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A Potential Model Investigation of

the Low-Energy Antikaon-Nucleon Interaction

and

Antikaon-Nucleus Bound States

Chapter 1

Introduction

1.1 Historical Sketch

The negatively charged antikaon held early promise as a good projectile for

probing the nuclear surface. It is absorbed on one nucleon and thus reactive

enough that it would be unlikely to penetrate the nucleus before interacting

with it. Early attempts [1] 414] at determining the distribution of nucleons

near the surface of the nucleus by means of K--nucleus experiments [15]-

[22] slowly revealed the fact that the elementary antikaon-nucleon interaction

needed further study if any information on nuclear matter distribution was

to be gained from these experiments. Studies of the antikaon-nucleon inter-

action [6,23] turned up a puzzle which has rendered the antikaon useless as a
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probe of the nucleus. The puzzle came about from the fact that conventional

interpretations of low energy K-p scattering experiments predicted a K-p
atom which was less bound because of the strong force than it would be if the

interaction was purely Coulombic, while direct measurement of the kaonic

hydrogen energy shift [24]-[26] showed it to be more bound. Associated with

the puzzle is the presence of an s-wave isospin -0 resonance in the irE system.

Historically, this resonance has been known as the Yo* resonance. The mod-

ern nomenclature for it is A(1405). The 7rE system couples strongly to the
K-p system. The irE threshold (sum of the masses of the two particles) lies

100 MeV below the If-p threshold and the A(1405) resonance lies 30 MeV
below.

The nature of the A(1405) is not well understood. Most likely it is either

a conventional 7rE resonance, a K Ar bound state, an elementary three-quark

state, or some combination of these. Whatever it is, its existence makes the

K-p system both difficult to understand and interesting to study.

1.2 Point of View

This study represents an attempt to determine what nature has to tell us

about the K-p interaction nature as opposed to a particular theory or

model. We have operated within a model, and with a certain set of hypothe-

ses, but the hope is that the model is general enough to reveal the physics of

the actual interaction.

Our choice of theoretical tools and point of view is as follows: We use

a potential model in order to build in the correct probabilistic features of
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Quantum Mechanics. We solve a Lippmann-Schwinger equation which for

the nonrelativistic case is just the integral form of the Schrodinger equation

and for the relativistic case corresponds to the Blankenbecler-Sugar equation

with certain simplifying assumptions. The potential is chosen to be sophisti-

cated enough to include the important physics coupled channels, separate

isospin parts, nonlocality, and energy dependence yet simple enough to

make it a useful tool separable Yamaguchi and general enough to avoid

prejudicing the results. In that this study is an attempt to understand nature

we rely heavily on published experimental results. In this spirit we accept the

kaonic hydrogen experiments at face value even though they have received

much criticism [27,28]. In order to get further information on the subthresh-

old behavior of the If-p scattering amplitude we also use the results of x-ray

experiments on heavier kaonic atoms in an optical potential model. Fur-

ther, we employ a final state interaction model to include information from

the ir-p rEK° production experiment. All of these experiments provide

important input to supplement the results of low-energy K-p scattering.

We do not include the results of Nuclear-Coulomb interference exper-

iments. These experiments can in principle provide valuable information.

They give the scattering amplitude itself as opposed to the square modulus

of the scattering amplitude. Unfortunately, the the results of the exper-

iments carried out at low energies are ambiguous. Specifically, Coulomb-

Nuclear interference shows the sign of the real part of the K-p scattering

amplitude to be positive in [29] for kaon laboratory momenta between 100

and 175 MeV/c and negative in [30] for kaon laboratory momenta between

100 and 200 MeV/c where the errors quoted are such that both experiments
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yield a scattering amplitude for which the real part is consistent with nega-

tive, positive or zero values. At high energies the results are unambiguous.

In reference [31] the K-p scattering amplitude is given down to 0.9 GeV.

Extrapolations have been carried out [31,32] with results that support the

interpretation of low energy scattering experiments and thus contradict the

kaonic hydrogen data'. The extrapolations are carried out over an enormous

energy range however and further work in this area is needed before they can

be considered definitive. The present work is not valid at the high energies

for which nuclear Coulomb interference data is available and it is for this

reason that we do not test our results against the interference data.

1.3 Goals

The purpose of this study is to gain information on the structure of the
KN interaction. In particular, we attempt to shed some light on the puzzle

regarding the kaonic hydrogen shift. To gain this information we address

the following questions: What is the nature of the scattering amplitude as

a complex analytic function of incident and outgoing momenta and total

energy? Can the interaction be described in terms of mesons and baryons

or is a more microscopic model required, such as one involving quarks? The

answer to this question can be expected to shed some light on the nature

of the A(1405) resonance. Is it important to use relativistic kinematics in

attempting to describe the interaction? In answering these questions we gain

'In [32] Martin has included one "data point" at a K- lab momentum of
335 MeV /c calculated from other workers' differential cross sections pub-
lished in [33].
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some useful insights which can be generalized and applied to other systems.



Chapter 2

K-p Scattering

2.1 Experiment

6

In scattering negatively charged antikaons from protons, several final states

are possible. The hadronic reactions important at low energies are:

K-p -4 K-p

-4 r°n
+-4 E-

r°E°

-4 r- E+

7r°A° (2.1)

The branching ratios for other hadronic interactions such as

K-p E-r°7+

L-.1
+ 07 '77
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and for electromagnetic interactions such as

K-p E°7

Ay

are so small (down by at least three orders of magnitude) as to allow one

to neglect the coupling to these channels in analyzing the scattering to the
dominant channels.

Scattering cross sections for the important reactions indicated above have

been measured in a number of experiments. These low energy K-p scattering

experiments are challenging. The difficulty lies in the short path lengths

traveled by the particles in the final state. These tracks are on the order of

millimeters in length. Modern electronic detection apparatus are unsuitable.

Almost all the experiments are carried out using bubble chambers'. Tens

of thousands of photographs are analyzed to yield only hundreds of events

from which cross sections are determined. Several groups [29],[33] -4401 have

taken on the challenge with results for the total cross section of the reactions

indicated in equation 2.1 in fairly good agreement.

In the experiment, low-energy kaons impinge upon a liquid hydrogen tar-

get. The kaons interact with (among other things) the protons in the target.

The incoming K- and the charged particles produced in the interaction cause

the supercooled liquid hydrogen to vaporize along their paths leaving a trail

of bubbles. The target is in a magnetic field so the trajectory of the charged

'Some early data is available from emulsion experiments.
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particles reveals their identity. Photographs of the tracks are taken and an-

alyzed. The cross section for a given reaction is given by

n
cr

1p

where n is the number of events observed, l is the measured K- track length
and p is the number of protons per unit volume. Cutoff criteria are applied

to the data for both momentum and scattering angle.

A cutoff in laboratory momentum at a value of approximately 100 MeV/c

is made because at lower momenta the track lengths of the particles in the

final state are on the order of or smaller than the size of a single bubble

0.25 mm) and the events are indistinguishable from "at rest" events.

The angular cutoff varies quite a bit from experiment to experiment. A

typical value is a laboratory angle of ten degrees about the forward direction.

At smaller angles the cross section is swamped by the Coulomb cross section.

Coulomb corrections made in the published total cross sections differ from

experiment to experiment. In some experiments the combined Coulomb plus

nuclear cross section is given where only data from angles greater than the

cutoff angle is included. In other cases, the pure Coulomb cross section is

subtracted and cutoff angles are chosen to exclude much of the data from

forward angles as well as backward angles to remove effects of Coulomb-

nuclear interference. The experimental data [29],[33]-[40] used in this work

is shown in Figure 1. The agreement of the results from different experiments

indicates that at the precision to which this data has been obtained, the exact

nature of the methods employed in dealing with the Coulomb interaction is

of no great importance.



9

200

0
0 100 200 0 100 200

Kaon Lab Momentum [MeV/c]

1Cp-c r-P Absji:Pt ion

4 K'n - rp-->E°71.°

0 rP irtt il T 41 ilV
I 1 I 1

Figure 1. Cross Sections as measured by: plusses, [34]; filled circles, [29];
filled triangles, [33]; open circles, [35]; filled squares, [38]; open squares, [39];
crosses, [40]. The I = 1 absorption data are derived from: open lozenges,
[36,37]; closed lozenges, [38,39].
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The range of kaon lab momenta that can be used in a pure s-wave anal-

ysis of the data is limited. As mentioned, data for kaon lab momenta be-

low about 100 MeV/c does not exist. Although the elastic and charge ex-

change (K-p Te n) are found to be isotropic at kaon lab momenta below

280 MeV/c [29,34,35,39], p-wave contributions to the reactions K-p 7rIE

have been reported [39] at kaon lab momenta as low as 150 MeV/c. Earlier

experiments suggested that this reaction was isotropic for all momenta be-

low 280 MeV/c [29,35]. Figure 2 depicts the production angular distribution

measured by [39,41] for the reaction K-p TIET at various lab momenta.

In reference [41] the anisotropic nature of this data is given as evidence for

the contribution of p-waves at 150 MeV/c. We submit it as evidence that the

p-wave contribution can be neglected at kaon lab momenta below 250 MeV/c

as the distribution is nearly constant. We use scattering data for kaon lab

momenta below 250 MeV/c.

2.2 Method used in determining scattering amplitudes

In describing the theoretical methods used in obtaining scattering amplitudes

we first give the basic ideas in the framework of single channel scattering

and then extend the formalism so that it applies to K-p scattering. In this

manner we can provide a brief review of simple scattering while laying down

the conventions used in this work.



40

20

90-150 lieVic

.6 40
ra
&20

W3

44 40
a)
I> 20

40

150-190

190-230 lieVa

230-300 lieVic

20

-1 0
cos

40

20

40

,1420

W3

-44 40
a)
xlt" 20

40

20

90-150 lieVA

150-190 lieVic

190-230 11eV /c

230-300 IleVA

1 -1 0 1

cos 9

11
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BEFORE AFTER

P
Figure 3. The Scattering experiment depicted in the laboratory frame.

Figure 4. The equivalent one body scattering problem for the relative posi-
tion of two interacting bodies.

2.2.1 Single Channel Scattering Theory

The physical situation to be analyzed is one in which a projectile of mass

m with momentum p interacts with a target of mass M which is at rest.
(See Figure 3.) The projectile has a final momentum p' and the target

a final momentum P. Viewed in the Center of Momentum frame we can

treat the problem as one in which a single particle interacts with a potential

which is fixed in space. (See Figure 4.) We solve the scattering problem in
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momentum space using time independent scattering theory. In this theory,

the cross section can be obtained from the on shell scattering amplitude

fE(le, k) where:

k = incoming momentum

k' = outgoing momentum

E = energy of the problem

The integrated elastic cross section is given in terms of the scattering ampli-

tude as

o- 47r1f

and the total cross section is given by the optical theorem as

41r
cTtotal = Imf (0 = 0)

where 0 is the angle between k and k'. The scattering amplitude f can be

obtained from the T-matrix by the relation

472(hoole2)T

where the T-matrix is the solution of the Lippmann-Schwinger equation

T 1k) = (k'l V 1k) (hc)3 f dap (k'I V ip) G E(p) (PIT 1k) (2.2)

In this equation the transition amplitude for an initial plane wave state of

momentum k to yield, after the interaction, a final plane wave state of mo-

mentum k' is given as a sum of the potential operator evaluated between

initial and final states and an integral which represents the sum over all in-

termediate states of the probability amplitude for an incoming state to make
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a transition to an intermediate state of momentum p, to propagate in that
state, and then to connect to the final state via the potential operator. The

propagator G is given by

1
G E(P) = E E (P) ic

where E is again the energy of the problem and

2

E(p)
2,u

is the nonrelativistic kinetic energy of the particle in the intermediate state
gyp). For the relativistic case we use

E (p) p2 + m2 + p2 M 2 (772 m)

Rewriting the Lippmann-Schwinger equation in terms of functions we have:

V(k',p)T(p, E , k)T(k', E, k) = V(k', k) (hc)3 f dap
E (p) ic

For the special case3 in which the interaction is independent of the azimuthal

angle q (see Figure 5) we can make the expansions:

V(k',k) E(2l + 1)171(k' , E, k) Pi(cos 0)
1=o

T(k', E ,k) = E(21 1)T1(le , E, k) Pj(cos 0)

We can then write the Lippmann-Schwinger equation for a given 1 value as:

'This special case occurs when the interaction can be described by a central
potential, in particular for cases in which there is no spin-orbit interaction.
Since we consider only the 1 = 0 terms of the following expansions we lose
no generality in ignoring the spin-orbit interaction.
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Figure 5. Definition of the angles in the scattering problem.

Ti(k' , E , k) = , k) /17r dp p2 Vi(ki P) 711(P E k)
(2.3)E E(p) ic

For the K p scattering that we shall be investigating, the energy is so low

that only the 1 = 0 contribution to the sum for T above need be considered.

Our method consists of choosing an analytical form for Virro(ki, k) which

has some parameters whose values are initially unknown. The choice of the

analytic form is based on the physics of the problem. The unknown param-

eters are determined by first fixing the parameters at some arbitrary values,

solving the Lippmann-Schwinger equation for the T-matrix, calculating the

scattering amplitude and cross sections, comparing the cross sections with

experiment, and adjusting the potential parameters and repeating until the

calculated cross sections agree with those measured experimentally.
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2.2.2 The Coupled Channels Nature of the Problem

In the discussion of the experiments it was revealed that in scattering neg-

atively charged antikaons from protons there are six important final states.
In the simplest analysis one could, for this problem, employ the single chan-

nel formalism described above by using the following arguments: In that the

strong interaction conserves isospin, an isospin basis is suitable. For isospin -0

there are only two final states:

KN

irE

and for I = 1 three final states:

If we are only interested in the K-p -+ K-p interaction we could give the

potential an imaginary (absorptive) part to account for the coupling to the

other channel(s). Thus we could solve a single channel problem for I = 0,
another one for I = 1 and determine the K-p -4 K-p scattering amplitude

by combining the results. This approach has the drawback that too much

of the physics is buried in the imaginary part of the potential. Experiment

reveals an isospin-0 resonance in the irE channel which has important con-

sequences on the K-p channel (including the possible existence of a virtual

KN nuclear bound state). Cross sections for KN -p irE have been measured
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directly and it is easier to incorporate the results of these measurements in

our calculations by considering the isospin-0 irE channel explicitly. Further,
although the strong interaction conserves isospin, it acts always in concert

with the Coulomb interaction which does not conserve isospin. We would like

to take into account the gross effect of this symmetry breaking in the low

energy region of interest. This means taking into account the mass difference

between the K-p and rn systems. Now, there is little or no structure in
the TA or isospin-1 irE channels so it is O.K. to take these into account with

an imaginary part of the potential. The irE thresholds all occur so far below

the region of interest (100 MeV below the K-p threshold) that we can ignore

the mass differences between these channels. Thus in the simplest analysis

which still includes the important physics we need to consider three final
states explicitly:

K-p K-p

irE (Isospin-0)

Again, the potential must include an imaginary part to take into account

the coupling to 7i-A and isospin-1 irE final states.

2.2.3 Coupled Channels Theory

Having established the need for a multichannel calculation for the specific

problem at hand, we now elucidate the extensions to the single channel meth-
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ods that are needed to handle the coupled channels problem. We explain the

extensions in a simple two channel problem and later implement them in the

K p system. To make the discussion more concrete we consider the following

interactions:

The plan here is to write the Lippmann-Schwinger equation for each inter-

action and show how the resulting set of coupled integral equations can be
combined into a single matrix equation. Using subscript "1" to denote the

N system and "2" to denote the rE system we can write the Lippmann-

Schwinger equations as:

TH(k',E,k) = 1/i1(k',k) f dpp2 Vii(k',p) Til P'E 'E Ei(p + if
47r f dpp2 1124, E k)

E E2(p) ic
Ti2(k` , E, k) = 142(k' ,k) 47r f dP P2 VI2E(ki "PE2(p)) 7122(P1 iE

47. f dpp2 Vii ' Tie (p, E, k)
E E1(p) iE

T21 (k/, E, k) =-- V21(k1 , k) 47z- f dp p2 V21E(ki ' PE) 171(1p1)(P1

dpp2 V22 (k', p) T21 (
+
P E

E E2(p) if
T22(k1, E, k) = V22(k' , k) 47r f dP P2 1722VI P) 712E(___E2(p2 E' k))(P1ie

4ir f dpp2 V21(le ,P) T12(P, k)
ic
E
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Letting the matrix

V11 V12V=
V21 V22

and

T T11 T12

T21 T22

we can write the coupled set of equations as:

T(101 , E , k) = V (101 , k) er f dp p2
V (k' , p) T (p, E , k)

E E (p) if

This completes our general discussion, we now turn our attention to the
problem at hand.

In a theoretical description of K p scattering one can use six coupled

channels one for each of the 2-body final states. We use and describe the

method of HAW [23] which involves only three channels. The reasons, which

will become clearer as we describe the method, are as follows: Using fewer

channels limits the number of free parameters while still allowing one to

include the important physics. HAW found that the parameters were poorly

constrained by the scattering data alone (they published several different

sets of parameters corresponding to equally good fits to the data). Certainly,

one should not use even more parameters until further constraints can be

found (as we do; see later chapters). Secondly, our work is an extension of

HAW's. By starting with a similar formalism we allow easier comparison

of results. Finally, determining up-to-date values for the same parameters

that they used allows immediate application of our results, for instance in

investigating bound states, by researchers who have used HAW's results in
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the past. In order to understand HAW's method one needs to know the
underlying physics.

2.2.4 Isospin

The total isospin and the third component of the isospin (I, /3) are, for the
K-: and for the proton: (2, 1). Thus, for the K-p system, (/, /3) can
take on the values (1, 0) and (0, 0). It follows that the K-p strong interaction

Hamiltonian must include a term for I = 1 and I = 0. Since the strong

interaction conserves isospin, there will be no coupling between the two.

The interaction Hamiltonian Hintx = Ho Po + H1P1 where P1 is the projection

operator for projection onto a state of pure isospin I. Evaluating the potential

operator between initial and final states will thus yield a potential function

which consists of the sum of an isospin-0 part and an isospin -1 part.

2.2.5 Actual Equations Solved

We operate in a charge basis as opposed to an isospin basis the states we

deal with are pairs of physical particles. The 3 x 3 potential matrix is a sum

of isospin-0 and isospin-1 parts.

V = + Vi

The matrix elements are given by:

gi(e)Afjgr(k)

with the Yukawa potential
e-31T

gl(r)
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which, by Fourier transformation, yields the momentum space potential

V2/
9./(k) =

(27

1
I d3r 9r(r) k.r 71-

=
131

01 is the inverse range parameter. It is real. The )'s are coupling strength

parameters. These can be written in terms of coupling strength parameters
for pure isospin states with the Clebsch Gordan coefficients used in expressing

the physical states in terms of isospin states.

K13) (V = 0)7N + 11" 1)7N)

Ten) = v11(-1/ = 0)-K-N + = 1)7N)

(rE) = 1-/ ()),,E

For example,

VK -p--K -p (K-p

(K-p

so that

go(e),\77N*._17Ngo(k)P° I \IKP/
(e)A6,17Asi(k)1311K-

1 1(I = 01 go(V)A6,7,,Ngo(k) =
12-

1 1
= 11 gi(P)ATN,y N gi(k) = 1)

12-

go(e) KNgl(k) (e) AITN _IT gi(k)

n
AK° 2

1- KIV4-KN

1

K-734-K-p 2 ALIV K IV
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Carrying this procedure out for each of the matrix elements we find that A

matrices have the form
1

1A° IA° 1 AO
2 KN4-7N 2 KN4-KN KN 4-7rE

A° =
2

A
KN4--7N 2

A KN4--KN
1 AO

KAT4--irE
1 AO Ao

KN4---rE TCNI-IrE nE*--7rE

Al =

112 A
KINT4-KN

2AiTN4-17N

0

14N+-VN
1A1 02 KNI-KN

0 0

0

The matrix elements of A° are real. The matrix elements of Al include an

imaginary part to take into account the coupling to the isospin-1 irE and irA

systems. Our potential matrices thus appear as:

v° =
1V°2 VN4-78N

1V°2 KN4-KN
1.01

KNI-rE

1V02 KN«-KN
1 v0
2 KNi-KN

1 v0
7 TN.-7,E

Vi
2 Tf/V+-r/V

1V1
2 KN+-7KN

0

The Greens Function matrix is:

E Ei(p) + if
G= 0

0

where Ei(p) is given by

0

1V12 r/sTI-KN

2 KN4-KN

0

E E2(p) i
0

P2
Ez(P) =

1 vo
K/s74-7rE

1 170
KNI---rE

1704-7rE

0

0

0

0

0

1

E E3(p) + if

(2.4)
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nonrelativistically and

E1(P) = V P2 + + VP2 (mi + Mi)

relativistically. (Again m, is the mass of the projectile in channel i and M, is

the mass of the target.) We have included the option of using a relativistic

propagator in the calculation in that since the IrE lies some 100 MeV below

the KN threshold, an energy which is comparable to the pion rest mass, the
pions in the irE channel are at relativistic energies even for very low energy

.K`p scattering. In the nonrelativistic calculation we take this into account

approximately by defining the reduced mass in the rE channel 1./3 so that the

nonrelativistic expression for energy agrees with the relativistic expression at

the K-p threshold. This is the definition used in [23]. First, the constant Po

is chosen such that

1//34 + + VA+ ml= mi +

Then it3 is chosen such that

2
Po

+ m3 M3
2123

For channels 1 and 2 (K-p and Ten) the reduced mass is defined in the
normal manner

772i Mi
= 1, 2

We cancan write out the coupled channels Lippmann-Schwinger equation

for a given value of the angular momentum quantum number l (subscript
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suppressed) as

3

(k', k) = (k', k) + E 41-1 dp p2 Vin(k' , p) G Ti(p) T.7 (p, k)
n.-=1

In solving this equation we take advantage of our choice of a separable po-

tential. To explain how this works we again revert to the single channel case.

Consider V = g(k')Ag(k) in the Lippmann-Schwinger equation

T V 4- V GT

This can be expanded in a Born series as

T = V + V GV + V GV GV + + V GV GV +

Each term on the right begins with a g(k') and ends with a g(k). It follows

that our T-matrix must have the form

T(k', E ,k) = g(k')AEg(k)

Assuming this form, our integral equation for T becomes an algebraic equa-

tion for AE.

g2 09) AEg(k')AEg(k) = g(P)Ag(k) + g(k')AzIr- f dp p2
E E(p) + if g(k)

Defining

we have

g2 03)
B = 4ir dp 192

E E(p) + ic

AE = A + AB AE

(1 AB)AE = A
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AE (1 AB)-1 A (2.5)

If we now consider our potential to be the sum of isospin-O and isospin-1

parts

V = 90A°90 + 91A191

we find that the T-matrix can be written:

T =- g i(k') AIEJ gj(k)

J=0,1

and in analogy with equation 2.5, the AE's are given by

AT Aoi (1 0 ) (A0 0 ) ( .13°° B01(

)1-1 (Ao

0
=

A1-2 AP 0 1 0 Ai 131° B11 0 Al

(2.6)

In going to the three channel case we simply let each of the variables in

equation 2.6 become 3 x 3 matrices. The A-matrix, for instance, becomes

a 6 x 6 matrix which can be described as a 2 x 2 supermatrix of 3 x 3
submatrices. The 36 elements of the B-matrix are defined by:

B!" = 4r di3p2 7(P)9J(P)

E Ei(p) + if 13

where the diagonal nature of the 3 x 3 submatrices is a direct result of the

diagonal nature of the propagator matrix G. (See equation 2.4.) The T-
matrix also becomes a 3 x 3 matrix with each of the elements given by:

Tii(ki , E, k) = E > g i(k') Aft (E) 9J(k)
i=o0.

The scattering amplitudes are given in terms of the T-matrix elements as

fii = 471-2 (hc)(0117rtic2)Tij
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Experimental Cross Section Theoretical Cross Section

Cr IC-p-K-p

aK 71,4--K-p

Ci-iraEO4-K-p

0r-A4-K-p Crir+E- 4-K-p+

Crr-E+ 20-1r0E°4-K-p

47fIIfll I2

47r(k-gorikK-p)if2112

(47r/3)(k,E/ kx-p)1f3112

(47r fiCK-p)IMfll 47fIf1112-

47r(kyojk.K-Olf2112 47(k,E/kx-p)If3112

Table 1. Formulas for the cross sections.

Expressions for the cross sections in terms of the scattering amplitudes are

given in Table 1. The last entry in the table represents the isospin-1 ab-

sorption cross section. The experimental isospin-1 absorption cross section

is actually a derived quantity. It is a linear combination of measured cross
sections.

2.3 Results (Low Energy K-p Scattering)

In Figure 6 we show a nonrelativistic fit to the low energy scattering cross

sections. The K-p K-p scattering amplitude corresponding to the the
nonrelativistic fit is shown in Figure 7. Figures 8 and 9 show a relativistic fit

to the cross sections and the corresponding K-p elastic scattering amplitude.

These represent the best fits to the data. The cross section data constrains

the scattering amplitudes only in the energy range 1438.5-1470.5 MeV as in-

dicated in Figures 7 and 9. We are interested in the behavior of the scattering

amplitudes below this energy in particular, the value of the K-p K-p
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Figure 6. Calculated cross sections for a nonrelativistic fit to the indicated
data. The data are the same as in Figure 1.
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Figure 7. The K-23 elastic scattering amplitude corresponding to a nonrela-
tivistic fit to the low energy scattering data only. The solid curve represents
the real part of the amplitude and the dotted line represents the imaginary
part. Vertical arrows indicate threshold energies for the Er, K-p, and rn
channels in order from left to right. Double arrows show the range of en-
ergies for which the scattering amplitude is constrained by the low energy
scattering data.
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Figure 8. Calculated cross sections for a relativistic fit to the indicated data.
The data are the same as in Figure 1.
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Figure 9. The K-p elastic scattering amplitude corresponding to a rela-
tivistic fit to the low energy scattering data only. The solid curve represents
the real part of the amplitude and the dotted line represents the imaginary
part. Vertical arrows indicate threshold energies for the E7r, K-p, and rn
channels in order from left to right. Double arrows show the range of en-
ergies for which the scattering amplitude is constrained by the low energy
scattering data.
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scattering amplitude just below the 1-(-23 threshold at the If-p Coulomb
bound state energy. It is desirable therefore, to check the consistency of our

scattering amplitudes with other data. Such data is available but computing

the observables from the theoretical scattering amplitudes is not as straight
forward as in the low-energy scattering case. We postpone discussion

of the physical significance of our results until after completion of the con-

sistency checks. The chi-squared per degree of freedom for these two fits is

on the order of 10-2. Recall that for a good fit X2 / °F 1. These fits are
too good. The potential parameters are underdetermined by the data. Scat-

tering amplitudes with different behavior than that shown in Figures 7 and
9 also fit the data well. It is clear that other experimental data is needed to

obtain an understanding of the antikaon-proton interaction.
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Chapter 3

71--p --÷ 7rIEK° at 1.69 GeV/c

In order to build subthreshold constraints into our scattering amplitudes
we consider the reaction 71--p rIETK° at a laboratory momentum of
1.69 GeV/c (2025 MeV center of mass energy). This reaction has been inves-

tigated experimentally by Thomas et al. [42]. It provides indirect information

on irE scattering. In that direct irE scattering experiments are beyond the

state of the art, this type of experiment (7r-p * 7rIETK°) is our best source

of information on irE scattering in the low energy regime. It can be used

to constrain the irE scattering amplitude at two body center of momentum

energies below the If-p threshold within following model: In the absence of

any final state interactions amongst the 7r, E, or K° it is assumed that the

distribution of momenta among the final state particles is governed solely by

phase space considerations. That is, the 7r-p interaction itself does not prej-

udice the momentum distribution. Further, if we assume that the interaction

of the K° with either of the other two particles can be neglected, or in other

words, that the K° is a spectator with respect to final state interactions,
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then the deviation of the momentum distribution from the pure phase space

distribution is accounted for by the irE interaction alone. (The energy at
which the experiment was carried out was deliberately chosen so that the
interaction between the K° and the other particles in the final state would

have little structure and the distribution would thus be dominated by the
resonance in the 7rE channel.)

Thomas et al. [43] give the irE experimental mass spectrum for this in-

teraction as a histogram of the number of observed 7r- p TrIETK° events

versus the total energy in the irE center of momentum, i.e. the "Mass" of a
irE pseudoparticle. The histogram is shown in Figure 10. We can calculate

this mass spectrum theoretically within the model just described, up to an
undetermined overall normalization factor. In practice, this normalization

factor is determined by setting the integral of the theory spectrum (total

number of events) equal to the integral of the measured spectrum.

3.1 Computing the 7r-p 7rIEK° Spectrum

We can state the problem as: Given the scattering amplitude for 7rIET -4
7r±.ET as a function of the total energy in the irE center of mass, find the
number of events 7r- p 7r±ETK° as a function of the same variable.

The shape of the spectrum is given by the transition probability dw3
where the "3" indicates a three body final state.

dw3 = lAffi 12 ig(E , MA) (3.7)

IMfir is the square modulus of the invariant transition amplitude and p3 is

the three body invariant phase space function of E, the total energy in the
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Figure 10. The rE mass spectrum. The histogram is the experimentally
measured spectrum [43]. The dotted line represents the phase space curve
for the interaction.
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three body center of mass frame and MA, the total energy of the pion and

the sigma particle in the rE center of mass.

At this point we need to consider the fact that in our calculation of the
7rIE 7rIE7 scattering amplitudes we considered the potential to be the

sum of isospin-O and isospin-1 parts only. The physical irIE states are
actually linear combinations of isospin-O, 1 and 2. The isospin-2 part does

not appear in the K-p scattering problem because the K-p system has no

isospin-2 component'. The 7rIET produced in the reaction 7r-p R-±E7K°

does have an isospin-2 component. We extend the model to handle this
situation by assuming no energy dependence of the interaction for the isospin-

2 part. (This is one further manifestation of our assumption regarding the

dominance of the irE isospin-O resonance on the distribution of particles in

the final state.) The 7r-p state can be written in terms of isospin states as

17-P)
3 1 \
2' 27

1 1 \
2'

where the kets on the right represent states of total isospin I and the third

component of isospin /3 as i/J3). A final 7r-E+K° state for which the R--E+

particle pair is in an isospin-O state is given by

((7-E+)1 =0K°I =

For isospin-1 we have

((r-E+).[=1K°1

'The Coulomb interaction can mix in an isospin-2 component but we con-
sider only the gross effect of isospin symmetry breaking by the Coulomb
force, namely the mass differences among particles of the same isospin
multiplet.



and for isospin-2

( E+ )1=2 K°I

Thus the fraction of (Or- E+4=0K° I is

((r- E+ )/,0K°17rp)
sum

where

SUM

Likewise

h=0 =

= 5/6

= ((r-E+),(=oK°11r-P) K(7-E+)1=1K°17r-P)

(VE+)1.2K°17r-P)

f1 =1 = 0

f/=2 = 1/6
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We find the same results for the final state ir+E-. Thus, we can write the

transition probability to the three body final state as

5 1
dw3N = -6dw3N(/ = 0) + d4 (I = 2)

where the N signifies the fact that the probabilities have been normalized to

yield the same total number of events as were observed in the experiment.

For either isospin, the transition probability can be written as in equa-

tion 3.7. In computing dw3(I = 2) we take IMfir to be a constant so that

the transition probability is proportional to the phase space factor

1
P3I (E, MA) = MA, rnx0)P(MA, rnE, rnir)



where the function P is defined by [44]

[E2 (nil + rn2)2] [E2 (mi m2)2] 1/2

4E2
P(E

:37

For the I = 0 case we need to evaluate IMfi12 which can be written as [45]

12 = Ea 11E0) (Pi H la) 12
a

where (01 H la) is the matrix element of the interaction Hamiltonian con-

necting an initial state a to a final state 0 and 11, E,110 Eo is the product

of the energies of each of the particles in the initial state times the product
of the energies of each of the particles in the final state. These quantities can
be evaluated in any reference frame but they must all be evaluated in the

same reference frame. We use the final state interaction assumption that for
constant total energy E

H ia) 12 a ifirE.-irE 12

Since we know fE,_,E in the irE center of mass frame we evaluate

dw3(I = 0) a EiriE11,E,',.f 44-01L-E4,-E12P(E , M A, m R-0)P(MA, mE,m,)

in that frame. We have used a prime to indicate quantities which must be

evaluated in the irE center of mass frame. Explicit expressions for the initial

pion energy gr., the initial proton energy E', the final pion energy E1, the
final sigma hyperon energy _q and the final kaon energy EfKo are derived in

appendix A.

Some properties of dw3 based on the behavior of m should be pointed

out. E is a constant (2025 MeV) dictated by the irE center of mass energy
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at which the experiment was carried out. m = 0 for MA < m + M5- since

under this condition there isn't enough energy in the irE center of mass to

produce the particles at rest. p3 = 0 for MA > E mKo since under this

condition there isn't enough energy left over to produce the K° at rest. Since

dw3 a p3, dw3 has these properties too.

If we set firE,_,E = 1 we obtain the phase space diagram shown as the
dotted curve in Figure 10 (page 34). Results for the the scattering amplitudes

we have been generating are given in the "Results" section.

3.2 Results

Low-Energy K-p Scattering and 7r-p

Requiring the irE irE scattering amplitude to reproduce the it -p

71-±EK° spectrum proves to be a severe constraint on the T-matrix. This

forces a functional form on f,E_,E over a irE center of mass energy range

of some 200 MeV. In that the irE channel is strongly coupled to the KN
channels this is a strong constraint on all the scattering amplitudes.

In Figures 11 and 12 we show the computed 7r-p 7rIEK° mass spec-

trum (along with a histogram of the measured spectrum) based on the non-

relativistic fit to the low energy scattering data (see Figure 6 page 27 and

Figure 7 page 28) and the relativistic fit (see Figure 8 page 29 and Figure 9

page 30). We note that scattering amplitudes fit to the low-energy scattering

cross sections alone yield poor fits to the spectrum. If we use the spectrum as

a constraint we obtain different scattering amplitudes which still yield good

fits to the low-energy scattering cross sections.
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Figure 11. The 77-E mass spectrum of [43] compared to predictions from a
nonrelativistic fit to low-energy scattering data only.
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Figure 12. The IrE mass spectrum of [43] compared to predictions from a
relativistic fit to low-energy scattering data only.



41

Fit

AT1

(fm) (MeV2)

/1012

(MeV2)

4/1011

4)2

(MeV2)

nrl 0.0235 -1.47 x 108 -7.72 x 106 -2.83 x 108
nr2 0.138 -2.61 x 104 -4.88 x 104 +3.46 x 104
nr3 0.223 -1.82 x 105 -1.54 x 105 -4.36 x 105
HAW 0.180 -3.58 x 105 -1.23 x 105 -4.52 x 105

Fit

/11

(fm)

\11

(MeV2)

nrl 0.128 -7.37 x 105 2.14 x 105i

nr2 0.293 -3.88 x 104 4.25 x 104i

nr3 0.616 -1.72 x 104 1.13 x 104i

HAW 0.500 -6.08 x 103 4.42 x 103i

Table 2. Potential parameters for three nonrelativistic fits.

3.2.1 Nonrelativistic Calculation

In Figures 13-24 we show the K-p elastic scattering amplitudes, cross sec-

tions, and 7-p rEK° mass spectra for each of four nonrelativistic fits to
both the low energy scattering data and the 7rE mass spectrum.

The first three fits were obtained in the present work and are referred to as

nrl, nr2, and nr3. The last fit, obtained by Alberg, Henley, and Wilets [23}

and referred to as fit HAW is shown for comparison. Table 2 gives the po-

tential parameters corresponding to the four fits. The K-p elastic scattering
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Figure 13. Real (solid) and imaginary (dotted) parts of the If -p scattering
amplitude from nonrelativistic fit nrl to low-energy scattering data and the
7r-p 7r±17K0 mass spectrum.



200

Pg 100

0
.4-3 0C.)

U) 50

rn

&.4 25

°o 100 200 0 100 200
Kaon Lab Momentum [IfeV/e]

43

K
_

IC-p IC-p

,,
...,

... :

I=.-11 =1

K-p--> IN K p nr°

Figure 14. Cross sections from nonrelativistic fit nrl.
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Figure 15. Mass spectrum from nonrelativistic fit nrl.
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Figure 16. Real (solid) and imaginary (dotted) parts of the K-p scattering
amplitude from nonrelativistic fit nr2 to low-energy scattering data and the

7r-±E.K.° mass spectrum.
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Figure 18. Mass spectrum from nonrelativistic fit nr2.
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Figure 19. Real (solid) and imaginary (dotted) parts of the K-p scattering
amplitude from nonrelativistic fit nr3 to low-energy scattering data and the

art EK° mass spectrum.
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50

100

-\\

0
1300 1400 1500 1600

(Eli-) Mass [MeV]

Figure 21. Mass spectrum from nonrelativistic fit nr3.
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Figure 22. Real (solid) and imaginary (dotted) parts of the K-p scattering
amplitude from nonrelativistic fit HAW [231 to low-energy scattering data
and the 7r-p --> 7r±E./i'° mass spectrum.
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Figure 23. Cross sections from nonrelativistic fit HAW (ref. [23]).
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Fit Scattering Length [fm]

nrl -1.04 + 0.96i

nr2 -1.02 + 0.48i

nr3 -1.06 + 0.55i

HAW -0.66 + 0.71i

Table 3. The K-73 scattering lengths for nonrelativistic fits nr1, nr2, and
nr3 of present work and fit HAW (fit c of ref. [23]).

lengths are given in Table 3. HAW [23] fit to the sum of the antikaon-nucleon

scattering cross sections which they reproduce well though the fit to the in-

dividual cross sections is poor. The different fits of this work correspond to

different chi squared minima arrived at by using different starting values for

the potential parameters. In each case the chi squared per degree of freedom

is about one. The scattering amplitude of Figure 13, fit nrl, is quite sim-
ilar to the scattering amplitudes published by other authors [32], [42], [46]

including HAW [23], Figure 22. The scattering amplitudes corresponding to

fits nr2 and nr3 are also similar in shape but the zero in the real part and
the peak in the imaginary part are shifted left and the magnitude of both

parts is much greater in the subthreshold region.

Qualitatively, nr3 does not reproduce the spectrum as well as fits nrl and

nr2. However, the big difference between fit nr3 and the other two doesn't

become apparent until one looks at the scattering amplitude for irE --> irE.

In Figures 25-28 we show the irE --> irE isospin-0 scattering amplitudes
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Fit Energy Width

[MeV] [MeV]

nrl 1410 54

nr2 1391 70

HAW 1398 64

Table 4. The A(1405) resonance parameters based on fits fits nrl and nr2
of present work and fit HAW (fit c of ref. [23]).

generated with the nrl, nr2, nr3 and HAW sets of potential parameters.

We have multiplied the amplitudes by the relative momentum in the
irE channel in order to extract the resonance parameters directly from the
graphs. Fits nrl, nr2, and HAW show a clear isospin-0 resonance signal (the

real part of the scattering amplitude goes through zero and the imaginary

part peaks, both at the same energy). This corresponds to the A(1405). The

energy and width of the A(1405) calculated from fits nrl, nr2, and HAW are

given in Table 4. Fit nr3 reproduces the low-energy scattering data and gives

a reasonable fit to the 7r-p -4 7rETK° mass spectrum but amazingly', fit
nr3 shows no evidence for a resonance in the irE channel.

'This is amazing only because the data fit here was used to give the A(1405)
its four star rating the pronounced peak in the 7r-p 7r±ETK° mass
spectrum is considered to be hard evidence for the resonance. It is not so
amazing when one looks at the phase space curve (which peaks near the
resonance energy) in Figure 10 and realizes that the KN channels open up
at about 1430 MeV causing a dip in the distribution near that energy. The
gross features of the spectrum occur in the absence of any irE interaction
except for the coupling to KN
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Figure 25. The isospin-O + rE scattering amplitude multiplied by the
relative irE momentum and plotted as a function of the total energy in the
7rE center of mass frame for fit ad.
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Figure 26. The isospin-O rE irE scattering amplitude multiplied by the
relative irE momentum and plotted as a function of the total energy in the
irE center of mass frame for fit nr2.
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Figure 27. The isospin-O irE irE scattering amplitude multiplied by the
relative irE momentum and plotted as a function of the total energy in the
irE center of mass frame for fit nr3.
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Figure 28. The isospin-O irE scattering amplitude multiplied by the
relative irE momentum and plotted as a function of the total energy in the
irE center of mass frame for fit HAW.
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ot.:71 Ai1 Ai02
A(2)2

Fit (fm) (MeV2) (MeV2) (MeV2)

rl 0.261 -2.89 x 107 +2.99 x 107 -3.13 x 107
r2 0.0962 -1.05 x 106 -1.71 x 105 -1.29 x 106

P1 1 1

Fit (fm) (MeV2)

rl 0.223 -1.25 x 105 2.02 x 104i

r2 0.0678 -2.75 x 106 3.77 x 104i,

Table 5. Potential parameters for two relativistic fits.

3.2.2 Relativistic Calculation

In Figures 29-34 we show the If-p elastic scattering amplitude, the cross

sections, and the 7r-p 7rIETK° production spectrum for two relativistic

fits referred to as fits rl and r2. The potential parameters and scattering

lengths are given in Tables 5 and 6. Fit rl represents a relativistic update

Fit Scattering Length [fm]

rl -0.30 + 0.81i

r2 +0.61 + 0.69i

Table 6. The K-p scattering lengths for relativistic fits rl and r2.
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Figure 29. Real (solid) and imaginary (dotted) parts of the K-p scatter-
ing amplitude from relativistic fit rl to low-energy scattering data and the
7r-p -4 irEK° mass spectrum.
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Figure 32. Real (solid) and imaginary (dotted) parts of the K-p scatter-
ing amplitude from relativistic fit r2 to low-energy scattering data and ther-p 77-E1-c° mass spectrum.
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of HAW's work. We present this calculation, although it does not represent
quite as good a fit to the data as the other fits, in order to show that in-
cluding relativistic kinematics as we have done does not rule out scattering

amplitudes of the "conventional" shape, i.e. that shape determined by other

authors [23], [32], [42], and [46]. Fit r2 represents our best fit to the data. It
is the result of a relativistic calculation differing from the other relativistic

calculation only in that it corresponds to a different minimum x2. Although

this result does correspond to the best fit to the data, the difference in x2 's

is not great enough to suggest that the data is dictating this to be the "true"
scattering amplitude.

We note that the real part of the new relativistic scattering amplitude,

in contrast to the real part of the other scattering amplitudes, does not

change sign. The difference is in the relative strengths of the isospin -0 and
isospin-1 parts. In Figure 35 we show the I = 0 and I = 1 If-p elastic
scattering amplitudes separately for fit r1. Figure 36 shows the individual

isospin amplitudes for fit r2. We note that the the essential difference is in

the strength of the / = 0 amplitude. In the rl fit, it is weaker than the
I = 1 amplitude. In fit r2, and only in fit r2, the I = 1 curve dominates
in the region near threshold so that the total scattering amplitude which is

approximated very accurately by the sum of the two does not have any sign

changes! Coupled strongly to the rE channel as it is, one might expect the

behavior of the r2 scattering amplitude to carry over into the rE channel
and thus fail to yield a rE resonance. We find that, on the contrary, fits rl

and r2 both give a nice rE resonance that can be identified as the A(1405).

In Figures 37 and 38 we show the rE elastic scattering amplitude times the
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Figure 35. Real (solid) and imaginary (dotted) parts of the KN I = 0
(upper) and I = I (lower) elastic scattering amplitudes from relativistic fit
rl to low-energy scattering data and the it -p ir±EK° mass spectrum.
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Figure 36. Real (solid) and imaginary (dotted) parts of the KN I = 0
(upper) and I = 1 (lower) elastic scattering amplitudes from relativistic fit
r2 to low-energy scattering data and the 7r-29 ir*Y_:K° mass spectrum.
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Fit Energy Width

[MeV] [MeV]

rl 1397 81

r2 1400 70

Table 7. The A(1405) resonance parameters based on fits fits rl and r2.

channel momentum for fits rl and r2. The resonance behavior is apparent.

The resonance parameters are given in Table 7.

Even with the strong conditions placed on the scattering amplitudes by
the r p irEK° spectrum we still have enough variety in the calculated

amplitudes that further constraints on the scattering amplitudes are needed

to determine which set is correct. To this end we turn to kaonic atoms.
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Figure 37. The isospin-O 7rE 7rE scattering amplitude multiplied by the
relative 7rE momentum and plotted as a function of the total energy in the
irE center of mass frame for fit rl.
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Chapter 4

Kaonic Hydrogen

4.1 Kaonic Hydrogen Experiment

When negatively charged antikaons are allowed to impinge upon a liquid hy-
drogen target they slow down in the target and are captured on protons in
high principal quantum number n and angular momentum quantum number

/ Bohr orbits. The antikaons cascade down through the various Bohr orbits,
by Auger transitions until they are inside the innermost electron orbit, and
then via photon emission. The Coulomb bound state which is formed in
such a manner is known as kaonic hydrogen. It is a hydrogen atom with a
negatively charged antikaon instead of an electron. The antikaon has mass
493.667 MeV which is roughly 1000 times the mass of the electron. Since
the Bohr radius goes as l/m, an antikaonic hydrogen orbit is smaller, by a
factor of about 10-3, than the electronic hydrogen orbit of the same principal

quantum number. The Bohr radius of kaonic hydrogen is 84 fm. For this
reason the short range strong interaction causes a significant shift in the is
level of kaonic hydrogen and also gives the level a significant width. The
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shift and width in the 2p level are negligible and thus a measurement of the

energies of the photons given off in 2p is transitions of kaonic hydrogen

can be expected to give the shift and width of the is level when these mea-

surements are compared with the exactly calculable is levels for the pure
Coulomb state.

The experiment is a very difficult one. Because of the necessary target
container, photons of energies near the 2p is transition energy (6.4 KeV)
are given off by other processes which makes it very difficult to identify the
2p ls. The experiment has been carried out three times [24,25,26] and

although the results differ to some extent (see Figure 39), they agree in that

each measurement shows the is state of kaonic hydrogen to be more bound
than it would be in the absence of the strong force. This is in direct
contradiction to the theoretical shift predicted [47][49] on the basis of low
energy K p scattering experiments [29],[33][40]. In the next section we

show how the theoretical shift is determined. Then we give the theoretical

shifts based on the scattering amplitudes calculated in Sections 3.2.1 and

3.2.2. Here we emphasize that it may very well be the experiment which is

in error. However, these three measurements are the only ones available and

we choose to explore the consequences which follow when they are taken at
face value.
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Figure 39. The shifts and widths of the 1S level in kaonic hydrogen as
measured by [24] (squares), [25] (crosses), [26] (circles).
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4.2 Kaonic Hydrogen Theory

In the simplist analysis the kaonic hydrogen shift and width are given by the
Trueman formula [50]:

/LE, 4 f (En)
En n RB

where f (En) is the complex K- p scattering amplitude evaluated at En, the
Coulomb bound-state energy of principal quantum number n , and RB is the
Bohr radius. The shift and width are given in terms of AEn as:

E = Re(AEn)

F 2 Im(AEn)

According to this formula, the scattering amplitude must have a positive real

part at threshold in order to produce a shift to the more bound (positive 6).

Thus, if we accept the kaonic hydrogen results, the only scattering ampli-
tude of those depicted in Figures 13, 16, 19, 22, 29, and 32 that would yield

a qualitatively correct shift is the the one corresponding to fit r2. In light of

these considerations the kaonic hydrogen experimental results are seen to be
very useful in ruling out what would otherwise be considered physically rea-

sonable scattering amplitudes (but only to the extent that the experimental

results can be believed).

Although we have used the Trueman Formula to argue that the only phys-

ically reasonable scattering amplitude from our various fits is the one from
the "New Relativistic" fit, the strong energy dependence of the K p elastic
scattering amplitude makes it necessary to carry out a more exact calculation

of the shift and width in order to compare the theoretical predictions of the
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shift and width based on the scattering amplitudes of section 3.2.1 and 3.2.2
with the measured values.

4.2.1 The Bound State Problem in Momentum Space

In this section we give the general methods used for solution of the momen-

tum space bound state problem, first in terms of operators and then in terms
of matrix elements or functions. Calculational details for specific applications

are given in subsequent sections.

We begin with the Lippmann-Schwinger equation

T = V + V GT

(1 V G)T = V

T = (1 VG) -1V

The condition for a bound state is that the T-matrix has a pole, or

det(1 VG) = 0

If we evaluate the operators in the Lippmann-Schwinger equation between

momentum states we arrive at the integral equation given in section 2.2.1 as

equation 2.2.

(lei T 1k) =-- (lel V 1k) + (hc)3 f dap (k'I V 1p) GE(p) (p I T 1k)

Carrying out the same steps as were performed in that section we arrive
at the Lippmann-Schwinger equation for a particular value of the angular

momentum quantum number 1 as given by equation 2.3.

Ti(le , E, k) = Vi(k' k) + dp p
2 P) TI (p, E k)

E E(p) + ic
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If we approximate the integral in this equation by a sum over points with
weighting factor Wn this equation becomes ( subscript 1 suppressed and E
dependence understood)

2 N V(ki, 10,0T(kn, ki)T (ki, kJ) = V (ki, ki) + 003 7,1Wnlv!
E E (kn) + iE

which we write for convenience as

Tij V, + -2(hc)3 E vvn kn2VinGnTnj
7 n=1

where

Gn =
E E(kn) + i6

1

Defining

(lc)3117jkjVjGj

we have
N

Tij =V ij E MinTnj
n=1

This equation holds for any ki, ki; in particular for the ki=i,N, ki=1,N values

that occur in the sum. We can thus consider T, V, and M to be N x N
matrices and write the equation in matrix form as

T = V + MT

(1 M)T = V

The condition for a bound state is thus

det(1 M) = 0 (4.8)

where in this case 1 M is a matrix whose elements can be computed for a
given E so that equation 4.8 can be solved on a computer. One calculates
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the determinant for various values of E until that E is found for which
the determinant is 0. The grid points are chosen as those appropriate for

Gaussian integration [51] and N is chosen to be large enough so that further

increases in its value do not change the resulting bound state energy E.

4.2.2 The Coulomb Bound State Problem

Given the Coulomb potential in coordinate space due to a point charge at
the origin

2
17c (r', r) = -e (5(r1 r)

we obtain, by Fourier transformation, the momentum space Coulomb poten-
tial

Ze2 1
Vc (P', P) 27r2

The singularity at p = p' occurs not because of the pole in the coordinate

space potential at the origin but because of the infinite range of the potential.

(In fact, if one uses a cutoff Coulomb potential, the momentum space wave

function is non-singular. However, numerical problems arise if one chooses

a realistic cutoff range, i.e. on the order of atomic distances, and if one cuts
off the potential at a short enough range to alleviate these problems, the

potential is no longer realistic.) In that we are interested in the potential for

a particular 1 value we make the projection

vr(P',P) =
Zee r Pi(x) dx

2 p2 112 2pplx

Ze2

2ppiQ
i(z,)



where

ZPP' = (132 112)12P11

and Qi is the Legendre function of the second kind.

Explicit forms of Qi for the first few 1 values are

Recognizing that

Qo

Q1

-1
2

In

1
Q2 = 71(3Zp2pr 1) In

In

1

2In

3zpp,

2
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we realize that the momentum space Coulomb potential for a given 1 value has

a logarithmic singularity at p = p'. This singularity makes for a difficulty in
the momentum space Coulomb bound state problem which requires special

treatment. The method for handling the problem was first published by

Kwon and Tabakin [52] where they give Lande credit for the technique which

is therefore referred to as the Kwon Tabakin-Lande techniques. In the general

momentum space method described in section 4.2.1, where the bound state
problem is reduced to one of solving det(1 VG) = 0, the difficulty with the

Coulomb potential manifests itself as singular diagonal matrix elements in

the potential. To remove the singularities, one has to go back to the integral

6Kwon and Tabakin formulated the problem in terms of wave functions.
They solved the eigenvalue problem HT = ET directly. We have incor-
porated their method into a reformulation of the problem in terms of the
T-matrix.
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form of the problem which for the case of the Coulomb interaction takes on
the specific form

c (k' p)7i(p, E , k)Ti(k' , E , k) = (k` , k) dpp2
V

1 E E(p) ic
(4.9)

The Kwon Tabakin-Lande technique consists of removing the singularity by
adding and subtracting a term involving the integral

Si(k)
00 VIC (1c1 p)

o Pi(k' ,p) P

which can be evaluated analytically. The Lippmann-Schwinger equation then
appears as

Ti(k' , E, k) Uc (k`, k)

47r1 dpVic (k` , p) {p2 GE (p)Ti(p, E, k)

ki2G E(k')Ti(ki , k)

Nzep)
G E(k')Si(e)Ti(le k)

Now when we convert this integral equation to a matrix equation, the V
matrix is nonsingular. Considering the 1 subscripts to be implied we have for
a given 1:

Ti?

N
-= 47r E wnvicn lenCnTn3

n=1
ngti

N VC
47r G iTij E wn

n =1 in
nOi

47rqGiSiTij (4.10)
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The sum in the second term can be evaluated explicitly allowing us to define

N VPE wn zn
n=1
nOt

Vii E._--. Si

471-147k!Gn

47-4Gi

so that equation 4.10 can be written as

Ti;NVij E Dn VinCTnj
n=1

Defining Min = DnVin we have
N

= Via + E MinTni
n=1

or in matrix form

T = V A- MT

(1 M)T = V
just as before. Again, the problem reduces to one of solving for the zero of
the determinant of a matrix:

det(1 M) = 0 (4.11)

Adding in the strong potential in the single channel case is trivial. If, in
equation 4.9 we replace V ° (k', p) with Vic (k', p) VI' (le , p) we find that the
only change in the formalism involves redefining

cn
vin

The extension to coupled channels for the case where at least one of the
channels is open is nontrivial and we devote the next section to a discussion
of that extension.
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4.2.3 Extension to Coupled Channels

The extension of the Kwon Tabakin-Lande method to coupled channels is
due to Landau [48]. If we think for a moment of the single channel problem

and attempt simply to evaluate the matrix M in equation 4.11 for a positive
value of E we find that GE(k') is singular for the on shell value of k' (non-

relativistically this occurs when 0/2,u = E). It is for this reason that the
Kwon Tabakin-Lande subtraction technique doesn't work for the scattering

problem where we might expect to be able to simply replace equation 4.11

with

T (1 M)-1V

The singularity in GE(k') at positive energies yields a singularity in M which

for the present is considered unremovable. A similar problem occurs in the
bound state problem when the system is coupled to an open channel in that

for the open channel the problem is actually a scattering problem. One can
work around this problem as long as there is no Coulomb interaction in

the open channel. The method is most easily understood by considering

the open channel alone first, adding a closed channel, and then including the

Coulomb interaction within the closed channel. Rewriting the Lippmann-

Schwinger equation for the scattering amplitude we have

Ti(k1 , E , k) = , +
Jdpp2V(k',p)T1(p,E,k)E E (p) + if (4.12)

The integrand is singular at the on shell point p = /co where E = E(k0). The

singularity can be removed by adding and subtracting an integral which can

be evaluated analytically. Recall that the plus is in the denominator of the
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integrand is put there to build in the proper scattering boundary conditions

(outgoing spherical waves) and that the limit as 0 is to be taken after
the integration. The integral to be added and subtracted is

lim47kD7/(le, ko)Ti(k' , ko) 0-0°e0

Equation 4.12 becomes

Ti(k' , E, k) = Vi(k' , k)

1

2 2 i
2p 2p

= °V (kt , ko)Ti(ko, k)

47r f dp P2
Vi

(k',
p) Ti(p, E, k)

E E (p) ic

4ir2 ttkoVi(k` ko)T1(ko, k)

(k/ , ko) E, k)
k2

2/1, iE-A

in which the integrand is nonsingular. We convert this to a matrix equation as

follows: (We suppress the subscript 1 and use the notation 71.7 for T(ki,E,kj)
etc.)

Tii = Vii

Define

We can then write

N

E 47rWrik2VinGiiTni
n=1

[-4i7r2pko k
N

1
VtiOTO jk2

n=1 _9-
2p

k2
--IL
2p

Dn 47rWnki,Gn for n = 1 --> N

N
Do _. 4i7r2yko kg E[ 1

k2 k.
n=1 2p 2p

N
Tij = vij E DnVinTnj

n=0



If we further define

we obtain

Min =7"- DnVin

Ti;NVij E MinTnj
n=0

which in matrix form is simply

T = V + MT

Or

85

(1 M)T = V

If E < 0 the singularity never occurs so the subtraction never has to be
made. We can still use the same formalism however just by setting Do = 0.

4.2.4 The Coulomb Plus Nuclear Coupled Channels Problem

For a given 1 (subscript suppressed in this section) the coupled channels

Lippmann-Schwinger equation can be written

Tap(k' , k) = 17,,o(le , k) + 47r E f dp p
2 17y(le , p) k)

1--=1 E E (p) ic

where the subscripts on T and V indicate the channel and Noll is the total

number of coupled channels in the problem. We can remove the singularity

in the propagator part of the integrand for open channels using the same

method as employed in the single channel case. This yields

Tao (Ic`, k) = V,oc (Ici , k)

Nth4 r E dp
"f=1

Vary
(lc'al' , o(p, k)

p2
E(p) ie



V N (k', T (ko, E, k)
(E.,,)k c`""

2

2g 2g

0(E,y)4i7r2p-ykoK11%1(ki, ko)Tcry(ko, k)
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(4.13)

where the step function 0(E,,) is inserted so that the procedure used to
remove the singularity takes effect only in those channels for which there is
a singularity, namely, in the open channels. The superscripts N and NC,
where they occur on the potential, indicate "Nuclear" and "Nuclear Plus
Coulomb". Expressing

T7IVC TIN TiCVa/3 a/3 v a/3

and using the Kwon Tabakin-Lande subtraction technique to remove the
Coulomb singularity we have

T,p(k/ , k) = , k) Vc,co(k` , k)
Nth , V

l E(p)
(ki p)T-0(p, k)47r E {j dp [p2 ceE ic-y=1

T o(p, k) k'2 Ty 0(ki , k) 117c ,y(k' p) (1T El(p) A"
Ery E.),(1e) PI(Zicip))

_o_k2

T (ko, E, k)

21.1

(4.14)

777,3(k' , k) 0( Ey)tiiir2
, ko)Tey(ko k)}471- ,y(ko Ey(ki)
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where V,F0 and S.), are both zero for open channels'. Now we put the problem
on a grid, that is, we approximate the integral with a sum by letting

dp -4 E Wn
n=1

k' ki

k ki

p

Equation 4.15 becomes

Tao(ki, kJ) = kj)

-4 kn

Nth Ngrid
1/N(ki,kn)Typ(k.,k3)41r E 1477ik!

Fit Er(P)-yr.--1 n=1

Nth Ngr,d VC (ki, kn)Typ(kn, k3)47r E E wnk27,

Ey(p)
nO,

where we define

D I r (10 _--E

(ki)

(ki)V,c;

47r0(E.7)

k?
47

(ki, ki)Tao(ki, ) + ArN(ko)

Nth Ngrt d Wn k2
°

ko)Lo(ko, k3)

N
V (k kO)Tozg(k0) k3)

ce-Y II
i7 itlko E E k2

k2
[

-y=1 n=1 2_Q-
2--n-0/

El,(p)

7V Z3 is 0 whenever a or represent a channel in which the parti-
cles are uncharged which according to our restrictions means whenever
a or represent an open channel. If we used Coulomb states IkC)
such that (/ VN licc) = ik) then the potential coupling an un-
charged channel to a charged channel would appear as (k'l VN I k)
EP (kCiP) (P1vN 1k) We approximate (Pc Ip) bier. That is we use no
Coulomb interaction in the potential coupling an uncharged channel to a
charged one.



and
Nth N grid VC (

V (ICI: (k ki) Sy(ki) 47r E
P(zkikn)

If we further define

and

nOi

W,,,k2
-17 (kn)

D),(kn) = 1 D,I,,v(ko) n = 0

(ki) n = i

V N C (ki, kn) n 0, n i

V,.),(ki, Ion) = VaN,y(ki, ko) n = 0

KN,.r(ki, ki) n = i
then we can write
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(4.15)

(4.16)

No, Ngrid
To(ki, ki) = 17,0(ki, k,) + 47r E E Ry(kn)Vcry(ki, kn)Typ(kn, k1)

-y=1 n=0

Now let

Nma3j Nch (Ngrid + 1)

iNch

jNch +B

w = nNch -y

For a given w, the values of n, and -y are unique and known from

n = trunc( w 1
) and y = w nArch

Nch
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where trunc(x) gives the greatest integer less than or equal to the real number

x. Thus we can write

Two = E DwVuwTwv
w.0

The coupled channels nuclear plus Coulomb problem has thus been reduced

to one of finding the solution of the same type of matrix equation as the one

that occurs in the single channel problem.

MUW Dwiluw

T = V + MT
(1 M)T = T

det(1 M) = 0 (4.17)

In practice the problem is easier to solve than this discussion of the for-

malism would suggest. One chooses a set of Ngrid grid points (60 is a typ-

ical value for Ngrid) and forms an (Ngrid + 1) X (Ngrid + 1) super matrix of

Arch x Nch (3 x 3 in our case) submatrices. This makes for a square matrix

of side (Ngrid 1)Nch. For each set of momentum values ki and kJ, where i

and j run from 0 to Ngrid with "0" corresponding to the on shell point, one

computes the value of the potential for each channel and assigns that value to

the corresponding matrix element. The strong potential is simply evaluated,

the Coulomb potential need not be evaluated at any of the on shell points

i = 0 or j = 0 and one uses equation 4.15 for the Coulomb potential along

the diagonal. In addition to the potential matrix a vector of "D-Values"

(see equation 4.16) is constructed. The potential matrix becomes the matrix
1 M (see equation 4.17) when each element in row i is multiplied by Di
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for all rows i and the value 1 is added to each of the diagonal elements. The

determinant of the matrix is then calculated. The entire process is under
control of a search routine which varies the energy and repeats the process

until the resulting determinant is zero.

4.3 Kaonic Hydrogen Results

In Figure 40 we show the shift and width of the is level in kaonic hydrogen as

calculated by Landau and Cheng [48} using potentials determined by HAW

[23] and Schick and Gibson [53]. The experimental values are also displayed.

These are the same as in Figure 39. The solid lines result from using the

potential of HAW fit C [23], the dotted from Schick and Gibson's fit to the

K-matrix analysis of Kim and the dashed from Schick and Gibsons fit to the

K-matrix analysis of Ber ley. We note that in all cases the calculated shift is

toward the less bound while the experimental shift is toward the more bound.

In Figures 41 and 42 we give similar diagrams with the results of our work.

The shifts and widths depicted in 41 are determined from the nonrelativistic

fits nrl, nr2 and nr3. The shifts and widths depicted in 42 are determined

from the relativistic fits rl and r2.

Here we see that only fit r2 yields a shift of the Coulomb bound state

which is in agreement with experiment. It appears that the puzzle has been

solved. By including relativistic kinematics in the coupled channels formalism

we can reconcile the results of the kaonic hydrogen experiment with the

predictions based on low energy scattering.

To further test the consistency of the "new relativistic" fit r2 scattering
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Figure 40. The shifts and widths of the 1S level in kaonic hydrogen as cal-
culated by Landau and Cheng [48] using potentials determined by HAW [23]
in their fit C (solid line), Schick and Gibson [53] in their fit to the K-matrix
analysis of Kim [35] (dotted line), and in their fit to the K-matrix analysis
of Berley [54] (dashed line). The data are the same as in figure 39.
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Figure 41. The shifts and widths of the 1S level in kaonic hydrogen based
on potential parameters determined from fits nrl (solid line), nr2 (dashed
line), and nr3 (dotted line) to low energy scattering cross sections and the
rE mass spectrum. The data are the same as in figure 39.
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Figure 42. The shifts and widths of the 1S level in kaonic hydrogen based
on potential parameters determined from fits rl (dotted line) and r2 (solid
line) to low energy scattering cross sections and the rE mass spectrum. The
data are the same as in Figure 39.
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amplitude with nature we use this scattering amplitude in the construction

of an optical potential to compute the shift and width in the Coulomb levels

of heavier kaonic atoms.
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Chapter 5

Antikaon-Nucleus Bound States

5.1 Kaonic Atom Experiment

Negatively charged antikaons form a Coulomb bound state with nuclei as
well as with protons. In a manner similar to that of the kaonic hydrogen

experiment the energy of photons given off when an antikaon makes a transi-

tion from a Coulomb level of principal quantum number n to one of principal

quantum number n 1 can be measured directly. The identification of the

levels in the resulting spectrum for nuclei heavier than helium is much easier

than for the case of kaonic hydrogen. The 2p helium level is difficult to iden-

tify but the results are considered to be more reliable than those of kaonic

hydrogen. We investigate the 2p level in kaonic helium-4 and the 2p level in

kaonic carbon-12. The relative sizes of the Bohr orbits for the kaonic atoms

under investigation, including the hydrogen is orbit, are given in Figure 43.

The Bohr radius RB is determined as a function of the number of nucleons

in the nucleus Z, the antikaon-nucleus reduced mass it, and the principal
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Level Atom Shift [eV] Width[eV] Ref.

2p 4He -50 + 12 +100 ± 40 [56]

2p 4He -35 + 12 +30 ± 30 [57]

2p 4He -41 ± 33 [58]

2p 12C -590 ± 80 1730 ± 150 [21]

Table 8. Experimental kaonic atom shifts and widths.

quantum number n from

RB =
Zah

c

itc2n2

where a is the electromagnetic coupling constant. The shifts and widths for

all the transitions measured in kaonic atom x-ray experiments up to the year

1980 are given in a review article by Batty [55]. Those for which we have

carried out the calculation are given in Table 8. These include the recent

results on kaonic helium by Baird et al. [56].

5.2 Kaonic Atom Theory

In calculating the bound state energy levels for kaonic atoms we use the

method described in section 4.2 for the single channel Coulomb plus nuclear

bound state problem. The coupling to hypernucleus channels is not treated

in the direct manner of the coupled channels calculation but is (partly) ac-

counted for by using a potential derived from the elementary K-p scattering

amplitude which has been determined via a coupled channels calculation.

The potential thus has an imaginary part which provides the absorption
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He 1 ium-4 2p

Figure 43. Relative sizes of the Bohr orbits as compared to a representative
nuclear radius of 2.5 fm. The actual Bohr radii are; 38 fm for carbon-12 2p,
84 fm for hydrogen ls, and 124 fm for helium-4 2p.
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corresponding to the coupling to hypernucleus channels'. The problem of

extending the K- p bound state theory to handle K-A bound states (" A "

designates "nucleus") consists almost entirely of determining the strong po-

tential for the antikaon-nucleus interaction given the antikaon-nucleon scat-

tering amplitude.

5.2.1 The Optical Potential

In developing the optical potential methodology it is convenient to think
in terms of the scattering problem. The operator form of the Lippmann-

Schwinger equation for the T-matrix is

T = V + VGT

(1 VG)T = V

T = (1 VG)-1V (5.18)

In this framework the condition for a bound state is that the T-matrix is

singular (while the potential is not) or

det(1 VG). 0 (5.19)

The problem is identical up to the point where one must decide whether to

solve equation 5.18 or 5.19. Thus it is reasonable to determine V with the

scattering problem in mind and then use it in equation 5.19 to solve for the

'In general the imaginary part can come from nucleon knockout and cou-
pling to the °K n channel (charge exchange) as well. We will be evaluating
the potentials at energies below the K- A threshold (bound state energies)
where these processes cannot occur.
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BEFORE AFTER

Figure 44. The projectile-nucleus scattering problem.

bound state energy. Indeed the physical situation of a particle bound to a

nucleus can be viewed as one in which the particle is continuously scattering

from the nucleus.

The scattering problem to be discussed is depicted in Figure 44. A target

nucleus consisting of A nucleons is struck by a projectile p. In the overall
center of mass frame the projectile has an initial momentum k and the target

nucleus momentum k. After the interaction the projectile has momentum

k' and the target momentum k'.

We consider elastic scattering so that lki = !lel and the target nucleus

is in its ground state before, after, and during the collision. The latter
condition implies that we are developing a first order optical potential. We

assume that the projectile interacts with the individual nucleons. The nuclear

medium effects (of the interaction of the nucleon and the projectile with the

nuclear core) on the projectile-nucleon interaction are taken into account
approximately. In general we make use of the factored approximation (to be

described) but some of the calculations have been carried out without it.



The operator form of the Lippmann-Schwinger equation is again

T V + VGT

where
1

100

G (5.20)E KA Kp

with K A the kinetic energy operator for the target nucleus and Kp the kinetic

energy operator for the projectile. Considering the overall interaction to be
the sum of the interactions of the projectile with the individual nucleons we

have
A A

T= vi
i=i i=i

This can be expanded in a Born series as

A A A A A A

(5.21)

T=--Evi+EviGEv3-1-EviGEv2GEvk+ (5.22)
i=1 j=1 i=1 j=1 k=1

We would like to express the T-matrix for the projectile-target interaction in

terms of the projectile-nucleon t-matrix. To this end we write the Lippmann-

Schwinger equation for the projectile interacting with a nucleon which is
bound to the nucleus as

Ti = viari

This too can be expanded in a Born series as

Ti = vi viGvi viGviGvi +

The propagator G can also be written as (compare equation 5.20)

G= w Wrelative"pN

1

(5.23)

(5.24)
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where Kprekative is the kinetic energy operator for the relative motion of the
projectile p and the nucleon N. w is the energy of the projectile and nucleon

in the 2-body center of mass frame that obtains when E is the energy in the
projectile-nucleus center of mass frame. When evaluated between states, w

is a very complicated function (even in the projectile-nucleus center of mass

frame) involving the nucleon-core and projectile-core potentials. The meth-
ods used in approximating w, in particular the inclusion of binding energy

corrections requires some discussion. This is carried out in section 5.2.1. If

we substitute the Born series for T (equation 5.24) into the expression
A A A A A AT E E E 73 + E 7t G 73G E 7-k + (5.25)

i=1 i=1 j=1 i=1 j=1 k=1
i0i kOi

we retrieve equation 5.22. Thus, by writing equation 5.25 we have succeeded

in expressing T in terms of the elementary t-matrix Ti. Now we have to
get this into the form T = V -1-VGT where the potential V is made up of

elementary t-matrices. There are two methods of carrying this out. The first

method consists of ignoring the restrictions on the summations and defining

the first order optical potential by

U = AT (5.26)

so that

T U UGT

The T-matrix calculated by this method corresponds to a direct solution of

the SchrOdinger equation and thus has the advantage of being unitary. The

method is due to Watson [59]. The second method is due to Kerman, Mc-

Manus, and Thaler [60] and is described as follows: In that the overall wave
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function for the nucleus has to be symmetric with respect to the interchange

of two nucleons and since the operators in equation 5.25 are to be evaluated

between nuclear states we can replace EiiLi Tt with AT. If we define the first

order optical potential U as

U = (A (5.27)

we can write

T' U

where the factor (A 1) in equation 5.27 has made it so that the conditions
j i, k j, etc. on the summations, are met. It has also introduced an
overall factor of (A 1) /A so that we obtain the final T-matrix by solving

A
T

A 1T`
= AT A(A nrGi- A(A 1)2TGrar +

Since we do not calculate the T-matrix itself in the bound state problem, we

use the first method in most of our calculations and check our results for some

cases against the results obtained using the KMT approach. In practice we

allow for different K-p versus K-n interactions by replacing equation 5.26

with

U = ZTK-P 1\17K-ri

where Z is the number of protons in the nucleus and N the number of
neutrons.

The discussion up to this point has been carried out in terms of the
operators. We must now face the task of evaluating these operators between

the initial and final projectile-target states.
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We evaluate the optical potential operator between initial and final states

(P)) and (klfo(P'), k'I where k represents the momentum of the projec-
tile and P that of the target. We mix the notation in writing Wo(P) within

the ket to emphasize that the nucleus is in the ground state. The states are

product states which can be written tk) ITD(P)) where the target state is the

product of individual nucleon states

IWo(P)) = IP1) 1P2) IPA)

IP 1 / P2 / PA)

We describe the evaluation of the optical potential between initial and final

states in the Watson formalism. The optical potential can be written as

(To(rikijUlkklio(P)) = A 0110( k')WI TPN Ikklio(k))

where we have substituted the momenta of the nucleus, P = k and P' = k',
with the understanding that all the momenta are given in the projectile-

nucleus center of mass frame. The superscripts on r are there to emphasize

that T is the projectile-nucleon t-matrix. We evaluate this by using the
completeness relation

1 f d3pid3p2 d3pA 1P17 P2, / PA) (P1 / P2/ / PA

on either side of TPN to obtain

U/A = d3Apd3Apii (k 110(-1(1) p'2, . , WA) x

(1311, P127 A, WI TPN IkPi, P2, PA) x

(P1 P2, pAliF0(-k)) (5.28)
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In that the matrix element (Vik'l TPN Ikpi) is independent of i for a totally

antisymmetric nuclear wave function we can choose to allow TPN to act on

1131) so that

A

(k', p'1, P12, PIA I TPN IP1, P2, PA, k) = H p.) (WIWI TPN IPIk)
t=2

With this substitution equation 5.28 becomes

U/A = f f d3APd311(Wo(-1')IP'1, P2) P31 . 7pA) x

TPN 11CP 1) 1 3 1 P2t IPA Po( k)) (5.29)

Now we introduce the momentum transfer q = k' k which occurs in the

elementary interaction such that the effect of tpN on 1pik) is to produce a

state Ipi q, k q) times a transition amplitude TPN(Pi q, k q; pi, k)
so that

(WIWI TPNIkPi) = TPN(Pt q, k q; Pi, k)6[P'i (131 q)]

Then equation 5.29 becomes

U/A = d3Ap Olio q, P2, P3, , PA x

(131, P2, IPA IWO TPN(pi q, k q; Pi, k)
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By the closure relation on the nucleon state vectors gyp) we have9

41O(Pi)410(pi)d3pi = 1

so that

(5.30)

Ulil= f d3p kif',(p q) Wo(p) 7P1v(p q, k q; p, k) (5.31)

where we have dropped the subscript "1" on pi since the expression is inde-

pendent of which nucleon we choose.

The Factored Approximation

The product of nucleon wave functions

kir(;(p q)To(p)

represents the probability amplitude for finding a nucleon in the nucleus with

momentum p and replacing it with a nucleon with momentum p q. In many
cases this product peaks at a particular value of the momentum p = po. For

Gaussian wave functions

'o(P) oc e-aIP12

9We have implicitly assumed that the wave functions for the nucleons within
the nucleus are functions of a momentum measured with respect to the nu-
clear center of mass. Since we are discussing the projectile-nucleus scatter-
ing problem in the projectile-nucleus overall center ofmass and the nucleus
recoils, there are actually two nuclear center of mass frames in the problem
and equation 5.30 can only be considered an approximation which becomes
exact in the limit of an infinitly heavy nucleus. We ignore recoil correc-
tions here but consider them for the active nucleon. The choice of Po in
equation 5.32 includes recoil effects.



this occurs at {61}
k A 1

P° + 2A q
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(5.32)

Most of the contribution to the integral occurs at this value of po so that if

the elementary t-matrix 'rPN(p q, k q; p, k) does not vary too rapidly in

the neighborhood of p = Po it is a good approximation to pull the t-matrix

outside the integral and evaluate it at p = po. Equation 5.31 thus becomes

LI I A ti TPN (po q, k q; Po, k) f epkI0`(p q)klio(p)

This approximation is referred to as the factored approximation. The result-

ing integral is called the form factor F(q)

F(q) = f cOpkn(p q)k110(p) (5.33)

The form factor is the Fourier transform of the density distribution of nu-
cleons in the nucleus. It is a measured quantity. The data is typically fit to

a function which is the product of a polynomial and a Gaussian. This form

results from the use of harmonic oscillator wave functions in equation 5.33. If

one chooses not to make the factored approximation then the wave function

must be known. In these cases we use the harmonic oscillator wave functions

themselves in equation 5.31.

In evaluating

TPN(po q, k q; Po, k)

which we write as

TPN(13'o, kilw IPo, k)

to show the dependence on the two-body energy w, we first need to determine

the two-body center of mass momenta le and K at which to evaluate the
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known 2-body t-matrix and what the relationship is between the known 2-
body t-matrix

and the desired one

iPN(Kiid,k)

TPN (Pio, iw iPo, k)

We shall now use a Lorentz invariance argument to show that

TPN (13' cole iwiPo,k) = 77PN (KI PIK) (5.34)

and to determine 7. We consider the situation in which a system makes

a transition from an initial state "i" to a final state "f". We can write
the transition probability P(f i) for a system of N particles in a frame

independent form in terms of the S-matrix as

i) == J
f d3k2 d3kN (Ef Ef ENf )(E,E; EiNASfirEl E2 EN

1 2

where

Ek)(EIE EiN)1Sfil2

is invariant. The S-matrix can be written in terms of the T-matrix as

Sfi = Sfi 27ri64(pf pi) (Tfi)

In that the two delta functions in this expression are invariant with respect

to Lorentz transformations the expression

[(Ei. f Ek)(Eii..E EiAiTfi
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is also invariant. In the projectile-nucleon case that we have been discussing

this means that

VEp(te)EN(e)Ep(K)EN(K) t(w) -,--

VEp(k9EN(P9Ep(k)EN(P) t(w) IkP)

This can be written as equation 5.34 with

-y = N
EpmEN(e)4(K)EN(K)
Ep(11EN (P0 Ep(k)EN(P)

In order to determine the values of the two-body center of mass momenta Kt

and at which to evaluate (K1 t(j))(K) we carry out a Lorentz transformation

for the on shell case and generalize the result to apply to the off shell case.

In the special situation under study in this paper the two-body interaction

is considered to be pure S-wave so that we only need to determine the mag-

nitudes of the vectors t' and k. This simplifies the discussion considerably

and we will confine our attention to this special case.

In carrying out the arguments we use four-vector notation and the Man-

delstam invariant s. The invariant s is given in terms of the projectile p and

target nucleon N four momenta pp" and p15.,41 by the function

s(P,,pN) = (4 +14)2

(Ep + EN)2 (pp pN)2

Since s is invariant we can determine from

s s(k, p) = s(K,
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and le from

yielding

and

3' = s(k', p') = s(fre, K')

K= {[s (MP + rnN)
2]

[S (rnp rnN)2] 7

43

K' {[s' (mp mN)2][s' (mp rnN)2]} 2
4s'

The Two-Body Energy w

The determination of w is carried out in two different approximations yielding

two different expressions for w. We will present results based on the use of

each method. Here we describe the two methods. In the first method we use
the on shell expression

ch.)2 = s(ko, P) = [Ep(ko) + EN(P)i2 (k0 P)2

where p is the nucleon momentum in the projectile-nucleus center of mass

and 1(0 is the on shell momentum of the projectile satisfying

E = rrq, /06 + 777.2N k6

(where E is the energy parameter appearing in the Lippmann-Schwinger

equation propagator). In the factored approximation we use the optimal

momentum
k A -1

p = po +A 2A

Otherwise the three components of p are variables of integration. In order

to take into account the fact that the interaction between the projectile and
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the nucleon takes place while both particles are under the influence of the

nuclear core we subtract a binding energy EB from the resulting w. In our

model EB is a free parameter. We expect it to be on the order of the single

nucleon separation energy and thus in the range 0-50 MeV. Aside from these

questions of nuclear medium effects this choice of w is clearly correct on shell

where k' = k = k0 and its use off shell is a straight forward generalization.

However, experience with the three-body problem tends to indicate that it

is not the best generalization. The second method of determining w involves

treating the projectile-nucleus problem as a three body problem consisting

of the projectile, an active nucleon, and a nuclear core made up of all the

other nucleons. Equation 5.20 gives the propagator G for the case of a

projectile p interacting with a nucleus A. This is the same propagator which

appears in equation 5.23. This Lippmann-Schwinger equation is for the case

of a projectile interacting with a single nucleon in the nucleus. In order to

use the propagator in this equation, we need it in a form which involves

the kinetic energy operator for the relative motion of the projectile and the

nucleon. The SchrOdinger equation for a projectile interacting with a single

nucleon in a nucleus can be written in terms of operators as

p HA + VpN) IT) Etot 1110 (5.35)

where Kp is the kinetic operation for the projectile, HA the Hamiltonian

operator for the nucleus, V2N the potential operator for the projectile-nucleon

interaction, Et.t the eigenenergy of the problem and IT) the wave function

for the complete system. If we consider the three body problem of a system

consisting of a projectile interacting with a single nucleon which is bound to
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a nuclear core of A 1 nucleons we can write the Hamiltonian HA as

HA = Hc + Kc + KN +17NC

where He is the Hamiltonian for the interactions of the nucleons making up

the core with each other, KC is the kinetic energy operator for the motion

of the core center of mass, KN is the nucleon kinetic energy operator, and

VNC is the potential operator for the interaction between the nucleon and

the core. Equation 5.35 becomes

(Ifp+ Ha + + KN + VNc + VpN) IT) = Etot IT)

We consider this equation in the overall center of mass frame i.e. the frame

in which the center of mass of the projectile-nucleus system is at rest. If we

rewrite the kinetic energy operators of the core and the nucleon in terms of

kinetic energy operators for their relative and center of mass motion, KrA71c

and Or, we have

Rift, + K2m + vpN) + (A-1,7'c + vNd IT) = (Etot IT)

The operators on the left obey the SchrOdinger equations

(Kp KIVP VN) IT) = E IT)

(Krivelc, VNC) IT) .------

(5.36)

(5.37)

(5.38)

where E is the same energy that appears in equation 5.20 and IEB I is the

nucleon core binding energy which we write with the absolute values symbol

to indicate that it is a positive energy. Equation 5.36 can thus be written

RKp Kkrgivi VpN) (KZ VNC)] (E IEBI) IT)
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Having established this, we go back to the individual particle kinetic energy

operators for the nucleon and core so that

(Kp KN VNC Kc VpN)Ikk) = (E 1EBD

Now we write the kinetic energy operators of the projectile and the nucleon

in terms of their relative and center of mass kinetic energy operators KZ

and IfIc01 and rearrange the terms obtaining

RE IEB1 VNc Kc K1,Acr)m) IT) = Vp N J111) (5.39)

For the asymptotic states between which the propagator is to be evaluated
this becomes

RE IEB1 Kc Ific,P4) If;',7,11] lick o(P)) = VpN Ikkif o(13))

and we can identify the propagator G as

with

1G= KZ

w= E- IEBI- KG, KIS(1M

(5.40)

(5.41)

defining the two body energy at which the Lippmann-Schwinger equation for

the projectile-nucleon interaction needs to be solved.

We have ignored the interaction of the projectile with the core (passive

core model). It can be taken into account approximately by considering

the binding energy to be a free parameter. The eigenvalues of the kinetic

energy operators on the right hand side of equation 5.41 can be evaluated
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in a straight forward manner in the projectile-nucleus center of mass for a

given projectile momentum k and nucleon momentum pN. Here we use the

same symbols for the kinetic energy eigenvalues as we did for the operators.

The mass of the core is

The core momentum is

771c = MN IEB I

Pc = k PN
since the momentum of the nucleus is k. Thus, the total energy of the core
is

and

The nucleon energy is

Ec = \./7-4

Kc = Ec me

EN nik pN

Kgic. is determined from the invariant mass

as

sNc = (EN + Ec)2 (pN 1)02

(EN + Ec)2 k2

KVc = mN me

Ep = VMp2 k2

The projectile energy is
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and we can write the kinetic energy operator for the motion of the projectile-

nucleon center of mass in terms of the invariant mass

spN = (E, + EN)2 (pN + k)2

as

Kpk)m = Ep+ EN .V791)N

Pauli Effects

We include Pauli Effects in computing the kaon-nucleon t-matrix by including

the Brueckner Q operator in the two-body propagator

1
=

w E(p)+ if
>

E(p)d-ie

Q is determined via the Fermi gas model for the nucleus. In the Lippmann-

Schwinger equation

t(k', E, k) = V(k', k) (he)s .1 cl3p
V(le, p) Q(p) t(p, E, k)

(5.42)E E(p) is

Q is 0 for the case where p designates a state which is occupied by another

nucleon and 1 for states which are unoccupied. In the Fermi gas model

states with momentum of magnitude less than the Fermi momentum pF in

the nuclear center of mass frame are occupied and those with momentum

greater than pF are unoccupied. In solving equation 5.42 the variable of

integration is p, the relative projectile-nucleon momentum. For a given k and

k' (projectile-nucleus relative momentum before and after the interaction) we

need to find the momentum of the nucleon relative to the center of mass of the
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nucleus for each value of the integration variable p and compare its magnitude

with pF. The Fermi gas model is only appropriate for heavier nuclei. We will

only consider it for A=12. Thus, we can neglect the motion of the nucleus.

Also since the Fermi momentum is small compared to the rest mass of a
nucleon we can use nonrelativistic kinematics. The velocity of the nucleon in

the nucleus center of mass is then just the sum of projectile-nucleon relative

velocity and the velocity of the center of mass of the projectile-nucleon pair

P
M + MN

where mN is the mass of the nucleon, mp is the mass of the projectile and

P is the combined projectile-nucleon momentum in the center of mass of the

nucleus. Thus,

and

mN
P P pN

rnp TnN

MNQ= 0 I P > PFm + 777N
Q = 1 otherwise

We can expand Q in terms of Legendre polynomials as

Q(P, p) 1(P, P)

Since we consider only s-waves in the antikaon-nucleon interaction we just

need the 1 = 0 term

Qo(P,p) = 0 for p < PF

= 1 for 01 pi > pp



= [(13 +P)2 P2F1 /4V3P

otherwise

where

rnN
= nip + mN

We determine pF using a local density in the Fermi gas model

PF [---3722P(r0)
3

116

Where p(r) is the nuclear matter density as a function of radial position r

and ro is the radial position of maximum overlap of the kaon and nuclear

wave functions. This occurs at the maximum of the product

r21k11(r)12 r2 p(r)

where V(r) is the radial kaon atomic (pure Coulomb) wave function. In

Figure 45 we show the probability for finding a kaon in a kaonic carbon-12

2p level at r, in the upper plot of Figure 46 we show the probability for

finding a nucleon at radius r, and in the lower plot of Figure 46 we show

the product of the two. The latter peaks at 7.0 = 3.2 fm. This corresponds

to a density of 0.024 nucleons/fm3 in the harmonic oscillator model of the

density. This yields a Fermi momentum of 140 MeV/c. Again, this value is

for the 2p level of kaonic carbon.

Partial Wave Projection

The optical potential given in the last few sections is a function of the vectors

k', p', k, and p where k and k' are the initial and final momenta of the
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Figure 45. The probability for finding a kaon in the kaonic carbon-12 2p
orbit at radius r (arbitrary normalization).
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Figure 46. The probability for finding a nucleon in carbon-12 at radius r
(upper graph) and the product probability for finding a nucleon and a kaon
at radius r (lower graph).
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projectile and p and p' are the initial and final momenta of the target nucleus.

In that these momenta are all given in the projectile-nucleus center of mass

we have p' = -k' and p = -k so that the optical potential is actually just

a function of k and k'. Further, for the case of an elementary interaction

which is pure s-wave and form factors with azimuthal symmetry the optical

potential is a function only of the magnitudes of the initial and final projectile

momenta and the angle between them. Thus we can write

U(ki, pilk, p) = U(k' , k, cos 0)

This means that we can expand the potential in a Legendre Polynomial series

as

U(k', p'lk, p) =
2

-2-1 t(21 + 1)Ui(le , k)Pi(cos 0)

with

, k) = 1- (le k, cos 0)Pi(cos 61)d cos 0 (5.43)

Now even though the elementary 2-body t-matrix is pure s-wave the optical

potential is not because the energy at which we evaluate the 2-body t-matrix

depends on 0 and the form factor is in general a function of theta. In this
work we consider p waves, 1 = 1. The projection in equation 5.43 is carried

out numerically.

Form Factors

We calculate the shift and width of the Coulomb bound states for 'He and

12C. The functions used to describe the form factors are different for these

two cases and we describe each.
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4He The form factor for 4He is given in terms of q by Frosch et

al. [62] as

P(q)
(1 clm2 q12)e hg2 /4

fP(q)
where the proton form factor fP(q) is given by [63]

and

f(q) = (1 + q2118.2fin-2)-2

ach = 1.362fm

acm = 0.316fm

12C For 12C we use the density distribution for nucleons given by the

harmonic oscillator model. In coordinate space the density appears as

Z 2( r e_r2/a2ch= ;90{1 +
3 ("cm

where Z is the number of protons in the nucleus. By Fourier transform we

obtain the form factor as

p(q) = (1 Z 2

We use the fit of ref. [64] in which

6

2 2 a2
h

) q2/4acmq e c

ach = 1.649fm

acm = 1.705fm

where these values apply specifically to 12C.
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5.3 Kaonic Carbon Results

For each set of potential parameters determined on the basis of low energy

If-p scattering and irp -4 rEK° mass spectrum we have constructed the

optical potential and used it to calculate the shift and width of the 2p level in

kaonic carbon. The results are given as a function of the one free parameter

in the theory, the binding energy EB, implemented to account for nuclear

medium effects on the antikaon-nucleon interaction. In Figure 47 we show

the results for the HAW and nrl parameter sets. At EB "-Z.,' 25 MeV both sets

provide reasonable agreement with experiment. The agreement is not good

but we cannot rule out either set of potential parameters on the basis of this

comparison. We note that the values of the width are significantly smaller

than the experimental values. This trend is observed for all the potential

parameter sets and was also reported by HAW [23] in a coordinate space

study of the same problem. They concluded that more absorption was needed

in the optical potential. We propose that this additional absorption would

come about naturally if the bound state problem were treated as a coupled

channels problem. Recall that we treat the elementary If -p interaction as

a coupled channels problem and the channel coupling is the source of the

absorption in the bound antikaon-nucleus problem which we treat as a single

channel problem. In the absence of nuclear form factors for the nucleus which

results when the reaction If-p rE occurs in the nucleus we consider the

full coupled channels antikaon-nucleus problem to be beyond the state of the

art.

The shift resulting from the parameter set nr2 yields a shift that is roughly
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Figure 47. The energy levels corresponding to the shift and width of the 2p
level in kaonic carbon-12. The data are from ref. [21). The calculated values
are plotted as a function of the binding energy parameter (the abscissas apply
only to the calculated values, not the data). The solid lines correspond to
the HAW potential parameters for the If-p interaction and the dotted lines
to the nrl parameters.
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a factor of three greater than the measured shift. (See Figure 48.) We

conclude that this set can be ruled out as describing the K-13 interaction

which occurs in nature even though it corresponded to our best fit to the low

energy scattering data and IrE mass spectrum. The situation for parameter

set nr3 is even worse. The shift is on the order of +3000 eV (in the wrong

direction) and the width is greater than 4000 eV. The nr3 parameters are

the ones that yielded a good fit to the low energy scattering data and the

spectrum but did not show an I = 0 rE resonance corresponding to the

A(1405). The poor agreement with the carbon data shows that this resonance

deserves the four star rating assigned to it in the particle data booklet [44

The shift and width of the 2p level in kaonic carbon computed with the

relativistic parameter sets rl and r2 are shown in Figure 49. Neither of these

parameter sets can be discarded on the basis of the carbon experiment. In

particular, the new relativistic fit r2 remains the only fit which does not

contradict any experimental data.

5.4 Kaonic Helium Results

In the case of kaonic helium the shift and width calculated with any of the

potential parameter sets are small compared to experimental results. The

calculated values are fairly constant as a function of EB over a subrange of

the values on the interval 0-50 MeV so we are able to present the results in

tabular form (see Table 9). Note that the experimental values themselves

(see Table 8 on page 96) are a small fraction of the Coulomb binding energy

for the 2p level (11.6 KeV). It is not surprising that the nuclear force has a
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Figure 48. The energy levels corresponding to the shift and width of the 2p
level in kaonic carbon-12. The data are from ref. [21]. The solid solid lines
represent the results of a calculation using the nr2 potential parameters for
the If-p interaction.
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Figure 49. The energy levels corresponding to the shift and width of the 2p
level in kaonic carbon-12. The data are from ref. [21]. The calculated values
are plotted as a function of the binding energy parameter (the abscissas apply
only to the calculated values, not the data). The solid solid lines correspond
to the r2 potential parameters for the K-p interaction and the dotted lines
to the r1 parameters.
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Fit Shift[eV] Width[eV]

nrl -5.6 1.6

nr2 -6.5 0.5

nr3 -6.8 0.8

HAW -6.1 2.0

r1 -6.0 0.7

r2 -5.2 0.7

Table 9. The shifts and widths of the 2p level in kaonic helium based on fits
nrl, nr2, nr3, ri, and r2 of the present work and fit HAW (fit c of ref. [23]).

small effect on this atomic state in that the Bohr radius is 124 fm, roughly

70 times the size of the nucleus. An attempt to predict this small an effect

in a few body system with a many body theory is perhaps overly ambitious.

The omitted recoil corrections which are small for carbon may not be so

small for an atom whose mass is only eight times that of the kaon. We have

experimented with various form factors, with the inclusion of Pauli effects,

and with full three dimensional Fermi folding (no factored approximation)

as well as allowing the binding energy to vary well outside the expected

range of validity. Because the calculated values remain small over such a

wide variety of circumstances it appears that minor improvements to the

model will not account for the discrepancy with experiment. It appears that

something special must be occurring in the kaonic helium system. This view

is supported by previous work. In a theoretical study quite different from the
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present work Batty [65] also found values for the shift and width in kaonic

helium-4 which were small compared to the measured values. In that study

the parameters of an optical potential of the form

27r i2
V(r) ap(r)

y m

[where p is the reduced mass for the kaon-nucleon system, m is the mass of

a nucleon, a is the complex scattering length (an adjustable parameter), and

p is the nuclear density] were obtained from an analysis of all available data
for heavier nuclei. This potential was then used to predict the values =
0.2 eV and F = 2 eV for the shift and width of the 2p level in kaonic helium-

4. Thus, two very different theoretical approaches yield similar results. Baird

et al. [56] have determined the optical potential parameters needed to fit the

kaonic helium data and conclude that the strength of the imaginary part
of the potential must be very small to reproduce experimental results. We

investigated the possibility that the imaginary part of our kaonic helium

optical potential was too large relative to the real part by multiplying it by

a factor allowed to very from 0 to 1. We found that using only a fraction

of the imaginary part of the optical potential made very little difference

and indeed the small effect that it did have was to reduce the magnitude of

the shift and width even further. We conclude that our potential is simply

too weak overall to produce the experimental values. Several workers have

investigated the possibility that the anomalous shift and width are due to

the presence of a nuclear bound state [8,13,66]. Staronski and Wycech [67]

have shown the importance of the interaction of the pion resulting from
K-p rE with the nucleus in determining the shift and width. Again
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it appears that an improvement to our model should involve the explicit

treatment of the coupled channels in the kaon-nucleus system. In that all the

potential parameter sets gave essentially the same results the failure to obtain

agreement with experiment points out a weakness in the theory as opposed to

a problem with the understanding of the elementary KN interaction. Thus

the kaonic helium atom has not proved to be a discriminating testing ground

for the various descriptions of the KN interaction.



129

Chapter 6

Summary/Conclusions

6.1 Summary of Results

We have presented an s-wave scattering amplitude (based on the potential

parameter set r2) for the K-p,--°K n, irE coupled channels system which is

consistent with low energy K-73 scattering, the r-p + rEK° production

data, kaonic hydrogen x-ray emission and heavier kaonic atoms x-ray emis-

sion. The scattering amplitude is derived from a potential model and thus

has the desired properties of unitarity and analyticity (dispersion relations

are built in). This scattering amplitude provides a solution to the puzzle con-

sisting of the discrepancy between the measured kaonic hydrogen shift and

that predicted on the basis of low energy K-p scattering. The importance of

using relativistic kinematics in describing a system which is coupled strongly

to a channel in which the particles are at relativistic energies even at the

threshold energy of the original system is revealed by the fact that only with

relativistic kinematics were we able to obtain scattering amplitudes consis-

tent with all the data. The fact that we were able to obtain agreement with
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experiment in a model which has at its heart a Yukawa potential binding an

antikaon to a nucleon and a pion to a sigma hyperon supports the view [43]

that the A(1405) resonance is predominantly a composite particle consisting

of a meson and a baryon as opposed to an elementary 3-quark state.

6.2 Future Directions

6.2.1 Experiment

The best alternative to our solution to the kaonic hydrogen shift puzzle as-

sumes that the results of all three kaonic hydrogen x-ray experiments are

wrong. A definitive x-ray experiment would go a long way in supporting or

ruling out this possibility and is thus considered crucial to work in this area.

The experiment proposed by van Eijk and Hollander [68] may provide the

answer.

6.2.2 Theory

The framework in which this study has been carried out allows room for

several extensions to the study. The effect of higher partial waves in the two

body interaction could prove a fruitful avenue for future investigation. There

is some evidence that p-waves may be important even at low energies. Fur-

thermore the inclusion of higher partial waves would extend the validity of

the method to higher energies where the results could be tested against more

data, in particular, data from the Coulomb nuclear interference experiments

and low energy antikaon-nucleus scattering. It appears that this high energy

data when fitted by s-wave plus higher partial wave scattering amplitudes



131

constrains the s-wave amplitude even at subthreshold energies. This state-

ment is based on the fact that Kim [35] was able to predict the existence

of the A(1405) resonance based on the results of K-matrix analyses of the

scattering data out to 550 MeV. Kim used s, p, and d waves.

One could include the Coulomb force in the elementary interaction. This

is not expected to be important in s-waves. In including p-waves however,

the Coulomb interaction and in particular Coulomb nuclear interference may

play a large role in determining the angular distribution of differential cross

sections.

The optical potentials determined in the present work could be used in an

investigation of strong kaonic bound states or low energy antikaon-nucleus

scattering.

The present framework is ideal for testing models of the elementary two-

body interaction such as potentials based on specific meson exchange or quark

models. This is probably the most important direction for the theoretical

work to take. One simply builds the physics into the two-body potential and

attempts to generate scattering amplitude that meet all the criteria herein.

The success or failure will determine the relevance of the physics built into

the interaction.

Another possible extension to the present work involves an improved

method for handling the kaonic atom problem for A > 1. One could solve

a coupled channels problem here as is done for the elementary interaction.

More information on the form factor of nuclei in which one of the protons has

turned into a sigma particle would have to be developed but the calculations

could be expected to yield more quantitative results.
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Appendix A

7rp 7rEK° Reaction Kinematics

The energies of all the particles in the reaction

7rp 7rEK°

are to be evaluated in the 7rE center of mass frame. Where convenient we

refer to the 7rE pair as a single particle A. Viewed in the 7rp center of mass

frame the interaction appears as in Figure 50 which serves to define the angle

theta. We use unprimed kinematic variables for quantities in the rp center

of mass frame and primed variables for quantities in the irE center of mass

frame. The symbol p is used to specify a four momentum and p is used to

specify a 3-momentum.

A.1 Determination of Ep' and

The Mandelstam variable t can be written in terms of variables in the 7rp

center of mass as

t = (Pp PA)2

= (Ep EA)2 IPPI2 IPA 12 + 21Ppi IPAI cos (A.44)



Igo

Figure 50. The irp --+ rEK° scattering problem in the 'irp center of mass.
The symbol A represents the rE pair.

p
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Given the total energy E (established in the experiment) we can compute all

the quantities on the right except cos 0 by first solving

E = V1PP 12 + 174 VIPP + n4r

for Ippl2 (which = 1p,i (2 ) to obtain

EP = IPp I2

and then solving

E VIPA12 rn2Ko

for IpAl2 (which = IpK012) to obtain

EA = \Appi2

The Mandelstam variable t can also be written in the irE center of mass

frame as

t = (Pp -p'A)2



= (E; E'1,)2 (pp p'A)2

= (Ep' E1A)2 1pp 12

= M,Z 2E; MA + mp2

Equating the two expressions for t (equations A.44 and A.45) we find

=
E

PEA
pp' IPA I cos 0

MA

Choosing

t = (per; p Ko )2

we carry out the same steps to find

1Pir, I 1PK° cos 0
mKo

In practice we use a forward peaking approximation in which cos 0 is set

equal to 1.
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(A.45)

A.2 Determination of 40

EK'0 is determined with the aid of the Mandelstam invariant s by

E2 = s
= (piKo PA)2

= (40 M A)2 16012

Substituting

P IK° I2 = EZ0 m2K0

we can solve for Eh-0 obtaining

E 0
E2 (M,2k m2/(0)

2m2



A.3 Determination of g and

E;. _q can be determined simply by solving

Mn = (E', + 4)2

= \/113 12 + mE + JIPE 12 + Trqf )2

for IpiE12 and using

EE = VIVE12

113/,,12

= 1114i2 nq

141

Note that MA is the abscissa variable in Figure 10 and is thus to be considered

a given for the purpose of these calculations.


