incorrect, this usually means that

one must in some manner represent each individual hypothesis. However,

for many real-world problems, there is a large (effectively infinite) number

of candidate hypotheses, and so representing the individual hypotheses will

not be practical and perhaps not even possible.
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2. QBC is not able to handle noisy data. Consider the case of a training

example being used that has class noise – which means that the label given

with the example is incorrect. This will cause QBC to removeall correct

hypotheses from the committee.

Te xt categorization data is noisy, and the large number of attributes typically

results in large numbers of possible hypotheses. So we have dev eloped a method

which we call QBC-REP which addresses these problem areas. It is based on

QBC, adapted to work using a finite committee torepresent the hypotheses. QBC-

REP is a general method developed specifically for domains which have a very

large version space and/or which have class or attribute noise. While we did

develop this method for use in our text categorization research, it is not specific to

that domain and so can be used in other domains.

The QBC-REP method is a not a complete learning method, but rather is a

method used for deciding whether or not to see the label. Tw o members of the

committee are chosen at random, and if their predictions disagree, then we ask to

see the label. QBC-REP does not specify how to maintain the hypotheses, how to

learn, or how to predict. We can therefore combine QBC-REP with other methods

that handle hypothesis representation, learning, and forming the committee

prediction.

4.3.2.2 AllMargin

AllMargin is also a method for deciding whether or not to ask for the label

and can be combined with various learning and prediction methods to form many

different ALC systems. In the AllMargin method, we have modified and also

generalized our QBC-REP in several ways. First, all members of the committee

predict. This is done because the prediction methods we are using are quite fast, so
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we lose little time by having the entire committee predict. It appears that this does

give one a voting margin that is more representative of the entire committee. We

define margin to be the number ofNO predictions less the number ofYES predictions.

The margin magnitude is the absolute value of the margin. In this method, we look

at the margin magnitude of the prediction votes to determine whether or not to ask

for the label. Each committee member is given the unlabeled example and predicts

NO or YES depending on its current hypothesis. The magnitude of the difference in

the number of votes for each class is the margin magnitude for that training

example. This value can be as large as the size of committee (if they, for example,

all vote NO). The smallest possible margin magnitude value is 0 if the committee

contains an even number of members and 1 if the committee contains an odd

number of members. This smallest possible value is calledspumm (smallest

possible unweighted margin magnitude). It is unweighted in the sense that each

committee member gets exactly one vote. It is a magnitude since we always take

the absolute value of the difference between the votes forNO and the votes forYES.

As an example, a committee of 8 learners hasspumm= 0 (since the smallest

possible margin magnitude occurs when there is a tie vote); if the voting is 3NO and

5 YES, then the margin magnitude for that training example is 2.

When using the AllMargin method, one also sets two integer parameters –

lowEnd andhighEnd. The value ofspummis then used in conjunction with these

parameters to determine whether or not to ask for the label. Margin values that fall

within the inclusive range bounded by these parameters with respect tospumm

cause those examples to be used – their labels are requested and learning occurs.

That is, the method asks to see the label if:

spumm+ lowEnd ≤ margin magnitude≤ spumm+ highEnd

This method is based on the notion that the degree of disagreement amongstall of

the committee members is a good measure of how informative the example is,
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where an example is informative in the sense that it contains information different

from the current hypotheses of several of the learners. For example, iflowEnd = 0

and highEnd= 2, and the committee contains 11 members, thenspumm= 1 and

only examples with a margin magnitude of 1 or 3 will be used. The assumption is

that the knowledge that is in examples on which the committee members already

pretty much agree is assumed to already be contained in several of the learners’

knowledge bases – that is, several learners "already know" the knowledge that is in

those examples.

This may sound like a very safe method to use. There are, however, some

problems that can arise. First, if the committee members all agree on the predicted

label (and so do not ask for the label and do not learn from the example), it may be

that in fact the committee already possesses the knowledge in that example. But

unfortunately it may also be that the committee members are all/mostly stupid and

their predictions are incorrect. Using this method, they will never find that out.

Another potential problem has to do with noise. Document collections often

have large amounts of noise. It may be that these noisy examples are the ones

which cause maximal disagreement in the committee member’s predictions and so

are the ones that AllMargin picks as "informative". But by their nature, noisy

examples contain errors, and the learners will not fare well if they learn from

erroneous examples instead of from correct ones. To allow experiments to

investigate this is in fact why thelowEndparameter was included – so that one can

not use examples that have a small margin magnitude if those in fact are quite

noisy.

In spite of these potential problems, this method works very well at selecting

informative examples.
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4.4 Computational Complexity

Computational complexity is a measure of the resources needed to solve a

problem, expressed as a function of the size of the input. There are several

different measures of computational complexity, basically differing in whether or

not the function bounds the actual resource demand from above, from below, or

both, and whether or not the bound/s are asymptotically tight. In addition, one

usually computes such behaviors based on either worst-case or average-case

conditions.

The resources we are interested in examining are elapsed processor time

("time") and memory usage ("space"). We will see that, due to the way we store

the documents, space complexity will be very manageable, and so our main

concern will be time complexity. We want an upper bound on time complexity that

is asymptotically tight. Normally we strive for worst-case behavior in our analyses.

In some situations it is possible to compute a clearly representative average-case

value of a component in an expression, and so we will use that average, usually

assigning it to a specific variable name. We thus as a practical matter end up with

an analysis that is almost completely worst-case. We will refer to it as "worst-case",

with the understanding that when we are able to compute a clearly defined and

clearly representative average-case value of a component in an expression, we will

use that.

Resource demand is usually represented byO(b(n)), wheren is a measure of

the size of the input. We start with an intuitive definition ofO( )  and also introduce

the notation that we will be using forO( ).

We want to compute a functionb(n) which forms an upper bound on the

actual behavior. In other words, we want to determine a functionb(n) that is

greater than or equal to the actual behavior of the system. The "or equal to" gives

us a tight upper bound, which is of more practical use in predicting system

behavior. Leta(n) be the function for which we want to computeO( ). a(n)
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describes theactual behavior of the system in terms of its worst-case use of the

resource of interest (for example, time or space). We want to computeO( )  for

a(n). Usually fora(n) we hav e only a series of data values measured from various

runs of the system of interest – a set of (n, a(n)) values – rather than having a

closed form expression fora(n). We say thatO( )  for a(n) is b(n) if some constant

multiple timesb(n) is greater than or equal toa(n) for all sufficiently largen. The

"some constant multiple" is due to the fact that we are interested only in the

behavior as a function of input size and not interested in proportionality constants.

That is, O(2. 5n3) and O(n3) giv es us the same information, that the behavior

behaves as the cube of the input size. There is nothing technically wrong with

O(2. 5n3), but O(n3) is clearer, conveys the same information, and so is the

preferred form. The "for alln sufficiently large" is to handle the often occurring

situation where, for smaller values ofn, system behavior may be of a different

form. We are interested in predicting behavior of the system only for arbitrarily

large values ofn. More formally,O( )  is defined as follows (from [Cormen et al.

1996]): O( )  for a(n) is b(n) if there exist positive constantsc and n0 such that

0 ≤ a(n) ≤ cb(n) for all n ≥ n0.

The input sizen for O( )  has to be for a "reasonably efficient" representation

of the input. Otherwise one could, through a poor representation of the input, make

an algorithm seem more efficient than it truly is by simply measuring its

performance with respect to a distorted yardstick.

There is a potential notational ambiguity inO( )  notation. When one sees

"O(n4), is then4 the bounding functionb(n) or the actual behaviora(n)? It is the

bounding functionb(n), and in fact as mentioned above one rarely has an

expression in terms ofn for the actual behavior. Therefore, "O(n4)" means that we

are discussing a system whose time (for example) complexity is bounded above by

some constant timesn4 for n sufficiently large.
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Recall that one of our goals is to develop methods that are both space and

time efficient. We will usually term a process "efficient" if its complexity isO(n).

When we deriveO( )  expressions for the various modules of an ALC system,

it will be helpful to simplify them. We can simplifyO( )  expressions by doing 3

things:

1. remove lower order terms

Our main interest is in computational complexity asn gets very large. For

very largen, the highest order term dominates.

Example:O(n2 + 3n) → O(n2)

2. remove constants of proportionality

We can do this because the definition ofO( )  already includes a constant of

proportionality, so we need not explicitly provide one, and it is clearer if we

do not.

Example:O(3n2 + 5n) → O(n2)

3. decide which parameters are actually constants, or at least not themselves

functions of the input size

We would like to simplify ourO( )  as much as possible. Parameters that do

not vary with input size are constants and so should be treated as such.

We are interested in the computational complexity of the system as a whole,

and also of certain major components of the system. First we will develop

expressions for input size, and then look atO( )  for several systems/components.

We will as mentioned above use worst-case analysis, and we will generally

simplify the expressions using the rules listed above. In simplifyingO( )

expressions, whether and to what degree one applies the above rules, and if so,
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when and in what order, can sometimes be an issue. We hav e purposely erred on

the side of keeping too many terms rather than too few. We do this so that the

expressions derived are fairly general and not overly specific to our domain. When

we apply the expression in a specific experiment, then we will incorporate the

knowledge we have about our domain.

The system as a whole takes as input a corpus of documents and a text

categorization request. Each document in the corpus is represented as a feature

vector whose length is the number of tokens in the dictionary. If we hav ed

documents andt tokens, then the corpus is of sizeKd(t + 1), where K is a constant

of proportionality. In other words, the input size is proportional tod(t + 1) (versus

being exactly equal to it) because we have sev eral bookkeeping arrays in addition

to the space used for storing the data itself. The "+ 1" is for the label portion of

each feature vector. A text categorization request is simply the name of the

category that we are interested in, and so can be represented by a single integer or

string. Thus we have that the input size isO(d(t + 1) + 1). Dropping low order

terms, we have that the input size isO(dt).

However, recall that there is a requirement that the input be represented in a

reasonably compact manner. We will see later that we are dealing with very sparse

data (statistics are provided later for the Reuters-22173 and Reuters-21578

corpora). Very few positions in each feature vector contain "1" values, with all of

the rest of the positions containing 0’s. On the average, less than 0.2% of the

feature vector positions contain 1’s. We therefore store the feature vectors using a

sparse data representation that basically only stores the feature vector indices for

elements whose value is 1. Letta = the average number of tokens in each

document. The size of the input is then:

O(dta) (7)

In other words, from now on when we speak of the input size, we are referring to

O(dta).
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A brief discussion is appropriate on the relationship betweent and ta since

we will often (such as in the next paragraph) want to compareO( )  expressions

containing t with the input size, which isO(dta). In general, we wouldlike to

determine the functionf ( )  wheret = f (ta). As one increases the average number

of unique tokens used in a document (ta), one would expect the number of tokens

in the dictionary (t) to also increase. For example, if one had a corpus of

documents each containing 5,000 different tokens on the average and compared it

to a corpus in which each document contained an average of 10,000 different

tokens, one would expect that the latter corpus would usually require a larger

dictionary. In other words, as the number of different tokens used in documents

increases, it is likely that some of them will not yet have already been used in other

documents in the corpus and so will need to be added to the dictionary. Thus we

can say thatta↑ ⇒ t↑. This tells us thatf ( )  is an increasing function ofta. But

we would also like to know in general the exact form off ( )  –  or at least whether

the variation int caused by changes inta is sublinear, linear, or superlinear. In an

effort to find out more aboutf ( ), we do the following. Letl a = average document

length expressed in number of actual tokens.l a is based on the total number of

tokens used in each document, whereasta is based on the number of different

tokens used in each document. In other words,l a tallies each occurrence of each

token whereasta is the number of different/unique tokens. If we computeta, t, and

l a for the corpora that we used in our research (Reuters-22173 and Reuters-21578),

and also for another large document collection (the 20 Newsgroups corpus), we

obtain the values given in Table 2. The entries are in order of increasingta.

We are interested in determining more aboutf ( ), where t = f (ta). There is

a large body of empirical results by several researchers suggesting that there is a

relationship betweenl a and t [Zörnig and Altmann 1995]. Using Zipf’s Law and

work done by Halstead, Prather [Prather 1988] derived estimates for the bounds on

l a and found that the value ofl a is lower bounded byK1t(γ + ln t) and is upper

bounded by K2t log2 t, where γ ≈ 0. 577 (Euler’s constant) and theKi are
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TABLE 2. Corpus Statistics

corpus ta t l a

20 Newsgroups titles only 5.83247 9,634 5.94274
Reuters-21578 titles only 7.74377 15,842 7.86514
Reuters-22173 titles only 7.78424 16,600 8.19551
Reuters-21578 full text 81.8377 48,428 139.617
Reuters-22173 full text 81.8523 48,446 139.985
20 Newsgroups full text 202.48 203,921 388.842

constants. In our domain, lnt >> γ , so we can say thatl a varies ast log t. This

means thatl a is an increasing superlinear function oft, and thereforet is an

increasing sublinear function ofl a. We are, however, interested in the relationship

betweenta and t. We know thatta ≤ l a. But determining a general form forf ( )

from so few data points as are in Table 2 would be difficult.

Back to the basics. Do we really need to knowf ( )? Note from Table 2 that

t >> ta and also thatl a ≈ ta. These are characteristics of the data used in our

experiments. This is sufficient to at least allow us to compare variousO( )

expressions that containt, ta, andl a as regards our experiments.

Since we do not know the functionf ( )  and we want our derivedO( )

expressions to be general, when we developO( )  expressions that containt, we will

retaint in the expressions. When we are examining aO( )  expression for a system

being used in our experiments, then we will use the above characteristics (t >> ta

andl a ≈ ta) to simplify the expression.

It is important to point out that the sparse data representation that we are

using is the main reason we are not very worried about space complexity – the

entire corpus easily fits into memory. If one hasc committee members,d

documents in the corpus,t tokens in the dictionary, and if each document contains
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on the averageta unique tokens, then (ref. Equation (7)) the space needed to store

the corpus isO(dta) (for the indices of the 1-valued attributes). The space needed

by the learners isO(ct) (for the weights). Thus space complexity of the entire

system is low.

We now turn to the time complexity of certain specific algorithms that we are

using. Recall that the 3 parts of ALC are deciding whether or not to see the label,

learning, and forming the committee prediction. We will next analyzeO( )

behavior for some of the more common methods used for each of these 3 parts.

The analysis of other ALC methods will be done when we discuss the experiments

in which they are used.

We will examine 3 methods for deciding whether or not to see the label:

always (i.e., supervised learning), QBC-REP, and AllMargin. For each method, we

will develop expressions forO( )  for a complete trial. The input to the module that

decides whether or not to see the label is the feature vector for an example

(containingta values), so we include in this computation the effort required to read

the input data. We do not assume that all of the input data can be stored in high

speed memory at one time.

For supervised learning, the module simply responds "yes", regardless of the

size or contents of the feature vector. Thus the time complexity for simply

indicating that the committee wants to see the label isO(1). That is, the input data

need not even be examined. It does, however, still need to be read (for use by the

learning algorithm). Lete be the number of epochs. Since there ared documents

and since the training set size is generally proportional tod (but recall that we

remove constants of proportionality fromO( )  notation), this results inO(ed)

behavior for the supervised method of deciding whether or not to see the label.

However, if the learning algorithm is mistake-driven and if the decision is

made to see the label, then we have the module also compute the predicted labels

for all of the committee members. We use this approach since, in general, some or
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most of the predictions will have been computed anyway (see for example QBC-

REP and AllMargin), and so it is more efficient for all of the remaining members to

form predictions and have all of those predictions passed on to the mistake-driven

learner. Letc be the number of members in the committee. If we (for now) let

Op( )  be the time complexity for one learner predicting on one training example,

then this results inO(edc Op( )) behavior if the learning algorithm is mistake-

driven.

For QBC-REP, one picks 2 committee members at random and has each of

them predict the label. If they disagree, then the label is requested, otherwise not.

ThenO(ed2Op( )) is the time spent deciding whether or not to see the label. If the

learner is mistake-driven and QBC-REP returns "yes", then it needs to predict for

all committee members, and so the worst-case behavior will beO(edc Op( )). This

is worst-case since it applies only if the decision as to whether or not to see the

label is "yes".

For AllMargin, one has all committee members predict and then, based on

the voting margin, decides whether or not to ask for the label. The time spent in

deciding whether or not to see the label is thereforeO(edc Op( )). The AllMargin

method is smart enough to avoid unnecessary predicting, so for any one training

example, there may be fewer thanc predictions required. For instance, if we have a

committee of size 8 and we are taking only examples that have a margin of 0, (and

the learner is not mistake-driven), then once 5 members have predictedYES, no

further predicting is required. However, we will use the worst-case behavior.

Next we look at the second part of ALC – learning. We will analyze the time

complexity for the winnow, perceptron, and naive Bayes algorithms, also for a

complete trial. For winnow, we consider the case where the winnow algorithm is

using an example. That is, it has been decided to see the label for the example, and

now the example is passed to the committee of winnow learners. (Ref. Figure 6 on

page 78). First, each member needs to predict on this example. But that
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computation has already been performed by the module that decides whether or not

to see the label and thus the effort required was included in theO( )  computations

for the various methods for deciding whether or not to see the label. For worst-

case, all of the members will have to learn – that is, they were all incorrect in their

predictions. Only weights corresponding to attributes whose value is 1 are actually

modified, so the time complexity for one member learning from one training

example isO(ta). Fore epochs,d documents,c committee members, it is therefore

O(edcta). This is worst-case since we are assuming not only that all of the members

learn each time, but that each training example is learned from during each and

ev ery epoch.

The analysis for perceptron (ref. Figure 7 on page 81) is very similar. Recall

that the only differences are, first, the operator used in the updating of weights (+

instead of×), and, second, the fact thatθ is also updated in the perceptron.

Therefore worst-case behavior isO(edc(ta + 1)) = O(edcta).

The analysis for standard naive Bayes proceeds as follows (ref. Figure 8 on

page 83). In step #1, for each training example, we increment counts

corresponding toxi = 1 and we increment (once) the correspondingtk. Therefore

we haveO(ta + 1) for one example, andO(d(ta + 1)) for all training examples.

Recall that standard naive Bayes is supervised and uses only one learner (c = 1)

and one epoch (e = 1). After all examples have been processed by step #1, steps #2

and #3 are each performed once. Step #2 computes 4 conditional probabilities for

each attribute –p(xi = j |k) for j = 0, 1 and k =YES, NO. Thus we haveO(4t). Recall

that t is the number of tokens in the dictionary and also the length of the attribute

portion of the feature vector. Step #3 computes 2 values,p(YES) and p(NO), and so

is O(2). Thus standard naive Bayes time complexity for learning is

O(d(ta + 1) + 4t + 2) = O(dta + 4t).

We next look at computational complexity for the 3rd part of ALC – forming

the committee prediction. Actually, it turns out to be easier if what we first



123

determine is the computational complexity for the predicting done by an individual

learner on one example. This is because predictions of individual learners are used

in several ways – they are used by some methods in order to determine whether or

not to see the label, they are used by mistake-driven learners to decide whether or

not to learn from the example, and they are used to form the committee prediction.

By developing an expression for the behavior of a single learner on a single

example, we can then use that expression in the analyses of all of the above

situations. For the above analyses of computational complexity for deciding

whether or not to see the label and for learning, we have determinedO( )  for that

module for an entire trial – that is, fore epochs,c committee members,d

documents, etc. The analyses of prediction computational complexity for one

learner on one example will give us expressions for what we have previously

referred to asOp( ).

Winnow and perceptron both predict in the same manner. Giv en an example
→x, the cross-product→w ⋅ →x is computed and compared toθ (predictingYES if >, NO

otherwise). Thus prediction on one example isO(ta). This isOp( )  for winnow and

also for perceptron.

For standard naive Bayes, using (as we do in our system) Equation (6) (on

page 96), we obtain the following expression forO( )  for prediction. For each side

of the <> operator, we need to compute an expression which isO(1 + t). One might

reasonably argue that we are also taking the log( ) and so should include that,

which will give usO(2 + 2t). Doing this for both sides of Equation (6) gives us

O(2(2+ 2t)) = O(t). This then isOp( )  for the standard naive Bayes learning

algorithm.

We hav e thus far derivedO( )  for several of the main modules of an ALC

system. We can simplify theseO( )  expressions further by deciding which input

size parameters are actually constants, or at least not themselves functions of the

input size. In particular, we do not vary the number of committee members for
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inputs of different sizes. We usually use 7. Sometimes we use 1 if we want a single

standard supervised learner. Thusc is a constant, so for exampleO(edcta) →

O(edta). Also the number of epochs varies only slightly if at all (and we want

worst case anyway), and thereforee can be treated as a constant, andO(edta) →

O(dta). Our O( )  computations, after removing the remaining constants, are

summarized in Table 3. Since input size isO(dta), all of theO( )  expressions in

Table 3 are linear in the input size except for standard naive Bayes learning and

prediction, which vary ast. Recall that in our experimentst >> ta.

Using the results summarized in Table 3, we will next work through several

O( )  examples (whose results we will refer back to later):

1. An ALC system using AllMargin and winnow. Its time complexity will

therefore be the sum of that for AllMargin, winnow, and the final test

predictions, and so will beO(dOp( ) + dta + dOp( )). Substituting in for

Op( ) = ta, we get the following, which is linear in the input size:

O(dta) (8)

2. An ALC system that is supervised and using winnow. Since winnow is

mistake-driven, we getO(dOp( ) + dta + dOp( )). Since Op( ) = ta, this

becomes:

O(dta) (9)

3. A system using the standard (supervised) naive Bayes learning algorithm.

Recall that naive Bayes is not a mistake-driven algorithm. Therefore, we

haveO(d + dta + 4t + dt), which (remove lower order terms) becomes:

O(d(ta + t)) (10)
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TABLE 3. Computational Complexity Summary

d = number of documents in the corpus
t = number of tokens in the dictionary

= length of the attribute portion of the feature vector
ta = average number of unique tokens in each document

The size of the input to the system as a whole is:O(dta)

O( )  for Deciding Whether or Not to See the Label [for
a complete trial]:

method mistake-driven not mistake-driven
supervised dOp( ) d
QBC-REP dOp( ) dOp( )
AllMargin dOp( ) dOp( )

O( )  for Learning [for a complete trial]:
method O( )

winnow dta
perceptron dta
standard naive Bayes dta + 4t

O( )  for Prediction (=Op( )) [one learner predicting
on one example]:

method O( )
winnow ta

perceptron ta

standard naive Bayes t

At times it is difficult to perfectly reconcile the reported elapsed processor

time with the O( )  expressions derived above. Our purpose in examiningO( )

behavior was to obtain relatively conservative upper bounds on time complexity. To

make the math reasonable, broad but conservative assumptions were made –

assumptions that do not always hold for specific actual runs or even on the average.
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The main assumptions made (in terms of impacting comparison ofO( )  to actual

run times) are:

1. Our system does many other things besides deciding whether or not to see

the label, learning, and forming the committee predictions.

2. In theO( )  derivations, we always chose worst-case when no obvious and

defensible average was available. This it turns out will be the assumption

having the most impact.

3. In theO( )  derivations, we tacitly assumed that each of the basic operations

analyzed takes the same amount of time each time it is executed . . .  for

example, the time spent in the multiplication of 2 numbers does not vary

with the values of those 2 numbers, the time spent computinglog(x) does

not vary with the value ofx.

These assumptions do not of course hold in reality for specific runs, and may not

ev en hold on the average. This does not mean that the above analyses are without

value – we have obtained conservative expressions for time complexity that are

linear in ta (or, for naive Bayes, linear int), which indicates that the systems will

be reasonably efficient users of time. While our system does have a moderate to

large overhead, that overhead is linear in input size. We do "turn the clock off and

back on" for major consumers of time that ought not be included in the reported

total run time. For many computations, however, it is not practical to turn the clock

off and on, as the code is very modular and the timing subroutine invocation

overhead can become significant in terms of its impact on reported time. Basically,

our overall approach was to time the code that we thought one would probably

want in an operational system.

To giv e an idea of what the reported running time does and does not include,

following are lists of tasks that are or are not included in the time that is reported

for each run. Basically, we do not include time that is for a process whose results
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are subsequently used by more than one trial, or for a process that is gathering data

for us to analyze and is not a part of the actual text categorization process.

1. included

a. deciding whether or not to see the label, learning, and any predicting

associated with either

b. input error checking, various internal consistency checks

c. bookkeeping (for example, keeping track of which examples are

utilized, for what purpose, and when)

d. computation of statistics

e. dynamic memory allocation, initialization, management, and

2d→1d mapping

f. initialization of data structures (such as the learning algorithm

weights)

g. calculations and output

h. the final test for each system (included because we decided that, in

terms of time, this was analogous to the reporting of the text

categorization results to the user)

2. not included

a. loading program in to memory

b. loading data into memory

c. getting parameter values from the user

d. splitting corpus into training, test, and unavailable sets
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e. testing performed for the sole purpose of generating learning trace

points

f. computations and disk I/O for several output files created from each

run – a typical run generates some 15 files (some optional) that

contain information such as is used forANOVA, plot labels, ranking,

training document distribution plots, weighted tokens listings,

learning trace plots, and learned weight distribution plots

4.5 Sample Complexity

Recall that the performance measures of main concern to us are time and

space computational complexity and the number of training examples used during

learning. The above discussion of computational complexity analyzes various

ALC systems for space and time complexity and develops upper bounds (O( )

expressions) for their need for time and space resources. One might wonder if a

similar analysis is possible for the number of training examples needed. Sample

complexity is a measure of how the number of training examples needed grows

with the size of the problem being solved [Mitchell 1997]. We will not go into this

in great detail, but a brief intuitive discussion will be helpful in pointing out where

we stand in the area of sample complexity and also why computing it for our

situation would be very difficult and perhaps not of much practical benefit.

One would like to hav e an expression analogous toO( )  that would give us a

lower bound on the number of training examples that we need in order to learn a

target concept. Such expressions have been derived for certain cases, but because

few assumptions are made about the distribution from which the training examples

are drawn, these bounds tend to be quite large when compared to empirical results.

We do not know the form of the distribution of documents in the document space,

so certainly assuming little about the form of the distribution is safe, but again such
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an analysis will yield very loose bounds that in and of themselves are not very

helpful since we do not have any where near the number of examples specified in

these bounds. Perhaps of more interest in our situation is not so much the exact

value of the computed lower bound, but how it might vary with changes in certain

parameters. We will use standard sample complexity notation. We will need to

briefly get into an area of computational learning theory called the probably

approximately correct (PAC) model of machine learning [Valiant 1984]. This area

is a complex field in its own right, so we will provide a very general overview, with

two specific goals: [1]to show what the relationship is between sample complexity

and the number of attributes in our domain, and [2]to discuss aspects of our domain

that make this analysis very approximate. We will omit other details of PAC

learning theory.

We will use standard PAC model notation, which unfortunately means some

reuse of symbols we have already introduced but with different meanings. In

particular,δ is used in PAC learning theory as a confidence parameter. This bears

no relationship to our use ofδ in other parts of this thesis.

Let ε be an error rate and letδ be the probability of the learner not having an

error rate≤ ε. Also let n be the number of attributes and letm be the number of

training examples needed. The idea behind the PAC model is that a learning

algorithm is given the task of learning a close approximation to an unknown

boolean-valued target functionB. The learner gains information by processing

examples fromB. The distribution of the examples provided to the learner is

unknown. We want to determine a lower bound onm such that, regardless of the

distribution of training examples used for learning, we will with probability≥ (1 -

δ ), obtain a learner whose error rate is≤ ε. That is, one wants a learner that is

probably (1 -δ ) approximately correct (ε). One usually wants a learner for which

the probability (1 -δ ) is high and for which the error rate (ε) is low. This
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corresponds to having small values for bothδ andε. In typical analyses, one often

places reasonable upper limits onδ andε in order to obtain meaningful results.

We now look at our specific situation. The learning algorithm is a linear

threshold learner, and we have very large values ofn. It can be shown that in this

casem is lower bounded by [Blumer et al. 1989, Freund et al. 1997]:

max



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


2

δ

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8n
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ε
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

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In our domain and for realistic choices ofδ, the right hand term in the max

dominates. Therefore, if we keepε and δ constant and double the number of

attributes, we should expect to have to double the number of training examples

used. If we do not or can not use twice as many training examples, then we should

expect the performance of the learner (accuracy,F1.0, etc.) to decrease.

The assumption that we know absolutely nothing about the distribution of the

B examples provided to the learner results in this bound being quite large and

usually much larger than empirical results that are obtained from actual systems.

The pessimism inherent in not knowing anything about the distribution of examples

forces the PAC model to compute sample complexities that will hold for any

possible distribution. For example, if we specify that we want to be 95% confident

that the learner we obtain is at least 98% accurate, thenδ = 0.05 andε = 0.02, and

so the above equation indicates that the number of training examples needed is

approximately 4000n. A typical value ofn is 16,600 (Reuters-22173 corpus, titles

only), so the PAC model would specify that a minimum of approximately 66

million examples are needed in order to be 95% certain of obtaining a learner that

is 98% accurate. The entire Reuters-22173 corpus contains only 22,173

documents, and ALC systems often need only 5 - 7% of those.
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The other aspect of computing sample complexity for our domain that poses

difficulties is that our domain contains attribute and class noise. The standard PAC

model assumes that the examples provided to the learner are noise-free, in that they

are faithfully drawn from the the functionB. When one has attribute or class noise,

the examples provided to the learner are no longer true examples ofB. Work in

this area is being done by several researchers, including [Aslam and Decatur 1996,

Kearns and Li 1988]. As one might expect, the bounds on sample complexity

become even higher when noise is present, especially if one makes no assumption

about the nature of the noise.

In conclusion, yes there is a concept called sample complexity which

provides theoretical lower bounds on the number of training examples needed, but

the bounds are extremely loose and we empirically obtain good results using far

fewer examples than predicted by this theory. A value of looking at sample

complexity, howev er, is that one would expect, as the number of attributes increase,

to need to use proportionally more training examples in order to maintain the same

level of performance.
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5. Experimental Methodology

In this chapter we discuss the details of how we performed the various

experiments and provide information on the corpora that were used in those

experiments.

5.1 Approach

Our experiments were conducted using mainly the Reuters-22173 corpus, but

we also used another text corpus – Reuters-21578. See the section entitled

"Corpora Used" for descriptions of the corpora used. However, the two text corpora

used have sev eral characteristics in common:

1. The documents in the corpus are real documents.

The documents were written by humans for some purpose other than to

create a corpus. The documents are "real-world" in the sense that they were

not machine-generated, nor were they written for the purpose of testing text

categorization systems.

2. Each corpus contains a large number of documents (about 22,000).

3. A document can be included in any number of categories (including none).

4. Each document has been assigned to zero or more categories by a

professional indexer.
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5. Each document has a title and a body.

Many text categorization systems (and many of our experiments) use only

the document titles. This typically makes the problem easier to solve

because usually the dictionary is smaller, so the feature vectors have fewer

attributes, and thus the processing is faster. This would not in and of itself

be a sufficient reason, but quite a few text categorization systems do

perform extremely well just using the titles. The idea is that in the title, the

author has provided a very short statement of what the document is about,

and "what the document is about" is the basis for text categorization.

6. documents have missing or misspelled words (attribute noise)

7. the category labels are sometimes in error (class noise)

Recall that the learning algorithms are relying on the "actual labels"

provided by the teacher being correct. Using the label provided by the

teacher, in conjunction with the information in the feature vector, is how the

learning algorithm modifies its knowledge base so as to "learn" from the

example. Most large collections of documents are not all indexed by the

same person – several indexers work on the documents, and the task is

usually performed over a span of time (as the documents are gathered for

the collection). It is an unfortunate fact of life that even trained human

indexers are not as correct as one might think or at least hope. Many

studies have been done, and the consistency within and amongst trained

human indexers can rangeat the high endanywhere from 50% to 75%.

[Cooper 1969, Saracevic 1991, Hersh 1996, Sievert and Andrews 1991].
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The standard equation for consistency between two indexersA and B is

[Hersh 1996]:

both

both+ onlyA+ onlyB

whereboth is the number of categories assigned by bothA andB, onlyA is

the number of categories assigned only byA, andonlyB is the number of

categories assigned only byB. Thus, for example, ifA assigns 5 categories

and B assigns 4, and 3 are in agreement, then the consistency would be

0.50.

8. the documents in each category are often inconsistent

Several different documents in the corpus may, after preprocessing, have

identical feature vectors. Therefore, from the perspective of the system,

these documents are "the same". When this occurs, it can also happen that

the human text categorizer has assigned different categories to these

documents. In our case, for example, there can be several documents that

contain the same tokens but that were categorized differently by the indexer.

Such groups of documents are termed "inconsistent", in that they hav e the

same feature vector but have different labels. Many learning algorithms are

especially troubled by inconsistent groups of documents, since it appears to

the learner that the teacher is changing his/her mind as to what the correct

label is for particular examples. And perhaps even worse, if one is unlucky,

one class of such documents (YES) will be in the training set and the other

class (NO) will be in the test set. Having learnedYES for certain types of

examples, the learner finds that the answer on test day has been changed to

NO. Categories that contain inconsistent documents are, for us, a definite
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concern since it means that it is impossible for any one committee member

to learn to classify documents perfectly.

Given a category, one can have a group of inconsistent documents for one

or more of several reasons:

a. The human indexer made errors.

See above discussion of class noise.

b. Approximations made during preprocessing.

Whether or not all of a group of documents have the same feature

vector is often a function of the method used to convert the original

documents into feature vectors. Even though the feature vectors are

the same, the documents themselves may not be identical. Given

that most preprocessing (ours certainly included) does not take full

advantage of the richness of expression in natural languages, one

would in fact expect this situation to arise, since the preprocessed

document is an approximate representation of the original

document. Our preprocessing is quite drastic in terms of how much

information in the original document is not used. For example, we

do not save information about language structure, word order, or

word frequency (we just save information on whether each word

was or was not used in each document).

c. The original documents are in fact identical.

In our system, for example, having multiple documents "with the

same tokens" is not too unusual when processing only document

titles. The name of a weekly column might appear repeatedly in a

newspaper corpus, but its contents (and therefore its categories) may

well differ from week to week.
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9. portions of documents may be garbled, missing, or reordered

10. there may be formatting errors

For example, special symbols used to denote the end of a document body

may be missing.

While these characteristics certainly make it more of a challenge to work with these

documents, the problems inherent in processing such documents are typical of most

real-world data and so need to be acknowledged and solved.

We were very conservative in how we preprocessed the data. Our

preprocessing is fast, extracting a minimum of information from the documents and

not making any modifications to the information that is extracted. We specifically

did not correct any misspellings, either in the text of the articles, or in the names of

the categories assigned to each article. Neither did we remove any tokens. The

preprocessing step converts the raw data in the corpus into labeled examples. To do

this, the preprocessor does the following:

1. uncompresses and unpacks the corpus

2. performs a rough structural parse

This determines where the major structural aspects of each document are

located – where the document identification information is at, where the

title is at, where the body is at, etc.

3. separates document text and category information

4. constructs a table of categories that were used in one or more documents

5. tokenizes the text
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6. constructs a table of tokens that were used in one or more documents

This table is often referred to as the "dictionary", since in many systems it

also contains allowed parts of speech, allowed stems, and other information.

In our case, it is just a list of tokens that are present in the corpus.

7. prepares the labeled examples

The documents are converted to feature vector format, with attributes

representing those tokens present in the particular document and labels

representing the categories to which this document was assigned by a

human indexer.

In these experiments, each token in a document is a feature. Each feature is

boolean-valued; either the token does or does not appear in the document. The

labels are also boolean-valued – the document either is or is not in each category.

There are several possible tokenizing methods. The experiments reported in

this paper tokenize text by breaking up the text stream into tokens at whitespace or

punctuation. Punctuation is removed, and all letters are downshifted. For example,

these two sentences:
I’m taking the 8:45 train to Dublin on
4/5/97. It doesn’t stop in Osco-bosco.

will be tokenized thusly:
i m taking the 8 45 train to dublin on
4 5 97 it doesn t stop in osco bosco

Our goal was to perform very simple preprocessing that quickly and in a

straightforward manner converts the documents into feature vectors. There is no

natural language processing going on of any kind. All of the intelligence for

determining a correct categorization method will rest in the way the examples are
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used and in the learning algorithms that are employed. Note also that this

preprocessing method also allows us to more easily utilize ALC systems in other

domains. In other words, since the preprocessing has "only" converted the input

text to feature vectors (and hasnot done "some of" the text categorization), we can

more easily perform classification experiments using other data sets that are

already in feature vector form, such as those available from the UCI Machine

Learning Database Repository [Blake et al. 1999] or the UCI Knowledge

Discovery in Databases Archive [Bay 1999]. These data sets could be text or non-

text data sets.

Recall from our earlier discussion (ref. Equation (7) on page 117) that the

size of the input to the text categorization system isO(dta), whered = number of

documents in the corpus andta = average number of unique tokens in each

document. Recall thatl a is the average number of tokens in each document. Then

the input to the preprocessor isO(dla). One can see by examining the list of tasks

done during preprocessing (uncompress and unpack corpus, perform a rough

structural parse, separate text and category information, construct list of category

names, tokenize the text, construct the dictionary, prepare labeled examples) that

each step is of time complexityO(dla), and so preprocessing overall isO(dla). (We

realize that "parsing" is not usually linear in the size of the input – our parser is

linear in the preprocessor input size – it is only breaking up the input into

documents and then delineating the various major parts of each document). Recall

that in our experimentsl a ≈ ta, so preprocessing is also linear inta. Typical

execution speeds for the parts of preprocessing that are unusual in our system (due

to the minimal preprocessing) are: [1]uncompress, unpack, parse, separate:≈14

documents per second, and [2]tokenize and create dictionary:≈19 documents per

second. This is using code written mainly in Bourne Shell script, sed, and awk,

and so would certainly run faster if coded in C or C++.
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We used statistical tests to help us evaluate the results of experiments. The

statistical software we used was |STAT [Perlman]. Our main statistical tool was the

repeated measures analysis of variance test, hereafter "ANOVA". The null

hypothesis is that all of the systems actually perform the same on the average, and

ANOVA tells us whether or not there is a significant difference among systems for

various performance measures. We performed single factor tests, with the factor

being the system. We generally require results significant at the 0.01 level before

we will claim that a relationship exists, but we will usually state the computed

probability or the significance level if we are claiming that a relationship exists.

As discussed earlier, we form training and test sets using random splitting.

Given a corpus, one specifies the number of training examples, the number of test

examples, and the seed for the random number generator. The generated sequence

of numbers is used to randomly divide the corpus into training and test sets. For a

given corpus and a given category, there are good and bad splits. A split is good if

the training and test sets are each representative of the corpus (and of each other).

If the training and test sets are not representative of the corpus as a whole (or of

each other), then the learner will not be able to completely "learn the corpus" from

the training set, and neither will the test set actually test for all of the knowledge in

the corpus. Hence we use repeated trials and then compute averages of various

performance measures. By repeating our tests for several different splits, we make

it more likely that our performance measure values are on the average actually

indicative of the system’s overall behavior.

One might ask how many times one needs to repeat the cycle of splitting,

training, and testing. One of the results of the Central Limit Theorem in statistics is

that, regardless of the distribution of the population, the distribution of sample

means will approach a normal distribution as we perform more and more cycles

[Gravetter and Wallnau 1985]. As a practical matter, one needs to know how many

cycles are needed so that the resulting distribution will be "close enough" to
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normal. This depends on the underlying distribution of the population being

sampled, with few cycles being required if that distribution is itself normal, and

more being required if it is quite different from normal. It is surprising how few

cycles are actually needed in order to get very close to a normal distribution of the

means. Empirically it is usually the case that the number of repetitions falls

between 4 and 100 [Snedecor and Cochran 1989], and most of the time it is around

25 or 30 [Gravetter and Wallnau 1985].

While different splits have different examples in the training sets (and

different examples in the test sets), in our experimental design all trials in a series

have the samenumberof examples in the training set and the samenumberof

examples in the test set. Therefore, in terms of contingency table entries, the total

of all of the entriesa + b + c + d is equal to the number of examples in the test set

and will be the same for each of the trials in a series. Since (a + b + c + d) forms

the denominator of the equation for accuracy, this also means that macroaveraged

accuracy, categoryaveraged accuracy, splitaveraged accuracy, and microaveraged

accuracy are all equal for a series of trials. To see why, assume that we have a

performance measure Q that is computed as the ratio of two values
N

D
, whereN =

numerator,D = denominator. (Of the performance measures we have examined,

this is the case for accuracy, precision, recall, andFβ ).

Let k be the number of trials. Then:

Qmacro =

N1

D1
+

N2

D2
+ . . . Nk

Dk

k

=
N1

D1k
+

N2

D2k
+ . . . Nk

Dkk
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If all of the Di are equal (to, say, D), which in our case is true for the accuracy

performance measure, then:

Qmacro =
N1

Dk
+

N2

Dk
+ . . . Nk

Dk

=
N1 + N2 + . . . + Nk

Dk

=
N1 + N2 + . . . + Nk

D1 + D2 + . . . + Dk

= Qmicro

We will refer to the average accuracy values that we compute as macroaveraged

since that is how most people think of them.

Deciding how large to make the test set is often problematic. Usually one

has a limited number of examples. On the one hand, one wants a lot of training

examples, since this usually means that one can more thoroughly train the learner –

it will be more accurate since it has seen more examples. But since the training and

test sets are disjoint, this will mean having a small test set. Small test sets are more

likely to be unrepresentative of the corpus, so the fantastic learner that was trained

using all of those training examples may get very poor performance measurement

scores because the test set is too small to thoroughly test what the learner actually

knows. A thumb rule often used when the corpus size is small is to use2⁄3 of the

examples for training and1⁄3 for testing.

The Reuters-22173 corpus is large by machine learning standards – it

contains 22,173 examples. And the other text corpora we used also generally had

large numbers of examples. So having to worry about training set size versus test

set size for the reasons discussed above was not a major issue. However, since one

of our goals was to develop methods that use fewer examples during learning

without sacrificing accuracy, we did want to have the training set as large as
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possible – so that we could clearly see the effects of any reduction in number of

training examples used that we were able to make.

If one repeatedly splits a corpus into training and test sets in a random

manner (so that each is on the average representative of the corpus as a whole) and

performs a sequence of training and testing, then one has the following results

[Weiss and Kulikowski 1990, Fayyad and Simoudis 1996]:

1. with 1,000 test cases, the difference between true and predicted error is

below 1% (with 95% confidence)

2. with 5,000 test cases, predicted error is virtually identical to the true error

. . .  5,000 test cases will unquestionably give one enough accuracy to

distinguish true differences between two classifiers

In most cases, we elected to use slightly more than 1,000 test examples. The

additional 4,000 examples needed to get to the next plateau was too big of an

expense for us. We decided that those examples would be better utilized in the

training set.

How one initializes certain variables is important in several learning

algorithms, including winnow (initialize weights) and perceptron (initialize weights

andθ ). One wants to initialize the weights in such a manner that the hyperplane

does not have to move too far in order to be in a highly accurate position, since the

process of moving the hyperplane (learning) takes time. Moving the hyperplane

also uses training examples, and one of our goals is to decrease the number of

examples used. However, one can not use any information about the distribution of

label values in the corpus when initializing the learners, since that would be

tantamount to peeking at the answers to the test questions.
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The equation of a hyperplane is:

i=n

i=1
Σ wi xi = θ

Recall thatn is the number of attributes, thexi are elements of the feature vector,

and eachxi is either 0 or 1.

Let wave be the value of weight such that if allwi = wave, then the hyperplane

would bisect the space of all possible data points (on the average). We are at this

point looking at all possible data points (there are 2n of them), not at actual data

points in the corpus. Then the hyperplane equation becomes:

i=n

i=1
Σ wavexi = θ

wave

i=n

i=1
Σ xi = θ

Next, letk = the average number ofxi that are 1 in each→x; the remainingxi are 0.

We can computek easily. As we go through the feature vectors, we tally how many

1 bits there are (in the attributes) and divide this total by the number of documents

in the corpus. This need only be done once for each corpus, and in fact can be done

during the preprocessing phase when the feature vectors are being constructed.

Note that we are not looking at the label values, just at the attribute values.

The idea behind our usingk is that we would like to take into account the

distribution of actual corpus points in the space of possible points. We do not want

to initialize the hyperplane to the "center" of the space of all possible points if (as is

usually the case) the actual data points are not distributed uniformly over the space.

If the actual data points were uniformly distributed over the space, then on the

av erage each document would contain
n

2
tokens and sok would equal

n

2
.
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Empirically, k <<
n

2
, so we would like to factor this in to how we initialize the

hyperplane position.

Usingk, we hav e:
i=n

i=1
Σ xi = k

Therefore:

wavek = θ

wave =
θ
k

Note also that sincewave =
θ
k

and since each axis intercept is at
θ

wave
, each axis

intercept is atxi = k.

Using wave =
θ
k

will cause us to initially position the hyperplane so that it on

the average bisects the space of all possible data points, biased by the fact that we

also know that on the average each of the actual documents containsk attributes

whose value is 1.

Figure 11 shows two examples of the results of this equation. Both examples

are for 2 dimensions, so the hyperplane is a line, and there are 22 = 4 possible data

points in the corpus. The symbol◊ represents the location of the actual data points

in the corpus – the data points that were used to computek. Assumeθ = 2. In

Figure 11, left, we have all 4 possible points actually in the corpus, sok =
4

4
= 1

and so the axis intercepts are at 1. In Figure 11, right, we have only 3 data points

actually in the corpus.k =
4

3
= 1. 33. Note that we did not need to know the label

values of any of the points in order to position the hyperplane. The claim is that on

the average the hyperplane bisects the space of all possible points, biased by the
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Figure 11. Examples of Average Hyperplane Location

fact that we also know the value ofk. No claim is made that the hyperplane thus

positioned does very well at classifying.

If we have a hyperplane with eachwi =
θ
k

, then we will have a hyperplane

that on the average will bisect the space of all possible data points forn dimensions

and for the given value ofk. This seems to be a good initial position for the

hyperplane, in that it is a position that minimizes (on the average) the amount of

shifting that the hyperplane has to undergo in order to relocate to a final position

that is highly accurate. The hyperplane shifts only a certain amount in response to

each example that it learns from, so it is important to have the learner start the

learning process at a reasonable location. Note that this positioning of the initial

hyperplane does not use any information about actual label values. In fact, it does

not even make any assumption about which class (NO or YES) is larger.
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Note that this initialization method for→w automatically scales to the initial

value used forθ. We use an initial value of 1.0 forθ (for both the winnow and

perceptron learners).

Individual committee members are randomly initialized to slightly different

hyperplanes so that they represent different initial hypotheses. A difficulty

encountered in initializing a committee of learners is that one wants the learners to

be different (otherwise they will always agree), but not too different (or they will

too often disagree). Oncewave has been computed, we use it to define a range of

values that extends from slightly above 0 toslightly below 2× wave, wherewave is

at the center of the range. We avoid initial weights equal to 0 because winnow uses

multiplicative updating and so a weight of 0 will remain 0. We avoid weights < 0

because winnow requires the use of positive weights.

Initial weight values are then generated from a uniform random distribution

over this range. If there areM committee members andW weights for each

member, then one method of initialization generates a random value for each of the

M × W weights. Another method uses the same value to initialize all weights for a

particular member (and so this method generatesM different weight values). We

used both of these methods to see if the differing degree of randomness in the

initial weight values made any difference. Overall, which of these two initialization

methods were used did not seem to make a significant difference in the final

committee accuracy.
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5.2 Corpora Used

5.2.1 Reuters-22173

The Reuters-22173 corpus is a collection of 22,173 Reuters newswire articles

("documents") from 1987 [Reuters-22173]. It is a 25Mb full text corpus. Each

article has been assigned to categories by human indexers. Typical categories are

"topic=grain", "topic=gold", "place=Canada", and "topic=trade". An article may

be assigned to any number of categories, including none.

Full corpus statistics for Reuters-22173 (after our preprocessing):

– 22,173 documents

– number of unique tokens:

• 16,600 (titles only)

• 48,446 (full text)

– average number of unique tokens per document:

• 7.78424 (titles only)

• 81.8523 (full text)

– 679 categories

The 679 categories are in turn divided into 6 subcategories: topics, places,

people, organizations, exchanges, companies. Most research has been done using

the topics subset of categories, which contains 184 categories.

There are 3 standardized predefined splits, named after the researcher who

defined and first used each of them: Hayes, Lewis, and Apté.

We used this corpus because it is very real-world, and it was readily available

when our research started. Also, several others have used it, which we felt would

facilitate comparison of our systems with the results of others. See especially
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[Hayes et al. 1990, Hayes and Weinstein 1991, Lewis 1991b, Lewis 1992, Apté et

al. 1994, Lewis and Ringuette 1994, Cohen and Singer 1996, Cohen and Singer

1999, Yang 1999].

While many hav e used the Reuters-22173 corpus in tests of their systems,

there has unfortunately been no standard way of using the corpus, and so

meaningful comparisons are somewhat difficult to obtain [Yang 1996,

Reuters-22173]. One can be faced with problems such as there not being enough

information given in the paper to allow one to replicate the experiment, or (due to

ambiguity in the corpus format) different researchers may differ in how the title or

body text is extracted, which documents are used and for what (training or test),

which categories are used, etc.

As regards how we extracted information from the corpus: we used as the

document title the text following ˆB up to <newline><space>, and we used as

category labels any string not containing whitespace that fell in one of the category

fields. In particular, we did not compare the labels in the corpus to any list of legal

label names and thus discard typographical errors.

We used the 10 most frequently occurring topic categories, as listed in

[Lewis 1991b], for our experiments. These categories and their characteristics over

the entire corpus are given in Table 4. Note that on the average, there are only

5.04% positive examples in each category.

Table 4 is typical of the information we will report on each of the categories

used in the various corpora. The rows of the table are ordered based on percentage

of positive examples, going from highest to the lowest. By way of explanation of

the columns reporting the number of inconsistent examples: as discussed earlier, a

group of documents is inconsistent if they all have the same attribute vector but

have differing label values. Inconsistent examples are of particular interest to us,

since for the learning algorithms that we are using, each committee member is

trying to position a hyperplane so that it separatesNO and YES examples for the
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TABLE 4. Reuters-22173 Categories

category fraction number of inconsistent examples
name YES titles only full text

topic=earn 0.1925 10 2
topic=acq 0.1184 5 4
topic=money-fx 0.0391 41-51 15-17
topic=grain 0.0305 16 5
topic=crude 0.0302 8 2
topic=trade 0.0269 21-22 16-17
topic=interest 0.0250 41-68 10-11
topic=wheat 0.0149 15 4
topic=ship 0.0145 6-8 1-2
topic=corn 0.0121 9-10 2

category of interest. This will be impossible if there are inconsistent examples in

that category.

When inconsistencies occur, the preprocessor is not able (and is not allowed

to try) to determine which labels are actually correct. One can therefore have

uncertainty in the number of inconsistent examples. For example, assume that we

are looking at the category "place=denmark" for titles only. There is one group of

six documents that have the same title, but one is labeledNO and five are labeled

YES. We would then say that the number of consistent examples in this group of

documents is either 1 or 5 (and thus the number of inconsistent examples is either 5

or 1). In general there are several such "inconsistent groups of examples" for the

same category. Say there areh such groups. Rather than actually keeping track of

all possible values of the number of inconsistent examples for that category [out of

the 2h (duplicated) possibilities], we list in Table 4 only the minimum and
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maximum values of the number of inconsistent examples (totaled over allh

groups). This especially seems justified since the values given are for the entire

corpus, and so one can most likely obtain most values in the range depending on

the size of the training and test sets and how the inconsistent documents end up

being split. For the above "place=denmark" example, the entry in Table 4 would

therefore be "1-5".

A single number can appear in the "number of inconsistent examples"

columns. See for example "8" for the category "topic=crude", titles only, in Table 4.

This means that it happens that, over the entire corpus, exactly 8 documents will be

inconsistent. In this particular case, there are 8 groups of inconsistent examples,

each group containing 2 documents, one of which is labeledNO and one of which is

labeledYES. The same table entry of "8" would occur if there were 4 groups of 4

documents (each group split 2:2), or one group of 16 inconsistent documents split

8:8, etc.

In most experiments using this corpus, we used several different random

splits – typically 20. This results in a large number of trials (20 splits× 10

categories = 200 trials). We verified that the number of splits being used in each

experiment was enough by running some experiments with far greater numbers (as

many as 200), but the results we obtained with those increased numbers were not

significantly different. For each split, we divided the 22,173 documents into

21,000 training documents and 1,173 test documents. We usually used titles only,

since this is faster and gives quite good results.

Figure 12 shows two sample documents from the Reuters-22173 corpus.
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ˆD PATTERN-ID 302 TRAINING-SET
1-APR-1987 12:15:26.41

TOPICS: corp-news loan cbond END-TOPICS
PLACES: usa END-PLACES
PEOPLE: END-PEOPLE
ORGS: END-ORGS
EXCHANGES: END-EXCHANGES
COMPANIES: END-COMPANIES
ˆEˆEˆEA RMˆM
ˆVˆVˆAf1611ˆ_reute
r f BC-BROWN-GROUP-<BG>-DEBT 04-01 0110ˆM
ˆBˆM
BROWN GROUP <BG> DEBT DOWNGRADED BY S/PˆM

NEW YORK, April 1 - Standard and Poor’s Corp said itˆM
lowered 128 mln dlrs of Brown Group Inc’s senior debt toˆM
A-minus from A and commercial paper to A-2 from A-1.ˆM

The agency said a decline in sales and profits were littleˆM
offset from the company’s retail business. Also, foreignˆM
producers eroded Brown’s assets by gaining market share.ˆM

Brown’s debt ratio increased to 49.8 pct by year-end 1986ˆM
as higher inventories, and a four-year stock repurchase programˆM
has required additional financing, S and P said.ˆM

Restructuring efforts should improve productivity but notˆM
in the forseeable future, the agency added.ˆM

ReuterˆM
ˆC
__________________________________________________________________________________________________________

ˆD PATTERN-ID 5644 TRAINING-SET
26-FEB-1987 16:35:24.57
TOPICS: money-supply END-TOPICS
PLACES: usa END-PLACES
PEOPLE: END-PEOPLE
ORGS: END-ORGS
EXCHANGES: END-EXCHANGES
COMPANIES: END-COMPANIES
ˆEˆEˆERM AˆM
ˆVˆVˆAf0036ˆ_reute
b f BC--FEDERAL-RESERVE-MONE 02-26 0092ˆM
ˆBˆM
FEDERAL RESERVE MONEY SUPPLY REPORT - FEB 26ˆM

One Week Ended Feb 16ˆM
M-1.........................736.7 up.......2.1ˆM
Previous week revised to....734.6 From...734.2ˆM
Avge 4 Weeks (Vs Week Ago).735.0 Vs.....733.5ˆM
Avge 13 Weeks (Vs week Ago).731.8 Vs.....729.8ˆM
Monthly aggregates (Adjusted avgs in billions)ˆM
M-1 (Jan vs Dec)............737.6 Vs.....730.5ˆM
M-2 (Jan vs Dec)..........2,820.1 Vs...2,798.4ˆM
M-3 (Jan vs Dec)..........3,513.6 Vs...3,488.1ˆM
L...(Dec vs Nov)..........4,141.5 Vs...4,110.5ˆM
Domestic Debt(Dec vs Nov).7,604.4 Vs...7,519.8ˆM

ˆM
ReuterˆM

ˆC

Figure 12. Reuters-22173 Examples (#302 and #5644)
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5.2.2 Reuters-21578

The Reuters-21578 corpus is a collection of 21,578 Reuters newswire articles

[Reuters-21578]. It was developed to provide a more standardized corpus for

testing text categorization systems and is based on the Reuters-22173 corpus. The

formatting was modified and clearly documented, 595 duplicate documents were

removed (22,173 - 595 = 21,578), documents were reordered (so that the articles

are in chronological order), and typographical errors in the category label fields

were corrected.

Full corpus statistics for Reuters-21578 (after our preprocessing):

– 21,578 documents

– number of unique tokens:

• 15,842 (titles only)

• 48,428 (full text)

– average number of unique tokens per document:

• 7.74377 (titles only)

• 81.8377 (full text)

– 451 categories

The 451 categories are in turn divided into the same 6 subcategories as for

Reuters-22173: topics, places, people, organizations, exchanges, companies, but in

the Reuters-21578 corpus the companies field is always empty. Most research has

been done using the topics subset of categories.

There are 3 standardized predefined splits, analogous (insofar as is possible)

to the similarly-named splits in Reuters-22173: ModHayes, ModLewis, and

ModApté.

This corpus is relatively recent (made available in December 1996). Many

researchers (ourselves included) had started projects using Reuters-22173 and
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TABLE 5. Reuters-21578 Categories

category fraction number of inconsistent examples
name YES titles only full text

topic=earn 0.1848 29-724 0
topic=acq 0.1134 3-736 0
topic=money-fx 0.0371 33-782 8-12
topic=crude 0.0294 15-745 2
topic=grain 0.0291 18-745 2
topic=trade 0.0256 15-747 8
topic=interest 0.0238 37-803 9-10
topic=wheat 0.0167 12-747 1
topic=ship 0.0141 13-735 1
topic=corn 0.0118 9-745 0

continued using that corpus, but some results using Reuters-21578 are starting to

appear in the published literature [Dagan et al. 1997, Dumais et al. 1998, Joachims

1998, Cohen and Singer 1999, Scott and Matwin 1999, Weiss et al. 1999, Yang and

Liu 1999].

Basically, we view this corpus as a full text only corpus, in that a quite large

number of the articles (737 or 3.4%) do not have a title indicated. One could

admittedly create one’s own titles by having an unbiased human read such articles

and create titles, or by taking as the title the first sentence in the article. Either

approach, however, would make it extremely difficult to compare results to those of

other researchers unless they happened to use the same title generation method.

Since we typically do run "titles only" tests, we chose to treat articles that did

not have a title indicated in the corpus as having no title. Since there are such a

large number of such articles, this results in quite large numbers of "inconsistent
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examples" for the titles only case. This is because the 737 titleless articles all have

the same title (the empty title), but have widely differing categorizations based on

the content of the article body.

We used the same 10 topic categories for our experiments using

Reuters-21578 as were used in Reuters-22173. These categories and their

characteristics over the entire corpus are given in Table 5. Note that on the average,

there are only 4.83% positive examples in each category.

Figure 13 shows two sample documents from the Reuters-21578 corpus.

These are the same documents as were shown in Figure 12 for the Reuters-22173

corpus. (→ indicates where I have inserted a line break so that long lines would fit

on the paper.)

A comparison of Figures 12 and 13 shows some of the substantive (to us)

differences between these two corpora. Notice that the first document in each figure

has had all of its topics category labels removed in going from Reuters-22173 to

Reuters-21578. All 3 of the topics listed in the Reuters-22173 version (corp-news,

loan, and cbond) were illegal topic names. For the second document in Figure 12,

in Reuters-22173 we extracted the title of "FEDERAL RESERVE MONEY SUPPLY REPORT -

FEB 26", but in Reuters-21578 this document has no title.
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<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" →
OLDID="302" NEWID="12074">
<DATE> 1-APR-1987 12:15:26.41</DATE>
<TOPICS></TOPICS>
<PLACES><D>usa</D></PLACES>
<PEOPLE></PEOPLE>
<ORGS></ORGS>
<EXCHANGES></EXCHANGES>
<COMPANIES></COMPANIES>
<UNKNOWN>
&#5;&#5;&#5;A RM
&#22;&#22;&#1;f1611&#31;reute
r f BC-BROWN-GROUP-&lt;BG>-DEBT 04-01 0110</UNKNOWN>
<TEXT>&#2;
<TITLE>BROWN GROUP &lt;BG> DEBT DOWNGRADED BY S/P</TITLE>
<DATELINE> NEW YORK, April 1 - </DATELINE><BODY>Standard and Poor’s Corp said it
lowered 128 mln dlrs of Brown Group Inc’s senior debt to
A-minus from A and commercial paper to A-2 from A-1.

The agency said a decline in sales and profits were little
offset from the company’s retail business. Also, foreign
producers eroded Brown’s assets by gaining market share.

Brown’s debt ratio increased to 49.8 pct by year-end 1986
as higher inventories, and a four-year stock repurchase program
has required additional financing, S and P said.

Restructuring efforts should improve productivity but not
in the forseeable future, the agency added.

Reuter
&#3;</BODY></TEXT>
</REUTERS>
____________________________________________________________________________________________________________

<REUTERS TOPICS="YES" LEWISSPLIT="TRAIN" CGISPLIT="TRAINING-SET" →
OLDID="5644" NEWID="101">
<DATE>26-FEB-1987 16:35:24.57</DATE>
<TOPICS><D>money-supply</D></TOPICS>
<PLACES><D>usa</D></PLACES>
<PEOPLE></PEOPLE>
<ORGS></ORGS>
<EXCHANGES></EXCHANGES>
<COMPANIES></COMPANIES>
<UNKNOWN>
&#5;&#5;&#5;RM A
&#22;&#22;&#1;f0036&#31;reute
b f BC--FEDERAL-RESERVE-MONE 02-26 0092</UNKNOWN>
<TEXT TYPE="UNPROC">&#2;
FEDERAL RESERVE MONEY SUPPLY REPORT - FEB 26

One Week Ended Feb 16
M-1.........................736.7 up.......2.1
Previous week revised to....734.6 From...734.2
Avge 4 Weeks (Vs Week Ago).735.0 Vs.....733.5
Avge 13 Weeks (Vs week Ago).731.8 Vs.....729.8
Monthly aggregates (Adjusted avgs in billions)
M-1 (Jan vs Dec)............737.6 Vs.....730.5
M-2 (Jan vs Dec)..........2,820.1 Vs...2,798.4
M-3 (Jan vs Dec)..........3,513.6 Vs...3,488.1
L...(Dec vs Nov)..........4,141.5 Vs...4,110.5
Domestic Debt(Dec vs Nov).7,604.4 Vs...7,519.8
Reuter

&#3;
</TEXT>
</REUTERS>

Figure 13. Reuters-21578 Examples (#12074 [was 302] and #101 [was 5644])
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6. Experiments Performed and Results

This chapter describes the main experiments that we performed and the

results obtained. The results of some of these experiments have been published

previously [Liere and Tadepalli 1996, Liere and Tadepalli 1997, Liere and

Tadepalli 1998a, Liere and Tadepalli 1998b]. In this document, we also update

these previously reported results.

6.1 Where Are We Going?

Preliminary experiments had shown that ALC, as compared to supervised

learning with a single learner, can result in learning methods that use far fewer

examples and also take less execution time, but still achieve almost the same

accuracy [Liere 1997]. We demonstrate here this effect, as it is the main motivation

for our research. This experiment not only demonstrates the main effect that we

investigated, but also will serve to introduce and explain the types of graphs and

tables we will typically use to report results of many of our experiments.

We ran a series of trials on 3 systems. We typically identify the different

systems in an experiment using a system number as well as a descriptive name. On

graphs, the system number is used. In the related discussion, when we use the

descriptive name and the system number, we will put the system number in { } if

we need to clarify that it is the system number. The 3 systems in this experiment

were:

{1} ALC

Active Learning with Committees, with a 7 member committee, using

the AllMargin method to determine whether or not to see the label,

winnow as the learning algorithm, and majority voting as the prediction
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method. In the majority voting prediction method, if there is a tie vote,

then the prediction is the majority class of the training examples that

have been used so far. If that is also a tie, then a prediction that

alternates betweenNO andYES is given.

{2} SL-WI

supervised learning system (uses all training examples), 1 committee

member, using the winnow learning algorithm

{3} SL-NB

supervised learning using the naive Bayes learning algorithm

Thus {2} and {3} are our baseline systems.

We used the Reuters-22173 corpus, full text (as opposed to titles only). This

results in there being 48,446 tokens in the dictionary (and so 48,446 attributes in

the feature vector representing each document).

Figure 14 shows elapsed processor time (recall, this is always given in

seconds) as a function of the number of training examples used for each of the 3

systems. There is one dot on the graph for each trial of each system. We hav e

added boxes around the cluster of dots for each system to make it easier to visually

identify the operating region for each system. Each box is labeled with the system

number. Since systems 2 and 3 are supervised learners, their boxes collapse into

vertical lines. The symbol◊• ("diamond-dot") denotes the location of the average

elapsed processor time and average number of training examples used for each

system.

Note that the clusters are some distance apart. This dramatically illustrates

that, in this experiment, the differences among the systems in terms of both the

number of labeled training examples used and the elapsed execution time were
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Figure 14. Elapsed Time versus Number of Training Examples Used [1 = ALC, 7
members, AllMargin, winnow, majority voting; 2 = supervised learning,
1 member, winnow; 3 = supervised learning, naive Bayes]

quite large. Observe also that, for each system, the dots form very tight clusters.

This indicates that the variation in behavior within each system, for both the

number of training examples used and elapsed processor time, was quite small.

These effects are typical of many of our experiments and are important

points to note. If the elapsed processor time and number of training examples used

for a particular system do not vary much, then that indicates that the system is quite

consistent in its use of time and number of training examples, and so our

confidence that the average behavior is not too much different than any one trial’s

actual behavior is high, independent of split or category. When clusters for

different systems do not overlap, it means that those systems are quite distinct in

their performance as regards time and number of training examples used.
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Figure 15 is an accuracy learning trace for the 3 systems. We will often look

at learning traces – a learning trace shows how a particular performance measure

varies during the learning process – as training examples are used. One can

therefore graph learning traces for any performance measure. We use a log scale on

the horizontal axis. Note that the accuracy measure used in Figure 15 is

"Macroaveraged Accuracy", since that is the normal accuracy measure used in

machine learning tests. However, as we discussed earlier, a side effect of how our

experiments are designed is that microaveraged and macroaveraged accuracy are

equal.

Tw o cautions are in order as regards examining learning traces. First, one

might have a learning trace that rises and then approximately levels off, such as is

the case for system 3 of Figure 15. Does this mean that system 3, which is a

supervised learner, has essentially learned all it needs to learn after using (say) 800

examples, and so is actually a very good active learner? Could we stop system 3

after using 800 examples and get accuracies as good as the other two systems, but

using fewer training examples? Yes, we could. However. . .  such a decision

assumes that the other performance measures are of no concern. In this case, if we

peek ahead to Figure 16, we see that system 3 has obtained a high accuracy early in

the learning process at the expense ofF1.0, and that the learner then uses the

subsequent training examples to develop a betterF1.0 performance. So, at least in

our domain, we would not want to stop system 3 after using 800 examples and use

it for text categorization.

The second caution has to do with the general shape of the learning trace.

For the contingency table based performance measures of interest to us (accuracy,

precision, recall,F1.0), learning traces will generally start at a low to moderate

initial values (based on the initial random positions of the hyperplanes) and then

rise as training examples are used and learning occurs. One might ask what it

means if a learning trace rises to a high point and then, as more training examples
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are used, starts to drop. This can occur for one of two reasons. The learner may be

trading off one performance measure for another – for example, it might be losing

recall but gaining precision. As long as this tradeoff is not too extreme and the

system that finally results is an overall good performer, such tradeoffs are not a

major concern and in fact are to be expected. However, what if this rising and then

dropping in a learning trace is seen in several of the performance measures, and

there appears to be no trade off occurring – we appear to not be gaining something

in return for these performance loses? This can be caused by overfitting, especially

if we are looking at the results of one or very few trials. Or it can be due to the

learning algorithm being very poorly tuned. Recall the role thatδ plays in our

systems. It is a relative measure of the distance between theNO andYES clouds, or at

least between the main bodies of the clouds. If we, for example, tell the system that

the clouds are very far apart when in fact they are very close together, the resulting

large values of the learning rate parameters used by winnow and perceptron will

cause the hyperplanes to be within the clouds instead of between them, and the

learned hypotheses will be poor approximations to the target concept. In cases

such as this, we need to change the value ofδ. Note that the naive Bayes algorithm

has as one of its characteristics that it does not use any learning rate parameter, so

at least for standard naive Bayes, if it exhibits this performance, there is nothing we

can do to change it.

We can see from Figure 15 that system 1, which is employing active

learning, uses many fewer examples than is used by the supervised systems 2 and

3. This aspect of the graph is consistent with the results given in Figure 14.

However, Figure 15 also shows that the 3 systems end up with very similar final

accuracies, but that the path that each takes to get there is quite different. The final

accuracy values are given in Table 6.



161

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000

ac
cu

ra
cy

number of labeled training examples used (log scale)

 Repeated Trials Learning Traces, Macroaveraged Accuracy, Systems #1 2 3 

1
2
3

Figure 15. Av erage Accuracy by System [1 = ALC, 7 members, AllMargin, win-
now, majority voting; 2 = supervised learning, 1 member, winnow; 3 =
supervised learning, naive Bayes]

TABLE 6. Final Accuracy Values

- - - accuracy - - -
system mean std dev
ALC {1} 0.965 0.0196

SL-WI {2} 0.967 0.0267
SL-NB {3} 0.960 0.0444

ANOVA does not indicate that the system used has a significant effect on final

accuracy. It appears that the 3 systems have essentially the same accuracies. This

is good from our standpoint, since (from Figure 14) we see that the system using
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active learning (ALC {1}) runs about as fast as the fastest supervised learner (SL-

NB {3}) but uses only 8.5% as many training examples as a supervised learning

algorithm, and with no significant decrease in accuracy.

As discussed earlier, a performance measure that is more often of interest in

text categorization isF1.0, so in Figure 16 we look atF1.0 versus number of training

examples used for the 3 systems. This is also a learning trace, showing howF1.0

varies for each system as it learns. One can also see that in this figure, while the

paths differ, the finalF1.0 values of the 3 systems appear to be about the same. The

final F1.0 values are given in Table 7. This shows that the ALC system also

performs about as well as the supervised learners when judging performance using

theF1.0 measure.
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Figure 16. Av erageF1.0 by System [1 = ALC, 7 members, AllMargin, winnow,
majority voting; 2 = supervised learning, 1 member, winnow; 3 = super-
vised learning, naive Bayes]
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TABLE 7. Final F1.0 Values

system mean
ALC {1} 0.652

SL-WI {2} 0.665
SL-NB {3} 0.654

The remaining experiments focus on investigating how ALC is able to obtain

accuracy andF1.0 values that are similar to those for a supervised learning system

while using far fewer training examples and (usually) much less time. We also

look at implications of the differences in the learning path trajectories, especially

for systems whose final performance measures are the same. And of course we will

also look at ways of improving the performance of ALC. The systems we are

dealing with are quite complex, so we perform several experiments, each

examining a particular aspect of the problem.

Most of the remaining experiments will be run using the Reuters-22173

corpus with titles only. We use the Reuters-22173 corpus because it has been

available to us since this research project began. Although other corpora have since

become available, continuing to use Reuters-22173 has allowed us to take

advantage of our own historical data in terms of determining whether or not various

approaches are better or worse than ones tried in the past. We will, in one of the

final experiments, run our system on a different corpus (Reuters-21578) to show

that the methods we have dev eloped generalize to this newer corpus.

Using only titles allows us to run our tests faster, and we actually get better

results. The tests run faster because the number of tokens in the dictionary (and

therefore the number of attributes in each feature vector) is less – 16,600 versus

48,446. We think that the reason for the results being better is that the title of each

document is in a sense a summarization of the contents of the entire document,

created by the author. It thus distills the meaning of the document into a form that

is more concise and that probably also contains less attribute noise. We will, in one



164

of the final experiments, run our system on full text, to show that our system does

scale up well, although one could argue that we have already shown that it scales

up reasonably well by being able to handle 16,600 attributes. Most machine

learning problems involve far fewer attributes. For example, most data sets in the

UCI Machine Learning Database Repository [Blake et al. 1999] have fewer than

100 attributes.

6.2 The Number Of Members Needed in the Committee

The question arises as to how large we should make our committees of

learners. Both the time and space requirements of most of the methods we are

using vary linearly with the number of committee members, so we would like to

keep the committees as small as possible. However, since we are relying on the

committee members to represent a variety of possible hypotheses, we intuitively

might think that the bigger the committee, the better. In this experiment, we

investigate how many members we actually need in a committee of active learners.

First, we ran a series of trials on 4 systems. We used the Reuters-22173

corpus, titles only. Each system used QBC-REP to determine whether or not to see

the label, winnow as the learning algorithm, and majority voting as the prediction

method.

The 4 systems differed only in how many members were in the committee.

The 4 systems in this experiment were:

{1} 3 members

{2} 7 members

{3} 100 members

{4} 1,000 members
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Figure 17. Elapsed Time versus Number of Training Examples Used [1 = 3 mem-
bers; 2 = 7 members; 3 = 100 members; 4 = 1,000 members]

Figure 17 shows elapsed processor time as a function of the number of

training examples used for each of the 4 systems. One can see that, as the number

of members in the committee goes up, so does elapsed processor time and also the

number of training examples used. Also observe that, for each system, the dots

form fairly tight clusters. This indicates that there is not much variation in the

behavior within each system, especially for elapsed processor time. Figure 17 also

illustrates that the differences among the systems in terms of the elapsed execution

time was significant, in that the boxes do not overlap in time. (Systems 1 and 2 do

not overlap in time, but that is difficult to see on the graph). The graph also shows

that the 4 systems used very similar ranges of numbers of training examples. Also

note that elapsed processor time does appear to be approximately linear in the
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Figure 18. Av erage Accuracy by System [1 = 3 members; 2 = 7 members; 3 = 100
members; 4 = 1,000 members]

number of committee members. System 3 has 100 members and an average elapsed

processor time≈ 15, and system 4 with 1,000 members has an average elapsed

processor time≈ 137.

It would be difficult to choose which system is best based only on Figure 17.

One might be tempted to pick system #1 since it runs the fastest on the average,

and also on the average it uses fewer training examples. We know this because of

the position of its◊• . We will therefore also look at some contingency table based

performance measures. Figure 18 shows the average accuracy for each of the 4

systems as a function of the number of training examples used. We can see that the
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TABLE 8. Final Accuracy Values

- - - accuracy - - -
system committee size mean std dev

{1} 3 0.963 0.0205
{2} 7 0.966 0.0191
{3} 100 0.964 0.0192
{4} 1,000 0.964 0.0205

systems are employing active learning since they each use many fewer examples

than would be used by a supervised learner (21,000 for the Reuters-22173 corpus).

Note that this aspect of the graph is consistent with the results given in Figure 17.

However, Figure 18 also shows that the 4 systems end up with very similar final

accuracies, and that the path that each takes to get there is very similar. The final

accuracy values are given in Table 8.

ANOVA also does not indicate that the system used has a significant effect on

final accuracy. It appears that the 4 systems have essentially the same accuracies.

One might therefore still be tempted to pick system #1, since it runs the fastest. We

will next look atF1.0, since precision and recall are generally of more interest to the

text categorization user than accuracy.

Figure 19 shows the average value ofF1.0 for each of the 4 systems as a

function of the number of training examples used. This is also a learning trace,

showing howF1.0 varies for each system as it learns. One can see that the paths are

very similar, but that there does appear to be some differences in finalF1.0 amongst

the 4 systems. The finalF1.0 values are given in Table 9.

The conclusion that we draw from this experiment and several others similar

to it is that a committee size of 3 is too small, 100 is larger than necessary,
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Figure 19. Av erageF1.0 by System [1 = 3 members; 2 = 7 members; 3 = 100 mem-
bers; 4 = 1,000 members]

TABLE 9. Final F1.0 Values

system committee size F1.0

{1} 3 0.615
{2} 7 0.646
{3} 100 0.631
{4} 1,000 0.635

and 7 is about right. We reach this conclusion becauseF1.0 at 7 members is

definitely better than at 3 members. ThenF1.0 drops slightly as we increase the

number of members to 100 and 1,000.ANOVA indicates that there is a significant
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difference inF1.0 due to the system being used (p = 0.044), but it also indicates that

this difference is mostly due to system 1.ANOVA does not indicate a significant

difference in theF1.0 values for systems 2, 3, and 4. However, in a sense whether or

not the difference inF1.0 is significant or not as we go from 7 to 100 to 1,000

members is not relevant, since either theF1.0 is most likely unchanged or it is

dropping slightly. In either case, we will prefer the 7 member committee because

its F1.0 is highest, and its use of training examples and time is lower than for 100

and 1,000 member committees.

This type of experiment was repeated often, for differing numbers of

members, for different ALC systems, and also for committees of supervised

learners. We obtained similar results, in that committees smaller than about 5 or

larger than about 25 did not perform as well as committees in the 5 – 25 range. We

therefore conducted most of our experiments with committees having 7 – 20

members.

We feel that this effect is probably common in all ALC systems, although the

range numbers of members that provide the best results will likely vary with the

domain dimensionality and the amount of noise.

It is, however, not obvious why this effect occurs. So we did additional

experiments. In the following experiment, we gav e systems with 3, 7, 100, and

1,000 members (but otherwise identical) a set of documents and had the

committees employ active learning. We looked at the learning traces for the

committee as a whole (as we did above)and for each of the members in the

committee. For these results, individual member learning traces are shown in solid

lines, and the location of the learning trace for the committee as a whole is shown

by a path of◊• ’s. In this particular experiment, winnow is the learning algorithm

and prediction was by majority vote.
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Figure 20. Member and Committee Accuracy: 3 members (left) and 7 members
(right)
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Figure 21. Member and Committee Accuracy: 100 members (left) and 1,000
members (right)

For very small committees, one often finds that the committee is dominated

by one or two powerful individuals, and in a sense the committee is not really

functioning as a mixture of individual members. See for example Figure 20, left,

where the committee’s behavior is essentially that of one member (since the◊• ’s fall

on or very close to that one member’s learning trace). For very large committee
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sizes, members start duplicating one another and one does not, for a committee of

sizen, actually have anywhere nearn distinguishable hypotheses represented. See

for example Figure 21, right, which is then = 1,000 case. But note that there are far

fewer than 1,000 individual traces. In a sense, a form of weighting is occurring,

where the weight given to each distinguishable hypothesis is based on the number

of members voting in that manner. This may in fact be a worthwhile approach to

use, but this experiment does not indicate that such is the case, since the larger

committee used more training examples but yet performed the same as or worse

than a smaller committee. We will comment further on this idea of weighting the

votes later.

6.3 Separating the Effects of Active Learning and Learning by Committee

Preliminary experiments had shown that ALC can, as compared to

supervised learning with a single learner, result in learning methods that use far

fewer examples and take less time, but still achieve almost the same accuracy

[Liere 1997]. The purpose of this experiment was to determine which aspect of

ALC accounts for most of the performance improvement. Is meticulous sampling

necessary, or is it the committee itself that gives most if not all of the

improvement? In other words, as long as we use a committee, does it matterwhich

X% of the examples we use for training? This is of interest since active learning

expends some effort in determining which examples to actually use for learning.

Can we get similar accuracy results using similar numbers of examples chosen

randomly along with a committee ofsupervisedlearners? Is the reduction in the

number of examples used by ALC due mainly to the active learning component or

to the use of the committee for learning and prediction?

Many learning methods include using a committee to select examples

according to some measure of their "usefulness" [Freund et al. 1992, Cohn et al.
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1994, Lewis and Gale 1994, Quinlan 1996]. On the other hand, evidence exists in

the literature that the committee itself is a good idea. There is for example a quite

extensive literature on neural network committee machines [Takiyama 1978,

Schwartze and Hertz 1993, O’Kane and Winther 1994] and on bagging [Breiman

1996a] and boosting [Schapire 1990]. There are several reasons why committees

are thought to be a good idea [Hansen and Salamon 1990, Dietterich 1997].

Having a committee of learners allows each member to focus on learning different

portions of the solution space. Therefore members will also make errors on

different portions of the input space, thereby on the average having their errors

"cancelled out" by other members that are more adept at classifying that particular

example type. Also, using a committee allows one to learn hypotheses that are

more complex than the hypothesis space of any one member. For example, a

committee of linear threshold learners can learn concepts that are more complex

than those that can be learned by a single linear threshold learner.

Having the members of a committee make uncorrelated errors can result in a

committee actually outperforming its most accurate member. This is certainly not

intuitively obvious. Consider the results given in Figure 22, which show the

learning traces for individual members (lines) and for the committee (◊• ) for the

accuracy andF1.0 performance measures. These results are from an experiment

using active learning with a committee size of 7, with winnow as the learning

algorithm and prediction being by majority vote. Observe that there are places

where the committee outperforms every one of its members. Examine the traces at

"number of labeled training examples used" = 140, 180, and 190. The◊• at each of

those locations is aboveall of the individual learning traces.
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An example of how this is possible is given in Table 10. This committee is

composed of 3 learners, and prediction is by majority vote. Note that each of the

members gets 3 out of 4 examples correct, and so each member has an accuracy of

0.75. Yet the committee predicts correctly on all 4 examples, and so has an

accuracy of 1.0.

TABLE 10. Individual versus Committee Accuracy

test example actual - - - - - - - - - - - - - predicted label - - - - - - - - - - - - -
number label member #1 member #2 member #3 committee

1 NO NO NO NO NO

2 NO NO NO YES NO

3 NO NO YES NO NO

4 YES NO YES YES YES
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To determine whether it is the meticulous sampling or the committee

learning and predicting itself that gives most of the improvement, we performed an

experiment that analyzes the improvement obtained using ALC. We broke apart

the ALC method, in an effort to determine if the improvement is mainly due to

active learning, mainly due to the use of committees in prediction, or due to an

interaction of the two mechanisms.

For this experiment, we used winnow as the learning algorithm. For all

active learning systems, we used the QBC-REP method for deciding which training

examples to use. We examined the performance of 4 different learning systems.

We not only compared them to see which system is "the best", but we also looked

into why. In order to meet this second goal, we designed a factorial experiment

[Snedecor and Cochran 1989]. That is, we constructed one experiment in which

each of the systems does/does not have particular features. This experiment was

conducted using the titles of newspaper articles from the Reuters-22173 corpus.

The systems are:

{1} active-majority, the learner is a committee of 7 winnows which uses

QBC-REP to determine which labels to obtain from the teacher.

Prediction is made by that same committee, using majority vote.

{2} passive-majority, the learner is a committee of 7 winnows which

passively accepts all labels from the teacher. Prediction is made by that

same committee, using majority vote.

{3} active-single, the learner is a committee of 7 winnows which uses QBC-

REP to determine which labels to obtain from the teacher. Howev er, in

the prediction phase, only a single member of the committee is used. A

committee member chosen at random makes all of the predictions in a

particular trial.
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{4} passive-single, the learner is a single winnow which passively accepts all

labels from the teacher. Prediction is by that same winnow. This can be

thought of as the "baseline system" – a single supervised learner and

predictor.

Figure 23 shows elapsed processor time as a function of the number of

training examples used, for each of the 4 systems. Recall that we add a box around

the cluster of dots for each system and label the box with the system number.

Since passive-majority {2} and passive-single {4} are supervised learners, their

boxes collapse into vertical lines. Observe that, for each system, the dots form very

tight clusters. This dramatically illustrates that, in this experiment, the differences

among the systems in terms of both the number of labeled examples used and the

elapsed execution time were quite large. Figure 23 also shows that the variation in

behavior within each system, for both the number of training examples used and

elapsed processor time, was quite small.

ANOVA indicates that the system one uses has a significant effect on both the

number of training examples used (p < 0.0001) and on the elapsed execution time

(p < 0.0001).

One usually does not have as many labeled examples as one wants. In those

situations, active learning (active-majority {1} and active-single {3}) is beneficial.

(There is also the question of whether or not the active learning systems are losing

any accuracy. This will be discussed in Figure 24). From Figure 23, it would

appear that the 2 active learning systems are very similar, in that they hav e similar

av erage values both of number of training examples used and elapsed processor

time. How would one choose between these 2 systems?
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Figure 23. Elapsed Time versus Number of Training Examples Used [1 = active-
majority, 2 = passive-majority, 3 = active-single, 4 = passive-single]

Figure 24 shows the average accuracy for each of the 4 systems as a function

of the number of training examples used. This is a learning trace, showing how

accuracy varies for each system as it learns. We can see that the systems

employing active learning use many fewer examples than those using supervised

learning, which is consistent with the results in Figure 23. However, Figure 24 also

shows that the 4 systems end up with very similar final accuracies, while the path

that each takes to get there is different. The fact that the systems are all about the

same in terms of final accuracy justifies our having looked at other system

characteristics (such as number of training examples used and elapsed processor

time) as metrics on which to base our comparison of the systems. As regards the

previously posed question as to whether active-majority {1} or active-single {3} is
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Figure 24. Av erage Accuracy by System [1 = active-majority, 2 = passive-
majority, 3 = active-single, 4 = passive-single]

better, one can see in Figure 24 that active-majority {1} is, during the learning

process, more accurate than active-single {3}, with convergence to a common

value occurring only towards the end of the learning process. This difference is a

consideration in situations where one has a very limited number of training

examples available or in situations where the user can at any time ask the system to

stop learning and to use what it now knows. Figure 24 indicates that active-

majority {1} would be the better system in such situations, since its accuracy is, on

the average, always greater than that of the other systems.

Finally, it is appropriate to examine final accuracy in detail, since one of our

goals is to develop systems that reduce the number of training examples used
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without reducing accuracy. The above arguments as to which system is better in

various situations would certainly need to be modified if the systems’ final

accuracies were quite different.ANOVA indicates that the system used has a

significant effect on final accuracy (p < 0.0001). Table 11 recaps the accuracies of

the 4 systems.

TABLE 11. Final Accuracies

- - - accuracy - - -
system mean std dev

active-majority {1} 0.965 0.0172
passive-majority {2} 0.953 0.0240

active-single {3} 0.958 0.0179
passive-single {4} 0.941 0.0256

We can see that the differences in accuracy are relatively small. That is, all 4

of the systems gav e similar levels of accuracy, even thoughANOVA does indicate

that there is in fact a significant difference in accuracy among the 4 systems.

Active-majority {1} has the highest accuracy.

We should also look atF1.0, to see how the 4 systems do in precision and

recall. Figure 25 shows the averageF1.0 for each of the 4 systems. It is clear that the

best performer when using theF1.0 metric is still the active-majority {1} system.

ANOVA indicates that the system used has a significant effect on finalF1.0 (p <

0.0001). Table 12 recaps theF1.0 values for the 4 systems.
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Figure 25. Av erageF1.0 by System [1 = active-majority, 2 = passive-majority, 3 =
active-single, 4 = passive-single]

TABLE 12. Final F1.0

system F1.0

active-majority {1} 0.644
passive-majority {2} 0.537

active-single {3} 0.603
passive-single {4} 0.481

One can conclude that, of the four systems tested, active learning with

committees (active-majority {1}) is the best approach. It achieves accuracies and

F1.0 values that are the same as or slightly better than those obtained by the other
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systems, but uses only 5.2% as many training examples as the supervised learners.

It also requires less execution time than either the single supervised learner or the

committee of supervised learners. Because it has the best average accuracy and

av erageF1.0 as learning progresses, active-majority {1} is also the best one for

applications in which learning can be halted (and prediction commence) after a

certain period of elapsed time, such as when interactive processing is occurring

with a human being.

Active-majority {1} performed better than any of the other 3 systems, and it

uses both active learning and committee prediction. As regards our original

question, as to whether the reduction in the number of examples used by ALC

without loss in accuracy is due mainly to the active learning component or to the

use of a committee for learning and predicting. Both active-single {3} and passive-

majority {2} have better accuracies than passive-single {4}. There is a synergistic

effect due to these two components which resulted in the active-majority system

outperforming both active-single and passive-majority in accuracy andF1.0.

TABLE 13. Features in Each System

active learning
yes no

prediction yes {1} {2}
by

committee no {3} {4}

Table 13 gives a summary of which features each of the 4 systems does/does

not have. Comparing whether or not the system used active learning, one can see

from Figures 24 and 25 that the systems that are not using active learning (systems

2 and 4) have not achieved the same accuracy orF1.0 by the time they reached the
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number of labeled training examples used by the active learning systems.

Accuracy at this point for both {2} and {4} appears to be about 75 - 80%, with

both methods eventually reaching 94 - 95%. Progress inF1.0 is even worse at this

point –F1.0 for {2} and {4} is at about 15 - 20%, with most of the progress towards

the final values of 48 - 54% being made after using many more examples.

Given that we have concluded that active learning is beneficial, comparing

whether or not the method used a committee for prediction amounts to comparing

{1} and {3}. There is definitely less of a difference here than when {1} was

compared to {2} and {4}, so we conclude that the committee prediction is also

helpful, but does not contribute as much benefit as is obtained from active learning.
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We present here a brief intuitive argument as to why the active-majority

method works so well. Please see [Freund et al. 1992] and [Freund et al. 1997] for

a more detailed discussion of this aspect of active learning, as it relates to QBC.

Figure 26 shows accuracy as a function of the number of training examplesoffered

to the learner (instead of the number of training used by the learner). Accuracy is

calculated at each hundredth example used (to smooth out the effects of noise and

to make the steps more visible). Initially, assuming that the hypotheses in the

committee are sufficiently diverse, two randomly chosen hypotheses disagree on an

example with a significantly high probability. Hence labels are requested for a

significant fraction (about1⁄2) of the examples. As the learning progresses, each

hypothesis approaches the optimal target hypothesis, and hence the diversity

between the different hypotheses decreases. As a result, the informativeness of an

example as measured by the probability of disagreement between two randomly

chosen hypotheses decreases, and the distance between two successive label

requests increases. This effect is demonstrated by the horizontal portions of the

steps in Figure 26 becoming longer as learning progresses. In fact, in the noiseless

case, the number of examples offered between successive uses of examples must

increase exponentially fast [Freund et al. 1992].

6.4 AllMargin

Since ALC is composed of 3 parts (deciding whether or not to see the label,

learning, and forming the committee prediction), one can presumably improve

ALC by improving any one of those parts. The learning algorithms we are using

seem to perform well, in that they are able to handle large numbers of attributes

(necessitated by our performing minimal preprocessing). Winnow has also been

shown to be especially efficient in terms of the time needed for training when one

has irrelevant and noisy attributes present [Littlestone 1988, Littlestone 1991]. The

prediction method we use almost exclusively is majority vote. We examined several
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others, but none of them gav e as good results. Prediction is, for our knowledge base

structure, quite fast, so it does not seem reasonable to spend considerable amounts

of effort having committee members learn individually and then to not use the

predictions of all individuals to form the prediction of the committee. During our

research, our initial efforts at improving ALC were therefore aimed at new methods

for deciding whether or not to see the label. Being clever/more clever in this area

could reap one huge benefits, since doing a better job of deciding which training

examples are more useful would mean that one could use even fewer examplesand

also take less execution time. We spent a lot of time developing many many

different methods for deciding on whether or not to see the label. Sadly, most of

them did not perform very well. In the previous experiment, we used QBC-REP,

which is our version of the QBC method, adapted to work using a finite committee

to represent the hypotheses. Recall that QBC-REP is a method developed

specifically for domains with very large version spaces and/or which have class or

attribute noise. The other method that we developed which gives good

performance is AllMargin, which we examine in more detail in this experiment.

This experiment uses the Reuters-22173 corpus, titles only. The 3 systems

examined are:

{1} AL-WI

7 member committee, AllMargin for deciding when to see labels,

winnow learners, prediction by majority vote

{2} SL-WI

7 member committee, supervised learning, winnow learners, prediction

by majority vote

{3} SL-NB

supervised learning using naive Bayes
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TABLE 14. Final Performance Measure Values

system accuracy F1.0

AL-WI {1} 0.973 0.708
SL-WI {2} 0.969 0.667
SL-NB {3} 0.974 0.754

Examining elapsed processor time versus number of labeled training

examples used, we find (see Figure 27) that AL-WI {1} takes less time than either

supervised method, and uses about 7.05% as many examples as the supervised

learners. Note that SL-WI {2} is especially slow, due to its consisting of a

committee of 7 supervised learners (and so all 7 use each training example).

In Figure 28, we see the learning traces for accuracy andF1.0. Table 14 gives

the final values for accuracy andF1.0. Once again, the systems tested seem to

obtain similar values of final accuracy. This in fact is quite typical, due in large part

to there being so few positive examples in each category (see Table 4 on page 149).

The final values ofF1.0 are interesting. AL-WI {1} is doing better than the

committee of winnow supervised learners, even though it is using fewer training

examples and running in less time. However, note that supervised naive Bayes

does very well in terms of itsF1.0 performance. This is troublesome to people who

like a nice predictable world tied up with a ribbon and a bow. Naive Bayes by all

rights should not do well at all, as its assumptions do not hold for natural language,

and its approach is (in spite of the seemingly ugly math) so simplistic that it "does

not deserve to win". The consistently good showing made by naive Bayes is what

prompted us (in a later experiment) to develop a committee-based naive Bayes

algorithm. However, in this experiment, while it is true that naive Bayes has the

best F1.0 measure, it is also a supervised learning algorithm and so is using all

available training examples. Also, its run time (ref. Figure 27) is more than 3 times

greater than that of AL-WI {1} (average elapsed processor time values: AL-WI {1}

= 29.5, SL-NB {3} = 98.8).
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How does AllMargin compare to QBC-REP? Table 15 summarizes the

results of the ALC systems in this experiment and the one immediately previous.

Recall that both are using the same committee size (7), the same prediction method

(majority vote), and the same learning algorithm (winnow). And both experiments

were run on the same corpus – Reuters-22173 titles only.

TABLE 15. AllMargin vs. QBC-REP Average Performance Measure Values

system time % tng ex used accuracy F1.0

AllMargin 29.6 7.05 0.973 0.708
QBC-REP 2.6 5.21 0.965 0.644

As is often the case, the answer as to "which is better?" is . . .  it depends.

AllMargin is the better method in terms ofF1.0 and (slightly) accuracy, but it is on

the average using more training examples and taking more time. The additional

time required is due to the fact that AllMargin requires a prediction fromall

committee members on each candidate training example, whereas QBC-REP only

requires the prediction of 2 committee members.

6.5 Comparison of Winnow and Perceptron

So far, we hav e used winnow in our ALC system experiments. The

perceptron algorithm is very similar to winnow conceptually, and it differs in actual

implementation only in the operator used for updating (multiplication for winnow,

addition for perceptron) and the fact that in most implementations of winnow (ours

included) the thresholdθ is fixed, whereas in most implementations of the

perceptron (ours also included),θ is adjusted during learning (along with the

weightswi ). There are, nevertheless, many papers in the literature, both theoretical
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and applications-oriented, that find significant differences in the behaviors of these

2 algorithms. Experiments in text classification have found that sometimes additive

updating is better and at other times multiplicative updating is better in linear

classifier algorithms – it depends on corpus, document representation, and topic

[Lewis et al. 1996]. In a series of tests that examined many different variations on

winnow and perceptron algorithms for supervised text categorization, winnow

appeared to in general be the better algorithm [Dagan et al. 1997]. There are many

other papers examining winnow and/or the perceptron in various domains. For

example, there are winnow-based applications for calendar scheduling [Blum

1995], natural language disambiguation [Roth 1998], context-sensitive text

categorization [Cohen and Singer 1996], online investment portfolio management

[Helmbold et al. 1998], and spelling correction [Golding and Roth 1999] to name

only a few. We felt that it would be interesting to compare winnow and perceptron

in this domain using ALC systems.

There has been a great deal of theoretical work done in analyzing the

winnow and perceptron algorithms and how many mistakes they make. Recall that

both of these algorithms are mistake-driven, so one is interested in the number of

mistakes made since that is an indication of how much time will be spent learning.

In [Kivinen and Warmuth 1995], a comparison of winnow and perceptron mistake

bounds is derived for tuned learning algorithm performance onk-literal

disjunctions. These are boolean functions of the formxi1∨xi2∨ . . .∨xik
. If n = the

total number of attributes andk = the number of attributes that are relevant, then

the perceptron algorithm will make a number of mistakes that isO(kn), whereas

winnow will make a number of mistakes that isO(k log(n)). We do not claim that

the target concept in text categorization is ak-literal disjunctive function, but this is

a simple subclass of boolean linear threshold functions and is a reasonable

approximation to the approach used by some text categorization systems to

categorize text. Their results indicate that, when learning ak-literal disjunction,

winnow can, in domains where there is a large number of irrelevant attributes (k is
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small), make a number of mistakes only logarithmic in the number of attributes.

There is also evidence that winnow performs better in terms of accuracy when

there are large numbers of attributes with many of them irrelevant [Littlestone

1995]. These results are of special interest to us, since due to the simple nature of

our tokenizing method and the fact that we perform minimal preprocessing, we

have large numbers of attributes, and we expect that many of them will be

irrelevant.

The purpose of this experiment is to compare the winnow and perceptron

algorithms and to determine which is better as the learning algorithm in ALC when

categorizing text. This set of experiments also brought us squarely up against the

need to picka specific contingency table based performance measure that is "most

important" in order to make a firm decision as regards which learning algorithm is

better. This series of experiments was conducted using the Reuters-22173 corpus,

titles only. All systems used committees of 7 members, and all systems predicted

by majority vote. The ALC systems used AllMargin to decide when to see the

label.

We had initially "preliminarily concluded" that the perceptron was the better

learner, because it ran significantly faster than winnow, used fewer training

examples, and achieved essentially the same accuracy [Liere and Tadepalli 1998a,

Liere and Tadepalli 1998b]. These statements remain true in our current

experiments. However, we inv estigated further and found that perceptron’s

behavior when evaluated using other performance measures, in particularF1.0, is

often worse than for winnow. Essentially what was often happening was that the

perceptron was learning to "just predictNO". Since there are very few positive

examples in many of the categories, it is possible to get a quite good accuracy

rating in this manner. Howev er, using such a system for information retrieval or

text categorization would not be acceptable to most users. (Recall that a system

always predictingNO has a 0.0 score for both precision and recall).



189

Below we giv e the results of one of a great many different series of trials.

Having erred once, we did not want to compound the mistake. We tried a great

many different settings ofδ, and even tried some other weight initialization

procedures that we thought might be more applicable to the perceptron. We first

discuss the results of a typical series of trials, and then discuss the implications of

these results and possible reasons for them.

The typical series of trials for which we will present results consisted of 8

systems. Several are (it turns out) similar in behavior, so we will not need to

distinguish between all 8 of them. The systems are:

{1} SL-WI

supervised learning using winnows

{2} AL-WI

ALC using winnows

{3} SL-PI

supervised learning using perceptrons

{4} -{8} AL-PI

ALC using perceptrons; different systems used different settings ofδ, in

an effort to give perceptron every chance

Figure 29 shows elapsed processor time versus number of training examples used.

The supervised learning systems, both SL-WI {1} and SL-PI {3}, take relatively

large amounts of time (since they are using all 21,000 examples) – an average time

of ≈886. The AL-WI {2} system has an average time of 29.6 and uses an average

of 7.05% of the training examples. All of the perceptron ALC systems ({4}-{8})

are clustered tightly together with average times of 20 - 23 and with average

number of training examples used of 1 - 2%. So at this point perceptron is
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Figure 29. Elapsed Time versus Number of Training Examples Used [1 = super-
vised learning, 7 members, winnow, majority voting; 2 = ALC, 7 mem-
bers, AllMargin, winnow, majority voting; 3 = supervised learning, 7
members, perceptron, majority voting; 4-8 = ALC, 7 members, AllMar-
gin, perceptron, majority voting, various settings ofδ]

clearly doing better than the other systems (having examined only the time and

examples used performance measures); it is faster and using very few of the

available training examples.

Figure 30 shows the learning traces for these 8 systems for the accuracy

performance measure. This if anything makes one even more certain that the

perceptron is the better learning algorithm, since it appears that the final accuracies

are all about the same. In fact, they are all in the range 0.961 - 0.973. However,
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Figure 30. Accuracy Learning Traces [1 = supervised learning, 7 members, win-
now, majority voting; 2 = ALC, 7 members, AllMargin, winnow, major-
ity voting; 3 = supervised learning, 7 members, perceptron, majority
voting; 4-8 = ALC, 7 members, AllMargin, perceptron, majority voting,
various settings ofδ]

examination of theF1.0 learning trace, shown in Figure 31, changes our outlook on

the results. Clearly system AL-WI {2} is the better active learning system. And it

appears that SL-WI {1} is also better than SL-PI {3}. This is confirmed by Table

16, which gives the final values for accuracy andF1.0 for each system for the series

of trials.

It appears from this experiment (and several others that we performed) that

winnow is a better learning algorithm for our purposes than perceptron. Some

questions come to mind. Is this result a surprise? Do we have a strong desire that a

specific algorithm be the best?
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Figure 31. F1.0 Learning Traces [1 = supervised learning, 7 members, winnow,
majority voting; 2 = ALC, 7 members, AllMargin, winnow, majority
voting; 3 = supervised learning, 7 members, perceptron, majority vot-
ing; 4-8 = ALC, 7 members, AllMargin, perceptron, majority voting,
various settings ofδ]

TABLE 16. Final Performance Measure Values

system accuracy F1.0

SL-WI {1} 0.969 0.667
AL-WI {2} 0.973 0.708
SL-PI {3} 0.965 0.648

best of AL-PI {4}-{8} 0.970 0.591
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As discussed above, the "only difference" computationally between the two

algorithms is that one (winnow) uses floating point multiplication to perform the

updates, the other uses floating point addition. The common notion is that floating

point multiplication is a much more expensive operation, so perhaps we would like

perceptron ("addition") to be better. While multiplication used to be quite a bit

more expensive than addition, modern cpu architectures have made the penalty for

multiplication as compared to addition quite a bit less. And besides, there are so

many other things going on, whether the update operation is multiplication or

addition probably makes little difference overall. This in fact is verified by our

timing runs.

Recall that perceptron, due to the additive updating of its weights, can learn

any linearly separable pattern. This would seem to be a very major advantage. The

version of winnow that we are using is unable to learn any pattern that requires

learning a negative weight. This means that all of the axis intercepts of the learned

hyperplane must be≥ 0 for winnow. This would seem to be a major disadvantage

of the winnow algorithm. So why did it win?

We did an experiment to test the hypothesis that the capability of learning

negative weights is not actually needed. We ran several trials of the following test.

A perceptron learner (whichcan learn negative weights) was initialized and started

learning with a large value ofδ (recall the discussion on "separation" of theYES and

NO clouds). It was allowed to make as many passes as it wanted through the data,

using all examples during each epoch. Computational efficiency was not a

consideration. Basically the learner adjusted its learning rate in a greedy hill-

climbing manner as learning progressed, in an effort to obtain a very good

separating hyperplane for the given data. Learning did not cease until one of the

following conditions occurred: [1]specified performance measure goals were

reached, [2]limit on number of epochs was reached, [3]learning ceased, or [4]there

was not sufficient floating point precision to continue. The Reuters-22173 titles
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only corpus was used. Once this very good (albeit time-consuming) solution was

found, the weights were examined as regards their sign and magnitude. Then all

weights whose value were < 0 were set to 0, and the modified learner was retested

to see how the loss of the negative weights affected performance. We repeated this

test for a large number of trials. Here we present the results for a typical trial. This

particular trial happens to be for the category "topic=acq". Its final accuracy was

0.984, its final F1.0 was 0.93 . . .  certainly a very good solution in terms of

contingency table based performance measures. Recall (ref. Table 4 on page 149)

that the categories in the Reuters-22173 corpus are typically inconsistent and so

can not be perfectly learned by a single linear threshold learner. The distribution of

weights learned for this very good (especially in terms ofF1.0) solution is shown in

Figure 32.
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As can been seen from Figure 32, the vast majority of the weights are≥ 0.

And the ones that are < 0 are of small magnitude. Over a large number of such

trials, we found that typically less than 3% of the weights were negative, and most

of those were only slightly negative – normally with magnitudes of less than 5% of

the positive weight range.

Interestingly enough, setting the negative weights to 0 rarely made any

difference whatsoever in the contingency table of the learner. In other words, while

negative weights had been learned by the perceptron, negative weights were not

needed to represent a solution that was equally good in terms ofall contingency

table based performance measures.

Given that the ability to learn negative weights is not needed, we can explain

the comparative performance of winnow and perceptron in our domain by returning

to the operator used for updating the weights. Perceptron always updates by a fixed

amount,α (ref. Figure 7 on page 81).α is a learning rate that is computed at the

beginning of learning and that remains unchanged throughout the learning process.

The fact that updating uses the addition operator means that the samemagnitudeof

adjustment occurs to all weights that are adjusted, regardless of their size.

Therefore a weight that is quite small can, in one adjustment, be made several

times larger. For example, consider perceptronα = 0.5 and a weight of value 0.01

being updated. 0.01 + 0.5 = 0.51, so the weight has increased by a factor of 51.

But note that a weight that is quite large may, in one adjustment, have hardly any

relative change made to its value. Consider a weight of value 100.0. 100.0 + 0.5 =

100.5, which is≈ 100.

Compare this to the winnow algorithm, which also has learning rate

parameters – it happens to have 2,α and β (ref. Figure 6 on page 78). These

parameters also do not change once they hav e been assigned values, but note that

since the updating is multiplicative, the amount of adjustment made to each weight

is proportional to its current magnitude. That is, each update of a weight will result
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in the weight changing by the samerelative amount, regardless of its value. For

example (using winnowα = 1.5), updating a weight of value 0.01: 0.01× 1.5 =

0.015. And updating the weight of value 100.0: 100.0× 1.5 = 150.0. In other

words, in a sense the updating mechanism used by winnow adapts to the sizes of

the various weights, changing small weights by small amounts and large weights

by large amounts. This self-adjusting nature of the algorithm seems in our domain

to be causing the algorithm to accurately position the hyperplane faster (i.e., in

fewer shifts) as learning progresses.

Returning to the 2 cloud discussion, once the hyperplane has been initialized

to some location in the document space, it will usually be the case that it is at least

in some of its dimensions some distance from a location that will separate the 2

clouds. That is, if one compares the initial weight values to those of an optimal

separating hyperplane, one will find that some large weights need to become small

and some small weights need to become large. And of course, some weights will

not need to change much. In dimensions where large changes in weights are

needed, one would like to accomplish that large change in as few weight

adjustments as possible (so that fewer training examples are used and also so that

less time is required for learning). This is an argument for making the learning rate

parameters large. But, since the data in our domain contains noise and contains

large numbers of irrelevant attributes, we need to also be concerned about an

exampleE causing a large change in weights that arealready optimal. In other

words, once a weight that is optimal is "improperly" adjusted byE (due to noise in

E and/or due to the presence inE of irrelevant attributes), we have to allow for the

fact that we may not get any examples that will "undo" the harm done by example

E, and so we want the impact of the harm caused byE minimized. This is an

argument for making the learning parameters small. As a compromise, one must

therefore set the learning algorithm parameters so that a series of (net) like type

weight adjustments (promotion or demotion) causes a reasonable amount of change

in weight values in dimensions for which the weight value must be changed by a
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large amount (large weight→ small weight or small weight→ large weight), but

so that the changes made as a result of one example to weights that are already near

their optimal value will have minimal impact. Winnow seems best able to perform

under this compromise, since it adjusts weights multiplicatively and therefore each

weight is adjusted by the same relative amount each update. Needed large changes

in weight values (small→ large or large→ small) can be accomplished by winnow

in fewer updates since the size of each update made is relative, so as the weight

values change, the adjustment amounts change automatically, and in the correct

direction.

6.6 Ranked Output

So far we have discussed a text categorization system that gives the user aYES

or NO prediction when presented with a document. Additional information is made

available by many text categorization systems in the form of ranked output. A

ranking algorithm defines an ordering on the documents according to their degree

of similarity to the category of interest [McGill 1979]. Any method that computes

some similarity measure can therefore be used to rank documents. For example,

many text categorization systems determine their prediction by first computing a

probability p that the document is in the category of interest. Therefore the value

of p will be in [0,1]. To obtain the prediction ofNO or YES, the system then simply

compares the computed probability to some threshold parameterh. If p > h then it

predictsYES otherwise it predictsNO. Such systems can therefore easily output the

documents ordered by decreasing value ofp. In fact, many text categorization

systems routinely report their predictions in ranked order.

There is a bit of a terminology problem here. Technically, the rank of each

document is an integer starting at 0 or 1, and increasing consecutively to indicate

decreasing similarity to the category of interest. Therefore the document ranked 1
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is (in the opinion of the system) more relevant to the category of interest than, say,

the document that is ranked 10. However, in order to compute the rank, the text

categorization system first computed some measure of similarity between each

document and the category of interest. This computation does not (generally)

directly produce the desired series of unique and consecutive integer-valued ranks.

Instead, it likely computes a value that is a measure of the similarity between each

document and the category of interest. We will call this value on which the ranking

is based the rank raw score. The rank raw score is likely real and is likely to be

large when the similarity is high and small when the similarity is low. Sorting the

documents by the rank raw score, from high to low, allows us to compute the ranks

(going from low to high). For example (from [Harman 1996]):

030 Q0 ZF08-175-870 0 4238 prise1
030 Q0 ZF08-306-044 1 4223 prise1
030 Q0 ZF09-477-757 2 4207 prise1
030 Q0 ZF08-312-422 3 4194 prise1
030 Q0 ZF08-013-262 4 4189 prise1

... The fourth column is the rank ...
and the fifth column shows the score
(integer or floating point) that
generated the ranking.

The fifth column is what we are calling the rank raw score.

Systems that use such a similarity calculation process to perform ranking can

therefore also easily report to the user the rank raw score of each document as well

as the rank itself. This is useful additional information, as a group of 3YES

documents returned to the user with ranks and rank raw scores of 1=0.9, 2=0.85,

3=0.25 not only tells the user the ranking, but also gives the user an idea of the

degree of similarity for each document. In this case, for example, the first 2

documents are almost tied, and the 3rd document is much less similar than the first

two. The rank information allows the user to examine the "most likely" documents

first. The rank raw score information allows the user to more intelligently

determine his/her own cutoff value for where to stop detailed examination of the

actual documents.
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Winnow and perceptron do not compute a probability in order to form a

prediction. They simply determine on which side of the hyperplane the document

lies, and that indicates whether the prediction isYES or NO. Since rank and rank raw

score values are quite useful to the end user, we inv estigated ways to compute these

in ALC. Our goal was to find some way of computing ranking information that

worked reasonably well and that did not require much extra in the way of

computations. In other words, one could always perform a second complete set of

computations to obtain rank raw scores, but we hoped to be able to find a way to

essentially use what information we already had available.

Before we report the results of our experiments, we need to discuss how we

will present ranking information. While text corpora do contain labels indicating

the categories into which each document belongs, they contain no "list of right

answers" for the ranking process, so computation of some kind of "ranking

contingency table" is not possible. The method we use for presenting ranking

results is a standard method that is virtually identical to the one used in many

research comparisons including the TREC (Text REtrieval) Conference

evaluations. It is described in detail in [Hersh 1996] and in [Voorhees and Harman

1997]. We will go over this standard method briefly, and then comment on a

difference in our use of the method. Basically the standard method converts a

ranked list of documents into a graph that one then compares to the ideal case in

order to judge how well the ranking is working. The approach used is to first sort

the output of the text categorization system into increasing rank order (by a

decreasing sort on the rank raw scores) and then to compute precision and recall for

successiveYES documents (actual label) on the sorted list and to plot those values.

Let us examine the use of the method in more detail, and specific to the ideal case

since that is the case to which results are compared. The ideal case occurs when

the text categorization system’s predictions and ranks are 100% accurate. This

means that [1]all of the predicted labels are correct and therefore are equal to the

actual labels, and [2]all of theYES documents are ranked above all of the NO
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documents. The output of the text categorization system is a list, in rank order, of:

rank, some kind of document identification number, theYES or NO prediction, and

perhaps the rank raw score. For the ideal case, we will have all of theYES

documents at the top of the list and all of theNO documents following. Presumably

in between the lowest-rankedYES document and the highest-rankedNO document is

where the threshold value ofh discussed above lies. To apply the standard method

of plotting precision versus recall using the ranks, one begins at the top of the list

and progresses down the list of documents, computing recall and precision after

eachYES document (actual label) on the list. These computations depend on the

following 4 values:

• y = the number of documents encountered so far that are actuallyYES

• t = the number of documents encountered so far

• Y = the total number of documents that are actuallyYES

• T = the total number of documents

Recall at each point is computed as
y

Y
. Precision at each point is

y

t
. Say there is a

total of 10 YES documents. Then, in the perfect situation described, the first

document on the list will have a recall of
1

10
= 0. 1 and a precision of

1

1
= 1. 0. The

second document will have recall =
2

10
= 0. 2 and precision =

2

2
= 1. 0, etc. until

we reach the tenth document on the list, whose recall will be
10

10
= 1. 0 and whose

precision will be
10

10
= 1. 0. Thus the ideal system will have a precision-recall

curve that is a horizontal line at precision = 1.0 and extending from a recall of
1

Y
to

1.0.

The method that we used for plotting ranked data is identical to the above

method, except that we plot a point for each document on the list, regardless of its

actual label. This was done in an effort to have the detailed plots give us more
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information about problem areas in the ranking. For the ideal case, therefore, our

system will plot the same horizontal line as for the standard method, and then

precision will drop to
Y

T
.

Since there are typically lots of small fluctuations in the standard precision

versus recall rank plot (and even more so in our modified version), the normal

approach is to use recall intervals of 0.1, thereby obtaining a smoother plot.

"Intervalizing" the data also involves several rules regarding how the interval

boundaries are handled and which value within each interval is chosen for plotting.

We will not cover those details here, but they are covered in [Hersh 1996, Voorhees

and Harman 1997]. We use the standard 0.1 interval method (i.e., no modifications

to the standard method).

We inv estigated many approaches to ranking. The one that seemed to work

best overall uses the following method. To compute the rank raw score, we first

compute the signed distance to the document from each of the hyperplanes in the

committee (+ for above the hyperplane and− for below the hyperplane). Those

values are then averaged and then the magnitude is taken, and this is our rank raw

score. Our rank raw score values are therefore real numbers≥ 0. The value of the

predicted label is then used if later the sign is needed.

One might ask why we threw away the sign, only to later (when it is needed)

obtain it by looking at the committee predicted value ofYES or NO. The answer is:

the two signs are not necessarily the same. There is no guarantee that the sign of

the computed rank raw score and the committee prediction will agree. Depending

on the method used for computing the committee prediction, it is possible for the

prediction of the committee to be, for exampleYES, but the above-described average

distance to be negative. Recall that the predictions by the individual members are

very granular –YES or NO, based only on where the document is with respect to the

hyperplane and not at all on the distance of the example from the hyperplane. So

for example, if there were 5 learners in the committee and the distances to an
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example were -5, -5, +1, +3, +2, then the committee would (assuming majority

voting) predictYES since the vote is 3:2, but the average distance computation will

give
−4

5
= −0. 8. The method we use for ranking assumes that, on the average, the

committee prediction is correct and that rank raw score is proportional to the

magnitude of the average distance to the document from the individual

hyperplanes.

The following experiment was performed on the Reuters-22173 corpus, titles

only. We used the following 3 systems:

{1} AL-WI

ALC using AllMargin, committee of 7 winnows, and prediction by

majority vote

{2} SL-WI

supervised learning using committee of 7 members, prediction by

majority vote

{3} SL-NB

supervised naive Bayes learner

These 3 systems were chosen so that we could see how our ranking method

compared for supervised winnow as well as for ALC using winnow. We included

the naive Bayes learner because it is also a supervised linear threshold learner and

often does surprisingly well. Also, naive Bayes actually predicts using

probabilities, so perhaps it will be a better system to compare to. Figure 33 shows

representative precision versus recall curves based on ranks for AL-WI {1}. The

"×+" symbol represents the location of the operating point of the text categorizer in

terms of final precision and recall. Some of the "×+" symbols are not exactly on one
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of the lines for a trial – this is because the process of intervalizing the data causes

the plot to not go through each and every precision-recall point. Figure 34 shows

the same trials for SL-WI {2} and SL-NB {3}.

Recall that a system that does perfect ranking will have a ranked precision

versus recall curve that is a horizontal line atp = 1 extending fromr = 0 to r = 1,

and then the line will drop top ≈ 0. To judge how well the various systems are

ranking the documents, we compare to the perfect system as well as comparing

amongst the systems. AL-WI {1} does a credible job of ranking. Keep in mind

that these ranks are computed "after the fact" using already-available information.

AL-WI {1} does a better job than its supervised counterpart SL-WI {2}, since its

plots for all categories start atp = 1 (for r = 0) and generally stay higher than the

plots for SL-WI {2}. Apparently its choice of the better examples to learn from

has also allowed it to perform better ranking. The supervised naive Bayes learning

algorithm, with the exception of the lower curve, seems to do the best job of

ranking since its curves are the closest to the ideal of a horizontal line that then

drops to≈0 on the right of the plot. Perhaps this is not too surprising; the naive

Bayes algorithm does well in categorizing text and is also in a sense more

appropriate for computing ranks because it computes probabilities in order to make

its predictions. Recall that winnow does not compute probabilities in order to

predict.

6.7 Full Text

As discussed earlier, we performed most of our experiments using

Reuters-22173 titles only. This allowed us to run our tests faster, and results were

actually better in most cases. Tests ran faster because of there being fewer

attributes. We think that performance was better due to the title being relatively

free of attribute noise and also being a concise abstract of the document’s meaning.
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However, we promised to later run our system on full text, to show that our system

does handle full text well. That time has come.

First, we will do an experiment on Reuters-22173 full text. This corpus has

48,446 tokens in the dictionary, so the feature vector representing each document

contains 48,446 elements versus 16,600 for titles only. We will show that our

method scales up in terms of handling this increased number of attributes. While

the number of attributes (t) has gone up by a factor of almost 3, the average number

of unique tokens per document (ta) has gone up by a factor of more than 10. We

will compare performance on full text to performance on titles only in this same

corpus. A very important point to note is that no effort was made to tune the system

for full text. We instead used the sameδ that we had used for titles only.

We use the same 3 systems as were used earlier in the experiments that

investigated the performance of AllMargin. Those 3 systems are:

{1} AL-WI

7 member committee, AllMargin for deciding when to see labels,

winnow learners, prediction by majority vote

{2} SL-WI

7 member committee, supervised learning, winnow learners, prediction

by majority vote

{3} SL-NB

supervised learning using naive Bayes

Figure 35 shows time versus number of training examples used for the 3

systems. As can be seen, AL-WI {1} uses far fewer examples (8.08%) than either

of the supervised learners. While it is not quite as fast as SL-NB {3}, it certainly is

much faster than the supervised learning committee SL-WI {2}. Figure 36 shows

accuracy andF1.0 learning traces for the same 3 systems. It appears that the 3
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TABLE 17. Reuters-22173 Performance: Titles Only ("titles") vs. Untuned Full
Te xt ("u. full")

system time % tng ex used accuracy F1.0

titles u. full titles u. full titles u. full titles u. full
AL-WI {1} 29.5 193.0 7.05 8.08 0.973 0.959 0.708 0.640
SL-WI {2} 885.6 1939.8 100 100 0.969 0.963 0.667 0.663
SL-NB {3} 98.8 132.5 100 100 0.974 0.957 0.754 0.662

systems have essentially identical final accuracies and that their finalF1.0 values are

also quite close. Table 17 compares these 3 systems for several performance

measures, both for titles only (data from previously presented experiments) and for

full text (data from this experiment). In going from titles only to full text, the

number of attributes has increased by a factor of almost 3. Recall that earlier when

we discussed sample complexity, we obtained the result that the lower bound on

the number of examples needed for training in order to obtain a particular accuracy

is proportional to the number of attributes. Since in full text we still have

essentially the same number of training examples being used as we did for titles

only (AL-WI {1} does use≈1% more), one would expect performance to drop.

One might also expect a performance decrease because presumably more care goes

into the crafting of the document title than into the document body, and so there

will likely be more attribute noise when we process full text.

SL-NB {3} has scaled up very well in time performance. From Equation (10)

(on page #124) and sincet >> ta, SL-NB {3} has time complexityO(dt). In this

case,d is unchanged so we haveO(t). Sincet increased by a factor of 3,O(t)

certainly upper bounds the actual run times. Accuracy dropped, but only by about

0.02. However,F1.0 dropped by almost 0.1. This is not good, since for the text

categorization domainF1.0 is one of the more important contingency table based

performance measures. Other experimenters have found that naive Bayes, when

compared to other learning algorithms, has difficulties handling large numbers of

attributes [Littlestone 1995, King et al. 1995], especially when many of them are
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irrelevant [Littlestone 1995]. Naive Bayes also has difficulties with very large

sample sizes [Domingos and Pazzani 1997]. Although it performs well in spite of

the "naive" assumption, one can not totally ignore the implications of assuming

conditional independence of attributes given the class, and in domains where there

is a large amount of dependency between many pairs of attributes, performance

will degrade [King et al. 1995, Singh and Provan 1995]. It appears that having a

very large number of attributes with many of them irrelevant is what has caused the

full text case to impact SL-NB {3} so severely in itsF1.0 performance.

AL-WI {1} has scaled up well, in that it uses only an additional 1% of the

available training examples but loses only 0.014 in accuracy. Its time complexity

(ref. Equation (8) on page #124) isO(dta), which with d unchanged becomes

O(ta). Since ta increased by a factor of 10,O(ta) certainly upper bounds the

observed increase in run time. However, AL-WI {1} lost almost 0.07 inF1.0. Not

as much of a decrease as for SL-NB {3}, but more than we would like.

SL-WI {2} seems to scale up the best, increasing execution time by a factor

of a little over 2 (it is, from Equation (9) on page #124, withd unchanged,O(ta)).

It lost only .006 accuracy and .004F1.0. And this is all with no tuning for full text.

We next did experiments using the Reuters-21578 corpus, full text. The

Reuters-21578 corpus is a modified version of the Reuters-22173 corpus, but has

several different characteristics (discussed earlier). We ran the same 3 systems as

above onthis corpus, and obtained results that were similar to the above (for

Reuters-22173 full text) in time, fraction of available training examples used, and

accuracy. Interestingly, the SL-NB {3} system also obtained essentially the same

level of F1.0 as it did for the Reuters-22173 corpus. However, the two winnow

systems scored almost 0.09 lower onF1.0. We purposely did not tuneδ for this

different corpus, so this probably had a lot to do with the decrease inF1.0

performance. When one examines the learning traces for the 2 components ofF1.0

for the 2 corpora, something very interesting is revealed. Precision learning traces
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for the 2 corpora are shown in Figure 37. Note that when comparing the two

corpora, the curves look very similar for each of the 3 systems. The learning traces

for recall are shown in Figure 38, and obviously here is where the difference lies.

In Figure 38, we see that the general shape of the SL-NB {3} curves are

similar across the 2 corpora. Recall drops but then, as more examples are used, it

recovers and reaches 0.79 for both corpora. The curves for AL-WI {1} and SL-WI

{2} and are also very similar in shape across the 2 corpora, but for Reuters-21578,

the variations in the curves are less pronounced and, as compared to the curves for

Reuters-22173, appear to be drooping. It appears that this is a direct result of not

having tuned the system for Reuters-21578 by adjustingδ. This hypothesis is

supported by the fact that SL-NB {3} did not exhibit this compression in the

variations, and it does not use theδ parameter. This hypothesis is also supported by

the fact that precision was not affected – of the documents predicted to beYES, the

fraction of documents that were actuallyYES did not change. But recall dropped –

of the documents that are actuallyYES, fewer were predicted to beYES. These events

could occur if the hyperplanes had not moved far enough during learning, which

again points toδ needing to be tuned for Reuters-21578. To see this, envision that

the hyperplanes, when randomly initialized, are each intersecting theNO and/orYES

clouds. Recall that winnow is a mistake-driven learner. Therefore, hyperplanes

which use a negative example will move away from the origin and towards theYES

cloud if they predictedYES and will not move atall of they predictedNO. Similarly,

hyperplanes which use a positive example will move tow ards the origin and

towards theNO cloud if they predictedNO and will not move atall of they predicted

YES. Recall that the categories in these corpora have far more negative examples

than positive ones, so on the average most hyperplane motion will be away from

the origin. Thus hyperplanes initially located in theYES cloud are more likely to

remain there (since they already predictNO on most examples used and since they

are correct they do not move during learning). Thus these hyperplanes will, if the

learning rate is too low, end up well within theYES cloud, and so will correctly
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predict YES for examples located above them, thus getting a good precision score,

but they will incorrectly predictNO for examples in theYES cloud that are below

them, thus getting a poor recall score.

Conclusions: for titles only, other experiments that we performed indicated

that the document space as seen by the learning algorithms is fairly consistently

structured between Reuters-22173 and Reuters-21578. However, for full text, it

would appear from the above analysis that using a largerδ would give better

results. This is also consistent with the fact that Reuters-21578 was created from (a

portion of) Reuters-22173, and the creation process included correction of "a

variety of typographical and other errors in the categorization and formatting of the

collection" [Reuters-21578]. Thus Reuters-21578 is in a sense a "cleaner" corpus,

which in turn would warrant using a larger value ofδ (and a correspondingly higher

learning rate).

Time allowed us to try out this idea. We increasedδ by approximately 15%

and did obtain better results on the Reuters-21578 corpus. We do not claim that this

was a "thorough tuning", but we did get much better results. Since modifyingδ

does not affect naive Bayes operation, we did not need to include system 3 in this

final series of trials. Figures 39 and 40 show the learning traces for accuracy,F1.0,

precision, and recall. Notice that adjustingδ has cured the droop problem that was

occurring in recall.

To recap this series of experiments: we had been doing all experiments using

Reuters-22173 titles only, and wanted to show that our method scaled up to the

processing of full text documents with no parameter changes being made. So we

ran tests using Reuters-22173 full text. Compared to Reuters-22173 titles only,

performance remained good with the possible exception of AL-WI {1}, for which

F1.0 decreased by 0.07 (which is about 10% of its titles only value). We then ran

the same systems on Reuters-21578, still without any tuning. The winnow systems
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= ALC, 7 members, AllMargin, winnow, majority voting; 2 = super-
vised learning, 7 members, winnow, majority voting]
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dropped inF1.0 by about 0.09 below Reuters-22173 full text. So we decided to see

if "minor tuning" for Reuters-21578 would help. By making only an adjustment in

δ consistent with our analysis of the Reuters-21578 corpus, we were able to obtain

performance similar to what we obtained on Reuters-22173 full text. Table 18

summarizes the Reuters-21578 full text results.

TABLE 18. Av erage Performance of Reuters-21578 Full Text

system time % tng ex used accuracy F1.0

AL-WI {1} 223.6 5.4% 0.968 0.641
SL-WI {2} 3605.5 100% 0.960 0.582
SL-NB {3} 138.5 100% 0.962 0.665

6.8 Different Notions of ’Mistake’

When we introduced the notion of "mistake", we casually defined it to mean

"predicting incorrectly". Looking at the contingency table we are using (see Table

19), we see that making a mistake on a training example corresponds to the

learning algorithm making a prediction on that example which is different from the

actual label that is provided by the teacher, and therefore we end up at locationb or

c for that example. Thus when we say that an algorithm (such as winnow and

perceptron) is "mistake-driven", we mean that the algorithm learns if and only if its

prediction is different from the actual label. In fact, the definition of mistake

("predicting incorrectly") and the definition of accuracy ("fraction of documents

that arecorrectly categorized") are obviously related. The notion that occurred to

us is: if the implementation of the common definition of mistake is meant to cause

the learning algorithm to increase in accuracy, then perhaps some other definition
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TABLE 19. 2x2 Contingency Table

actual label value
NO YES

a b
predicted NO (true negatives) (false negatives)

label
value YES c d

(false positives) (true positives)

of mistake will cause the same algorithm to increase in the performance measures

that are of more interest to us in text categorization, namely precision and recall.

We decided to do experiments to see if changing the definition of "mistake"

that is used by winnow (a mistake-driven learning algorithm) would produce

increases in the recall and precision performance measures, and if so, with what

side effects. We looked at the following 3 definitions for mistake, as regards the

location/s in the contingency table corresponding to the state of the learner after

making a prediction on an example and then seeing the actual label:

1. b or c (the standard definition of "mistake", learning from it is meant to and

does increase accuracy)

2. b / false negatives only

3. c / false positives only

The normal definition of mistake causes accuracy to increase because the

learning algorithm will learn from an example on which the current hypothesis of

the learning algorithm is not accurate, the idea being that after learning, the

hypothesis will be more accurate overall. In examining the contingency table
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(Table 19), note that the real world establishes a correct value both forb + d (i.e.,

the total number of test documents that are actuallyYES) and fora + c (i.e., the total

number of test documents that are actuallyNO). The purpose of a mistake-driven

learner that is using the normal definition of mistake is to learn training examples

that are nowb occurrences so that later when that part of the document space is

tested, the learner will correctly predictYES . . .  i.e., obtain an entry ind. And

similarly for c occurrences→ a entries.

If we define a mistake as occurring only when theb / false negative situation

arises, then the learning algorithm will perhaps learn from that example and later

testing in that part of the document space will instead result in ad / true negative

entry. This will increase recall since recall =
d

b + d
and if b decreases by 1 and d

increases by 1, then the denominator remains constant but the numerator increases,

so recall will increase. Similarly, perhaps if we define a mistake as occurring only

when thec / false positive situation arises, then the learning algorithm will perhaps

learn from that example and later testing in that part of the document space will

instead result in ana / true positive entry. This will cause precision =
d

c + d
to go

up (because of decreasingc and not changingd).

To test this hypothesis, we ran an experiment using the Reuters-22173 titles

only corpus, using both supervised and ALC systems. All of the systems use a

committee of 7 winnow learners and predict using majority vote. All of the ALC

systems use AllMargin to decide when to see the label. We ran the experiment

using the following 6 systems:

{1} AL-bc

ALC, mistake isb or c (standard definition of mistake, causes accuracy

to increase)
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{2} SL-bc

supervised learning, mistake isb or c (standard definition of mistake,

causes accuracy to increase)

{3} AL-b

ALC, mistake isb only (we think this will cause recall to increase)

{4} SL-b

supervised learning, mistake isb only (we think this will cause recall to

increase)

{5} AL-c

ALC, mistake isc only (we think this will cause precision to increase)

{6} SL-c

supervised learning, mistake isc only (we think this will cause precision

to increase)

We will also refer to the above systems as "accuracy prone", "recall prone", or

"precision prone", depending on the definition of mistake being used.

Figure 41 shows elapsed processor time versus number of training examples

used. The supervised learners all take essentially the same amount of time. They

are using all examples (but learning only from the ones on which they make

mistakes). Since most categories have few positive examples, it is probably true

that when an error is made in predicting the label, it is more often ac / false

positive entry than ab / false negative entry. So why are all supervised learning

systems taking essentially the same amount of time? The time complexity for all 3

systems is the same – namelyO(dta) (ref. Equation (9) on page #124), but recall

that this is an upper bound. The actual learning time is more likeO(Lta), whereL =
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Figure 41. Elapsed Time versus Number of Training Examples Used [1 = mistake
is b or c, ALC, 7 members, AllMargin, winnow, majority voting; 2 =
mistake is b or c, supervised learning, 7 members, winnow, majority
voting; 3 = mistake is b, ALC, 7 members, AllMargin, winnow, major-
ity voting; 4 = mistake is b, supervised learning, 7 members, winnow,
majority voting; 5 = mistake is c, ALC, 7 members, AllMargin, win-
now, majority voting; 6 = mistake is c, supervised learning, 7 members,
winnow, majority voting]

number of documents learned from. (In our worst-case analysis, we had setL = d =

number of documents). The point being that the time spent in learning in these

systems is small compared to the time spent predicting (where thed is not worst-

case but is actual), so the predicting time (and system overhead) dominate. Before

one can determine if the training example represents a mistake, the actual label

must be obtained, and it is the number of training examplesused that we are

looking at on the plot.
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Figure 41 also shows that the ALC systems use fewer examples and require

less time than the supervised learners. AL-c {5} uses the fewest examples (4.8%)

followed by AL-bc {1} with 6.03% and AL-b {3} with 43.3%. AL-bc {1} and

AL-c {5} take about the same amount of time, AL-b {3} takes more time because

it is using more training examples. Figures 42 and 43 show the accuracy,F1.0,

precision, and recall learning traces for the 6 systems.

First, let us examine whether or not the different definitions of mistake had

the anticipated effect on their corresponding performance measures. The accuracy

prone systems (AL-bc {1} and SL-bc {2}) were supposed to provide high

accuracy, and according to Figure 42 (left), these systems did indeed obtain the

highest accuracies (0.971 and 0.965 respectively). The recall prone systems (AL-b

{3} and SL-b {4}) were supposed to provide high recall, and according to Figure

43 (right), they did (0.939 and 0.919 respectively). The precision prone systems

(AL-c {5} and SL-c {6}) were supposed to provide high precision, but according to

Figure 43 (left), they definitely did not.

Looking in more detail at the hoped-for main effects and also at the side

effects of our modifications to the definition of mistake, we see that:

1. The accuracy prone systems achieved by far the best precision and did a

decent job on recall. The recall prone systems did best at recall [with 0.939

and 0.919], but the accuracy prone systems came in at relatively good

values of recall of 0.719 and 0.653. This resulted in the accuracy prone

systems being the only ones to obtain goodF1.0 scores.

2. The recall prone systems did do very well on recall, but were abysmal in

precision, and accuracy actuallydecreasedas they learned. Examination of

the behavior of these systems during learning reveals that the learners, since

they learn only from examples whose actual label isYES, eventually learn to

"just sayYES". This is borne out by examination of the contingency tables as
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learning progresses. An example of a typical final contingency table

follows:

actual label value
NO YES

predicted NO 257 8
label
value YES 769 139

The system has in fact obtained excellent recall (0.95), but by having

learned to just sayYES, the system does poorly on documents whose actual

label isNO, and so has low accuracy (0.34) and poor precision (0.15).

3. Interestingly enough, the precision prone systems, while doing very poorly

on their "assigned" performance measure of precision, obtained quite good

accuracy scores – 0.944 and 0.946, only slightly below the scores obtained

by the accuracy prone systems (0.971 and 0.965). The precision prone

systems did terribly on recall, actually losing recall as learning progressed.

One could assign this latter effect to precision-recall tradeoff if these

systems had been gaining in precision, but they were not. Examination of

the behavior of these systems during learning reveals that the learners, since

they learn only from examples whose actual label isNO, eventually learn to

"just sayNO". This is supported by examination of the contingency tables as

learning progresses. An example of a typical final contingency table

follows:

actual label value
NO YES

predicted NO 1135 26
label
value YES 11 1
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Since most categories have few positive examples, just sayingNO yields a

highly accurate learner – in this case accuracy is 0.97. However, precision

(0.08) and recall (0.04) are very low.

One remaining observation. Why did AL-b {3}, the recall prone active

learning system, use so many more examples than the other active learning systems

(see Figure 41)? The reason is that, by learning only from positive examples, the

learners tend to learn to just sayYES, which means that the hyperplanes move closer

to the origin. However, most training examples are in factNO and so occupy this

same region of document space close to the origin, so this makes it more likely that

the committee members will disagree amongst themselves on the predicted label

for a candidate training example, and so makes it more likely that the example will

be selected as informative and used.

6.9 Eager vs. Mistake-Driven Learning and Skeptical vs. Optimistic Learning

The purpose of this experiment is to explore some other approaches to

learning that may provide benefit in our domain of text categorization with minimal

preprocessing. First, we need to introduce some additional terminology and then

we will discuss the motivation for this experiment. We then briefly discuss the

normal rationale for using learning algorithms with certain characteristics. Then we

will discuss the experiment itself and the results we obtained.

6.9.1 Terminology

Let us first define some additional terms. Recall that "supervised learning"

refers to machine learning in which a teacher provides the label for all training

examples, and "active learning" refers to machine learning in which the learning
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algorithm has some control over the examples from which it learns. If the learning

algorithm learns from unlabeled examples (using just the attribute portion of the

feature vector), then one is using "unsupervised learning". In unsupervised

learning, the labels are not used at all and thus no teacher is needed.

The "normal" situation is that learning can occur only after seeing the label.

This is how all of the experiments we have discussed so far have worked, and in

fact how most machine learning systems operate. We define "unlabeled training

example" as a training example for which the learner does not know the actual

label because the learner did not ask the teacher for the label. (The distinction we

are making here is that we are not considering the case where the learner does ask

for the label, but then for some reason simply does not use it in any way.) In this

set of experiments, the learning algorithm may or may not, on a per system basis,

also learn from unlabeled training examples. A machine learning system will be

said to be "skeptical" if it must see the actual label before learning from a training

example. A machine learning system that willin addition learn from training

examples whose labels are predicted by the system and not obtained from the

teacher will be referred to as "optimistic". Thus an optimistic learner learns from

both labeled and unlabeled examples.

Recall from earlier definitions that a training example is "selected" if the

system determines that it is an informative example, a selected training example is

"used" when the system requests its actual label, and a selected and used training

example is "learned from" when actual changes in the knowledge base of the

learner are made in response to that example. If one has a stream of candidate

training examples entering a skeptical system, then only after a particular example

is selected and used might learning occur. (We say "might" because even then,

learning may not occur – it depends on whether or not the learning algorithm

actually changes its knowledge base in response to the example). All of the systems

we have discussed thus far are skeptical, and this is also by far the normal situation
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in machine learning. On the other hand, if one has a stream of candidate training

examples entering an optimistic system, then learning might occur if a particular

example is selected and used, but learning might also occur if the example were not

selected (and therefore not used).

We need to introduce one additional new term. We hav e made a distinction as

to whether or not learning algorithms are mistake-driven. For example, standard

winnow and perceptron are mistake-driven, but standard naive Bayes is not

mistake-driven. We also included this distinction when derivingO( )  behavior for

the code that decides whether or not to see the label. The term "not mistake-driven"

is a bit awkward, so we will use the term "eager" to describe learning algorithms

that are not mistake-driven. In other words, standard naive Bayes is an eager

learning algorithm since it learns from any example presented to it.

6.9.2 Motivation for This Experiment

Our decision to perform this experiment comes from 2 papers, one by

Servedio [Servedio 1999] and one by Nigam, McCallum, Thrun, and Mitchell

[Nigam et al. 1998]. Each paper discussed some very interesting concepts that we

wanted to apply to our text categorization domain to see if we could use them to

improve our systems.

Servedio derives some interesting theoretical results regarding the mistake-

driven nature of the perceptron algorithm for situations in which the data follows a

certain type of uniform distribution. He shows that the perceptron is actually better

when used in an eager manner in situations in which there is no attribute noise but

which do have classification noise of certain types present. He finds that the eager

algorithm is faster and also is able to learn patterns that the mistake-driven

perceptron can not learn. We realize that our domain does not exactly match the

one for which Servedio derived his results, but we were interested in determining if
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our domain was perhaps "close enough" to obtain some benefit from his ideas. We

have already shown that, in our experiments, winnow is superior to perceptron, but

we decided to examine the behavior of both the winnow and perceptron algorithms

when used in an eager manner. We know that our domain has both attribute noise

and classification noise, and we strongly suspect that the classification noise

present in our domain does not exactly follow the model used by Servedio. We also

strongly suspect that our data does not follow his uniform distribution

requirements, but we are not really sure. We therefore also included some

computationally simple calculations to determine if and by how much our data

violates the uniform distribution conditions. These calculations are discussed in

detail later.

Nigam, McCallum, Thrun, and Mitchell [Nigam et al. 1998] use unlabeled

examples to augment the learning accomplished using labeled examples by having

the EM algorithm compute labels for the unlabeled data assuming that the labeled

and unlabeled documents come from the same overall distribution. The EM

algorithm has a quite high computational complexity, so using it is not practical in

our case, since we have very large numbers of attributes. However, we did want to

see if we could somehow, in an efficient manner, obtain performance gains from

the use of the unlabeled examples.

Before we discuss the experiment, we need to take a couple of brief asides –

one regarding the motivation for using unsupervised learning and one regarding the

motivation for using mistake-driven learning algorithms.

6.9.3 Unsupervised Learning

The motivation for wanting to use unsupervised learning is that it is much

cheaper than supervised learning or active learning – cheaper in terms of human

time and money costs. Unsupervised learning occurs when the learner is not
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provided with any labels by the teacher, it uses only the documents themselves.

The unsupervised learner attempts to detect patterns in the documents so that the

learner can impose structure on the input data and form clusters of data points. The

points in each cluster form a class. In several methods, a description of each class is

also generated. The characteristics of the clusters are then used by the unsupervised

learner to categorize new documents.

Castelli and Cover used Bayesian analysis to determine the relative worth of

labeled versus unlabeled examples [Castelli and Cover 1995]. They concluded that

labeled examples are exponentially more valuable than unlabeled examples. This

indicates that one will save a great deal of (computational) learning effort by using

labeled rather than unlabeled examples. A learning algorithm will have to work

much harder (in time or space or both) to learn the same thing from unlabeled

examples as from labeled ones.

Ratsaby and Venkatesh analyzed the effects of labeled versus unlabeled

examples when one also knows some additional information [Ratsaby and

Venkatesh 1995]. In their analyses, this additional information is the parametric

form of the class conditional densities. They also analyzed the nonparametric case.

They found large differences in the worth of labeled examples as compared to

unlabeled ones – a polynomial factor in the parametric case, and an exponential

factor in the nonparametric case.

Unfortunately, examples do not label themselves – a human must do that.

For some situations, this is not practical and perhaps not even possible. The

"exponentially more valuable" aspect of labeled examples can be viewed as the

result of partially solving the learning problem by using a preprocessor that utilizes

resources, such as time and money, and in this case happens to be a human being.

There is thus a tradeoff between the human doing the labeling so that the computer

can do less work learning (supervised learning) and the human doing "no" work

and the computer spending more time learning (unsupervised learning).
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A natural conclusion to draw is that one ought to use only unsupervised

learning. This would allow the use of unlabeled examples, which are certainly more

plentiful than labeled ones. The dream is to feed an entire corpus into an

unsupervised learning algorithm, and it will perform text categorization. Of course,

the question is: will the categorization determined by the unsupervised learning

algorithm be a categorization that is of some use to a human? There are many

reasonable ways to categorize a particular collection of documents. There is no

reason to think or even hope that categorization by general topic content is how an

unsupervised learning algorithm will do it, in the absence of additional

information, suggestions, proddings, etc.

We in fact thought that an unsupervised classification approach was worth

investigating [Liere and Tadepalli 1996]. We conducted some experiments using

AutoClass C, an unsupervised Bayesian classifier [Cook et al. 1996, Cheeseman

and Stutz 1995, Hanson et al. 1991]. Results indicated that there were simply too

many dimensions in the problem to obtain useful results using a reasonable amount

of computing resources (time and space). The current state of the art in inferencing

using an existing general Bayesian network and performing the inference in a

reasonable amount of time (i.e., while a user waits) is around 100 - 300 nodes with

few arcs [D’Ambrosio 1996]. Our networks had more like 10,000 - 30,000 nodes,

and arcs were often not very sparse. We concluded that, in our very complex

domain (text categorization with minimal preprocessing), fully unsupervised

learning is too unconstrained and ill-understood at this time to yield useful results.

6.9.4 Mistake-Driven Learning

When one first encounters mistake-driven learning, one may be a bit

perplexed as to why, once the learning algorithm has asked to see the label, it does

not then use the example for learning. The price has already been paid in that the
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cost of providing the label by a human has already occurred, so it seems "wasteful"

to not actually adjust the learner’s knowledge base in response to the information in

the example.

Recall that when we discussed the naive Bayes learning algorithm, we used a

pets example (ref. page 97). We had a small collection of documents and the task

was to categorize them as to whether or not they were "about pets". When we

discussed the pets example, we touched slightly on overfitting and informally

described it as what happens when a machine learning algorithm stops generalizing

information in the examples and starts learning specific training examples. This

can result in the learning algorithm performing poorly when asked to predict on

unseen examples, as it has in a sense, memorized examples instead of acquiring

general knowledge. More formally, overfitting is defined as [Mitchell 1997]:
a hypothesis overfits the training examples if some other
hypothesis that fits the training examples less well actually
performs better over the entire distribution (i.e., including
instances beyond the training set).

In other words, it is possible to glean too much information from specific

examples and thereby lose some of the ability to generalize knowledge to the broad

class of problems of interest. Mistake-driven learning algorithms are able to avoid

overfitting, or at least seem better able to avoid it, because they do not learn from

examples on which they already predict correctly [Dietterich 1997]. The notion is

that the learner already knows that example and so there is no need to learn. Value

has in fact been obtained from the actual label – the knowledge that the learner

already knows the example.

Besides overfitting, mistake-driven learning algorithms are attractive because

they can run faster than eager ones. Mistake-driven algorithms update their

knowledge bases less often (only when they make a prediction mistake). However,

recall that a mistake-driven algorithm must always predict on the candidate training
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example before learning, as a comparison of the predicted with the actual label is

what determines whether or not a mistake has been made. If prediction is

inexpensive as compared to learning, then mistake-driven learning can overall be

much faster than eager learning.

6.9.5 The Actual Experiment

The standard use of the winnow and perceptron learning algorithms is

mistake-driven and skeptical, and that is how all of our previous experiments have

used them. The purpose of this experiment is to investigate their use as eager (as

compared to mistake-driven) and/or optimistic (as compared to skeptical).

To obtain eager learning, we simply remove the restriction in winnow and

perceptron that learning occur only if the predicted and actual labels differ. This

also means that we do not, at least insofar as learning is concerned, need to have

each committee member predict on each example that is going to be used.

To obtain optimistic learning, we do the following. Since on the average the

committee of learners is right more often than it is wrong (i.e., accuracy > 0.50),

we will use the label predicted by the committee as the actual label value for

training examples for which we do not ask the teacher for the actual label. In other

words, the stream of candidate training examples enters the module that decides

whether or not to see the label. Some examples (all of the examples if we are using

supervised learning) are selected as especially informative and are then used for

learning. So far, both skeptical and optimistic learners behave the same. The

difference is in how the examples that are not selected are treated. A skeptical

learner discards them. An optimistic learner assumes that the committee predicted

label is the actual label, and they can then be learned from.
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These experiments were conducted using the Reuters-22173 titles only

corpus. We again used a factorial experiment design. We wanted to include

systems that have one characteristic in each of the following 4 categories:

1. method for deciding whether or not to see the label: always (supervised

["SL"]) or AllMargin (active learning ["AL"])

(We chose AllMargin since it is the best active learning method that we

have dev eloped so far for deciding whether or not to see the label).

2. learning algorithm: winnow ["W"] or perceptron ["P"]

3. can unlabeled examples be learned from? yes (optimistic ["O"]) or no

(skeptical ["S"])

4. when training examples are used, which ones are actually learned from? all

(eager ["E"]) or only ones for which the individual member prediction is in

error (mistake-driven ["M"])

It would appear that we will need 24 = 16 systems in our experiment. However,

systems that are optimistic supervised learners in a sense "do not exist" because in

a supervised learning system, labels for all of the training examples are by

definition selected and used, and so none of the training examples are unlabeled.

This means that we need 22 + 23 = 12 systems. All 12 systems use a 7 member

committee and predict by majority vote. The 12 systems (using the characteristics

["X"] listed above) are described in Table 20. We will refer to each of the 12

systems using these characteristics in a left-to-right fashion. For example, system

#1 is SL-W-S-M {1}.
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TABLE 20. Characteristics of the 12 Systems

system see label learning unlabeled ex. examples
number method: algorithm: available for learning? learned from:

SL or W or yes (O) or all (E) or
AL P no (S) mistakes (M)

1 SL W  S M
2 SL W  S E
3 AL W  O M
4 AL W  O E
5 AL W  S M
6 AL W  S E
7 SL P  S M
8 SL P  S E
9 AL P  O M

10 AL P O  E
11 AL P S  M
12 AL P S  E

Some observations about the individual learners in the above systems:

1. Systems #1 and #7 are the standard skeptical mistake-driven committees of

supervised learners. All training examples are labeled. Each learner learns

from all examples on which its prediction is incorrect.

2. Systems #5 and #11 are the standard skeptical mistake-driven committees

of active learners. They select training examples for use in learning, and of

those selected and used, each learner learns only from those on which its

prediction was incorrect.

3. Systems #2 and #8 are supervised committees of skeptical eager learners.

They learn from all examples, and all examples are labeled.

4. Systems #3 and #9 are optimistic mistake-driven active learners. They

learn from selected examples on which prediction was incorrect, and they

also learn from unlabeled examples on which prediction was incorrect.
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5. Systems #4 and #10 are optimistic eager active learners. They learn from

all examples – from all selected examples and from all unlabeled examples.

6. Systems #6 and #12 are skeptical eager active learners. They learn from all

selected labeled examples.

Figure 44 (left) shows elapsed processor time versus number of labeled

examples used for all 12 systems. This information is also shown on Table 21.

The supervised systems take much more time than the active learning systems. The

supervised eager systems SL-W-S-E {2} and SL-P-S-E {8} take a little more time

than their mistake-driven counterparts SL-W-S-M {1} and SL-P-S-M {7}, which is

as expected since the eager supervised systems are learning from all examples. All

of the active learning systems use far fewer examples and far less time. Figure 44

(right) focuses on only the active learning systems. The purpose in showing this

detail is to show the locations of the average points (◊• ). On the average, it appears

that the winnow systems ({3}-{6}) use more training examples than the perceptron

systems ({9}-{12}).

Figures 45 through 48 give the learning traces that resulted from the tests that

we ran on these 12 systems. Each figure contains 2 plots. We plotted systems 1 - 6

and systems 7 - 12 separately so that the separate learning traces are easier to see.

Note that systems 1 - 6 are winnow systems and systems 7 - 12 are perceptron

systems. Also note that systemss ands + 6 hav e the same characteristics except for

the learning algorithm, and their learning traces are made using the same line style.

Therefore systems 1 and 7 are the same (except for learning algorithm), as are 2

and 8, 3 and 9, etc. Accompanying each pair of figures is a table giving the final

values of those same performance measures for each of the 12 systems.



232

0

200

400

600

800

1000

0 5000 10000 15000 20000 25000

e
la

p
s
e
d
 p

ro
c
e
s
s
o
r 

ti
m

e

number of labeled training examples used

 Repeated Trials

1,7
2,8

3-6,9-12
0

20

40

60

80

100

0 200 400 600 800 1000 1200 1400 1600

e
la

p
s
e
d
 p

ro
c
e
s
s
o
r 

ti
m

e

number of labeled training examples used

 Repeated Trials

3

4

5 6

9

10 11

12

Figure 44. Elapsed Time versus Number of Training Examples Used: all systems
(left), AL systems only (right)

TABLE 21. Final Performance Measure Values: Time and Training Examples
Used

system time % tng ex used

SL-W-S-M {1} 893.9 100

SL-W-S-E {2} 922.2 100

AL-W-O-M {3} 30.2 6.4

AL-W-O-E {4} 46.0 4.5

AL-W-S-M {5} 13.0 3.7

AL-W-S-E {6} 12.0 4.2

SL-P-S-M {7} 893.3 100

SL-P-S-E {8} 923.3 100

AL-P-O-M {9} 53.0 2.4

AL-P-O-E {10} 23.6 2.4

AL-P-S-M {11} 23.3 1.6

AL-P-S-E {12} 10.5 1.1
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Figure 45. Accuracy Learning Traces: systems 1-6 (left) and 7-12 (right)
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TABLE 22. Final Performance Measure Values: Accuracy andF1.0

system accuracy F1.0

SL-W-S-M {1} 0.970 0.674

SL-W-S-E {2} 0.967 0.637

AL-W-O-M {3} 0.922 0.271

AL-W-O-E {4} 0.947 0.247

AL-W-S-M {5} 0.963 0.577

AL-W-S-E {6} 0.971 0.677

SL-P-S-M {7} 0.965 0.645

SL-P-S-E {8} 0.952 0.0

AL-P-O-M {9} 0.954 0.198

AL-P-O-E {10} 0.952 0.0

AL-P-S-M {11} 0.971 0.588

AL-P-S-E {12} 0.967 0.491

Accuracy (Figure 45) is about the same for all 12 systems, ranging from a

low of 0.922 to a high of 0.971. While there is some difference in accuracy, we will

see (as we have in the past) that it is not a very good performance measure for this

domain since we have so few positive examples. Systems can obtain a high

accuracy score with behavior that is not what most users want in a text

categorization system. ExaminingF1.0 (Figure 46), we see that 7 of the systems (1,

2, 5, 6, 7, 11, and 12) obtained adequate or betterF1.0 scores,≈ 0.50 or above. The

7 systems seem to subdivide into two groups – systems 6, 1, 7, and 2 (in order of
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Figure 47. Precision Learning Traces: systems 1-6 (left) and 7-12 (right)
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Figure 48. Recall Learning Traces: systems 1-6 (left) and 7-12 (right)
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TABLE 23. Final Performance Measure Values: Precision and Recall

system precision recall

SL-W-S-M {1} 0.690 0.659

SL-W-S-E {2} 0.671 0.607

AL-W-O-M {3} 0.244 0.305

AL-W-O-E {4} 0.386 0.182

AL-W-S-M {5} 0.632 0.531

AL-W-S-E {6} 0.718 0.641

SL-P-S-M {7} 0.628 0.662

SL-P-S-E {8} 0.0 0.0

AL-P-O-M {9} 0.557 0.121

AL-P-O-E {10} 0.0 0.0

AL-P-S-M {11} 0.889 0.440

AL-P-S-E {12} 0.875 0.341

decreasingF1.0) which we will refer to as the "very good" systems, and systems 11,

5, and 12 which we will refer to as the "satisfactory" systems. Note that the very

good systems are all skeptical eager systems, differing in want-to-see-the-label-

method (active/supervised) and learner (winnow/perceptron). From Figure 47, we

see that all 7 of these systems obtained quite good precision scores (in [0.628,

0.889]). Note that the variation inF1.0 is often more due to the variation in recall,

which (Figure 48) varied in these 7 systems from 0.341 to 0.662. The better

performers were the systems that were better able to balance precision and recall.
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In order to be able to reach some conclusions as to what this all means, we

take the contents of Table 20 and draw boxes around the above-identified

satisfactory (dashed boxes) and very good (solid boxes) systems. We get the

following:

{1} SL-W-S-M

{2} SL-W-S-E

{3} AL-W-O-M

{4} AL-W-O-E

{5} AL-W-S-M

{6} AL-W-S-E

{7} SL-P-S-M

{8} SL-P-S-E

{9} AL-P-O-M

{10} AL-P-O-E

{11} AL-P-S-M

{12} AL-P-S-E

This makes it clear that all of the satisfactory and very good systems are

skeptical rather than optimistic learners. In other words, learning from unlabeled

examples (in the manner described above) caused a drop in system performance.

According to Figures 45 through 48, all 4 of the optimistic systems (3, 4, 9, 10) had

poor recall and moderate to poor precision. This suggests that the use of unlabeled

examples in this domain by using the committee prediction as the actual label is not

a good idea. When the committee prediction on an unlabeled example is in error

and we are using an optimistic learner, the effect is exactly the same as if that

example had been selected and used but had been assigned the incorrect actual

label by the teacher. One possibility is that the additional class noise that is thus
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injected into the data using the unlabeled examples in this manner makes it too

difficult for the learners to obtain an accurate approximation to the actual target

concept.

Perhaps another question to examine is "why didn’t SL-P-S-E {8} do better".

It is the only skeptical system that did not do well. SL-P-S-E {8} took the most

time (Table 21), used all 21,000 of the training examples, and over the series of

trials achieved scores of 0.0 for both precision and recall (Figures 48 and 47). And

those scores of 0.0 are exact – not a result of rounding off to 3 significant digits.

This means that the SL-P-S-E {8} system is learning to just sayNO, and doing so

very consistently – even for "easy categories" (ones with a relatively high

percentage of positive examples). And yet, SL-P-S-E {8} is the closest of the 12

systems to theAVERAGE algorithm analyzed by Servedio [Servedio 1999]. We

therefore need to analyze SL-P-S-E {8} in more detail. This system is supervised,

so it selects and uses all training examples. All training example labels are

available to the learner, and so there are no unlabeled training examples. It is an

eager learner, so all selected and used examples are actually learned from. In other

words, each and every training example is used to adjust weights. Basically, what is

happening is that the learner, in learning from all examples,≈95% of which are

negative, quickly learns to sayNO, and there are not enough positive examples to

"unlearn" this. Consider the following thought experiment. One has a situation

where the data is in fact linearly separable. The 2 clouds do not overlap, but are

quite close together. Most training examples are negative, and there is a large

number of irrelevant attributes. By extreme good luck, one starts with the

hyperplane between the 2 clouds (but of course the learner has no way of knowing

this). The perceptron learns from 950 negative examples and 50 positive ones.

Regardless of the order in which the examples are learned from, it is very unlikely

that the effects of the 950 negative examples⇒ 950 demotions (weight decreases)

will be undone by the effects of the 50 positive examples⇒ 50 promotions (weight

increases). Recall that for the perceptron each promotion/demotion is by the same
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amount (α). Thus the learner most likely will end up in a state where future

predictions result in it just sayingNO.

When the problems with SL-P-S-E {8} arose, we did try a very wide variety

of learning rate values to see if the problem could be solved by modifyingδ. The

only values ofδ that resulted in anyYES predictions were so small that we had loss

of floating point precision problems. And even then, we were getting values ofF1.0

on the order of 0.0008. Far from acceptable.

Does this conflict with Servedio’s analyses? No. We violated the conditions

he established for his algorithm to work, and the violations were too severe to be

overcome by a good algorithm. There are some significant differences between our

situation and the one analyzed by Servedio. Recall that we knew this going into this

experiment, but hoped we would still be able to obtain some beneficial results.

Actually, we hav e obtained several good results, so the fact that this one system did

not perform as hoped is a minor setback. Servedio sets several preconditions for

his analysis. We violate most of them to some degree or another, but the main ones

we violate are:

[1] the example space is origin-centered

[2] no attribute noise

[3] monotonic class noise, which means that the probability of an example

being labeled incorrectly by the teacher decreases monotonically with the

distance between the example and the concept hyperplane; this noise model

was dev eloped by Bylander [Bylander 1998] and generalizes certain other

classification noise models (such as the noise-free and random classification

noise models)

[4] the examples are uniformly distributed over the surface of ann dimensional

sphere
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Servedio’s analysis decomposes each example vector into a component in the

direction of the target concept vector and a component perpendicular to the target

concept vector. The above preconditions mean that, on the average, the

perpendicular components of the example vectors cancel out, leaving the average

vector aligned or at least almost aligned with the target concept vector. Thus it

would seem that the normal definition of "uniform distribution" can be relaxed

somewhat – one needs to have the distribution uniformly banded with the bands

oriented perpendicular to the direction of the target concept vector. Think of the

earth with the lines of latitude being the bands and the direction of the target

concept vector being through the poles. As long as the distribution of examples is

uniform along a particular latitude, the perpendicular components will on the

av erage cancel out. Each latitude can have a different uniform distribution mean

than the other latitudes, but how much variation there is in the distribution mean as

one progresses from one latitude to the next will affect how difficult it will be (and

how many examples will be required) in order to get the components perpendicular

to the target concept vector to almost cancel out, and the size of the bound on

"almost". The normal (more strict) definition of uniform distribution would then be

the case where there is only one band.

One would always like to find a theory whose preconditions exactly matched

the problem being solved, but often one instead finds a theory that "maybe almost"

matches and one needs then to analyze whether it is reasonable that it will still

provide at least some benefit and so is worth the effort of implementing and testing.

Let us return to the 3 preconditions of Servedio and discuss how they compare to

our situation.

[1] Our document space is definitely not origin-centered, but the value ofθ in
→w ⋅ →x = θ is how we take care of this. That is, a translation of coordinate

systems will map between our coordinate system and an origin-centered

one. Translation is a rigid-body transformation [Hearn and Baker 1997] and
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so does not change the magnitude or direction of vectors. To see the role of

θ, consider the hyperplane defined by→w ⋅ →x = 0. This hyperplane passes

through the origin since→x =
→
0 satisfies the equation for the hyperplane.

Now translate eachxi to x′i wherex′i = xi + di . That is, we shift all points→x

to
→
x′ by adding a constant

→
d. Therefore

→
x′ = →x +

→
d ⇒ →x =

→
x′ −

→
d.

Therefore →w ⋅ →x = 0 ⇒ →w ⋅
→

(x′ −
→
d) = 0. Since dot product is distributive

[Lay 1993], we get→w ⋅
→
x′ = →w ⋅

→
d. We refer to →w ⋅

→
d asθ. In our case, the

translated origin is usually in the first quadrant, so thedi happen to be

positive.

[2] We know we definitely have attribute noise. However, since other learning

methods, especially the "varyingδ perceptron" system discussed in section

6.5 ("Comparison of Winnow and Perceptron"), do quite well in this

domain (albeit not very efficiently), we can assume that the attribute noise

usually does not prevent learning a concept that is a close approximation to

the target concept.

[3] We know we hav e class noise, and suspect that it is not very well behaved –

in the sense of being uniformly random or varying in any consistent manner

as a function only of the distance between the examples and the target

concept hyperplane. However, it appears (for the same reasons as for

attribute noise) that the class noise is not of such a form as to prevent

learning a good approximation to the target concept.

[4] The examples in our domain are not on ann dimensional sphere, but rather

they occupy the vertices of ann dimensional boolean cube. It seems

conceptually that the results of Servedio should still apply, although the

discreteness of the cube might make the "perpendicular components

cancelling out" a bit more problematic in terms of obtaining an actual

bound on the size of the (net) perpendicular component of the average

vector (which Servedio does for then dimensional sphere case). However,
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while the basic approach still applies, we have no reason to suspect that the

distribution of documents in typical corpora are even approximately banded

uniform with respect to the direction of the target concept vector. This is

probably the main precondition whose degree of violation we could not,

based on the results of other experiments, argue was not being violated too

badly. It is for this reason that we added code to attempt to measure the

degree of this particular violation, so that we might be better able to explain

any poor performance that was encountered and perhaps lend support to

some other ideas that we wanted to investigate.

Next we discuss how we attempted to test the degree to which our domain

violates the banded uniform distribution precondition. We are dealing with a very

high dimensional and very sparse space, so most standard statistical tests for

goodness of fit for discrete multivariate data (such as Pearson’sχ 2
and the

Loglikelihood Ratio StatisticG2) [Read and Cressie 1988] are not computationally

feasible. And besides, we wanted to test for a relaxed version of the definition of

uniform and allow for banded uniformity. We are mainly interested in the

directions of certain vectors in the document space, so we chose an efficient

method – the cosine measure of similarity that is often used in the vector space

model for document representation. Recall that the vector space model measures

similarity between two documents using the cosine of the angle between their

vectors. Sincecos(0°) = 1 andcos(90°) = 0, vectors that are collinear or nearly so

will have a high cosine similarity measure, whereas those that have an angle

between them that is close to 90° will be very dissimilar. The dot product of two

vectors →a ⋅
→
b is defined as |→a| |

→
b| cosθ when →a ≠

→
0 and

→
b ≠

→
0, and 0 otherwise

[Kreyszig 1962]. Therefore we can compute the cosine similarity measure

(hereafter "CSM") as
→a ⋅

→
b

|→a| |
→
b|

when →a ≠
→
0 and

→
b ≠

→
0, and 0 otherwise [Salton and

McGill 1983].
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We are interested in how the directions of the following pairs of vectors

compare using the CSM – that is, we will examine 5 different types of CSM values.

All vectors are averages. Also, recall that a training example is "used" when the

system requests its actual label:

1. all training examples versus the entire document space (CSM1)

2. training examples used versus the entire document space (CSM2)

3. training examples used versus all training examples (CSM3)

4. (by member) learned weights versus all training examples (CSMall )

5. (by member) learned weights versus training examples used (CSMused)

Note that [1]we do not know how to compute the actual target concept vector and

can not even efficiently compute the best approximation to it, so we are

approximating it with the learned weights; we believe that this approximation is a

reasonable one if the learner is accurate, [2]the CSM measuresCSM1, CSM2, and

CSM3 are always≥ 0 in our domain, [3]CSMall andCSMused are > 0 for learners

having all learned weights > 0 [such as winnow], and [4]CSMall andCSMused can

be positive or neg ative or 0 for learners that allow positive, neg ative, or 0 values for

learned weights [such as perceptron].

Typical values ofCSM1 (all training examples versus the entire document

space) depend on the split, but typically are in the range [0.11,0.16] for titles only,

and smaller ([0.10,0.11]) for full text. This is as one would expect. Given a

dictionary of tokens, most combinations of them will not result in meaningful

documents, and given that language has many syntax rules and non-uniform use of

words, one would not expect actual documents to be uniformly distributed with

respect to the entire document space.

The remaining CSM values vary by system and trial. Note that the

remaining types of CSM onlyvary between categories for active learning systems
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that are skeptical, since both supervised learners and optimistic learners use the

(attribute portion) of all training examples. For skeptical active learning systems,

we compared these remaining CSM measures to various contingency table based

performance measures using the Spearman Rank Correlation Coefficient (r s)

[Snedecor and Cochran 1989]. We focus on comparisons for the "very good"

systems (6, 1, 7, 2), since it is those that we want to investigate and emulate. We

next briefly examine these CSM results.

1. The values ofCSM2 (training examples used versus the entire document

space) were generally small [0.11,0.18], as one might expect. For AL-W-S-

E {6}, CSM2 and accuracy correlate positively at the 0.05 level. We also

observed thatCSM2 for AL-W-S-E {6} was consistently greater than for the

second place system SL-W-S-M {1} (which is supervised) by≈20%.

2. The values ofCSM3 (training examples used versus all training examples)

were generally large [0.6,1.0], as one might expect since the training

examples used are drawn from the pool of all training examples. Note that

for supervised and/or optimistic learners,CSM3 is 1.0. For AL-W-S-E {6},

CSM3 and accuracy correlate negatively at < 0.001 level.

3. CSMall (learned weights versus all training documents) andCSMused

(learned weights versus training documents used) are usually in the range

[-0.3,0.3]. We did not find any interesting patterns in their values per se, but

how they compared within systems was interesting. For those systems for

which these measures can vary, the comparison ofCSMall andCSMused was

generally mixed within each trial, with some members having

CSMall < CSMused and some havingCSMall > CSMused. Notable exceptions

were AL-W-S-E {6}, which almost always had all members having

CSMall < CSMused, and AL-P-S-E {12}, which almost always had all

members havingCSMall > CSMused.
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Note that AL-W-S-E {6}, which achieved the highestF1.0 scores, also had

interesting results in certain comparisons of CSM values with contingency table

based performance measures and also in certain comparisons of CSM values

themselves. The fact that the CSM between the training examples used and all

training examples correlates negatively with accuracy indicates that the learner is

more accurate when it chooses training examples that are not distributed in the

same manner as all training examples. Does this makes sense, given that the main

difference between active and supervised learning is in the training examples that

are used? What does one expect? Probably one expects that in active learning one

will generally findCSMall < CSMused since the active learner would presumably

learn a concept closer to the training examples used than to all training examples.

However, one might also think that the actual performance of a very good active

learner will occur whenCSMall ≥ CSMused. This would indicate that, in spite of

using only some training examples, the learned concept was actually more

representative of all training examples. However,CSMall < CSMused was

consistently true only for AL-W-S-E {6}. These results suggest that very good

active learners actually do better if the concept they learn is consistently more

representative of the training examples used rather than of all training examples. In

other words, it would appear that the purpose of active learning isnot to somehow

select a few training examples that are representative of all training examples, but

rather to somehow select a few training examples that are representative of the

target concept. AL-W-S-E {6} is choosing examples in a significantly different

manner than if it chose examples randomly or in a supervised manner, and the

method used for choosing examples is providing benefit (in the form of high

accuracy). The more the learner is able to select very good examples, the better the

accuracy becomes and the less the training examples used are like the typical

training example.

One interesting hypothesis that we did not find support for is the idea that

active learning could in some sense make a non-uniform training example
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distribution more uniform (thus allowing one to use algorithms specifically

designed for uniform distributions after active selection of good examples). At

least in this domain, while the filtering done by active learning does result in

training examples used being more similar to the document space as a whole than

all training examples, both are still quite dissimilar to the document space. Typical

CSM values for the former are in [0.11,0.16] and for the later are in [0.11,0.18].

Perhaps in other domains (in particular, those with a higher ratio of number of

training examples to number of dimensions), this effect might be more pronounced

and so be explicitly used beneficially.

A few final comments on this experiment. While SL-W-S-E {2} did well (it

placed 4th in F1.0 score), it is very difficult to tune its learning rate so as to avoid

exponent overflow. Winnow learns using multiplicative updating of the weights,

and SL-W-S-E {2} is using ("SL") and learning from ("E") all 21,000 examples.

Consider for example a token that appears in a large number of positive examples.

And say the weight for that token was initialized to 1.0. Each time that token is

encountered in a positive example (including the effects of multiple epochs), that

weight will be made larger (wi → wi × α ). Typical values ofα that we use for

supervised winnow learners are≈1.04, but 1. 042000 ≈ 1034, which is about where

exponent overflow occurs on our system (for single precision floating point). Thus

the use of SL-W-S-E {2} requires using a much smallerδ and/or fewer epochs, thus

making it more problematic to compare it to other systems with respect to our

original promise of using the same number of epochs for all systems in each

experiment.

And finally, we discuss which system was "the best". It appears that

AL-W-S-E {6} is best. It has the highestF1.0 score (0.6770), ties for highest

accuracy (0.971), and yet is an active learner using relatively few examples (4.2%).

It runs quite fast (12.0 in a range of [10.6,923.3]), and in fact only one other system
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was faster. Also AL-W-S-E {6} obtains its highF1.0 by having both good precision

(0.718) and good recall (0.662).

It would appear from this experiment that in our domain (text categorization

with minimal preprocessing), active learning can perform better than supervised

learning and can do so using significantly fewer examples and running faster.

Results of this experiment reinforce our earlier conclusion, discussed in section

6.5 ("Comparison of Winnow and Perceptron"), that winnow performs better than

perceptron. This experiment also indicates that, in our domain, optimistic learning

is not beneficial, but eager learning (even for learning algorithms that are normally

mistake-driven) does provide benefit.

6.10 Committee of Incremental Naive Bayes Learners

First we will discuss some of the aspects of the standard naive Bayes

algorithm that make it different from winnow and perceptron, especially as regards

its use in ALC. These comments apply to many other existing supervised

algorithms as well. In the case of winnow and perceptron, the hyperplane is

initialized to some random location and then, as individual examples are used, the

hyperplane shifts location, where the amount and direction of the shift is

determined by the current state of the learner (current position of the hyperplane)

and the characteristics of the one training example currently being processed.

Since the initial location of the hyperplane is random, one can generate a

committee of different learners by initializing each member to a different

hyperplane location, in the manner we discussed earlier. Howev er, in naive Bayes,

there is no ready-made random element involved in determining the location of the

hyperplane. The naive Bayes algorithm does not initialize a hyperplane and then

relocate it while learning. Even if one uses the naive Bayes algorithm in an

incremental fashion, the algorithm is each time computing the hyperplane location
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based on probabilities computed from all training examples used to date. It is not in

any sense starting with a current location of the hyperplane and shifting it in

response to information gleaned from the one training example currently being

examined.

Another difference to note as to how the naive Bayes learning algorithm

differs structurally from the winnow and perceptron learning algorithms is in the

use of multiple epochs. For both the winnow and perceptron learning algorithms,

one specifies a learning rate and may choose to have the algorithm make multiple

passes through the training data. As long as some of the training examples are

incorrectly predicted, these learners will continue to learn in subsequent passes

through the data. However, observe from the steps involved in the naive Bayes

learning algorithm (Figure 8 on page 83) that the standard algorithm obtains no

benefit from making multiple complete passes through all of the training data.

After the algorithm has seen all of the training data once and has determined the

various totals and counts, additional complete passes will not change the

probabilities that the algorithm has learned.

We decided that whatever mechanism was used to introduce randomness into

the members of a committee of naive Bayes learners, it needed to be supportable

and not contrived. One can always introduce variation by, at the end of the

prediction phase, adding a postprocessing step that, with a certain probability,

modifies the prediction. However, our intuition is that the method that one uses to

introduce variation in the learners must be a bit more substantive, in that one would

prefer to have a committee of learners each of whose hypothesis is defensible in its

own right. Indeed, it appears that a major contributor to the robustness of the

winnow ALC algorithms we have discussed so far is that any one of the members

of the committee is in its own right designed to be a good and independent learning

algorithm.
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Recall also that one of the reasons committees are thought to be a good idea

is that the errors they make are independent.

The naive Bayes algorithm did quite well in supervised learning in the above

experiments, so we decided to try to develop a naive Bayes active learning

algorithm. Our goal was to form a committee of naive Bayes learners that could be

used for active learning. Recall that the standard naive Bayes algorithms used so far

have been supervised (and also eager). In order to form a committee whose

differences in individual predictions can be used to determine which candidate

training examples are the most informative, one needs to somehow make the

learners on the committee represent different hypotheses, at least initially. We

chose to use the previously-discussed m-estimate parameter method for computing

probabilities as a way to introduce variation into incremental naive Bayes learners

and thereby have a committee of learners that each represents a different

hypothesis. Referring back to Figure 8 on page 83, normally the countsci ,k and

totals tk are initialized to 0 prior to step #1. To introduce variation amongst the

committee members, we instead generate random values for the two parameters ˆm

and p̂, and then initialize theci ,k to m̂ × p̂ (instead of 0) and initialize thetk to m̂

(instead of 0). This introduces variation into the committee because later (in steps

#2 and #3) when conditional and prior probabilities are computed, they are

computed from theci ,k and tk. Even though each member has (for the eager case)

learned from exactly the same training examples, the computed probabilities will

differ because of the different initializations ofci ,k andtk.

Initial results on the Reuters-22173 titles only corpus looked very promising,

but what one good split giveth (F1.0 = 0.778), multiple splits taketh away (F1.0 =

0.696). The methoddoesgive improved performance if one allows it to use more

training examples, and certainly evenF1.0 = 0.696 is an excellent score. Figure 49

gives learning trace results using this algorithm.
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Figure 49. Learning Traces: Accuracy (left) andF1.0 (right)

Final performance measures are: accuracy = 0.974,F1.0 = 0.696, training

examples used = 4.2%, precision = 0.778, recall = 0.629. However, average time

was 5994.5. The algorithm seems to work well in this domain in terms of

contingency table based performance measures and percentage of training

examples used, but its elapsed run time is high and so its use is hard to justify in

our domain.

To compute the computational complexity of the committee of naive Bayes

learners, we proceed as follows. The time required is the time spent deciding

whether or not to see the label plus the time spent learning plus the time spent

predicting. Using the AllMargin method, complexity for deciding whether or not to

see the label, for one trial, will be (ref. Table 3 on page 125)O(dOp) = O(dt). In

the committee of incremental naive Bayes learners algorithm, learning is

incremental and occurs after every example that is selected for training. Consider

the time spent learning from one example (ref. Figure 8 on page 83). We increment

counts corresponding toxi = 1 and we increment (once) the correspondingtk (step

#1). This gives usO(ta + 1) for this one example. Next, we perform step #2,

which computes 4 conditional probabilities for each attribute and so we haveO(4t).
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Step #3 computes 2 values and so isO(2). Thus time complexity for learning from

one example isO(ta + 1 + 4t + 2) = O(ta + 4t). Therefore, for one trial (and making

the standard worst-case assumption, that all examples are used for learning) we get

O(dta + 4dt). Prediction (ref. Table 3) isO(t) for one example, and so isO(dt) for

one trial. Therefore, total complexity for one trial isO(dt + dta + d4t + dt) =

O(dta + d6t) = O(d(ta + 6t)).

Recall (Equation (10) on page #124) that the computational complexity for

the standard naive Bayes algorithm isO(d(ta + t)). In our experiments,t >> ta, so

one could further simplify both this expression and the above committee expression

to O(dt). One might therefore expect that the committee of incremental naive

Bayes learners will perform about as fast as the standard naive Bayes learning

algorithm. Empirical results however are that the committee of incremental naive

Bayes learners algorithm is much slower than the standard naive Bayes algorithm,

at least for the domain in which we are dealing. This is because the learning that

the standard naive Bayes algorithm does once (mainly the computation of the 4

p(xi = j |k) values) is being done by each committee member for each example

used. The computational complexity analyses are correct, but what is happening is

that the constant of proportionality for the committee version of the algorithm is

very large, and for the input sizes we are dealing with, this is a significant factor.
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7. Other Experiments and Ideas

In this chapter we discuss other areas that we investigated in our research.

Some of these methods did give improvements at the time, but we later found more

general ALC methods (presented above) which were simpler and which gav e equal

or better performance. Some of the methods discussed gav e interesting but

disappointing results, but possibly provide good starting points for future work.

We report on these experiments here so that others wanting to investigate these

areas may benefit from our experiences. Some of these are existing approaches

that we adapted to our domain. Others are we believe new ideas that may even

work well in their current form in other domains.

7.1 Basting

With a large number of dimensions, the initial location of the learner’s

hyperplane may be a very long distance from the optimal location. An initial

solution to this problem was to allow what we call "basting". Basting refers to

repeatedly applying the learning algorithm to the entire committee for the training

example currently being used until some specified condition is met. The

distinction here is that one does not repeatedly apply the algorithm to one member

and then to the next, etc., but rather one basting pass involves applying the example

once to each of the committee members. A variety of basting termination

conditions were examined. We also allowed one to baste on positive examples only,

negative only, or both.

The name originally came from the notion of basting being related to

bagging and boosting. In basting, one has to make the decision whether or not to

baste with that example at the time that example is being used for learning. The

fact that baste means both "to coat with liquid periodically while cooking" and also
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"to thrash" (as in grain . . .  as inwinnow . . .) seemed psychologically to confirm

that this was a good approach to at least investigate further.

There is support for this type of action in the literature. Of course, a great

many researchers employ multiple epochs in their machine learning algorithms,

especially when using artificial neural networks [Mitchell 1997]. As regards

deciding whether or not to weight positive examples and/or negative examples in

the current epoch, one version of the Rocchio algorithm for incorporating relevance

feedback has parameters for weighting the terms obtained from positive and

negative documents [Rocchio 1971, Buckley et al. 1994], and weighting of

documents according to a confidence score is done in [Yang et al. 1998].

Researchers reporting specific numbers seem to prefer weighting positive over

negative examples and in ratios typically in the 2:1 to 4:1 range. While we did not

normally employ basting decision methods that simply basted with each example

for a specified number of times, on the average we usually had numbers of basting

passes in the 2 - 5 range.

We obtained good results using basting, but other methods developed later

produced slightly better results and seemed less contrived. With basting, one must

specify which kinds of examples to baste (positive, neg ative, or both) and specify a

decision method to be used to determine when to stop basting with each qualifying

example. In defense of basting, it runs very fast (since one is in a sense folding the

effects of many epochs into one or at least very few epochs), and typicalF1.0 scores

were about 0.03 - 0.05 below those for the methods described in this thesis. Since

the methods we are using are already quite fast, we decided that the time gained by

using basting was not worth the lower performance scores and the fact that one had

additional parameters to tune. It appears that the slightly lower scores are due to the

fact that, in basting, the decision as to whether or not to reuse an example must be

made when that training example is being learned from. When one instead utilizes

multiple epochs, it allows the learning algorithm to make a more informed decision
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about each potential reuse of an example, since a learner with more generalized

experience is making the decision.

7.2 Two Phase Learning

One difficulty we had for a large portion of the early part of the project was

introducing diversity into the committee so that the diversity was not contrived and

so that individual members would disagree in their predictions sometimes (and at

the right times) but not disagree too often. This problem worsened as we

progressed into tests involving ever larger numbers of dimensions. If members

disagree often, then one can end up with essentially a committee of supervised

learners; their frequent disagreement results in all candidate training examples

looking informative and so being used. The opposite can also occur (and this was

our usual problem); the committee members can agree almost all of the time, and

so few if any candidate training examples appear to the committee to be

informative, and so few examples are used. This would be fine if in fact the

individual committee predictions were correct, as it would mean that the committee

had learned a good approximation to the target concept. However, what was usually

the case in these situations was the learners had learned an extremely poor

approximation to the target concept but did not have any way of realizing it and

correcting the situation.

Note that this problem is caused by the fact that we use absolutely no

information about category label distribution when initializing the learners. Thus

the learners are on the average initialized to the central region of the document

space. However, since all of the categories of interest (in both Reuters-22173 and

Reuters-21578) have less than 20% positive examples, and since all but 2

categories have less than 4% positive examples, the initialized state of the learners

is on the average in the "just sayNO" region. One solution therefore would be to
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have the user enter an estimated percentage of positive examples and initialize

accordingly. We thought that this approach would place an inappropriate burden on

the user, and also would result in one more knob to tweak.

We decided to try what we call "2 phase learning". This idea was obtained

from [Freund et al. 1997]. In their proof that QBC is efficient for the hyperplane

concept class when the prior distribution and the distribution of examples are both

approximately uniform, a starting vector with certain characteristics is needed. This

is obtained by using an initial supervised learning phase.

We therefore implemented and tested 2 phase learning, where the first phase

is supervised and the second phase is active. The basic idea is that one uses a small

amount of supervised learning to get the individual committee members to be

moderately accurate, so that their subsequent individual predictions which are used

to determine the informativeness of future candidate training examples in active

learning mode are somewhat based on the category of interest rather than on their

random initial state.

The method works reasonably well. One unfortunately does have to tell the

method how to end the supervised phase, for example by providing a number of

positive examples after which it will then switch into active learning mode. So this

method did result in adding a parameter to adjust. Typical run times are quite fast,

it being only slightly slower than basting. It gav e similar results to basting in that

F1.0 was about 0.03 - 0.05 below scores for the methods described earlier in this

thesis. It did tend to use more examples than the methods we now use, which is not

surprising since it uses supervised learning for the initial portion of the learning

process.
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7.3 Comparison to the Abe and Mamitsuka Experiments

Abe and Mamitsuka developed committee-based learning methods based on

QBC, bagging, and boosting, and they used these methods in several experiments

[Abe and Mamitsuka 1998]. Each committee member was a C4.5 learner. A focus

of their research was to examine different structured ways of introducing

randomness into the committee, since C4.5 (like standard naive Bayes) is

deterministic. They dev eloped a QBC-based method (which we will refer to as

QBC-AM) and also methods based on bagging (QBag, query by bagging) and on

boosting (QBoost, query by boosting). They then ran several experiments using 8

databases from the UCI Repository of Machine Learning Databases [Blake et al.

1999]. These databases were of moderate size, both in numbers of examples (≈

300 - 1000) and in numbers of attributes (≈ 5 - 40). The majority class usually

comprised≈ 55 - 65% of the examples. Having a large majority class is good since

one has larger numbers of positive examples, and most learning algorithms do

better learning from positive examples than from negative ones. Having a large

majority class, however, also means that a learner has to actually learn a reasonable

approximation to the target concept, in that "just saying no" will not result in a very

high accuracy score. QBC-AM was mainly used by them as a basis for QBag and

QBoost because QBC-AM does not itself introduce variation into the learners and

so can not be used successfully for active learning when the learner itself, such as

is the case for C4.5, does not have a randomizing component. Their main

experiments involved QBag and QBoost, and they reported reductions in the

number of training examples used of 25 - 50%. We decided to use their methods

with different learning algorithms (winnow and perceptron) and to investigate

whether their methods would work in our domain. Since our method of initializing

winnow and perceptron involves a randomizing element, we would also be able to

experiment with QBC-AM itself as well as with QBag and QBoost. We hav e larger

numbers of examples and much larger numbers of attributes, especially since we

are doing minimal preprocessing. Thus whether or not the methods would scale up
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was a concern. Also, our training data usually has less than 4% positive examples.

Their experiments dealt with moderate-sized databases, so the fact that these

methods are of higher computational complexity thanO(n) was not a major

concern to them in their research. We realized that this higher time complexity

might present practical problems in our domain. But we were interested in seeing if

those problems would in fact arise and if they did, whether or not we could solve

them, the hope being to still obtain benefit from the methods.

For each of their methods (QBC-AM, QBag, and QBoost), we will first give

a description of the method, including a brief discussion as to its computational

complexity, and then we will describe our results when using the method in our

domain. We will describe the method as we adapted it to the winnow and

perceptron learners and to our overall approach. We will strive to use the same or

at least similar notation to what is used in [Abe and Mamitsuka 1998], but since we

are summarizing our adaptations of their algorithms, there may be some notational

differences. Also note that since the learning algorithms we are using are different,

there are some differences or at least some additional information that we need to

provide since we must be clear about if and when we are reinitializing our learners.

Another difference is the distinction we make between an example being selected

(system judges it to be informative) and used (system actually requests its label).

Since examples being used is one of our main performance measures, we do not

count an example as having been used until the label is actually requested by the

learners. As a practical matter, this difference is slight in terms of the counts

obtained, but does affect the terminology we use in describing the methods. We

end this section with some conclusions based on our overall experiences with these

methods.

All 3 methods are methods for selecting examples for members of a

committee of learners. QBag and QBoost do this in a manner that makes it

unnecessary for the underlying learning algorithm to itself have a random nature to
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it. Recall that due to the way we initialize the winnow and perceptron learners, the

individual members of the committee represent different hypotheses. Such a

mechanism, however, does not readily exist for many learning algorithms, so Abe

and Mamitsuka’s research had as one goal the development of methods that could

be used in conjunction with such learning algorithms in order to obtain the ability

to have the individual learners differ. Their QBag and QBoost methods do this by

having the different learners on the committee use different examples, thereby

making the hypotheses that each learns different. The successive methods are in a

sense increasingly successful in making the individual learners better, but this

improvement comes at an increasing computational cost. One aspect of the

methods we therefore will need to evaluate is if, for our domain, this increased cost

is offset by some other benefit.

As we will see (and as is detailed in [Abe and Mamitsuka 1998]), each

method builds on the preceding one. We will ourselves rely on this fact when

describing each successive method.

Let S be a set of training examples, initialized to contain one randomly

chosen example. Then all of the methods follow this basic patternfor each epoch:

learning occurs using some examples fromS and then one additional training

example is selected as being "very informative" and is put intoS. The various

methods differ mainly in how the learning is done and which examples inS are

actually used for that learning. Note that one training example is added toS during

each epoch, and that it is added toS after the learning for that epoch has been

completed (and thus it can not be used for learning during that epoch). Since these

methods select only one additional training example during each epoch, trials

typically involve using large numbers of epochs (we use 300 - 1,500).
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A reminder on the definitions we used in analyzingO( )  behavior:
c = the number of members in the committee
e = the number of epochs
d = number of documents in the corpus
t = number of tokens in the dictionary

= length of the attribute portion of the feature vector
ta = average number of unique tokens in each document

7.3.1 QBC-AM

The QBC-AM method differs from our QBC-based method QBC-REP in

that QBC-REP decides whether or not to use each training example at the time that

one example is being examined by the system. In other words, with QBC-REP one

training example at a time is offered to the system, and the system decides whether

or not to use it. QBC-AM, on the other hand, uses a more sophisticated procedure

to determine which training examples to actually use. A set of labeled training

examples, calledS, is constructed. The setS consists of training examples that

have in previous epochs been selected as informative. Each epoch results in the use

of one example by all members for learning and also in one more (different)

labeled example being added toS. The main functions of QBC-AM are to

incrementally educate a committee of learners and to also decide which one

candidate training example to add toS during the current epoch. LetT = the

number of committee members andi be the epoch number. We will useSi to

denote the contents ofS at the beginning of epochi . The initialization of the

learners is done in the normal manner (hyperplanes randomly perturbed aboutwave,

ref. page 142), andS1 is initialized to contain one randomly selected labeled

training example. Let us consider what happens in QBC-AM during a typical

epoch. At the end of epochi − 1 (as we shall see), one more labeled training

example was added toS. Call this exampleei−1 since it is the example added at the

end of epochi − 1. Epoch i then begins withS containing i labeled training

examples. The first thing to occur in epochi is that each of theT learners uses
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exampleei−1 for learning. This completes the learning for this epoch. Next we

decide which one training example out of all of those that are not inS would be

best to add toS – that is, we chooseei . We do this as follows. We chooseR

training examples that are not inS. R is a parameter of QBC-AM. TheR training

examples are chosen at random using a uniform distribution without replacement.

Once this group ofR examples has been chosen, each example is given to the

committee for prediction by its members and the example for which the margin

magnitude is smallest is selected asei and is added toS. If sev eral of theR

examples have the smallest margin magnitude value, then one of those examples is

randomly chosen asei . This completes the processing of epochi .

QBC-AM has itself not introduced randomness into the individual committee

members since all members have used the same examples. Thus only if the learner

itself has a randomizing element will the resulting committee members represent

different hypotheses. However, what QBC-AM has done, regardless of the type of

learner used, is to have all learners use examples that are informative. This should

make each member of the committee quite accurate. The final committee (i.e., the

one used for predicting on previously unseen examples) is the committee that

results from the last epoch. Prediction is by majority vote.

An item to note. A training example is selected during each epoch (and used

in the next epoch), so the structure of the QBC-AM algorithm has solved the

problem of the committee members always agreeing and so not asking to see any

labels. One is guaranteed that one additional training example will be used during

each epoch and that, in the judgement of the learners, it is a relatively informative

one.

The computational complexity of the method largely depends on whether or

not the value ofR is considered to be some function of the input size. One would

often like to dismiss such parameters as "constants" so that one can obtain a lower

orderedO( )  expression, but obviously this is illegal since we wantO( )  to reflect
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computational complexity for any changes in input size. Since the purpose ofR is

to allow the method to select its next training example from a group of several

representative examples, it seems reasonable to conclude thatR will probably

increase in some fashion as the input size increases, and so should not be treated as

a constant. In the experiments performed in [Abe and Mamitsuka 1998],R = 100

was used, which is quite large considering the databases contained only 300 - 1000

examples and 5 - 40 attributes. In our experiments, we used values forR ranging

from 100 to 400. We tried larger values but did not find much benefit from using

the larger values. Since we do not know the functional form ofR, and in fact it

may well depend on the domain, we will simply include it explicitly in our

expression forO( ). Because of the existence of the inner loop which has the

committee predicting onR candidate training examples in each epoch in order to

pick a most informative one, this algorithm’s behavior will likely be worse than for

QBC-REP or AllMargin.

We determineO( )  for QBC-AM as follows. During each epoch, in QBC-

AM the committee uses one example for learning and then predicts onR examples.

We typically use the winnow learner, so for one epoch we haveO(cta + cR Op( )) =

O(cta + cRta). For an entire trial ofe epochs we haveO(ecta + ecRta) =

O(ecta(1 + R)). Usually R >> 1, so we hav eO(ectaR). Recall thatc is a constant.

In the case of QBC-AM and in our domain, sincee is the number of training

examples used, as a practical matter it is not a constant, but rather is likely some

increasing function ofta and probably also ofd. Similarly, R (as discussed above)

is some increasing function ofd and probably also ofta. That is, since input size is

O(dta), each ofe and R are some increasing function of the input size. We

therefore end up with the computational time complexity of QBC-AM when using

the winnow (or perceptron) learner as beingO(eRta). ThusO( )  for QBC-AM is

worse than linear in the input size.
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It is very easy to specify the number of training examples used with this

method, as it is simply the number of epochs. Our tests were run with 1500 epochs

and thus used 7.14% of the training examples.F1.0 scores for QBC-AM were about

0.01 - 0.02 below those obtained by AllMargin, and QBC-AM used more

examples.

7.3.2 QBag

The QBag method is similar structurally to QBC-AM except that at the

beginning of each epochi , each learner is completely reinitialized and then chooses

i = |S| examples fromS to use for learning. Recall that each learner in QBC-AM

only used 1 example for learning, and it was alwaysei−1 (so no choice of training

examples to be used was at that point involved). In QBag, the choice ofi examples

is made randomly by each learner using a uniform distribution, with replacement.

Thus the computational complexity of QBag is higher than for QBC-AM, because

now the learning done by each learner at the beginning of each epoch is done withi

examples, whereas in QBC-AM we carried forward the previous epoch’s learners

and each learner incrementally used only one new example in that epoch. Thus in

QBC-AM, the value gleaned from the processing effort as successive epochs are

completed is reflected mainly in a presumably increasingly accurate committee of

learners. In QBag, this epoch to epoch transfer of the value of prior processing

effort is only in the setS. QBag completely retrains the learners during each

epoch, which is expensive in terms of time but does introduce differences amongst

the learners (they each learn on different examples). It also presumably results in

learners that are more accurate, since the learners are being totally retrained on the

most current setS (whereas the QBC-AM learners are each only allowed to use

one additional example per epoch and so carry with them from epoch to epoch ever

increasing amounts of old baggage).
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QBag has thus introduced randomness into the individual committee

members by having each member (on the average) learn from different examples.

All of the examples used are informative, so this should make each member of the

committee quite accurate and also perhaps (as compared to random perturbation)

result in learners who although different from one another are all reasonably

accurate. The final committee (i.e., the one used for predicting on previously

unseen examples) is the committee that results from the last epoch. Prediction is by

majority vote.

It is important to note that in QBag there is a strong distinction between

selecting an example (occurs when the training example is put intoS) and using an

example (occurs when one of the learners actually uses it for learning). In previous

methods we have discussed (such as QBC-REP and AllMargin), selection of an

example was immediately followed by its use. In QBag, however, it is possible for

examples to be selected but not ever used since examples that are selected are put

into S and then examples to be used are chosen fromS using random sampling

with replacement. As a practical matter, howev er, except for the training example

selected during the last epoch, it was very unusual in the experiments we

performed with QBag to have examples selected but never used. The degree to

which this holds obviously depends on system parameters being used, such as the

number of members in the committee. Note also that this same effect occurs in

QBC-AM, in that an exampleei−1 that is selected in epochi − 1 is not used until

epochi .

Using the same general approach as was used for QBC-AM, we compute

O( )  for QBag (using the winnow learner) as follows. During epochi , the

committee usesi examples for learning and then predicts onR examples. Thus for

one epoch we haveO(icta + cRta).
i=e

i=1
Σ i =

e(e+ 1)

2
which varies ase2, so for an

entire trial we haveO(e2cta + ecRta) = O(cta(e2 + eR)). For c constant, we

therefore getO(ta(e2 + eR)). Recall thate and R are some increasing function of
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the input size. ThusO( )  for QBag is worse than linear and also worse than QBC-

AM in computational complexity.

QBag is not very practical in our domain because of its time complexity. As

with QBC-AM, the number of examples used is equal to the number of epochs. We

used 1500 epochs (7.14% of the training examples). These trials lasted 15 - 100

times longer than trials using AllMargin and also used more examples.F1.0 results

were lower by 0.02 - 0.03 than for the AllMargin method.

7.3.3 QBoost (with AdaBoost)

QBoost further modifies the learning process of the committee members by

using the AdaBoost algorithm [Freund and Schapire 1995] to control the learning

process. We say "control" because AdaBoost is not itself a learning algorithm, but

rather a method for deciding which training examples will be used by each of the

individual members of a committee of learners and how to weight the resulting

hypotheses for the committee prediction process. Recall that QBag, at the

beginning of epochi , retrains each learner completely by usingi examples chosen

from S. The choice of examples is made randomly from a uniform distribution,

with replacement. QBoost, instead of directly training the committee members,

invokes AdaBoost to oversee the training that occurs at the beginning of each

epoch. The idea behind AdaBoost is that the choice of examples is still random,

but not over a uniform distribution. Instead, AdaBoost adjusts the distribution over

S so that examples which the previous learners (in the current epoch) have not

learned very well are favored. In this way, subsequently trained committee

members will provide a good complement to the earlier trained learners since they

will be more likely to be trained on examples that the earlier learners did not learn.

To see how this is accomplished, consider a typical invocation of AdaBoost by

QBoost. Recall that there areT learners and that we are at the beginning of epoch
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i . The first learner choosesi examples fromS and uses them for learning. The

choice of i examples is made randomly from a uniform distribution with

replacement (the same as was done by QBag as the first step in each epoch). This

learner is now examined on how well it has learned by comparing its predictions to

the actual labels of the training examples inS. (Note that this comparison is made

over all examples inS, not just on those examples inS that this particular learner

used). For training examples that the learner did learn correctly (i.e., its prediction

matches the actual label), the distribution overS is adjusted so that those examples

are less likely to be chosen by the next learner. Now the second learner choosesi

examples fromS, the examples still being chosen randomly and with replacement.

However, the distribution governing the random sampling is no longer uniform.

Instead, it favors those examples that the first learner did not correctly learn. This

process continues until all of the learners have learned. And thus each learner is on

the average given examples to use for learning that the previous learners did not

learn, or at least did not learn very well. Each learner is in a sense specializing in a

different part of the total problem, and then the knowledge of all of the learners is

combined via the committee voting mechanism. Once AdaBoost has trained allT

members, it passes back to QBoost the trained committee and also a set ofT voting

weightsV which contains one voting weightVt for each member. Some learners

maintain their hypotheses as sets of weights. These voting weights are in addition

to any such knowledge base weights. TheVt are an inverse function of the error

rate of learnert (as was measured by AdaBoost usingS). LargerVt indicate a more

accurate learner (again, as measured usingS). To form the committee prediction,

individual members predict and then their predictions are weighted by their

respectiveVt . The committee uses as its prediction the prediction that received the

largest weighted vote. After the learning (controlled by AdaBoost), the actions

taken in QBoost are the same as for QBag. QBoost choosesR training examples

that are not in S (randomly chosen from a uniform distribution without

replacement), the committee predicts on each of theR examples, and the example
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with the smallest margin magnitude (or one randomly chosen if there are several) is

put into the setS.

Like QBag, QBoost has introduced randomness into the individual

committee members by having each member (on the average) learn from different

examples. QBoost (via AdaBoost) expends more effort in this regard, by making

an attempt to have the members complement each other, and also by determining a

relative weighting of each member’s approximate accuracy. The final committee

(i.e., the one used for predicting on previously unseen examples) is the committee

that results from the last epoch. Prediction is as described above and is referred to

as being "by weighted majority vote".

Using the same general approach as was used for QBC-AM and QBag, we

computeO( )  for QBoost (again using the winnow learner) as follows. At the start

of epochi , AdaBoost is called and it trains the committee. AdaBoost does this by

doing the following for each learner. It has the learner usei examples for learning.

It then computes an error rate (for that learner) by having the learner predict on

each of thei examples inS, and then uses that error rate to adjust the distribution

over S. Admittedly thei examples used by the learner and thei examples used for

computing the error rate are most likely not the same, but that does not matter. The

time taken by/on behalf of each learner is therefore the time to learn plus the time

to compute the predictions for the error rate computation and to perform the

distribution adjustments, which isO(it a + iOp( ) + i) = O(it a + it a + i). There arec

learners, so AdaBoost requires timeO(cita + cita + ci). For the remainder of epoch

i , QBoost does the same thing as is done by QBag – it choosesR training examples

and uses committee prediction to decide which one of them to add toS. Therefore,

for epoch i , QBoost requires timeO(cita + cita + ci + cRta). As before,c is a

constant. So we haveO(it a + it a + i + Rta) = O(ta(2i + R) + i). The first term

dominates, so we getO(ta(i + R)). And finally, over all epochs,
i=e

i=1
Σ i varies ase2, so

for an entire trial we haveO(ta(e2 + eR)). This perhaps surprisingly is the same
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time complexity that we computed for QBag, but obviously QBoost is doing more

since it is also computing error rates for each learner and adjusting the distribution

over S in response to those error rates. The reason for the two time complexities

being the same is that the only difference between QBag and QBoost is in what is

done during the first step. In the first step of QBag, the behavior for the learning, in

one epoch and for one learner, isO(it a). The first step of QBoost performs learning

and computation of error rate and adjustment of distribution, which is

O(it a + it a + i) which reduces toO(it a). The QBag and QBoost methods have the

same computational complexity when using winnow (or perceptron) as the learner.

We would expect, however, to see a larger constant of proportionality for QBoost.

Our results from using QBoost were even worse than we obtained when

using QBag. QBoost values ofF1.0 were lower by about 0.03 - 0.06 than for

AllMargin and used more examples. Run times were quite large, about 25 - 160

times those for AllMargin.

7.3.4 General Observations

Since execution time did in fact become a major concern, we also developed

and tested a great many modifications to the QBC-AM to QBag to QBoost

methods. While several were reasonably successful in terms of running faster and

producing reasonableF1.0 results in this domain, none of them outperformed the

AllMargin method.

There are two rationales behind the series of modifications that lead from

QBC-AM to QBag to QBoost. One is that, by spending successively larger

amounts of effort, one could do a better job of selecting informative examples to

use for learning, thereby allowing the individual learners to learn from fewer

examples. The other is that by spending this additional effort, one could also obtain

more beneficial variations amongst the committee members so that, rather than
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having each learner perhaps only being slightly different from the others, we would

tend to have each one specifically specializing in particular aspects of the document

space. As is the case with our QBC-REP and AllMargin methods, these 3 methods

also select examples based on their degree of informativeness, where this is

measured by how small the margin is when the committee members predict the

label for the example. In other words, all of these methods assume that a high

degree of disagreement amongst the learners is an indication that, at least insofar as

the learners’ current state, the example is very informative and therefore is a good

one to select for learning. QBC-REP, AllMargin, QBC-AM, QBag, and QBoost

form a progression in terms of effort spent in selecting the next training example.

QBC-REP expends very little effort, querying only 2 committee members and only

considering whether or not to select the currently-offered example. AllMargin

expends a little more effort; it also considers only the one example currently being

offered, but it uses the predictions of all committee members. QBC-AM, QBag,

and QBoost, instead of looking only at the next example being offered, examine

some numberR of the thus far unselected examples and then select the most

informative example from that group.

Considering only total elapsed processor time, the methods are, in increasing

order, QBC-REP, AllMargin, QBC-AM, QBag, QBoost. We of course want a

method that runs fast, but we are also willing to sacrifice some run time in order to

obtain betterF1.0 scores. This tradeoff obviously depends on the user. But certainly

we do not want to use methods that run slower, giv e worseF1.0 results, and use

more training examples. As discussed before, AllMargin gives the bestF1.0 values

of the methods tested.

We speculate as follows as regards why a method that uses less elapsed

processor time actually achieves betterF1.0 scores in this domain. In particular, we

will compare AllMargin and QBoost since the differences inF1.0 and elapsed

processor time are most dramatic for these two methods. Recall earlier, when we
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were describing the AllMargin method, we expressed the concern that if the

examples that were selected as "informative" are actually noisy examples and were

judged to be "informative" because of the errors that they contain, then our

approach would not work very well, since the learners would then be using

erroneous examples instead of correct ones. Based on the results of our

experiments, this turned out not to be a problem with AllMargin. However, we feel

that this in fact is what happens with QBoost in our domain. We hav e large

amounts of noise and large numbers of attributes that are irrelevant. While example

selection by QBoost does use degree of disagreement, which of the selected

examples areused for training and to what degree is heavily influenced by the

performance of previous learners on the setS. In other words, QBoost is in a sense

driven by a desire to reduce training set error. Thus any examples inS that are

quite noisy and also repeatedly not learned by the learners will be weighted more

heavily for subsequent learners in that cycle. QBoost essentially tries to "force"

each of the selected examples to be learned. We feel that, due to the noise and

large number of irrelevant attributes in our domain, this can lead to overfitting.

The above conclusions are supported by the following results from our

experiments. If "<" is used to stand for "performs worse than" and ">" is used to

stand for "performs better than", then:

QBC-REP < AllMargin

-and-

AllMargin > QBC-AM > QBag > QBoost

The performance measure being used isF1.0, although the ">" also hold for elapsed

processor time.
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We also empirically found that increasingR did not help much, and in fact at

times madeF1.0 ev en worse.

7.4 Weighted Majority Algorithm

We also did experiments using the Weighted Majority Algorithm (WMA)

[Littlestone 1989, Littlestone and Warmuth 1994, Cesa-Bianchi et al. 1993]. We

used WMA as a mechanism to determine how to weight the votes of the individual

committee members. These experiments were performed relatively early in the

project. We essentially used the WML algorithm in [Littlestone and Warmuth

1994]. The basic approach we employed for implementing the WMA is as follows:

each learner has a voting weight assigned to it, and all of these voting weights are

initialized to the same value. The learners are winnows or perceptrons. As each

member predicts during the learning process, that member’s voting weight is

reduced by a factor if the member’s prediction is incorrect. One needs to specify

parameters such as by what factor one is going to reduce the voting weight when a

mistake is made and a parameter which basically puts a lower limit on the voting

weight value of each member. The idea is that, as learning occurs, the voting

weights will adjust in accordance with each member’s performance on the training

examples that are used. A lower limit on the voting weights prevents a learner

from being completely removed from consideration due to a long series of bad

predictions, since we want to allow for learners to recover from their earlier

incorrect predictions.

We ran several experiments with various parameter settings, and generally

the best performance was obtained by not weighting the member’s predictions at

all. In light of the above-presented experiments, this is probably not too surprising.

The use of voting weights in the manner we have described sounds very similar to

boosting, and in fact is discussed in [Freund and Schapire 1995]. In both WMA
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and boosting, one is using performance of the learner on training examples to set

voting weights so that the votes of learners that make fewer errors will be weighted

more heavily.
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8. Conclusions

In this chapter, we first present the conclusions we have drawn from our

research. This is followed by a discussion of the contributions this research makes

to the body of knowledge in the fields of machine learning and text categorization.

We finish by discussing some areas of possible future work.

In this project, we investigated and developed the ALC framework, which is

an organization of machine learning methods based on active learning and

committee prediction. ALC systems require minimal preprocessing of the input

data and thus data preprocessing time is kept to a minimum. This is of benefit when

the database being analyzed is large and/or changing frequently over time. ALC

systems, when compared to the corresponding supervised systems, use fewer

training examples, run faster, and still obtain high levels of accuracy and other

contingency table based performance measures. Our domain of interest is text

categorization, but most of the methods developed are quite general and are

therefore applicable to other domains. Characteristics of the text processing

domain that are shared with many other domains include data collections that are

very large, change often, contain large numbers of examples, have high

dimensionality, and contain attribute and class noise.

Our goal was to develop and analyze ALC systems, in order not only to

design new types of machine learning systems but also to better understand why

ALC systems behave as they do. Overall, the ALC systems we have dev eloped

have, when applied to the field of text categorization, achieved accuracies

exceeding 0.97 andF1.0 scores exceeding 0.70. These methods use only about 7%

of the training documents available, and they are efficient in both total run time and

in total memory requirements. Our results suggest that certain learning algorithms

can in fact handle the high dimensionality of full text and can do so efficiently

while still yielding good performance results. The two main methods that we
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developed are QBC-REP and AllMargin. Their performance on text categorization

is summarized below:

method time % tng ex used accuracy F1.0

QBC-REP 3 5% 0.965 0.644
AllMargin 30 7% 0.973 0.708

The AllMargin method takes more time than QBC-REP and uses more examples,

but giv es betterF1.0 scores.

An important point to note is that reducing the number of training examples

needed for learning an accurate approximation to the target function can result in

two areas of benefit, and such is the case in the ALC framework. Having fewer

examples to label for training reduces human costs involved in this labeling. One

also obtains shorter run times since only the selected training examples need to be

processed by the learning algorithm. This latter point has applications to many real-

world data mining applications in which the problem is not having too little data,

but having too much [Burl et al. 1998]. Being able to select the better portions of

the data for use in learning would allow the learning process to complete in much

less time.

A summary of additional key conclusions drawn from our experiments

follows. These experiments were all in the domain of text categorization with

minimal preprocessing:

1. Two forces are at work in ALC systems as compared to standard single

learner supervised systems. Active learning is used to select the more

informative examples on which to learn. This results in a system that needs

fewer training examples (which saves labeling costs) and also a system that

executes faster (since it does not need to learn from as many examples).

Prediction being done by a diverse committee of learners gives us the
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benefit of being able to obtain accuracies that are higher than the accuracy

of the most accurate member and also allows the system to learn a concept

more complex than can be represented by a single learner. We found that

both of these effects do in fact contribute to the better performance of ALC

systems, and that active learning provides the greater amount of

improvement.

2. We found that committees containing 7 - 20 members gav e the best results.

Larger committees consume more time and can even use more training

examples, but give little if any gain in accuracy orF1.0. Smaller committees

tend to be dominated by one powerful member and so the committee

functions more as that one member than as a committee of independent

learners.

3. We compared winnow and perceptron learners and found that winnow giv es

better performance when one looks at the measures of most importance to

the typical user of a text categorization system. It appears that the winnow

learner is able to find a hyperplane location that provides good predictive

capabilities using fewer training examples. We also found that in this

domain the ability to learn negative weights was not necessary in order to

obtain a good approximation to the target concept. This allowed us to use a

version of the winnow algorithm that takes less space and also runs faster.

4. In spite of the fact that the winnow and perceptron algorithms do not

automatically compute a rank raw score in the prediction process, we were

able to obtain good ranking results using the committee of learners and

simple computations based on information that was computed during

prediction.
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5. Using different definitions of mistake for mistake-driven learners did not

seem to provide any benefit, in that the other definitions of mistake resulted

in poor F1.0 scores. The best definition of mistake seems to be the normal

definition – making a prediction that differs from the actual label value.

6. Our examination of eager versus mistake-driven learning indicated that

winnow does better in our domain when used as an eager learner.

7. The naive Bayes algorithm is a very interesting form of linear threshold

learning algorithm. On the one hand, it performs very well (although it did

not seem to scale up as well to full text as the other methods did). On the

other hand, it is supervised and so uses all training examples. We decided to

design an algorithm that would allow one to have a committee of

independent naive Bayes learners that could be used in the ALC framework.

The algorithm that we implemented does function in the ALC framework

and performs well in terms of contingency table based measures, but it

currently is too slow to be practical in this domain. We feel that it is a good

starting point for future work.

8.1 Contributions

Our goals for this research were to develop machine learning methods for

text categorization that perform minimal preprocessing of the documents, use fewer

training examples, are efficient in both space and time complexity, are general, and

that perform as well as supervised methods. We hav e largely accomplished our

goals.
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8.1.1 Minimal Preprocessing

The consensus in the field of text categorization has been that some type of

preprocessing of documents to reduce the dimensionality of the document space

allows one to obtain better contingency table based performance measure values

and is even necessary as a practical matter for the use of many machine learning

algorithms. Most text categorization systems, both commercial and research

systems, use some form of dimensionality reduction. Common methods include the

use of stop lists, stemming, singular value decomposition, latent semantic indexing,

statistical attribute selection, and attribute replacement/creation. We hav e shown

that performing text categorization without a time-expensive dimensionality

reducing preprocessing step is feasible. We advocated this approach not only to

save time, but also to allow the machine learning algorithm itself to decide which

aspects of documents are and are not relevant. This approach also makes it easier

for documents to be added to or removed from the collection being examined, and

also generalizes the methods used to other domains.

8.1.2 Performance

The systems we have dev eloped use fewer examples for training, in that they

do not use all of the training examples available, which is the approach used by

supervised learning algorithms. Since labeling of training data requires a human

expert, it is desirable to develop methods of machine learning that require fewer

labeled examples. Methods developed in this research typically use 5 - 7% of the

available training examples, usually with no decrease in contingency table based

performance measures as compared to their supervised counterparts, and often

obtaining better scores in those performance measures. Using fewer examples also

results in considerable time savings as compared to supervised learning, typically

around 7 - 10% of the supervised learning time. The ALC systems therefore seem
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generally successful at determining which training examples are more informative

and perform as well as or better than if all examples had been used.

A wrinkle in this conclusion is our experience with the naive Bayes

supervised learning algorithm. It consistently performs very well in this domain.

However, since it is supervised, it does use all training examples.

8.1.3 Efficiency

Several of the ALC systems that we developed are quite efficient in both time

and space. We hav e not discussed space complexity very much, except to say that

it became a non-concern because of the sparseness of the input data. If one hasc

committee members,d documents in the corpus,t tokens in the dictionary, and if

each document contains on the averageta unique tokens, then the space needed to

store the corpus isO(dta) (for the indices of the 1-valued attributes) and the space

needed by the learner isO(ct) (for the weights). Thus space complexity of the

system is very manageable.

We also examined the time complexity for several typical ALC systems that

were used in our experiments and found their behavior to be linear in the input size.

8.1.4 Generality and Robustness

The ALC systems we have dev eloped and the ALC framework itself are all

quite general. We hav e shown that the specific methods we use scale up reasonably

well from titles only, which is already by machine learning standards a high

dimensional domain, to full text. Except for the conversion of the raw data (in our

case text) into attribute vectors, the system is not designed around the processing of

text. Having several parameters to set in a system can make one suspicious about

the robustness of the system. The main parameter in our system isδ, which is a



278

measure of the assumed distance between the main bodies of theYES andNO clouds,

but this is actually a parameter for the winnow and perceptron learning algorithms

and not a requirement of the ALC framework. In fact, naive Bayes does not require

anyδ value. We also found in our experiments that when a value ofδ is required, it

can be within a fairly large range. Recall thatδ is in (0,1). We usually found that

varying δ by ± 0.1 did not result in much change in performance, and often

variations of± 0.2 were easily tolerated.

8.2 Future Work

We see many areas related to this research that are of interest for future

research. We are especially interested in further examination, development, and

analysis of the algorithms for committees of naive Bayes learners. As many others

have noticed, the standard naive Bayes algorithm seems to do quite well in domains

where one would, based on the algorithm’s assumptions, not expect that its

performance would be very good. The standard naive Bayes algorithm also

performed very well for us in terms of contingency table based performance

measures. It is however supervised and thus uses all training examples. The current

version of our attempt at a committee of naive Bayes learners that could be used for

active learning does well in the contingency table based performance measures and

in using fewer training examples, but it is too slow for this domain. We would like

to investigate ways to improve its computational complexity without sacrificing its

other performance characteristics, so that its use is practical in our domain. It

would also be interesting, since winnow has done so well in the ALC framework,

to modify it so that token frequencies are used instead of boolean attributes.

Another area of interest is to apply the ALC methods that we have dev eloped

to other types of documents – documents in other fields of knowledge and written

in other styles and vocabularies. We would like to experiment with theOHSUMED
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corpus, which is a subset of the MEDLINE bibliographic database of peer-

reviewed medical literature [Hersh et al. 1994,OHSUMED]. We would also like to

do experiments with collections of computer science technical reports, with

corpora now available that contain documents such as newsgroup postings [20

Newsgroups, Nigam et al. 1998] and web page text [WebKB, Nigam et al. 1998],

and also with some of the TREC document collections [Voorhees and Harman

1998] – of special interest to us are the Department of Energy abstracts, Federal

Register, Wall Street Journal, Congressional Record, Foreign Broadcast

Information Service, and Computer Selects (computer product reviews) collections.

The use of web pages as documents for text categorization also presents

another opportunity, besides being an example of another type of document. [Blum

and Mitchell 1998] point out that some forms of information have inherent in them

the existence of multiple views. For example, web documents themselves have

content (the tokens in the document), which is the standard source of information

about a document. However, there is also information about web pages in the form

of text related to the pointers to them from other documents (i.e., from other web

pages). And one could perhaps generalize this pointer concept to also finding

information about a web page in web pages to which it points. In other words, one

can obtain information about a documentD from the contents ofD itself (as is the

standard approach in text categorization) and also from information in other

documents that referenceD or that D references. This idea could perhaps be

extended to other types of documents. For example, one could look at the content

of a technical paperP and also the contents portions of other technical papers that

point to (i.e., reference)P or thatP references.

Nothing in the current ALC systems is language-specific except for the

method used for tokenizing (i.e., breaking text at whitespace or punctuation), which

is quite general and probably workable for most languages using the Latin
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alphabet. We would like to see how the methods work with languages other than

English, such as German, French, and Spanish.

We hav e as a part of this project developed ALC as an active learning system

framework whose purpose is to use active learning to categorize text. It would be

interesting to adapt it to other text-related tasks. Active learning has been mainly

used in categorization/classification tasks. [Thompson et al. 1999] have

experimented with the use of active learning in other text-related tasks, specifically

in natural language parsing and information extraction. An area of possible future

research would be to expand ALC to in fact be more text-specific by also using

active learning to parse the input text. This might allow one to make the document

representation richer than it is now, the goal being to incorporate some natural

language features into the bag of words concept and thereby improve system

performance.

Except for the tokenizing, the ALC systems are not text-specific. We would

like to test them on databases created for non-textual classification problems. Some

differences between corpora and non-textual databases would need to be

investigated to determine their impact on our existing methods, and perhaps

modifications would need to be made to the systems due to these differences. For

example, it may be that non-textual databases do not necessarily meet the "no

negative weights are needed" conclusion that allowed us to use a more efficient

form of the winnow learner. Also, non-textual databases may not be very sparse in

terms of the average number of attributes that have a value of 1 (ta) as compared to

the total number of attributes (t), and non-textual databases may have much larger

percentages of positive examples than in the typical text corpus. There are many

non-textual databases that could be used, in a great many fields – for example in

the UCI Repository of Machine Learning Databases [Blake et al. 1999]).

For most ALC systems we have examined, the computations that are

performed to adjust weights (during learning) and to compute cross-products are



281

very amenable to being parallelized. Given a training example, the weight

adjustment for each token is independent of the weight adjustment for any other

token. Similarly, during prediction, each token’s individual contribution to the sum

can be computed independently of the contributions of the other tokens. And

perhaps parallelizing would make methods such as the committee of naive Bayes

learners more practical in terms of elapsed computation times.

And of course one obvious area of future work is to investigate the use of

other learning algorithms in the ALC framework. We hav e gone to considerable

effort to keep the framework very general so that a wide variety of modules can be

used for each of the main parts – deciding whether or not to see the label, learning,

and forming the committee prediction.

Active learning is in general a topic of current interest. However, most forms

of active learning select examples by computing some measure of informativeness

based on the votes of individual members in a committee of learners, or on directly

computed probabilities. This is done of course without looking at the actual label –

that is the whole point. However, this approach encounters significant difficulties if

there is a large amount of noise, and also if there are very few positive examples.

In the former case, informative examples may in fact be incorrect examples and so

the active learner passes over good examples to learn from incorrect ones. In the

later case, informative examples will almost always be negative examples, so the

learner is attempting to learn only from negative examples. One possible area for

research would be to investigate other methods for picking the most informative

examples that would, for example, allow favoring examples thought to be positive.
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