

AN ABSTRACT OF THE THESIS OF

Dedrie Beardsley for the degree of Master of Arts in Interdisciplinary Studies
in Computer Science, Psychology and Psychology presented on June 7th,
2013.

Title: Inspiring End-user Programming Through Exposure to Multi-platform
Computing and Improved Integrated Development Environments

Abstract approved:

__

Carlos Jensen

The art of software engineering inherently requires high-level problem

solving and perseverance, as programmers and designers wrestle with

complex design and implementation challenges in the process of

turning loose concepts and ideas into working code. In the current

developer ecosystem, engineers are commonly incentivized

extrinsically by monetary rewards, approval or status. Ironically,

extrinsically motivating a person has been proven to decrease complex

problem solving performance. On the other hand, motivating a person

intrinsically through the Self Deterministic Theory constructs of

autonomy, competence and relatedness has been shown to encourage

problem solving, creativity and innovation. To determine what

motivates different types of developers, and how well their tools

support them in their work, we developed and deployed a survey. The

validated survey tool measured the intrinsic motivation level of 103

developers of varying personas. Based on the data gathered, we

highlight areas for improving the current development environment to

foster increased problem solving and creativity.

©Copyright by Dedrie Beardsley

June 7, 2013

All Rights Reserved

Inspiring End-user Programming Through Exposure to Multi-platform

Computing and Improved Integrated Development Environments

by

Dedrie Beardsley

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Arts in Interdisciplinary Studies

Presented June 7, 2013
Commencement June 2014

Master of Arts thesis of Dedrie Beardsley presented on June 7,2013

APPROVED:

Major Professor, representing Computer Science

Director of the Interdisciplinary Studies Program

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of
Oregon State University libraries. My signature below authorizes release of
my thesis to any reader upon request.

Dedrie Beardsley, Author

ACKNOWLEDGEMENTS

I would like to thank Intel Corporation for their generous financial support

and mentorship; specifically Shannon Schroeder.

I would like to thank my advisor Carlos Jensen for his guidance and assistance

during my time at OSU. I would also like to thank several fellow research

associates for their contributions. Without their assistance my projects would

not have been possible; Justin Wolford, Dale Cox, Soroush Ghorashi and

Rahul Gopinath.

I would like to thank my committee members Mei Lien, Sarina Saturn and

Michele Swift for their guidance, time and encouragement.

Hal Koenig made a significant time contribution in survey design and

statistical analysis guidance. Without his efforts, this study would not have

been possible. I am extremely grateful for his assistance.

Finally, I would like to thank an OSU alumni and my cousin Eric Betts for his

encouragement to attend graduate school, his technical assistance and his

perpetual advocacy for myself and other women in the field of computer

science.

CONTRIBUTION OF AUTHORS

Manuscript #1

I was primary author, experimental designer and conducted the study and

analysis for the first manuscript. Rahul Gopinath contributed as a secondary

author primarily in the related works section.

Manuscript#2

I helped design and conduct the experiment as well as data collection and

analysis. For this manuscript Dale Cox was primary author, Justin Wolford

was the secondary author contributing to the related work sections and

qualitative analysis. I assisted with related works and general editing. Dale

developed the applications used to interface with the Microsoft Kinect and

Nintendo Wii Remote used during the research study. He also contributed to

designing and conducting the research study. Justin Wolford helped design

and conduct the research study, as well as analyzing the data collected during

the experiment. He also developed the drag and drop application used as the

first task.

TABLE OF CONTENTS

Page

1. INTRODUCTION ..1

Self-Deterministic Theory in Integrated Development Environments:

Methods to Enhance Problem Solving, Learning and Exploring in

Developers ..2

2. ABSTRACT...4

3. INTRODUCTION ..5

4. Self deterministic theory explained...11

4.1 Self-determined behavior ..11
4.2 Self-Deterministic Definitions ...12
4.3 Self- deterministic theory ..13

4.3.1 Self-deterministic sub-theories ...15

5. Related Works...17

5.1 SDT and Computer Use...17

6. Methodology..21

6.1 Vetting SDT as an appropriate model for analyzing motivation in computer

science. ..21
6.2 Validated tool to measure the basic need support ..23
6.3 Assessing intrinsic motivation in developers ...25

7. Results..27

7.1 Do contemporary IDEs support motivation in developers?27
7.2 What factors affect intrinsic motivation support in developers?29
7.3 How can modern IDEs adapt to foster heightened intrinsic motivation?32

Approaches to enhance intrinsic motivation in an IDE ..32

8. Discussion ..35

9. Future Work..40

10. Conclusions..41

11. REFERENCES ...42

An Evaluation of Game Controllers and Tablets as Controllers for

Interactive TV Applications..47

11.1 ABSTRACT..48

12. INTRODUCTION ..49

13. RELATED WORK...52

13.1 Growing Popularity of Streaming Services ...52
13.2 Pointing and Navigation Using Novel UI Devices ...54
13.3 Text Entry With Keyboard Alternatives ...55

14. Methodology..58

15. RESULTS ..64

15.1 Drag and Drop Task ..64
15.2 Nudging...67
16.1 Text Entry...70
16.2 Effects of Prior Experience ...71

17. Discussion ..73

18. Future Work..75

20. Conclusions..77

21. REFERENCES ...78

22. Conclusion ...80

23. Bibliography..81

24. Appendix..82

LIST OF FIGURES

Figure Page

Manuscript #1

1. The self-determination continuum …………..……………………..…..…11

2. Summary of literature review citations related to SDT ……....…………..22

Manuscript #2

3. Room configuration used during the experiment……………………..…...59

4. The configuration of the relative tablet app..……………………………...60

5. Sample screen for drag and drop task…………………..…………………61

6. More drops show that the user was quicker and more accurate than users

with fewer successful drops……………………………………..…………...64

7. Average final margin of error in pixels by condition……………..………65

8. Nudging interval (left axis, blue columns, in seconds) and distance (black

line, right axis, in pixels) over number of tries to hit one target –

Wiimote………………………………………………………………..……..68

9. Nudging interval (left axis, blue columns, in seconds) and distance (black

line, right axis, in pixels) over number of tries to hit one target – Mirror

Tablet…………………………………………………………………….…..68

10. Nudging interval (left axis, blue columns, in seconds) and distance (black

line, right axis, in pixels) over number of tries to hit one target –

Kinect………………………………………………………………..……….69

11. Nudging interval (left axis, blue columns, in seconds) and distance (black

line, right axis, in pixels) over number of tries to hit one target – Relative

Tablet………………………………………………………………………...69

12. Average text entry time in seconds………………………………………70

13. Text entry mistakes using virtual keyboard………………………….......71

LIST OF TABLES

Table Page

Manuscript #1

6.1 Validated survey tool to measuring intrinsic motivation support..……..24

7.1 Spearman’s Correlation Matrix r Tools vs. basic need scores ……….…28

7.2 Spearman’s Correlation r matrix; basic need score vs. developer

characteristics……………………………………………………..………… 31

7.3 Approaches to support intrinsic motivation in an IDE ……………...…..33

Manuscript #2

16.1 Slope of linear models. Steeper slopes indicate stronger experience

effect…………………………………………………………………………72

LIST OF APPENDIX TABLES

Figure Page

24.1 Summary of motivators enhancing basic psychological needs in software

engineering literature [3]………………………………..……………....……82

24.2 Summary of de-motivators enhancing basic psychological needs in

software engineering literature [3]

(SEU)…………………………………...…………..………......……………83

24.3 Methods of supporting and undermining autonomy based on the

psychology

literature………………………………………………………………….......84

24.4 Methods of supporting and undermining relatedness based on the

psychology

literature………………………………………………………………….......85

24.5 Methods of supporting and undermining competence based on the

psychology literature……………………………………………………...….86

24.6 Methods of supporting intrinsic motivation in an IDE based on combined

validated methods in motivational CS and SDT literature…………………..87

1

1. INTRODUCTION

We began this journey evaluating interactive television (iTV)

environments from the perspective of an end-user. Through this process we

learned that these users had many ideas for customization and optimization in

iTV, but no means to implement them. It stands to reason that users experiencing

platforms other than iTV would also have similar innovative ideas. There has

been huge growth in ubiquitous computing interactions such as iTV, smart

phones, tablets and in vehicle infotainment. Over 1 billion smart phones are

currently being used worldwide and by 2015 this number is projected to double

[1]. That is a substantial number of potential innovators experiencing the same

deficit in appropriate mechanisms to develop their ideas. Skilled programmers use

a software application that combines multiple development tools known as an

integrated development environment (IDE) to innovate. However, very few IDEs

have features allowing novices to create software solutions. When considering

factors that support innovation such as intrinsic motivation, collaboration,

flexibility and recognition, it becomes clear that modern IDEs aren’t supporting

innovation in skilled developers either. We examined the modern IDE in order to

make recommendations for improving innovation support. We did this by

measuring the basic psychological needs that support intrinsic motivation;

autonomy, relatedness and competence in developers that use IDEs [2,3].

2

Self-Deterministic Theory in Integrated

Development Environments: Methods to

Enhance Problem Solving, Learning and

Exploring in Developers

Dedrie Beardsley, Rahul Gopinath and Carlos Jensen

3

4

2. ABSTRACT

The art of software engineering inherently requires high-level problem

solving and perseverance, as programmers and designers wrestle with complex

design and implementation challenges in the process of turning loose concepts

and ideas into working code. In the current developer ecosystem, engineers are

commonly incentivized extrinsically by monetary rewards, approval or status.

Ironically, extrinsically motivating a person has been proven to decrease complex

problem solving performance. On the other hand, motivating a person intrinsically

through the Self Deterministic Theory constructs of autonomy, competence and

relatedness has been shown to encourage problem solving, creativity and

innovation. To determine what motivates different types of developers, and how

well their tools support them in their work, we developed and deployed a survey.

The validated survey tool measured the intrinsic motivation level of 103

developers of varying personas. Based on the data gathered, we highlight areas for

improving the current development environment to foster increased problem

solving and creativity.

5

3. INTRODUCTION

It is commonly thought that the best predictors of engineer performance

are experience and knowledge. However research has shown that motivational

factors have a much larger influence [1,53]. These motivational factors drive

software engineers to translate abstract concepts and requirements into concrete

artifacts [7]. This process requires creating novel and unique ways to transform

loose ideas into a product and is frequently mediated by a development

environment. Accomplishing this task requires a complex iterative process and a

large range of roles and capabilities.

According to Turley and Beiman, the most exceptional engineers share

and employ motivational traits such as a bias toward action, a systems based

perspective, a sense of mission, strong convictions and proactively helping other

colleagues [53]. Additionally, sixty percent of the engineering student outcomes

required by The Accreditation Board for Engineering and Technology (ABET)

contain the motivational principles of problem solving, analytical thinking,

teamwork, communication, curiosity and life-long learning [1].

In summary the most successful engineers are team players, proficient

problem solvers and have an internal drive to innovate; they are highly

intrinsically motivated. Surprisingly, these traits have more to do with

motivational factors than the common assumptions of experience, depth of

knowledge and detail orientation. One could theorize that providing a

development tool that supports these motivational traits would lead to more

successful engineers.

The software engineering process and roles have changed significantly

since the first IDEs were created. As this evolution occurred, IDE functions have

stayed relatively the same and overlook the motivational factors that enhance

6

engineering performance. It was out of necessity that software developers created

their own integrated environments to work in which primarily focused on

productivity. Engineers would use a collection of tools to create product and out

of efficiency, began to combine them together.

In 1981 Osterweil proposed that these tool collections should have five

properties; Capabilities spanning the entire range of activities needed to complete

a software job, user friendliness, tight tool integration, internal reusability and the

use of central database [34]. Osterweil interpreted these properties into an early

prototype known as Toolpack. Toolpack was presented as a sound basis for

programming support and packaged features such as a compiling system, a

Fortran-intelligent editor, a formatter, a structurer (infers and emphasizes the

underlying looping structure of a program), dynamic testing, validation and de

debugging, static error detection and validation, static portability checking,

documentation generation and a program transformer [35]. The range of activities

he perceived as necessary to complete a software project did not include activities

outside of low-level programming. User friendliness was addressed in the form of

simple heuristics and did not address developer work or innovation style.

Today, developing innovative software solutions requires teamwork and a

variety of roles. The developer’s role has changed and greatly expands past

fundamental coding to developing for multiple platforms, project management,

testing, architecture, design, writing, User experience (UX), agile, prototyping,

emulation, pair programming and open source software (OSS) development.

Development teams frequently collaborate with subject matter experts, other

programming teams and each other. Programmers also interact with communities

of developers outside their organization obtaining skills, advice, code snippets,

and general support.

7

A whole new category of developers have also emerged; end-users. These

programmers should not be overlooked in creating IDEs as they have significant

potential to innovate. Although end-user programmers have existed for many

years, the introduction of ubiquitous computing is likely to increase their

numbers. It is estimated that there was 12 million American workers engaged in

end-user programming in 2012 [46]. This number doesn’t include people

programming outside of an occupation or locations external to the U.S. A report

by Evans Data estimates there will be 20 million developers worldwide by 2015,

which is a 25% increase from the current population and is based on the growing

ubiquitous markets [36]. Just 6% of these programmers reside in the U.S. [33] If

end-user programming follows this trend there could be 250 million end-user

programmers world wide by 2015.

As more individuals are exposed to applications via the ever-expanding

platforms of mobile phones, tablets, interactive television, in-vehicle

infotainment, home automation and social media, they will be inspired to create

software that improves their lives. Translating these ideas into product can be

difficult because development tools are geared towards advanced users and do not

resemble the environment in which their applications would be used. Excluding

end-user programming needs from the existing developer tool set is drastically

reducing the amount of diversity and ideas available to the software engineering

pool. We need to meet both the technical and motivational needs of these end-user

programmers to elicit the innovation in waiting ultimately fueling the ubiquitous

computing software development ecosystem.

3.1 In order to fuel this innovation in both end-user programmers and

traditional developers, we need to broaden our focus from standard productivity to

include intrinsic motivation. Early integrated tool sets addressed the needs

specific to those who developed them. They were geared toward individual

coding, advanced users and allowed for little self-directed behavior in the coding

8

execution. These coders developed for desktop and limited form factors and

allowances. Programmers today must create applications that span an immense

range of devices and users. As IDEs have evolved, some modern developer roles

and technical needs have been addressed but developer motivation and diversity

has largely been ignored. It is well supported that innovation is fed by creativity,

diversity, collaboration and intrinsic motivation [3,50,56]. Perhaps the modern

day IDE is limiting the growth of intrinsically motivated, diverse developer

populations and thus rapid innovation today. One way to improve on this would

be to introduce elements into IDEs that intrinsically motivate developers and end-

user programmers. Since open source software (OSS) features collaboration, and

methods to make or suggest improvements, OSS model could serve as a

referential starting point.

A common assumption in modern society is that developers are motivated

by external factors such as financial incentives, career success or peer approval.

However many studies demonstrate that extrinsically motivating a person

increases their ability to perform non-complex tasks [26,18]. Once a task becomes

complex and requires creativity and problem solving, extrinsic motivating factors

have been shown to decrease performance [26,18].

Since extrinsically motivating developers could undermine their intrinsic

motivation [15] and the competencies exhibited by superior programmers,

strategies to increase intrinsic motivation become increasingly important. In fact

several studies suggest developers rarely begin coding for financial gain, [7] with

less than 20% report becoming developers for money. The remainders are

attracted by the development process itself and would not switch careers for a

significant increase in salary [25].

Since most developers rely on some sort of IDE, and little work has been

focused on motivation in this area [7], we examined agents to promote intrinsic

9

motivation in that environment. There is also a lack of an appropriate method to

measure developer motivation as previous work has typically used the unreliable

metric of job turnover, which encompasses lifestyle and family pressures [7].

Under that premise, we explore the meta-theory of self-determined behavior as a

suitable lens to view motivation in software engineering.

Self-deterministic theory (SDT) posits that an individual feels the most

intrinsically motivated when they are experiencing a high level of the three basic

psychological needs of autonomy, competence and relatedness [19,42].

Henceforth, this paper will refer to these components as the three basic needs. An

individual experiences autonomy when they have self-directing freedom [19]. In

an IDE, a user would experience autonomy when they can choose to work in the

manner they wish. If an IDE forces certain work actions that a user doesn’t

willfully choose they may experience decreased autonomy.

Competence is a sense of capableness coupled with the confidence that a

person can achieve an imminent task [19]. This could translate to the IDE

environment in the form of learnability, usability and debugging. If an IDE has

too steep of a learning curve, is an environment that causes developers to error

easily or cannot effectively debug, the developer may feel a reduced sense of

competence. A reduction in the perception of competence could also occur if

attaining assistance or necessary technical information is too difficult.

Relatedness encompasses the engagement a developer has with his or her

direct peers and technical community [19]. An IDE that supports relatedness

would allow for collaboration, make communication between teams efficient and

provide means to develop trust in a teammates work.

Creating an IDE that sufficiently supports and avoids undermining

feelings of autonomy, relatedness and competence could make large strides in

increasing innovation and diversity in the computer science community.

10

Previous studies have evaluated intrinsic motivation in virtual

environments [11,44], however none have measured the level of intrinsic

motivation experienced while using an IDE. In response we created a validated

survey tool measuring intrinsic motivation while engaging with a software tool.

While there is a large body of knowledge studying motivation in software

developers, there is little through the lens of SDT. We listed the methods of

supporting and undermining motivation in the computer science literature and

compared it to the techniques in the psychology knowledge base. Using the

survey tool and the literature analyses, we seek to answer the following questions:

1. Do modern IDEs support intrinsic motivation in developers?

2. What types of developers experience the most and least intrinsic

motivation?

3. How can modern IDEs be adapted to foster heightened and reduce

undermined intrinsic motivation?

In addition to these research questions we completed a literature summary

of the computer science and psychology fields to assess the relevance of an SDT

model to view intrinsic motivation in developers.

11

4. Self deterministic theory explained

Since we have chosen to use SDT as a model to assess a developer’s

feelings of motivation while using an IDE, it is important to understand its

constructs and how they relate to each other. The following sections explain SDT

and offer insight into behaviors that support and undermine intrinsic motivation.

The constructs are interdependent and their relationships are shown in Figure 1.

Figure 1: The self-determination continuum [42]

4.1 Self-determined behavior

The primary difference between and intrinsically and extrinsically

motivated behavior is source of causality. If the reason to behave in a certain

manner is decided by the individual performing it, it would be described as self-

determined. In relation to SDT, self –determined behavior exists on a continuum,

see Figure 1. Since the most self-determined behavior is intrinsically motivated it

stands to reason that it enhances the traits of exceptional developers. It is defined

as the attitudes and abilities needed to act as the primary locus of control in a

person’s life. The most self-determined behavior exists when people make

12

choices about their quality of life without unnecessary external influence or

interference [57]. In short, being self-determined means being the causal agent in

the choices and decisions impacting one's life [19,20,58]. Self-determination is

influenced by the numerous factors detailed in the sections below.

4.2 Self-Deterministic Definitions

Intrinsic, extrinsic motivation and amotivation are the drives experienced

by an individual directly impacting their ability to act in a self-determined manner

[42].

Intrinsic motivation is the drive to engage in an activity for its inherent

satisfactions while striving inwardly to be competent and self-determined [42]. It

can be observed in infancy as exploratory behavior, is mutually exclusive of

parental encouragement [9] and driven by the basic psychological needs of

autonomy, relatedness and competence [42]. Even though intrinsic motivation is

an innate trait, the level at which it’s experienced depends greatly on social

context. As a result, it is easily disrupted by unsupportive conditions [43]. When

an individual feels intrinsically motivated there are numerous benefits. They

experience an elevated sense of well-being, a greater desire to engage in

challenges, heightened persistence, creativity and conceptual understanding

[16,41,42,49].

Extrinsic motivation is the drive to engage in an activity based on external

rewards or constraints imposed by others. Like intrinsically motivated actions,

extrinsically motivated behaviors can be self-determined if an individual

internalizes it [42]. This process is organized across a continuum based on

perceived loss of causality and is organized into four categories of self-regulation;

external regulation, introjected regulation, identified regulation and integrated

regulation [42]. External regulation is typically experienced as being controlled or

alienated [14]. It is the type of motivation studied by Skinner [51] and the

13

common association of the general population to the concept of motivation.

Introjected regulation involves absorbing a behavior but not fully accepting it as

one's own. These behaviors are contingent on self-esteem and are often performed

to avoid guilt and anxiety and can support ego in the form of pride. A more

autonomous regulation is that of identification, which happens when a person

consciously values a behavior and accepts it as personally important [42]. The

most self-determined type of extrinsic motivation is identified regulation. A

behavior is identified when it has been evaluated and synthesized with the

individuals existing values. While these actions share qualities associated with

intrinsic motivation, they are completed to attain an external outcome and thus

classified as extrinsic [42]. Additionally attaining an external reward diminishes

the experience of intrinsic motivation for the activity performed [42].

Amotivation is the state of lacking the intention to act. [19]. It is similar to

the concept of learned helplessness [2] that occurs when individuals feel

incompetent, repressed volition and do not see any connections between their

actions and an outcome [19]. Amotivation results from placing no value in an

activity [19] not feeling the competence to do it [4], or expecting it to yield an

undesirable or nonexistent outcome [47].

4.3 Self- deterministic theory

Self-deterministic theory (SDT) is a meta-theory encompassing a broad

framework of synthesized research and theories demonstrating how to best elicit

self-determined behavior. It encompasses inherent growth tendencies and the

innate psychological needs of autonomy [14,17] relatedness [5,45] and

competence [29,38] as a basis for self-motivation and personality integration. The

basic needs are vital to the experience of intrinsic motivation, integrity and well-

being and must be sustained across the life span [37,55]. Each need can be

enhanced or diminished in different social contexts, detailed below.

14

Autonomy is the need to experience self-direction and personal choice in

the engagement of one’s behavior. Behavior is autonomous when one’s interests,

preferences and wants guide our decision-making. There are three subjective

qualities within the experience of autonomy: an internal perceived locus of

causality, volition, and perceived choice [19,42]. It is feelings of autonomy that

directly impact the previously described self-regulation categories of extrinsic

motivation. When a person makes a choice based in personal endorsement rather

than compliance, more autonomy is experienced and integrated regulation is most

likely to occur [40,54]. Finally, autonomy has often been perceived as detrimental

to relatedness and community due to its association with individualism and

independence [52], which would seem counterintuitive to SDT. Within SDT

however, autonomy refers to the feelings of volition rather than independence that

accompany individualistic or collectivist acts [42]. This finding is supported by a

study [31] conducted in Korea and the U.S., which discovered a positive

relationship between autonomy and attitudes of collectivism rather than between

autonomy and individualism.

Relatedness is the need to experience a sense of belonging, inclusion,

close emotional bonds and attachments into a specific group of individuals. Like

autonomy, relatedness is needed on order to facilitate internalization of an

extrinsically motivated behavior [42]. Persons in relationships with elevated

relatedness understand each others rationale for prescriptions and proscriptions.

These relationships are characterized by emotionally positive interactions and

partners, as well as perceptions of an intimate, high quality, caring, liking,

accepting and valuing social bonds. [42]. They are also associated with belief in

surplus, lack of judgment, shared experience, self compassion, introspection, low

entitlement, high agreeableness and extraversion. Unsupported relationships are

associated with a belief in scarcity, low self-compassion, low introspection,

anxiety and high entitlement [13]. Finally, higher related feelings occurred in

15

exchange relationships, where there is a trade of favor with some future expected

return [10] when there was a high level of trust [30] and an obligation to

reciprocate [10,27].

Competence is the need to be effective in interactions with the

environment. Those experiencing feelings of competence perceive that they can

excel at the task at hand [42]. Persons also feel elevated competence when they

experience flow; a state of concentration that involves a holistic absorption in an

activity [27]. Certain aspects of flow are regulated by task difficulty and

individual skill set, meaning if the task is too difficult or easy for an individual,

flow cannot be experienced [27]. Flow is also supported through the concept of

optimal challenge where a person experiences the most pleasure following

success with a moderately leveled challenge [29].

4.3.1 Self-deterministic sub-theories

Five sub-theories form the basis of the self-deterministic meta-theory.

These theories were formed by studying certain behaviors and approaches

impacting intrinsic motivation and thus become important in determining

appropriate methods to use in the computer science field.

Cognitive Evaluation Theory (CET) was framed by Deci and Ryan [19] in

terms of social context and environmental factors that facilitate versus undermine

intrinsic motivation. It primarily focuses on the needs for autonomy and

competence and shows that elevated intrinsic motivation cannot be accomplished

unless feelings of competence are accompanied by a sense of autonomy [22,39].

Organismic Integration Theory (OIT) details the factors that promote or

suppress internalization and integration of external motivators. Internalization is

more likely to occur when there is environmental support for relatedness. Feelings

of volition elicit internalization and are a critical element for integration

[19,21,42].

16

Causality Orientation Theory (COT) describes and assesses three types of

behavior regulations; the autonomy, control and impersonal orientations. The

autonomy orientation deals with action based in interest and value for a situation.

Control orientation focuses on rewards and gains, while impersonal is

characterized by anxiety concerning competence [42].

Basic Psychological Needs Theory (BPNT) suggests psychological well-

being is predicated by experiencing competence, relatedness and autonomy. All

three needs are essential and universal aspects of wellness across cultures. If any

of the three needs are not experienced it results in reduced well-being [21].

Goal Contents Theory (GCT) highlights the differences in intrinsic and

extrinsic goals and maps their impact on motivation and wellness. Extrinsic

rewards are aligned differently than intrinsic and have a negative impact on well-

being [21].

17

5. Related Works

While there has been significant work done in the area of motivation in

developers, nothing has been completed specific to SDT in an IDE. Much of the

research supports SDT, but a significant portion was completed before the 2000

publication introducing the theory [42]. SDT and its direct constructs has been

used to examine end-users in the virtual environments of gaming, online learning

and open source, but none have looked at developers.

5.1 SDT and Computer Use

SDT in virtual environments and video games

Chen and Jang [11] drew on SDT to measure online learner motivation

and concluded that motivation and self-determination did not predict learning

outcomes. The study did however, support SDT’s main theory of distinctive

motivational constructs.

Another study investigated motivation for computer based game play and

its effect on well-being [44]. They concluded that features conducive to

perceptions of autonomy, competence and relatedness enhance motivation for

game play, leading to enhanced well-being. Autonomy and competence elicited

feelings of intuitive controls (sense of control and effectiveness), game enjoyment

and desire for future play. Competence was also related to presence, higher state

of self-esteem and mood.

The motivation for end-users to appropriate open source software (OSS)

was examined using the academic motivation scale and the three types of

motivation encapsulated in SDT: intrinsic, extrinsic and amotivation [32]. Results

indicate that with the exception of the need to accomplish, all other motivational

factors were relevant.

18

Motivation in Software engineering

Motivation in software engineering has been studied in many capacities

outside of SDT but little work has been done to examine the known developer

motivators of learning, exploring new techniques and problem solving [7]. A

literature review by Beecham et. al developed a new software engineering

motivational model, Motivators, Outcomes, Characteristics and Context (MMOC)

based on those 4 characteristics identified in previous literature [48]. The model

proffers a method for software engineers and managers to gain insight into their

behavior and includes newer works focusing on open source where facets such as

turnover and productivity are minor. This study also surveyed motivation in

software engineering and produced several themes.

Individual tendencies such as moderating paired with controlling or

implementing play a role in whether software engineers form homogenous

groups.

They found 22 different motivators and 15 de-motivators for software

engineers, some of which fell into both categories. This was thought to be due to

varying career stages of the individuals studied. Turnover and absenteeism are the

most common outcome of engineering de-motivation, while little work focused

on motivations to stay in the profession.

While learning, exploring and problem solving are motivating aspects of

software engineering, scant work has examined their nature or how the reliance

on tools or programming languages are impacted by them. Better ways of

measuring motivation need to be developed.

There is a clear need for a comprehensive model of motivation in software

engineering that includes the motivating factors in the task of software

engineering itself. There are a variety of software engineering models, none

19

address the characteristics of moderating and controlling, moderating and

implementing [7].

It is important to note that SDT is not one of the theories addressed in the

Beecham et. al. study, however most of the sub theories and concepts attributing

to it are.

A second literature review completed in 2011 [23] again summarizes

motivation in software engineering. They concluded that even though the number

of researches in this area has increased in recent years the overall understanding

of what actually motivates software engineers hasn’t changed significantly.

Finally the most recent study in this area has been a qualitative analysis

involving a case study of a small software engineering company [24]. They

concluded that learning and growth contributed the most to the motivation story at

the company. Like the majority of existing software engineering research, it

supports SDT as an appropriate model to evaluate motivation.

OSS and motivation

Because of its unique characteristics it is important to understand the

motivation of OSS developers. The OSS environment is different from traditional

development in that it is always a collaborative effort using different

communication styles. OSS developers can make contributions to the software

they use and there are stringent systems for determining competence of these code

committers. These differences are directly related to the basic psychological needs

so one could anticipate that OSS developers would have a different motivation

score than traditional developers. It is important to measure the motivation of

these developers because they use and also create IDEs.

Several studies examined developers’ motivations to be involved in OSS.

Bitzer et. al. [8] analyzed the phenomenon of OSS, and motivation for sharing

from an economic stand point. They showed that the intrinsic motivating factors

20

of fun, play, and gift culture are motivators in OSS involvement. Since many OSS

projects are successful and profitable, it negates the idea that intrinsic motivators

shouldn’t be considered in commercial software for economic gain.

Linux contributors were surveyed by Hars et. al [28] to determine if their

motivation factors were intrinsic (innate desire to code, and altruism), or extrinsic

(future revenues, building human capital, self marketing, peer recognition,

personal needs). Their results indicated that OSS developers had a higher

propensity for extrinsic factors heavily weighted in building human capital. This

uncovers a design flaw in thier study in that building human capital is commonly

perceived as expanding a skill set. Furthermore it is explicitly defined as such in

the Hars paper. Viewed this way, building human capital is a learning and

exploratory behavior which would be classified as an intrinsically motivated

behavior.

End-user programming and motivation
Because of their potential impact to the future innovation in ubiquitous

computing, it is meaningful to examine the literature surrounding end-users. In

addition to the existing motivational research in computer science, two studies

deal with end-user programming and motivation. They demonstrate that SDT

constructs are well supported in terms of end-user programmers and that the

survey tool created in this paper would effectively measure the motivation of end-

users relying on tools to develop. Chintakovid [12] researched flow and self-

efficacy, which are correlated to the basic need of competence. In this case the

more self-efficacy an end-user programmer has the more flow they experienced.

Beckwith et. al [6] examines the effect of self-efficacy and tinkering (to

encourage self efficacy) on performance in end-user debugging with respect to

gender. Females who tinkered felt more self-efficacy and in turn increased

performance.

21

6. Methodology

6.1 Vetting SDT as an appropriate model for analyzing

motivation in computer science.

To evaluate how suitable SDT is to measure motivation in computer

science, we turned to the existing literature. We summarized motivators and de-

motivators from the computer science research and methods effecting intrinsic

motivation in psychology literature. These summaries were then synthesized into

specific recommendations for improving intrinsic motivation in IDEs.

Previous work by Beecham et. al [7] provided us with lists of motivators

and de-motivators in the existing literature and the number of citations supporting

them. 519 papers were surveyed and 22 motivator and 15 de-motivator themes

were identified. This list provided the basis for our analysis of SDT as an

appropriate theory of motivation for developers. Each motivator and de-motivator

were vetted and categorized into the constructs of SDT; autonomy, relatedness,

competence, and intrinsic and extrinsic motivation. Additionally, they were

labeled as supporting or undermining the three psychological needs. If a motivator

or de-motivator couldn’t be categorized, it was classified as ‘unclear’. Finally

each motivator and de-motivator was assigned an identification tag to ensure its

source when they were synthesized into final recommendations to improve IDEs.

To determine if the constructs of SDT were indeed relevant to computer science,

we totaled the number of citations supporting each. See Tables 1 and 2 in the

Appendix for a detailed depiction.

To determine the common methods for enhancing and undermining

intrinsic motivation in the psychology literature, we surveyed 23 papers

representing the most relevant work in SDT.

[2,5,9,13,14,16,18,19,20,21,27,29,30,37,38,41,42,43,45,49,52,54,55,57,58]. Our

22

analysis identified 30 thematic methods of supporting and 25 undermining the

three basic psychological needs of autonomy, competence and relatedness. All

methods were indentified as intrinsic motivators tagged with its relevant basic

need. Autonomy was supported in 12 methods and undermined in 7, competence

was supported in 7 methods and undermined in 7, and relatedness was supported

in 12 and undermined in 7. Each method was assigned an identification number so

that we could synthesize them with results of the computer science literature

review before making our recommendations to improve IDEs. See Appendix

Tables 3, 4 and 5 for details.

Next, to determine if SDT was a suitable theory of motivation in computer

science, we tallied the number of citations supporting each SDT construct, see

figure 2. A total of 469 citations indicated at least one of the SDT constructs was

a factor in determining developer motivation. Intrinsic factors supporting

motivation were referenced 167 times while undermining surfaced 30 times. The

basic needs were also indicated at a high rate and 12 citations were excluded

because we couldn’t determine a supporting construct.

Figure 2: Summary of literature review citations related to SDT

23

Finally, we synthesized the two literature analyses into approaches for

improving intrinsic motivation in IDEs. To ensure the specific approaches we

prescribed were rooted in existing research, we combined both the psychology

SDT methods and the computer science, see appendix table 6. Based on this list,

we hypothesized 16 specific approaches to increasing intrinsic motivation in an

IDE. Each approach was tagged with its relevant basic needs, supporting

psychology methods and motivators/de-motivators from the computer science

literature. This was done to visualize which approaches could have the most

potential impact on enhancing intrinsic motivation in an IDE. See Table 6 in the

Appendix for details.

6.2 Validated tool to measure the basic need support

Part of the problem in studying developer motivation is the lack of a

consistent method to evaluate motivation. Additionally there is currently no

method to evaluate intrinsic motivation support while using a software tool. Since

higher feelings of autonomy, relatedness and capableness have been shown to

support feelings of intrinsic motivation we developed and validated an instrument

to measure basic need support while using a software tool (see Table 6.1). To do

so, we surveyed developers in a diverse demographic who answered 5 questions

each for each basic need measuring how autonomous, related and capable they

felt while using their development tools see table. The questions used were

generated based on existing basic need support scales [29,59,60,61,62] and

adapted to IDE use. The tool was validated with 103 responses for reliability in

each basic need section; Cronbach’s alpha autonomy (.815), relatedness (.927)

competence (.815). Validity factor analysis showed a one-factor solution for each

need. Based on the average of the 5 corresponding questions each participant

received a score indicating how autonomous, capable and related they felt while

24

using their current tool set. They also received a total intrinsic motivation support

score encompassing the average of all three needs. The terms defined in the

survey were, My tools, the collection of tools that you use to program, design or

create user experience, Autonomy, the freedom to function or act independently

and un-coerced (This refers to your experience within the tool rather than your

experiences with colleagues), Relatedness, building effective relationships in your

team while fostering interpersonal support, and Competence, the ability to do

something successfully or efficiently.

Table 6.1 Validated survey tool to measuring intrinsic motivation support

Autonomy

How strongly do you agree with the following statements describing your sense of

autonomy while using programming, software design and architecture and user

experience design tools? Scale 1-7 (1 = strongly disagree, 7 = strongly agree)

My tools allow me to customize my experience.

My tools allow me to present my work in a way that others can understand.

My tools allow me work in the manner I wish.

My tools allow me to find the answers that I need.

My tools allow me to voice concerns or suggestions for improvement.

Relatedness

How strongly do you agree with the following statements describing your sense of

relatedness while using programming, software design and architecture and user

experience design tools? Scale 1-7

My tools have features that facilitate team member connectedness.

My tools allow me to understand how my team mates work.

My tools provide me with the necessary information to build trust in the work of my

teammates.

My tools allow me to collaborate with my teammates.

My tools make it easy to communicate with my team.

25

Competence

How strongly do you agree with the following statements describing your sense of

competence while using programming, software design and architecture and user

experience design tools? Scale 1-7

I am skilled at using my tools in comparison to other developers or designers.

I felt competent after working with my tools for a month.

I am proficient at using my tools.

I am satisfied with my performance while using my tools.

I feel able to meet project challenges using my tools.

6.3 Assessing intrinsic motivation in developers

We questioned 103 developers and assessed their intrinsic motivation,

demographics, development methods and preferences. These developers were

recruited via online outlets, e-mail, social media and word of mouth. Persons

under 18 years of age were excluded as well as developers with less than 3

months of experience. We hoped to identify patterns in the developers work style

that would identify specific areas where they felt lacking in intrinsic motivation.

Each developer was surveyed about their years of experience and percentage of

time they spend programming (writing, debugging, and maintaining the source

code of computer programs), software architecture and design (the process of

problem solving and planning for a software solution including low-level

component and data structure design, the architectural view and identification of

technical and user requirements), and user experience design (the design of all

aspects of a users experience with the system including the interface, graphics,

physical interaction, and the manual). We also assessed intrinsic motivation based

on developer style and preference. They rated on a scale from 1-7 feelings about

26

version control, WYSIWYG (what you see is what you get) graphical user

interface tools, code reuse, testing and peer programming.

Respondents were also questioned about their intrinsic motivation with

regard to a large number of software development tools. The tools ranged in

purpose from programming to architecture to user experience and the respondents

were asked to indicate which tools and languages they favored. If the developer

didn’t use the tool listed, no data was recorded for that tool. We included the

following list of tools and languages. Tools: Adobe Creative Suite, Adobe Flash

Builder, AppMobi, Aptana, Axure, Basalmiq, Browser developer tools, Cloud 9,

Eclipse, Emacs, Invision, Iplotz, iRise, JetBrains, IntelliJ, IDEA, JetBrains,

WebStorm, jQuery, Justinmind, Microsoft Expression Blend Studio, Microsoft

Web Matrix, MobiOne, manual sketches, Phonegap, Power Point, Protoshare,

Sencha, Architect, VIM and Visual Studio XAML/WPF. Languages:

ActionScript, Apex, ASP, C/C++, C#, Clojure, CoffeeScript, ColdFusion, Erlang,

F#, HTML/CSS, Java, JavaScript, Objective-C, Perl, PHP, Python, Ruby, Scala,

Shell Script, SQL, Visual Basic and XAML.

27

7. Results

7.1 Do contemporary IDEs support motivation in developers?

Developer demographic
103 developers with diverse backgrounds responded to our survey. The

average age was 34 years and ranged from 18-65 years of age. Males accounted

for 53% of survey respondents, and females 47%. While 97% of them currently

reside in the US, they originated from 16 different countries. The developers

ranged in experience from 0.25 yrs to 33 yrs, with an average of 8 yrs of

experience. 71% have developed as a hobby while 86% have coded as a means of

primary income.

Our respondents engage in multiple types of development. Mobile

application development was practiced by 46%, web development 79%, desktop

63%, databases 61%, embedded 19% and system development 46%. As to job

function, they spent an average of 45% of their time programming, 22% engaged

in activities related to software design and architecture and 18% on GUI design

and user experience. They came from small companies of 1 employee to over

5000, with an average of between 51 and 200 employees. Students (undergrad and

graduate) made up 48% of the respondents while 52% were not. Their academic

backgrounds were primarily computer science (55%), natural sciences (14%),

math and statistics (12%) and engineering (12%).

Developers and tools

Our survey found that developers have an average intrinsic motivation

support score of 4.85 on a scale of 1-7 while using their tool sets. A score of 7

indicates strong feelings of intrinsic motivation. This potentially shows that there

is room for improvement, that tools could be developed to better support intrinsic

motivation, autonomy, competence, and relatedness.

28

Most of the tools surveyed did not have a significant relationship with

intrinsic motivation in any capacity. Some demonstrated correlations to

competence, but no IDE showed a significant relationship to relatedness or

autonomy emphasizing the lack of community and flexibility in the developer’s

experience. Developers that used Adobe Creative Suite and Visual Studio felt the

highest competence (r = 2.51, p < 0.05). Finally, there were no significant positive

correlations with autonomy or relatedness in any IDE, suggesting a need for more

flexible, connected tools.

Two areas we hypothesized would have a significant relationship, didn’t.

There was no significant relationship between intrinsic motivation support and

IDEs typically used in developing Open Source Software, such as Eclipse. There

was also no significant relationship between intrinsic motivation and respondents

using prototyping tools. Table 2 provides an overview.

Table 7.1 Spearman’s Correlation Matrix r Tools vs. basic need scores *indicates

p<.05
**

indicates p<.01

 Intrinsic

Motivation

Support

Score

Competence

Score

Relatedness

Score

Autonomy

Score

Adobe Creative Suite is favorite tool -
.285

**

- -

Visual Studio, XAML/WPF as part of

my job

-
.230

*

- -

Visual Studio, XAML/WPF is favorite

tool

-
.324

**

- -

29

7.2 What factors affect intrinsic motivation support in

developers?

Coding in spare time

A significant relationship was found between the 15% of developers who

contribute to OSS projects in their spare time and the intrinsic motivation support

score (r = .220, p <.05). While there was no significant correlation with

competence or relatedness, there was with autonomy (r = .216, p <.05).

Developers that spent the most time exploring and learning new

development technologies in their spare time had a positive correlation with

intrinsic motivation support (r = .222, p <.05) and autonomy (r = 264, p <.05).

Those who developed in their spare time for a paying customer had a

significant positive relationship with competence (r = .324, p <.01).

Developer roles

Developers whose time was spent primarily programming rather than in

software design or user experience design showed a significant positive

correlation with autonomy (r = .336 p, < 0.01). No significant correlations

between intrinsic motivation and other activities related to programming surfaced.

Code Re-use

49% of the respondents felt that it was easy to determine the quality of

code that they re-use. These developers also had positive correlations to intrinsic

motivation (r = .305, p < .01) and relatedness (r = .265, p < .05).

Version Control

According to 73% of developers surveyed, version control is well

integrated into their programming process. These respondents had a positive

correlation with intrinsic motivation support (r = .227, p < .05), competence (r =

.259, p < .05) and autonomy (r = .252, p < .05). On the other hand 20% of the

30

respondents found it difficult to track what others were doing with code in

repositories. These developers had a significant negative correlation with all for

measures. Intrinsic motivation correlation was (r = -.446, p < .01), competence (r

= -.261, p < .05), relatedness was (r = -.359, p < .01) and autonomy was (r = -

.316, p < .01).

WYSIWYGs

Developers who use WYSIWYGs to design GUIs had a significantly

negative correlation with intrinsic motivation support (r = -.296, p < .01),

relatedness (r = -.231, p < .05) and autonomy (r = -.240, p < .05)

Gender

Female developers showed a significantly negative correlation with

feelings of competence (r = .242, p < .05)

Finally, we did not find a significant correlation for between the 39% of

developers who use peer programming and relatedness. Developers with the most

experience and a background in computer science did not significantly correlate

with competence. Also, the developers who engaged in the most different types

(mobile, web, embedded etc.) of development did not exhibit a significant

relationship to competence.

Table 7.2 Spearman’s Correlation r matrix; basic need support score vs. developer

characteristics *indicates p < 0.05, **indicates p < 0.01

31

Developer Characteristic

Intrinsic

Motivation

Support

Score

Competence

Score

Relatedness

score

Autonomy

Score

Explore or learn new

development technologies as a

hobby

.222*

- - .264*

Develop projects for a paying

customer outside of day job

- .324**

- -

Contribute to open source

projects as a hobby

.220*

-

-

.216*

High percentage of time spent

programming (rather than

architecture or UX design)

- - - .336**

Find it easy to determine the

quality of code they reuse.

.305**

-

.265*

-

Feel version control is well

integrated into my

programming process.

.227*

.259*

-

.252*

Find it difficult to track what

others are doing with the code

in the repository.

-.446**

-.261*

-.359**

-.316**

Use WYSIWYG tools when

developing a GUI.

-.296**

-

-.231*

-.240*

Females - -.242* - -

32

7.3 How can modern IDEs adapt to foster heightened intrinsic

motivation?

Approaches to enhance intrinsic motivation in an IDE

Our literature audit resulted in 13 approaches to enhancing intrinsic

motivation in an IDE, see table 4. Here, we compare these approaches to our

survey results to better visualize their potential impact. We assigned each

approach the number of methods from the literature supporting it. We also

indicated whether it was supported by our survey and the three basic

psychological needs of autonomy, relatedness and competence. We determined

any approach that facilitated feelings of autonomy, competence or relatedness to

be supported by our survey results. Competence was selected because only 2 out

of the 31 tools listed significantly correlated positively with competence. 3 tools

also had a significant negative relationship with competence. Autonomy was

chosen because 4 of the listed tools significantly correlated negatively with

autonomy. Additionally, there was no significant positive relationship between

autonomy and the remaining tools. Finally we selected relatedness because it did

not have a significant relationship with any tool.

The most strongly supported approach was #1: Create a moderated

environment between users fostering positive social interactions and expression of

preferences, interests and competencies. The environment would also need to

suppress feelings of entitlement and encouraging feelings of equity. This

approach was supported by 11 methods in the literature, our survey results and all

the three basic psychological needs of autonomy, relatedness and competence.

Approach #2: Supply avenues for developers to express concerns and

work style preference to the IDE creators. Paraphrase back concerns and ask

developers for input, was supported by 8 methods in the literature, all three basic

needs and our survey results.

33

Approach #3: Complete usability studies on features to ensure clear

communication, reduce any unnecessary steps and test intrinsic motivation score.

Testing should also ensure structured workflow; make sure it’s in optimal

challenge, is also well supported. It is supported by all three basic psychological

needs, our survey results and by 6 methods in the literature. This approach also

employs the tool we created to measure intrinsic motivation. The average intrinsic

motivation score in our survey was 4.85, using this tool in usability testing could

quantify feelings of intrinsic motivation in future IDEs

Finally approach #4: Provide a means for developers to collaborate in

solving problems and supply easy channels to find information about their

problem, is support by all three basic needs, our survey results and 4 methods

from the literature. This approach would need to look beyond simple peer

programming, which wasn’t indicated as particularly intrinsically motivating in

our survey.

There are an additional 9 approaches that are less supported, but with

reasonable potential to improve intrinsic motivation in IDEs shown in table 4.

Table 7.3 Approaches to support intrinsic motivation in an IDE

A
ut

on
om

y

R
el

at
ed

ne
ss

C
om

pe
te

nc
e

Su
pp

or
te

d
in

 su
rv

ey

re
su

lts

of

 su
pp

or
tin

g
m

et
ho

ds
 in

 th
e

lit
er

at
ur

e

Synthesized approaches to enhance intrinsic
motivation in an IDE [2,5,9,13,14,16,18,19,20,21,
27,29,30,37,38,41,42,43,45,49,52,54,55,57,58]

 11

1. Create a moderated environment between users
fostering positive social interactions and expression of
preferences, interests and competencies. The
environment would also need to suppress feelings of
entitlement and encouraging feelings of equity.

 8
2. Supply avenues for developers to express concerns
and work style preference to the IDE creators.
Paraphrase back concern and ask developer for input.

34

 6

3. Complete usability studies on features to ensure clear
communication, reduce any unnecessary steps and test
intrinsic motivation score. Testing should also ensure
structured workflow; make sure it’s in optimal
challenge.

 4
4. Provide a means for developers to collaborate in
solving problems and supply easy channels to find
information about their problem.

 1 5. If certain methods or work styles are forced, have
clear rationale available.

- 5
6. Identify lacking developer skills and coach them to
improve while communicating the importance of failing
and its relation to future success.

- 3

7. Introduce features that assist developers in
understanding how their teammates code and work.
Additionally, add features that facilitate a quicker return
to state of flow via methods that aid developers back
into the code they produced earlier or by someone else.

 - 6
8. Use performance metrics to identify developer
amotivation, determine lacking psychological need and
remind programmer of relevant supporting features.

 - - 5 9. Ensure developers have the freedom to choose coding
style and preferences.

- 2 10. Add humorous components and positive feedback
when the developer succeeds.

 - 2
11. Mimic the sense of community in open source
environments and encourage some level of initiative
and empowerment in tasks.

 - 2 12. Endorse skill sets and provide certifications
pertaining to career growth.

 - - 2 13. Ensure developers can work from multiple locations
with appropriate access if online.

35

8. Discussion

In this section we discuss the feasibility of using SDT in relation to

developer motivation and the outcome of doing so.

Is SDT a good model for measuring motivation in developers?

Our findings demonstrate that SDT is an appropriate model to measure

levels of intrinsic motivation in developers. 98% of the citations in existing

literature support the one or more constructs of SDT defined by [42] in 2000. We

also determined that our survey tool is robust method of determining intrinsic

motivation levels while an individual is using a virtual tool.

Do modern IDEs support intrinsic motivation in developers?

Our survey indicated that there is significant room for improvement in the

intrinsic motivation developers feel while using their tools. On average

developers had a total intrinsic motivation support score of 4.85 out of 7. Each

basic psychological need score returned a similar result indicating the need for at

least 20% improvement in the areas of autonomy, competence and relatedness

while using an IDE. This indicates that while developers aren’t feeling a deficit

of intrinsic motivation, they aren’t feeling a high level either. If future IDEs

created an environment rich in feelings of intrinsic motivation, a more diverse

group of developers might be compelled to code. This could ultimately lead to

increased innovation and disruptive technologies.

Visual studio and Adobe Creative Suite were the only tools that had a

positive relationship to competence. The other 29 tools showed no significant

positive relationship to the basic needs highlighting a large gap in intrinsic

motivation and tools that facilitate programming, software design and UX design.

It appears that IDEs aren’t making developers feel very competent. The more

developers that feel competent, the more likely they are to even attempt a project.

36

Raising those numbers could greatly enhance innovation. It is important to note

that the lack of positive or negative correlation could have been because the

developers in our survey didn’t use them. We don’t believe this to be the case,

because all but 3 tools were used by more than 20% of the developers surveyed.

Since Eclipse was an IDE developed as an open source tool, we would

have expected developers who use it to have more feelings of autonomy,

competence and relatedness. Surprisingly our survey results did not indicate a

significant relationship between intrinsic motivation and the use of Eclipse. It may

be that the developers in our survey using Eclipse weren’t part of the OSS

community contributing to it, thus weren’t reaping the benefits.

It is also important to note that we did not find a significant relationship

between for any intrinsic motivation constructs in respondents using prototyping

tools. We originally hypothesized that these individuals would feel less related

because of the current disconnect between IDEs and prototyping.

What types of developers experience the most and least intrinsic motivation?

Developers were asked about the reasons they code outside of work and

several correlated positively to intrinsic motivation support. We did not ask about

work related reasons therefore we couldn’t look for a relationship there. Those

who contribute to open source projects in their spare time showed a positive

correlation to intrinsic motivation. This is not surprising since those involved in

open source projects also engage in related communities and have the autonomy

to dictate solutions to the problems they encounter. Because of this, OSS projects

can serve as inspiration to improve intrinsic motivation.

Developers that spent the most time exploring and learning new

development technologies in their spare time correlated positively with intrinsic

37

motivation support and autonomy. This is not surprising as intrinsically motivated

people are driven to explore and learn.

Those who developed in their spare time for a paying customer correlated

positively with competence, which also makes sense. If a developer is confident

that someone would pay for their moonlighting work, they are likely to feel

competent in their skill set.

Intrinsic motivation support was high in developers whose time is spent

primarily programming rather than in software design or user experience design.

No significant correlations between intrinsic motivation and other activities

related to programming surfaced, suggesting a need to increase competence and

relatedness in features associated with basic programming. Since there were no

significant correlations between intrinsic motivation and other activities related to

programming, it seems that features supporting software design, architecture, GUI

design and UX are severely lacking in intrinsic motivation support overall.

Developers who felt it was easy to determine the quality of the code they

re-use felt more intrinsic motivation support and relatedness. This seems likely

considering the implications of relatedness and understanding someone else’s

work [42].

Version control was another area showing positive relationships to

intrinsic motivation. If developers felt that version control was well integrated

into their programming process higher feelings of competence and autonomy.

Conversely the developers finding it difficult to track what others were doing with

code in repositories had lower feelings of intrinsic motivation, autonomy,

relatedness and competence. This confirms our hypothesis and Deci’s [42] work

that being able to understand the work of your peers is imperative to your feelings

of relatedness.

Finally, developers who used WYSIWYGs to build GUIs showed a

negative correlation to intrinsic motivation, autonomy and relatedness.

38

WYSIWYGs don’t allow developers as much control in their GUI code which

would explain reduced feelings of autonomy.

Strengthening methods to understand developer actions in code

repositories may be a great place to start in improving feelings of autonomy,

competence and particularly relatedness.

With regard to developer demographics, the only significant correlation

was negative. Female developers had low feelings of competence. This is to be

expected as previous work has shown women developers feel less self-efficacy

than their male counterparts [6].

We hypothesized that developers engaging pair programming would feel

higher relatedness, however that was not the case in our study. It could have been

due to low numbers, but 39% of our respondents said they currently pair program.

It may be a result of the potentially negative feelings developers could experience

when someone is looking over their shoulder pointing out errors.

We would have also expected that developers with the most experience or

a background in computer science would have higher feelings of competence than

those who didn’t. However, there was no significant relationship present in any of

these cases. Finally, we expected higher feelings of competence in the developers

who engage in multiple types (mobile, web, embedded etc.) of development. Our

study did not reflect this, which may indicate that it’s not an existing skill set, but

rather factors such as self-efficacy that determine feelings of competence.

How can modern IDEs be adapted to foster heightened and reduce undermined

intrinsic motivation?

Based on our literature review and our survey, four approaches surfaced as having

the most potential impact in enhancing intrinsic motivation in future IDEs.

1. Create an environment moderated for positive interaction that allows

developers to interact socially and express preferences, interests and

39

competencies. The environment would also need to suppress feelings of

entitlement and encouraging feelings of equity.

2. Supply avenues so developers can express concerns and work style

preference to the IDE creators. Paraphrase back concern and ask developer

for input.

3. Conduct usability studies on features to ensure clear communication,

reduce any unnecessary steps and test intrinsic motivation score as well as

ensure structured work-flow, and optimal challenge.

4. Provide a means for developers to collaborate in solving problems and

supply easy channels to find information about their problem.

While these four approaches cover all constructs of SDT, they focus

heavily on feelings of relatedness. Since this was indicated in our survey as a

large gap between intrinsic motivation and IDEs, we recommend primarily

implementing features that enhance positive interactions amongst developers as

well as trust and understanding of teammates code to elicit impactful change.

Finally, we would like to discuss the limitations of this study. Our

conclusions could have been greatly strengthened by a larger sample set. While

the group of developers surveyed was diverse, larger numbers of developers in

multiple countries would have allowed us to make conclusions about the general

development community with more certainty.

40

9. Future Work

Verifying that SDT provides an adequate lens to view developer

motivation has opened the door to a number of new studies. It gives the computer

science community a common foundation to discuss and study developer

motivation. The survey tool can be used to test infinite features in any virtual

tool. There seems to be a lot that could be learned by examining intrinsic

motivation in OSS projects specific to the developer role and involvement. Based

on our study and the importance of relatedness, testing community-based

prototypes could aid in understanding the deficiencies in intrinsic motivation

support in IDEs. Finally creating environments that enhance intrinsic motivation

in end-user programmers could have a significantly positive impact on innovation

in ubiquitous computing.

41

10. Conclusions

In order to fully support traits that promote exceptional software

engineering we must examine the role of intrinsic motivation. SDT provides us

with an appropriate framework to do so. The survey tool we generated offers a

method to measure intrinsic motivation support in a person while using an IDE.

Based on results from this tool, we determined that developers who contribute to

OSS projects feel the highest level of intrinsic motivation. We also found that

feelings of relatedness in IDEs are the area most lacking and with the highest

impact potential for improving intrinsic motivation in end-user programmers and

traditional developers.

42

11. REFERENCES

[1] ABET, “Criteria for Accrediting Engineering Programs 2012-2013.”
http://www.abet.org/DisplayTemplates/DocsHandbook.aspx?id=3143
[2] Abramson, L.Y Seligman, M.E.P. & Teasdale, J.D. (1978). Learned
helplessness in humans: Critique and reformulation. Ournal of Abnormal
Psychology, 87, 49-74
[3] Amabile, T. M. (1996). Creativity and innovation in organizations. Harvard
Business School.
[4] Bandura, A. (1986). Social foundations of thought and action: A social
cognitive theory. Englewood Cliffs, NJ: Prentice-Hall.
[5] Baumeister, R., & Leary, M. R. (1995). The need to belong: Desire for inter
personal attachments as a fundamental human motivation. Psychological Bulletin,
117, 497-529.
[6] Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrance, J.,
Blackwell, A., & Cook, C. (2006, April). Tinkering and gender in end-user
programmers' debugging. In Proceedings of the SIGCHI conference on Human
Factors in computing systems (pp. 231-240). ACM.
[7] Beecham, S., Baddoo, N., Hall, T., Robinson, H., & Sharp, H. (2008).
Motivation in Software Engineering: A systematic literature review. Information
and Software Technology, 50(9), 860-878.
[8] Bitzer, J., Schrettl, W., & Schröder, P. J. (2007). Intrinsic motivation in open
source software development. Journal of Comparative Economics, 35(1), 160-
169.
[9] Bowlby, J. (2012). The making and breaking of affectional bonds. Routledge.
[10] Blau, P. (1964). Exchange and power in social life. New York: Wiley.
[11] Chen, K. C., & Jang, S. J. (2010). Motivation in online learning: Testing a
model of self-determination theory. Computers in Human Behavior, 26(4), 741-
752.
[12] Chintakovid, T. (2009). Effects of gender, intrinsic motivation, and user
perceptions in end-user applications at work (Doctoral dissertation, Drexel
University).
[13] Crocker, J., & Canevello, A. (2008). Creating and undermining social
support in communal relationships: The role of compassionate and self-image
goals. Journal of Personality and Social Psychology, 95(3), 555-575.
[14] deCharms, R. (1968). Personal causation. New York: Academic Press

43

[15] Deci, E. L., Koestner, R., & Ryan, R. M. (1999). A meta-analytic review of
experiments examining the effects of extrinsic rewards on intrinsic motivation.
Psychological bulletin, 125(6), 627.
[16] Deci, E. L., & Ryan, R. M. (1991, August). A motivational approach to self:
Integration in personality. In Nebraska symposium on motivation (Vol. 38, pp.
237-288).
[17] Deci, E. L. (1975). Intrinsic motivation. New York: Plenum.
[18] Deci, E. L. (1972). Intrinsic motivation, extrinsic reinforcement, and
inequity. Journal of personality and social psychology, 22(1), 113-120.
[19] Deci, E. L., & Ryan, R. M. (1985). Self‐Determination. John Wiley & Sons,
Inc.
[20] Deci, E. L. (1980). The psychology of self-determination. Lexington, MA:
Lexington Books
[21] Deci, E. L., & Ryan, R. M. (2000). The" what" and" why" of goal pursuits:
Human needs and the self-determination of behavior. Psychological inquiry,
11(4), 227-268.
[22] Fisher, C. D. (1978). The effects of personal control, competence, and
extrinsic reward systems on intrinsic motivation. Organizational Behavior and
Human Performance, 21, 273-288.
[23] França, A. C. C., Gouveia, T. B., Santos, P. C., Santana, C. A., & da Silva, F.
Q. (2011, April). Motivation in software engineering: A systematic review update.
In Evaluation & Assessment in Software Engineering (EASE 2011), 15th Annual
Conference on (pp. 154-163). IET.
[24] França, A. C. C., Carneiro, D. E., & Silva, F. Q. D. (2012, September).
Towards an Explanatory Theory of Motivation in Software Engineering: A
Qualitative Case Study of a Small Software Company. In Software Engineering
(SBES), 2012 26th Brazilian Symposium on (pp. 61-70). IEEE.
[25] Garvin, J. (Feb 2013) “Demographics shed light on developer personalities”
http://www.datanami.com/datanami/20130214/demographics_shed_light_on_the_
programmer_personality.html
[26] Glucksberg, S. (1964). Problem solving: Response competition and the
influence of drive. Psychological Reports, 15(3), 939-942
[27] Gouldner, A.W. (1960). The norm of reciprocity. American Sociological
Review, 25, 161-178.
[28] Hars, A., & Ou, S. (2002). Working for free? Motivations for participating in
open-source projects. International Journal of Electronic Commerce, 6, 25-40.
[29] Harter, S. (2009). Effectance motivation reconsidered. Toward a
developmental model. Human development, 21(1), 34-64.

44

[30] Holmes, J.G. (1981). The exchange process in close relationships:
Microbehavior and macro-motives. In M.J. Lerner & S.C. Lerner (Eds.) The
justice motive in social behavior (pp.261-284). New York: Plenum.
[31] Kim, Y.., Butzel, J. S., & Ryan, R. M. (1998, June). Interdependence and
well-being: A function of culture and relatedness needs. Paper presented at The
International Society for the Study of Personal Relationships, Saratoga Spring,
NY.
[32] Li, Y., Tan, C. H., Xu, H., & Teo, H. H. (2011). Open source software
adoption: motivations of adopters and amotivations of non-adopters. ACM
SIGMIS Database, 42(2), 76-94.
[33] Monthly Labor Review, “Occpuational employment projections to 2010
http://www.bls.gov/opub/mlr/2001/11/art4full.pdf
[34] Osterweil, L. (1981). Software environment research: Directions for the next
five years. Computer, 14(4), 35-43.
[35] Osterweil, L. J. (1983). Toolpack—An experimental software development
environment research project. Software Engineering, IEEE Transactions on, (6),
673-685.
[36] PR WEB, “Global Software Population to increase to 20 million by
2015,”http://www.prweb.com/releases/2011/9/prweb8834228.htm
[37] Ryan, R. M., & Frederick, C. M. (1997). On energy, personality, and health:
Subjective vitality as a dynamic reflection of well-being. Journal of Personality,
65, 529-565.
[38] White, R. W. (1963). Ego and reality in psychoanalytic theory. New York:
International Universities Press.
[39] Ryan, R. M. (1982). Control and information in the intrapersonal sphere: An
extension of cognitive evaluation theory. Journal of Personality and Social
Psychology, 43, 450-461.
[40] Ryan, R. M., & Connell, J. P. (1989). Perceived locus of causality and
internalization: Examining reasons for acting in two domains. Journal of
personality and social psychology, 57(5), 749-761.
[41] Ryan, R. M., Deci, E. L., & Grolnick, W. S. (1995). Autonomy, relatedness,
and the self: Their relation to development and psychopathology.. Autonomy,
relatedness, and the self: Their relation to development and psychopathology. In
D. Cicchetti & D, J. Cohen (Eds.), Developmental psychopathology: Theory and
methods (pp. 618-655). New York: Wiley
[42] Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the
facilitation of intrinsic motivation, social development, and well-being. American
psychologist, 55(1), 68-78.

45

[43] Ryan, R. M., Kuhl, J., & Deci, E. L. (1997). Nature and autonomy:
Organizational view of social and neurobiological aspects of self- regulation in
behavior and development. Development and Psychopathology, 9, 701-728.
[44] Ryan, R. M., Rigby, C. S., & Przybylski, A. (2006). The motivational pull of
video games: A self-determination theory approach. Motivation and Emotion,
30(4), 344-360.
[45] Reis, H. T. (1994). Domains of experience: Investigating relationship
processes from three perspectives. In R. Erber & R. Gilmour (Eds.), Theoretical
frameworks for personal relationships (pp. 87-110). Hills- dale, NJ: Erlbaum.
[46] Scaffidi, C., Shaw, M., & Myers, B. (2005, September). Estimating the
numbers of end-users and end-user programmers. In Visual Languages and
Human-Centric Computing, 2005 IEEE Symposium on (pp. 207-214). IEEE.
[47] Seligman, M. E. P. (1975). Helplessness. San Francisco: Freeman
[48] Sharp, H., Baddoo, N., Beecham, S., Hall, T., & Robinson, H. (2009).
Models of motivation in software engineering. Information and Software
Technology, 51(1), 219-233.
[49] Sheldon, K. M., Ryan, R. M., Rawsthorne, L. J., & Ilardi, B. (1997). Trait
self and true self: Cross-role variation in the Big-Five personality traits and its
relations with psychological authenticity and subjective well-being. Journal of
Personality and Social Psychology, 73, 1380-1393.
[50] Shneiderman, B. (2007). Creativity support tools: accelerating discovery and
innovation. Communications of the ACM, 50(12), 20-32.
[51] Skinner, B. F. (1953). Science and human behavior. New York: Macmillan.
[52] Steinberg, L., & Silverberg, S. (1986). The vicissitudes of autonomy in
adolescence. Child Development, 57, 841-851.
[53] Turley, R. T., & Bieman, J. M. (1995). Competencies of exceptional and
nonexceptional software engineers. Journal of Systems and Software, 28(1), 19-
38.
[54] Vallerand, R. J. (1997). Toward a hierarchical model of intrinsic and
extrinsic motivation. Advances in experimental social psychology, 29, 271-360.
[55] Waterman, A. S. (1993). Two conceptions of happiness: Contrasts of
personal expressiveness and hedonic enjoyment. Journal of Personality and Social
Psychology, 64, 678- 691.
[56] Weisberg, R. W. (2006). Creativity: Understanding innovation in problem
solving, science, invention, and the arts. Wiley.
[57] Wehmeyer, M. L. (1992). Self-determination and the education of students
with mental retardation. Education and Training in Mental Retardation, 27, 302-
314.

46

[58] Wehmeyer, M. L., & Berkobien, R. (1991). Selfdetermination and self-
advocacy: A case of mistaken identity. The Association for Persons with Severe
Handicaps Newsletter, 7, 4.
[59] Deci, E. L., Ryan, R. M., Gagné, M., Leone, D. R., Usunov, J., &
Kornazheva, B. P. (2001). Need satisfaction, motivation, and well-being in the
work organizations of a former Eastern Bloc country. Personality and Social
Psychology Bulletin, in press.
[60] La Guardia, J. G., Ryan, R. M., Couchman, C. E., & Deci, E. L. (2000).
Within-person variation in security of attachment: A self-determination theory
perspective on attachment, need fulfillment, and well-being. Journal of
Personality and Social Psychology, 79, 367-384.
[61] Ilardi, B. C., Leone, D., Kasser, R., & Ryan, R. M. (1993). Employee and
supervisor ratings of motivation: Main effects and discrepancies associated with
job satisfaction and adjustment in a factory setting. Journal of Applied Social
Psychology, 23, 1789-1805.
[62] Kasser, T., Davey, J., & Ryan, R. M. (1992). Motivation, dependability, and
employee-supervisor discrepancies in psychiatric vocational rehabilitation
settings. Rehabilitation Psychology, 37, 175-187.

47

An Evaluation of Game Controllers and

Tablets as Controllers for Interactive TV

Applications

Dale Cox, Justin Wolford, Dedrie Beardsley and

Carlos Jensen

48

11.1 ABSTRACT

There is a growing interest in bringing online and streaming content to the

television. Gaming platforms such as the PS3, Xbox 360 and Wii are at the center

of this digital convergence; platforms for accessing new media services. This

presents a number of interface challenges, as controllers designed for gaming

have to be adapted to accessing online content. This paper presents a user study

examining the limitations and affordances of novel game controllers in an

interactive TV (iTV) context and compares them to "second display" approaches

using tablets. We look at task completion times, accuracy and user satisfaction

across a number of tasks and find that the Wiimote is most liked and performed

best in almost all tasks. Participants found the Kinect difficult to use, which led to

slow performance and high error rates. We discuss challenges and opportunities

for the future convergence of game consoles and iTV.

49

12. INTRODUCTION

Interactive television promises to give viewers more flexibility and control

over their viewing experience, while enriching it with a wealth of Internet

accessible content and information. By giving the viewer a communication

channel back to service providers, viewers can not just access new services, but

also shape and control their viewing experience in ways that were not possible

before. This has so far led to the emergence of services such as video on demand

(Netflix, Hulu, etc.),the presentation of Internet content on TV screens (YouTube

& Flickr channels on Apple TV, etc.), but could also allow for content ratings,

interactive or contextual searching or social networking (see Boxee.tv).

For trivial tasks like navigating a simple movie rental UI, or controlling

streaming video content, a traditional remote control is often sufficient. For

instance, the Apple TV remote control is among the simplest available, with 7

buttons. However, as services become more complex and rich, requiring more or

finer levels of control or interaction – such as navigating a non-trivial web page or

GUI, carrying out drag and drop tasks, or more extensive text entry for search or

socialization – more sophisticated input devices may be required. Some of these

tasks overlap with those integral to the modern gaming experience. Video game

consoles, with dedicated game controllers, due to their pervasiveness,

connectivity and processing power are often at the center of this digital

convergence of TV and Internet content. It is therefore important to examine how

suitable current systems are for bridging this gap.

The last generation of game consoles have each introduced some device

capable of spatial gestures allowing the possibility for a natural user interface

(NUI), and which could be especially helpful for navigating complex UIs.

Microsoft released the Kinect for the Xbox 360 in 2010, a camera based system

that tracks players’ movement to allow for complex and natural interactions

50

without holding any kind of controller. Nintendo released the Wii in 2006, which

introduced the Wii Remote (nicknamed Wiimote), a wireless controller that tracks

spatial movement through accelerometers and infrared sensors. Sony has a similar

system for the Playstation 3.

These game consoles and their controllers have sparked the development

of tools and solutions beyond those in traditional gaming. The motion-driven

Nintendo Wiimote was the first to attract the attention of the hacker community

outside the console market. The Bluetooth interface of the Nintendo Wiimote

made it a simple and accessible device to “hack” and adopt for various uses. Soon

after the Kinect was released, the open source community reverse engineered the

device and released a driver package allowing others to develop systems that took

advantage of its capabilities. Its USB interface makes it ideal for use with a PC.

Today, several different open source SDKs exist, as well as an official Microsoft

Kinect SDK for Windows.

In addition, tablets continue to evolve and increase in popularity. Some

proposed game controllers are exploring the use of such touch interfaces (most

notably the upcoming Wii U). Tablets are also being considered as companions to

both gaming devices and iTV services (often referred to as second screen

navigation). According to a recent Pew study [7], tablet ownership nearly doubled

over just the 2011 holiday season. There are a number of applications currently

available that allow a tablet to serve as an input device for another computer such

as IntoNow (http://www.intonow.com) that detects which show or movie you’re

watching and provides additional media content and social networking

capabilities. These applications allow the tablet to function like a touch screen

display or to track pad found on most laptops and would serve as a suitable

baseline.

This paper explores the challenges and opportunities of using game-

related control technologies to control interactive television applications through

51

the study of a hypothetical, but representative set of navigation, selection, and

control tasks for a iTV application. We examine learnability and ease of use, as

well as accuracy and error rates.

The rest of this paper is laid out as follows. First we discuss related work

looking at the control of interactive television applications as well as gaming

systems. We then discuss our user experiment and the design considerations we

took into account. Finally, we present our findings, and a discussion of future

work.

52

13. RELATED WORK

Much innovation has taken place in the design of new interaction

techniques and devices for gaming devices. The research community is still

catching up with the necessary evaluation of the potential, effectiveness and

usability of these novel game input devices, both within their targeted use domain

as well as in other environments like PC or interactive television.

Looking to the modern interactive TV interface, we see that it combines

many types of user interaction. The areas we chose to focus on cover the core

functionality of pointing, navigation, and text entry. Pointing is perhaps the more

novel and difficult task with todays’ hardware, but is a prerequisite for many of

the more sophisticated types of applications and use cases. Individually, each of

these topics has an established body of research, but in the context of a media

center or iTV there is very little. We also present the recent adoption rate history

of streaming services, which are at the center of modern interactive television

systems.

13.1 Growing Popularity of Streaming Services

With the spread of broadband internet access throughout North America,

high bandwidth services like high definition on-demand streaming video,

previously limited in either quality or duration, have become commonplace.

Between 2001 and 2009, broadband Internet use increased seven-fold, covering

from 9% to 64% of American households [21]. A 2011 Nielsen study found that

from 2008 to 2011 there was a 22% increase in the number of users watching

video on the Internet, and an 80% increase in the average viewing time [19].

One of the key players in the Internet-based video-on-demand area has

been Netflix. Netflix debuted as a DVD-by-mail service in 1997, and has since

introduced and popularized a broadly available Internet streaming service. By the

53

end of 2011, Netflix had over 21 million paying streaming subscribers [13]. In a

Fall 2010 report by Sandvine, Netflix was shown to account for 20.6% of all

downstream prime-time Internet traffic in North America [17]. Just 7 months

later, Netflix users were consuming 29.7% of all downstream prime-time Internet

traffic in North America [17].

Other online video services such as Hulu, Amazon Instant Video and

YouTube (though the latter still mostly offers shorter clips, it has branched into

feature content delivery as well) have also grown in popularity. Internationally,

over 4 billion videos are viewed on YouTube each day [12]. Hulu just passed 1.5

million paying subscribers of its paid Plus service [18].

In part this success is driven by the growth of systems that help these users

bridge the gap between the computer and the TV experience. This includes a

plethora of streaming devices like the Roku and Apple TV, a new generation of

connected TV’s and DVD/Blue-ray players, and last but not least game consoles.

Each of the three leading game consoles have added mechanisms for viewing

streaming Netflix content on their devices. Services like Netflix and Hulu that

began as a PC experiences, can now be accessed from a number of different

devices and platforms. This has made enabled these services to go from a niche

technophile market to appealing to the average consumer. In a 2011 Nielsen

study, 50% of all Netflix users were found to watch Netflix content through a

gaming console [16]. In the same study, Nielsen found 162 million Americans

own a game console. This means that these platforms are natural ways to deliver

these experiences. The need to manage users’ media viewing experience has led

to the development of media center applications like the Xbox Media Center

(XBMC) and Windows Media Center. Internet-enabled set-top devices like Boxee

and AppleTV have also appeared allowing easy streaming video viewing from a

normal TV. These allow users to consolidate their media consumption, as well as

manage their local library. Due to the interactive and highly customizable

54

experience allowed by these services, the need for robust input methods will

continue to gain importance.

13.2 Pointing and Navigation Using Novel UI Devices

Over the last few years there has been a growing trend to develop and

evaluate what are being referred to as Natural User Interfaces (NUI’s). These

interfaces extend the basic direct manipulation paradigm by allowing users to

interact with the computer with motions more closely resembling those we’d use

in real life. Among the leading platforms for such interfaces we find game

consoles. These techniques could help bridge the complexity gap between the new

interactive TV applications and the interactions afforded by conventional remote

controls. Because of space limitations we will only review some of the most

directly applicable research to our study.

Starting with camera and motion based techniques, Cheng and Takatsuka

[2] introduced dTouch, a finger pointing technique for large displays that uses an

off-the-shelf webcam. Using the concept of a “virtual touchscreen”, dTouch

enables users to manipulate onscreen objects in an absolute coordinate system.

They performed a user study comparing dTouch to a method using the EyeToy

camera, used on the PlayStation console. Results indicated the two methods were

comparable with users preferring dTouch.

Lee [3] described a cursor technique using the Wiimote that enabled

finger-tracking through the use of reflective tags taped to the fingers of users.

Rather than holding the Wiimote in the hand, they used the IR camera built into

the Wiimote with an IR LED array to allow almost bare-hand operation. Lin et al.

[4] demonstrated a technique similar to Lee’s, but using a second Wiimote for

additional functionality.

Using more traditional controllers, Natapov et al. [5] performed a

55

comparative study evaluating the Wiimote and traditional gamepad for pointing

and selecting tasks. Although the error rate was higher, 14 out of 15 participants

said they preferred the Wiimote in a home entertainment environment. They

found that the Wiimote had a 75% performance increase over the traditional

gamepad when comparing speed and accuracy.

Finally, turning to smart phones and tablets, McCallum et al. [10]

developed a hybrid system called ARC-Pad, which combined absolute and

relative positioning techniques for use with large displays. A smart phone screen

was used like a touchpad. ARC-Pad was compared against a traditional touchpad

style interface, which employed cursor acceleration. ARC-Pad performed slightly

better (166ms faster) than the relative in completion time. The results suggested

as pixel distance increased beyond what was studied, ARC-Pad performance

would change minimally while the relative touchpad would continue to worsen.

13.3 Text Entry With Keyboard Alternatives

Over the last two decades, the need for text entry without a traditional

mechanical keyboard has increased. With the introduction of PDAs and smart

phones, text entry presents a challenge due to a limited input area. Most

interactive TV systems attempt to minimize the necessity of text entry through the

use of various widgets and interface choices. Though the need may be reduced, it

is difficult to completely do away with text entry for applications such as search

or social media.

This has led TV manufacturers like Samsung to market 2-sided remote

controls; one side having normal remote control functions and the reverse a full

keyboard, or Sony to merge a PlayStation controller and a full keyboard in their

Google TV products. While such solutions may provide speed advantages, they

lead to cumbersome and intimidating user experiences. We examined alternatives

56

to keyboard text entry, focusing on touchscreens, game controllers and freehand

gesture techniques.

The Graffiti pen-based gesture alphabet was made popular by Palm in the

late 90s. It allowed users to quickly input text using a proprietary alphabet.

MacKenzie and Zhang [9] conducted a study analyzing the learnability and

accuracy of Graffiti. Participants were given practice time using a reference chart

showing the gesture alphabet. After practice they repeated the entire alphabet 5

times without having a reference available and again 1 week later. The results

showed a nearly 97% character accuracy rate after 5 minutes of practice.

Tao, et al. [11] adapted the Graffiti alphabet to a freehand gesture-based

text entry system called AirStroke. A user study was performed comparing two

AirStroke implementations, one with word completion and one without.

Participants completed 20 sessions each, over a period of two weeks in which

error-rates and speed were recorded. Airstroke with word completion averaged 11

wpm while no word completion was at 6.5 wpm. The error rate with word

completion averaged 6.6% compared to 11.8% without. Some participants

initially reported arm fatigue, which lessened as their proficiency increased.

Several techniques have been developed enabling text input using a

traditional gamepad. Költringer et al. [15] designed and evaluated TwoStick, a

novel text entry system using both analog joysticks on an Xbox 360 controller.

TwoStick was compared to a traditional selection keyboard. Initially, users typed

slower and had a higher error rate using TwoStick, but after 15 sessions TwoStick

averaged 14.87 wpm while the selection keyboard had a mean of 12.9 wpm.

Wilson and Agrawala [14] also created a dual joystick QWERTY method, which

showed modest improvement upon the traditional single stick selection keyboard.

Shoemaker et al. [8] compared 3 techniques for mid-air text input. A circle

keyboard, QWERTY keyboard and cube keyboard all used a Wiimote as an input

method. The QWERTY method performed best in accuracy and performance; this

57

method is similar to our Wiimote text entry task. A questionnaire taken after the

study revealed users preferred the QWERTY method overall.

Castellucci and MacKenzie [1] presented an alternative to an on-screen

keyboard using the Wiimote called UniGest. UniGest is a technique that takes

advantage of the motion-sensing capabilities of the controller to capture

movement and rotation. A gesture alphabet is proposed which maps the gestures

to character input. Their results predict an upper-bound of 27.9 wpm using the

UniGest technique.

58

14. Methodology

This section describes a user study designed to measure the effectiveness

of video game and tablet input methods in a iTV context. We used 4 input

methods: the Microsoft Kinect, Nintendo Wiimote and 2 methods using an

Android tablet; a condition where subjects had to scroll (relative coordinate

condition), and one using an absolute coordinate space (mirror condition). The

idea was that in the relative condition subjects would have to scroll around like

when using a mouse pad, and in the absolute coordinate condition, the whole TV

image would be represented on tablet at once. Participants completed pre and

post-experiment questionnaires and also a post-experiment interview. All sessions

were recorded using a video camera and screen capturing software.

All participants were recruited in pairs from a college campus and

surrounding community. There were a total of 62 participants, 33 male and 29

female. All but 4 were right-handed. Their ages ranged from 18 to 57 years old

with a mean of 24.5. Prior to the experiment, participants completed a

questionnaire gathering demographic data and media viewing frequency. Each

pair of participants was assigned 2 devices to use, and all device pair permutations

were assigned randomly.

The system ran on a PC hooked up to a 55" HDTV, set up in an

environment designed to look and feel like a living room (see room layout in

Figure 1). The subjects sat in the two center seats, while the experimenter sat off

to the side with a good view of the subjects. The table in the middle was

positioned far enough away that subjects could not use it to hold items while

performing their task. There was a small table (15x15cm surface area) between

the two chairs, large enough to hold a drink or a plate, but not both at the same

time.

59

• Figure 3: Room configuration used during the experiment.

A Nintendo wireless sensor bar was used in combination with a standard

Nintendo Wii Remote for relevant conditions. A Microsoft Kinect sensor was

used for the Kinect tasks, and a 10.1" tablet running Android 2.3 was used for the

tablet tasks. A windows application called GlovePIE was used to control the

cursor using the Wiimote. A GlovePIE script enabled the IR camera in the

Wiimote to control the mouse cursor and the ‘A’ button to control the left mouse

click.

A custom application was created to allow the Kinect to control the mouse

cursor and left button. The application was written in C# using the OpenNI

framework. To move the cursor, participants moved their right hand, which

positioned the cursor similar to a traditional mouse. To initiate a drag, participants

moved their left hand forward to cross the threshold of a virtual plane 30-40cm in

front of them. This action is equivalent to a left mouse down event. To initiate a

drop, participants would simply pull their arm back and break the plane in the

opposite direction. This action is equivalent to a left mouse up event. To initiate a

left click, participants move their left hand quickly through the plane and back out

in one fluid motion.

The software used in the relative tablet condition was an open source

Android application called RemoteDroid. This application turns the entire tablet

60

into one large touchpad similar to what is found on most laptop computers (see

Figure 4). This is application was paired with an application that runs on the host

computer.

• Figure 4: The configuration of the relative tablet app.

The mirrored condition used a modified version of the RemoteDroid

application. It continually updates the tablet display with a screenshot of the TV.

Instead of using a relative coordinate system where the cursor movement

corresponds to relative changes in cursor position, an absolute coordinate system

is used. By using an absolute coordinate system, a user can click on any location

of the mirrored display and have it mapped to the equivalent location on the PC

display.

Subjects were trained on the devices they were going to use and given

time to practice on a screen that allowed dragging and dropping an object and

clicking a button. When they felt comfortable with the device they began the

drag-and-drop task.

The only actions allowed in the drag and drop task were dragging and

dropping a widget into a target box (see Figure 3). If the widget was dropped fully

within the boundary of a target presented at a random point on the screen, then a

hit was recorded, and the subject would be presented with a new, slightly smaller

Right Mouse

Keyboard

Shortcut

(Disabled)

ê Left Mouse

Scroll Area

61

target. A miss was recorded if the user missed the widget when attempting to

select it, or if they released the widget outside of the target box. They were able to

keep trying until they ran out of time for the trial. If the user was unable to place

the widget in the target within 16 seconds, the box and widget were moved to

random locations on the screen and the target box got bigger. If the user hit the

target, then both the widget and target were randomly moved and the target

shrank, with the minimum size for the target being 3 pixels wider and taller than

the widget.

• Figure 5: Sample screen for drag and drop task.

After completing the drag-and-drop accuracy task, we asked subjects to

complete a number of navigation tasks on an iTV environment, simulated using

the popular XBMC media center.

The navigation tasks included 3 different activities in XBMC. The first

required the subject to navigate from the main menu to the weather settings screen

and change the city name. This may have been the most challenging task due to

the text entry requirement. Next, subjects would go to the weather screen and

change the city currently displayed. This was difficult at times because it required

62

clicking on a very small button. After changing the city, the subject would

navigate to the movie selection screen and select a movie using a scrollbar.

Finally, after the movie started, a slider was used to adjust movie volume. In all

navigation tasks, an error was recorded if a subject clicked on a non-interactive

item or if they clicked on the wrong UI widget.

We measured users’ time to complete tasks and their error rates.

Additionally we collected qualitative data in a post experiment interview and

survey. Finally we used screen capture software and a video camera to record

subjects. Subjects performed the experiment in pairs, taking turns with each

device (subject A would try device 1, then subject B would use the same device.

Next Subject A would try device 2, and then Subject B would do the same). Pairs

were randomly assigned two input methods.

Because of previous research showing the importance of studying the

effectiveness of UI techniques under similar manual loads [20], and the oft-

informal nature of TV viewing, we decided to give each subject a slice of pizza

and a drink to hold and consume during the course of the experimental tasks.

Subjects were not allowed to place the food items on the floor or on the larger

central table, but had to balance them on their seat or lap.

After both subjects completed all tasks using the first device assigned to

them, they were introduced to the second device, and the process started anew,

from the training period onward. After both subjects completed both conditions,

they were asked to complete a short survey asking them about learnability, ease of

use and practicality of the devices they had been assigned. All questions were on

a 5-point Likert scale, 1 meaning strongly agree and 5 meaning strongly disagree.

Finally, they were interviewed to get a deeper understanding of their

experience. We were interested in their satisfaction with the various input devices.

This included the ease with which the subjects could use the device along with

63

their enjoyment of using the device. Additionally we asked about their comfort

level using the device in a social context where others were observing them.

64

15. RESULTS

15.1 Drag and Drop Task

The main task we used to measure the efficiency of a UI technique for

manipulation was the timed drag and drop task, as it combined selection,

movement, as well as accuracy. The more drops a subject managed within the

time allotted, the more accurate their manipulation of the widgets on the screen.

The highest mean number of targets hit was with the mirror tablet, where subjects

hit an average of 14.09 targets (see Figure 4). Subjects using the Wiimote and

relative tablet scored 12.97 and 11.90 hits respectively. Those using the Kinect

averaged a score of 7.37 hits. The Kinect did significantly worse than all other

devices (One-way ANOVA F(3,19)=54.5, P<0.001 with Tukey’s HSD for Post

Hoc analysis). The relative tablet also did significantly worse than the Wiimote

and mirror tablet (P<0.05). There was no significant difference between the

Wiimote and mirror devices.

•
•

• Figure 6: More drops show that the user was quicker and more accurate

than users with fewer successful drops.

12.97

7.37

14.09
11.90

0

2

4

6

8

10

12

14

Wiimote Kinect Mirror Relative

Mean Successful Drops by Device

65

There is of course a direct relation between accuracy and speed in this

task. The quicker the manipulation, the more likely you are to be able to complete

the task, and even try multiple times in case of failure. Therefore an inaccurate but

very quick technique could lead to misleading results. To investigate this we

decided to look at the average target size for the last 5 targets subjects

successfully hit. This allowed us to give subjects some additional practice time,

and allowed subjects’ performance to plateau. The results are shown in figure 5.

Figure 7: Average final margin of error in pixels by condition

Users were much less accurate with the Kinect than with any other device.

Users of the mirror, relative and Wiimote conditions averaged a 13 to 19-pixel

difference between the widget dimensions and the target dimensions. With the

widget being 152px square, this meant a margin of error of less than ±9-12% of

the widget size, or ±1-2% of the total screen real estate (1920x1080). For the

Kinect the margin of error was ±45% of the widget, and ±6% of the total screen

real estate. There were significant differences (One-way ANOVA

F(3,120)=13.77, P<0.001 with Tukey’s HSD for Post Hoc analysis), the Kinect

17

68

13 19

0

10

20

30

40

50

60

70

Wiimote Kinect Mirror Relative

Pi
xe

ls

Margin of Error - Last 5 Drops by Device

66

was significantly different from the other devices (P<0.001). Other differences

were not significant.

During the experiment and in the post experiment interview, several

subjects mentioned that the sensitivity for the relative tablet was low and that they

would have to slide their finger across the device more than once to get the cursor

to traverse from one side of the screen to the other. Users needed to swipe 3 times

to go from one side of the screen to the other. No enhancements such as cursor

acceleration were implemented; this could potentially improve performance of the

relative condition. This may in part explain why the relative tablet scored worse

than the mirror and Wiimote. However, because speed and accuracy are often

traded off against each other, it is not a given that acceleration would lead to

better results. This is something that should be investigated more in-depth. Users

were not able to move the cursor rapidly enough to hit the same number of

targets.

The issues with using the Kinect were more pronounced and deep-rooted.

Subjects were observed having a difficult time both beginning a drag (selecting

and dragging the target) and dropping the widget into the target (widget would

often be dropped prematurely and unintentionally). A less common but also real

problem was that in order to establish a difference between a click event and a

drag event users had to press forward and hold for 0.5 seconds before beginning

the drag. It was common to see users attempt to drag before the drag event had

been registered. They were told about this in the training but as the user began the

trial and were trying to rush through the task, they would often not pause long

enough. Some visual indicator to let them know that the event had been registered

could have made a difference.

The more fundamental problem with the Kinect condition was the 2-

handed operations. Subjects usually had little trouble placing a cursor over a

target using one hand, though fatigue was mentioned as a concern in some trials.

67

However, the action of bringing or removing the second hand from the camera

plane often caused subjects to inadvertently rotate their bodies to retain balance,

even while seated. This of course would make their targeting hand move,

resulting in a missed target. This same phenomenon was observed time and again

across tasks and subjects. The only effective remedy we saw was for subjects to

plant their elbows in the seat, and use this to counter the natural body rotation

action. Though effective, this led to a very restrictive seating position.

15.2 Nudging

There is a tradeoff between speed and accuracy, and with a sufficiently

fast UI, users can home in on the target effectively. We referred to this behavior

as “nudging”. In our experiment, this turned out to be a relatively common

strategy; if a subject failed to hit the target on the first try, they would rethink

their strategy (a longer pause) and then pick up the widget and home in through a

series of rapid follow-up moves. This was especially common with the smaller

targets, where the margin for error was low. The majority of times subject were

able to hit the target in one or two attempts. However, some times it took longer.

16. Figure 6 shows how subjects using the Wiimote employed this strategy.

Wiimote users were among the most successful and accurate, and the technique

allowed for quick and easy nudging, or homing in on the target. As we can see,

after a longer rethink following an initial miss, subjects engaged in a lot of rapid

moves aimed at trying to hit the target. Subjects in this condition were still among

the most accurate and successful. We see a very similar behavior among subjects

using the mirror tablet application, though there is less of a long-tail (see Figure

7).

68

• Figure 8: Nudging interval (left axis, blue columns, in seconds) and

distance (black line, right axis, in pixels) over number of tries to hit one target –

Wiimote.

•

• Figure 9: Nudging interval (left axis, blue columns, in seconds) and

distance (black line, right axis, in pixels) over number of tries to hit one target –

Mirror Tablet.

This strategy however seemed to be less successful, even

counterproductive in the other two conditions (see Figure 8 and Figure 9). In the

case of the Kinect condition, accuracy was an enormous issue, and though

subjects were more successful with repeated tries, they did not home in on the

target, but rather hit random new points. In the case of the relative tablet

application, the nudging strategy appears to be counterproductive. Subjects would

after the second try engage in very rapid moves that rather than take them closer

0

10

20

30

0
1
2
3
4
5
6
7

1 2 3 4 5 6 7

Nudging Distance and Interval - Wiimote

Average Time Between Drops in Seconds (Left)
Average Missed Distance in Pixels (Right)

0
10
20
30
40
50

0

2

4

6

8

10

1 2 3

Nudging Distance and Interval - Mirror

Average Time
Between Drops
in Seconds
(Left)
Average
Missed
Distance in
Pixels (Right)

69

to the target would distance them more. To us this is an important distinction

between these two groups of techniques. Our subjects naturally gravitated to this

strategy, and therefore it should be supported.

• Figure 10: Nudging interval (left axis, blue columns, in seconds) and

distance (black line, right axis, in pixels) over number of tries to hit one target –

Kinect.

• Figure 11: Nudging interval (left axis, blue columns, in seconds)

and distance (black line, right axis, in pixels) over number of tries to hit one target

– Relative Tablet.

0

50

100

150

200

0
1
2
3
4
5
6
7
8
9

1 2 3

Nudging Distance and Interval - Kinect

Average Time
Between Drops
in Seconds
(Left)
Average
Missed
Distance in
Pixels (Right)

0

100

200

300

400

500

0
1
2
3
4
5
6
7
8

1 2 3 4 5

Nudging Distance and Interval - Relative

Average Time
Between Drops
in Seconds
(Left)
Average
Missed
Distance in
Pixels (Right)

70

16.1 Text Entry

An important task for iTV applications is text entry, as it allows more

rapid customization, search, etc. We chose to examine two factors, the number of

clicks that landed off of the intended target (key) and the time it took users to

input the text string (a 9 character string).

• Figure 12: Average text entry time in seconds

As we see in Figure 12, text entry was significantly slower with the Kinect

when compared to the other devices (One-way ANOVA F(3,115)=19.53 P<0.001

with Tukey’s HSD for Post Hoc analysis). The Kinect was significantly slower

than all other devices (P<0.001). There were no other significant differences.

40.8

133.7

46.0 47.2

0

25

50

75

100

125

Wiimote Kinect Mirror Relative

Text Entry Time

71

• Figure 13: Text entry mistakes using virtual keyboard

Again, because a lack of accuracy can lead to slower task completion, we

chose to look at how many mistakes subject made. A mistake in this case could be

a subject hitting the wrong letter, or trying to click on something other than a

letter on the on-screen virtual keyboard. As in just about every task in our

experiment, the Kinect fared most poorly with 31.2% of clicks missing their

target. This is significantly worse than the other three devices (One-way ANOVA

F(3,116)=19.14 P<0.01 with Tukey’s HSD for Post Hoc analysis).

Of the remaining devices the Wiimote fared the worst with an error rate of

8.3%, though this did not affect completion time. The mirror app came next, with

an error rate of 4.3%, likely caused by the small size of the keys when shown on

the tablet. The error rate for the relative app was a surprisingly low 1.6%. The

difference between these devices was not significant.

16.2 Effects of Prior Experience

Prior experience can have a significant impact on performance, especially

when dealing with the novel. Subjects were asked to rate their prior experience

with devices similar to those used in our study. A linear regression was used to

compare the number of successful drops in the drag and drop task and the speed

of text entry versus their prior experience (see Table 1).

8.3%

31.2%

4.3%
1.6%

0%
5%

10%
15%
20%
25%
30%
35%

Wiimote Kinect Mirror Relative

Text Entry Clicks Made in Error

72

• Table 16.1 Slope of linear models. Steeper slopes indicate stronger
experience effect.

 Hits vs.

Experience

Text Entry vs.

Experience

Wiimote 0.61 0.33

Kinect 0.51 -5.42

Relative 0.39 -0.79

Mirror 0.25 -7.85

We see that the prior experience played the largest role in the Wiimote

case. Despite being seen as universally easy to use, subjects were able to

effectively leverage prior experience to improve further. The same was the case in

the Kinect condition, though here, novices really suffered, and even experts

performed marginally. There may have been a floor effect here as fewer subjects

had experience with Kinect compared to other devices, and those that did have

experience ended to have less experience than with the Kinect than with other

devices.

More surprising, there was only a relatively mild learning effect for the

two tablet solutions. While experience did help, it seems that these two techniques

were so universally well-known and intuitive that all subject were able to use

them effectively regardless of experience level.

73

17. Discussion

In our post experiment interviews we focused on understanding the

limitations and advantages of the different approaches. One thing we stumbled on

were issues related to the sensitivity, or lack thereof for some of our conditions.

76% of users or the relative tablet mentioned that sensitivity was an issue (it took

too long to scroll from one side of the display to the other). 43% of Wiimote

subjects complained about the device being too sensitive, reacting to slight hand

tremors.

Despite the negative results, 13% of Kinect subjects commented positively

about its usefulness. This was obviously surprising, but shows that people like the

concept of this technique, if not the implementation. We also found that 40% of

those who used the mirror tablet and 47% of those who used the Wiimote

commented positively about these. Surprisingly only 13% of the relative tablet

users commented positively about it despite the high performance.

When asked if the input method could be learned quickly, the Wiimote

won out, and it was also rated as the least awkward to use. Subjects liked the

simplicity of the Wiimote, both in interface navigation and physically. One

participant said, "It was simple. Just point and click. You just aim at it and it’s

right there." One of the most common answers about what people liked about the

Wiimote input method was that it had only 1 button. People also liked the

familiarity with holding the Wiimote, that it felt like a remote control and had a

physical button.By far, the least liked device was the Kinect. The most frequent

negative comments had to do with physical fatigue and issues with sensor range

and sensitivity. Having to hold their right arm up to position the cursor and left

arm for click control resulted in almost all Kinect users complaining of arm

fatigue. Finding a one-handed method for controlling the system could result in a

significant improvement, as indicated by 60% of Kinect users. 60% also

74

complained about the sensor range or sensitivity. To limit interference, the sensor

was placed 80cm away from the subject. As a consequence, subjects felt they

were unable to move their hands as far to the left and right as they would like.

Although most comments focused on why the Kinect was not effective, several

participants liked how it did not require them to hold a physical device. One

participant talked about how nice it would be to have no remotes and control

everything with gestures. Most subjects however indicated that they would be

embarrassed to use this technique in front of friends and family.

The two tablet techniques achieved roughly the same ratings, which were

generally good. 30% of mirror application users commented positively on being

able to directly manipulate the interface. One person said "I really liked being

able to click on exactly what I can see on the screen." Others disagreed, saying

how they prefer to only have one screen to interact with. One participant

commented "Occasionally I found myself not knowing which screen to look at."

A side-effect of our implementation of the mirror app was noticeable "lag"

between the TV and the tablet images of between 0.25 and 0.5 seconds. This

delay was often mentioned as an annoyance. Likewise, nearly everyone who used

the relative tablet app disliked its low sensitivity and the lack of acceleration

techniques. With appropriate tweaking, both of these techniques would have

likely scored higher on both likability and effectiveness.

75

18. Future Work

This was meant as an exploratory study examining the relative merits of a

number of gaming-related UI methods, and their usefulness in an iTV setting.

Looking forward, there are several improvements worth exploring based both on

user feedback and our findings. As mentioned in the results and discussion

sections, implementing motion smoothing for the Wiimote, acceleration for the

relative tablet app, and reducing the lag for the mirror app are natural next steps.

We believe all of these could drastically improve the user experience.

In implementing smoothing for the Wiimote, a slight delay will be

introduced. Pavlovych and Stuerzlinger [22] studied the relationship between

jitter and latency and their results could help inform an appropriate balance.

A more tricky problem was the noisiness and occasional false positive for

hands for the Kinect. We were unable to use the Kinect API’s native skeleton

tracking because only the upper half of the users’ body was visible to the sensor.

Instead, we used a hand tracking method and filtered based on depth field data.

Even with these precautions, a knee or other object could register as a hand. This

led to a very frustrating user experience. In future revisions, we would look for a

more robust tracking solution. We did not use the official Kinect SDK as it was

not available in time.

When asked what they would change about the Kinect method, several

people said they would prefer a one-handed solution. We think this would

substantially decrease the physical fatigue and provide a more intuitive

experience. Due to the Kinect’s 640x480 resolution depth camera, robust finger

tracking was difficult. Perhaps with a different library or algorithm, a more

feasible approach could be found. One option might be the work of Oikonomidis

et al. [6], who have demonstrated complex finger articulation, though not in real-

time.

76

19. We chose not to investigate the use of voice commands in our experiment,

in part because it would be difficult to filter noise and could be socially awkward.

As the introduction of the Siri system on the iPhone, and the flurry of interest this

has caused, these assumptions and prejudices may need to be revisited in future

work.

77

20. Conclusions

With the growing availability of broadband Internet access, highly

extensible game consoles, and the increasing popularity of social and streaming

online entertainment services, their convergence is presenting a number of new

challenges for HCI researchers. To the best of the authors’ knowledge, there has

been very little research on the adoption and use of novel game controller

technology in a media center or iTV context. We hope our research will serve as a

base for future work in this area.

Looking at the results we see that devices designed for gaming have the

potential to be effective input devices for a typical iTV interface. We also see that

some devices are better suited to this task than others. The Wiimote was effective,

well liked, and very easy to learn. At the same time, it offered ample room for

improvement as users gain experience. On the other hand, it is potentially limiting

UI-wise, as all information has to be displayed on the primary display. The tablet

systems were both well liked and effective as well, though they potentially offer

more flexibility and exploration, albeit at a much higher hardware cost.

The Kinect, though appealing to many subjects due to its novelty and the

promise of device-free interaction, proved to be too unreliable and cumbersome to

use for any extended period of time. While it may be refined with better hardware

and algorithms, its suitability and desirability for a social lean-back viewing

experience may be limited. Fear of ridicule as much as physical fatigue and the

problem of interference from others’ movement are serious problems that need to

be overcome.

78

21. REFERENCES

[1] S.J. Castellucci and I.S. MacKenzie. “Unigest: text entry using three
degrees of motion” In extended abstracts of the 2008 Conf on Human factors in
computing systems; CHI '08. ACM, New York, NY, USA, 3549-3554.
[2] K. Cheng and M. Takatsuka. “Initial evaluation of a bare-hand interaction
technique for large displays using a webcam” In Proc. of the 1st ACM SIGCHI
symposium on Engineering interactive computing systems (EICS '09). ACM,
New York, NY, USA, 291-296.
[3] J. C. Lee. Hacking the Nintendo Wii Remote. IEEE Pervasive Computing,
7(3):39–45, July 2008.
[4] J. Lin, H. Nishino, T. Kagawa, and K. Utsumiya. “Free hand interface for
controlling applications based on Wii remote IR sensor.” In Proc. of the 9th ACM
SIGGRAPH Conf. on Virtual-Reality Continuum and its Applications in Industry
(VRCAI '10). ACM, New York, NY, USA, 139-142.
[5] D. Natapov, S.J. Castellucci, and I.S. MacKenzie. “ISO 9241-9 evaluation
of video game controllers.” In Proc. of Graphics Interface 2009 (GI '09).
Canadian Information Processing Society, Toronto, Ont., Canada, Canada, 223-
230.
[6] I. Oikonomidis, N. Kyriazis, and A. Argyros. “Efficient model-based 3d
tracking of hand articulations using kinect.” Procs. of BMVC, Dundee, UK, pages
1–11, 2011.
[7] L. Rainie. “Tablet and E-book reader Ownership Nearly Double Over the
Holiday Gift-Giving Period” Pew Internet. 2012.
[8] G. Shoemaker, L. Findlater, J.Q. Dawson, and K.S. Booth. “Mid-air text
input techniques for very large wall displays” In Proc. of Graphics Interface 2009
(GI '09). pp. 231-238.
[9] I.S. MacKenzie and S.X. Zhang. “The immediate usability of graffiti.” In
Proc. of the conf. on Graphics interface '97, Toronto, Ont., Canada, Canada, 129-
137.
[10] D.C. McCallum and P. Irani. “ARC-Pad: absolute+relative cursor
positioning for large displays with a mobile touchscreen.” In Proc. of the 22nd
annual ACM symposium on User interface software and technology (UIST '09).
ACM, New York, NY, USA, 153-156.
[11] T. Ni, D. Bowman, and C. North. “AirStroke: bringing unistroke text entry
to freehand gesture interfaces.” In Proc. of the 2011 annual conference on Human
factors in computing systems (CHI '11). ACM, New York, NY, USA, 2473-2476.

79

[12] YouTube, 2012. YouTube Press Statistics:
http://www.youtube.com/t/press_statistics
[13] Netflix, “Netflix Q4 2011 Letter to Shareholders.” http://goo.gl/4vgP1
[14] A. D. Wilson and M. Agrawala. “Text entry using a dual joystick game
controller.” In Proc. of the SIGCHI conf. on Human Factors in computing
systems (CHI '06), ACM, New York, NY, USA, 475-478.
[15] T. Költringer, P. Isokoski, and T. Grechenig. “TwoStick: writing with a
game controller.” In Proc. of Graphics Interface 2007 (GI '07). ACM, New York,
NY, USA, 103-110.
[16] Nielsen. “State of the Media: Consumer Usage Report,” 2011.
http://goo.gl/PzAzc
[17] Sandvine, 2011. “Sandvine. Global Internet Phenomena Spotlight: Netflix
Rising.” http://goo.gl/dbkPz
[18] Hulu, 2012. “Hulu Financial Results:”
http://blog.hulu.com/2012/01/12/2011-2012-and-beyond/
[19] Nielsen, 2011. “Nielsen: The Cross-Platform Report.” http://goo.gl/JxEpn
[20] A. Oulasvirta and J. Bergstrom-Lehtovirta. “Ease of juggling: studying the
effects of manual multitasking.” In Proc. of the 2011 annual conf. on Human
factors in computing systems (CHI '11). ACM, New York, NY, USA, 3103-3112.
[21] NTIA, 2010. “Exploring the Digital Nation: Home Broadband Adoption in
the United States.” http://goo.gl/ErsnS
[22] A. Pavlovych & W. Stuerzlinger. “The tradeoff between spatial jitter and
latency in pointing tasks.” In Proc. of the 1st ACM SIGCHI symposium on
Engineering interactive computing systems (EICS '09). ACM, New York, NY,
USA, 187-196.

80

22. Conclusion

The first manuscript highlights the importance of creating integrated

development environments that cater to the motivational needs of both traditional

developers and end-user programmers. Additionally we see that end-users are

typically not considered when designing more function-based features.

The second manuscript depicts a common occurrence when end-users

experience a new application platform such as interactive television. User

experience is often lacking which can inspire a consumer to find homespun

versions that meet their needs. Just being exposed to the new technology can also

inspire end-users to create software solutions in their everyday life.

With the exploding ubiquitous computing industry and the large-scale

personal use of multiple devices, we expect to see the total number of end-user

app programmers to dramatically increase in the near future. That said, it becomes

increasingly important to provide tools that meet the motivational and functional

needs of these potential programmers.

81

23. Bibliography

[1] Five Star Equities, Press release Fri, Oct 19, 2012 8:20 AM EDT
http://finance.yahoo.com/news/number-smartphones-around-world-top-
122000896.html
[2] Deci, E. L., & Ryan, R. M. (1985). Self‐Determination. John Wiley & Sons,
Inc.
[3] Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the
facilitation of intrinsic motivation, social development, and well-being. American
psychologist, 55(1), 68-78.

82

24. Appendix

Table 24.1 Summary of motivators enhancing basic psychological needs in

software engineering literature [3]

ID

Software Engineering Motivators [3]

Basic

Psychological

Need

Motivation

Type

of

articles

studies

supporting

[3]

SEE1 Career Path (opportunity for advancement,

promotion prospect, career planning) Autonomy Extrinsic 15

SEE2 Empowerment/responsibility (where responsibility

is assigned to the person not the task) Autonomy Intrinsic 6

SEE3 Work/life balance (flexibility in work times, caring

manager/employer, work location) Autonomy Intrinsic 7

SEE4 Autonomy (e.g. freedom to carry out tasks,

allowing roles to evolve) Autonomy Intrinsic 9

SEE5 Development needs addressed (e.g. training

opportunities to widen skills; opportunity to

specialize) Autonomy Intrinsic 11

SEE6 Variety of Work (e.g. making good use of skills,

being stretched) Competence Intrinsic 14

SEE7 Feedback Competence Intrinsic 10

SEE8 Recognition (for a high quality, good job done

based on objective criteria -different from making

sure that there are rewards available). Competence Intrinsic 12

SEE9 Technically challenging work Competence Intrinsic 11

SEE10 Appropriate working conditions/environment/good

equipment/tools/physical space/quiet Competence Intrinsic 6

SEE11 Sufficient resources Competence Intrinsic 2

SEE12 Good management (senior management support, Relatedness Intrinsic 16

83

team- building, good communication)

SEE13 Sense of belonging/supportive relationships Relatedness Intrinsic 14

SEE14 Employee participation/involvement/working with

others Relatedness Intrinsic 16

SEE15 Equity Relatedness Intrinsic 3

SEE16 Trust/respect Relatedness Intrinsic 4

SEE17 Identify with the task (clear goals, personal interest,

know purpose of task, how it fits in with whole, job

satisfaction; producing identifiable piece of quality

work) Relatedness Intrinsic 20

SEE18 Making a contribution/task significance (degree to

which the job has a substantial impact on the lives

or work of other people) Relatedness Intrinsic 6

SEE19 Working in successful company (e.g. financially

stable) - Extrinsic 2

SEE20 Job security/stable environment - Extrinsic 10

SEE21 Rewards and incentives (e.g. scope for increased

pay and benefits linked to performance) - Extrinsic 14

Table 24.2 Summary of de-motivators enhancing basic psychological needs in

software engineering literature [3] (SEU)
ID

Software Engineering De-Motivators [3]
Basic

Psychological

Need

Motivation Type

of articles

supporting

[3]

SEU1 Poor management (e.g. poorly conducted meetings

that are a waste of time) Autonomy Intrinsic 7

SEU2 Lack of influence/not involved in decision making/no

voice Autonomy Intrinsic 2

SEU3 Lack of promotion opportunities/stagnation/career

plateau/boring work/poor job fit Competence Extrinsic 5

SEU4 Interesting work going to other parties (e.g. Competence Intrinsic 1

84

outsourcing)

SEU5 Unrealistic goals/ phony deadlines Competence Intrinsic 4

SEU6 Producing poor quality software (no sense of

accomplishment) Competence Intrinsic 3

SEU7 Poor communication (Feedback deficiency/loss of

direct contact with all levels of management) Competence Intrinsic 5

SEU8 Inequity (e.g. recognition based on management

intuition or personal preference) Relatedness Intrinsic 4

SEU9 Bad relationship with users and colleagues Relatedness Intrinsic 4

SEU10 Risk - Extrinsic 1

SEU11 Unfair reward system (e.g. Management rewarded for

organizational performance; company benefits based

on company rank not merit) - Extrinsic 2

SEU12 Uncompetitive pay/poor pay/unpaid overtime - Extrinsic 6

SEU13 Stress Unclear Unclear 5

SEU14 Poor working environment (e.g., wrong staffing

levels/unstable/insecure/lacking in investment and

resources; being physically separated from team) Unclear Unclear 9

SEU15 Poor cultural fit/stereotyping/role ambiguity Unclear Unclear 3

Table 24.3 Methods of supporting and undermining autonomy based on the

psychology literature

Assigned
ID

Methods to enhance autonomy

SDTE1 Treat poor behavior as a motivational problem to be solved
SDTE2 Address motivational problems with flexible language
SDTE3 Identify the root cause of motivational issues and communicate

improvement options
SDTE4 Ascertain and validate negative expressions and resistance
SDTE5 Work collaboratively to solve problems
SDTE6 Provide opportunities for self direction

85

SDTE7 Encourage initiative
SDTE8 Identify interests, preferences and competences
SDTE9 Encourage expression of preferences, interests and competences
SDTE10 Consider another’s perspective
SDTE11 Provide growth opportunities
SDTE12 Tolerate failure and promote it as necessary for optimized learning
 Methods to undermine autonomy
SDTU1 Pressure compliance by employing a prescribed way of thinking,

feeling or behaving
SDTU2 Pressure behaviors supporting a prescribed outcome
SDTU3 Rely on outer sources of motivation
SDTU4 Use a pressured, rigid, no nonsense communication style
SDTU5 Neglect explanatory rationale
SDTU6 Discourage self direction
SDTU7 Silence negative expressions and conflict resolution
SDTU8 Ignore or invalidate negative expressions and resistance
SDTU9 Attempt to transform negative expression into something more

acceptable

Table 24.4 Methods of supporting and undermining relatedness based on the

psychology literature.

Assigned
ID

Methods to enhance relatedness

SDTE13 Provide opportunities for social interaction
SDTE14 Express affection and liking
SDTE15 Voice care for others well-being
SDTE16 Share personal resources such as time, attention and energy
SDTE17 Ensure trust and understanding
SDTE18 Encourage obligational support in exchange relationships
SDTE19 Foster emotionally positive interactions
SDTE20 Support intimate, high quality relationships
SDTE21 Supply clear convincing rationale
SDTE13 Provide opportunities for social interaction
SDTE14 Express affection and liking
SDTE15 Voice care for others well-being

86

 Methods to undermine relatedness
SDTU10 Diminish opportunity for social interaction
SDTU11 Refrain from expressing affection, fondness or concern for others

well-being
SDTU12 Horde resources and advertise their scarcity
SDTU13 Discourage intimate, high quality relationships
SDTU14 Neglect to provide rationale
SDTU15 Foster emotionally negative interactions
SDTU16 Diminish trusting behavior and actions
SDTU17 Encourage entitlement
SDTU10 Diminish opportunity for social interaction

Table 24.5 Methods of supporting and undermining competence based on the

psychology literature.

Assigned
ID

Methods to enhance competence

SDTE22 Provide structure
SDTE23 Communicate clearly
SDTE24 Ensure optimal challenge
SDTE25 Enhance flow
SDTE26 Provide information rich guidance and feedback
SDTE27 Tolerate failure and present it as optimal for optimized learning
 Methods to undermine competence
SDTU18 Ensure tasks require a more advanced skill than retained
SDTU19 Provide over simplistic tasks
SDTU20 Supply tasks requiring too much or unnecessary work
SDTU21 Provide negative, incomplete or non-existent feedback
SDTU22 Intolerance for failure
SDTU23 Reduce flow
SDTU24 Use nondescript language

87

Table 24.6 Methods of supporting intrinsic motivation in an IDE based on

combined validated methods in motivational CS and SDT literature

A
ut

on
om

y

R
el

at
ed

ne
ss

C
om

pe
te

nc
e

of

 su
pp

or
tin

g
m

et
ho

ds

Method IDs
supporting

Methods to enhance intrinsic
motivation in an IDE

 x 6 SDTE1,
SDTE2,

SDTE3, SEE4,
SEE5, SDTE26

Use performance metrics to Identify
developer amotivation, determine
lacking psychological need and
remind programmer of relevant
supporting features supporting
features

 8 SDTE4,
SDTE5,
SDTE7,
SDTE9,
SDT10,

SDTE17,
SDTE22, SEE4

Provide a means for developers to
express concerns. Paraphrase back
concern and ask developer for input

x 5 STDE26,
SDTE27,

SEE9, STD24,
SEE5

Identify lacking developer skills and
coach developers to improve while
communicating the importance of
failing

 4 SDTE5,
STD13,
SEE11,
SEE18

Provide a means for developers
to work together solving
problems and appropriate
information to do so

x x 2 SDTE17,
SEE16

Find a way that helps developers
understand how their team mates
code and work

 x x 5 SDTE6,
SEE2,

SDTE8,
STDE9,
SEE4

Ensure developers have the
freedom to choose coding style
and preferences

x 2 SDTE19,
SDTE26

Add humorous components and
positive feedback when

88

something works
 11 SDTE10,

SDTE9,
SDTE13,
SDTE14,
SDTE15,
SDTE16,
SDTE17,
SDTE19,
SDTE20,
SEE14,
SEE15,

Provide positively moderated
means for developers to interact
socially and express preferences,
interests and competencies while
suppressing entitlement and
encouraging equity

 1 SDTE21,
SEE17,
SEE4

If certain methods are forced,
have clear rationale available.

x x 1 SDTE18, Mimic open source in exchange
relationships and obligational
support

x x 1 SDTE24 Customize the developer
experience based on skill set and
experience

 6 SDTE22,
SDTE23,
SDTE25,
SEE10,

SDTE24,
SEE9

Complete usability studies to
ensure clear communication,
reduce any unnecessary steps and
test intrinsic motivation score,
ensure structured work flow,
make sure it’s in optimal
challenge

x x 1 SDTE25 Supply easy methods for getting
back into the code produced
earlier or by someone else to
facilitate a quicker state of flow

 x x 2 SDTE7,
SEE2

Mimic open source environments
encouraging some level of
initiative and empowerment in tasks

 x 2 SDT11,
SEE1

Endorse skill sets and
certifications pertaining to career
growth

 x x 2 SEE3,
SEE4

Ensure developers can work from
multiple locations with
appropriate access without being
online

