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MULTIMEDIA STREAMING USING MULTIPLE TCP

CONNECTIONS

CHAPTER 1

INTRODUCTION

1.1 The Problem

In recent years, there has been an explosive growth of multimedia applications

over the Internet. All major news networks such as ABC and NBC now provide

news with accompanying video clips. Several companies, such as MovieFlix [1],

also offer video on-demand to broadband subscribers. However, the quality of

videos being streamed over the Internet is often low due to insufficient band-

width, packet loss, and delay. To view a DVD quality video from an on-demand

video server, a customer must download either the entire video or a large portion

of it before starting to playback in order to avoid pauses caused by insufficient

bandwidth during a streaming session. To deal with these problems, many

techniques have been proposed to enable efficient multimedia streaming over

the Internet. The source coding community has proposed scalable video [2][3],

error-resilient coding, and multiple description [4] for efficient video streaming

over best-effort networks such as the Internet. A scalable video bit stream is

coded in a way that enables the server to easily and efficiently adapt the video

bit rate to the current available bandwidth. Error-resilient coding and multiple

description aim at improving the quality of video in the presence of packet loss

and long delays caused by retransmission. Channel coding techniques are also

used to mitigate long delays for real-time applications such as video conferencing
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and IP-telephony [5].

From a network infrastructure perspective, Differentiated Services [6][7] and

Integrated Services [8][7] have been proposed for improving the quality of multi-

media applications by providing preferential treatments to various applications

based on their bandwidth, loss, and delay requirements. More recently, path

diversity architectures that combine multiple paths and either source or channel

coding have been proposed for providing larger bandwidth and efficiently com-

bating packet loss [9][10][11]. Nonetheless, these approaches cannot be easily

deployed as these require significant changes in the network infrastructure.

1.2 Existing Solutions

The most straightforward approach is to transmit standard-based multimedia

via existing IP protocols. The two most popular choices are Transmission Con-

trol Protocol (TCP) and User Datagram Protocol (UDP). A single TCP connec-

tion is not suitable for multimedia transmission because its congestion control

might cause large fluctuations in sending rate. Unlike TCP, an UDP-based ap-

plication is able to set the desired sending rate. If the network is not congested

too much, the UDP throughput at the receiver end would be approximately

equal to the sending rate. Since the ability to control the sending rate is es-

sential for interactive and live streaming applications, majority of multimedia

streaming systems use UDP as a basic building block for sending packets over

the Internet. However, UDP is not a congestion aware protocol since it does

not reduce its sending rate in presence of network congestion, and therefore,

might potentially result in a congestion collapse. Congestion collapse occurs

when a router drops a large number of packets due to its inability to handle
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a large amount of traffic from many senders at the same time. TCP-Friendly

Rate Control Protocol (TFRC) has been proposed for multimedia streaming. It

transmits packets via UDP but incorporates TCP-like congestion control mech-

anism [12]. Another drawback of using UDP is its lack of reliable transmission

and hence the application must deal with packet loss.

1.3 Our Strategy

Based on these drawbacks of single TCP and UDP, we propose a new receiver-

driven, TCP-based application-layer transmission protocol for multimedia stream-

ing over the Internet. The first version of this work was published in [13]. In

particular, the proposed system, called MultiTCP, aims at providing resilience

against short-term insufficient bandwidth by using multiple TCP connections

for the same application. Additionally, this system enables the application to

achieve and control the sending rate during congested period, which in many

cases, cannot be achieved using a single TCP connection. Finally, the proposed

system is implemented at the application layer, and hence, kernel modification

to TCP is not necessary.
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CHAPTER 2

OVERVIEW

Having studied the traditionally employed approaches towards multimedia

streaming using single TCP and UDP and the drawbacks associated with each

of these approaches, we propose a MultiTCP system capable of achieving the

desired throughput by using multiple TCP connections.

2.1 System Goals

The proposed system and the associated algorithm are designed to achieve the

following:

1. A receiver-driven, TCP-based application-layer transmission protocol for

multimedia streaming using multiple TCP connections over the Internet.

2. Resilience against short term insufficient bandwidth by using multiple

TCP connections.

3. The application that is able to achieve and control the desired sending

rate during congested periods, which cannot be achieved using traditional

TCP.

4. Capability of dynamically increasing and decreasing the number of TCP

connections depending on the congestion in the network.
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5. A design that can be implemented at the application layer, and hence, no

kernel modification to TCP is necessary.

2.2 Thesis Contribution and Content Organization

Present thesis discusses the issues involved in multimedia streaming using single

TCP connection and UDP. Further, the general client-server architecture which

provides an insight into our system are discussed. This provides the overview,

design, analysis and working of the MultiTCP system and also provides an

algorithm that helps achieving all system requirements. In addition, this thesis

provides the design details of the MultiTCP system and deeply examines the

different components of the system. This thesis also focusses on working of

the system. Finally, a series of experiments evaluate the performance of overall

system.

Rest of the content is organized as follows. In Chapter 3, we discuss the

Internet transport protocols, TCP and UDP. In addition, we discuss the draw-

backs of TCP for multimedia streaming. Chapter 4 gives a broad overview of

the system designed along with features, advantages and disadvantages of the

system. This is followed by Chapter 5 that discusses the client-server interaction

and network programming using Berkeley sockets. Next, in Chapter 6 we ana-

lyze how the proposed system works. In the next Chapter 7 we discuss design

issues involved while developing the MultiTCP system and provide overview of

the current design with a brief idea of how it works. Following this, we present

the results of some NS simulations and some Internet experiment results across

PlanetLab [25] nodes in Chapter 8. Finally, we discuss our conclusions and

examine the related work in the area of multimedia streaming.
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CHAPTER 3

TCP AND UDP

3.1 The Internet Transport Protocols

The Internet has two main transport protocols, a connectionless protocol and

a connection-oriented protocol. In the following sections we elaborate both of

these. The connectionless protocol is the UDP and the connection-oriented

protocol is TCP.

3.2 Introduction to UDP

The Internet protocol suite supports a connectionless transport protocol, UDP

(User Datagram Protocol). UDP provides a way for the applications to send

encapsulated IP datagrams and send them without having to establish a con-

nection. UDP transmits segments consisting of an 8-byte header followed by

the payload. The header is shown in Figure 3.1.

The two ports serve to identify the end points within the source and des-

tination machines. When a UDP packet arrives, its payload is handed to the

process attached to the destination port. Without these port fields, the trans-

port layer wouldn’t know what to do with the packet. With them, it delivers

segments correctly.

The source port is primarily needed when a reply needs to be sent back to

the source. By copying the source port field from the incoming segment into
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FIGURE 3.1: UDP Header

the destination port field of the outgoing segment, the process sending the reply

can specify which process on the sending machine should receive it.

The UDP length field includes an 8-byte header and the data. The UDP

checksum is optional and stored as 0 if not computed. Turning it off is undesir-

able unless the quality of the data doesn’t matter.

Some of the things that UDP doesn’t perform are flow control, error control,

and retransmission upon receipt of a bad segment. However it provides an

interface to the IP protocol with an added feature of de-multiplexing multiple

processes using the ports.

One area where UDP is especially useful in the area of client-server situa-

tions. Often, the client sends a short request to the server and expects a short

reply back. If either the request or reply is lost, the client can just time out

and try again. In this case fewer messages are required (one in each direction)

as compared to a protocol requiring an initial setup. An application that uses

UDP is Domain Name System (DNS).
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3.3 Introduction to TCP

UDP is a simple protocol and it has some niche uses, such as client-server

interactions and multimedia. At the same time, for most Internet applications,

reliable and sequenced delivery is needed. UDP can not provide this, so another

protocol is needed. It is called TCP and is the main workhorse of the Internet.

TCP (Transmission Control Protocol) was specifically designed to provide

a reliable end-to-end byte stream over an unreliable internetwork. An internet-

work differs from a single network because different parts may have wildly dif-

ferent topologies, bandwidths, delays, packet sizes and other parameters. TCP

was designed to dynamically adapt to properties of the internetwork and to be

robust to many kinds of failures.

Each machine supporting TCP has a TCP transport entity. It could be

either a library procedure, a user process, or part of kernel. In all cases, it

manages TCP streams and interfaces with the IP layer. A TCP entity accepts

user data streams from local processes, breaks them up into pieces, and sends

each piece as a separate IP datagram. When datagrams containing TCP data

arrive at a machine, these are forwarded to the TCP entity that reconstructs

the original byte streams.

The IP layer doesn’t ensure that datagrams will be properly delivered.

Therefore, it is up to TCP to time out and retransmit the datagrams as needed.

Datagrams that arrive may well do so in the wrong order. It is up to TCP

to reassemble them into messages in a proper sequence. In short, TCP must

furnish the reliability that most users want and that IP does not provide.
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3.3.1 The TCP Protocol

A key feature of TCP that dominates the protocol design, is that every byte on a

TCP connection has its own 32-bit sequence number. Separate 32-bit sequence

numbers are used for acknowledgements and for the window mechanism, which

will be discussed later in this chapter.

The sending and receiving TCP entities exchange data in the form of seg-

ments. A TCP segment consists of a fixed 20-byte header (plus an optional

part) followed by zero or more data types. The TCP software decides how big

the segments should be. It can accumlate data from several writes into one

segment or split the data from one write over multiple segments. Two limits

restrict the segment size.

1. Each segment including the header must fit in 65,515-byte IP payload.

2. Each network has a maximum transfer unit (MTU) and each segment

must fit in MTU. In practice, the MTU is generally 1500 bytes and thus

defines the upper bound on the segment size.

The basic protocol used by TCP entities is the sliding window protocol.

When the sender transmits a segment, it also starts a timer. When the segment

arrives at the destination, the receiving TCP entity sends back a segment bear-

ing an acknowledgement number equal to the next sequence number it expects

to receive. If the sender’s timer goes off before the acknowledgement is received,

the sender transmits the segment again. Segments can arrive out of order and

can also be delayed so long in transit that the sender times out and retrans-

mits them. Retransmissions may include different byte ranges from the original

transmission, requiring a careful administration to keep track of which bytes
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have so far been correctly received. However, since each byte in the stream has

its own unique offset, it can be done. The layout of a TCP segment is shown in

Figure 3.2. The connections are established in TCP by means of a three-way

handshake that will be discussed later in Chapter 5.

FIGURE 3.2: TCP Header

3.3.2 Drawbacks of TCP for multimedia streaming

TCP is unsuitable for multimedia streaming due partly to its fluctuating through-

put and its lack of precise rate control. TCP is designed for end-to-end reliability

and fast congestion avoidance. To provide end-to-end reliability, a TCP sender

retransmits the lost packets based on the packet acknowledgement from a TCP
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receiver. To react quickly to network congestion, TCP controls the sending rate

using a window-based congestion control which is discussed below.

3.3.2.1 Window-based congestion control mechanism

In this mechanism, sender keeps track of a window of maximum number of

unacknowledged packets, i.e., packets that have not been acknowledged by the

receiver. In the steady state, the sender increases the window size W by 1/W

after successfully receiving an acknowledged packet, or equivalently, it increases

the sending rate by one packet per round trip time. Upon encountering a loss,

the window size is reduced by half, or equivalently, the sending rate is cut in

half. In TCP, the receiver has the ability to set a maximum window size for

unacknowledged packets, hence imposing a maximum sending rate. Thus, in a

non-congestion scenario, application at the receiver can control the sending rate

by appropriately setting the window size. On the other hand, during congestion,

the actual throughput can be substantially low since the maximum window size

may never be reached.

Based on the above discussion, we observed that a single packet loss can

drop the TCP throughput abruptly and the low throughput lingers due to the

slow increase of the window size. If there is a way to reduce this throughput

reduction without modifying TCP, a higher throughput with proper congestion

control and reliable transmission can be effectively provided. In addition, if

there is a way to control the TCP sending rate during congestion, then TCP can

be made suitable for multimedia streaming. Unlike non real-time applications

such as file transfer and email, precise control of sending rate is essential for

interactive and live streaming applications due to following reasons:
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1. Sending at too high a rate can cause buffer overflow in certain receivers

with limited buffer such as mobile phones and PDAs.

2. Sending at a rate lower than the coded bit rate results in pauses during a

streaming session, unless a large buffer is accumulated before playback.

In Chapter 6, we propose a system that can dynamically distribute streaming

data over multiple TCP connections per application to achieve higher through-

put and precise rate control. The control is performed entirely at the receiver

side and thus, suitable for streaming applications where a single server may

simultaneously serve hundreds of receivers.
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CHAPTER 4

SYSTEM ARCHITECTURE

The architecture presented in this chapter is the Client-Server architecture

as it represents the MultiTCP system’s architecture discussed in the present

research.

4.1 Client-Server Architecture

Client-server architecture is a network architecture that separates client from

the server. Each instance of the client software can send requests to a server or

application server. There are many different types of servers. Some examples

include, a file server, terminal server, mail server and a video streaming server.

While their purpose varies somewhat, the basic architecture remains the same.

Although this idea is applied in a variety of ways on different kinds of appli-

cations, the simplest example is the current use of web pages on the internet.

For example, if one reads an article on Wikipedia, computer and web browser

being used would be considered a client. The computers, databases, and appli-

cations that make up Wikipedia would be considered the server. When user’s

web browser requests a particular article from Wikipedia, the Wikipedia server

finds all of the information required to display the article in the Wikipedia

database, assembles it into a web page, and sends it back to user’s web browser

to look at.
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A client-server architecture is intended to provide a scalable architecture,

where each computer or process on the network is either a client or a server.

Server software often runs on powerful computers dedicated for exclusive use to

run the business application. Client software, on the other hand, generally runs

on common PCs or workstations. Clients get all or most of their information

and rely on the application server for things such as configuration files, stock

quotes, business application programs. Application server also helps in offload-

ing computer-intensive application tasks back to the server in order to keep the

client computer (and client computer user) free to perform other tasks. The

properties of Server and Client are as follows.

Properties of a server:

1. Passive (Slave).

2. Waiting for requests.

3. On requests serves them and sends a reply.

Properties of a client:

1. Active (Master).

2. Sending requests.

3. Waits until reply arrives.

Servers can be either stateless or stateful. A stateless server does not keep

any information between requests. For example, a HTTP server for static

HTML pages. A stateful server can remember information between requests.
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The scope of this information can be global or session. An example includes

Apache Tomcat.

Another type of network architecture is known as a peer-to-peer architecture

because each node or instance of the program is both a ”client” and a ”server”

each having equivalent responsibilities.

4.2 System Overview

The proposed system follows an Object Oriented approach and its design is

based on the responsibilities of entities.

4.2.1 Component Classification

Depending upon the responsibility that a component takes in the proposed

MultiTCP system, the component is classified as either a Server or a Client.

1. Server: Server is a node which handles all the requests from the Clients.

It listens the requests from the clients and maintains all the requests from the

clients in a queue. It serves the requests from the clients one-by-one on a first

come first serve basis.

2. Client: A Client is a node which requests the server for the required

data. After sending a request to the server, it waits until it gets the reply from

the server.

4.2.2 Component Interaction

Figure 4.1 shows the components of the system and their interaction in general.

The two main components of the system are: 1) Server and 2) Client. The
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client-server scenario in our system is as follows.

FIGURE 4.1: Client-Server model

1. The server process is started on some computer system. It initializes itself,

and then goes into sleep, waiting for a client to contact it requesting for

some data transfer.

2. The client process is started on another system that is connected to the

server’s system with the internetwork. The client process sends a request

across the internet to the server requesting service, i.e., data transfer.

3. When the server process has finished providing its service to the client,

the server goes back to sleep, waiting for the next client request to arrive.

4.3 Features of the System

The features of the system are as listed below.
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1. It is a receiver-driven, TCP-based application-layer transmission protocol

for multimedia streaming over the Internet.

2. It provides resilience against short-term insufficient bandwidth by using

multiple TCP connections.

3. It enables the application to achieve and control the desired sending rate

during congested periods, by using multiple TCP connections and dy-

namically changing the receiver’s window size for each connection, which

cannot be achieved using traditional TCP.

4. It enables the application to dynamically increase and decrease the number

of TCP connections for achieving desired throughput.

4.4 Advantages of the System

There are a number of advantages of having a MultiTCP system design. These

are listed below.

1. This MultiTCP system is a receiver-driven, TCP-based application-layer

transmission protocol system. The user on the receiver side has to specify

the desired throughput and it should not exceed the bandwidth limits

with respect to the connection established between the server and client

for data transfer.

2. This system provides resilience against short-term insufficient bandwidth

by using multiple TCP connections. As the number of TCP connections

increases, the bandwidth shared by the application will also increase and

as a result, the throughput will also increase.
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3. This system enables the application to achieve and control the desired

sending rate during congested periods, which cannot be achieved using

traditional TCP.

4. This system is implemented at the application layer, thus no kernel mod-

ification will be necessary, leading to easy deployment.

5. This system has the ability to dynamically increase and decrease the num-

ber of TCP connections depending on the congestion in the network for

achieving the desired throughput.

4.5 Drawbacks of the System

1. The total throughput may exceed the desired throughput by a large amount

if the sending rate of each TCP connection is too high.

2. If only a small number of TCP connections are required to exceed the

desired throughput, this system may not be resilient to the sudden increase

in traffic.
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CHAPTER 5

SOCKET PROGRAMMING

There are two components of the system, as mentioned before, that commu-

nicate to each other in order to transfer control data and the actual data to one

another. These are the Server and the Client. In this chapter we discuss these

components in more details. We emphasize the utility of these components

while also keeping their overall utility in perspective.

5.1 Socket Programming with TCP

The server process and client process running on different machines communi-

cate with each other by sending messages into sockets. Each process is analogous

to a house and the process’s socket is analogous to a door. As shown in Figure

5.1, the socket is the door between the application process and TCP. The appli-

cation developer has control of everything on the application-layer side of the

socket. However, it has little control of the transport-layer side. At the very

most, the application developer has the ability to fix a few TCP parameters,

such as maximum buffer size and maximum segment sizes.
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FIGURE 5.1: Processes Communicating through TCP sockets
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5.2 Client-Server Interaction

Now let us take a closer look at the interaction of client and server programs.

The client has the job of initiating contact with the server. In order for server

to be able to react to the client’s initial contact, the server must be ready. This

implies that:

1. The server program cannot be dormant; it must be running as a process

before the client attempts to initiate contact.

2. The server program must have some sort of door (that is, socket) that

welcomes some initial contact from a client running on an arbitrary ma-

chine.

Using our house/door analogy for a process/socket, we will sometimes refer to

the client’s initial contact as ”knocking on the door.”

With the server process running, the client process can initiate a TCP con-

nection to the server. This is done in the client program by creating a socket.

When the client creates its socket, it specifies the address of the server process,

namely, the IP address of the server (or the server name) and the port number

of the process. Upon creation of the socket, TCP in the client initiates a three-

way handshake, and establishes a TCP connection with the server. The TCP

handshake is completely transparent to client and server processes.

5.2.1 Three-way handshake

During three-way handshake, the client process knocks on welcoming door of

the server process. When the server ”hears” the knocking, it creates a new door

(that is, a new socket) that is dedicated to that particular client.
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From the applications perspective, the TCP connection is a direct virtual

pipe between the client’s socket and the server’s connection socket. The client

process can send arbitrary bytes into its socket; TCP guarantees that server

process will receive (through the connection socket) each byte in the order sent.

Furthermore, just as people can go in and out of the same door, the client

process can also receive bytes from its socket and the server process can also

send bytes into its connection socket. This is illustrated in Figure 5.2.

FIGURE 5.2: Client Socket, Welcoming Socket and Connection Socket
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Since sockets play a central role in client/server applications, client/server

application development is also referred to as socket programming. Berkeley

sockets are used in developing this MultiTCP system. A brief discussion about

these is provided below.

5.3 Berkeley Sockets

The socket primitives used in Berkeley UNIX for TCP are widely used for

Internet programming. These are listed in Table 5.1.

Primitive Meaning

SOCKET Create a new communication end point

BIND Attach a local address to a socket

LISTEN Announce willingness to accept connections; give queue size

ACCEPT Block the caller until a connection attempt arrives

CONNECT Actively attempt to establish a connection

SEND Send some data over the connection

RECEIVE Receive some data from the connection

CLOSE Release the connection

TABLE 5.1: The Socket primitives for TCP

The first four primitives in the list are executed in the order by servers.

The SOCKET primitive creates a new end point and allocates table space for
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it within the transport entity. The parameters of the call specify the addressing

format to be used, the type of service desired (e.g., reliable byte stream), and

the protocol. A successful SOCKET call returns an ordinary file descriptor for

use in succeeding calls in the same way that an OPEN call does.

Newly created sockets do not have network addresses. These are assigned

using BIND primitive. Once a server has bound an address to a socket, remote

clients can connect to it. The reason for not having the SOCKET call create

an address directly is that some processes care about their address (e.g., they

have been using this address and everyone knows this address), whereas others

do not care.

LISTEN call allocates space to queue incoming calls when several clients

try to connect at the same time. To block waiting for an incoming connection,

the server executes an ACCEPT primitive. When a data unit asking for a

connection arrives, the transport entity creates a new socket with the same

properties as the original one and returns a file descriptor for it. The server can

then fork off a process or thread to handle the connection on the new socket

and go back to waiting for the next connection on the original socket. ACCEPT

returns a normal file descriptor, which can be used for reading and writing in

the same standard way, as files.

Now let us look at the client side. Here, too, a socket must first be created

using the SOCKET primitive, but BIND is not required since the address used

is immaterial to the server. The CONNECT primitive blocks the caller and

actively starts the connection process. When it completes (i.e., when the ap-

propriate data unit is received from the server), the client process is unblocked

and the connection is established. Both sides can now use SEND and RECV

to transmit and receive data over the full-duplex connection. The standard
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UNIX READ and WRITE system calls can also be used if none of the special

options of SEND and RECV are required. Connection release with sockets is

symmetric. When both sides have executed a CLOSE primitive, the connection

is released.
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CHAPTER 6

MULTITCP OVERVIEW AND ANALYSIS

This chapter provides theoretical background of this MultiTCP system. As

mentioned in Section 3.3.2, the throughput reduction of TCP is attributed to

the combination of (a) reduction of the sending rate by half upon detection of a

loss event and (b) the slow increase of sending rate afterward or the congestion

avoidance. To alleviate this throughput reduction, one can modify TCP to (a)

reduce the sending rate by a small factor other than half upon detection of a

loss, or (b) speed up the congestion avoidance process, or (c) combine both (a)

and (b). There are certain disadvantages associated with these approaches.

1. These changes affect all TCP connections and must be performed by re-

compiling the OS kernel of the sender machine.

2. Changing the decreasing multiplicative factor and the additive term in

isolated machines may potentially lead to instability of TCP in a larger

scale of the network.

3. It is not clear how these factors can be changed to dynamically control

the sending rate.

As such, a different approach is proposed: instead of using a traditional,

single TCP connection, we use multiple TCP connections for a multimedia

streaming application. This approach does not require any modification to the
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Application Layer

Multi-TCP Control Unit

TCP (Transport Layer)

Application Layer

Multi-TCP Control Unit

TCP (Transport Layer)

sender receiver

Multiple TCP connections
Sending data through multiple ports

FIGURE 6.1: MultiTCP system diagram.

existing TCP stack or kernel. Figure 6.1 shows the proposed MultiTCP system.

The MultiTCP control unit is implemented immediately below the application

layer and above the transport layer at both the sender and the receiver ends.

The MultiTCP control unit at the receiver end receives the input specifications

from streaming application which include the streaming rate. The MultiTCP

control unit at the receiver end measures the actual throughput and uses this

information to control the rate precisely by using multiple TCP connections and

dynamically changing receiver’s window size for each connection. In the next

two sections, it is elaborated as to how multiple TCP connections can mitigate

the short term throughput reduction problem in a lightly loaded network. The

description of the mechanism to maintain the desired throughput in a congested

network is also provided.

6.1 Alleviating Throughput Reduction In Lightly Loaded Network

In this section, we analyze the throughput reduction problem in a lightly loaded

network and show how it can be alleviated by using multiple TCP connections.
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When there is no congestion, the receiver can control the streaming rate

in a single TCP connection quite accurately by setting the maximum receiver’s

window size Wmax. The effective throughput during this period is approximately

equal to

T =
WmaxMTU

RTT
(6.1)

where RTT denotes the round trip time, including both propagation and queu-

ing delay, between the sender and the receiver. MTU denotes the TCP maxi-

mum transfer unit, typically set at 1000 bytes. If a loss event occurs, the TCP

sender instantly reduces its rate by half as shown in Figure 6.2(a). As a result,

the area of the inverted triangular region in Figure 6.2(a) indicates the amount

of data that would have been transmitted if there were no loss event. Thus, the

amount of data reduction D equals to

D = (
1

2
)(

WmaxMTURTT

2
)(

Wmax

2RTT
) =

W 2
maxMTU

8
(6.2)

It is worth noticing that the time it takes for the TCP window to increase

from Wmax/2 to Wmax equals to WmaxRTT/2 since the TCP window increases

by one every round trip time. Clearly, if there is a burst of loss events during

a streaming session, the total throughput reduction can potentially be large

enough to deplete the start up buffer, causing pauses in the playback.

Now let us consider the case where two TCP connections are used for

the same application. Since we want to keep the same total streaming rate

Wmax/RTT as in the case of one TCP connection, we set W
′
max = Wmax/2

for each of the two connections as illustrated in Figure 6.2(b). Assuming that

only a single loss event happens in one of the connection, the total throughput

reduction would be equal to

D
′
=

(W
′2
maxMTU)

8
=

(W 2
maxMTU)

32
=

D

4
(6.3)
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FIGURE 6.2: Illustrations of throughput reduction for (a) one TCP connec-
tions with single loss; (b) two TCP connections with single loss; (c) two TCP
connections with double losses.
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Equation (6.3) shows that, for a single loss event, the throughput reduction by

using two TCP connections is four times less than the one using a single TCP

connection. Even in the case when there are simultaneously losses on both

connections as indicated in Figure 6.2(c), the throughput reduction is half of

that of the single TCP. In general, let N denote the number of TCP connections

for the same application and n be the number of TCP connections that suffer

simultaneous losses during short congestion period, the amount of throughput

reduction equals to

DN =
nW 2

maxMTU

N2
(6.4)

As seen in Equation (6.4), the amount of throughput reduction is inversely

proportional to the square of the number of TCP connections used. Hence,

using a only small number of TCP connections can greatly improve the resilience

against TCP throughput reduction in lightly loaded network.

6.2 Control Streaming Rate in a Congested Network

In the previous section, we discussed the throughput reduction problem in a

lightly loaded network and showed that using multiple TCP connections can

alleviate the problem. In a lightly loaded network condition, one can set

the desired throughput Td by simply setting the receiver window Wmax =

TdRTT/MTU . However, in a moderately or heavily congested network, the

throughput of a TCP does not depend on Wmax, instead, it is determined

by the degree of congestion. This is due to the fact that in a non-congested

network, i.e. without packet loss, TCP rate would increase additively until

WmaxMTU/RTT is reached, after that the rate would remain approximately

constant at WmaxMTU/RTT . However, in a congested network, a loss event
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would most likely occur before the sending rate reaches its limit and cut the

rate by half, resulting in a throughput lower than WmaxMTU/RTT .

A straightforward method for achieving a higher throughput than the avail-

able TCP throughput would be to use multiple TCP connections for the same

application. Using multiple TCP connections results in a larger share of the fair

bandwidth. Hence, one may argue that this is unfair to other TCP connections.

On the other hand, one can view this approach as a way of providing higher

priority for streaming applications over other non time-sensitive applications

under resource constraints. We also note that one can use UDP to achieve the

desired throughput. However unlike UDP, using multiple TCP connections can

provide

1. Congestion control mechanism to avoid congestion collapse, and

2. Automatic retransmission of lost packets.

Assuming multiple TCP connections are used, there are still issues associated

with providing the desired throughput in a congested network.

In order to maintain a constant throughput during a congested period, one

possible approach is to increase the number of TCP connections until the mea-

sured throughput exceeds the desired one. This approach has a few drawbacks.

1. The total throughput may still exceed the desired throughput by a large

amount since the sending rate of each additional TCP connection may be

too high.

2. If only a small number of TCP connections are required to exceed the

desired throughput, this technique may not be resilient to the sudden

increase in traffic as analyzed in Section 6.1.
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A better approach is to use a larger number of TCP connections but adjust the

receiver window size of each connection to precisely control the sending rate. It

is undesirable to use too many TCP connections as they use up system resources

and may further aggravate an already congested network. In this research, two

algorithms are considered:

1. The first(basic) algorithm maintains a fixed number of TCP connections

while it varies the size of the receiver windows of each TCP connection to

achieve the desired throughput.

2. The second(advanced) algorithm dynamically changes the number of TCP

connections based on the network congestion.

These algorithms are discussed in the sections below.

6.3 The Basic Algorithm

The basic algorithm uses a fixed, default number of TCP connections and only

varies receiver window size to obtain the desired throughput Td. Hence, the

inputs to the algorithm are the desired user’s throughput Td and the number of

TCP connections. Below are the steps of the proposed algorithm.

Initializing steps:

1. Set N , the number of TCP connections to the user input.

2. Set the receiver window size wi = TdRTT
(MTU)N

for connection i.

Running steps: The actual throughput Tm is measured at every δ seconds and

the algorithm dynamically changes the window size based on the measured Tm

as follows.
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3. If both of the following conditions

(a) Tm < Td, and

(b) Ws =
∑

i wi ≤ fTdRTT
MTU

where f > 2

are true, run AdjustWindow(Td, Tm).

4. If Tm > Td + λ, run AdjustWindow(Td, Tm).

5. Else, keep the receiver window size the same.

We now discuss each step of the algorithm in detail and show how to choose

appropriate values for the parameters. In step 1, we empirically found, N = 5

works well in many scenarios. If user does not specify the number of TCP

connections, the default value is set to N = 5. In step 2, we assume that the

network is not congested initially, hence the total expected throughput and the

total receiver window size Ws would equal to Td and TdRTT/MTU respectively.

Worth noting is that the average RTT can be obtained easily at the receiver

end.

In the running steps, δ should be chosen to be several times the round trip

time since the sender cannot respond to the receiver changing window size for

at least one propagation delay, or approximately half of RTT. As a result, the

receiver may not observe the change in throughput until several RTTs later. In

most scenarios, we found that setting the measuring interval δ = 8RTT works

quite well in practice. In step 3, the algorithm tries to increase the throughput

by increasing the window size of each connection via the routine AdjustWindow.

The implementation details of AdjustWindow are discussed in Section 6.4. The

first condition of step 3 indicates that the measured throughput is still under the
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desired one. The second condition limits the maximum total receiver window

size. Recall that in the congestion state, the average size of the receiver window

is Wmax = 2TmRTT
MTU

. Hence, increasing wi beyond this value would not increase

the TCP throughput. However, if we let wi increase without bound, there will

be a spike in throughput once the network becomes less congested. To prevent

unnecessary throughput fluctuation, our algorithm limits the sum of receiver

window size Ws to f TdRTT
MTU

where f > 2 is used to control the height of the

throughput spike. Larger and smaller values of f result in higher and lower

throughput spikes respectively, as discussed later in Chapter 8.

Step 4 of the algorithm is similar to step 3 except the receiver window

size now would be reduced, using the same AdjustWindow routine. λ in the

inequality Tm > Td +λ is a small throughput threshold used to ensure Tm to be

approximately equal to Td, and at the same time, to prevent Tm from going below

Td. Finally, since the measured throughput can be noisy, we use the exponential

average measured throughput computed recursively as Tm = αTm + (1 − α)Tn

where Tn is the new throughput sample and α < 1 is a smoothing parameter.

6.4 Adjusting the receiver window sizes

We now discuss AdjustWindow in detail. In this step, the algorithm increases/decreases

the window size wi for a subset of connections if the measured throughput is

smaller/larger than the desired throughput. There exists an optimal way for

choosing a subset of connections for changing the window size and the corre-

sponding increments in order to achieve the desired throughput. If the number

of chosen connections for changing the window size and the corresponding win-

dow increments are small, then the time for achieving the desired throughput
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may be longer than necessary. On the other hand, choosing too large a number

of connections and increments may result in higher throughput than necessary.

For example, assuming we have five TCP connections, each with RTT of 100

milliseconds, MTU equals to 1000 bytes, and the network is in non-congestion

state, then changing the receiver window size of all the connections by one can

result in a total change in throughput of 5(1000)/.1 = 50 Kbytes per second.

In a congested scenario, the change will not be that large. However, one may

still want to control the throughput change to a certain granularity. To avoid

these drawbacks, the algorithm chooses the number of connections for changing

their window size and the corresponding increments based on the current dif-

ference between the desired and measured throughput. The pseudo code of the

algorithm is shown below.

AdjustWindow(Td, Tm)

1. Ds = d|Td − Tm|RTT/MTUe

2. If Td > Tm

(a) Sort the connections in the increasing order of wi

(b) While Ds > 0

wi := wi + 1

Ds := Ds − 1

i := (i + 1) mod N

3. If Td < Tm

(a) Sort the connections in the decreasing order of wi

(b) While Ds > 0

wi := wi − 1

Ds := Ds − 1

i := (i + 1) mod N
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The reasoning behind the algorithm can be understood as follows. Consider

the case when Tm < Td. If there is no congestion, setting the sum of window size

increments Ds from all the connections to d(Td−Tm)RTT/MTUe would result

in a throughput increment of Td − Tm, hence the desired throughput would

be achieved. If there is a congestion, this total throughput increment would

be smaller. However, subsequent rounds of window increment would allow the

algorithm to reach the desired throughput. This method effectively produces a

large or small total window increment at every sampled point based on a large

or small difference between the measured and desired throughput, respectively.

Steps 2a and 2b in the above algorithm ensure that total throughput increment

is equally contributed by all the connections. On the other hand, if only one

connection j is responsible for all the throughput, i.e. wi = 0 for j 6= i, then we

simply have a single connection whose throughput can be substantially reduced

in a congested scenario. We note that using this algorithm, wi’s for different

connections at any point of time differ from each other, at most, by one. The

scenario, where Tm > Td, is similar.

6.5 Advanced Algorithm

Disadvantage of Basic Algorithm is that the number of connections are fixed.

Hence, it may not perform well under some congestion scenarios. In this sec-

tion, we introduce a new algorithm that varies the number of TCP connections

dynamically depending upon the congestion in the network. This algorithm is

an extension of our basic algorithm which will be described shortly.

We assume that a network is congested when we cannot achieve the desired

throughput. The amount of congestion in the network can be estimated by
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Congestion ratio. The congestion ratio, which is given by Ws/Wn where Ws =
∑

i wi and Wn denotes the window size of single connection when there is no

congestion, i.e, Wn = TdRTT/MTU . If the congestion ratio is one or less, we

say that there is no congestion in the network. But if it increases beyond one,

we say that there is congestion in the network. Our approach for increasing and

decreasing the number of connections dynamically is as follows. We specify the

maximum number of connections that can be used for a particular streaming.

Hence, the inputs to this algorithm are the maximum number of connections

that can be used and the user’s desired throughput Td. The steps of the proposed

algorithm are as follows.

We store the value of congestion ratio for every iteration in prevcongR, i.e.,

previous congestion ratio.

Initialization: prevcongR =: Ws

Wn

Running steps:

1. If all the following conditions

(a) Ws

Wn
< prevcongR

(b) Number of connections being used for streaming ≥ 2

(c) Tm > Td

are true, then

prevcongR =: Ws

Wn

Stop one connection

Set the receiver window size for each connection

2. If all the following conditions

(a) Ws

Wn
> prevcongR
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(b) Ws

Wn
< cf , congestion factor to be discussed shortly

(c) Tm < Td

(d) Number of connections being used for streaming ≤ N

are true, then

prevcongR =: Ws

Wn

Start a new connection

Set the receiver window size for each connection

3. If all the following conditions

(a) Ws

Wn
≥ cf

(b) Number of connections being used for streaming ≥ 2

(c) If the time taken to receive a packet is greater than X times RTT

are true, then

prevcongR =: Ws

Wn

Stop one connection

Set the receiver window size for each connection

The following are the running steps of the basic algorithm.

We now discuss each step in detail. cf is a special factor called the congestion

factor, which is used to determine if the network is slightly congested or severely

congested. If the network is slightly congested, by increasing the number of

TCP connections, we will be able to achieve the desired throughput. But if

the network is severely congested, even increasing the TCP connections will

not increase the throughput and doing that would further increase the load on

the network. So it would be better if we decrease the number of connections

being used for streaming. So if the congestion ratio is equal to or exceeds

cf , then we reduce the number of TCP connections. Let us consider step 1.

When the previous congestion ratio, prevcongR, decreases by one we can say
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that the congestion in the network reduces. If the number of connections being

used for streaming is greater than or equal to two and also if the measured

throughput, Tm, is greater than the desired throughput, Td, we reduce the

number of connections being used for streaming. The average window size of

all connections are also updated accordingly. This step 1 is used when the

congestion in the network reduces.

Now consider step 2. When the previous congestion ratio, prevcongR, in-

creases by one, we can say that the congestion in the network increased. Here,

if the current congestion ratio, Ws/Wn, is less than the congestion factor, cf ,

and if the number of connections being used for streaming are fewer than the

maximum number of connections that are allowed and also if the measured

throughput, Tm, is less than the desired throughput, Td, we increase the num-

ber of connections being used for streaming by one. The average window size

of all connections is also set accordingly by the basic algorithm. This step 2 is

used when the congestion in the network increases. When the congestion ratio

increases by one, we start streaming through an additional connection along

with the connections which are already being used. Now let us consider step

3. If the current congestion ratio, Ws/Wn, is greater than or equal to the con-

gestion factor, cf , and if the number of connections being used for streaming

is greater than or equal to two and also if the time taken to receive a packet is

greater than X times RTT , we decrease the number of connections being used

for streaming. The average window size of all connections is set accordingly.

This step 3 is used when the congestion in the network increases to a level that

even by increasing the number of connections we cannot achieve the desired

throughput, Td. This means that the network is severely congested. So we have

to reduce the network congestion by stopping as many connections as possible.
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CHAPTER 7

MULTITCP DESIGN

In this chapter we provide the details of the MultiTCP design and discuss

how the MultiTCP system works.

7.1 MultiTCP Design

This MultiTCP system is a receiver-driven, TCP based application-layer trans-

mission protocol for multimedia streaming over the Internet. So, the algorithm

which is responsible for achieving the desired throughput is implemented on the

client side. The class which comprises the main algorithm component of this

system is shown in Figure 7.1.

The function that implements the algorithm which controls this system and

is responsible for achieving the desired throughput is WindowMonitor() which

in turn uses the function WindowAdjust() to set the window size appropriately

depending on the throughput received. The pseudo code for these algorithms

is given in Chapter 6.

7.2 MultiTCP Working

This section shows the working of the MultiTCP system using a sequence dia-

gram. The sequence diagram can be seen in Figure 7.2.
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FIGURE 7.1: MultiTCPSink Class diagram
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FIGURE 7.2: Client-Server Sequence diagram
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The interaction between the client and server for establishing connections

and transferring data will be the same as seen before in Section 5.2. But while

initiating the connection establishment between client and server, the user will

specify the number of TCP connections that the system must use.

If we consider the basic algorithm, the user has to specify the desired

throughput and the number of TCP connections to be used (which is constant).

But if we consider the advanced algorithm, the user has to specify the desired

throughput and the maximum number of connections that the system must use

(which may vary).

7.3 Remarks on Sender

At the sender, data is divided into packets of equal size. These packets are

always sent in order. The MultiTCP system chooses the TCP connection to

send the next packet in a round robin fashion. If a particular TCP connection

is chosen to send the next packet, but it is blocked due to TCP congestion

mechanism, the MultiTCP system chooses the first available TCP connection

in a round robin manner. For example, suppose there are 5 connections, denoted

by TCP1 to TCP5. If none of TCP connection is blocked, packet 1 would be

sent by TCP1, packet 2 by TCP2, and so on. If TCP1 is blocked, then TCP2

would send packet 1 and TCP3 would send packet 2, and so on. When it is

TCP1’s turn again and if TCP1 is not blocked, it would send packet 5. This is

similar to socket striping technique in [24].
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7.4 Object Oriented Features used in Design

The Object Oriented features used in the design of the MultiTCP system are

listed below.

(a) Object: An Object/Instance is an individual representative of a class.

Instances of all the classes that are part of the system are created to perform

required functions.

(b) Class: A class is a collection of objects of similar type. Once a class

is defined, any number of objects can be created which belong to that class.

Example of a class in this system is MultiTCPSink.

(c) Behavior and State: The behavior of a component is the set of actions

that a component can perform. A Server can handle several client requests. Its

state would be described by the set of values of the attributes of a particular

object.

(d) Encapsulation: Storing data and functions in a single unit (class) is

encapsulation. This helps to club together the data and all the methods that

operate on that data.

(e) Constructors: It is a procedure that is invoked implicitly during the

creation of a new object value and guarantees that the newly created object

is properly initialized. MultiTCPSink class of the system has a constructor

associated with it.

(f) Destructors: Like a constructor, a destructor is a method invoked im-

plicitly when an object goes out of scope or is destroyed. Therefore, just before

the object is reclaimed, all resources held by the object need to be released.

MultiTCPSink class of the system has a destructor associated with it.



45

CHAPTER 8

PERFORMANCE EVALUATION

In this chapter, we show simulation results using NS and the results produced

using actual network to demonstrate the effectiveness of this MultiTCP system

in achieving the required throughput as compared to the traditional single TCP

approach.

8.1 Results for the Basic Algorithm

8.1.1 NS Simulation

The simulation setup consists of a sender, a receiver, and a traffic generator

connected together through a router to form a dumb bell topology as shown in

Figure 8.1. The bandwidth and propagation delay of each link in the topology

are identical, and are set to 6 Mbps and 20 milliseconds, respectively. The

sender streams 800 kbps video to the receiver continuously for a duration of

1000s, while the traffic generator generates cross traffic at different times by

sending packets to the receiver using either long term TCPs or short bursts of

UDPs. In particular, from time t = 0 to t = 200s, there is no cross traffic.

From t = 200s to t = 220s and t = 300s to t = 340s, bursts of UDPs with rate

of 5.5 Mbps are generated from the traffic generator node to the receiver. At

t = 500s the traffic generator opens 15 TCPs connections to the receiver, and

5 additional TCP connections at t = 750s. We now consider this setup under
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FIGURE 8.1: Simulation topology.

three different scenarios: (a) the sender uses only one TCP connection to stream

the video, while the receiver sets the receiver window size to 8, targeting at 800

kbps throughput, (b) the sender and the receiver use the MultiTCP system to

stream the video with the number TCP connections limited to two, and (c)

the sender and the receiver also use the proposed MultiTCP system, except the

number of TCP connections are now set to five. Table 8.1 shows the parameters

used in the MultiTCP system.

Sampling interval δ 300 ms

Throughput smoothing factor α 0.9

Guarding threshold λ 7000 bytes

Throughput spike factor f 6

TABLE 8.1: Parameters used in MultiTCP system
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(a) (b)

FIGURE 8.2: (a) Resulted throughput and (b) average receiver window size
when using 1, 2 and 5 TCP connections.

Figure 8.2(a) shows the throughput of three described scenarios. As seen,

initially without congestion, using the traditional single TCP connection can

control the throughput very well since setting the size of the receiver window to

8 achieves the desired throughput. However, when traffic bursts occur during

the intervals t = 200s to t = 220s and t = 300s to t = 340s, the throughput

of using a single TCP connection reduces substantially to only about 600 kbps.

For the same congested period, using two TCP connections results in higher

throughput, approximately 730 kbps. On the other hand, using five TCP con-

nections produces approximately the desired throughput, demonstrating that

a larger number of TCP connections results in higher throughput resilience in

the presence of misbehaved traffic such as UDP flows. These results agree with

the analysis in Section 6.1. It is interesting to note that when using two TCP

connections, there are spikes in the throughput immediately after the network

is no longer congested at t = 221s and t = 341s. This phenomenon relates
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to the maximum receiver window size set during the congestion period. Re-

call that the algorithm keeps increasing the wi until either (a) the measured

throughput exceeds the desired throughput or (b) the sum of receiver window

size Ws =
∑

i wi reaches f TdRTT
MTU

. In the simulation, using two TCP connections

never achieves the desired throughput during the congested periods, hence the

algorithm keeps increasing the wi. When network is no longer congested, the

Ws already accumulates to a large value. This causes the sender to send a large

amount of data until the receiver reduces the window size to the correct value

a few RTTs later. On the other hand, when using 5 TCP connections, the al-

gorithm achieves the desired throughput during the congestion periods, as such

Ws does not increase to a large value, resulting in a smaller throughput spike

after the congestion vanishes.

Next, when 15 cross traffic TCP connections start at t = 500s, the resulting

throughput when using one and two TCP connections reduce to 700 kbps and

350 kbps, respectively. However, throughput when using 5 TCP connections

stays approximately constant at 800 kbps. At t = 750s, 5 additional TCP con-

nections start, throughput are further reduced for the one and two connection

cases, but it remains constant for the five-connection case.

Figure 8.2(b) shows the average of the sum of window size Ws as a function of

time. As seen, Ws increases and decreases appropriately to respond to network

conditions. Note that using two connections, Ws increases to a larger value than

when using 5 TCP connections during the intervals of active UDP traffic. This

results in throughput spikes discussed earlier. Also, the average window size in

the interval t = 500s to t = 750s is smaller than that of the interval t = 750s to

t = 1000s, indicating that the algorithm responds appropriately by increasing

the window size under a heavier load.
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FIGURE 8.3: Resulted throughput when using 1, 2 and 5 TCP connections
with cross traffic having larger RTT than that of video traffic.

We now show the results when the cross traffic has different round trip time

from that of the video traffic. In particular, the propagation delay between

the router and traffic generator node is now set to 40 milliseconds. All cross

traffic patterns stay the same as before. The new simulation shows the same

basic results. As seen in Figure 8.1.1, the throughput of 5 connections is still

higher than that of two connections which, in turn is higher than that of one

connection during the congestion periods. The throughput of two connections in

this new scenario is slightly higher than that of the previous scenario during the

congested period from t = 500s onward. This is due to a well known phenomena

where TCP connection with shorter round trip times gets a larger share of

bandwidth for the same loss rate. Since the round trip time of the video traffic

is now shorter than that of the TCP cross traffic, using only two connections,

the desired throughput of 800 kbps can be approximately achieved during the

period from t = 500s to t = 750s, which is not achievable in previous scenario.

So clearly, the number of connections to achieve the desired throughput depends
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on the competing traffic.

8.1.2 Internet Experiments

We now show the results from actual Internet experiments using Planet-Lab

nodes [25]. In this experiment our setup consisted of a sender, planetlab1.netlab.-

uky.edu at University of Kentucky, and a receiver, planetlab2.een.orst.edu at

Oregon State University. The sender streams the video to the receiver continu-

ously for a duration of nearly 1000s, while the FTP connections generate cross

traffic at the client at different times. From time t = 0 to t = 400s, there is

no cross traffic. From around t = 401s to t = 600s cross traffic is generated

using two FTP connections and after t = 601s two additional FTP connections

are opened for generating more traffic at the receiver. We now consider perfor-

mances under three different scenarios: (a) only one TCP connection is used

to stream the video, while the receiver sets the receiver window size targeting

at 480 kbps throughput, and (b) the sender and the receiver use the proposed

MultiTCP system, using the basic algorithm with the number of TCP connec-

tions set to four (c) the sender and the receiver use the proposed MultiTCP

system, using the basic algorithm with the number of TCP connections now set

to eight. Table 8.2 shows the parameters used in our MultiTCP system.

Figure 8.4(a) shows the throughput of three described scenarios. As seen,

initially without congestion, using the traditional single TCP connection can

very well control the throughput since setting the size of the receiver window

achieves the desired throughput. So using either one, four or eight connections

does not make any difference during the interval t = 0s to t = 400s as there is

no cross traffic. However, when traffic bursts occur during the interval t = 401s
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Sampling interval δ 6*RTT ms

Throughput smoothing factor α 0.9

Guarding threshold λ 3000 bytes

Throughput spike factor f 10

TABLE 8.2: Parameters used in MultiTCP system
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FIGURE 8.4: (a) Resulted throughput, (b) receiver window size when using 1,
4 and 8 TCP connections with cross traffic.

to t = 600s and after t = 601s, the throughput of using a single TCP connection

reduces substantially from 480 kbps to 280 kbps. Using four TCP connections

we were able to achieve the desired throughput during the interval t = 401s to

t = 600s. But after t = 601, the throughput reduced from 480 kbps to 400kbps.

For the same congested period, using eight TCP connections results in higher

throughput, which is the desired throughput.

Figure 8.4(b) shows the average of the sum of window size Ws as a function of
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time. As seen, Ws increases and decreases appropriately to respond to network

conditions. Note that using single connection, Ws increases to a larger value

than when using multiple TCP connections during the intervals of active FTP

traffic. This results in throughput spikes discussed earlier. Also, the average

window size in the interval t = 300s to t = 600s is smaller than that of the

interval t = 601s to t = 1000s for multiple TCP connections, indicating that

the algorithm responds appropriately by increasing the window size under a

heavier load.

8.2 Results for the Advanced Algorithm

8.2.1 Internet Experiments

We now show the results of our system using our modified algorithm for dy-

namic change in number of connections. For this experiment our setup consisted

of a sender, a receiver, and fifteen FTP connections to generate cross traffic.

The machine used as server is planetlab1.csres.utexas.edu which is located at

University of Texas. The setup under two different scenarios is as follows: (a)

the sender uses only one TCP connection to stream the video, while the re-

ceiver sets the receiver window size targeting at 800 kbps throughput, and (b)

the sender and receiver use our MultiTCP system to stream the video with the

maximum number of TCP connections that can be used for streaming set to

five. Table 8.3 shows the parameters used in our MultiTCP system.

Figure 8.5(a) shows the throughput of two described scenarios with cross

traffic. During the interval t = 0s to t = 400s there is no cross traffic. However,

when traffic bursts occur due to six FTP connections during the interval t =

401s to t = 600s and nine more FTP’s after t = 601s, the throughput obtained
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FIGURE 8.5: (a) Resulted throughput, (b) receiver window size when using 1
and 5 TCP connections with cross traffic (c) Number of connections used for
streaming.
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Sampling interval δ 6*RTT ms

Throughput smoothing factor α 0 - 0.9

Guarding threshold λ 3000 bytes

Throughput spike factor f 6

Congestion factor cf 5

TABLE 8.3: Parameters used in MultiTCP system

using a single TCP connection reduces from 800 kbps to 720 kbps. For the

same congested period, using the maximum number of connections as five TCP

connections, even though it used only two TCP connections, resulted in higher

throughput which is the desired throughput. These results demonstrate that a

larger number of TCP connections results in higher throughput resilience in the

presence of misbehaved traffic.

Figure 8.5(b) shows the average of the sum of window size Ws as a function of

time. As explained before, Ws increases and decreases appropriately to respond

to network conditions.

Figure 8.5(c) shows how the number of connections vary depending upon the

congestion ratio for that particular scenario. When the window size increased

the number of connections used for streaming also increased. This implies that

when the congestion in the network increases and if we are not able to receive

the desired throughput, the number of connections to be used for streaming are

increasing. These results agree with the analysis in Section 6.1.

Now let us consider another experiment. For this experiment our setup

consists of a sender, a receiver, and eight FTP connections to generate cross
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FIGURE 8.6: (a) Resulted throughput, (b) receiver window size when using 1
and 5 TCP connections with cross traffic (c) Number of connections used for
streaming.

traffic. The machine used as server is planetlab1.cs.pitt.edu which is located at

University of Pittsburgh. The setup under two different scenarios is as follows:

(a) the sender uses only one TCP connection to stream the video, while the

receiver sets the receiver window size targeting at 1.6 Mbps throughput, and

(b) the sender and receiver use our MultiTCP system to stream the video with

the maximum number of TCP connections that can be used for streaming is set

to five. We used the same parameters as in the previous experiment.
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Figure 8.6(a) shows the throughput of two described scenarios with cross

traffic. During the interval t = 0s to t = 300s there is no cross traffic. Even

though there is no traffic during that period, as the socket buffer size for each

socket supports only 480 kbps, the client was able to receive only 480 kbps. The

socket buffer size might vary from system to system. As the desired throughput

is 1.6 Mbps, using the maximum number of connections as five, the throughput

increased to 1.6 Mbps and stabilized at that throughput. However, when traffic

bursts occur due to four FTP connections during the interval t = 301s to

t = 600s and four more FTP’s after t = 601s, the throughput of using a single

TCP connection reduces further from 480 kbps to 400 kbps using single TCP

connection. For the same congested periods, using the maximum number of

connections as five TCP connections, even though it never used all the five TCP

connections, resulted in higher throughput which is the desired throughput.

These results demonstrate that a larger number of TCP connections results in

higher throughput resilience in the presence of misbehaved traffic. Figure 8.6(c)

shows how the number of connections vary depending upon the congestion ratio

for that particular scenario.

Figure 8.6(b) shows the average of the sum of window size Ws as a function of

time. As explained before, Ws increases and decreases appropriately to respond

to network conditions. But initially, as it has to get to a high throughput, the

window size went up to maximum and then got adjusted slowly.

Figure 8.6(c) shows how the number of connections vary depending upon

the congestion in the network as discussed before.

These results also agree with the analysis in Section 6.1. Recall that the algo-

rithm keeps increasing the wi until either (a) the measured throughput exceeds

the desired throughput or (b) the sum of receiver window size Ws =
∑

i wi
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FIGURE 8.7: Resulted number of stops when using 1, 2, 3, 4 and 5 TCP
connections with cross traffic having same RTT as that of video traffic.

reaches f TdRTT
MTU

. In the results we have shown, using single TCP connection

never achieves the desired throughput during the congested periods, hence the

algorithm keeps increasing the wi and reaches maximum. When network is no

longer congested, the Ws already accumulates to a large value. This causes the

sender to send a large amount of data until the receiver reduces the window size

to the correct value a few RTTs later. On the other hand, when using eight or

five TCP connections, the algorithm achieves the desired throughput during the

congestion periods, as such Ws does not increase to a large value, which results

in a smaller throughput spike after the congestion vanishes.

8.3 Buffering

In this section we show the results of buffering using our MultiTCP system.

The Figure 8.7, shows the number of connections on the x-axis and the number
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of stops on the y-axis. The video is streamed for a duration of 200 seconds

using our basic algorithm. The required throughput for streaming the video

without stopping is 720 kbps. The setup for this is as follows. Initially we

will have 10 seconds for buffering. Once it starts playing the video, for every

second we will have to receive 720kbits to play the video without stopping. If

the total number of bits received till that particular second is greater than or

equal to the total number of bits required, the streaming will continue without

any stops. If not then the video will stop for 5 seconds to buffer the data and

starts streaming again. For this experiment using our basic algorithm, there

are 12 stops when using single TCP connection, 1 stop for each of the 2, 3, 4

TCP connections and no stops when 5 TCP connections are used. But when

we used the advanced algorithm, there were no stops since it can achieve the

desired throughput automatically by increasing and decreasing the number of

connections.

These results demonstrate that our algorithm is able to achieve the desired

throughput and maintain precise rate control under varying congestion scenar-

ios with competing UDP and TCP traffic for simulation results and FTP traffic

for actual results. It is to reemphasize that, the applications based on our sys-

tem indeed obtain a larger share of the fair bandwidth. However, we believe

that under limited network resources, time-sensitive applications like multime-

dia streaming should be treated preferentially as long as the performance of

all other applications do not degrade significantly. Since our system uses TCP,

congestion collapse is not likely to happen as in the case of using UDP when net-

work is highly congested. In fact, DiffServ architecture uses the same principle

by providing preferential treatment to high priority packets.
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CHAPTER 9

RELATED WORK

There has been previous work on using multiple network connections to

transfer data. For example, path diversity multimedia streaming framework

[10][11][9] provide multiple connections on different path for the same applica-

tion. These work focus on either efficient source or channel coding techniques

in conjunction with sending packets over multiple approximately independent

paths. On the other hand, our work aims to increase and maintain the available

throughput using multiple TCP connections on a single path. There is also a

related work using multiple connections on a single path to improve throughput

of a wired-to-wireless streaming video session [15][16]. This work focuses on

obtaining maximum possible throughput and is based on TFRC rather than

TCP. On the other hand, our work focuses on eliminating short term through-

put reduction of TCP due to burst traffic and providing precise rate control

for the application. As such, the analysis and rate control mechanism in our

paper are different from those of [15]. Another related work is Streaming Con-

trol Transmission Protocol (SCTP)[17], designed to transport PSTN signaling

messages over IP networks. SCTP allows user’s messages to be delivered within

multiple streams, but it is not clear how it can achieve the desired throughput

in a congestion scenario. In addition, SCTP is a completely new protocol, as

such the kernel of the end systems need to be modified. There are also other

work related to controlling TCP bandwidth. For example, the work in [18][19]
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focuses on allocating bandwidth among flows with different priorities. This work

assumes that the bottleneck is at the last-mile and that the required throughput

for the desired application is achievable using a single TCP connection. On the

other hand, our work does not assume the last-mile bottleneck, and also the

proposed MultiTCP system can achieve the desired throughput in a variety of

scenarios. Further, the authors in [20], use weighted proportional fair sharing

web flows to provide end-to-end differentiated services. The work in [21] uses

the receiver advertised window to limit the TCP video bandwidth in VPN link

between video and proxy servers. The authors in [22] proposed an approach

that leads to real-time applications that are responsive to network congestion,

sharing the network resources fairly with other TCP applications. Finally, the

authors in [23] propose a technique for automatic tuning of receiver window size

in order to increase the throughput of TCP.
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CHAPTER 10

CONCLUSION

This thesis is concluded with a summary of contributions. First, we pro-

posed and implemented a receiver-driven, TCP-based application-layer trans-

mission protocol for multimedia streaming over the Internet using multiple TCP

connections. Second, our proposed system is able to provide resilience against

short-term insufficient bandwidth due to traffic bursts. Third, the proposed sys-

tem enables the application to control the sending rate in a congested scenario,

by using multiple TCP connections and dynamically changing the receiver’s

window size for each connection, which cannot be achieved using traditional

TCP. Finally, the proposed system is implemented at the application layer, and

hence, no kernel modification to TCP is necessary. The simulation and experi-

mental results using PlanetLab machines demonstrate that using this proposed

system, the application can achieve the desired throughput in many scenarios,

which cannot be achieved by traditional single TCP approach.
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