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Two-phase flow in helical conduits is important in many industries where reaction

between components, heat transfer, and mass transport are utilized as processes. The

helical design is chosen for the effects of secondary flow patterns that reduce axial

dispersion, increased heat transfer, and also their compact design. The first is a

result of the secondary flow, which continually transports fluid from the near wall

region to the bulk of the flow. In single-phase chemical reactor design this secondary

flow increases radial mixing and reduces axial dispersion. In heat exchanger design it

increases laminar heat transfer while extending the Reynolds number range of laminar

flow.

A literature review of the work on helical pipe flow shows that the vast majority

of the work is on toroidal single-phase flow, and analyses of two-phase flow are sparse.

This dissertation addresses this void by presenting an analytical model of the strat-

ified and annular flow regime transitions in helical conduits, by consideration of the

governing equations and mechanisms for transition in the toroidal geometry including

the major impact of pitch. Studies have taken a similar approach for straight inclined

horizontal and vertical geometries, but none have been found which resolve two-phase

flow in the curved geometry of a helix. The main issue in resolving the flow in this

geometry is that of determining appropriate inter-phase momentum transfer, and the

appropriate friction correlations for wall interaction. These issues are resolved to yield

a novel attempt at modeling helical two-phase flow. Pitch is considered negligible in

introduction of torsion, while the dominating influence of the centrifugal force is re-

tained. The formulation of the governing equations are taken from a general vector

form that is readily extended to a true helix that includes torsion. The predictive

capability of the current model is compared to the data and observations of the two-



phase helical flow studies available in the open literature. The new model is found to

be accurate in the linear asymptote, and to correctly predict the trends of increased

liquid hold-up, a shift in the transition boundary between non-stratified and stratified

flows such that the non-stratified regimes are favored, and the new liquid equilibrium

height calculations shift the transition between annular and intermittent flows such

that the intermittent regime is favored. The current model is an improvement over

the previous methods in that it has the same accuracy of prediction of linear flowing

inclined flows as methods developed for the linear flow condition, and improves the

prediction of curved flow regimes by correctly shifting the boundaries as described

above.
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ON THE EFFECTS OF CENTRIFUGAL FORCES IN AIR-WATER

TWO-PHASE FLOW REGIME TRANSITIONS OF AN ADIABATIC

HELICAL GEOMETRY

1 INTRODUCTION

Two-phase flow in helical conduits is important in many industries where reaction

between components, heat transfer, and mass transport are utilized as processes. The

helical design is chosen for the effects of secondary flow patterns that are induced

by curvature and their resulting compact design. Secondary flow has the benefit

of continually transporting fluid from the near wall region to the bulk of the flow.

In single-phase chemical reactor design this secondary flow increases radial mixing

and reduces axial dispersion. In heat exchanger design the secondary flow increases

laminar heat transfer, while the centrifugal force broadens the Reynolds number range

of laminar flow (to the advantage of the increased laminar heat transfer). As a result

of these characteristics, helical pipe flow has been studied since the later part of

the 19th century. The earliest found published mention of secondary flow effects of

curvature on open water flows of rivers was that of Thomson in 1876, and for closed

pipes by Grindley & Gibson in 1908. These preliminary investigations were followed

by Eustice’s investigation in 1911, who made some amazing insights about the flow

in curved pipes of varying curvatures. However, analytic study of this flow did not

occur until 1927 when Dean published his pioneering work. It wasnt until thirty-

seven years after Dean (1927) that the first two-phase research started to enter the

literature (Carter 1965, Morton et al. 1964, Gilli 1964, and Rippel et al. 1966).

Given that the whole of research into helical flow has evolved in the last century

alone, it is nice to see a single piece of work like Dean’s endure. This is particularly

true between 1927 and 1962, during which time researchers either made refinements

to Deans analysis, or applied the boundary layer concept to the secondary flow, for

finding flow solutions in this geometry. Around 1962 the first numerical solutions

were applied as a method of extending the series analysis of Dean to greater flow

rates and/or tighter bends (Barua 1963). Almost all these studies follow the basics of

Dean’s approach, by considering both the simplifying assumption of zero pitch and

negligible curvature, i.e. they do not consider helicity. Hence, the vast majority of

studies of helical flow are essentially large radius of curvature studies of a torus.
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Given that significant differences in secondary flow structure are introduced with

helicity (Wang 1981), it is unfortunate that torque effects of helicity were not con-

sidered fundamentally until 1981 (Murata et al. 1981, Wang 1981). Disconcerting is

that the few studies considering finite pitch are not in agreement. The main discrep-

ancy seems to stem from the choice of an appropriate coordinate system. Germano

(1982) provides an analysis with an orthogonal coordinate system that shows that

pitch effects on secondary flow are second order. In contrast, Wang (1981) provides

an analysis with a non-orthogonal coordinate system and shows the effects are of first

order. Germano (1988) later rectifies this difference by adjusting Wangs equations

to match the equations in his work. The qualitative effect of torque in single-phase

flow is, however, agreed upon and is described along with the effect of curvature in

Figure 1.1. Regardless of whether helicity’s influence on secondary flow is first or

second order, its influence on multi-phase flow transition is not fully understood and

needs to be investigated.

INCREASE DEAN 
NUMBER

ADD TORSION

Figure 1.1: Torsion and curvature effects on single-phase helical flow.

The review of literature showed the vast majority of the work as being not only

toroidal, but also for single-phase flow. The study of two-phase helical flow regimes

has been undertaken in relatively few cases, and a fundamental formulation of the

flow regimes for helical geometry is not found in the literature. This is not to say

that two-phase flow regime studies are non-existent, only that they exclusively address

the horizontal and vertical systems. Probably the most quoted horizontal flow studies

were those of Baker (1954), Mandhane (1974), and Taitel & Dukler (1976).

Benefiting the two-phase analysis, the multitude of single-phase helical analyses

make clear the effects of centrifugal and torsion forces on the fluid domain. This
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provides that these forces indeed do have a non-negligible effect on the flow structure;

and with proper consideration, the mechanisms of transitions found accurate for the

two-phase flow regime prediction in the linear inclined geometry can be applied to

a helical flow. The published results show agreement on the effects of torsion and

centrifugal forces on a flowing fluid domain, which can be surmised as follows:

• Curvature increases resistance

• Pitch decreases resistance

• Secondary flow in the plane normal to the pipe axis is induced

• Laminar flow is present over an extended range of Reynolds numbers

• Intermittent flow regimes are present over an extended range in two-phase flow

Even though the first four of the above observations are for single-phase helical

flow, it is reasonable to assume a similar degree of secondary flow effects would mani-

fest within the mixture and/or individual phases. Spedding et al. (1981) showed that

this is at least found to be true in the slug flow regime of linear horizontal two-phase

flows. This implies that the resolution of the secondary flow patterns in each phase for

a given regime may eventually be required for an absolute helical flow map. However,

this dissertation will make simplifying assumptions to reasonably allow the systems

treatment.

With the system defined and the history chosen, one must choose a method of

analysis. There are three different one-dimensional approaches in resolving two-phase

flow in pipes: the Homogeneous Equilibrium Model (HEM), the Drift Flux Model,

and the Two-Fluid Model. Each of the methods are described in more detail later.

It is understood that the easiest and least accurate of these is the HEM, because of

the simplified manner in which it treats the system as an approximate single-phase

flow. The most fundamental is the Two Fluid Model, as it retains the conservation

equations for each phase individually. However, the Two-Fluid Model requires that

the equations for the individual phases be related in a manner depicting their inter-

action and influence of each other. These closure relations are directly dependent on

the two-phase flow structure (regime) due to the influence of the mechanics of the

flow, requiring a starting regime to be chosen. This work will formulate the system

using the two-fluid model approach.
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This work will follow the analysis of Taitel & Dukler (1976) by assuming a strat-

ified regime as a starting point for the formulation. This is based on the viewpoint

that the development of a given regime is not path dependent, and any regime can

be considered to have developed from a stratified regime.

The choice of an appropriate coordinate system for the formulation will determine

what effects of the flow structure are considered. As was pointed out, the vast majority

of researchers choose to operate in the orthogonal toroidal system. This is in spite of

the fact that the natural coordinate system for a helix is non-orthogonal. This issue

is disused in the literature review, and justification for use of the toroidal coordinate

system is provided.

1.1 Dissertation Outline

“Things should be made as simple as possible, but not any simpler.” –

Albert Einstein

The current study follows an intuitive evolution of the ideas, tools, previous work,

and novel calculations applied to the resolution of the helical geometry two-phase

flow problem. First, the helical system and two-phase flow regimes are described,

along with the currently accepted methodology for rendering calculable two-phase

fluid systems. This provides a sufficient foundation to assemble all the previous

works on the subject, such that it is followed by a thorough review of the literature to

identify all the methods applied in the study of helical fluid flow (single and two-phase

systems). The literature review is concluded by a description of effective two-phase

flow regime prediction methods used in linear geometries. The lack of an analytical

two-phase flow regime map for the helical system is identified, and resolved by the

novel use of the successful methods found in the study of the linear system with the

inclusion of the centrifugal forces. The outline of the dissertation is summarized in

Figure 1.2.

1.2 Description of Helical Geometry and Flow Regimes

The helical geometry flow problem has its history in the investigations of Sir

William Thomson (1876) on the cause of windings of rivers of alluvial planes. Thom-



5

Helical
Geometry

Description

General
Two-Phase
Flow Formulation

Review of 
Previous

Work

Successful
Linear
Methods

Centrifugal
Inclusion

E
Q

U
IL

IB
R

IU
M

  
H

E
IG

H
T

K
-H

T
R

A
N

S
IT

IO
N

Two-Phase
Helical Flow 
Regime Map

Figure 1.2: Schematic of the dissertation

son correctly determined that the wearing down of the outside edge of curves, and

build up along the inside of the curve, was an effect of a secondary cross-stream flow.

He used a description similar to Figure 1.3 to describe the river flow. As the flow

enters a curve in the direction of s, the centrifugal force on the surface is greater than

on the river bed due to the fluid near the bottom, since the flow along the bottom is

being retarded from viscous forces. This sets up a circulation outwards on the surface

(from A to B) and inwards along the bottom (from B to A), which removes material

from the outer edge and deposits it on the inner edge of the river bank. This is the

same mechanism that must be considered in the current study, and this study will

use the same approach of a stream wise direction, denoted as s.

However, unlike the river, the helical geometry is enclosed by a solid interface on

all sides and has an inclination that introduces a second consideration, that of torsion.

The geometry description of a helix includes a measurement of the inclination: the of

pitch, p. Along with the pitch and the stream wise direction coordinate, measurements

are also needed to describe the radius of curvature a, and the radius of the conduit

r0. These parameters are depicted in Figure 1.4.
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Figure 1.3: A reproduction of Thomson’s original work that identified secondary flow
effects in curved geometries.
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Figure 1.4: Dimensions of helical coil used in analysis.
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In addition to the geometric influence, the concurrently flowing phases in a con-

duit must align themselves relative to one another, given that they do not occupy

the same space during the same time. This relative positioning is naturally due to

the relative forces felt by the phases, and is described macroscopically as morpho-

logic arrangements. These patterns have been extensively studied in linear inclined

and linear horizontal geometries. In the linear inclined geometry there are six basic

patterns, shown in Figure 1.5. A vertical arrangement is similar, with the exclusion

of the stratified and wavy regimes, and is shown in Figure 1.6. The patterns for

the inclined geometry are the same as those for helical flow, and the designations of

Figure 1.5 will be used in this study.

BUBBLY

PLUG

STRATIFIED

WAVY

SLUG

ANNULAR

Figure 1.5: Two-phase flow regimes found in horizontal and inclined linear flows.

The relative forces between the phases influence the pattern development. These

consist of momentum, turbulence, dynamic pressure, body force, surface tension, and

interfacial drag. Examining the above list exposes the importance of the fluid flow

rates, and as a result, the methods used to identify the particular flow regime are based

on mapping the mass flow rates or velocities of the phases against each other. Ex-

ample representations are the superficial velocity mapping of Taitel & Dukler (1976),

and the mass flux mapping of Baker (1954). These are shown in Figure 1.7 and Fig-

ure 1.8 respectively. As discussed in the literature review, mapping with these types

of coordinates produces maps that are accurate only for a single inclination angle,
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Figure 1.6: The flow regimes of the linear vertical geometry. The case shown is a
vertical heated channel with upward flow.

which implies dependence on gravity. This is noted at this point to bring attention

to the similarities of gravity and centrifugal forces, and their importance. More im-

portantly, the Taitel & Dukler map of Figure 1.7 is an example of the goal of this

thesis; an analytical flow regime map. This topic is described in the linear two-phase

flow section of the literature review.

1.3 Two-Phase Flow Modeling Methodologies

Multi-phase fluid flows are some of the most common phenomena in our world.

This is apparent when one considers that any continuum material movement which

is not in rigid translation is a fluid movement, and when more than one of these

materials is present, the system is a multi-phase flow. This describes actions such as

blood flow, combustion, rain, boiling eggs, dust storms, and drinking soda. In the

way of understanding and control of these systems, the dynamicist provides predictive

capabilities for such systems through the formulation of the fundamental concept of

conservation. The resulting field equations require additional information describing

the interaction of components at the interface of the continua, being that they are only

valid within each continuum. The two-phase methodologies that have developed are

attempts to solve this issue. The major one-dimensional methodologies are the Two-
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Fluid model, Homogeneous Equilibrium Model (HEM), and the Drift Flux model.

1.3.1 Homogeneous Equilibrium Model

The simplest of the modeled strategies is the Homogeneous Equilibrium Model,

which considers the phases as a mixture in thermal equilibrium and without relative

motion between phases. This model requires that the properties of the mixture be

appropriately defined such that the combination of the components are accurately

described as an artificial fluid. Additionally, the flow components of the artificial fluid

should be near to thermodynamic and mechanical equilibrium, in order to minimize

the transfer of energy between components. This is not the case when the velocity

and temperature are different, i.e. separated flows and/or during pressure dynamics

sufficient to flash one of the components, and must be understood as a limitation.

However, if these conditions are sufficiently met, the artificial fluid can be easily

modeled as a single phase flow with standard methods. As a result, examples of the

use of HEM in flow analysis are abundant and found in all two-phase flow textbooks.

The field equations for the one-dimensional case of HEM flow are given by Wallis

(1969):

∂ρm

∂t
+

∂

∂z
(ρmv) = 0 (1.1)

ρm

(
∂v

∂t
+ v

∂v

∂z

)
= −∂P

∂z
+ ρmg cos θ − P

A
τw (1.2)

∂

∂t

[
ρm

(
e+

v2

2

)]
+

∂

∂z

[
ρmv

(
h+

v2

2

)]
=

1

A

(
∂qe
∂z

− ∂v

∂z

)
+ ρmvg cos θ (1.3)

where the mixture density, void fraction, and quality are defined as:

ρm = αρg + (1− α) ρl (1.4)

1

ρm

=
x

ρg

+
1− x

ρl

(1.5)

α =
V̇g

V̇g + V̇l

=
jg
j

(1.6)

x =
ṁg

ṁg + ṁl

=
m′′

g

m′′ (1.7)
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1.3.2 Drift Flux Model

The Drift Flux Model is a mixture flow model that considers the relative velocity

of the gas to the mixture rather than the individual phase velocities as in the Two-

Fluid Model, or the equilibrium velocity of HEM. The model has a wide range of

applicability and is considerably less complicated than the Two-Fluid Model. Its

simplification is accomplished by eliminating one of the momentum equations and one

energy equation, and making up for the insufficient number of equations by including

constitutive relationships that describe the relative motion and energy exchange. The

set of Drift Flux Model equations are given by Ishii (1976).

Mixture Continuity Equation

∂< ρm >

∂t
+

∂

∂z
< ρm > v̄m = 0 (1.8)

Dispersed Phase Continuity Equation

∂< αd > ρd

∂t
+

∂

∂z
(< αd > ρdv̄m) =< Γd > −

∂

∂z

(
< αd > ρdρc

< ρm >
V̄dj

)
(1.9)

Mixture Momentum Equation

∂< ρm > v̄m

∂t
+

∂

∂z

(
< ρm > v̄2

m

)
= − ∂

∂z
< ρm > +

∂

∂z
< τzz + τT

zz > − < ρm > gz −
fm

2D
< ρm > v̄m|v̄m| − (1.10)

∂

∂z

(
< αd > ρdρc

(1− < αd >) < ρm >
V̄ 2

dj

)
− ∂

∂z

∑
k

COV (αkρkvkvk)

Mixture Energy Equation

∂< ρm > h̄m

∂t
+

∂

∂z

(
< ρm > h̄mv̄m

)
= − ∂

∂z
< q + qT > +

q
′′
wξh
A

− ∂

∂z

(
< αd > ρdρc

< ρm >
∆hdcV̄dj

)
− ∂

∂z

∑
k

COV
(
αkρkh̄kvk

)
(1.11)

+
∂< ρm >

∂t
+

(
v̄m +

< αd > (ρc − ρd)

< ρm >
V̄dj

)
∂< ρm >

∂z
+ < Φµ

m >
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Drift Velocity Constitutive Equation

αkρk

(
∂vk

∂t
+ vk

∂vk

∂z

)
= −αk∇pk +∇ ◦

(
αk

(
τ k + τ

T
k

))
+ αkρkgz+

(pki − pk)
∂αk

∂z
+ (vki − vk) Γk +Mki (1.12)

Where < φ >, << φ >>, and COV (φ) are defined in Eq. 3.15, Eq. 3.16, and Eq. 3.26

respectively.

1.3.3 Two Fluid Model

Of the three models considered here, the Two Fluid Model is the most general, and

is the basis for the analysis presented in this dissertation. The model is constructed

using a set of field equations written for each phase and closed with interfacial terms

that account for the interaction of phases. The development of the equations is

accomplished by application of the concept of conservation. This axiom provides

that all quantities are conserved, and must be accounted for in the mathamatics by

use of a general balance equation. A novel production of this equation would be

unnecessary given that its derivation is quite mature. Instead the development of

the general balance equation given by Ishii (1975), Delhaye (1969), or Hsu (1986) is

presented.

Figure 1.9 depicts the application of the the mathematical theorem of Green (also

known as Gauss, Lagrange, or the divergence theorem) and Leibnitz (also known as

Reynold’s transport theorem) to the concept of a general integral balance to produce

the general balance equation. This process is formalized in Eq. 1.13 to Eq. 1.16.

The description of Leibnitz is constructed from information found in the text by Aris

(1962). First the axiom of conservation is put in mathematical form, i.e.: the time

rate of change of the integral of any specific quantity per unit mass (ψ) being equal

to the flux (J) into the region of interest, and any source (φ) of the quantity.

d

dt

∫
V

ρkψkdV = −
∫

S

nk · JkdS +

∫
V

ρkφkdV (1.13)

Green’s theorem,∫
V

∇ · FdV =

∫
S

n · FdS,
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General Integral Balance of a 
Quantity

General Balance Equation of 
the Quantity

Leibnitz Rule

Green's Theorem

Axiom of Continuum

Figure 1.9: Diagram of concepts included in the general balance equation (Ishii 1975).

is applied to the second term of Eq. 1.13, transforming the surface integral to a volume

integral, i.e.:

d

dt



V

ρkψkdV = −


V

∇ ◦ JkdV +



V

ρkφkdV (1.14)

Parallel to the formulation of the conservation axiom, the theorem of Leibnitz

is written. This theorem considers the contribution to an integral quantity, by dis-

tinguishing between the effects within the control volume occupied by the material

region to those at the surface of the control volume (i.e. surface flux). Its derivation

is informative, an important tool of the averaging used in two-phase flow, short, and
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interesting, so it is quickly covered here.

d

dt

∫
V

FdV =
d

dt

∫
V

FdV (1.15a)

=

∫
V0

(
dF

dt
J + F

dJ

dt

)
dV0 (1.15b)

=

∫
V0

(
dF

dt
+ F (∇ ◦ vk)

)
JdV0 (1.15c)

=

∫
V

(
∂F

∂t
+ F∇ ◦ vk

)
dV (1.15d)

=

∫
V

∂F

∂t
dV +

∫
S

Fvk ◦ ndS (1.15e)

Where F is any function and J is the Jacobian of the transformation between

the material and spatial coordinates. The step between Eq 1.15a and Eq. 1.15b is

simply the change of spatial volume integral to a material volume, the step between

Eq 1.15b and Eq. 1.15c is the application of the relationship between the Jacobian

and the divergence, the step between Eq. 1.15c and Eq. 1.15d is the application of

the definition of the material derivative, and the step between Eq 1.15d and Eq. 1.15e

comes from applying Green’s theorem. Equation 1.15e is the Leibnitz rule that is

referenced in all the fluid texts. Specifics about the steps, and the definition of the

Jacobian, can be found in Chapter 4 of Aris (1962).

The next step is accomplished by letting F = ρkψk, setting Eq. 1.15d equal to

Eq. 1.14, and requiring the integrand vanish everywhere. The result is the differential

form of the balance equation that is valid instantaneously for a differential volume

of a single continuum, Eq. 1.16. For comparison to the HEM and Drift-Flux models,

Eq. 1.16 is written in its one-dimensional form. Noting that the divergence of a vector

quantity is the trace of the vector (∇ ·Φ = δij∂iΦj = ∂xΦx + ∂yΦy + ∂zΦz) and that

the functional dependence is only on the one-dimension (Φ = Φ(z)), the divergence

is simply the gradient in the one dimension (∇ ·Φ = ∂zΦz). Thus, Eq. 1.16 becomes

Eq. 1.17.

∂ρkψk

∂t
+ ρkψk∇ ◦ vk = −∇ ◦ Jk + ρkφk (1.16)
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∂ρkψk

∂t
+ ρkψk

∂vk

∂z
= −∂Jk

∂z
+ ρkφk (1.17)

Note: J is a surface flux, and J is the Jacobian of the material & spatial coordinates.

It is the identity of the quantities ψ, J , and φ that distinguishes between different

equations for fluid kinematics, or for the equations governing neutronics, electricity

and magnetism, etc.. The set of field equations for fluid dynamics are given by

substitution of the values given in Table 1.1.

Table 1.1: Values used to produce the fluid kinematic field equation (Ishii 1975).

Eq. Equation Type ψ φ J
i. Continuity 1 0 0
ii. Momentum vk g Pk − τk
iii. Energy ek + vk

2

2
g ◦ vk + qk

′′′

ρk
qk − (Pk − τk) ◦ vk
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2 LITERATURE REVIEW

The literature review completed for this dissertation considers both analytical and

experimental studies of helical and linear flows. The purpose of this dissertation is the

formulation models of two-phase helical systems. However, single-phase helical and

linear two-phase flow literature are covered to provide insight into successful modeling

techniques of simplified systems, and to provide guidance on model development. The

literature review is broken into individual sections for analytical and experimental

studies, where similar works are grouped accordingly. The first author of the works

covered in this literature review, are listed in the appropriate section of Table 2.1. It

should be noted that the works of these authors are not necessarily restricted to their

location in the table, e.g. analytical works often include experimental contributions.

Also, many more studies than those listed in Table 2.1 were reviewed, though the

table and literature review only cover the most applicable. A complete listing of the

work reviewed by the author, to determine the novelty of this research, is found in

the Bibliography.

Table 2.1 implies, that for the existing techniques, there is an analytical helical

two-phase flow regime model shortage. Of the two lone works in this category, the

first is a flow map created by data correlation, and the second, an ad hoc modification

to the linear theory of Taitel & Dukler (1976), that provides no additional framework.

No first basis mechanistic formulation of the helical two-phase flow regimes was found

to exist in the literature. It was also found that the majority of studies are within

the realm of single-phase analytical work, whose methods can be broken up into four

groups:

• The original work of Dean (1927), and similar series analyses.

• Boundary layer analyses.

• Numerical solutions of the field equations.

• Helical coordinate system formulation (for torsion inclusion).

The model of this dissertation relies on the natural coordinates for a helix. Hence

the coordinate system formulation is provided last, and in its own subsection. The

development of this literature review follows the classification of the layout in Ta-

ble 2.1.
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Table 2.1: First author listing of the major work covered in the literature review.

Section Authors — —
1Φ Helical Eustice 1911 Taylor 1929 Ito 1959
Experimental Koutsky 1964 Webster 1997

1Φ Helical Dean 1927 Barua 1963 Mori 1965
Analytical McConalogue 1968 Ito 1969 Truesdell 1970

Joseph 1975 Van Dyke 1978 Dennis 1982
Nandakumar 1982 Goering 1989

2Φ Helical Rippel 1966 Banerjee 1967 Banerjee 1969
Experimental Akagawa 1971 Kasturi 1972 Whalley 1980

Boyce 1969 Mujawar 1981 Rangacharyulu 1984
Hart 1987 Saxena 1990 Yan 1993
Ishikawa 2003

2Φ Helical Uddin 1988 Keshock 1998
Analytical

2Φ Linear Flow Mandhane 1974 Taitel 1976 Barnea 1987
Regime Transitions Petalas 2000
Exp. & Ana.

1Φ Helical Wang 1981 Germano 1982 Kao 1987
Coordinate Germano 1988 Tuttle 1990 Zabielski 1998
Formulation

2.1 Experimental Studies of Helical One-Phase Flow

As with other fluid system studies, the one-phase helical studies focused on de-

termining pressure drop, friction coefficient, and the critical parameter values for

transition to turbulent flow. The secondary flow structure analysis found its impetus

in offering explanation to the difference between pressure loss of a straight pipe and a

curved one. The early work of Eustice (1911), was a classical experiment of our field,

and is summed up in his own words:

. . . even a small curvature in the length of a cylindrical pipe affected the
quantity of flow . . . the experiments showed that in coiled pipes there was
apparently no critical velocity region. . . (then in response to these earlier
findings)

In an attempt to discover the cause of this departure from the law of flow
in straight pipe, the author had tried Osborne Reynolds’ colour-band test
in a coiled glass tube, but the arrangements were of a primitive character
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and the results obtained were not decisive. At the suggestion of Sir Joseph
Larmor the colour tests have been repeated with specially made glass
tubes, in which the stream motion could be traced by the introduction of
coloured water through capillary nozzles.

In his experiment, Eustice studied the streamline motion of fluid flowing in 90◦,

180◦, and 360◦ bends of 1 and 1.7 [cm] diameter glass tubing. His simulation of

Reynolds’ setup for curved ducts showed that the< 360◦ bends produced movement in

the plane normal to the pipe axis that was restricted to either side of the bend plane.

These movements, when viewed normal to the pipe axis, would complete a single

revolution back to the origin of injection. When the bend was extended to > 180◦,

the movements would begin another rotation, implying a repeating cycle. Eustice’s

study also shows the relationship between the flow rate and the secondary velocity

as being proportional for a similar geometry, i.e. the secondary velocity increased

proportionally to axial velocity increases. The color injections would consistently

flow from the internal region of the pipe to the outer wall. Once the injection reached

the outer wall, it would spread into a flattened band that would flow along the wall

back to the inner wall then partially re-combine into a single strand. An interesting

result was the backward (upstream) velocity for outer bend dye streams, found in

sharp right angle bends. The outer dye would actually flow back upstream along the

wall until it reached the inside bend, then reverse direction and exit the bend. The

most interesting result of Eustice’s study is that the secondary flow effects are present

in turbulent flow. Eustice makes the point that the curvature effects are present at the

wall streamlines first, and if a sufficiently long curve is present, then all parts of the

flow are affected. This is to say that a given length of curved pipe must be provided

for the complete secondary effects to manifest. He noted that when dye was smeared

on the surface of the pipe, it was most quickly removed from the outside of the bend

and relatively slower from the inside of the bend. This is in direct agreement with

the heat transfer and friction loss observations of authors to follow. All of Eustice’s

qualitative observations were repeatedly verified by all subsequent studies.

Taylor (1929) verified the findings of White (1929) and the statement by Eustice

(1911), that the critical Reynolds number for transition between laminar and turbu-

lent flow is larger for a helical pipe than a straight one. In his experiment he injected

a dye into a stream of water in a glass helix with a ratio of coil to tube diameter of

18. Taylor found that the critical Reynolds number is indeed increased, and in this
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case, by a factor of 2.8 (Re = 5830). An interesting part of his study is that the fluid

flow was definitely turbulent at the entrance of the helix. So the flow had actually

been laminarized by the presence of helicity and curvature.

Ito (1959) pressed this idea further, and also proposed empirical formulas for

calculation of the turbulent pressure loss in curved pipes, and a formula to calculate

the critical Reynolds number. These are empirical formulas based on his data for 5

different radii of curvature flows. The setup had only a single loop (360◦ bend), so it

is not rigorously applicable to a helical geometry with non-zero helicity. However, his

formula for the laminar/turbulent transition Reynolds number, see Eq. 2.1, compared

well to his data and the data from previous work (including White (1929), and Taylor

(1929)). None of Ito’s undisturbed data showed a Reynolds number less than 5000.

This is an important point of the study: that unless the flow is intentionally disturbed

by an orifice plate upstream of the curved section, the critical Reynolds number is

underestimated by his formula. The use of the orifice plate was included to model

the upstream turbulence, and laminarization mentioned in previous work.

Recrit = 2
(r0
a

)0.32

× 104 for 15 < a/r0 < 860 (2.1)

Koutsky (1964) experimentally studied the mechanisms affecting axial dispersion

that are important to continuous chemical reactor design. This is the phenomena

characterizing the dispersing of product along the axis of flow. He states the three

main mechanisms effecting dispersion are a non-uniform velocity profile (laminar),

turbulent mixing (eddies), and secondary flow. Secondary flow and turbulent mixing

are both beneficial if the goal is to minimize the axial dispersion, and a non-uniform

velocity is detrimental. Secondary flow is more efficient at the reduction due to it

being an ordered flow, which does not dissipate large amounts of energy (i.e. pressure

losses) and is not isotropic (i.e. acts only in the plane perpendicular to the helix axis).

The isotropic nature of turbulent flow means that both radial and axial mixing are

increased, and it is desirable in chemical reactors to only increase the radial mixing.

Koutsky found that the reduction in axial dispersion is proportional to the Reynolds

number, and has a minimum at a Reynolds number of approximately 3000. Koutsky

also compares the pressure loss as a function of Reynolds number, for helical tubes,

straight tubes, and packed beds, and finds that for similar axial dispersion, a minimum

in pressure loss is achieved by the helical flow case. This finding is the design basis for

helical chemical reactors, and might be applicable to home biodiesel design in the near
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future (due to the reduced size and increased efficiency). His experimental pressure

drops correlated well with the equation of Ito (1959), with an added observation that

the transition to turbulence is sufficiently smooth in helical flow to allow a continuous

function to represent the friction losses.

Webster and Humphrey (1997) completed an experimental and numerical study,

similar to Taylor (1929) and Ito (1959), to determine the transition Reynolds number

in helical flow, based on the idea that traveling wave instabilities are present during

the “transition” to turbulence. Here, the transition is not as is observed in the

traditional linear flows, where the linear regime feels the onset of small turbulent

fluctuations that eventually increase to fully developed turbulent flow, as the flow rate

is increased. Instead, the helical system, and the linear portion of piping preceding

the helical region, is characterized by three distinct conditions:

1. Laminar upstream linear section; Laminar helical section. (Re < 2300)

2. Turbulent upstream linear section; Laminar helical section. (2300 < Re < 8000)

3. Turbulent upstream linear section; Turbulent helical section. (8000 < Re)

This mismatch with the linear section is from the additional forces of helical

flow stabilizing the turbulent structure of the upstream flow through damping of the

turbulent fluctuations. The transition region of 2300 < Re < 8000 shows a stable

(i.e. laminar) fluctuation that is characterized as a traveling wave instability, and

explains the observations of previous authors (Taylor 1929). Notice that Webster

& Humphrey list the transition to turbulence for a helical flow as occurring at a

Reynolds number of 8000, instead of 5830 as found by Taylor (1929) (both are for

coil to tube diameter ratios of ∼18). This is from differences in the definition of

laminar flow, where Taylor’s finding of Re = 5830 is related to “steady” laminar

flow, and Webster & Humphrey’s findings are related to actual turbulent mixing.

The “unsteady” flows of Taylor (1929) are observed as fluctuations in the streams

of dye, without dissipation of the dye streams, as would be seen in a turbulent flow.

These are the in situ traveling wave referred to by Webster & Humphrey (1997), and

actually shows agreement between the two studies.
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2.2 Analytical Studies of Helical One-Phase Flow

2.2.1 Dean Style Series Analysis

Dean (1927) is attributed with first developing the analytical treatment of the

helical one-phase system. In his paper presented to the Royal Society of London

in 1927, Dean twice refered to Eustice’s work of 1911, implying the origin of the

motivation for his own work. In the first reference, Dean takes note of the stream

line nature of the flow, and uses a stream line description that leads to a sketch of a

symmetric secondary flow pattern that is now known as “Dean Flow”. In the next

reference, Dean points out that the influence of curvature is present at even minute

values, and the dependence of flow rate on curvature should be of first order (Dean

is commenting on the same text as quoted in section 2.1 of this dissertation), which

in turn leads to his second seminal work in 1928. Dean’s approach was to work with

a simplified system that allowed an analytical solution. His assumptions were:

• Steady flow (fully developed)

• Incompressible single-phase flow

• Toroidal coordinate system (negligible torsion)

• Small curvature (loosely coiled pipe)

Considering the above assumptions, Dean formulated equations for a first order

curvature. This set of equations is then solved in his 1927 work by separation of

variables, and in his 1928 work by a series expansion in powers of the Dean number.

The Dean number being a similarity parameter for curved flows that includes the

Reynolds number and the curvature (De). Though unlike Reynolds’ number, the

Dean number does not enjoy a consistent definition, and shows up in the literature

in at least 4 different forms (Van Dyke 1968). Because of the variation in definitions,

direct comparison between authors is confusing, and someone studying the flow in

helices should be aware of the forms being used. The original form is given in Eq. 2.2,

and the form used by Barua (1963), Mori & Nakayama (1965), Ito (1969), is given in

Eq. 2.3. The latter is applicable to both developing and fully developed flows, where

the former is strictly applicable only to fully developed cases (Berger et. al. 1983).

As such, Berger et. al. (1983) recommended that the form of Eq. 2.3 be used. The
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present work heeds this recommendation.

De = 2
(r0
a

)(r0C
ν

)2

(2.2)

k =
(r0
a

)1/2
(

2r0 < w>

ν

)
= R

1/2
0 Re (2.3)

Where C is a constant representing the flow that has the dimensions of velocity, and

< w> is the average axial velocity.

The solutions found by Dean (1927/1928) exhibit the secondary flow observed in

Eustice’s (1911) work, but not the expected pressure gradient dependence on first

order terms of the radius of curvature. Because of this disagreement with Eustice’s

(1911) experimental results, Dean completed another analysis up to the fourth order

terms (Dean 1928). His extended work concluded that curvature has a “slightly

reduce(ing)” effect on the flow, and identified its dependence on the second order and

higher terms. A schematic of the system and coordinates used by Dean (1927/1928)

are given in Figure 2.1, the conservation equations solved are given in Eqs. 2.4, and

the series expansion used by Dean (1928) is given in Eqs. 2.5.
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Figure 2.1: Toroidal coordinates used by Dean (1927/1928).
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McConalogue & Srivastava (1968) did a numerical extension of Dean’s analysis

of toroidal flow, using a Fourier series expansion. The importance of this extension

was obvious even to Dean (1928), where he states that the helical flow should be

considered for values of Dean number up 100,000, but only offers them up to 576.

McConalogue & Srivastava take off from where Dean left off, and cover the range of

Dean numbers between 576 ≤ De ≤ 22, 931. Their paper is a very nice presentation

of the general formulation, variation of parameters, and numerical scheme required

for the analysis.

McConalogue & Srivastava’s numerical analysis was stable at low Dean numbers,

but became unstable at higher Dean numbers. An actual critical Dean number is

not defined, as the calculation diverged at different Dean numbers, depending on the

initial approximations for the numerical scheme. They did note that the stability

was dominated by the behavior of the axial velocity and detailed the modifications to

the numerics to allow calculation up to De = 22, 931. Some of the most interesting

conclusions are for the higher Dean number flows. First the pressure gradient inferred

from the streamlines shows that this is the force resisting the centrifugal force, and

it induces a central region of uniform secondary flow velocities. Second, the effect of

increasing Dean number on the maximum axial velocity and secondary flow, identifies

this effect as the reason for the relative increase over straight pipes. Specifically, the

increase of Dean number shifts the location of the maximum axial velocity towards

the outside wall of the helix, which presents a stronger velocity gradient at the wall,

and results in greater shear losses.

Van Dyke (1978) took a different approach to extending Dean’s original analysis.

His approach was to simply increase the number of calculated terms of the expansion,

which was not possible by hand calculation at the time of Dean’s work. Van Dyke

pushed the original 4th order series to 24 terms via computer calculations. Van Dyke
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also mentions the diversity of Dean number definition, and concludes that the form

introduced by White (1929) is the most appropriate (see Eq. 2.6). He also proposed

that the laminar friction factor should vary as the White form of the Dean number to

the 1/4 power for loosely coiled helices, and to the 1/2 power for tightly coiled helices.

5 previous accepted works with an exponent value of 1/2 are given as examples of

correlations that agree well with available data sets. The exact forms of the friction

ratios are given in Eq. 2.7.

k ≡ 2r0 < w>

ν

(r0
a

)1/2

(2.6)

fhelix

fstraight

∝


0.1064k1/2 Adler 1987
0.0919k1/2 Barua 1963
0.1080k1/2 Mori 1965
0.1033k1/2 Ito 1969
0.1028k1/2 Collins 1975

(2.7)

Dennis & Ng (1982) numerically solve the series expansions of the conservation

equations, in a circular cross-section toroidal coordinate frame. This is similar to

McConalogue & Srivastava (1968), with the addition that they are the first to note

a four-vortex solution in circular cross-sections (along with Nandakumar & Masliyah

(1982), who did work in this same year). They are also the first to characterize

the vortex type that develops in this flow as Taylor-Goertler vortices. This is an

interesting step, as the Taylor-Goertler vortices are formed on stream-wise surfaces

with curvature, and have distinct effects on the boundary layer (see a paper by Dris

and Johnson, 2004). This topic is studied extensively in the gas turbine field for

the effects on heat transfer coefficients on blade surfaces. Investigation into this

relationship could lead to information as to why boundary layer analyses’ of helical

flow show discrepancies.

The four-vortex flow structure is not reported in any other work for the circular

case, and its existence is disputed. Though Dennis & Ng (1982) provide support for

the existence of the four-vortex solution by reference to two experimental visualization

studies in which observation of this flow structure was reported for non-circular cross-

sections. Dennis & Ng’s results seem dubious in the same manner as the solutions

of Nandakumar & Masliyah (1982), since neither directly calculates the four-vortex

solution. Rather they had to impose the structure as an initial condition and see if the

structure could be maintained. This would suggest that the solution is valid but not
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probable, i.e. purely academic. The results also show that the four-vortex solution is

accompanied by dual maximum axial velocity locations. This effect is another reason

why the structure is not probable, since the flow would have to develop from a single

maximum and split into two. Dennis & Ng’s presentation of their results and grid

check are concise, with good agreement for the friction ratio across the range of Dean

numbers calculated.

2.2.2 Boundary Layer Analysis Solutions

Three main studies were carried out during the 1960’s that formulate the laminar

friction factor based on a Boundary Layer (BL) analysis, in an attempt to extend

the applicable range to more prototypic flows. The three works described are Barua

(1963), Mori & Nakayama (1965), and ito (1969). The boundary layer analysis used

in this section plays an important part in the general scheme of fluid mechanics. Its

history comes from the initial attempts to model fluid motion where the viscid region

was initially neglected (potential flow). The issue arises that without viscosity there

isn’t any friction loss, and objects like spheres and rocks fly around uninhibited by

all but gravity and the confines of earth, i.e. the no-slip condition at the wall is lost.

Addressing this issue showed that increasing the Reynolds number didn’t make the

viscous effects disappear, rather it makes the viscous effect’s influence tend toward

smaller and smaller regions of the fluid domain. This observation answered the work

of D’Alembert, and implied to Prandlt the compromise of separating the flow into

the viscid region (boundary layer) and the inviscid region (potential flow), and to

solve them separately. This history exposes the boundary layer theory as applicable

to high Reynolds number flows, and somewhat forgives the errors seen in Figure 2.3

at lower flow rates. It also quickly explains the methods of our three authors. The

full story is found in many fluid mechanics texts, and is not rigorously referenced and

detailed here.

Barua (1963), Mori & Nakayama (1965), and Ito (1969) all take the approach of

splitting the flow into the viscid and inviscid regions, with the simplifying assumptions

of:

• Small curvature (loosely coiled)

• Negligible pitch (toroidal geometry)
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• Fully developed flow

• Incompressible single-phase flow

The system analyzed is shown in Figure 2.2. Note the change in the location from

which the polar angle is measured, in comparison with the analysis of Dean (1928)

(Fig. 2.1). This is quite similar to the torus and large radius of curvature analyses

of previous works. Since this method is not utilized in this dissertation, it suffices to

list the steps for obtaining the boundary layer solution. These are:

1. Develop the conservation equations for the core region.

2. Assume a velocity distribution in the BL that matches the boundary conditions.

3. Integrate the BL velocities over δ, to obtain the momentum integrals.

4. At any given polar angle, equate the fluid flowing into the BL to the flow inside

the BL.

5. Calculate the transverse velocity and boundary layer thickness (Mori & Nakayama

assume they are both a series expansion in Dean number)

INVISCID CORE FLOW

δ

r 0

α

θ
Ο

z

a

Figure 2.2: Flow regions used in the boundary layer analyses.

Ito’s (1969) study, being the most recent, compares the different author’s ratio

of friction factors, against an empirical fit of the data sets of Ito (1959) and White

(1929). The comparison is reproduced in Figure 2.3, using the equations given in the
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respective publications. The analytic model of Ito shows the closest agreement to the

empirical fit, especially at lower Dean number flows. Important is the agreement of

the proportionality of the friction ratio by all the analyses, i.e. the relative friction

is asymptotically proportional to the Dean number to the 1/2 power (Eq. 2.7). This

does not support the conclusion of a 1/4 power relation by Van Dyke (1978).
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Figure 2.3: Comparison of the forms for relative friction factor of curved to straight
flows.

2.2.3 Numerical Methods Solutions

The use of numerical methods in determining the flow structure and friction factor

in the helical geometry is well represented by the works of Truesdell & Adler (1970),

Joseph et. al. (1975), Nandakumar & Masliyah (1982), and Goering (1989). This

method utilizes the brute force of the computer to iteratively solve the governing

equations for the given geometry. The prevailing simplification of a toroidal geometry

is continued in the numerical studies, with all covered studies making this assumption.

Goering (1989) provides a great review of previous works in the field, and attacks the

problem on including heat transfer and buoyancy into the calculations. Goering also

details the issues with solving the coupled non-linear equations. He explains why

the coupling of the equations requires the equations to be solved in a given order,
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and use under-relaxation techniques. His details the issue well, with clear examples

and references to previous works. In short, the coupling issue that Goering explains

can be summed up with Figure 2.4. The accuracy of the results of these numerical

studies, with respect to friction factor and secondary streamline patterns, are inline

with the boundary layer and series solutions. The numerical analyses cover helical

flows up to a Dean number of approximately 1000. The numerical works considered

the following assumptions:

• Small curvature (loosely coiled)

• Negligible pitch (toroidal geometry).

• Fully developed flow

• Incompressible single-phase flow
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Figure 2.4: Iteration direction, and coupling of the streamwise and cross-stream ve-
locities.

The specifics of each numerical method for the individual works can be found in

the respective publications. All have are similar in that they solve the appropriate

forms of the governing equations by iterating on the pressure and velocity. These

equations can be developed from Eq. 1.16 and Table 1.1 of Sec. 1.3.3. In short, a very

simplified version of the steps is as follows:
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1. Develop the conservation equations for the system.

2. Reduce the differential equations to algebraic form, by introducing finite differ-

ences.

3. Calculate the pressure distribution using velocity (velocities are estimated the first

time though).

4. Use the calculated pressure to calculate new velocities, go to the next step if the

velocities are unchanged, and back up a step if they have changed (within the

tolerance).

5. Print the final values for velocities (or stream function) and pressure.

These numerical studies have provided some important results and recommenda-

tions that are utilized or referenced by subsequent works. The first mentionable result

has to do with the impact of finite pitch. The finite pitch of a helix has the effect

of increasing the radius of curvature, and changing how the centrifugal force applies

to the flow. Centrifugal forces in a toroidal system are strictly perpendicular to the

axial flow; in contrast, the helix translates the centrifugal force so that it acts both in

the plain perpendicular and along the helix axis. This translation removes symmetry

and shows up as a difference in mass flux between the upper and lower halves of the

duct. Truesdell & Adler (1970) reference unpublished tracer experiments that show

the difference in velocity of the upper half from the lower half of a helical cross-section

as being approximately 1% ( for r0/a ≈ 0.09, p/sπa ≈ 0.03). Both Truesdell & Adler

(1970) and Goering (1989) use these unpublished results as the basis for neglecting

helicity in their own work.

Truesdell & Adler (1970) also proposed compensating for the increase in radius

of curvature, due to pitch, by introducing a modified curvature. A helix of constant

diameter has a curvature defined by Eq. 2.8, and a radius of curvature defined by

Eq. 2.9 (Lipschultz 1969, Truesdell 1970). Truesdell considers these expressions and

recommends making the substitution described in Eq. 2.10, to compensate for the

change in radius of curvature when the pitch is “small”. He does not state what is

meant by “small”.

κ =
a

a2 +
(

p
2π

)2 (2.8)

1

κ
= a+

1

a

( p
2π

)2

(2.9)
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substitute
a

a+ 1
a

(
p
2π

)2 for R0 (2.10)

Joseph et al. (1975) changed things up a bit, and studied the toroidal flow in

a square cross-section. The square cross-section inherently matches the grid setup,

eliminates the placement of grid points outside the fluid domain, and explores the

influence of cross-section shape. His calculations showed a four vortex secondary

flow structure for Dean numbers greater than 100. Joseph explains the four-vortex

structure by noting that the flat outer wall flattens the axial streamline, and on in-

creasing Dean number, dimples the streamline such that the axial velocity maximum

is moved off of the centerline. Since this study ignores torsion, this creates a sym-

metric pattern with a maximum axial velocity location on either side of the α = 0

centerline. The maximum axial velocity forms the location of the interface between

the secondary flow counter rotating vortices, and with dual maximums present, the

pattern bifurcates into that of a four vortex. This shift is described in the Figure 2.5,

where the boxed crosses are the location of the maximum axial velocity in the plane

perpendicular to the pipe axis, the lower two figures are the streamlines for the axial

velocities, the upper two figures are the streamlines of the secondary flow in the plane

perpendicular to the pipe axis, the arrows on the streamlines indicate the direction

of the cross-stream flow, the left two figures are a pair at a single Dean number, and

the right two figures are a pair at a greater Dean number. The greatest centrifugal

force is located at the maximum axial velocity, i.e. when the axial flow splits with

two maximums there are two locations of maximum centrifugal force. These locations

are bound by re-circulating flow that provides the material moving due to the cen-

trifugal force, hence two maximum locations means two re-circulating flow interfaces

and four vortices. Joseph also completed visualization studies to verify his calcula-

tions. Both the calculations and visualizations showed a transition to a four vortex

structure around a Dean number of 100, and a greater pressure loss / lesser axial

dispersion when the Dean number was greater than 100. Nandakumar & Masliyah

(1982) reported similar results for a circular cross-section, where the flow could be

made to bifurcate into a four vortex solution, by starting with a flat outside edge

similar to Joseph. Next the flow is allowed to develop a four vortex solution, and

the grid is gradually shifted to the circular cross-section. They found that with a

sufficiently gradual transition, the four vortex solution could be maintained for flows

of Dean number greater than 113.
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Figure 2.5: Secondary flow streamlines by the numerical calculations of Joseph (1975).

2.3 Experimental Studies of Helical Two-Phase Flow

Experimental investigations of helical two-phase flow can be grouped into work

on pressure drop formulation with liquid hold-up/void fraction modeling, and flow

regime mapping studies. With this in mind, the studies covered here are presented in

a manner consistent with the previous sections, and grouped accordingly. The range

of parameter values of the helical systems covered by the author of this review are

listed in Table 2.2. Considering the principal importance of pressure drop on fluid

system design, it is not surprising to find that all of the works investigate pressure

drop, while only six report flow regime observations. The studies that report flow

regimes are marked with double asterisks (**). This flow regime data is valuable, and

is used for assessing the helical flow model of this dissertation.

2.3.1 Pressure Drop and Liquid Hold-Up Studies

The methods of Lockhart & Martinelli (1949) are heavily used in the helical

pressure drop formulations, and requires a bit of explanation. Their work was focussed

on developing the predictive capability for two-phase pressure loss in horizontal linear

flows. Their formulation can be described with the following steps:

1. The Fanning form of pressure loss is written for each phase.

2. The Blasius form of the friction factor is written for each phase.
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Table 2.2: First author listing of the two-phase works covered in the helical two-phase
experimental section. (** - includes flow regime observations.)

Author jg jl d0 A0 p 2a
[m/s] [m/s] [mm] [non-dim] [m] [m]

Rippel 0.470 - 0.0004 10.20 19.9 0.0020 0.203
1966 1.194 - 1.194
Boyce 0.409 - 0.001 - 31.75 9.6 0.062 0.305
1969** 1.769 0.027 2.4 0.154 0.762

48.0 0.308 1.524
96.0 0.616 3.048

Banerjee 0.527 - 0.0064 - 15.53 9.8 0.017 - 0.152
1969** 38.33 0.5153 14.7 0.135 0.229

19.6 0.305
Akagawa 0.00 - 0.35 - 9.90 11 Not Listed 0.665
1971 5.00 1.16 22.7
Kasturi 0.005 - 0.005 - 12.5 53.2 0.0299 - 0.109
1972 4.329 0.112 0.0616 0.225
Whalley 10.74 - 0.023 - 20.20 49.5 0.330 1.0
1980 ** 29.17 0.063
Mujawar 0.20 - 0.05 - 24.20 14.4 0.019 0.017
1981** 1.20 0.124 21.0 0.26 0.025

50.4 0.57 0.061
100.0 0.136 0.121

Rangacharyulu 1.131 - 0.005 - 11 18.5 0.030 0.203
1984 1.826 0.1347 13 23.4 0.025 0.304
Hart 10 - 40 0.0008 - 14.66 287.2 0.085 4.210
1987 0.030
Saxena 0.070 - 0.041 - 9.70 11 0.015 0.106
1990** 0.516 0.078 51.6 0.008 0.500

156.5 0.017 1.516
Yan 0.50 - 0.04 - 8.26 9.085 0.025 0.150
1992** 400 0.20
Ju varies varies 14 8.0 0.023 0.112
2001 w/ length w/ length 12 9.3
Ishikawa 0.088 - 0.088 - 20 13.5 0.100 0.270
2003** 3.560 3.110
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3. Modify the hydraulic diameter definition so that it includes a parameter that is a

measure of phasic fraction.

4. Substitute (3) into (2), then the result into (1).

5. Equate the pressure drop of each phase, and determine the non-dimensional pa-

rameters that govern the system.

Their analysis results in three new non-dimensional parameters. Two ratios of

two-phase pressure loss to each superficial phasic pressure loss, and one for the ratio of

the superficial liquid pressure loss to the superficial gas pressure loss. The superficial

pressure loss is analogous to superficial velocity, and is the pressure loss if only one

phase is flowing in the duct. With these new parameters, the liquid hold-up and two-

phase pressure loss are ascertainable. Pressure loss is calculated by taking a simply

product. The new parameters are given in Eqs. 2.11 and the two possible products

for determining the pressure loss are given in Eqs. 2.12.
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Rippel (1966) was one of the first to look at downward gas-liquid cocurrent flow in

a helical geometry. He applied the method of Lockhart & Martinelli (1949) described

above, to correlate his data. Rippel carried out a series of tests, and made compar-

isons to the L-M model. His results showed that for the downward helical flow case,

the horizontal L-M correlation predicted reasonably well the helical pressure drops

(+40% -30%). Rippel postulates that the ratio form of the L-M correlation (shown

in Eqs. 2.11 & Eqs. 2.12) allows some of the curvature effects to cancel out, i.e.even
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though the geometry can change the absolute pressure loss markedly, it should not

have as strong an effect on the ratio of the liquid to gas pressure loss.

Akagawa et al. (1971), Kasturi & Stepanek (1972), and Rangacharyulu et al.

(1984) investigate the upward cocurrent gas-liquid helical flow case. They all present

comparisons with the Lockhart Martinelli prediction of pressure loss. Akagawa et

al. (1971) showed that the influence of curvature on pressure drop becomes more

apparent as the liquid flow rate is increased. In Fig. 9 of his paper, the lower liquid

flow rate (jl = 0.35 [m/s]) shows similar pressure gradients for the curvature ratios

of 11 and 22.77. When the liquid superficial velocity is increased to 0.85 [m/s], the

curvature dependence becomes apparent, and the tighter coil ratio of 11 is no longer

coincident with the looser coil of ratio 22.77. For the flow rates utilized, it was shown

that the ratio of the frictional pressure drop in a helix versus that in a straight pipe is

always greater than unity, and in the limiting case of a coil to tube ratio of 7 (stated

as the practical limit expected) was highest with a ratio of 2. This is in line with

the observations of all the single-phase helical works. Even though the magnitude of

pressure loss is strongly dependent on the flow rate, Akagawa’s results showed that

the entrance length was similar for all flow rates in both coil ratios.

It is interesting that the data collected by Akagawa et al. (1971) better matched

the modified L-M method of Ripple (1966), than Ripples own data (+- 15% for

Akagawa, compared to +40% -30% for Rippel). In addition, Akagawa’s data spans a

larger range of L-M values. Akagawa takes this as indication that his data collection

is more accurate than Ripple’s. Akagawa does make some indirect measurement of

flow patterns in the opaque copper tubing, inferring the pattern from the frequency of

the gas phase presence. He noted that the patterns (void frequencies) were similar to

those found in horizontal pipe, though variations introduced by the centrifugal force

were present. Early in his paper he talked of the effects of the centrifugal force being

unresolved by the comparison of the frequency of the void regions before, in, and

after the helical test section. This would imply that the void frequency measurement

is inappropriate for identifying flow regimes in helical geometries.

Kasturi & Stepanek (1972) only used a single coil, and focused on the effects of

fluid properties and flow rate on the pressure drop and void fraction. The results of

this study showed the data to be well represented by the turbulent liquid-turbulent

gas L-M correlation, with an average deviation of +30% when the X parameter had
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a value greater than unity. Kasturi & Stepanek (1972) additionally propose a new

pressure loss model. Their analysis is similar to that of Taitel & Dukler (1976).

In fact, there are actually few discrepancies between the two. His model does not

compare well to the available helical data sets, and could be a result of his formulation

effectively being for a linear pipe. Their assumptions are:

• No cross-stream pressure gradient

• Interfacial and wall shear stresses are functions of slip friction factors,

• Negligible inertia forces

• Steady flow that yields consistent time averaged properties.

More recently, Rangacharyulu et al. (1984) recommended another model for pres-

sure drop based on another modification of the L-M approach. Rangacharyulu com-

pared his results with his, Boyce’s (1969), and Rippels (1969) work (about 400 data

points). These comparisons showed that his modified model produced good results.

In the last couple of pages of his paper he sums up his recommended important helical

flow parameters for future analyses. On page 42 of his paper:

. . . two-phase flow through pipes has been shown to be a function of the
flow pattern and the superficial liquid Reynolds number Rel . . . for flow
through coils, the additional pressure drop should also include other ef-
fects, namely, the effect of secondary flow phenomena, the effect of the
compressibility of the gas phase, the effect of interfacial instability between
the gas and the liquid, and the geometry effect of the helical coils.

Hart et al. (1987) contributed friction factors for single-phase flow through curved

tubes, and pressure gradient data for two-phase flow through a helical tube. Hart

also proposed models for prediction of film inversion and liquid hold-up. He looked

at the pressure imbalance induced by the centrifugel force, and a formulation of these

forces as a function of the velocity. This is the same approach Banerjee (1967) used

to explain the phenomenon. He extended the analysis and steps through a method

for determining the coil friction factor. The coil friction factor is the key for the

analysis, because the formulation for a straight pipe is used with the friction factor

replaced by the coil friction factor. The coil friction factor is dependent on the

Dean number, which in turn is a function of the Reynolds number. The coil friction

factor is formulated so that it asymptotically approaches the linear flow factor as the
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curvature decreases. This is better than previous models of White (1929) or Mishra

(1979), who were not asymptotically correct. Given the accuracy of the White and

Mishra models, it is important to note that the model by Hart (1987) matches these.

Hart notes a 30% maximum increase in friction factor from single to two-phase flow

for the helical system. This is in contrast with contemporary work, such as Hamersma

(1987). Hamersma (1987) observed increases in friction factors of up to 70 percent

over straight pipes.

Ju et. al. (2001, 2004) of the Institute of Nuclear Energy Technology at Tsinghua

University, has published the most current work on helical two-phase flow. The Bei-

jing group looked into the hydraulic performance of helical flows specific to the heat

exchanger design of the High Temperature Reactor (HTR-10), located at the univer-

sity. This heat exchanger design consists of 30 identical helical coils that experience

single-phase liquid through single-phase gas flows. The studies completed included

theoretical prediction of the pressure gradients and heat transfer coefficients, and

values for the critical Reynolds number, along with experimental verification of the

predictions. Analytical portions use the form of Dean number originally formed by

White (1929) and recommended by Berger et. al. (1983), shown in Eq. 2.3. Ju et. al.

compared their data to calculated single-phase friction factors for the formulas of Ito

(1959) and Mori & Nakayama (1967). The results showed that Mori & Nakayama’s

formula compares better (within 20 %). For their coil to tube ratio of 6.22, the data

was well represented by Eqs. 2.13 for laminar flows, and by Eqs. 2.14 for turbulent

flows. Notice that this ratio is less than the assumed minimum value of 7 by Akagawa

et. al. (1971).

fhelix

fstraight

= 1 for k < 11.6 (2.13a)

fhelix

fstraight

= 1 + 0.015Re0.75
(r0
a

)0.4

for k ≥ 11.6 Re < Recrit (2.13b)

fstraight =
64

Re
(2.13c)

fhelix

fstraight

= 1 + 0.11Re0.23
(r0
a

)0.14

(2.14a)

fstraight =
0.316

Re0.25 for smooth pipe (2.14b)
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fstraight = 0.1

(
1.46δ

d0

+
100

Re

)0.25

when δ = pipe roughness (2.14c)

The data of Ju et. al. displayed the expected trends of increases in pressure loss,

heat transfer, and critical Reynolds number, over the linear geometry. An interesting

observation was made when comparing the heat flux at the inside, outside, and top of

the coil in the two-phase flow regions. It was noted that the energy transfered at the

top and inside of the coil was greater than at the outside, and that the differences are

up to a factor of five (∼ 2000 [W/m2K] along the outside of the bend vs. ∼ 10000

[W/m2K] along the top surface). This exposes the strong dependence of transport

processes on the flow regime, and the importance of accurate prediction of the regimes

in helical flow designs.

2.3.2 Flow Regime Studies

Of the 7 authors listed in Table 2.2 as publishing helical flow regime data, only

five sets of data are found usable. These five publications provide approximately

200 data points that span all flow regimes expected, and one transition line for the

stratified to annular transition. The five authors that published consistent data are:

Boyce (1969), Whalley (1980), Saxena (1990), Yan (1992), and Ishikawa (2003). Each

of these author’s published works is discussed in more detail, and the data extracted

from the works are shown in Figure 2.6.

The studies turned up in the literature search, but whose data are not consistent or

used in this dissertation, are explained. These are the works of Banerjee (1967/1969)

and that of Mujawar & Rao (1981). Banerjee et al. (1967/1969) was one of the first

studies of the effects of coil diameter and pitch on helical two-phase flow patterns. His

1967 study specifically investigated the phenomena of film inversion. This phenomena

is the situation where the liquid and gas phases flow opposite to intuition, with the

denser phase traveling along the inside of the helix bend. This situation is simply

explained as follows: under the condition where the slip velocity is great enough

that the centrifugal force on the gas exceeds that of the liquid, in spite of the much

greater liquid density, the force imbalance inverts their relative position. It is simple

to show this occurs for low pressure air-water systems when the air velocity is 31

times that of the liquid. In 1969, Banerjee extended his contributions to helical flow

studies by making pressure drop, liquid hold-up, and flow pattern observations for
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air-water cocurrent flow in several different helices. Banerjee observed all the regimes

normally found in an inclined linear flow, and compared his observations to the regime

map developed by Baker (1954) for linear systems. The agreement between Banerjee

(1969), for the data range, and Baker (1954) is remarkably good. However, significant

discrepancies exist between Banerjee’s data and other helical flow regime observations.

As a result, Baker’s flow regime map is for linear systems, and Banerjee’s data are

not utilized here for model development purposes.

Mujawar & Rao (1981) extended the Lockhart & Martinelli (1949) method to

Non-Newtonian helical flows. This publication also includes flow regime observations

for air-water flow, however the observations are only for the helix with the curvature

ratio of 0.0695. The results showed that the slug regime was more pronounced in the

helical geometry, reducing the presence of the stratified regime to a narrower window

of gas flow rates. The annular flow regime was also shown to include a dispersed

mist that is not seen in horizontal systems. Mujawar & Rao (1981) showed that the

Lockhart & Martinelli (1949) model agrees well with hold-up data for the Newtonian

liquid, but was 20–40 % high for the Non-Newtonian liquids. Mujawar & Rao made

the same conclusion as Banerjee (1969), that the flow regimes for helices are essentially

similar to horizontal two-phase flow. This observation showed up in his pressure loss

calculations, hold up, and friction factor correlation. Mujawar & Rao’s (1981) study

is mainly for non-Newtonian fluids, and their annular data set falls completely inside

the intermittent data sets of all the other authors. This inconsistency with the other

helical data sets, and that the study is basically for non-Newtonian flows, is why their

data were not used in this dissertation.

Boyce et al. (1969) noted early on, the effects of secondary flow on two-phase

pressure loss in helical coils. He provided a clear graphical representation of the flow

regimes observed in the helical system, and proposed a flow regime map for the design

of helical coil steam generators in nuclear power systems, operating at 2700 [psia]. The

extension method is the same as that originally introduced by Baker (1954), where

Baker attempted to extend linear horizontal air-water data of atmospheric pressure

to oil-gas systems, by using correction factors which are functions of fluid properties.

Since Baker’s analysis is for a linear horizontal system and Boyce is upward helical,

Boyce considered an additional correction factor for curvature that multiplies the

friction factor of the linear system. This approach of Baker has been shown to be

only approximately correct for the linear system (Boyce 1969), so the accuracy of the
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extension by Boyce is somewhat in question. Boyce actually refered to the extension

as “highly speculative”. Comparison of Boyce (1969) with Baker (1954) shows strong

disagreement in flow regime transitions, in contrast to the observations of Banerjee

(1969). Boyce (1969) only presented data points of flow regime observations for a 5

[ft] diameter coil.

Whalley (1980) experimentally investigated helical cocurrent air-water flow in the

stratified and annular regimes. His study focussed on the stratified and annular regime

film thickness distribution, and identification of the stratified to annular transition.

The results showed that for most cases studied the liquid film flow rate was greatest

on the inside of the bend, and that liquid drop entrainment was minimized because of

centrifugal force de-entrainment of liquid drops on the outside of the bend. Whalley

observed the same phenomenon of film inversion that Banerjee et al. noted in 1967,

and used the same explanation of the phenomenon. For the stratified and annular

regimes, Whalley (1981) made the following observations:

• A comparatively small fraction of the liquid flows is entrained as drops. Whalley’s

data shows a maximum of 30 percent of the flow as entrained, with increasing

entrainment related to increasing liquid and gas flow rates (more so with liquid

flow rate increases.)

• The location of the liquid film, and the maximum film flow rate, is positioned on

the inside of the curve for a matched high gas / low liquid flow, and on the outside

for a matched low gas / high liquid flow. The former occurs most often for the flow

rates considered in this study.

• Deposition can introduce a secondary peak flow rate at the outside edge when a

matched high gas / high liquid flow is present. In this case, there is a pronounced

amount of liquid being entrained and deposited on the outside surface.

When Whalley compares his pressure gradients with previous works, he found

contradiction and poor comparison. Whalley pointed out that the models he con-

sidered did not take into account flow in directions other than axial, and concluded

that the lack of consideration of the secondary flow influence was the reason for the

poor comparisons. Whalley’s (1981) data used in this dissertation is the observed

stratified to annular transition.

Saxena et. al. (1990) completed an experimental investigation of the pressure
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drop, hold-up, and flow regime observations in 3 helices of constant tube diameter,

and varying coil diameter. The results showed that the most common regime in

upward flow was slug, and stratified for downward flow. The slug pattern increasingly

dominated a greater portion of the upflow mapped region with decreasing coil to tube

diameter ratio. Saxena noted NO slug flow in the cocurrent downward flow case, even

though the liquid hold-up for the downward case was greater than the upward case.

He compared this to observations made by Spedding et al. (1981), and finds good

agreement. This characteristic of downward helical flow is the reason for its use in

the design of slug dissipaters of oil wells, see Mateo (2003). From these results, he

concluded that tube inclination, and not the curvature, is the dominant parameter

value that affects flow pattern presence in helical geometries. Another interesting

observation made in this study, is that the curvature also showed very little influence

on frictional pressure loss for coil to tube ratios greater than 51.6. Again he compares

with a previous study (Rippel et al. 1966), and finds agreement. Saxena (1990) only

provides flow regime observation data for the coil to tube diameter ratio of 11.

Yan (1992) investigated the two-phase flow of both air-water and R113 vapor-

liquid flows, in helical coils and spiral coils. The difference between spirals and helices

being that the helix has a constant coil diameter, and a spiral coil has a variable radius

of curvature. The vapor phase in the R113 tests was generated by heating all but

the sight glass section of the facility. In keeping with the other experiments of this

section and the goal of this dissertation of modeling an adiabatic situation, only

Yan’s air-water test data is used. The flow regime observations were decided on by

reviewing high-speed camera film of the flow. Yan’s data showed similar results for

the circular and rectangular cross-sections, when the hydraulic diameters were the

same. Yan’s data is in agreement with the other helical studies, in that he notes the

absence (or strong reduction) of the stratified flow regime in the helical up-flow case,

being replaced by the slug flow pattern. This study is the first found to apply the

helical map of Uddin (1988), which was one of only two known to exist for the helical

flow case. Comparison to Uddin’s map showed poor agreement.

Ishikawa et al. (2003) published the most current two-phase helical flow regime

data found. This study reported visualizations of helical two-phase flow of large Dean

number. The results showed an increase in the range of the intermittent and bubbly

regimes and an expiration of the stratified regime, in comparison to the horizontal

case. They explain the increase seen in the bubbly regime as being due to the sec-
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ondary flow prevention of coalescence. Ishikawa et al. noted that the secondary flow

may also exist in the intermittent regimes, but there are no data to support the claim.

The two-phase linear study of Spedding et. al. (1981) supports this statement, and

reportes recirculation flow patterns within slugs of liquid of the intermittent regime.

The existence and character of the secondary flow in the bubbly regime have been

numerically studied by Oiwa et al. (2001), which also supported the statements of

Ishikawa et. al. about bubbly flow secondary patterns. In this numerical study, Oiwa

et. al. artificially turned off the gravity force and found that the introduction of

air, to generate a two-phase bubbly regime, had negligible effect on the symmetric

secondary flow. He concluded that the two-phase bubbly regime was affected simi-

larly to a single-phase flow by the centrifugally induced secondary flow. These studies

suggest that the secondaryflow is present in the helical geometry, and that it affects

the force balances that determine the transition between different patterns. Ishikawa

et. al. (2003) published the data on helical flow regimes for a helix with a radius of

curvature of 0.540 [m].

2.4 Analytical Studies of Helical Two-Phase Flow

Only two studies were found to report analytical work on two-phase helical flow.

These are the contributions of Uddin (1988) and Keshock (1998). Uddin approached

the generation of a helical flow regime map by first determining the correct correlat-

ing parameters to represent the system. These parameters are gotten from Uddin’s

formulation of the helical system, which he based on the boundary layer analysis of

Mori & Nakayama (1965). It is noted that the solution of the secondary flow in-

tensity (i.e. non-dimensional core velocity) provides measurement of the additional

shear introduced from this flow, and allows the desired parameters to be identified.

This solution is said to be obtained by “special numerical techniques”, though it

exactly matches the first order approximation to the series solution given in Mori

& Nakayama’s paper. No additional information of the analysis is presented in this

paper, rather it is implied that the specifics are to be found in an earlier internal

university progress report. Uddin considers this analysis, and chooses the gas phase

dimensionless acceleration and modified Lockhart & Martinelli factor as appropriate

correlating parameters, and applied them to the flow pattern observations from the

above-mentioned internal report. The resulting map expectantly compares very well
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to the internal report’s data, and also to some data Uddin extracted from the Boyce

et. al. (1969) paper. An important feature of the Uddin (1988) map is its inconsis-

tency with the expanded slug presence characteristic of upward helical flow. The map

does not predict any slug flow regime for upward helical flow, even though it has been

shown in all studies that the slug regime is actually quite prevalent! Notwithstanding

of this, and that the transition boundaries are set by correlation of a relatively small

quantity of data (28 data points), it represents the first attempt at improving flow

maps for helical flow by consideration of the underlying physics. The proposed map

of Uddin (1988) is shown in Fig. 2.7.
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Figure 2.7: Helical two-phase flow regime map by Uddin 1988.

The second attempt at developing an analytically based helical flow regime map

was not intentionally undertaken. This is to say, the work of Keshock (1998) was di-

rected at the measurement of two-phase flow under microgravity, and the experiment

length was constrained to fit into a KC-135 airplane. Keshock noted that a length

greater than that allowed by this constraint was required for accurate pressure drop

measurements, so he simply by wrapping the duct into a coil. The helices of this

study would be considered loosely coiled, with coil to tube diameter ratios between

27–40, and in fact “were designed to minimize complexities induced by curvature . . . ,
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so that the flows would not differ substantially from straight-channel flows.” Keshock

accounts for the necessary curvature by introducing the idea of an effective gravity,

which accounts for the centrifugal acceleration, and is also effectively used in a later

study by Matteo (2003). The form of effective gravity used by Keshock (1998) is

given in Eq. 2.15, where wk represents is the axial velocity for phase k. This effective

gravity is substituted into the Froude number, and a modified microgravity Taitel

& Dukler style transition map is proposed for the annular to slug transition. This

method showed good results for the small data set of his study (16 data points),

and produces good agreement when Matteo (2003) applied the same idea for de-

termining slug dissipation rates. It should be noted that both Matteo (2003) and

Keshock (1998) examining the downward flow situation, so the mapping technique is

very preliminary and represents, as with Uddin (1988), a step towards identifying the

underlying mechanics that differentiate curved flow regimes from linear.

geff =

√
(g · cos)2 + w2

krc (2.15)

2.5 Successful Studies of Linear Two-Phase Flow Regime Prediction

This section provides a look at the most successful models for predicting two-phase

flow regime transitions in the horizontal/inclined linear geometry. The importance of

linear work to the present study stems from the similarities between the helical and

linear two-phase flow, where the difference is simply two body forces. In line with

all engineering models, linear two-phase flow transition modeling consists of exper-

imental and analytical formulations. The study of linear two-phase flow is covered

by considering the often referenced and utilized studies of Mandhane et. al. (1974),

Taitel & Dukler (1976), Barnea (1987), and the quite recent study on diabatic hor-

izontal flow regime transitions by Petalas & Aziz (2000). These studies provide a

clear evolution of the methods that allow the prediction of flow structure in near

horizontal linear geometries, and much insight into an appropriate method for the

helical geometry.

2.5.1 Experimental Linear Two-Phase Flow Regime Transition Map-
ping

The earliest experimental works of linear two-phase flow transition mapping were

completed in the early 1940’s. These early models were later optimized as more data
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became available to the reasearchers. Possibly the most referenced works are those

of Baker (1954) and Mandhane et. al. (1974). Baker was possibly the first accepted

flow regime map, and was based on air-water flow data of previous authors. Baker’s

map is shown in Figure 2.8. Mandhane et. al. (1974) utilized the University of Cal-

ifornia Multiphase Pipe Flow Data Bank of 5,935 flow regime observations to assess

the accuracy of some regime maps available in 1974. The study identified shortcom-

ings in the empirical models’ ability to predict the flow patterns of the database,

where the models have average accuracies of 69% and 55%, for air-water data and

all data respectively. The deficiency was that the individual models were accurate

in different specific areas, but lacked an overall application. Mandhane addressed

this deficiency by effectively averaging the three maps, and adding correction factors

for fluid properties. With this, the accuracy of the predictions for the University of

California database were increased to 81% and 68%, respectively. Mandhane noted

two things: that the use of superficial velocities included the pipe diameter effects

well, and that the effects of the property correction was not very strong, and could

usually be neglected. The map of Mandhane et. al. (1974) represented an accurate

empirical map, and is shown in Figure 2.9.
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cocurrent flow.
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2.5.2 Analytical Linear Two-Phase Flow Regime Transition Mapping

Mechanistic modeling of horizontal linear flow regime transitions was first un-

dertaken successfully by Taitel & Dukler (1976). The basis of their analysis is the

assumption that all flow regimes can develop from the stratified regime, regardless of

whether or not the stratified regime actually exists in the flow. Following this assump-

tion, an one-dimensional momentum balance is written for each component, the axial

pressure gradients equated, and the equation non-dimensionalized. This produces a

single equation for the equilibrium stratified interface height, based on calculable val-

ues of the flow. The equilibrium height is defined as the depth of liquid if the flow is

constrained to a stratified condition, and represents a calculation of the system void

fraction. Next, the mechanisms of transition from the equilibrium stratified regime

are formulated, and mapped as transition lines with respect to the non-dimensional

parameters of the momentum equation. To determine the flow regime present, the

parameters are calculated for the system and checked against the transition locations

of the general map.

The schematic of the system analyzed by Taitel & Dukler is shown in Figure 2.10,

the general map is depicted in Figure 2.11, and a comparison of the analytic map
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of Taitel & Dukler (1976), to the empirical map of Mandhane (1974) is shown in

Figure 2.12. The momentum equation and the non-dimensional parameters for the

general map (Figure 2.11) are given in Eqs. 2.16 to 2.21. The transition mechanisms

are given in Eqs. 2.22 to 2.26.
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Transition from stratified to either intermittent or annular regimes is defined by

the ability of a finite amplitude wave on the surface of the liquid to grow. In the

case where sufficient liquid is present to form a competent bridge over the pipe cross-

section, an intermittent flow will be established, i.e. hl/D ≥ 0.5. If sufficient liquid is

not present, than the liquid cannot span the core of the flow and will be swept along

the sides of the duct to form annular flow, i.e. hl/D < 0.5. Surface wave growth is

governed by the mechanism of the Kelvin-Helmholtz instability, i.e. the balance of

gravity and inertia forces (Eq. 2.22). Application of this mechanism to the circular
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pipe with inclination results in the criterion for this transition (Eq. 2.23).

ug > (1− h∗l )

(
g (ρl − ρg)Ag cosα

ρg
dAl
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)1/2

(2.22)

1 ≥ Fr2

 1

(1− h∗l )
2
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where

Fr =

(
ρg

(ρl − ρg)

)1/2
jg

(Dg cosα)1/2
(2.24)

The transition between stratified and stratified wavy is governed by the balance

of pressure and shear forces with those of viscous dissipation, Eq. 2.25.

K = Fr2Rejl
=
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ρgj

2
gjl

(ρl − ρg) g cosανl

)1/2

≥ 2

(0.01u∗l )
1/2 u∗g

(2.25)

Transition between intermittent and dispersed bubble regimes is governed by the

balance of forces due to turbulent fluctuations in the liquid and the buoyancy force of

the gas phase bubbles, Eq. 2.26. When the former overcomes the latter, the bubbles

are pulled into the liquid phase stream.

T 2 =
| (dP/dx)jl

|
(ρl − ρg) g cosα

≥
8A∗g

S∗i (u∗l )
2 (u∗lD

∗
l )
−n (2.26)

2.5.3 Extension of the Analytical Linear Two-Phase Flow Regime Tran-
sition Map

The empirical model covered in section 2.5.1 shows the Mandhane map as having

> 80% accuracy in predicting the regimes in an air-water system. The comparison in

Figure 2.12 validates the analytical model of Taitel & Dukler (1976) for the data used

for Mandhane’s (1974) map, and shows the mechanisms considered in the study as

appropriate for a large set of experimental observations. Based on the long history of

success that this analytical model has enjoyed, many optimizations and modifications

have been completed (Barnea 1987, Petalas & Aziz 1998/2000, Wu 1996, Thome 2003,

Chen 2001, Zürcher 2002). Precedence for flow regime modeling is taken from the the

most popular linear work, and included in the helical model development of section 3.
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However, a complete review of the linear mapping methods is not the purpose of this

dissertation and only a couple of more recent studies are covered. To this end, the

linear mapping techniques of Barnea (1987) and Petelas & Aziz (2000) are taken as

appropriate examples of advancement to the original work of Taitel & Dukler (1976).

Barnea and Petalas & Aziz focus on transition criteria that is valid for all incli-

nation angles. For the stratified transition to intermittent flow, both use the Kelvin-

Helmholtz stability criteria of the original work (Eq. 2.22). For the sub-regime of

stratified-wavy, the authors apply an additional requirement to the shear vs. viscous

dissipation of Eq. 2.25. This requirement considers the case of downward flow and the

Froude number that represents sufficient dominance of inertia to induce waves. The

range of Froude numbers that depict this scenario is 0.5 – 2.2 (Petalas & Aziz 2000),

with Barnea and Petalas & Aziz recommending 1.5 and 1.4, respectively. Barnea

checks this transition criteria by comparison with data, for downward angles of ≥ -1◦,

and finds good agreement.

Fr =
jl√
hlg

=

{
1.5 : Barnea (1987)
1.4 : Petalas & Aziz (2000)

(2.27)

Both Barnea and Petalas & Aziz push this scenario further by considering an even

greater downward inclination, at which point the stratified wavy regime transitions

into annular at reduced gas flow rates, as compared to the horizontal and small

inclinations. When the inclination has a strong downward angle, the liquid film falls

down the duct with a high liquid velocity and small liquid height. The gravity effects

begin to shear droplets from the wavy interface, entrain them into the gas core, and

deposit them onto the wall. This produces an annular regime similar to the case

where the droplet removal was from gas shear alone. Barnea checks this transition

criteria by comparison with data, for downward angles of ≥ -80◦, and finds good

agreement. The condition is:

jl ≥

√
2gr0 (1− h∗l ) cosα

fl

(2.28)

The mechanism which separates the annular and intermittent flow regime is similar

to the original of Taitel & Dukler (1976), and is considered to exist when sufficient

liquid is present to form a competent liquid bridge across the pipe. Taitel & Dukler

effectively assumed a sinusoidal development of a wave on the interface, as shown
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in Fig. 2.13. If the wave formation is sinusoidal, than an equilibrium liquid height

corresponding to (1− h∗l ) ≤ 0.5 would have the crest of the wave reaching the top of

the pipe before or at the same time as the trough reaching the bottom of the pipe,

hence forming a competent bridge. This proved a lucky guess for the intermittent–

annular transition, since the wavy interface is rarely a symmetric sine wave.

Equilibrium Liquid Height

Figure 2.13: Taitel & Dukler assumed wave shape for horizontal gas/liquid cocurrent
flow.

The modification by Barnea and Petalas & Aziz is more realistic, and shows where

Taitel & Dukler’s guess found its lucky value of 0.5. These newer models assume

that the transition from intermittent to annular regime occurs when the void fraction

within a slug body is sufficient that the slug cannot maintain its structure, and breaks

up. This condition is met when the maximum volumetric bubble packing fraction

inside the slug is reached, with an internal slug void fraction of 0.52. This corresponds

to a time averaged equilibrium liquid height around 0.5, and shows the coincidence

that assisted Taitel & Dukler. The distinction between models lies in the correlation or

model used in calculating the liquid hold up or void fraction. This condition is similar

to when bubble migration fails to cause agglomeration, but is specific to vertical and

off-vertical geometries with relatively large cross-sections. Basically bubbles in a tank,

raising independent of the wall effects.

2.6 Helical Coordinate System Formulation

The previous sections have shown most studies prefer to make the simplifying as-

sumption of toroidal geometry. This completely neglects the effects of torsion and

is obviously not an accurate description of a helix, but authors take this approach

because the coordinates are orthogonal, and normal education preconditions us for

these systems. Moving to a natural coordinate system of a helix will automatically

include the relations between the curved geometry and the changes to the formal
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equations. However, they are non-orthogonal, a bit tough to handle, and require ad-

ditional consideration as to the physical components and how they are used. Germano

(1988) tried to reconcile the situation by developing a set of governing equations that

have the convenience of orthogonality, which was the original reason for using the

torus, that is also valid for a non-zero pitch. However, at this point its applicability

is contended and it carries the requirement that the curvature and torsion be small

(κ < 1 & τ < 1). The approaches used for the analysis of the helical system with non-

negligible torsion are grouped into the orthogonal approaches similar to Germano’s,

and the non-orthogonal approaches similar to Wang (1981). However, Zabielski &

Mestel (1997) note that helical flow cannot be decomposed into components which

are orthogonal, so any (including Germanos) orthogonal system is not appropriate.

This is in agreement with the findings of the other somewhat contemporary work of

Tuttle (1990). The recommendations of Zabielski & Mestel and Tuttle are accepted

for this dissertation’s development, and the equations will be developed in the more

general non-orthogonal forms. However, for completeness, the two methods are con-

trasted. All other works discovered in the literature review do not vary far from the

works of these authors, and are simply listed in the bibliography and not covered in

this section.

So what is the actual difference between an orthogonal and non-orthogonal coor-

dinate system, and why is the former preferred? Simply put, the orthogonal basis

consists of three mutually orthogonal base coordinate vectors, with intuitively defined

physical meanings of the components. A non-orthogonal system does not have these

qualities, and its use requires a distinction be made between the covariant and con-

travariant forms of the basis vectors, introduction of complicated forms for derivatives

and metric tensors, and their component’s physical meaning is not as simple as the

orthogonal definitions. The coordinate system of Tung & Laurence (1975) is a good

example of a non-orthogonal system formed by transformation from the orthogonal

polar cylindrical system (shown in Fig. 2.14). If any of the terminology of this section

is not fully understood, the reader is directed to Appendix A for a short coverage of

some background material important to this section.
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Figure 2.14: Helical Coordinate formulation of Tung (1975). Includes the polar cylin-
drical frame used for the transformations.

2.6.1 Orthogonal Helical Coordinate Systems

The works of Germano (1982, 1988) and Kao (1987) represent the main orthogonal

methods used in helical flow modeling. In Germano’s first paper (1982), he developed

a locally accurate orthogonal coordinate system that follows a spatial curve (i.e. helix

centerline), based on the Frenet triad. He concluded that the torsion is of second order

and the curvature is of first order (in their effects on the secondary flow velocities.)

His formulation is restricted to small values of curvature and torsion, and did not

consider the helix angle effect on gravity’s influence with respect to the obliqueness

between the plane perpendicular to the axial flow (the plane in which the secondary

flow exists.) Germano discusses the coordinate system used by Wang (1981) and how

Wang’s axial velocity component is not always normal to the perpendicular plane

of the secondary flow, and how in his system it is defined as perpendicular. It is

uncertain which system this statement is implying as the more physical; especially

when considering that the streamwise velocity is indeed not perpendicular to the

cross-stream plane. This idea brings to the surface the importance of considering

the velocity as not being aligned with the base, and how this allows contribution
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to made to the secondary flow by axial flow and potentially introduce error in the

determination of these quantities.

Germano (1982, 1988) considers a fully developed incompressible single-phase flow

through a helix. Since the system is assumed to be fully developed, the velocities

are not a function of position along the centerline of the duct, and the problem

is essentially a 2-dimensional one. This is the concept of symmetry that will be

developed fuller in the helical coordinate formulation in Sec. 3. The coordinate system

for this development is defined in Fig. 2.15. In the figure, x is a position vector

describing locations in the cross-stream plane, R(s) a vector describing the location

of the cross-stream plane origin along the duct centerline, b is the binormal base

vector, n is the normal base vector, t is the tangent base vector, s is the parameter

along the centerline, and P is the point located by x.
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Figure 2.15: Helical Coordinates used by Germano (1982, 1988). Note that the
azimuthal angle is measured from a position that is rotated away from the normal n
base, and a function of the.

In order to define the new helical coordinate system, its components must be

referenced to a known system. Germano chooses to make the transformation from

the Cartesian system, whose origin is the point O, and whose axes are the lines x, y,

and z, of Fig. 2.15. Using the Cartesian system as the originator, the position vector

x can be constructed with the Cartesian position vector R(s) and the components

of the normal and binormal bases that place the point P in the cross-plane. Since

the position vector R(s), the normal base n, and the binormal base bB all lie in

the same plane, and the plane is a function only of the symmetry parameter s, the

construction is simply a linear combination of these components (Eq. 2.29). It is the

offset from the normal base by an arc length dependent value that provides for an

orthogonal system in Germano’s approach. Germano determines this value of offset
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rotation φ(s), by integrating the torsion from an initial rotation from the normal base

of φ0 = π/2 (Eq. 2.30), and effectively integrates the torsion contribution into this

φ(s) term. This integration results in the orthogonal metric given in Eq. 2.31, and a

set of conservation equations found in the publication.

x = R(s) + r cos (θ + φ(s) + φ0)n(s) + r sin (θ + φ(s) + φ0)b(s) (2.29)

φ(s) = −
∫ s

s0

τ(s̄)ds̄ (2.30)

dx̄ · dx̄ = (1 + κr sin (θ + φ))2 (ds)2 + (dr)2 + r2 (dθ)2 (2.31)

Kao (1987) looked at the effect of torsion for steady helical pipe flow. His analysis

took two routes: a series solution representing the analytical analysis and a numerical

solution; both of which are based on Germano’s approach. The series expansion

solution is not applicable for larger curvature and/or larger Dean numbers (De >

96), so the numerical analysis was completed to extend the work to more flows. Kao

concludes that the effect of helicity (torsion) is not negligible for ratios of curvature

to torsion around unity or greater. This does not seem to have an appreciable effect

on the pressure gradient, but it can greatly distort the secondary flow pattern and

presumably the regime transitions: The results obtained in these cases for both small

and moderately high Dean numbers seem to show that a small torsion may cause a

significant change in the secondary flow pattern. The series solution results show that

the effect of helicity is to render the flow asymmetric, as compared to the symmetric

solutions for zero pitch.

Kao finds, for similar Dean numbers, that the numerical and analytical solutions

show good qualitative agreement. Kao is also in agreement with previous authors

results that the flow resistance in a helical pipe is less than in a curved pipe with

zero pitch. This shows the effect of pitch is to reduce the resistance to flow. Since

curvature increases resistance and helicity reduces it, the effects can cancel each other

out and give false understanding of the flow in helical pipes, especially when just

considering the pressure gradients as many studies have done. Kao shows for Dean

numbers between 2000 and 5000 that the flow structure is definitely changed with

helicity. The upper vortex being diminished while lower vortex structure becomes

dominant. These effects are found to be a function of the ratio of torsion to curvature,

which is simply the ratio of the pitch to the coil radius, more than simply on either

parameter alone. This set of observations are generally in agreement with previous
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works. However, the results of Kao (1987) and Germano (1982) are not in total

agreement, even though they use the same coordinate system. The difference is in

Kao’s finding an effect on the secondary flow of the power of 1.5, instead of the

second order effect of Germano. Kao offers the explanation that the helical systems

requirement of a non-orthogonal coordinate system for fundamental formulation of the

governing equations is the major impediment to advances in the study of this system,

and implies that the orthogonality of these equations is not completely realistic.

2.6.2 Non-Orthogonal Helical Coordinate Systems

Non-orthogonal helical flow modeling can be summed up by the works of Wang

(1981) and Tuttle (1990). The first author, Wang (1981), introduced a non-orthogonal

coordinate system in a fashion very similar to that of Germano (1982); and in fact

is the starting point for Germano’s formulation. Wang uses a similar transforma-

tion from the Cartesian system, and also similarly defines the position within the

helical pipe cross-stream plane as the linear combination of helix centerline position

vector and local two-dimensional cross-stream vectors. This approach is detailed in

Sec. 2.6.1, so it is not repeated here. Wang also uses the Frenet triad and accompany-

ing definitions of torsion and curvature. The system differs from Germano’s approach

in that the θ value is measured from the normal vector n, and not advanced as a func-

tion of the torsion. Wang’s system is shown in Fig. 2.16. Not using an advancing θ

coordinate results in the cross-stream position defined by Eq. 2.32, and the metric of

Eq. 2.33.
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Figure 2.16: Helical Coordinates used by Wang (1981). Note that the azimuthal angle
is measured from the normal n base.
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x = R(s) + r cos θn(s) + r sin θb(s) (2.32)

dx̄ · dx̄ =
(
(1− κr cos θ)2 + τ 2r2

)
(ds)2 + (dr)2 + r2 (dθ)2 + 2τr2dsdθ (2.33)

The last term on the right hand side of Eq. 2.33 is where the non-orthogonality

of Wang’s approach first shows up. If one notes that the metric is given by ds2 =

gijdx
idxj, using the covariant metric tensor of gij, then the components of the covari-

ant metric tensor are simply the coefficients in Eq. 2.33. Using the definitions given

in Appendix-A, the contravariant metric tensors and non-zero Christoffel symbols are

determined to be those of Eq. 2.34 and Eq. 2.35, respectively. With these objects de-

fined, Wang presents the tensorial form of the Navier-Stokes & conservation of mass

equations as Eq. 2.36 and Eq. 2.37, respectively. The variables G and M are given

by Eqs. 2.38, and the covariant derivative (vi
,jk) is given in Eq. 2.39.

g11 = 1 g22 =

(
(1− κr cos θ)2 + τ 2r2

)
r2 (1− κr cos θ)2

g13 = 0 g23 =
−τ

(1− κr cos θ)2 (2.34)

g12 = 0 g33 =
1

(1− κr cos θ)2

Γ1
22 = −r Γ2

13 =
τ

M

(
G

r
− 1

2

∂G

∂r

)

Γ1
23 = −τr Γ3

13 = −rτ
2

M
+

1

2M

∂G

∂r

Γ1
33 = −1

2

∂G

∂r
Γ3

23 =
1

2M

∂G

∂θ
(2.35)
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r
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r2M
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∂vi

∂t
+ vj

(
∂vi

∂xj
+ Γi

αjv
α

)
= −g

ij

ρ

∂p

∂xj
+ νgkjvi

,jk (2.36)

∂vi

∂xi
+ Γi

αiv
α = 0 (2.37)

where M ≡ (1− κr cos θ)2 and G ≡ (1− κr cos θ)2 + τ 2r2 (2.38)

vi
,jk =

∂2vi

∂xk∂xj
+ Γi

jα

∂vα

∂xk
+ Γi

αk

∂vα

∂xj
−Γα

jk

∂vi

∂xα
+

(
∂Γi

jα

∂xk
+ Γi

βkΓ
β
jα − Γβ

jkΓ
i
βα

)
vα (2.39)

Here one starts to feel the complexity of the non-orthogonal methods, and under-

stands why they are usually avoided! Wang takes the physical velocities in the (r, θ, s)

directions and relates them to the tensorial velocity components; then he develops and

solves the equations for small curvature and torsion. He concludes that the effects of

curvature and torsion are most pronounced in low Reynolds number flows (Re ≈ 1),

and that they may dominate the secondary flow pattern while destroying the Dean

flow. Wang (1981) concludes that torsion is not negligible when the Reynolds number

is less than 20, and can disrupt the dual rotating pattern to the point of setting up

a single vortex. Wang observed that though the torsion can dominate the secondary

flow, it has negligible effect on axial flow rates. Wang’s findings add to the disagree-

ment seen in the previous section between the results of Kao (1987) and Germano

(1982), and are actually not in agreement with either! Kao calculates a torsion effect

on secondary flow to the power of 1.5, Germano calculates a second order effect, and

Wang calculates a first order effect! It seems that the more work that is done on this

topic, the less understanding one gains. This is not actually the case, and it comes

to light that the individual works are not incorrect in their formulation, rather the

differences stem from their interpretation! Particularly, the different interpretations

vary due to the use of tensorial methods and the fact that proper attention is not

paid to the differences between the covariant, contravariant, and physical velocities.

These differences were apparent to those working on the helical flow problem, and

there have been attempts at reconciling the studies by Germano 1988, Kao 1987, and

Tuttle 1990. The analysis and explanation of Tuttle (1990) is presented here; as it

is the latest of the studies, considers all the works externally, and is a particularly

clear presentation of this issue and its resolution. Tuttle constructs two systems: one

orthogonal and similar to the approach of Germano (1982), and one non-orthogonal
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and similar to the approach of Wang (1981). In both cases, he uses a rectilinear

local cross-plane coordinate system instead of a curvilinear one. Tuttle’s orthogonal

system rotates the local axes by an angle which matches that of the torsion, where

the non-orthogonal local system does not rotate with the torsion. He refers to the two

systems as space-centered and body-centered, respectively. The differences of these

systems are illuminated by comparing Fig. 2.15, Fig. 2.16, and Fig. 2.17.
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Figure 2.17: Helical Coordinates used by Tuttle (1990). Note that both the x and y
local coordinates are transformed by the progression of the angle measured from the
normal n base.

It is beyond the scope of this dissertation to present all of Tuttle’s; rather, it is

in the insight provided by this study that its value lies. Tuttle’s observations and

conclusions are that orthogonal local systems :

• have boundary conditions invariant with respect to s.

• allow vector formulation of the continuity and Navier-Stokes equations.

• do not have a natural relationship between the cross-sectional equations and the

local Frenet triad.

• do not allow a stream-function to be defined for the cross-stream velocities.

• do not allow the calculation of a two-dimensional secondary flow, and hence incor-

rectly predict its dependence on torsion.

• does not correctly describe the flow rate calculation along the helix axis, by inte-

gration of the axial velocity.

Tuttle’s observations and conclusions are that non-orthogonal local systems:

• do not have invariant boundary conditions with respect to s.



60

• require tensorial formulation of the continuity and Navier-Stokes equations.

• have a natural relationship between the cross-sectional equations and the local

Frenet triad.

• allow a stream-function to be defined for the cross-stream velocities.

• allow the calculation of the two-dimensional secondary flow as first calculated by

Dean (1927).

• provide the correct axial velocity (i.e. the covariant form); and as a result, provides

the correct calculation of the axial flow rate, by the integration of this velocity over

the cross-section.

Tuttle’s work comprehensively addresses the issue of the effects of torsion and

the natural formulation of the problem for its description. It was shown that the

approaches of Germano (1982, 1988) and Wang (1981) are both correct in their con-

struction, and it is only in their interpretation that the differences arise. Tuttle

recommends that a non-orthogonal system be used.

2.7 Literature Review Summary

The literature review identified the important aspects of helical flow and the previ-

ous works that provide information on how to handle these aspects. The contributions

of the different sections found in the literature review, and what information is gotten

from each section, is summarized as follows.

In the modeling of the helical flow regime transitions, a two-fluid approach is

taken that is similar to that of Taitel & Dukler (1976). This dissertation’s approach

applies the same “mechanisms of transition” that has been validated many times for

the linear system of Taitel & Dukler, and also utilizes similar assumptions about the

flow. The linear approach is detailed in section 2.5. The linear and helical systems

are apparently different and cannot use the same closure formula. This difference

is handled by the works found in the single-phase helical sections (Sections 2.1 and

2.2), which provide validated formula for the friction factors and transition criteria

for helical flows. Shear stress takes the usual form for a Newtonian fluid. Data

for evaluating the model resulting from this dissertation’s work is gotten from the

published works presented in Sec. 2.3. Lastly, the desired coordinate system for

the helical flow equations is shown in Sec. 2.6 to be a non-orthogonal system in
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tensorial form; however, the current effort represents the first attempt of resolving

this system with respect to two-phase flow regime transition, and as a first step, the

effect of torsion is only identified inasmuch as what part of the mathematics lead

to their inclusion. This makes the new model one that includes the stronger of the

two forces present in the helical geometry, and is inline with all of the helical single-

phase study’s conclusion that the curvature effects are of greater import than torsion.

The implementation of this idea in the model is affected by considering a general

development of the conservation equations from the tensorial form, i.e. the same

methods for a model that would eventually include both torsion and curvature, but

only proceeding with the case where the pitch is neglected. By taking this approach,

instead of simply utilizing a toroidal transformation from Cartesian coordinates, the

foundation for a future “all inclusive” model is provided.
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3 HELICAL FLOW MODEL DEVELOPMENT

The methods for the helical flow model are based on the insights provided in the

literature review. Basically, the helical model is an application of the successful linear

methodology to a toroidal coordinate formulation that includes the centrifugal forces.

However, as mentioned in the literature review summary, this is a first attempt at

the two-phase regime transition modeling, so it is simplified by use of the toroidal

assumption. Development evolves by:

• Setting up of an appropriate coordinate system (Sec. 3.1) that provides the

foundation for advancement of the new model to the “next stage” of torsion

inclusion.

• Writing of the conservation equations in the toroidal coordinate frame (Sec. 3.2).

• Develop the one-dimensional area averaged momentum equations. (Sec. 3.3)

• Develop a predictive method for calculating the equilibrium liquid height, which

is accurate in both the linear and curved flows (Sec. 3.4).

• Develop transition mechanisms that describe the physical phenomena which

determine flow regime (Sec. 3.5).

3.1 Coordinate System Development

In order that the governing equations be written for the toroidal system, from

a general vectoral form, it is required that the metric coefficients be determined.

Then the continuity equation and momentum equations can be developed for the

toroidal system, by considering the condition of a negligible pitch. This more general

approach allows firm understanding of the equations, and the emergence of torsion

and curvature terms; and given the universal form of the moving coordinate system,

the current development can be logically extended to the finite pitch condition of a

helix, or one of its derivatives such as the geometry found in a spiral heat exchanger.

In spite of the disagreement found in the results of the reviewed analyses, the

route to the coordinate descriptions are all the same, and can be extended from the

works of Wang (1981), Germano (1982), and Tuttle (1990) to be gotten in four steps:
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1. Designate a fixed global reference frame.

2. Describe an arbitrary smooth curve through space using a moving trihedron.

3. Define the torus centerline as the smooth curve and symmetry direction.

4. Develop the relation between points in the pipe cross-section back to the fixed

frame

The final description of the system is only valuable if the observer can come to

grips with the physical quantities of that system. Given the goal of this dissertation

to predict flow regimes in a two-phase fluid system, where the prevailing regime is

determined by the forces acting on the fluids and their resulting motion, and that the

fluid dynamics of this system is embedded in Euclidian 3-space (E3), the formulation

of the system must ultimately be described in terms of this space. This is the reason

for the first step in the above list, and the motivation for use of the classical Cartesian

system. One achieves this infrastructure by designating a fixed point in space as the

origin of the global system (O), and three mutually orthogonal straight lines that

pass through the origin (Ox, Oy, Oz) as the coordinate directions. Let unit length

vectors originate and coincide with each of these coordinate directions, and define

them as the basis for the global system (ex, ey, ez). The global system is shown in

Fig. 3.1, and additional information of E3, the Cartesian system, and the basis is

given in Appendix A.

O

r(s)

z

s

GLOBAL
COORDINATE

SYSTEM

P

y

x

e
x

e
z

e
y

GENERAL  SPACE  CURVE

Figure 3.1: Description of an arbitrary smooth space curve with a global coordinate
system.

Let the smooth space curve be defined as the parametric function r = r(t), where

the parameter t is simply an independent value upon which the function r maps out
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a set of points in space as t varies over the real line (i.e. the set of real numbers.) For

this parametric representation to be permissible, it is sufficient that the function r(t)

is of class C2 (i.e. second order differentiable with respect to t) and not everywhere

zero valued. It can be helpful in understanding if one visualizes the points in space

defined by r as being constructed sequentially in time, and take the independent

parameter t as time-like.

With respect to the global coordinate system defined above, the function r(t)

produces three scalar components (x(t), y(t), z(t)) that multiply the base vectors of

the system to provide a unique description of the space curve (r(t) = x(t)ex+y(t)ey +

z(t)ez). However, since the curve that is to be considered describes a toroidal pipe

fixed in space, it is necessary that the curve description be a function of one of the

pipe’s parameters. A change of parameters from the general one, to the path position

along the curve, achieves this. This path position is readily defined by taking an

arbitrary curve point as the origin of the parameter related to a value of t = t0, and

measuring the distance along the curve from this origin to the path position related

to a value of t = t1. It can be shown that this change of parameters is permissible,

and the curve distance is defined by the arc length given Eq. 3.1a. The natural

representation of the torus is then determined by taking the integral of the parametric

representation (substitute Eq. 3.1b into Eq. 3.1a), and substituting t = t(s) back into

the parametric representation; this yields Eq. 3.1c.

s(t) =

∫ t1

t0

|dr/dt|dt (3.1a)

r(t) = a cos tex + a sin tey (3.1b)

r(s) = a cos
(s
a

)
ex + a sin

(s
a

)
ey (3.1c)

The local moving coordinate system is quickly constructed using this natural rep-

resentation. The first moving base of the trihedron is defined as the derivative of the

natural representation (Eq. 3.1c), and represents a vector of unit length everywhere

tangent to the curve. The second moving base is found by normalizing the second

derivative of the natural representation, and represents a vector of unit length that is

everywhere parallel to the curvature and orthogonal to the tangent base. The third

base is simply the cross-product of the tangent and normal bases, and, by the char-

acter of the cross-product, is everywhere orthogonal to both the normal and tangent
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bases. The moving trihedron is shown in Fig. 3.2, and the mathematical descrip-

tions are given in Eqs. 3.2. It is interesting that Wang (1981) and Germano (1982)

appear to have their normal base oriented in the wrong direction; since their defi-

nition is exactly the same as the one shown in Eq. 3.2b, the normal should indeed

point in the direction of curvature. This can be checked by comparing Fig. 3.2 with

Fig. 2.16 or Fig. 2.15. Tuttle (1990) however has the same alignment as that shown

in Fig. 3.2, and correctly corresponds to the relationship between the normal vector

and curvature.

t =
dr

ds
unit tangent vector (3.2a)

n =
d2r
ds2

|d2r
ds2 |

unit normal vector (3.2b)

b = t× n unit binormal vector (3.2c)
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Figure 3.2: Description of an arbitrary smooth space curve with the moving coordi-
nate system.

Eqs. 3.2 have the favorable characteristic of satisfying the set of equations known

as the as the Serret-Frenet equations (shown in Eqs. 3.3.) Inspecting these equa-

tions illuminates the fact that any smooth curve based on the moving trihedron, and

obeying the Serret-Frenet equations, is uniquely defined by the curvature (κ (xi))

and torsion (τ (xi)) scalar fields; and in the toroidal case, have the simpler form of
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Eqs. 3.4.

ṫ =
dt

ds
= κn (3.3a)

ṅ =
dn

ds
= −κt + τb (3.3b)

ḃ =
db

ds
= −τn (3.3c)

ṫ =
dt

ds
= κn (3.4a)

ṅ =
dn

ds
= −κt (3.4b)

ḃ =
db

ds
= 0 (3.4c)

The last step in developing the toroidal coordinate system, is to relate the de-

scription methods just developed to points inside a toroidal pipe. Since the above

method is appropriate for a class C2 curve, and a circle is of this class, the torus

smooth curve is set as a function of the arc length (Eq. 3.1c.) The pipe flow domain

is then constructed by projecting the cross-sectional area of the pipe along the length

of this curve. In this way, specifying the location of a point in the cross-section and

the cross-section’s path length, allows all locations inside the domain to be uniquely

defined, and extension of the model strategy to a true helix can be started by speci-

fying a helix as the smooth curve instead of a circle. Taking the cross-section point

to have a global position vector x, the working toroidal coordinate system is related

to the moving triad by choosing the descriptive directions of (r, θ, s). This working

system is shown in Fig. 3.3, and is such that the global point position vector x has

the form of Eq. 3.5. It is with these (r, θ, s) coordinates that the continuity and

conservation of momentum equations are formulated.

x = r(s)− r cos θn(s) + r sin θb(s) (3.5)
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Figure 3.3: Local coordinate system description of the helical pipe.

3.2 Helical Conservation Equations

Given that we are working in Euclidian space, the accuracy of the correct toroidal

conservation equations can be checked simply by comparing the vectorally developed

equations developed from the derived coordinate description, to the form arived at

from transforming the usual Cartesian equations. The first step of this approach is the

method of Aris (1962), which in turn relies much on the historic works in Handbuch

der Physik III/1, by Truesdell, Serrin, and Noll. The metric and metric tensor for the

system are found by comparison of Eq. A.14 to the scalar product of total derivative

of the position vector, with itself. This derivative is found by considering Eqs. 3.2,

when differentiating Eq. 3.5. The steps are shown in Eqs. 3.6, and the resulting metric

for the working coordinate system is shown in Eq. 3.7.

dx

ds
=
dr

ds
− d

ds
(r cos θn(s)) +

d

ds
(r sin θb(s)) (3.6)

=t− r

(
cos θ

dn(s)

ds
+ n(s)

d cos θ

ds

)
− cos θn(s)

dr

ds
(Ť)

+ r

(
sin θ

db(s)

ds
+ b(s)

d sin θ

ds

)
+ sin θb(s)

dr

ds
(Ť)

dx = (1 + κr cos θ) tds+ (cos θb + sin θn) rdθ + (sin θb− cos θn) dr (Ť)

dx = (a+ r cos θ) dφt + rdθeθ + drer (.)

Where eθ = sin θ n + cos θ b, er = sin θ b − cos θ n, and ds = a dφ (or dφ2 = ds2

a2 ),
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the dot product is f · g = figi, and the square of the arc length is given by,

dx · dx = (a+ r cos θ)2 dφ2 + r2dθ2 + dr2 (3.7)

= (a+ r cos θ)2 ds
2

a2
+ r2dθ2 + dr2 (.)

Note: when equation sets with a single number have many components, the equation

number is given on the first component, with continuation arrows (Ť) labeling the rest

of the components up to the last; the last component is indicated by a period (.).

dx · dx = gijdx
idxj =

∂yk

∂xi

∂yk

∂xj
dxidxj (3.8)

gij =

1 0 0
0 r2 0
0 0 N2

 (3.9)

where N = (a+r cos θ)
a

= (1 + rκ cos θ)

The metric is found to be orthogonal due to none of the off diagonal terms in

the metric tensor matrix having a non-zero value, i.e. gij = 0 for i 6= j of Eq. 3.9.

Off diagonal non-zero terms would make the scalar product of the metric tensor with

itself not equal to the identity matrix; which is the condition for an orthogonal matrix.

Since the system is orthogonal, the metric tensor components of Eq. 3.9 can be related

to the scale factors, and used in the vector form of the Navier-Stokes equations, shown

in Eq. 3.11 as given on page 350 of Sokolnikoff (1964). The scale factor to metric

tensor relationship is described on p. 143 of Aris (1962) as gii = h2
i , with the resulting

scale factors for the current development shown in Eq. 3.10. The toroidal momentum

equations are then found by substituting the toroidal form of the vector operations

for the toroidal system (Eq. B.13, Eq. B.14, and Eq. B.15) into the vector form of

the Navier-Stokes equations (Eq. 3.11). The result is shown in Eq. 3.13, with the

individual components shown in Eq. 3.14.

hi =

 1
r
N

 (3.10)

ρ (v · ∇v) = −∇p+ µ∇2v + ρf (3.11)
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ρ

([
− w2κ cos θ

(1 + rκ cos θ)

]
er +

[
w2κ sin θ

(1 + rκ cos θ)

]
eθ

)
= (3.12)

−
(
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

1

(1 + rκ cos θ)

∂p

∂s
es

)
(Ť)

+ µ

({
(1 + 2rκ cos θ)

r (1 + rκ cos θ)

∂w

∂r
+
∂2w

∂r2
− wκ2

(1 + rκ cos θ)2

}
es

)
+ ρf (3.13)

∂p

∂r
=
ρκ cos θ

N
w2 + ρfr (3.14a)

1

r

∂p

∂θ
= −ρκ sin θ

N
w2 + ρfθ (3.14b)

∂p

∂s
=
µ (1 + 2rκ cos θ)

r

∂w

∂r
+ µN

∂2w

∂r2
− µκ2w

N
+ ρfs (3.14c)

A check of the cylindrical asymptotic form of the axial momentum equation is

provided in App. C. The above equations show that the centrifugal forces act in

the cross-stream direction only, and specifically play their part through the effective

gravity in the mechanisms of transition. Eq. 3.14a, Eq. 3.14b and 3.14c are utilized in

averaged forms, for description of the system and model development. The averaging

of the above equations is given in the next section.

3.3 One-Dimensional Separated Flow Equations

The linear methods on which the current model is founded, are based on the

assumption that all flow regimes can develop from an equilibrium stratified flow;

regardless of whether or not the stratified case was ever present in the system. This

assumption leads to the calculation of the liquid interface height of the equilibrium

stratified case (e.g. void fraction); followed by the determination of the system’s

non-dimensional parameters. The use of a separated one-dimensional model is found

in many studies of multi-phase fluid flow analysis, not just in flow regime modeling.

The general reasoning of these efforts rely on appropriate averaging of the three

dimensional equations, and as detailed by Kocamustafaogullari (1971), the accuracy

of phase specific average equation development is applicable as long as the interaction
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between the phases is modeled, and this interaction is easily included for the adiabatic

separated flow condition. As mentioned above, this is exactly what is used in the

current modeling strategy.

Production of the area averaged equations requires the definition of individual

averaged values that result from the integration of each equation over the control

volumes describing the system. Following the forms provided by Kocamustafaogullari,

the area and center of mass averaged values of any general quantity Ψ (r, θ, s), are

defined by Eq. 3.15 and Eq. 3.16. Comparison of Eq. 3.15, and Eq. 3.16 indicates

that the center of mass and area averages are equivalent when the density is not a

function of position, which is the case in the current development.

� Ψ � (s) =
1

A

∫∫
A
ΨdA (3.15)

< Ψ > (s) =

∫∫
A ρΨdA∫∫
A ρdA

(3.16)

The results of all the linear analyses conclude that the distortion introduced by

applying an area averaged equation, that is not a function of flow area shape, are

acceptably small; as long as the forces acting within the body of the flow are limited

to a gravity force. The distinguishing quality of the gravity force that allows this

simplification is that it acts equally on all positions inside the flow, i.e. gravity is not

a function of position in the flow area. Reviewing Eq. 3.14a, Eq. 3.14b and 3.14c,

indicates that the centrifugal forces appear in the r and θ momentum equations only,

and not in the s-coordinate equation. This characteristic is due to the component

form that the equations are written in. Given that the flow field being considered is

not a single-phase enclosed flow, the forces in each direction will actually contribute to

the axial momentum through variations in the surface shape. However, the pressure

is an isotropic force that acts in all three dimensions equally, and the total pressure

at any point in the flow will be the sum of the contributions from the momentum

forces acting in all the directions. A mathematical description of this fact is generated

by summing Eqs. 3.14, and noting that the LHS of the resulting equation is simply

the gradient of the pressure field in cylindrical coordinates. Note, in the equations

below the Laplacian of the scalar axial velocity is written using the ∇2 form. This

combined equation is given in Eq. 3.17, and is generally applicable to the individual

phases that make up the two-phase flow configuration that includes a variable surface
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height. The configuration is displayed in Fig. 3.4 and Fig. 3.5.

∇p =
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

∂p

∂s
es (3.17)

=
ρκ cos θ

N
w2er + ρfrer −

ρκ sin θ

N
w2eθ (Ť)

+ ρfθeθ +Nµ∇2wes −
µκ2w

N
es + ρfses (.)

s PIPE  CROSS-SECTIO
N

ϕ

θ
1

θ
1

θ
2

θ
1

θ
2

θ
1

θ
2

θ
2

Figure 3.4: Example of the angular limits of integration for area averaging the toroidal
axial momentum equation.
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Before the momentum equations are integrated over the individual phase regions,

it is appropriate to take the projection of the forces acting in the (r, θ) directions

onto the vertical direction and the horizontal plane. These projections are physi-

cally interpreted as the forces parellel and perpendicular to that of the gravity force.

This change in description is a proper one, since the action of the centrifugal forces

are always perpendicular to gravity. The transformation is realized by applying the

transformations given in Eqs. 3.18 to the RHS of Eq. 3.17, with the resulting axial

momentum equation given by Eq. 3.19. As shown in Fig. 3.5, the control volume is

the sum of the volume occupied by the gas phase and the volume occupied by the

liquid phase; and Eq. 3.19 written for each. For this reason, Eq. 3.19 is not integrated

over the entire control volume, rather, it is evaluated for the portion of the control

volume occupied by the kth phase.

eθ = sin θ n + cos θ b (3.18a)

er = sin θ b− cos θ n (3.18b)

∇p = −ρκ
N
w2 n− gρ cosφ b +Nµ∇2wes −

µκ2w

N
es − ρg sinφes (3.19)

∫∫∫
Vk

∇pk dVk =−
∫∫∫

Vk

ρkκ

N
w2

k dVk n−
∫∫∫

Vk

gρk cosφ dVk b (3.20)

+

∫∫∫
Vk

Nµk∇2wk dVk es −
∫∫∫

Vk

µkκ
2wk

N
dVk es (Ť)

−
∫∫∫

Vk

ρkg sinφ dVk es (Ť)

=− ρkκ

∫∫∫
Vk

w2
k

N
dVk n + µk

∫∫∫
Vk

N∇2wk dVk es (Ť)

− µkκ
2

∫∫∫
Vk

wk

N
dVk es (Ť)

− ρkg (sinφ es + cosφ b)

∫ s+4s

s

Ak(s) ds (.)

The gradient terms can be evaluated in general, using the integral formula of

Gauss. This integral formula is the volume analog to the fundamental theorem of
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calculus. In short, this theorem states: if F is an antiderivative the continuous

function f , which is contained in the closed interval [a, b], than the integral of f is

equivalent to the antiderivative evaluated at the limits of the inerval, i.e. F (b)−F (a).

This theorem is extendable to any piecewise smooth surface containing the gradient

of a scalar or vector field.

∫∫∫
Vk

∇ · f dVk =

∫∫
Ae

k

fk · nk dAe
k +

∫∫
Ai

k

fk · nk dAi
k (3.21)

+

∫∫
As+4s

k

f s+4s
k · ns+4s

k dAs+4s
k +

∫∫
As

k

fk · ns dAs
k (.)

Since the flow areas at the upstream and downstream sides of the control volume

are always opposite each other, ns = −ns+4s. The line integrals of the external and

interface boundaries are modeled assuming a constant pipe diameter and a variable

liquid interface height. In general, the differential area at the liquid-liquid interface

follows the relationship dAi
k = (ni

k · nSk
) dSi

kds. Where ni
k is the unit normal of the

liquid surface, and nSk
is the unit normal to the parameter located in the cross-

sectional plane. This is simply taking the projection of the differential area in the

axial and cross-stream directions. Applying these concepts, and considering the area

average defined in Eq. 3.15, Eq. 3.21 becomes Eq. 3.22∫∫∫
Vk

∇ · fk dVk =

∫ s+4s

s

∫
Se

k

fk · ne
k dS

e
kds (3.22)

+

∫ s+4s

s

∫
Si

k

(
fk · ni

k

) (
ni

k · nSk

)
dSi

kds (Ť)

+

∫∫
As+4s

k

f s+4s
k · ns

k dA
s+4s
k −

∫∫
As

k

fk · ns
k dAs

k (Ť)

=

∫ s+4s

s

∫
Se

k

fk · ne
k dS

e
kds+

∫ s+4s

s

∫
Si

k

(
fk · ni

k

) (
ni

k · nSk

)
dSi

kds

(Ť)

+As+4s
k � f s+4s

k · ns+4s � −As
k � f s

k · ns � (.)

The first three terms on the RHS of Eq. 3.22, contain integrals of either products



74

or fractions that are not able to be evaluated without a priori knowledge of the

velocity distribution in the (r, θ) directions. This issue is resolved by defining coupling

coefficients that represent the tendency of the term’s components to exhibit a cause

and effect relationship as a function of position, and the covariance of the square of

the axial velocity that measures the magnitude to which the average square of the

velocity varies with the square of the averaged velocity, and not necessarily the cause

and effect relationship. The use of the covariance is typical in the study of fluid flows,

and can be shown to have values that vary between 1.024 for single-phase turbulent

flow and 1.33 for single-phase laminar flow. No information on the coupling coefficient

for the toroidal flow was found by the author, but should also carry a value close to

unity. This is correct due to N being a cyclic function that oscillates about unity,

such that its integral from 0 to 2π is equal to unity. The coupling coefficients and

covariance are defined in Eq. 3.23, Eq. 3.24, Eq. 3.25, and Eq. 3.26. The use of these

objects for the first three terms of the RHS of Eq. 3.20, are given in Eq. 3.27, Eq. 3.28,

and Eq. 3.29.

C1 ≡
1
Ak

∫∫
Ak

w2
k

N
dAk

1
Ak

RR
Ak

w2
k dAk

1
Ak

RR
Ak

NdAk

=

∫∫
Ak

(
w2

k

N

)
dAk∫∫

Ak
w2

kdAk

(3.23)

C2 ≡
1
Ak

∫∫
Ak

wk

N
dAk

1
Ak

RR
Ak

wkdAk

1
Ak

RR
Ak

NdAk

=

∫∫
Ak

(
wk

N

)
dAk∫∫

Ak
wkdAk

(3.24)

C3 ≡
1
Ak

∫∫
Ak
Nµ∇2wk dAk

1
Ak

∫∫
Ak
NdAk × 1

Ak

∫∫
Ak
µ∇2wkdAk

=

∫∫
Ak
Nµ∇2wk dAk∫∫

Ak
µ∇2wkdAk

(3.25)

Cov(w2) ≡
1
Ak

∫∫
Ak

(w2
k) dAk(

1
Ak

∫∫
Ak
wkdAk

)2 (3.26)

ρkκ

∫∫∫
Vk

w2
k

N
dVk n =ρkκ

∫ s+4s

s

∫∫
Ak

w2
k

N
dAkds n (3.27)

=ρkκC1Cov(w2
k)

∫ s+4s

s

Ak � wk �2 ds n (.)



75∫∫∫
Vk

Nµ∇2wk dVk es =

∫ s+4s

s

C3

∫∫
Ak

µ∇2wkdAkds es (3.28)

=C3

∫∫∫
Vk

µ∇2wkdVkds es (.)

µkκ
2

∫∫∫
Vk

wk

N
dVk es =µkκ

2

∫ s+4s

s

∫∫
Ak

wk

N
dAkds es (3.29)

=µkκ
2C2

∫ s+4s

s

Ak � wk � ds es (.)

Substituing Eq. 3.22, Eq. 3.27, Eq. 3.28, and Eq. 3.29 into Eq. 3.20 results in

Eq. 3.30.∫ s+4s

s

∫
Se

k

pe
k · ne

k dS
e
kds+

∫ s+4s

s

∫
Si

k

(
pi

k · ni
k

) (
ni

k · nSk

)
dSi

kds (3.30)

+As+4s
k � ps+4s

k · ns � −As
k � ps

k · ns � (Ť)

= −ρkκC1Cov(w2
k)

∫ s+4s

s

Ak � wk �2 ds n (Ť)

+ µkC3

∫ s+4s

s

∫
Se

k

∇we
k · ne

k dS
e
kds (Ť)

+ µkC3

∫ s+4s

s

∫
Si

k

(
∇wi

k · ni
k

) (
ni

k · nSk

)
dSi

kds (Ť)

+ ρkµkC3As+4s
k ����������:0

� ∇ws+4s
k · ns �− ρkµkC3As

k���������:0
� ∇ws

k · ns � (Ť)

− µkκ
2C2

∫ s+4s

s

Ak � wk � ds es (Ť)

− ρkg (sinφ es + cosφ b)

∫ s+4s

s

Ak ds (.)

The axial direction integrals in Eq. 3.30 are evaluated by considering the mean
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value theorem for the integrals,
∫ s+4s

s
fds = 4sf .∫

Se
k
pe

kn
e
k dS

e
k

Atotal

+

∫
Si

k
pi

kn
i
k (ni

k · nSk
) dSi

k

Atotal

(3.31)

+
As+4s

k � ps+4s
k � −As

k � ps
k �

4sAtotal

es (Ť)

= −ρkκC1Cov(w2
k)
Ak � wk �2

Atotal

n (Ť)

+ µkC3

∫
Se

k
∇we

k · ne
k dS

e
k

Atotal

+ µkC3

∫
Si

k
(∇wi

k · ni
k) (ni

k · nSk
) dSi

k

Atotal

(Ť)

− µkκ
2C2
Ak � wk �

Atotal

es − ρkg (sinφ es + cosφ b)
Ak

Atotal

(.)

When the limit of4s→ 0 is taken, it produces the general averaged balance equation

for the individual phases. Given by Eq. 3.32.∫
Se

k
pe

kn
e
k dS

e
k

Atotal

+

∫
Si

k
pi

kn
i
k (ni

k · nSk
) dSi

k

Atotal

+
∂αk � pk �

ds
es (3.32)

= −ρkκC1Cov(w2
k)αk � wk �2 n (Ť)

+ µkC3

∫
Se

k
∇we

k · ne
k dS

e
k

Atotal

+ µkC3

∫
Si

k
(∇wi

k · ni
k) (ni

k · nSk
) dSi

k

Atotal

(Ť)

− µkκ
2C2αk � wk � es − ρkg (sinφ es + cosφ b)αk (.)

The above equation is the three-dimensional vector equation, representing the

momentum balance for toroidal flow with zero-valued cross-stream velocities. To

find the axial momentum equation used in the equilibrium stratified calculation, the

interface is first assumed flat, i.e. α 6= f(s), then the scalar product of Eq. 3.32 is

taken with the axial unit vector es. This results in the projection of the forces in the

axial direction.∫
Se

k
pe

kn
e
kdS

e
k

Atotal

· es +

∫
Si

k
pi

kn
i
k (ni

k · nSk
) dSi

k

Atotal

· es +
∂αk � pk �

ds
es · es (3.33)

= −ρkκC1Cov(w2
k)αk � wk �2 n · es (Ť)
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+ µkC3

∫
Se

k
∇we

k · ne
k dS

e
k

Atotal

· es + µkC3

∫
Si

k
(∇wi

k · ni
k) (ni

k · nSk
) dSi

k

Atotal

· es (Ť)

− µkκ
2C2αk � wk � es · es − ρkg (sinφ es + cosφ b)αk · es (.)

Inspecting Eq. 3.33, reveals the first, second, and fourth terms to be perpendic-

ular to the axial direction at all locations, and hence do not contribute to the axial

momentum equation. Additionally, the perimetrical unit normal is parallel with the

kth-phase liquid surface normal, i.e. (ni
k · nSk

) = 1. The remaining terms compose

the area averaged momentum equation used for the helical model development.

αk
∂ � pk �

ds
= − C3

∫
Se

k
τ e
kdS

e
k

Atotal

− C3

∫
Si

k
τ i
kdS

i
k

Atotal

(3.34)

− µkκ
2C2αk � wk � −ρkgαk sinφ (.)

The product of the gradient of velocity and dynamic viscosity is replaced by the

shear stress. Shear stress terms are written as functions of the mean axial velocity,

and the final axial momentum equation used for the void fraction calculation is given

by Eq. 3.35. This step is consistent with the use of the wall shear correlations that

are to be applied.

αk
∂� pk �

ds
= − C3

τ e
kS

e
k

Atotal

− C3
τ i
kS

i
k

Atotal

− µkκ
2C2αk � wk � −ρkgαk sinφ (3.35)

3.4 Equilibrium Stratified Liquid Height

The equations developed in the previous section, are drawn upon for developing

the helical flow map, based on the pioneering analysis of Taitel & Dukler (1976).

Their two step analysis was discussed in the literature review, and was shown to be

accurate for prediction of the flow regimes in a linear inclined geometry. A model

that is appropriate for prediction of the flow regimes in a helical geometry can be

developed by building upon the proven techniques of these authors, providing that

proper inclusion of the differences in curved flow friction factor and cross-stream

centrifugal force effects are addressed. The basis for the method of including these

forces in the current model is as follows.

The characteristic of the centrifugal and gravity body forces to act perpendicularly

to the direction of flow removes them from the axial momentum equation and the
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resulting calculation of the equilibrium liquid height. This seems contradictory to

the observation that the axial flow rate and liquid hold-up are clearly dependent on

the curvature, see Sec. 2.1. However, the reason for increase in friction losses in the

curved geometry is the steeper axial velocity gradient at the outside of the bend

compared to linear systems, not because of secondary flow velocities. The secondary

flow presence is just another effect of the curvature, not necessarily the origin of

the flow losses. Given this reasoning, the one-dimensional simplification is valid as

long as the effects of axial velocity distribution is retained in the axial equation. As

found in the previous section, the axial equation integration removes the position

dependence, and transfers the wall veloctiy gradient effects into the shear stresses,

which is the important effect of the axial velocity distribution. Provided that the

correlations for shear stress are accurate for the helical flow that is being modeled,

the one-dimensional axial equation can be considered quite appropriate.

The incorporation of the appropriate friction forms is only done after a single

equation is gotten that represents the two-phase flow field. One first considers a single

axial momentum equation, Eq. 3.37, developed by equating the pressure gradients of

the individual phases, Eq. 3.36. Eq. 3.37 allows for the interface shear stress to retard

phase 2 and accelerate phase 1, if phase 2 is traveling at a greater velocity than phase

1, and vis versa if phase 1 has a greater velocity than phase 2, Eq 3.38b. Standard

convention is used for friction factor and shear stress.

∂� p2 �
ds

=
∂� p1 �

ds
(3.36)

C3

Atotal

(
τ e
2S

e
2

α
− τ e

1S
e
1

(1− α)

)
+
C3τ

iSi

Atotal

(
1

α
+

1

(1− α)

)
(3.37)

+ κ2C2 (µ2 � w2 � −µ1 � w1 �) + g sinφ (ρ2 − ρ1) = 0 (.)

τ e
k = f j

k

ρk � wk �2

2
where k = (1, 2) for (liquid, gas) (3.38a)

τ i = f j
2

ρ2 (� w2 � −� w1 �) | � w2 � −� w1 � |
2

(3.38b)

where j = (l, t) for (laminar, turbulent)
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It can be shown to simplify the analysis if the void fraction is written as phasic

areas. Considering the above friction factor forms, the combined axial momentum

equation becomes,

C3

(
f j

2

ρ2 � w2 �2

2

Se
2

A2

− f j
1

ρ1 � w1 �2

2

Se
1

A1

)
(3.39)

+ C3f
j
2

ρ2 (� w2 � −� w1 �) | � w2 � −� w1 � |
2

Si

(
1

A2

+
1

A1

)
(Ť)

+ κ2C2 (µ2 � w2 � −µ1 � w1 �) + g sinφ (ρ2 − ρ1) = 0 (.)

Closure of the problem requires that forms for the friction factors be defined, which

in the curved cases are functions of the Dean number (De). As pointed out in the

liturature review, multiple forms of De have been put forward by different researchers.

Where discussed in the current study, the De is the form shown in Eq. 3.40. This is

the same form recommended by Van Dyke (1978) and Berger et. al. (1983).

Comparing the different laminar fricition factor correlations published for helical

flow, shows good agreement for both the published theoretical and empirical equa-

tions. Specifically, the equations developed by Ito (1969) are widely used, and have

shown to be accurate over a wide range of laminar De numbers. Professor Ito addi-

tionally developed theoretical and empirical correlations for the turbulent flow friction

factor (Ito 1959). Ito’s 1959 investigation was the only published theoretical investi-

gation of turbulent curved flow, at the time, and includes a correlation for his own

data along with all other reported data on turbulent pressure losses in curved flows.

Ito’s correlations have the undesirable characteristic that they do not asymptotically

approach a linear friction factor; and as shown in Fig. 3.6, underestimates the laminar

friction factor for all published curvatures with Reynolds numbers less than 100. Also

shown in the figure is the most current recommendation, by Ju et. al. (2001), for the

single-phase curvature corrected laminar friction factor. The method of applying a

correction factor to the linear friction coefficient is a conventional approach in curved

flow modeling, and is akin to the two-phase friction corrections used in linear flows.

The method of Ju et. al. has the desired attribute of asymptotically approaching the

linear friction factor for large radii of curvature, while also matching the empirical

correlations for coiled flows. Ju et. al. also recommends a correlation for the turbu-

lent friction factor correction factor, which also asymptotically approaches the linear
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turbulent friction factor. The current work uses the Blasius form for the gas-phase

linear friction factor, and the liquid-phase superficial friction factor, as recommended

by Taitel & Dukler (1976), Barnea (1987), and Petalas & Aziz (2000), and includes

the empirical friction factor corrections for curved flows of Ju et. al. (2001). The Ju

et. al. correction factor and the linear friction factor of Taitel & Dukler, are given in

Eq. 3.41 and Eq. 3.42. Values for the friction coefficients used for the friction factors

are C
fric1

= 0.04, C
fric2

= 0.11, n = 0.2, m = 0.23, p = 0.14 for turbulent flow, and

C
fric1

= 16, C
fric2

= 0.015, n = 1, m = 0.75, p = 0.4 for laminar flow.

The actual average phasic velocities, and the curvature corrected critical Reynolds

number of Miropolskiy (1963), are used to determine whether or not the phasic flow

is turbulent or laminar, which is inline with the discussions of Sec. 2.

De =
(r0
a

)1/2
(

2r0 � w �
ν

)
=
r0
a

1/2

Re (3.40)

f = f
linear

(
1 + C

fric2
Rem

(r0
a

)p)
(3.41)

f
linear

= C
fric1

Re−n (3.42)

Recrit = 2100

(
1 + 12

(r0
a

) 1
2

)
Miropolskiy (1963) (3.43)

where Res1 =
2r0ρ1j1
µ1

Review of Eq. 3.39 and the above friction correlations, shows 7 parameters: area

average phase-1 axial velocity, area average phase-2 axial velocity, phase-1 area, phase-

2 area, phase-1 external wetted parameter, phase-2 wetted parameter, and interface

length. This list is reduced to 3 parameters by considering the liquid-liquid interface

to be flat and the cross-section to be circular. As shown in Fig. 3.7, a flat interface

between the phases produces a symmetry line, on which the mass centers of the area

averaged fluids lie. This is a result of the area average velocity giving equal weight

to all cross-section locations, placing the mass center at the geometric center lying

on the symmetry line. With these considerations, all the geometric parameters can

be shown as functions of equilibrium height alone, where the equilibrium height is
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Figure 3.6: Comparison of the Ju et. al. (2001) and Ito (1969) friction factor corre-
lations for toroidal and helical flows. Both Ju et. al. and Ito’s correlations produce
curves from the right to left with decreasing curvature (i.e. linear asymptote), show-
ing Ito’s correlation to diverge from, rather than asymptotically approach, the linear
condition.

perpendicular to the liquid surface, and measured as the chord length splitting the

phase-1 area. The equations describing the wetted parameters and phasic areas, along

with calculated values for two different radii pipes, are shown in Fig. 3.8 and Fig. 3.9.

The majority of the published studies on flow regime transitions utilize a non-

dimensional form of the momentum equation, where the equilibrium height can be

correlated to the Lockhart-Martinelli parameter and a term representing the body

forces. A similar momentum equation for the curved case, is found by using 2r0

for lengths, 4r02
for areas, and j1 & j2 for velocities, to non-dimensionalize Eq. 3.39,

Eq. 3.41, Eq. 3.43, Fig. 3.8, and Fig. 3.9. The non-dimensional curved flow momentum

equation is given in Eq. 3.44, where non-dimensional objects carry an asterisk accent

in the hat position (i.e.
∗
f is the non-dimensional form of the object f). Note that

the curved friction multiplier accounts for the increased phasic velocity gradient at

the wall, and as such, is not applied to the interfacial friction term; this can be seen

in Eq. 3.44 as the B2 gas curved friction multipliers are divided out of the term in

the balance equation that represents the friction force at the interface, i.e. the Si

term. More specifically, the friction losses in the curved flows increase not because

of secondary flows, but from the shift of the maximum axial velocity towards the
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Figure 3.9: Graph of phasic areas as a function of the equilibrium liquid height, and
ideal stratified condition.

solid interface. This increases the velocity gradient at the wall, resulting in greater

friction losses. Since the maximum axial velocity of each phase do not necessarily

move towards each other due to curvature, the interface friction does not experience

the same increase that the wall friction does. This is in agreement with advancements

in multi-phase flow modeling made by the Stanford University Petroleum Engineering

department professors Petalas & Aziz. Petalas & Aziz have analyzed the largest multi-

phase flow data base to determine the most accurate linear friction correlation forms

for flow regime transition modeling. They have concluded that the interface friction

factor is not necessarily the same as the gas-phase friction factor in all conditions, and

as detailed above, is not assumed exactly equivalent to the gas phase friction in the

curved condition. Also note that Eq. 3.44 does not use the simplifying assumption

that the difference between the gas and liquid phase velocities must be always equal

to the gas phase velocity, a modification recommended by most new analyses (for

example see Petalas & Aziz 1998).

∗
w2

2

(
∗
w2

∗
Dh

2

)−n
∗
S2
∗
A2

−X2B1

B2

∗
w2

1

∗
S1
∗
A1

(
∗
w1

∗
Dh

1

)−n
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+
W

B2

∗
Si

(
1
∗
A1

+
1
∗
A2

)(
∗
w2

∗
Dh

2

)−n

+ 4
Z

B2

− 4
Y

B2

= 0 (3.44)

X2 =

ρ1j2
1

2

(
ρ1j1D

µ1

)−n 4C
fric1

D

ρ2j2
2

2

(
ρ2j2D

µ2

)−n 4C
fric1

D

(3.45a)

Y =
g (ρ1 − ρ2) sinφ

ρ2j2
2

2

(
ρ2j2D

µ2

)−n 4C
fric1

D

(3.45b)

W =
|j2

∗
w2 − j1

∗
w1| (j2

∗
w2 − j1

∗
w1)

j2
2

(3.45c)

Z =
4
∗
κ2

D2 (µ2j2
∗
w2 − µ1j1

∗
w1)

ρ2j2
2

2

(
ρ2j2D

µ2

)−n 4C
fric1

D

(3.45d)

B1 = 1 + C
fric2

(
ρ1

∗
w1j14

∗
A1D

µ1

∗
S1

)m(
r0

a

)p

(3.45e)

B2 = 1 + C
fric2

(
ρ2

∗
w2j24

∗
A2D

µ2

∗
S2

)m(
r0

a

)p

(3.45f)

The set of objects consisting of Eq. 3.44, Eq. 3.45, Eq. 3.41, Eq. 3.42, Fig. 3.8, and

Fig. 3.9 provide the framework that can be solved for a unique relationship between

the phasic velocities and the equilibrium liquid height. For the case of negligible

curvature, r0

a
→ 0, B1 → 1, B2 → 1, Z → 0, and Eq. 3.44, and when considering

the same approximation as Taitel & Dukler (1976) (i.e. w2 − w1 ≈ w2), Eq. 3.44 is

identical to the momentum equation developed by Taital & Dukler (1976).

For the equilibrium liquid height calculation, the actual curvature of the helix

is used. This follows recommendation of Truesdell & Adler (1970), who concluded

the major effect of pitch was the influence on curvature and the effective radius of

the helix. The curvature of a helix is given by Eq. 3.46, where p is the pitch and

a the helical radius, i.e. the inverse of curvature (r0
helix = 1

κhelix
). The solutions for
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equilibrium liquid height are given in Sec. 4.

κhelix =
a

a2 +
(

p
2π

)2 (3.46)

3.5 Transition Mechanisms From The Stratified Condition

Determination of the transition from the equilibrium stratified condition has been

shown (Taitel & Dukler 1976 and 1978, Barnea 1987, Petalas & Aziz 2000) to be well

predicted by the Kelvin-Helmholtz stability criteria for wave growth. The theory is

as follows. For an equilibrium stratified condition, an individual wave on the liquid

surface causes a change in the gas flow area, which affects the pressure of the gas

flowing over the wave due to the Bernoulli effect. In the case that the change in

pressure is greater than the increase in the body forces from gravity and centrifugal

forces, the wave will experience a net force that supports wave grow. Wave growth

under this force imbalance will continue until the wave crest reaches the top of the

pipe, and blocks the gas flow path. If sufficient liquid inventory is present, the blockage

forms into a liquid slug; if insufficient liquid is present, the blockage is swept along

the walls of the pipe in an annular flow regime. Taitel & Dukler (1976, 1978) showed

this condition to be satisfactorily modeled by
∗
hl < 0.5 for the annular condition, and

∗
hl >= 0.5 for the intermittent condition. It is clear that the stability criteria depends

directly on the stabilizing effect of the gravity body force. In a curved flow, this

body force includes the centrifugal acceleration. The integration of this force is now

considered.

Due to the similarities between helical and linear flows, the mechanism of tran-

sition from the stratified regime in helical coils is assumed to be similar to that in

the linear flow. The crux of this assumption, is the inclusion of the direction and

magnitude of the body forces, acting on a wave that forms from this smooth interface

equilibrium condition. For these forces to be included, the orientation of the surface

must be calculated. Banerjee (1967) and Whalley (1980) have shown that this orien-

tation is calculable from a simple force balance, where the centrifugal force on the gas

and liquid phases is treated similar to the buoyancy force of gravity. The buoyancy

of the centrifugal force is perpendicular to the action of gravity, and the centrifu-

gal buoyancy can be combined with gravity vectorially. This condition is shown in

Fig. 3.10. Since the surface orientation adjusts to a zero net buoyancy force, the vari-
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ation in surface height due to the presence of a solitary wave can either experience

added stability, a reduction in stability, or no change in stability, from the centrifugal

force on the wave mass. It all depends on the projection of the wave growth direction

along the centrifugal force vector. This mechanism is explained as follows. If the

equilibrium stratification is that of a linear configuration, the wave growth is per-

pendicular to the centrifugal force, and does not experience any contribution to the

growth from the centrifugal force. This is the case if the centrifugal force on the liquid

and gas is exactly equal. If the flow is orientated with the higher density fluid on the

outside of the bend, wave growth is opposite to the action of centrifugal forces, and

is attenuated by centrifugal forces. If the flow has undergone film-inversion, the wave

growth is in the same direction as the action of the centrifugal force on the wave, and

wave growth is promoted by the centrifugal force on the wave mass.
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Figure 3.10: Diagram of the buoyancy forces of gravity and centrifugal forces, for
standard, neutral, and inverted conditions.

It is obvious that the wave effective gravity, and the effective gravity determining

the interface orientation, are not necessarily the same. This increase may or may

not contribute to the stability of the wave. Review of Fig. 3.10 shows that in the

inverted condition, any additional centrifugal force in the gas phase is expressed

against the pipe wall, and does not attenuate the wave centrifugal force due to wave

formation. Because of this, the inverted case is always destabilized by the wave

centrifugal force, and stabilized by the equilibrium effective gravity. It is not the

same for the standard condition, as additional centrifugal force experienced by the

gas is only partially conveyed to the pipe wall(shown as the cross-hatched area in

the left image of Fig. 3.10), and partially presented to the wave crest. Because of

this, the standard condition is always stabilized by both the equilibrium centrifugal
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force and wave centrifugal force. The phasic velocities at the wave are functions

of the equilibrium condition velocities, equilibrium liquid height, and wave height,

by Eqs. 3.47; the interface orientation angle and wave effective gravity are given

by Eq. 3.48 and Eq. 3.49. Primed values are located at the wave, as depicted in

Fig. 3.11, subscript 2 denotes the less dense phase, and subscript 1 denotes the more

dense phase.

� w′2 �=
� w2 �
1 + 4A2

A2

(3.47a)

� w′1 �=
� w1 �
1− 4A2

A1

(3.47b)

ϕ = atan

(
ρ1 � w1 �2 −ρ2 � w2 �2

ag (ρ1 − ρ2)

)
(3.48)

gwave
eff =

(
� w1 �2

a
sinϕ+ g cosϕ cosφ

)
(3.49)

Calculating an effective gravity and interface orientation previous to evaluating the

stability criteria has the benefit of allowing the use of a similar analysis as completed

in the linear case, by simply applying the effective gravity to the linear stability

criteria. The Taitel & Dukler approach is utilized here, for the case of curved flows,

and is as follows. The original Kelvin-Helmholtz stability criteria for growth of a

solitary, infinitesimal plane wave, on the surface of a liquid sheet, due to gas flow over

the liquid, and bound in the vertical direction by two horizontal parallel planes, is

given by Eq. 3.50a (Milne-Thomson 1960, Chandrasekhar 1961). The same criteria

for a circular inclined pipe with a finite wave is given by Eq. 3.50b. As discussed

in the literature review, the extension of this criteria to the enclosed pipe flow has

proven accurate for flow regime transition of multi-phase flow.

w2 >

(
(ρ1 − ρ2) ghgas

ρ2

) 1
2

(3.50a)

w2 >

(
1− h

2r0

)(
(ρ1 − ρ2) g

wave
eff cosφA2

ρ2
dA1

dh

) 1
2

(3.50b)

The extension of the above criteria is found by comparing the force balance for the

solitary infinitesimal wave to a solitary finite wave in curved flow. Since the criteria
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ignores surface tension and wave motion, and the centrifugal forces are included in

the gravity term, the forces determining wave growth are: effective gravity buoyancy

force, and Bernoulli effect. A schematic of the co-current flow case is given in Fig. 3.11.

The Taitel & Dukler form of the Kelvin-Helmholtz stability criteria for an inclined

circular cross-section pipe, is simply extended by inserting Eq. 3.49 into Eq. 3.50a, to

the form of Eq. 3.51.
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Figure 3.11: Diagram of the configuration for the Kelvin-Helmholtz instability for-
mation of growing wave height.

� w2 � > (3.51)

(
1− h

2r0

)(ρ1 − ρ2)
(
�w1�2

a
sinϕ+ g cosϕ cosφ

)
A2

ρ22r0

(
1−

(
h
r0
− 1
)2
) 1

2


1
2

The discussion of the current section, and a review of Eq. 3.51, shows that all the

required parameters are calculable. From these objects, the flow regime transition for

the helical geometry is solved for and presented in the results section.
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4 RESULTS

4.1 Introduction

The equations developed in Sec. 3 are solved numerically for the area averaged

phasic velocities and equilibrium liquid height, for specific phasic mass flux. The

accuracy of the momentum balance is checked for the linear asymptote by comparing

with the solutions for gas and liquid hold-up, by Barnea & Taitel (1992), the most

current publication by one of the authors of the original work of Taitel & Dukler

(1976). For checking of the linear asymptote, the radius of curvature is set to a very

large value (a >500,000 [m]), which approximates the linear flow condition used in the

original published works. Additionally, for the comparison, digitized values from the

actual published graph are utilized to eliminate the possibility of bias introduction

from the author.

4.2 Linear Asymptote Check

Seven comparisons are carried out to check the accuracy of the current equations

for the linear asymptote. Figure 4.1 shows the variation in equilibrium height due to

changes in the inclination angle. Figure 4.1 also indicates the region of small upward

inclined flows where multiple solutions to the equilibrium height are found. The diffi-

culty in determining which one of the multiple solutions is correct has been discussed

in current publications with no clear solution as to which root is correct (Barnea

1992, Xiao et. al. 1990, Petalas & Aziz 1998). Barnea (1992) completed an analysis

to determine which of the multiple roots were stable solutions, and determined that

when 3 roots existed, only the smallest valued one was both linearly and non-linearly

stable, the middle value never stable, and the largest valued non-dimensional height

linearly stable under certain conditions. In other words, it is found that the largest

value is appropriate for calculating the equilibrium liquid height used in determining

the transition to intermittent flow conditions in that it represents the liquid hold-up

regardless of the structural stability of the flow, but is not always appropriate for

determining the actual liquid hold-up. Comparisons for the horizontal and various

inclinations of linear pipe are shown in Figures 4.2 through 4.8. The current equa-

tion’s solutions are found to match the Barnea & Taitel (1992) predictions very well,



90

and provided that their methods have proven accurate, the current equations are

equally appropriate for linear predictions.
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Figure 4.1: Calculation of the equilibrium liquid height in a linear flow at various
inclination angles.
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Figure 4.2: Comparison of equilibrium height predictions of Young with Barnea &
Taitel 1992, for horizontal linear asymptote.
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Figure 4.3: Comparison of equilibrium height predictions of Young with Barnea &
Taitel 1992, for Y = -25 (0.49◦downward inclination) linear asymptote.
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Figure 4.4: Comparison of equilibrium height predictions of Young with Barnea &
Taitel 1992, for Y = -100 (1.96◦downward inclination) linear asymptote.
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Figure 4.5: Comparison of equilibrium height predictions of Young with Barnea &
Taitel 1992, for Y = -1000 (20.00◦downward inclination) linear asymptote.
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Figure 4.6: Comparison of equilibrium height predictions of Young with Barnea &
Taitel 1992, for Y = 20 (0.39◦upward inclination) linear asymptote.
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Figure 4.7: Comparison of equilibrium height predictions of Young with Barnea &
Taitel 1992, for Y = 100 (1.96◦upward inclination) linear asymptote.
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Figure 4.8: Comparison of equilibrium height predictions of Young with Barnea &
Taitel 1992, for Y = 1000 (20.00◦upward inclination) linear asymptote.

4.3 Helical Liquid Hold-Up Calculations

This section looks at the trends in the calculated liquid hold-up in the stratified

equilibrium condition helical flow. The published data set and reported observations

about upward helical flow are consistent, in that every experimental observation has

reported the increase in liquid hold-up and reduction in the stratified flow regime,

with increasing curvature. So it is the match of these trends that form the basis

for comparison of the current approach. Note that these observations are obviously

only applicable to the ranges in which the tests were carried out, and as such, the

new methods predictions are compared for the range of parameters that match the

published observations.

Reviewing Fig. 4.9, Fig. 4.10, and Fig. 4.12 demonstrates the current modeling

characteristics for variations in the curvature, of horizontal and inclined flows. The

three figures show the calculated variation in the liquid equilibrium height (i.e. liquid

hold-up) for changes in the curvature, a close up of the region where the calculations

change from showing looser coils as the case presenting greater liquid hold-up, and

the calculated equilibrium liquid height after the curved friction factor modification,
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respectively. This modification is discussed in more detail below.

In support of the conditional trends noted in the figures, Saxena et. al. (1990) ex-

perimentally determined that liquid hold-up in helical coils depended on a coefficient

a, which was found to depend on curvature and liquid superficial velocity, indepen-

dent of small inclinations of a tightly wrapped helix. However, when the helices were

loosely wrapped (curvature ratios greater than 51.6) inclination effects were found to

be dominant, and the curvature had negligible effect compared with the gravity force

introduced by inclining the pipe. The condition was possibly explained by Mandal

& Das (2002 & 2003) by considering the slip between the phases. Their experiments

showed decreased two-phase pressure drop and increased liquid hold-up with increas-

ing curvature, for the case where overall gas volumetric flow rate was 10 times that

of the liquid. Under their conditions, the centrifugal force was always greater for

the liquid phase, and the acceleration of the liquid phase due to interfacial drag is

inversely related to the coil diameter. So a decrease in coil diameter presented a rel-

ative decrease in two-phase pressure drop. Additionally, the increasing curvature is

accompanied by an increase in number of coils for a length of pipe; so that the effects

of slip and gravity act in opposition to each other. Mandal & Das concluded that the

combined effect was that of greater liquid hold-up with increasing curvature.

Another method for calculating the equilibrium height, is to use the the actual

laminar or turbulent phasic friction coefficients pointwise calculated at the actual

Lockhart Martinelli values for which the transition from laminar to turbulent phasic

flow occurs. This would most accurately correspond to reality, and match what is

recommended in the original publication by Taitel & Dukler (1976) (and many of

the studies published since 1976). However, the most often taken approach is to

apply either the laminar or the turbulent coefficients for the entire range of Lockhart

Martinelli values, for this produces the most consistent calculation results. It is

often not considered whether or not the superficial velocities could actually yield

both laminar and turbulent phasic flows. Reviewing the form of the equilibrium

calculation, and noting that the only method of producing a range of LM values

by modifying the base parameters, is to hold the gas volumetric flow constant and

varying the liquid volumetric flow. This is due to that fact that a constant Y value

requires a constant gas volumetric flow rate for a given inclination angle. Simply

specifying Y and X values while not considering the resulting set of liquid and gas

velocities and resulting appropriate friction forms, is artificially imposing the friction
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Figure 4.9: Calculation of liquid hold-up for different curvature ratios and different
inclinations, using the turbulent gas and turbulent liquid conditions. Pipe diameter
is 0.0254 [m], red line curvature ratio = 1E6, green line curvature ratio = 100, blue
line curvature ratio = 20, black line curvature ratio = 5.
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Figure 4.10: Close up of the calculation of liquid hold-up for different curvature ratios
and different inclinations, using the turbulent gas and turbulent liquid conditions.
Pipe diameter is 0.0254 [m], red line curvature ratio = 1E6, green line curvature ratio
= 100, blue line curvature ratio = 20, black line curvature ratio = 5. Inversions of
the calculation of looser vs. tighter coiling as the greater predicted liquid heights are
marked with ellipses.
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forms. This could introduce the condition where the application of only the laminar

or turbulent coefficients over the entire calculation would result in somewhat artificial

calculated values. However, this effect on the equilibrium height calculation for all

possible conditions in a linear flow are well modeled by the gas-turbulent/liquid-

turbulent friction factors, as shown in the works of Taitel & Dukler (1976), Taitel

(1977), Petalas & Aziz (1998), and Barnea (1987). The effects of applying the actual

friction coefficients into the linear flow terms of the equilibrium calculation can be seen

in the obscure behavior depicted in Fig. 4.11. This strange sudden behavior is a direct

result of the discontinuity between the turbulent and laminar friction factor values,

and as discussed above, and is not a necessary inclusion since the vast majority of

transitions take place in air-water systems where both phases are turbulent flows. As

such, it is proposed that the differences between turbulent and laminar friction forms

only be introduced when considering the curvature effects of the liquid phase. Per

the above discussion, the curved flow friction component is modified by using liquid

curved friction multiplier friction coefficients of C
fric2

= 0.015, m = 0.75, p = 0.4, as

recommended by Ju. et. al. (2001). The results of this modification are shown for

the up-flow inclinations of 0◦, 1◦, 3◦, and 5◦ in Figure 4.12. Also depicted in Fig. 4.12

are the ranges of Lockhart Martinelli parameter values for the available published

flow regime and liquid hold-up observations. Current calculations are for the lower

roots, when multiple roots exist.
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Figure 4.11: Calculation of liquid hold-up for different curvature ratios and different
inclinations, using the actual friction conditions for both gas and liquid (Reynolds
numbers and friction factors are based on actual velocities, not superficial velocities.)
Pipe diameter is 0.0254 [m], red line curvature ratio = 1E6, green line curvature ratio
= 100, blue line curvature ratio = 20, black line curvature ratio = 5.
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Figure 4.12: Calculation of liquid hold-up for different curvature ratios and differ-
ent upward inclinations, for the case where linear components and gas phase curved
friction multiplier are considered turbulent, and the liquid phase curved friction mul-
tiplier is considered laminar. Pipe diameter is 0.0254 [m], red line curvature ratio
= 1E6, green line curvature ratio = 100, blue line curvature ratio = 20, black line
curvature ratio = 5. Upper roots are shown.
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4.4 Surface Inversion Calculations

The dependence of centrifugal body forces on surface orientation, on determining

whether this force retards or promotes wave growth, is discussed in Sec. 3.5 and

its influence is given by Eq. 3.49 and Eq. 3.50b. It was shown that the orientation

of the interface between the phases is given by Eq. 3.48, which is dependent on

the actual phasic velocities. These velocities are only known after the equilibrium

height has been calculated, which causes each pair of superficial velocities to have a

unique surface inversion angle. The surface inversion angle is represented in Fig. 3.10,

and is positive for the case when the heavier fluid flows along the outside of the

curve. The calculated inversion angles, as functions of the superficial liquid and gas

velocities, for the experimental conditions of the four author’s works presented in this

results section, are represented using the surface graphs shown in Fig. 4.13, Fig. 4.15,

Fig. 4.17, and Fig. 4.19. The calculated inversion angle iso-lines, as functions of

the superficial liquid and gas velocities, for the experimental conditions of the four

author’s works presented in this results section, are represented using the line graphs

shown in Fig. 4.14, Fig. 4.16, Fig. 4.18, and Fig. 4.20.
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Figure 4.13: Surface describing inversion angle as a function of superficial velocities
for Yan 1992 data. Pipe diameter is 0.0083 [m], Coil to Tube Diameter Ratio = 9.

Fig. 4.13, Fig. 4.15, Fig. 4.17, and Fig. 4.19 agree with the mechanism describ-

ing inversion angle. Specifically, as the relative actual velocity of the less dense
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Figure 4.14: Iso-lines describing specific inversion angles as a function of superficial
velocities for Yan 1992 data. Pipe diameter is 0.0083 [m], Coil to Tube Diameter
Ratio = 9.
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Figure 4.15: Surface describing inversion angle as a function of superficial velocities
for Ishikawa 2003 data. Pipe diameter is 0.02 [m], Coil to Tube Diameter Ratio =
27.
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Figure 4.16: Iso-lines describing specific inversion angles as a function of superficial
velocities for Ishikawa 2003 data. Pipe diameter is 0.02 [m], Coil to Tube Diameter
Ratio = 27.
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Figure 4.17: Surface describing inversion angle as a function of superficial velocities
for Saxena 1990 data. Pipe diameter is 0.01 [m], Coil to Tube Diameter Ratio = 11.
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Figure 4.18: Iso-lines describing specific inversion angles as a function of superficial
velocities for Saxena 1990 data. Pipe diameter is 0.01 [m], Coil to Tube Diameter
Ratio = 11.
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Figure 4.19: Surface describing inversion angle as a function of superficial velocities
for Boyce 1969 data. Pipe diameter is 0.0318 [m], Coil to Tube Diameter Ratio = 48.
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Figure 4.20: Iso-lines describing specific inversion angles as a function of superficial
velocities for Boyce 1969 data. Pipe diameter is 0.0318 [m], Coil to Tube Diameter
Ratio = 48.

phase increases to a sufficient velocity such that the centrifugal force on the lighter

phase is greater than that affecting the denser phase, negative inversion is calculated.

Fig. 4.14, Fig. 4.16, Fig. 4.18, and Fig. 4.20 all show the film-inversion line, where the

area left of the line represents the denser fluid flowing along the bottom or outside

of the bend, and the area to the right representing the film-inversion phenomena of

Banerjee (1967). The scale of these plots are similar to those in Sec. 4.5, and the

regions of positive and negative inversion can be related to the stratified transitions

presented in that section.
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4.5 Helical Transition Calculations

The presentation of the comparisons in this section depend on the justification of

the use of a horizontal condition in prediction of the stratified transitions for helical

coils. Justification is based on, or at least supported by, the published observations of

liquid hold-up and the presence of the stratified flow regime in both linear and helical

upward flow of slightly inclined pipes. Specifically, it is proposed that the change in

the stratified transition boundary location is only weakly dependent on inclination

angles when they are less than 5◦, even though the inclusion of small inclination

angles in the equilibrium height calculation can be in contrast to this. In fact, the

predictions of stratified regimes in linear inclined flows often use the horizontal map,

for slightly inclined conditions, because the strong dependence of liquid hold-up on

inclination basically eliminates the prediction of ANY stratified regime for an inclined

pipe. Provided that stratification is present in slightly inclined flows, it is appropriate

to use the horizontal map for the slightly inclined pipe flow stratification prediction.

Lun et al. (2004) found that slightly inclined (φ . 5◦) two-phase (oil-water) flows

exhibited similar flow patterns to the horizontal cases. Importantly, Lun noted the

presence of the stratified regime at these inclinations. Petalas & Aziz (1998) provide

comparisons of flow regime maps for both air-water and oil-gas systems. Inspection

of the Petalas & Aziz maps show that the two systems experience similar transition

boundaries, with the oil-gas system expressing a reduction in the stratified regimes

due to fluid property differences. Hence, if stratification is present in a similar oil

flow, than it is definitely expected in a water flow. The stratified regime is reported

in flow regime observations of both linear and helical upward flowing systems with

small inclination angles (φ . 5◦) (Boyce 1969, Saxena 1990, Lun et. al. 2004, Petalas

& Aziz 1998).

Barnea & Taitel (1992) and Petalas & Aziz (1998) concluded that huge differences

exist in the solution for equilibrium height calculation at small inclination angles,

due to the multiple root problem. As an example, Petalas & Aziz (1998) determined

that the calculated non-dimensional liquid height varied between hl/D ≈ 0.05 and

hl/D ≈ 0.7 for a 2◦ inclination case. Petalas & Aziz (1998) recommend the use of the

lowest roots, which are near the horizontal calculated values for slightly inclined flows.

The issue of accurately predicting the stratified transition can be seen to arise from

the initial liquid hold-up calculation used in determining the transition boundary.
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For the case of even 1◦ inclination, the hold-up calculation effectively eliminates the

stratified region from being present on the flow map. Yet the stratified flow is reported

to exist in these flows. Additionally, reported observations for helical flow indicate a

very weak dependence of liquid hold-up on helix angle, see Banerjee et. al. (1969),

Xin et. al. (1996), and Mandal & Das (2002 & 2003). All of these studies concluded

that liquid hold-up is independent of helix angle for small inclination angle values

(φ . 3◦). Based on the recommendation of the use of the lowest root, that this value

accurately corresponds to the horizontal values, and the conclusions of Banerjee et.

al. (1969), Xin et. al. (1996), and Mandal & Das (2002 & 2003) that inclination angle

has negligible effect on liquid hold-up of tightly wrapped helices, it is recommended

to use the horizontal condition in calculating the equilibrium heights used in the

stratified transition predictions of small inclination tightly wrapped helices.

A comparison of the stratified transition boundary for an example 0.0254 [m]

I.D. helical flow with varying coil to tube diameter ratios is shown in Fig. 4.21. The

general trend of a reduction in the stratified region in curved upward flows is depicted

in the figure. Figures 4.22, 4.23, 4.24, and 4.25 show comparisons of the the current

model’s prediction of the stratified to non-stratified transition, using the linear and

the curvature effects, and the published regime observations of Yan 1992, Ishikawa

2003, Saxena 1990, and Boyce 1969 respectively. Even though the authors of the

above mentioned studies are consistent in concluding that the intermittent regime

dominates more of the map than the stratified condition, as the curvature increases,

only Saxena (1990) reports actual stratified data. All studies, even those that did

not publish their data, concluded that the intermittent to annular transition changes

so that intermittent dominates more of the map. Reviewing Fig. 4.21, Fig. 4.22,

Fig. 4.23, Fig. 4.24, and Fig. 4.25, we see that the current model is in agreement with

both of these observations. The intermittent to annular transition moves in favor

of the intermittent regime, and the intermittent to stratified transition moves also

to favor the intermittent regime. These general trends are shown in Fig. 4.21 with

black arrows indicating increasing curvature. Since no new modeling was contributed

with respect to the annular-intermittent transition, no credit is taken and individual

comparisons are not made.

Review of the surface maps of the inversion angle, and the maps for the stratified

transitions, indicates that the stratified transition line would traverse along the region

of the inversion surface map where the inversion angle is approximately zero, i.e. no
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reinforcement and no stabilization of the stratified condition due to surface orienta-

tion. However, with increasing gas superficial velocity, the transition line traverses

along the region of the inversion surface where the inversion angle is negative. Specif-

ically, it is found that the surface orientation only has the opportunity to affect the

higher gas flow rate region by destabilizing the interface, while the destabilization of

the lower gas flow rates occurs due to the increased liquid hold-up. The combination

of these two effects is that for the entire range of flows, less of the stratified regime

is observed. This is in agreement with all the authors of previous works reported in

the literature review.
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Figure 4.21: Calculation of the stratified transition boundary for different curvature
ratios, for the case where linear components and gas phase curved friction multiplier
are considered turbulent, and the liquid phase curved friction multiplier is considered
laminar. Pipe diameter is 0.0254 [m], red line curvature ratio = 1E6, green line
curvature ratio = 100, blue line curvature ratio = 10, black line curvature ratio = 5.
Arrows indicate the trend of the transition line with increasing curvature.
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Figure 4.22: Calculation of the stratified transition boundary for Yan 1992 data. Pipe
diameter is 0.0083 [m], Coil to Tube Diameter Ratio = 9.
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Figure 4.23: Calculation of the stratified transition boundary for Ishikawa 2003 data.
Pipe diameter is 0.02 [m], Coil to Tube Diameter Ratio = 27.
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Figure 4.24: Calculation of the stratified transition boundary for Saxena 1990 data.
Pipe diameter is 0.01 [m], Coil to Tube Diameter Ratio = 11.
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Figure 4.25: Calculation of the stratified transition boundary for Boyce 1969 data.
Pipe diameter is 0.0318 [m], Coil to Tube Diameter Ratio = 48.
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5 CONCLUSIONS

5.1 Current Model

An extensive literature review was completed of the published works on fluid flows

in helical geometries. This has provided much insight into the characteristics of both

single and two-phase helical flows, and provided a foundation for the creation of fluid

models for this system. A general model was developed to treat centrifugal force

effects on the liquid hold-up, interface orientation, and transition between stratified-

intermittent/annular. All published helical flow studies are consistent in their obser-

vations that a stratified flow condition exists in slightly inclined helical flows, that

the intermittent regime dominates a greater range of flows than the stratified regime

as curvature effects are introduced, that the intermittent regime dominates a greater

range of flows than the annular regime as curvature effects are introduced, and that

liquid hold-up increases with increasing curvature. The current model is in agree-

ment with all observations and is an improvement over the previous approaches. The

current model provides additional insight into two-phase flow regime transitions of

helical coils and an improved method for predicting the major flow regimes observed

in helical flow, i.e. intermittent, annular, and stratified.

Specifically, it was found that the current calculated liquid hold-up values:

1. Agree with all published observations for the entire range of Lockhart/Martinelli

values for the downflow case.

2. Agree with published observations for the entire range of Lockhart/Martinelli

values in the case where pitch is negligible.

3. Agree with published observations for Lockhart/Martinelli values greater than

approximately 1 for all upwards inclinations of helix angles, when the liquid

curved friction factor is modified.

4. Agree with published observations for Lockhart/Martinelli values greater than

approximately 4 in the case where the helical angle results in a Y value of 20,

for an unmodified liquid curved friction factor.

5. Agree with published observations for Lockhart/Martinelli values greater than

approximately 9 in the case where the helical angle results in a Y value of 100,
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for an unmodified liquid curved friction factor.

6. Agree with published observations for Lockhart/Martinelli values greater than

approximately 30 in the case where the helical angle results in a Y value of

1000, for an unmodified liquid curved friction factor.

Specifically, it was found that the current calculated flow regime transitions:

1. Agree with all published observations that the stratified regime is suppressed

by intermittent flow for two-phase upflow in helices.

2. Agree with all published observations that the annular regime is suppressed by

intermittent flow for two-phase upflow in helices.

3. Correctly predicts additional non-stratified data points in comparison to the

linear model, for the data reported by all published data that was identified in

the literature review.

5.2 Future Work

A major handicap in evaluating the current model is the lack of experimental

observation. Where linear methods have a data base of approximately 20,000 labo-

ratory measurements to compare to, only a few hundred are currently published for

helical flows. Though work in this area has seen an increase in interest due to the use

of helical heat exchangers in the HTR-10 and the HTTR reactor designs, additional

flow regime observations are needed to evaluate available methods of predicting flow

regime transitions. Specifically, additional experimental observations at lower liquid

superficial velocities (jg < 0.1) for a range of curvatures should be studied to de-

termine the actual stratified transition location as a function of flow and geometric

parameters.

The current approach utilized a general formulation style for an orthogonal co-

ordinate system, such that the extension to a geometry which includes torsion is

possible. Section 2 showed that the study of helical two-phase flow is not at a very

mature point in its evolution. Detailed computational modeling of a helical two-phase

system could greatly benefit the understanding of how a given flow pattern may arise.
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NOMENCLATURE

English Letters

a coil radius [m]

A0 a/r0, coil to tube radius ratio [non-dimensional]

d0 tube diameter [m]

De Dean number

e internal energy

E3 Euclidean 3-space

f friction factor

Fr Froude number

H helicity

He helical number [non-dimensional]

j superficial velocity [m/s]

J Jacobian operation

k 2r0<w>
ν

(
r0

a

)1/2
Dean number as defined by White (1929)

m Mass [kg]

p coil pitch [m]

R r/a, non-dimensional radius

Rc r0/rc = R0/
(
1 + (p∗/2π)2)

R0 r0/a, tube to coil radius ratio [non-dimensional]

r radial distance from the duct centerline [m]

rc a
(
1 + (p/2π)2), radius of curvature [m]

r0 tube radius [m]

s distance along centerline of tube [m]

S The surface of a volume region in an integral, or the wetted perimeter.

u radial component of velocity [m/s]

v azimuthal component of velocity [m/s]

V Volume [m3]

w axial component of velocity, [m/s]

<> area average

Greek Letters
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Γijk Christoffel symbol of the first kind

Γi
jk Christoffel symbol of the second kind

δ differential value, or boundary layer thickness

ν kinematic viscosity

κ curvature of a smooth curve

ρ density [kg/m3]

τ shear stress or torsion

φ source term

ψ arbitrary quantity

Ψ stream function

Subscripts

, i The index comma denotes differentiation w/ respect to i, i.e. F,i = ∂F/∂xi

c coil

g gas

i indicates a coordinate direction or the interface, determined by context. In

tensor form this is often a superscript.

j index of the interfaces between phases

k phase index, either liquid or gas phase

l liquid

m mixture

s straight flow

TP two phase

w wall

Superscripts

(overbar) time averaged value, or denotes a new

coordinate frame

(double overbar) phase averaged value˜ (tilde) mass weighted mean value, or non-dimensional parameter

˙ (dot) flow rate of value or derivative with respect to a natural parameter,

e.g. ṁ would be mass flow rate in [kg/s] or dx
ds

′ (single prime) a linear flux or derivative, e.g. m′ would be linear mass flux

in [kg/ms] or dm
dx
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′′ (double prime) an area flux, e.g. m′′ would be mass flux in [kg/m2s]
′′′ (triple prime) a volume flux, e.g. m′′′ would be mass flux in [kg/m3s]
∗ non-dimensional quantity

~ vector



116

BIBLIOGRAPHY

1. Abram, J. Tensor Calculus, Through Differential Geometry, Butterworths Pub-
lishing, 1965.

2. Agrawal, S. S., G. A. Gregory, G. W. Govier, An Analysis of Horizontal Strat-
ified Two Phase Flow in Pipes, Can. J. of Chem. Eng., Vol. 51, p. 280,
1973.

3. Akagawa, K., T. Sadaguche, M. Ueda, Study on a Gas-Liquid Two-Phase flow
in Helically Coiled Tubes, Bulletin of the JSME, Vol. 14, p. 564, 1971.

4. Aris, R. Vectors, Tensors, and the Basic Equations of Fluid Mechanics, Dover
Publications, 1962.

5. Awwad, A., R. C. Xin, Z. F. Dong, M. A. Ebadian, H. M. Soliman, Measure-
ment and Correlation of the Pressure Drop in Air-Water Two-Phase Flow in
Horizontal Helicoidal Pipes, International Journal Multiphase Flow, Vol. 21, p.
607, 1995.

6. Baker, O., Design of Pipeline for Simultaneous Flow of Oil and Gas, Oil & Gas
Journal, July 1954.

7. Banerjee, S. E., A. M. Chan, Separated Flow Models I. Analysis of the Averaged
and Local Instantaneous Formulations, Int. Journal Multiphase Flow, Vol. 6,
p. , 1980.

8. Banerjee, S., E. Rhodes, D. S. Scott, Film Inversion of Cocurrent Two-Phase
Flow in Helical Coils , AIChE Journal, Vol. 13, p. 189, 1967.

9. Banerjee, S., E. Rhodes, D. S. Scott, Studies on Co-Current Gas-Liquid Flow
in Helically Coiled Tubes, I. Flow Pattern Pressure Drop and Hold-Up, Can. J.
of Chem. Eng., Vol. 47, p. 445, 1969.

10. Barnea, D., A Unified Model for Predicting Flow-Pattern Transitions for the
Whole Range of Pipe Inclinations, International Journal of Multiphase Flow,
Vol. 13, p. 1, 1987.

11. Barnea, D., Y. Taital, Structural and Interfacial Stability of Multiple Solutions
for Stratified Flow, Int. J. of Multiphase Flow, Vol. 18, p. 821, 1992.

12. Barua, S. N., On Secondary Flow in Stationary Curved pipes, Q. J. Mech. &
Appl. Math, Vol. 16, p. 61, 1963.

13. Berger, S. A., L. Talbot, S. S. Yao, Flow in Curved Pipes, Annual Review of
Fluid Mechanics, Vol. 15, p. 461, 1983.

14. Bonnecaze, R. H., W. Erskine, E. J. Greskovich, Holdup and Pressure Drop for
Two-Phase Flow Slug Flow in Inclined Pipes, AIChE Journal, Vol. 17, p. 1109,
1971.



117

15. Boyce, B. E., J. G. Collier, J. Levy,Hold-Up and Pressure Drop Measurements in
the Two-Phase Flow of Air-Water Mixtures in Helical Coils, Proc. Int. Symp.
On Research in Cocurrent Gas-Liquid Flow, University of Waterloo, p. 203,
1969.

16. Brodkey, R. S., The Phenomena of Fluid Motion, Addison-Wesley Publishing
Commpany, p. 466, 1967.

17. Carter, J. A., A Turbannular Flow Process for the Continuous Polymerisation
of 6.6 Nylon, AIChE, I. Chem. E Symposium Series No.3, p. 29, 1965.

18. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford Univer-
sity Press, 1961.

19. Chen, X., L. Guo, Flow Patterns and Pressure Drop in Oil-Air-Water Three-
Phase Flow Through Helically Coiled Tubes, International Journal of Multiphase
Flow, Vol. 25, p. 1053, 1999.

20. Chen, Y., Modeling Two-Phase Flow in Pipes: Flow Pattern Transitions and
Drift Flux Modeling, M.S. Thesis, Stanford University, 2001.

21. Collins, W. M., S. C. R. Dennis, The Steady Motion of Viscous Fluid in a
Curved Tube, Quarterly Journal of Mechanics and Applied Mathematics, Vol.
28, p. 133, 1975.

22. Dean, W. R., Note on the Motion of Fluid in a Curved Pipe, Phil. Mag., Vol.
4, 1927.

23. Dean, W. R., The Stream-Line Motion of Fluid in a Curved Pipe, Phil. Mag.,
Vol. 5, 1928.

24. Delhaye, J. M., Equations Fondamentales des Ecoulements Diphasique, CEA-
R-3429, (1) et (2), 1968.

25. Delhaye, J. M., General Equations of Two-Phase Systems and Their Application
to Air-Water Bubble Flow and to Steam-Water Flashing Flow, ASME Paper 69-
HT-63, 11th Heat Transfer Conference, Minneapolis, 1969.

26. Delhaye, J. M., P. Vernier, General Two-Phase Flow Equations Applied to Ther-
modynamics of Boiling Water Reactors, Energie Primaire, Vol. 4. No. 1, 1968.

27. Delhaye, J. M., Local Time Averaged Equations, Proceedings of NATO Ad-
vanced Study Institute, Two-Phase Flows and Heat Transfer, Vol. 1, p. 91,
1976.

28. Dennis, S. C. R., M. Ng, Dual Solutions for Steady Laminar Flow Through a
Curved Tube, Quarterly Journal of Mechanics and Applied Mathematics, Vol.
35, p. 305, 1982.

29. Dukler, A. E., M. Wicks, Gas-Liquid Flow in Conduits, in Modern Chemical
Engineering, (A. Acrivos ed.), Vol. 1, p. 345, Rheinhold, New York, 1963.



118

30. Dukler, A. E., J. A. Fabre, J. B. McQuillen, R. Vernon, Gas-Liquid Flow at Mi-
crogravity Conditions: Flow Patterns and Their Transitions, Int. J. Multiphase
Flow, vol. 14, p.389, 1988.

31. Etchells, A. W., Stratified Horizontal Two Phase Flow in Pipe, Ph.D. Thesis,
University of Delaware, 1970.

32. Eustice, J., Experiments on Stream-line Motion in Curved Pipes, Proc. Roy.
Soc. A, Vol. 85, p. 119, 1911.

33. Germano, M. The Dean Equations Extended to a Helical pipe Flow, Journal
Fluid Mechanics, Vol. 203, p. 289, 1988.

34. Germano, M., On the Effect of Torsion on a Helical Pipe Flow, Journal of Fluid
Mechanics, Vol. 125, p. 1, 1982.

35. Gilli, P. V., Heat Transfer Characteristics of Helical Tube Bundles as used in
Steam Generators of Gas-Cooled Reactors, 3rd Int. Conf. On Peaceful Uses of
Atomic Energy, Geneva Paper A/CONF.28/P/519, 1964.

36. Goering, D. J., The Influence of Curvature and Buoyancy in Three-Dimensional
Pipe Flows, Ph.D. Dissertation, University of California at Berkeley, 1989.

37. Gouse, S. W., An Introduction to Two-Phase Flow, MIT Report DSR873-3,
June 1964.

38. Govier, G. W., K. Aziz, Flow of Complex Mixtures in Pipes, Text by Van
Nostrand-Reinhold, New York, 1972.

39. Gratton, M., The Effects of Torsion on Anomalous Diffusion in Helical Pipe
Flow, Masters Thesis, Harvey Mudd College, 2002.

40. Grindley, J. H., A. H. Gibson, On the Frictional Resistance to the Flow of Air
through a Pipe, Proc. Roy. Soc., Vol. 80, p. 114, 1908.

41. Hamersma, P. J., J. Hart, A pressure Drop Correlation for Gas/Liquid Pipe
Flow With a Small Liquid Holdup, Chem. Engng. Sci., Vol. 42, p. 1187, 1987.

42. Hart, J., J. Ellenberger, P. J. Hamersma, Single and Two-Phase flow Through
Helically Coiled Tubes, Chemical Engineering Science, Vol. 43, p. 775, 1988.

43. Hart, J., J. Ellenberger, P. J. Hammersma, Single and Two Phase Flow Through
Helically Coiled Tubes, Chem. Eng. Sci., Vol. 43, p. 775, 1988.

44. Hayashi, T., Comparison of Heat Transport Capability of a Steam Generator
(SG) in a High-Temperature-Gas-Cooled Reactor With That of an SG in Other
Types of Reactors, Nuclear Technology, Vol. 78, 1987.

45. Hefferon, J., Linear Algebra, Free e-book, archived at http://joshua.smcvt.edu/linearalgebra/,
2003.

46. Hoogendoorn, C. J., Gas-Liquid Flow in Horizontal Pipes, Chem. Eng. Sci.,
Vol. 9, p. 205, 1959.



119

47. Huang, W., D. Gu, A Study of Secondary Flow and Fluid Resistance in Rect-
angular, Helical coiled Channel, Int. Chem. Eng., Vol. 29, p. 480, 1989.

48. Hsu, Y.Y., R. W. Graham, Transport Processes in Boiling and Two-Phase Sys-
tems, American Nuclear Society publication. 1986.

49. Isbin, H. S., Y. S. Su, Use of Mechanical Energy Balance for Two-Phase Flow,
Journal of American Institute of Chemical Engineers, Vol. 7, p. 174, 1961.

50. Ishii, M., Thermo-Fluid Dynamic Theory of Two-Phase Flow, Text - Eryolles
Paris, 1975.

51. Ishii, M., Drift Flux Model and Derivation of Kinematic Constitutive Laws,
Proceedings of NATO Advanced Study Institute, Two-Phase Flows and Heat
Transfer, Vol. 1, p. 91, 1976.

52. Ishikawa, M., H. Oiwa, K. Sakai, Y. Murai, S. Toda, K. Tamayama, F. Ya-
mamoto, Flow Structure and Pressure Loss of Two-Phase flow in Helically coiled
Tubes, Proceedings of 4th Joint ASME / JSME Fluids Engineering Conference,
p. 1453, 2003.

53. Ito, H., Friction Factors for Turbulent Flow in Curved Pipes, Trans. ASME
D81, p. 123, 1959.

54. Ito, H., Laminar Flow in Curved Pipes, Z. Angew. Math Mech., Vol. 49, p.
653, 1969.

55. Jenkins, R., M.Ch.E. Thesis, Univ. of Del., 1947 (As referenced in [30]).

56. Joseph, B., E. P. Smith, R. J. Adler, Numerical Treatment of Laminar Flow
in Helically Coiled Tubes of Square Cross Section, AIChE Journal, Vol. 21, p.
965, 1975.

57. Ju, H., Y. Zhang, Z. Huang, Z. Liu, J. Li, Y. Yu, Experimental and Operational
Verification of the HTR-10 Once-Through Steam Generator, Journal of Nuclear
Science and Technology, Vol. 41, p. 765, 2004.

58. Ju, H., Z. Huang, Y. Xu, B. Duan, Y. Yu, Hydraulic Performance of Small
Bending Radius Helical Coil-Pipe, Journal of Nuclear Science and Technology,
Vol. 38, p. 826, 2001.

59. Kao, H. C., Torsion Effect on Fully Developed Flow in a Helical Pipe, Journal
Fluid Mechanics, Vol. 184, p. 335, 1987.

60. Kasturi, G., J. B. Stepanek, Two Phase Flow I & II. Pressure Drop and Void
Fraction Measurements in Cocurrent Gas-Liquid Flow in a Coil,, Chemical En-
gineering Science, Vol. 27, p. 1871, 1972.

61. Keshock, E. G., C. S. Lin, M. E. Harrison, L. G. Edwards, J. Knapp, X. Zhang,
Measurement of Two-Phase Flow Characteristics Under Microgravity Condi-
tions, 4th Microgravity Fluid Physics & Transport Phenomena Conference,
1998.



120

62. Kocamustafaogullari, G., Thermo-Fluid Dynamics of Separated Two-Phase Flow,
Ph. D. Dissertation, Georgia Institute of Technology, 1971.

63. Koutsky, J. A., R. J. Adler, Minimization of Axial Dispersion by Use of Sec-
ondary Flow in Helical Tubes, Canadian Journal of Chemical Engineering, Vol.
42, p. 239, 1964.

64. Kutaleladze, S. S., Heat Transfer in Condensation and Boiling, Moscow, AEC-
TR-3770, USAEC Technical Information Service, 1952.

65. Lamb, D. E., J. L. White, Use of Momentum and Energy Equation in Two-
Phase Flow, Journal of American Institute of Chemical Engineers, Vol. 8, p.
281 1962.

66. Lavine, A. G., A Three-Dimensional Analysis of Natural Convection in a Toroidal
Loop, Ph.D. Dissertation, University of California, Berkeley, 1984.

67. Linehan, J. H., The Interaction of Two-Dimensional, Stratified, Turbulent Air-
Water and Steam-Water Flows, Argonne National Laboratory Report ANL-
7444, Argonne Illinois, 1968.

68. Lipschultz, M., Differential Geometry, Schaum’s Outline Series, McGraw-Hill,
1969.

69. Liu, S., A. Afacan, H. A. Nasr-El-Din, J. H. Masliyah, An Experimental Study
of Pressure Drop in Helical Pipes, Proceedings of the Royal Society of London.
Series A, Vol. 444, p. 307, 1994

70. Lockhart, R. W., R. C. Martinelli, Proposed Correlation of Data for Isothermal
two-Phase, Two-Component Flow in Pipes, Chemical Engineering Progress, Vol.
45, p. 39, 1949.

71. Lum, Y. L., J. Lovick, P. Angeli, Low Inclination Oil-Water Flows, Canadian
Journal of Chemical Engineering, Vol. 82, p. 303, 2004

72. Mandal, S. N., S. K. Das, Gas-Liquid Flow Through Coils, Proceedings of the
9th APCChE Congress & CHEMECA 2002, p. 198, 2002.

73. Mandal, S. N., S. K. Das, Gas-Liquid Flow Through Helical Coils in Vertical
Orientation, Ind. Eng. Chem. Res., Vol. 42, p. 3487, 2003.

74. Mandal, S. N., S. K. Das, Gas-Liquid Flow Through Helical Coils in Horizontal
Orientation, Canadian Hournal of Chemical Engineering, Vol. 80, p. 979, 2002.

75. Mandhane, J. M., G. A. Gregory, K. Aziz, A Flow Pattern Map for Gas-Liquid
Flow in Horizontal Pipes, International Journal Multiphase Flow, Vol. 1, p.
537, 1974.

76. Manlapaz, R. L., S. W. Churchill, Fully Developed Laminar Convection From a
Helical Coil, Chem. Eng. Communications, Vol. 9, p. 185, 1981.

77. Manlapaz, R. L., S. W. Churchill, Fully Developed Laminar Flow in a Helically
Coiled Tube of Finite Pitch, Chemical Engineering Communications, Vol. 7, p.
57, 1980.



121

78. Martinelli, R.C., D. B. Nelson, Prediction of pressure drop during forced circula-
tion boiling of water, Transactions, American Society of Mechanical Engineers,
Vol. 70, p. 695, 1948.

79. Matteo, C., Mechanistic Modeling of Slug Dissipation in Helical Pipes,, Masters
Thesis, University of Tulsa, 2003.

80. McConalogue, D. J., R. S. Srivastava, Motion of a fluid in a curved tube, Pro-
ceedings of the Royal Society of London. Series A, Vol. 307, p. 37, 1968.

81. Milne-Thomson, L. M., Theoretical Hydrodynamics, Macmillan Company, New
York, 1960.

82. Minton, P. E., Designing spiral-Tube Heat Exchangers, Chemical Engineering,
p. 145, 1970.

83. Mishra, P., S. N. Gupta, Momentum transfer in curved pipes. 1. Newtonian
Fluids, Int. J. Heat Mass Transfer, Vol. 8, p. 67, 1979.

84. Mori, Y., W. Nakayama, Study on Forced Convection Heat Transfer in Curved
Pipes, International Journal Heat and Mass Transfer, Vol. 8, p. 67, 1965 .

85. Morton, F., P. J. King, A. McLaughlin, Helical Coil Distillation Columns Parts
I-II, Trans. Instn. Chem. Engrs., Vol. 42, p. 285, 1964.

86. Mujawar, B. A., M. Raja Rao, Gas-Non-Newtonian Liquid Two-Phase Flow in
Helical Coils, Ind. Eng. Chem. Process Des. Dev., Vol. 20, p. 391, 1981.

87. Murata, S., Y. Miyake, T. Inaba, H. Ogawa, Laminar Flow in a Helically Coiled
Pipe, Bulletin JSME, Vol. 24, p. 355, 1981.

88. Nandakumar, K., J. H. Masliyah, Bifurcation in Steady Laminar flow Through
Curved Tubes, Journal of Fluid Mechanics, Vol. 119, p. 475, 1982.

89. Oiwa, H., Y. Murai, M. Ishikawa, Y. Yamamoto, Numerical Analysis of Bubbly
Flow in Helical Tubes, Proceedings of the 15th Symposium on CFD, C14-3, p.
1, 2001.

90. Peebles, F. N., H. J. Garber, Studies on the Motion of Gas Bubbles in Liq-
uids,Chemical Engineering Progress, Vol. 49, p. 88, 1953.

91. Petalas, N., Aziz, K., A Mechanistic Model for Stabilized Multiphase Flow
in Pipes,, CIM 98-39, Proceedings, 49th Annual Technical Meeting of the
Petroleum Society of the CIM, Calgary, Alberta, Canada, June 8-10, 1998.

92. Petalas, N., Aziz, K., A Mechanistic Model for Multiphase Flow in Pipes, Jour-
nal of Canadian Petroleum Technology, Vol. 39, p. 43, 2000.

93. Quanping, Y., G. H. Hu, Development of a Helical Coordinate System and
its Application to Analysis of Polymer Flow in Screw Extruders. Part I. The
Balance Equations in a Helical Coordinate System, Journal of Non-Newtonian
Fluid Mechanics, Vol. 69, p. 155, 1997.



122

94. Rangacharyulu, K., G. S. Davies, Pressure Drop and holdup Studies of Air-
Liquid Flow in Helical Coils, The Chemical Engineering Journal, Vol. 29, p.
41, 1984.

95. Rippel, G. R., C. M. Eidt, H. B. Jordan, Two Phase Flow in Coiled Tube, Ind.
Eng. Chem. Proc. Des. Dev., Vol. 5, p. 32, 1966.

96. Ros, N. C. J., Simultaneous Flow of Gas and Liquid as Encountered in Well
Tubing, Journal of Petroleum Technology, Vol. 13, p. 1037, 1961.

97. Saxena, A. K., A. Schumpe, K. D. P. Nigam, W. D. Deckwer, Flow Regimes,
Hold-up and Pressure Drop for Two Phase Flow in Helical Coils, The Canadian
Journal of Chemical Engineering, Vol. 68, 1990.

98. Scott, D. S., Properties of Concurrent Gas-Liquid Flow, Advances in Chemical
Engineering, Vol. 4, p. 199, Academic Press, 1963.

99. Sharipov, R. A., Quick Introduction to Tensor Analysis, Online Distributed
Notes, Online archive http://uk.arxiv.org/, 2004.

100. Soeberg, H., Viscous Flow in Curved Tubes: I. Velocity Profiles, Chemical En-
gineering Science, Vol. 43, p. 855, 1988.

101. Sokolnikoff, L. S., Tensor Analysis: Theory and Applications to Geometry and
Mechanics of Continua, John Wiley & Sons, 1964.

102. Spedding, P. L., J. J. J. Chen, V. T. Nguyen, Pressure Drop in Two Phase
Gas-Liquid Flow in Inclined Pipes, Int. J. Multiphase Flow, Vol. 8, p. 407,
1981.

103. Spiegel, M. R., Vector Analysis - And an Introduction to Tensor Analysis,
Schaum’s Outline Series, McGraw-Hill, 1959.

104. Taitel, Y., A. E. Dukler, A Model for Predicting Flow Regime Transitions in
Horizontal and Near Horizontal Gas-Liquid Flow, AIChE Journal, Vol. 22, p.
47, 1976.

105. Taitel, Y., N. Lee, A. E. Dukler, Transient Gas-Liquid Flow in Horizontal Pipes:
Modeling the Flow Pattern Transitions, AIChE, Vol. 24, p. 920, 1978.

106. Taylor, G. I., The Criterion for Turbulence in Curved Pipes, Proceedings of the
Royal Society of London. Series A, Vol. 124, p. 243, 1929

107. Thome, J. R., J. E. Hajal, Two-Phase Flow Pattern Map for Evaporation in
Horizontal Tubes: Latest Version, Heat Transfer Engineering, Vol. 24, p. 3,
2003.

108. Thomson, J., LL. D., F. R. S. E., On the Origin of Windings of Rivers in
Alluvial Plains, with Remarks on the Flow of Water Round Bends in Pipes,,
Proceedings of the Royal Society of London. Series A, Vol. 25, p. 5, 1876.

109. Todreas, N. E., M. S. Kazimi, Nuclear Systems I: Thermal Hydraulic Funda-
mentals, Hemisphere Publishing text, 1989.



123

110. Truesdell, C., Mechanical Basis of Diffusion, Journal of Chemical Physics, Vol.
37, p. 2336, 1962.

111. Truesdell, L. C., R. J. Adler, Numerical Treatment of Fully Developed Laminar
Flow in Helically Coiled Tubes, AIChE Journal, Vol.16, p. 1010, 1970.

112. Tung, T. T., R. L. Laurence, A Coordinate Frame for Helical Flows, Polymer
Engineering and Science, Vol. 15, p. 401, 1975.

113. Tuttle, E. R., Laminar Flow in Twisted Pipes, Journal of Fluid Mechanics, Vol.
219, p. 545, 1990.

114. Uddin, A. K. A Model To Predict Two-Phase Flow Patterns in Helically Coiled
Tubes, Miami International Symposium on Multiphase Transport and Particu-
late Phenomena, p. 219, 1988.

115. Van Dyke, M. Extended Stokes Series: Laminar Flow Through a Loosely Coiled
Pipe, Journal of Fluid Mechanics, Vol. 86, p. 129, 1978.

116. Vohr, J., The Energy Equation for Two-Phase Flow, Journal of American In-
stitute of Chemical Engineers, Vol. 8, p. 280, 1962.

117. Wallis, G. B., One Dimensional Two-Phase Flow, McGraw-Hill, New York,
1969.

118. Wang, C. Y., On the Low-Reynolds-Number Flow in a Helical Pipe, Journal
Fluid Mechanics, Vol. 108, p. 185, 1981.

119. Wang, J. W., J. R. G. Andrews, Numerical simulation of flow in Helical Ducts,
AIChE Journal, Vol. 41, p. 1071, 1995.

120. Webster, D. R., J. A. C. Humphrey, Traveling Wave Instability in Helical Coil
Flow, Phys. Fluids, Vol. 9, p. 407, 1997.

121. Whalley, P. B., Air-Water Two-Phase Flow in a Helically Coiled Tube, Journal
of Multiphase Flow, Vol. 6, p. 345, 1980.

122. White, C. M., Streamline Flow Through Curved Pipes, Proc. Royal Soc., A123,
p. 645, 1929.

123. Wu, Q., M. Ishii, Interfacial Wave Stability of Concurrent Two-Phase Flow in
a Horizontal Channel, Int. J. Heat Mass Transfer, Vol. 39, p. 2067, 1996.

124. Xiao, J. J., O. Shoham, J. P. Brill, A Comprehensive Mechanistic Model for
Two-Phase Flow in Pipelines, Paper SPE 20631, 65th ATC&E of SPE, New
Orleans, 1990.

125. Yan, A., Study of Two-Phase Flow Patterns and Frictional Pressure Drop in
Helical and Spiral Coils, Masters Thesis, University of Tennessee, Knoxville,
1992.

126. Zabielski, L., A. J. Mestel, Steady Flow in a Helically Symmetric Pipe, Journal
Fluid Mechanics, Vol. 370, p. 297, 1998.



124

127. Zuber, N., The Effects of Non-uniform Flow and Concentration Distributions
and the Effect of the Local Relative Velocity on the Average Volumetric Con-
centration in Two-Phase Flow, GEAP-4542, General Electric Co., 1964.
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APPENDIX

A – Coordinate Formulation Background

The review of literature on helical flow modeling (Sec. 2.6) exposed contention with

respect to what is the correct helical coordinate system, and each author has their own

opinion as to the answer. It is in the mathematics and models that the opinions of

the different authors play out. For the most part the statements are understandable

and the ideas easily followed. However, when the the works of Sec. 2.6 were first

read by the author of this dissertation, some objects were not fully understood. In

hopes of fostering better understanding, some background concepts are discussed

here. Information for this subsection is derived from Aris (1962), Abram (1965),

Tung & Laurence (1975), Hefferon (2003), and Sharipov (2004). Since the concepts

are general and the merger of ideas from all the sources, individual references are not

given in this subsection. The concepts covered are:

• The need for coordinate systems which match the geometry of the flow.

• Curvilinear coordinate systems, as the helical system is curvilinear.

• The basis and dual basis coordinate systems.

• The definition and physical importance of the Jacobian.

• Contravariant and covariant objects.

• Metric tensors.

• Christoffel symbols.

The discussion in Section 2.6 is concerned with the proper description of a curved

flow field. This flow lives in the same 3-space as the rest of us, but has the distinction

that its path is shaped to follow a symmetrically advancing curve through 3-space.

Since it exists within this confinement, it is advantageous to describe its motion by

a locally concise system. An example would be using a polar coordinate system

instead of a Cartesian system, for describing the velocity distribution of a circular

pipe, see Fig A.1. In this example, the Cartesian cross-stream velocity gradient is

not always aligned with one of the coordinate directions, which introduces difficulty

in formulating things like the shear stress at the wall. For this reason, circular pipe
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flow is often formulated in polar cylindrical coordinates. For similar reasons, helical

flow is most often formulated in toroidal coordinates.

y
x

θ
r

O

P

O

P

Figure A.1: Example of using Cartesian and Polar coordinate systems for describing
the cross-section of a pipe. The pipe wall is shown in red.

What makes a given system curvilinear or not has to do with what are called

coordinate curves or lines. These are the curves in space generated by holding two

of the three coordinates constant, and varying the third. The Cartesian description

of space creates straight coordinate lines for each of the three coordinates, where the

cylindrical and spherical coordinate systems both produce at least one coordinate

curve that is not a straight line. For this reason, the latter two are what we call

curvilinear systems. Extending this idea, coordinate planes can be created by holding

one coordinate constant and varying the other two. This creates surfaces in space that

are flat and parallel to the coordinate direction for a rectilinear system and surfaces

with curvature in a curvilinear system. Coordinate curves for Cartesian and polar

spherical systems are shown in Fig. A.2. It is found that all systems describing helical

flow are curvilinear, and that the same vector entity placed at two different locations

in a curvilinear system will have different vector components, which motivates the

description of these objects.

Aris (1962) justifies developing tensor analysis, when he states “. . . tensor calculus

is the natural language of continuum or field theories . . . (hence also) fluid mechanics”.

And in the case of helical flow, tensor methods are found to be indispensable. Tensor

analysis is based on linear algebra, vector spaces, the explicit consideration of the

basis, and centered on identification of an object’s behavior under transformation.

Vector space is an extension of the simpler scalar space, which is the geometric space

that we live in, and can be developed by first looking at scalar space. The model

of scalar space was originally formalized in the work Elements by Euclid in the 3rd
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Figure A.2: Example of Cartesian and Polar Spherical coordinate curves, shown in
red. Cartesian curve is generated by varying the y coordinate, and the spherical curve
is for varying the φ coordinate.

century B.C. For this reason, you will often hear reference to Euclidean 3-space (E3)

when reading physics or math texts. The elements to which Euclid spoke are the

point, line, and plane, and the definition of E3 was formed by compliance to 5 axioms

that describe the relations of belonging, betweeness, and congruence of these elements.

An interesting point on Euclid’s work is that the original postulates did not hold up

under all tests it has underwent, and over the past 2000 years the axioms have been

increased in number to 20.

Vital to using a particular system is the definite description of all the positions

residing within the system. Identification of positions within space begins with first

choosing an origin as a reference location, then giving the position in relation to this

origin. The choice of the origin is quite arbitrary, and can be placed at the whim

of the researcher (though some placements obviously have advantages). Referencing

the location of a point in space to this origin is easily carried out by introducing

the concept of vectors, and vector space. Vector space is a necessary framework for

vectors to exist logically, and is defined by two operations. The operations are vector

summation and/or scalar multiplication, and result in an object who is also a member

of the set. The gist of these rules can be stated mathematically by Eqs. A.1, for the

set of vectors V . These are referred to as the vector space closure rules.

u ∈ V for all u = v + w (A.1a)
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u ∈ V for all u = r · v where r ∈ R (A.1b)

The addition rule is defined in such a way that the combination of any three non-

coplanar vectors can definitely describe a general vector in space. When non-coplanar

vectors are used for describing vectors they are referred to as the basis of the system.

It is usual that the basis are unit length vectors aligned with the coordinate axes.

Then the vector components of the displacement vector are simply scaler multiples of

these base vectors. In Figure A.2, the origin is labeled point (O), the point in space

as (P), and the base vectors are colored line segments with arrowheads. Figure A.3

depicts the components of the displacement vector (dx, and dy), the base components

of a velocity vector located at point P (vx, and vy), and the basis vectors of the x

and y coordinate axes (ex, and ey). As shown in the figure, the vector components

are parallel to the basis vectors and differ only in length. The length is described by

a scalar multiplication factor. When the basis vectors are constructed in a rectilinear

system like the Cartesian system, they transform simply and vector functions can

be described by parallel translation to the origin then compared to the system basis.

This translation of the velocity vector to the origin is visualized in Fig. A.3, and

the equations for the position and velocity vectors are given in Eqs. A.2. Items in

boldface (x) or with an overarrow (~x) are vector quantities, and those without are

scalar quantities. Note that the basis vectors (ei) can be functions of position, and

are required to be independent. Independence is quickly described as the case that

any one of the bases cannot be expressed in terms of the other bases.

d = dx + dy = dxex + dyey (A.2a)

v = vx + vy = vxex + vyey (A.2b)

The example is extended to three dimensions, and a simplifying convention is

introduced that is an indispensable part of tensorial methods. This convention is

simply a rule that repeated Latin indices (i, j, k) on one side of the equality, one in

the upper and one in the lower index position, are summed over the values of 1, 2, and

3; repeated Greek (α, β, γ), with one in the upper and one in the lower index position,

are summed over the values of 1 and 2. It should be said that in rectilinear systems,

the summation convention is used loosely, and summation is often carried out over

two lower, two upper, or upper and lower positioned indices. When an index is not

repeated on one side of the equation, it is not summed and can take on any of the



129

P

y

x

y

x

d

e
x

e
y

d
x

d
y

v

v
y

y

e
x

e
y

MOVE VELO
CITY

VECTOR TO ORIGIN
v

v
x

Figure A.3: A nice attribute of the Cartesian coordinate system, transformation of
basis vectors does not change them, i.e. they are not dependent on position.

available values. These two types of indices are referred to as dummy and free indices,

respectively. The exclusion of the explicit summation symbol and use of repetition to

indicate the free and dummy indices was first proposed by Einstein, and is referred

to as Einstein notation. The use of this convention is shown in Equation A.3, which,

when applied to Eqs. A.2, simplifies the form greatly. Here a general vector r is also

used.

r = rx + ry + rz = rxex + ryey + rzez =
3

i=1

riei = riei (A.3)

It is not necessary to use mutually orthogonal base vectors for describing space,

and any triad that is non-coplanar can be setup as the basis. The non-coplanar

character is ensured when the result of taking the triple scalar product is non-zero

(this is discussed in more detail below). In addition, when working in a general system

that is not restricted to an orthogonal Cartesian basis, a second different basis can

be be created. This new basis is defined with the orthogonality of Eq. A.4, where the

individual bases would be giren by Eqs. A.5. In Eqs. A.4 & A.5, E is the triple scalar

product and δi
j is the Kronecker delta that is unity when i = j and zero when i = j.

ei · ej = δi
j (A.4)

e1 =
e2 × e3

E
(A.5a)
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e2 =
e3 × e1

E
(A.5b)

e3 =
e1 × e2

E
(A.5c)

To ask the question as to why go through the trouble of defining an extra basis

is natural, and Abram (1965) offers the explanation that many reasons exist, but the

only obvious ones are that it provides a second method of expressing any given vector

and that it simplifies the form of the scalar products of vectors in non-orthogonal

systems to one that is similar to that found in orthogonal systems. When one moves

to using a dual basis system, the customary Cartesian habit of only placing indices

in the lower positions is found to be insufficient. This custom is based on the fact

that the difference between the two bases does not exist in the Cartesian system.

Operating in a curvilinear system requires more attention to ensure that a proper

transformation of objects takes place. Why this is the case is easily visualized by

comparing the basis for the Cartesian and spherical polar coordinates of Fig. A.2.

The figure makes it obvious that any rotation in φ or θ would create completely

different basis in the curvilinear system; and using the parallel transformation, like

that done for the velocity vector in the Cartesian system example, would produce

nonsensical results (see Fig. A.4).
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Figure A.4: Translation of basis vectors in a curvilinear system does not produce
sensible results without proper transformation.

Proper transformations are defined as those that can be inverted to return to

the original coordinate system, i.e. a change from x, y, z to x̄, ȳ, z̄, by the relation
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x̄i = x̄i (x, y, z), does not inhibit the change from x̄, ȳ, z̄ to x, y, z, by the relation

xi = xi (x̄, ȳ, z̄). This is ensured if the Jacobian between the systems exists and is

non-zero. To describe what this means in layman terms, one looks to the physical

interpretation of the Jacobian as the ratio of the volume elements in the two systems

(dV̄/dV ). This not only makes clear the requirement that it have a non-zero value,

i.e. that a finite volume of one system will not collapse to a point in the other

system, but also implies its relationship to dilation and compressibility of fluids. This

physical interpretation of the Jacobian, and definition of its mathematical form, is

motivated by asking the following question: what is the differential volume at some

new coordinates, given a differential volume at the original coordinates? To answer

this question, take the original differential volume as dV = dxdydz, and the new

differential volume as dV̄ = dx̄dȳdz̄. Then the chain rule of differentiation, the scalar

product, vector product, and scalar triple products are defined. These definitions are

written out in Eqs. A.6.

dx̄i =
∂x̄i

∂xj
dxj differentiation chain rule (A.6a)

u · v = uivi scalar product (A.6b)

u× v = εijkujvk vector product (A.6c)

u · (v × g) = εijkuivjgk scalar triple product (A.6d)

The vector product of two vectors (v,g) is physically a parallelogram surface

constructed of the two vectors; where the normal is perpendicular to both vectors

and its magnitude is equal to the area of the surface. The scalar product of third

vector (u) with this surface’s normal gives the projection of the normal onto the third

vector, i.e. the height of a parallelopiped volume whose sides are constructed with the

three vectors. This provides the physical interpretation of the scalar triple product,

which can be used for calculating the differential volume after the change to new

coordinates. This is done by using Eq. A.6d to interpret the volume dV̄ = dx̄dȳdz̄,

and noting x̄i = x̄, ȳ, z̄ for (i = 1, 2, 3). Then Eq. A.6a is substituted into that result

to yield the Jacobian of the transformation of variables (see Eqs. A.7). Note that x̄3

is not x cubed, as the upper index is indicating the component and not the exponent,

etc.

dV̄ = dx̄ · (dȳ × dz̄) = dx̄1 ·
(
dx̄2 × dx̄3

)
= εijkdx̄

idx̄jdx̄k (A.7a)
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dV̄ = εijk
∂x̄i

∂x1
dx1 ∂x̄

j

∂x2
dx2∂x̄

k

∂x3
dx3 = Jdx1dx2dx3 = JdV (A.7b)

J = εijk
∂x̄i

∂x1

∂x̄j

∂x2

∂x̄k

∂x3
=
dV̄

dV
(A.7c)

As pointed out earlier, objects in a general system can behave in one of two ways,

and the distinction is made between these two classes of objects by how they trans-

form. The first class are the contravariant objects and their components transform

according to Eq. A.8; the second class are the Covariant objects and their compo-

nents transform with coordinates according to Eq. A.9. Here, xi are the independent

parameters (coordinates) and vi the vector components. It is important to note that

the terms contravariant and covariant are terms that refer strictly to components of

tensors . The contravariance was simply defined as the rule of partial differentiation

of coordinates whose indices were arbitrarily always taken to be superscripts. Con-

sidering this rule and the contravariant definition, Eq. A.6a & Eq. A.8 respectively,

makes clear that the coordinates xi are themselves only components of a con-

travariant vector when transformations between xi and x̄i are linear , i.e.

x̄i = ai
jx

j where ai
j = ∂x̄i

∂xj is a constant. Since it is only in the linear transformation

case that this is true, for all other cases the fact that the coordinates are written

with a superscript index can cause confusion, and it must be remembered that they

are not components of contravariant vectors. However, the differentials of the coordi-

nates are comply with Eq. A.8, and as such are contravariant object, i.e. the higher

derivatives of the coordinates (e.g. velocity & acceleration) are contravariants. Also,

in the notation of all other objects with superscript indices, the objects are consid-

ered components of contravariant tensors. This is not made clearly in most texts on

tensor analysis, so one must think about it a little before ploughing ahead calling

space coordinates contravariant objects. Detailed information on the transformations

and their requirements are given in the second and seventh chapters of Abram (1965)

and Aris (1962), respectively.

v̄i =
∂x̄i

∂xj
vj (A.8)

v̄i =
∂xj

∂x̄i
vj (A.9)

With a little thought, it comes to light that quantities that are differentials and

derivatives fit as contravariance and covariance objects; more to the point, objects
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that are gradients OF spatial position are contravariant objects (dxi in the nu-

merator; like position differential, velocity, and acceleration), and objects that are

gradients IN spatial position are covariant objects (dxi in the denominator; like

a concentration gradient & temperature gradient). Additionally, these objects are de-

fined for higher order tensors, and for mixed types. The transformation rules for 2nd

order contravariant, covariant, and mixed contravariant/covariant tensors are given

in Eq. A.10, Eq. A.11, and Eq. A.12 respectively. An example of a mixed vector is

the Kronecker delta; as seen by thinking about the way the definition of this object

with respect to the independent coordinates would transform, δ̄i
j = ∂x̄i

∂x̄j = ∂x̄i

∂xl
∂xm

∂x̄j δ
l
m.

v̄ij =
∂x̄i

∂xl

∂x̄j

∂xk
vlk (A.10)

v̄ij =
∂xl

∂x̄i

∂xk

∂x̄j
vlk (A.11)

v̄i
j =

∂x̄i

∂xl

∂xk

∂x̄j
vl

k (A.12)

The reader should be getting the feeling that tensorial mathematics is heavily con-

cerned with transformations and their effects on the description of objcts in space.

This impression is correct and actually leads into the last two related concepts: the

metric tensor and Christoffel symbols. The word metric is defined as a form of mea-

surement within space, be it flat or curved, and the metric tensor is based on the

concept of length or distance, using a specific representation of space. A terse intro-

duction of this object is achieved by considering the distance ds between a point with

coordinates uj and a neighboring point at the location uj + duj, in the E3 Cartesian

space. Then the distance is given by the Pythagorean rule ds2 =
∑3

j=1 dy
jdyj. Since

we are entering into more rigorous tensorial territory, we apply strictly the tensorial

summation rule such that it is only affected for repeated indices in the upper to lower

(or vis versa) locations, and an explicit summation symbol is used. The differentation

chain rule of Eq. A.6a is used to affect a transformation to the general curvilinear co-

ordinates uj. This results in Eq. A.13, and is an example of transformation methods

in tensor analysis. One should note that i of ui is a free index, so the first differentia-

tion is put with respect to i and the second with respect to k. The result is the form

of Eq. A.14 for a curve’s path length due to infinitesimal coordinate increments, and



134

Eq. A.15 for the metric tensor.

dȳi =
∂ȳj

∂ui
dui into ds2 =

3∑
j=1

dyjdyj results in ds2 =
3∑

j=1

∂ȳj

∂ui
dui ∂ȳ

j

∂uk
duk (A.13)

ds2 = gikdu
idkk (A.14)

gik =
3∑

j=1

∂ȳj

∂ui

∂ȳj

∂uk
=
∂ȳj

∂ui

∂ȳj

∂uk
(A.15)

As was found with all the Cartesian methods discusssed so far, it is also found

that the normal differentiation method is insufficient for general tensor analysis. All

the references listed at the beginning of this Appendix give examples of this situation.

To handle the general case of differentiation, especially in curvilinear coordinates, a

set of objects called the Christoffel symbols of the first and second kind are defined.

These definitions are given in Eq. A.16 and Eq. A.17, respectively.

Γijk =
1

2

(
∂gik

∂xj
+
∂gjk

∂xi
− ∂gij

∂xk

)
(A.16)

Γi
jk = girΓjkr (A.17)

where gijg
jk = δi

k
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B – Vector Operator Development

The forms for the vector operations required to evaluate Eq. 3.11 for the current

coordinate system, and defined by the scale factors developed in Sec. 3, are developed

in this section. The scalar factors are repeated in Eq. B.1. A short development of the

gradient operator is provided as background for the concepts applying to curvilinear

coordinates, and the general forms for the inner product of a vector with the gradient

of a vector, and the Laplacian of a vector, are taken from Schaum’s Outline - Vector

Analysis (1959), as their development is standard. They are also readily found in

many standard vector analysis texts. These operators are then made specific to the

current system by application of the current scalar factors.

hi =

 1
r
N

 (B.1)

where N = (a+r cos θ)
a

= (1 + rκ cos θ)

The relationship of the vector operators can be defined as functions of the scalar

factors by considering the definition of the scalar factors given by Eqs. B.2, and

the definition of a unit tangent vector along the general curve x in the coordinate

directions as given by Eqs. B.3. These concepts lead to the differential of the position

vector for curvilinear orthogonal coordinates given by Eq. B.4, and the differential

arc length ds2 given by Eq. B.5, which is simply the orthogonal version of the more

general tensor form used to find the metric tensor in Sec. 3. This is also the form

that provides the relationship between the metric tensor and the scalar factors used

in that section to justify the use of the vector form of the Navier-Stokes equations in

the current development.

hr =

∣∣∣∣∂x∂r
∣∣∣∣ ; hθ =

∣∣∣∣∂x∂θ
∣∣∣∣ ; hs =

∣∣∣∣∂x∂s
∣∣∣∣ (B.2)

er =
∂x
∂r∣∣∂x
∂r

∣∣ ; eθ =
∂x
∂θ∣∣∂x
∂θ

∣∣ ; es =
∂x
∂s∣∣∂x
∂s

∣∣ (B.3)

dx =
∂x

∂r
dr +

∂x

∂θ
dθ +

∂x

∂s
ds (B.4)
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= hrdrer + hθdθeθ + hsdses (.)

ds2 = dx · dx = h2
rdr

2 + h2
θdθ

2 + h2
sds

2 (B.5)

The gradient operator is written for any scalar, vector, or tensor function (Φ, Φi, or

Φij), as Eqs. B.6. Here the functions are taken to be of the current system (r, θ, s). It

is obvious from the forms that the gradient operator increases the rank of the object

it operates on. Review of the general vector form of the Navier-Stokes equations,

Eq. 3.11, shows that the gradient of a scalar (∇p), the inner product of a vector

with the gradient of a vector (v · ∇v), and the Laplacian of a vector (∇2v) are re-

quired. Considering the gradient of a scalar (∇p), Eq. B.6a is expanded for curvilinear

coordinates.

∇Φ = ∂kΦ(r, θ, s) = frer + fθeθ + fses (B.6a)

∇Φi = ∂kΦi(r, θ, s) =
∑

i=r,θ,s

firer + fθreθ + fsres (B.6b)

∇Φij = ∂kΦij(r, θ, s) =
∑

j=r,θ,s

∑
i=r,θ,s

fijrer + fijθ
eθ + fijses (B.6c)

The functions in the (r, θ, s) directions can be found by writing the total derivative

of a scalar as ∇Φ · dx, where dx is defined by Eq. B.4, see Eq. B.7.

dΦ = ∇Φ · dx = (frer + fθeθ + fses) · (hrdrer + hθdθeθ + hsdses)

= frhrdr + fθhθdθ + fshsds (B.7)

Since the total derivative of a scalar field is given by Eq. B.8, comparison of

Eq. B.7 with Eq. B.8 indicates that fr = 1
hr

∂Φ
∂r

, fθ = 1
hθ

∂Φ
∂θ

, and fs = 1
hs

∂Φ
∂s

, and

Eq. B.6a can be written as Eq. B.9, where (hr, hθ, hs) are the scalar factors given by

Eq. B.1. The forms for the the inner product of a vector with the gradient of a vector

and the Laplacian of a vector follow similar developments. The general forms for the

Laplacian of a scalar, Laplacian of a vector, and vector-dot-gradient-vector are given

in Eq. B.10, Eq. B.11, and Eq. B.12, respectively. See Schaum’s Outline - Vector

Analysis (1959) and Georing (1989) for examples. Note the form of the gradient of

a scalar is also given on page 137 of the Schaum’s Outline, and matches the form
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developed here. Often, as is the case with the two references of this paragraph, not

all components of the general forms are given, due to their length; however, all three

coordinate direction components are shown here for verification. The er term of the

∇2Φi and Φi ·∇Φi operators are provided by Goering (1989); the eθ and es terms are

generated by cyclic permutation of the indices (shown in Eq. B.11 and Eq. B.12) and

developed below.

dΦ =
∂Φ

∂r
dr +

∂Φ

∂θ
dθ +

∂Φ

∂s
ds (B.8)

∇Φ = ∂kΦ(r, θ, s) =
1

hr

∂Φ

∂r
er +

1

hθ

∂Φ

∂θ
eθ +

1

hs

∂Φ

∂s
es (B.9)

∇2Φ =
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂Φ

∂x1

)
+

∂

∂x2

(
h3h1

h2

∂Φ

∂x2

)
+

∂

∂x3

(
h1h2

h3

∂Φ

∂x3

)]
(B.10)

∇2Φi =

{
∇2Φ1 +

1

h1h2h3

[
2

(
h3

h1

∂h1

∂x2

∂Φ2

∂x1

+
h2

h1

∂h1

∂x3

∂Φ3

∂x1

− h3

h2

∂h2

∂x1

∂Φ2

∂x2

− h2

h3

∂h3

∂x1

∂Φ3

∂x3

)

+ Φ2

(
∂

∂x1

(
h3

h1

∂h1

∂x2

)
− ∂

∂x2

(
h3

h2

∂h2

∂x1

)
− 1

h3

∂h3

∂x1

∂h3

∂x2

)
(B.11)

+ Φ3

(
∂

∂x1

(
h2

h1

∂h1

∂x3

)
− ∂

∂x3

(
h2

h3

∂h3

∂x1

)
− 1

h2

∂h2

∂x1

∂h2

∂x3

)
(Ť)

− Φ1

h1

(
h3

h2

((
∂h1

∂x2

)2

+

(
∂h2

∂x1

)2
)

+
h2

h3

((
∂h1

∂x3

)2

+

(
∂h3

∂x1

)2
))]}

e1 (Ť)

+

{
∇2Φ2 +

1

h2h3h1

[
2

(
h1

h2

∂h2

∂x3

∂Φ3

∂x2

+
h3

h2

∂h2

∂x1

∂Φ1

∂x2

− h1

h3

∂h3

∂x2

∂Φ3

∂x3

− h3

h1

∂h1

∂x2

∂Φ1

∂x1

)

+ Φ3

(
∂

∂x2

(
h1

h2

∂h2

∂x3

)
− ∂

∂x3

(
h1

h3

∂h3

∂x2

)
− 1

h1

∂h1

∂x2

∂h1

∂x3

)
(Ť)

+ Φ1

(
∂

∂x2

(
h3

h2

∂h2

∂x1

)
− ∂

∂x1

(
h3

h1

∂h1

∂x2

)
− 1

h3

∂h3

∂x2

∂h3

∂x1

)
(Ť)

− Φ2

h2

(
h1

h3

((
∂h2

∂x3

)2

+

(
∂h3

∂x2

)2
)

+
h3

h1

((
∂h2

∂x1

)2

+

(
∂h1

∂x2

)2
))]}

e2 (Ť)
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+

{
∇2Φ3 +

1

h3h1h2

[
2

(
h2

h3

∂h3

∂x1

∂Φ1

∂x3

+
h1

h3

∂h3

∂x2

∂Φ2

∂x3

− h2

h1

∂h1

∂x3

∂Φ1

∂x1

− h1

h2

∂h2

∂x3

∂Φ2

∂x2

)

+ Φ1

(
∂

∂x3

(
h2

h3

∂h3

∂x1

)
− ∂

∂x1

(
h2

h1

∂h1

∂x3

)
− 1

h2

∂h2

∂x3

∂h2

∂x1

)
(Ť)

+ Φ2

(
∂

∂x3

(
h1

h3

∂h3

∂x2

)
− ∂

∂x2

(
h1

h2

∂h2

∂x3

)
− 1

h1

∂h1

∂x3

∂h1

∂x2

)
(Ť)

− Φ3

h3

(
h2

h1

((
∂h3

∂x1

)2

+

(
∂h1

∂x3

)2
)

+
h1

h2

((
∂h3

∂x2

)2

+

(
∂h2

∂x3

)2
))]}

e3 (.)

Φi · ∇Φj =

[
Φi · ∇Φ1 +

Φ1

h1

(
Φ2

h2

∂h1

∂x2

+
Φ3

h3

∂h1

∂x3

)
− Φ2

2

h1h2

∂h2

∂x1

− Φ2
3

h1h3

∂h3

∂x1

]
e1 (B.12)

+

[
Φi · ∇Φ2 +

Φ2

h2

(
Φ3

h3

∂h2

∂x3

+
Φ1

h1

∂h2

∂x1

)
− Φ2

3

h2h3

∂h3

∂x2

− Φ2
1

h2h1

∂h1

∂x2

]
e2 (Ť)

+

[
Φi · ∇Φ3 +

Φ3

h3

(
Φ1

h1

∂h3

∂x1

+
Φ2

h2

∂h3

∂x2

)
− Φ2

1

h3h1

∂h1

∂x3

− Φ2
2

h3h2

∂h2

∂x3

]
e3 (.)

When the velocity vector (Φi = v), pressure (Φ = p), and scalar factors (h1 =

1, h2 = r, h3 = N) are substituted into Eq. B.9, Eq. B.11, and Eq. B.12, the system

specific operations needed to produce the toroidal Navier Stokes equations are found.

These are shown in Eqs. B.13 through B.15. Note: intermediate steps are shown for

verification, and the gradient term developed above already has the appropriate unit

vectors and coordinates in the equation due to it being developed for the current

system.

∇p =
1

1

∂p

∂r
er +

1

r

∂p

∂θ
eθ +

1

N

∂p

∂s
es (B.13)

=
∂p

∂r
er +

1

r

∂p

∂θ
eθ +

1

(1 + rκ cos θ)

∂p

∂s
es (.)

∇2v =

{
∇2u+

1

1rN

[
2

(
N

1

∂1

∂θ

∂v

∂r
+
r

1

∂1

∂s

∂w

∂r
− N

r

∂r

∂r

∂v

∂θ
− r

N

∂N

∂r

∂w

∂s

)
(B.14)
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+ v

(
∂

∂r

(
N

1

∂1

∂θ

)
− ∂

∂θ

(
N

r

∂r

∂r

)
− 1

N

∂N

∂r

∂N

∂θ

)
(Ť)

+ w

(
∂

∂r

(
r

1

∂1

∂s

)
− ∂

∂s

(
r

N

∂N

∂r

)
− 1

r

∂r

∂r

∂r

∂s

)
(Ť)

− u

1

(
N

r

((
∂1

∂θ

)2

+

(
∂r

∂r

)2
)

+
r

N

((
∂1

∂s

)2

+

(
∂N

∂r

)2
))]}

er (Ť)

+

{
∇2v +

1

rN1

[
2

(
1

r

∂r

∂s

∂w

∂θ
+
N

r

∂r

∂r

∂u

∂θ
− 1

N

∂N

∂θ

∂w

∂s
− N

1

∂1

∂θ

∂u

∂r

)
(Ť)

+ w

(
∂

∂θ

(
1

r

∂r

∂s

)
− ∂

∂s

(
1

N

∂N

∂θ

)
− 1

1

∂1

∂θ

∂1

∂s

)
(Ť)

+ u

(
∂

∂θ

(
N

r

∂r

∂r

)
− ∂

∂r

(
N

1

∂1

∂θ

)
− 1

N

∂N

∂θ

∂N

∂r

)
(Ť)

− v

r

(
1

N

((
∂r

∂s

)2

+

(
∂N

∂θ

)2
)

+
N

1

((
∂r

∂r

)2

+

(
∂1

∂θ

)2
))]}

eθ (Ť)

+

{
∇2w +

1

N1r

[
2

(
r

N

∂N

∂r

∂u

∂s
+

1

N

∂N

∂θ

∂v

∂s
− r

1

∂1

∂s

∂u

∂r
− 1

r

∂r

∂s

∂v

∂θ

)
(Ť)

+ u

(
∂

∂s

(
r

N

∂N

∂r

)
− ∂

∂r

(
r

1

∂1

∂s

)
− 1

r

∂r

∂s

∂r

∂r

)
(Ť)

+ v

(
∂

∂s

(
1

N

∂N

∂θ

)
− ∂

∂θ

(
1

r

∂r

∂s

)
− 1

1

∂1

∂s

∂1

∂θ

)
(Ť)

− w

N

(
r

1

((
∂N

∂r

)2

+

(
∂1

∂s

)2
)

+
1

r

((
∂N

∂θ

)2

+

(
∂r

∂s

)2
))]}

es (Ť)

=

{
∇2u+

1

r(1 + rκ cos θ)

[
2

(
−(1 + rκ cos θ)

r

∂v

∂θ
− rκ cos θ

(1 + rκ cos θ)

∂w

∂s

)
(Ť)

+ v

(
κ sin θ +

rκ2 cos θ sin θ

(1 + rκ cos θ)

)
(Ť)
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− u

(
(1 + rκ cos θ)

r
+

rκ2 cos2 θ

(1 + rκ cos θ)

)]}
er (Ť)

+

{
∇2v +

1

r (1 + rκ cos θ)

[
2

(
(1 + rκ cos θ)

r

∂u

∂θ
+

rκ sin θ

(1 + rκ cos θ)

∂w

∂s

)
(Ť)

+ u

(
−κ sin θ +

rκ2 sin θ cos θ

(1 + rκ cos θ)

)
(Ť)

− v

r

(
r2κ2 sin2 θ

(1 + rκ cos θ)
+ (1 + rκ cos θ

)]}
eθ (Ť)

+

{
∇2w +

1

(r + r2κ cos θ)

[
2

(
rκ cos θ

(1 + rκ cos θ)

∂u

∂s
− rκ sin θ

(1 + rκ cos θ)

∂v

∂s

)
(Ť)

− wrκ2 cos2 θ

(1 + rκ cos θ)
− wr2κ2 sin2 θ

r(1 + rκ cos θ)

]}
es (Ť)

Applying steady-state ( ∂
∂s

= 0) and one-dimensional flow (u = v = 0) approximations.

∇2v =

{
∇2w − wκ2 cos2 θ

(1 + rκ cos θ)2
− wκ2 sin2 θ

(1 + rκ cos θ)2

}
es (Ť)

Substituting Eq. B.10 for the Laplacian of the axial direction fluid velocity, and

considering an axis-symmetric flow, yields the form for the Laplacian of the velocity

vector.

∇2v =

{
1

h1h2h3

[
∂

∂x1

(
h2h3

h1

∂w

∂x1

)
+

∂

∂x2

(
h3h1

h2

∂w

∂x2

)
+

∂

∂x3

(
h1h2

h3

∂w

∂x3

)]
(Ť)

− wκ2 cos2 θ

(1 + rκ cos θ)2
− wκ2 sin2 θ

(1 + rκ cos θ)2

}
es (Ť)

=

{
1

1rN

[
∂

∂r

(
rN

1

∂w

∂r

)
+

∂

∂θ

(
N1

r

∂w

∂θ

)
+

∂

∂s

(
1r

N

∂w

∂s

)]
(Ť)

−
wκ2

(
cos2 θ + sin2 θ

)
(1 + rκ cos θ)2

}
es (Ť)
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=

{
(1 + 2rκ cos θ)

r (1 + rκ cos θ)

∂w

∂r
+
∂2w

∂r2
− wκ2

(1 + rκ cos θ)2

}
es (.)

v · ∇v =

[
v · ∇u+

u

1

(
v

r

∂1

∂θ
+
w

N

∂1

∂s

)
− v2

1r

∂r

∂r
− w2

1N

∂N

∂r

]
er (B.15)

+

[
v · ∇v +

v

r

(
w

N

∂r

∂s
+
u

1

∂r

∂r

)
− w2

rN

∂N

∂θ
− u2

r1

∂1

∂θ

]
eθ (Ť)

+

[
v · ∇w +

w

N

(
u

1

∂N

∂r
+
v

r

∂N

∂θ

)
− u2

N1

∂1

∂s
− v2

Nr

∂r

∂s

]
es (Ť)

=

[
v · ∇u− v2

r
− w2

(1 + rκ cos θ)
κ cos θ

]
er (Ť)

+

[
v · ∇v +

uv

r
+

w2κ sin θ

(1 + rκ cos θ)

]
eθ (Ť)

+

[
v · ∇w +

w

(1 + rκ cos θ)
(uκ cos θ − vκ sin θ)

]
es (Ť)

Applying steady-state ( ∂
∂s

= 0) and one-dimensional flow (u = v = 0) approximations.

v · ∇v =

[
− w2

(1 + rκ cos θ)
κ cos θ

]
er +

[
w2κ sin θ

(1 + rκ cos θ)

]
eθ + [v · ∇w] es (.)

Substituting Eq. B.9 for the gradient of the axial direction fluid velocity, and consid-

ering an axis-symmetric flow, yields the form for the v · ∇v term.

v · ∇v =

[
− w2

(1 + rκ cos θ)
κ cos θ

]
er +

[
w2κ sin θ

(1 + rκ cos θ)

]
eθ (Ť)

+

[
v ·
(

1

hr

∂w

∂r
er +

1

hθ

∂w

∂θ
eθ +

1

hs

∂w

∂s
es

)]
es (Ť)

=

[
− w2

(1 + rκ cos θ)
κ cos θ

]
er +

[
w2κ sin θ

(1 + rκ cos θ)

]
eθ (Ť)

+

[
(uer + veθ + wes) ·

(
1

1

∂w

∂r
er

)]
es (Ť)

=

[
− w2

(1 + rκ cos θ)
κ cos θ

]
er +

[
w2κ sin θ

(1 + rκ cos θ)

]
eθ (Ť)
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+

[
u
∂w

∂r
er · er + v

∂w

∂r
eθ · er + w

∂w

∂r
es · er

]
es (Ť)

=

[
− w2κ cos θ

(1 + rκ cos θ)

]
er +

[
w2κ sin θ

(1 + rκ cos θ)

]
eθ (.)
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C – Cylindrical Equation Asymptotic Form Check

∂p

∂r
=
ρκ cos θ

N
w2 + ρfr (C.1a)

1

r

∂p

∂θ
= −ρκ sin θ

N
w2 + ρfθ (C.1b)

∂p

∂s
= ρNν∇2w − ρνκ2w

N
+ ρfs (C.1c)

The required vector operators are defined in the previous section, for one-dimension,

as:

v · ∇ =
w

N

∂

∂s
(C.2a)

∇2 =
1

rN

(
∂

∂r

(
rN

∂

∂r

)
+

1

r

∂

∂θ

(
N
∂

∂θ

))
(C.2b)

In order to check the asymptotic form of the equation, Eqs. C.2 are substituted

into Eq. 3.14c, resulting in the axial momentum equation,

0 = − 1

ρN

∂p

∂s
+ ν

1

rN

(
∂

∂r

(
rN

∂w

∂r

)
+

1

r

∂

∂θ

(
N
∂w

∂θ

))
− νκ2w

N2
+ fs (C.3)

1

ρN

∂p

∂s
= ν

1

rN

(
∂

∂r

(
rN

∂w

∂r

)
+

1

r

∂

∂θ

(
N
∂w

∂θ

))
− νκ2w

N2
+ fs (Ť)

1

ρ

∂p

∂s
= ν

∂w

∂r

∂N

∂r
+ νN

∂2w

∂r2
+
νN

r

∂w

∂r
+
νN

r2

∂2w

∂θ2
+
ν

r2

∂w

∂θ

∂N

∂θ
− νκ2w

N
+ fs (Ť)

Noting ∂N
∂r

= κ cos θ and ∂N
∂θ

= −rκ sin θ, the axial momentum equation becomes,

∂p

∂s
=µκ cos θ

∂w

∂r
+ µN

∂2w

∂r2
+
µN

r

∂w

∂r
+
µN

r2

∂2w

∂θ2
− µκ sin θ

r

∂w

∂θ
− µκ2w

N
+ ρfs (.)

The cylindrical asymptotic form of the toroidal axial momentum equation is easily

checked by letting the value of curvature, i.e. inverse of the coil radius, go to zero.

Doing this produces Eq. C.4, which when compared to the cylindrical form of the
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1-D, steady, incompressible, Newtonian momentum equation provided in Aris (1962)

or any other fluids text, shows exact agreement.

∂p

∂s
=µ

∂2w

∂r2
+
µ

r

∂w

∂r
+
µ

r2

∂2w

∂θ2
(C.4)




