

AN ABSTRACT OF THE THESIS OF

Avneet Sandhu for the degree of Master of Science in Computer Science

presented on September 21, 2006.

Title: Volume-Volume Matching

Abstract approved:

Dr. Mike Bailey

Oftentimes in visualization, the goal of using volume datasets is not just

to visualize them but also to analyze and compare them. In order to compare

the two volumes, we cannot take all the voxels into consideration. The size of a

typical volume data set is quite large (maybe a billion or more voxels), thus it is

not feasible to compare all these voxels to all in the other volume set. This project

uses optimization methods to find the best orientation for aligning a second volume

data set with a first. Using these methods, we will be able to determine how well

one medical data volume matches against a “normally-developed” volume of the

same type.

c©Copyright by Avneet Sandhu

September 21, 2006

All Rights Reserved

Volume-Volume Matching

by

Avneet Sandhu

A Thesis

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented September 21, 2006
Commencement June 2007

Master of Science thesis of Avneet Sandhu presented on September 21, 2006

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to

any reader upon request.

Avneet Sandhu, Author

Master of Science thesis of Avneet Sandhu presented on September 21, 2006

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to

any reader upon request.

Avneet Sandhu, Author

ACKNOWLEDGMENT

These lines of text are an expression of gratitude to all those who helped to

make this thesis possible and for their never faltering encouragement and support.

I would like to express the highest gratitude to my parents who actually

brought me to computer science many years ago and supported me throughout

the duration of my studies. I would also want to specially thank my uncle who

motivated me to join MS program at OSU and provided me with every possible

comfort over the span of these 2 years.

I would like to thank my Major Advisor, Dr. Mike Bailey for offering

me an opportunity to work with him and for his patient supervision, guidance,

constant encouragement, valuable criticism and scientific discussions throughout

the MS program. His visionary work in the field of Scientific Visualization gave me

an opportunity to work on a very interesting project, volume-volume matching.

Additionally, I want to thank the members of my committee, Dr. Eric Mortensen,

Dr. Ron Metoyer and Dr. Harry Yeh for their guidance.

I would also like to thank the Graduate School and Dept. of EECS, who

gave me an opportunity to pursue my MS degree in Computer Science at OSU.

I also am indebted to all my professors under whose supervision I gained a lot of

knowledge.

I also owe a debt of gratitude to my colleagues of Scientific Visualization

Group for their valuable suggestions and friendly welcome that helped on the

development of this thesis. I owe a special thanks to my friends, Robin Hess and

Vasumathi Lakshmanan who have been very supportive and helpful throughout

my thesis.

TABLE OF CONTENTS

Page

1 INTRODUCTION AND OVERVIEW. 1

2 PREVIOUS WORK. 4

3 IDENTIFYING VOLUME HOTSPOTS . 6

3.1 Volume Data File . 7

3.2 Voxel Hotspots . 8

3.3 Method to Determine Hotspots . 9

3.3.1 Hessian matrix . 10

3.3.2 Eigenvalues of a Hessian matrix . 11

3.4 Noise . 12

3.4.1 Cause of noise in our application . 13

3.4.2 Removal of noise by filtering . 13

3.4.2.1 Mean Filter . 13

3.4.2.2 Median Filter . 14

3.4.2.3 Gaussian Filter . 16

3.5 Results . 17

3.5.1 Threshold - maximum eigenvalue . 17

3.5.2 Results of the “Test Case” . 17

4 CLUSTERING. 20

4.1 Median Cut . 21

4.2 Improved Median Cut . 23

4.3 k-means Clustering . 26

4.4 Hierarchical Clustering . 30

4.4.1 Representation . 31

TABLE OF CONTENTS (Continued)

Page

4.4.2 Agglomerative Methods . 31

4.4.2.1 Single Linkage Clustering . 32

4.4.2.2 Complete Linkage Clustering . 33

4.4.2.3 Average Linkage Clustering . 33

4.4.3 Single Linkage Clustering Algorithm 34

4.4.4 Results of Hierarchical clustering . 34

4.5 Outliers . 35

4.5.1 Detecting and removing outliers . 37

5 OPTIMAL TRANSFORMATION. 39

5.1 Permutations . 39

5.1.1 Algorithm to compute permutations 40

5.1.2 Application of the algorithm . 40

5.2 Determining the optimal transformation matrix. 41

5.3 Error Metric . 42

5.4 Decomposition of Transformation Matrix . 43

5.5 Results . 45

6 RESULTS. 48

7 CONCLUSION AND FUTURE WORK. 58

BIBLIOGRAPHY . 60

APPENDICES . 64

TABLE OF CONTENTS (Continued)

Page

APPENDIX A Volume Data File Format . 65

LIST OF FIGURES

Figure Page

1.1 Pipeline for “volume-volume matching” . 3

3.1 Example of Volume Images . 6

3.2 3× 3× 3 mean kernel . 14

3.3 Example of different filtering strategies on “smallhead.vox” 15

3.4 Thresholding Hotspots . 18

3.5 Results for “Test Case” . 19

4.1 Results of Median Cut clustering on “smoothhead.vox” 22

4.2 Algorithmic flow of Improved Median Cut algorithm 25

4.3 Results of Improved Median Cut on “Test Case” 26

4.4 Algorithmic flow of k-means clustering algorithm 28

4.5 Results of k-means clustering on “Test Case” 29

4.6 Drawbacks of k-means . 29

4.7 Hierarchical Clustering based on Euclidean Distance 32

4.8 Agglomerative Hierarchical Methods . 33

4.9 Algorithmic flow of Hierarchical clustering algorithm 35

4.10 Results of Hierarchical clustering on “Test Case” 36

4.11 Detecting outliers for “smoothhead.vox” . 38

6.1 Volume data sets (rotated) for matching . 48

6.2 Gaussian smoothing applied to volume data sets (rotated) 49

6.3 Identifying hotspots in volume data (rotated) 49

6.4 Combined hotspots for smoothhead.vox and smoothrotate.vox 50

6.5 Identifying clusters in volume data (rotated) . 51

6.6 Plot of “Number of Hotspots” vs “Threshold Value” 53

6.7 Plot of “Number of Hotspots” vs “Error” . 54

LIST OF FIGURES (Continued)

Figure Page

6.8 Plot of “Number of Clusters” vs “Error” and “Number of Clusters”
vs “Time” . 54

6.9 Gaussian smoothing applied to smoothtranslate.vox (translated head) 55

6.10 Identifying hotspots in volume data (translated) 56

6.11 Hierarchical clustering applied to volume data (translated) 57

LIST OF TABLES

Table Page

3.1 Volume data file format . 8

6.1 Data for plot of “Number of clusters”, “Error” and “Time” 52

Volume-Volume Matching

1. INTRODUCTION AND OVERVIEW

A volume data set is a 3D entity that is represented as a 3D cloud of

points. It can be uniform or non-uniform, rectilinear or non-rectilinear and can

have any number of scalar data values attached to each voxel. It is typically a

set S of samples (x, y, z, v), representing the value v of some property of the data,

at a 3D location (x, y, z). If the value is simply a 0 or a 1, with a value of 0

indicating background and a value of 1 indicating the object, then the data is

referred to as binary data. The data may instead be multivalued, with the value

representing some measurable property of the data, including, for example, color,

density, intensity, heat or pressure. Voxel is a smallest distinguishable volume

element, representing a value in a 3D space. Voxels are frequently used in the

visualisation and analysis of medical and scientific data. Some of the sources of

volumetric data are:

• Medicine - imaging methods such as CT, MRI, ultrasound etc.

• Science and Engineering - simulations (flow, stress, heat), observations

(wind, weather, pressure, satellite) and design (CAD/CAM).

• Geology - explorations (seismology, oil, precious metals), map-masking

(satellite terrain mapping).

• Entertainment - games, special effects and weather forecasts.

2

This volume data could be used for rendering, interaction, analysis, match-

ing and data mining.

This project, called “volume-volume matching”, uses optimization

methods to find the best orientation for aligning a second volume data set with

the first one. Using these methods, we have been able to determine how well one

volume matches against a “normally developed” volume of the same type.

It is not a straightforward comparison. In order to compare the two vol-

umes, we cannot take all the voxels into direct consideration. The size of a typical

volume data set is quite large, thus it is not feasible to compare all voxels in one

set to all voxels in the other volume set. Instead, we need to determine an optimal

way to reduce the number of voxels under consideration to just the ones that are

important. The basic aim here is the content-based retrieval of representative

subsets of volume data. Though we do not know the correspondence between the

voxels in each volume data sets, reducing the number of voxels to a few makes it

is feasible to compare voxels in either volume.

The steps taken for volume-volume matching is shown in Figure 1.1

and can be given as:

1. Filter the volume data to remove or reduce the noise in it.

2. Extract distinctive invariant voxels (hotspots) from volumes that can be

used to perform reliable matching between different volumes. This can be

achieved by retrieving the voxels where sharp change in data values is taking

place.

3. Reduce the problem size further by clustering and considering the mean of

clusters, as it is not feasible to perform all permutations of hotspot-hotspot

transformations.

3

FILTER
Chapter 3READ

IDENTIFY
HOTSPOTS

Chapter 3

CLUSTER
HOTSPOTS

Chapter 4

OPTIMAL
TRANSFORMATION

Chapter 5

Volume
Data

FIGURE 1.1. Pipeline for “volume-volume matching”

4. Application of Least Square method to determine the optimal transformation

matrix that transforms one set of points to another.

For this project, we used Terarecon’s vox file format for storing and re-

trieving the volume data. Vox1999a is a simple, flexible format for voxel data

storage, exchange and input and output filter targeting and is operating system

and processor independent. The voxel file format (Appendix A) consists of three

logical sections - file header, volume description and volume data.

4

2. PREVIOUS WORK

Our project, called “volume-volume matching”, aims at matching or

comparing two volume data sets. Doctors, for example can extensively use this

in medical fields for various purposes, to match the person’s brain (MRI data) to

a “normally developed” brain data. A major influence for this project has been

the work done by David Lowe in 2D image domain. Image matching is one of the

fundamental algorithms used in computer vision. The distinctive image features

method [27] introduced by David Lowe is a method for extracting distinctive

invariant features from images that can be used to perform reliable matching

between different views of an object or scene. These features are invariant to

image scaling and rotation. The major stages of computation used to achieve the

end result are scale space extrema detection, keypoint localization, orientation

alignment and keypoint descriptor.

Volume-volume matching includes content-based retrieval of representative

subsets of volume using eigenvalues of the Hessian matrix, clustering and least

squared method to determine the optimal transformation matrix. Though, this

is completely a novice approach in 3D, work has been done to identify important

subsets of a volume data set. Jiri Hladuvka [20] introduced exploiting the eigen-

values of Hessian matrix for volume dissemination in which they threshold the

maximum and the minimum eigenvalues. Further subset reduction was achieved

by using filter methods for edge and line detection considering the maxima of first

derivative and zero crossing of the second derivative.

Isosurface algorithms belong to most often used techniques in indirect vol-

ume rendering. The choice on the isovalue(s) can be done interactively [26] or,

after a previous analysis, semi-automatically [24], or automatically [17]. Saito [30]

5

employs a non-uniform stochastic Poisson sampling. Mroz et at. [28] reduced the

size of data with respect to applied visualization technique, i.e. maximum inten-

sity projection (MIP). Gradient magnitude of scalar field can be also considered

as a priority function because it emphasizes boundaries, which most commonly

attract human attention.

Other popular volume visualization methods are direct volume rendering

(DVR) and surface-fitting algorithms (SF). DVR methods map elements directly

into screen space without using geometric primitives as an intermediate repre-

sentation. SF methods are also called feature-extraction or isosurfacing and fit

planar polygons or surface patches to constant-value contour surfaces. Ray casting

[14] is a well-known method used to render high-quality images of solid objects.

Splatting [14] is a technique which trades quality for speed. Here, every volume el-

ement is splatted onto the viewing surface in back-to-front order. These splats are

rendered as disks whose properties (color and transparency) vary diametrically in

normal (Gaussian) manner. A new approach to volume rendering was developed

by Philippe Lacroute and Marc Levoy [14] in which the viewing transformation is

transformed such that the nearest face of the volume becomes axis aligned with

an off-screen image buffer with a fixed scale of voxels to pixels. The volume is

then renderered into this buffer using the far more favourable memory alignment

and fixed scaling and blending factors.

6

3. IDENTIFYING VOLUME HOTSPOTS

Volumetric data is typically a set S of samples (x, y, z), representing the

value v of some property of the data, at a 3-D location (x, y, z) called a volume

element, or voxel. If the value is simply a 0 or a 1, with a value of 0 indicating

background and a value of 1 indicating the object, then the data is referred to as

binary data. The data may instead be multivalued, with the value representing

some measurable property of the data, including, for example, color, density,

intensity, heat or pressure. The value v may even be a vector, representing, for

example, velocity at each location. In our case, “v” contains the “intensity” value

at location (x, y, z) and we get this value from the “volume data file”. Some of

the volume images are shown in Figure 3.1.

(a) smallhead.vox (b) chestir.vox (c) benoit.vox

FIGURE 3.1. Example of Volume Images

Volume visualization is about understanding complex 3-D data and

a method of extracting meaningful information from volumetric data. The vi-

sualization of volumetric data has aided many scientific disciplines ranging from

geophysics to the biomedical sciences.

The algorithm to study and analyze volumes is given as:

1. Data acquisition either via empirical measurement or computer simulation.

7

2. Put the data into a format that can be easily manipulated. This may entail

scaling the data for a better value distribution, enhancing contrast, filtering

out noise, and removing out-of-range data. The same set of operations must

be applied to all the data slices.

3. Application of transfer function to manipulate and represent data.

4. Display the data as a 3-D point cloud.

This chapter describes the first three steps of the above volume visual-

ization algorithm. Data is acquired from a “volume data file” and stored in an

appropriate data structure. Filtering is then performed to reduce the noise in the

volume data, followed by retrieving the significant voxels based on eigenvalues of

the Hessian matrix at each voxel.

3.1. Volume Data File

For this project, we used Terarecon’s vox file format [33]. Vox1999a (more

detail in Appendix I) is a simple, flexible format for voxel data storage, exchange

and input and output filter targeting. The file format is operating system and

processor independent. It is capable of storing 1, 8, 16, 32 and 64 bit volumes,

each of which can contain multiple fields. This format can also store multiple

volumes in a single file. Volumes stored in this format consist of slices of voxels

with equal distance between the slices. The voxel file format consists of three

logical sections - file header, volume description and volume data as shown in

Table 3.1.

8

Section Description

File Header signature, number of volumes, copyrights and description

Volume Description volume dimension, voxel size, voxel fields

Volume Data voxel data streams

Volume Description . . .

Volume Data . . .

...

TABLE 3.1. Volume data file format

3.2. Voxel Hotspots

Oftentimes in visualization, the goal of using volume datasets is not just

to visualize them, but also to analyze and compare them. In order to compare

the two volumes, we cannot take all the voxels into consideration. The size of a

typical volume data set is quite large (maybe a billion or more voxels), thus it is not

feasible to compare all these voxels to all in the other volume set. Instead, we need

to determine an optimal way to reduce the number of voxels under consideration

to just the ones that are important. The basic aim here is the content-based

retrieval of representative subsets of volume data.

There are many techniques aiming at identifying important subsets of a

volume data set. Isosurface extraction algorithms [26, 17] belong to the most

commonly used techniques for indirect volume rendering. Gradient magnitude of

intensity can also be considered as a priority function. The voxels that mostly

attract human attention usually belong to the strong boundaries that exhibit high

values of the gradient magnitude.

9

In this project, our aim is to extract distinctive invariant voxels from vol-

umes that can be used to perform reliable matching between different volumes.

Volume data sets provide a sampled representation of measured or computed

quantities that vary across a region of space. There are certain voxels, where

data changes more rapidly than other voxels. We are interested in these voxels,

where sharp change in data values is taking place. These locations are termed

“hotspots”. We are assuming that the critical points in two volumes of the same

relative type, two brains for example, exist in about the same locations in each

volume. The number of final voxels or hotspots should be optimal - not “too few”

or “too many”. If they are too few, certain important details in volume set may be

missed and if they are too many, they may over represent the volume and might

create problems while clustering.

3.3. Method to Determine Hotspots

A common approach to analyzing the behavior of intensity I in the neigh-

borhood of point x0 in a 2-D image or a 3-D volume is to consider the initial terms

of a Taylor series expansion [27, 20, 21]:

I(x0 + ∆x) ≈ I(x0) + ∆xT∇I(x0) + (
∆xT

2!
)H(x0)∆x + . . . (3.1)

where ∇I is the gradient vector and H denotes the Hessian matrix.

The components of equation 3.1 - gradient vector and the Hessian matrix

can also be used separately. The gradient vector is widely used as a normal to

an implicitly defined isosurface. Its magnitude provides a tool for edge/boundary

detection and in volume visualization can be used as the opacity modulation

factor. The Hessian matrix is used whenever a second derivative at a grid point

10

x0 and a direction ∆x is requested. The last term in equation 3.1, (∆xT

2!
)H(x0)∆x,

represents a quadratic form and yields the desired second derivative.

3.3.1. Hessian matrix

The Hessian matrix [1] is the square matrix of second partial derivatives

of a scalar-valued function. Given the real-valued function f(x1, x2, ..., xn), if all

partial second derivatives of f exist, then the Hessian matrix of f is the matrix

H(f)ij(x) = DiDjf(x) where, x = (x1, x2, ..., xn). That is,

H(f) =

∂2f
∂x2

1

∂2f
∂x1∂x2

. . . ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
. . . ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

. . . ∂2f
∂x2

n

.

The mixed derivatives of f are the entries off the main diagonal in the

Hessian. Assuming that they are continuous, the order of differentiation does not

matter. Hence, H(f) is symmetric because of the equality of mixed partials,

∂

∂x

(
∂f

∂y

)
=

∂

∂y

(
∂f

∂x

)
,

which can also be written as fxy = fyx.

In our case, we use the Hessian matrix for determining the hotspots because

it determines the rate of change of gradient in each direction. For a 3-D

volume, it is a 3×3 matrix [21] comprised of second partial derivatives of intensity

I.

H =

Ixx Ixy Ixz

Iyx Iyy Iyz

Izx Izy Izz

 ,

where Iab = ∂2I
∂a∂b

.

11

3.3.2. Eigenvalues of a Hessian matrix

An N × N matrix A is said to have an eigenvector x and corresponding

eigenvalue λ if

Ax = λx.

Jacobi method is employed to be compute the eigenvalues and eigenvectors

for real-symmetric matrices. The main idea behind the eigenvalue routine is to

push the matrix A towards diagonal form by a sequence of transformations:

A → P−1
1 AP1 → P−1

2 P−1
1 AP1P2 → P−1

3 P−1
2 P−1

1 AP1P2P3 → · · ·

If we compute the diagonal form, then the eigenvalues are given by the

columns of transformation P1P2P3 · · ·. But if we are interested in computing only

the eigenvalues and not the eigenvectors, we just have to transform the matrix A

to triangular form and can avoid getting all the way to the diagonal form. The

Jacobi method consists of a sequence of orthogonal similarity transformations.

Each Jacobi rotation eliminates one of the off-diagonal matrix elements. The off-

diagonal elements get smaller and smaller until the matrix is reduced to diagonal

form by successive rotations. Accumulating the product of the rotations as we go

gives the matrix of eigenvectors while the elements of the final diagonal matrix

are the eigenvalues.

We incorporate the eigenvalues in our application for two reasons:

• The maximum of the three eigenvalues is used as a marking point in the

data because it determines where the intensity values are changing most

rapidly.

12

• The eigenvalues are invariant to scaling and rotation. Eigenvalues are com-

puted from the Hessian matrix and the Hessian matrix in turn is depen-

dent on the gradient of the voxels (gradient of the gradient of an intensity

function). Eigenvalues find regions of maximal change and the direction of

maximal change. If a volume is rotated, its direction of maximal change

changes, but the amount of change does not.

3.4. Noise

Volumes are often degraded by noise. Noise is inherent in data-gathering

process and in digital sampling errors. Noise [18] is the data without a meaning

and can take the form of extreme intensity values and therefore affects how well

new intensities are calculated. It is independent of spatial coordinates and it is

uncorrelated with respect to volume itself. Some examples of noise are:

• Gaussian or White noise [6] - each voxel in the volume is changed from its

original value by a small amount.

• Rayleigh noise - model noise in range imaging.

• Shot or Impulse noise - found in quick transients (e.g faulty switches).

• Periodic noise - it is same as the white noise, but present cyclically and

manifests itself in volume as a set of sharply defined spikes.

• Uniform noise - noise which is uniformly distributed.

• Salt and pepper noise [6] - the color of noisy voxel bears no relation to the

color of the surrounding voxels i.e. they are vastly diferent in color from

their neighboring voxels.

13

3.4.1. Cause of noise in our application

The raw volumes often contain considerable noise. Figure 3.3-(a) shows the

“smallhead.vox” volume containing noisy data. Noise has a great impact on our

application. The use of neighboring voxels on either side of voxel v to calculate the

gradient at v, produces a gradient that is properly centered, but very sensitive

to noise. This gradient is used to compute the Hessian matrix that makes the

Hessian matrix sensitive to noise as well. The hotspots achieved in this stage are

clustered in the next stage. Clustering is a useful exploratory tool, but the cluster

results are very sensitive to noise.

3.4.2. Removal of noise by filtering

One of the most common problems in volume analysis is estimation and

removal of noise or other artifacts by using spatial filters. In order to achieve good

volume-volume matching results, it is very important to get rid of or to reduce

noise in volume data. This can be achieved by filtering. Common techniques

[18] include mean filtering, median filtering, Gaussian filtering and anisotropic

filtering.

3.4.2.1. Mean Filter

The mean filter [9] is a simple, intuitive, sliding window spatial filter for

smoothing volumes i.e. reducing the amount of intensity variation between one

voxel and the other. This is a low pass filter, which is also good at reducing

Gaussian noise. The idea behind mean filtering is to replace each voxel value in

the volume with the “mean” or “average” value of its neighbors, including itself.

14

This has an effect of de-emphasizing voxel values that are unrepresentative of their

surroundings. The results of mean filtering on original volume “smallhead.vox”

is shown in Figure 3.3-(b). Mean filtering is often thought of as a convolution

filter that is based around a kernel, which represents the shape and size of the

neighborhood to be sampled when calculating the mean. Often a 3× 3× 3 cube

kernel is used for volumes as shown in Figure 3.2.

1/27 1/27 1/27

1/27

1/271/27

1/271/27

1/27

FIGURE 3.2. 3× 3× 3 mean kernel

3.4.2.2. Median Filter

Median filtering [10] is a simple and very effective noise removal filtering

process and is shown in Figure 3.3-(c). Its performance is particularly good for

removing shot noise. Shot noise consists of strong spikelike isolated values. This

filter considers each voxel in the volume in turn and looks at its nearby neighbors to

decide whether or not it is representative of its surroundings. Instead of replacing

the pixel value with the mean of neighboring pixel values, it replaces it with the

“median” of those values. The median is calculated by first sorting all the voxel

values from the surrounding neighborhood into numerical order and then replacing

the voxel under consideration by the middle (13th/27) voxel value.

15

(a) Original Volume data (b) Mean Filtering

(c) Median Filtering (d) Gaussian Filtering

FIGURE 3.3. Example of different filtering strategies on “smallhead.vox”

16

The median filter has two main advantages over the mean filter:

• A single very unrepresentative pixel in a neighborhood will not affect the

median value significantly because median ignores severe outliers.

• It preserves the useful detail like the sharp edges that the mean filter cannot

retain.

One of the major problems with the median filter is that it is relatively

expensive to compute. To find the median it is necessary to sort all the values

in the neighborhood into numerical order which is relatively slow, even with fast

sorting algorithms such as quicksort.

Our aim has been the quality of output rather than the speed of the pro-

gram. Once the desired quality of output is achieved, doing computation in par-

allel i.e. by involving multiple processors can make the whole program faster, but

we keep that for future enhancements.

3.4.2.3. Gaussian Filter

The Gaussian smoothing [7] operator is a convolution operator used to blur

volumes and remove detail and noise. The result of Gaussian filtering applied to

“smallhead.vox” volume data containing noise is depicted in Figure 3.3-(d). It is

similar to mean filtering, but uses a different kernel that represents the shape of

a Gaussian hump. In order to perform Gaussian filtering in three dimensions, the

3-D convolution can be performed by first convolving with a 1-D Gaussian in the

x direction, then convolving with another 1-D Gaussian in the y direction, and

then convolving with yet another 1-D Gaussian in the z direction. The Gaussian

distribution in 1-D is given in equation 3.2:

17

G(x) =
1√
2πσ

e−
x2

2σ2 . (3.2)

For our application, we take σ = 1.4. In general terms, to preserve finer details,

we pick a smaller sigma and to leave only coarser details, we pick a larger sigma.

3.5. Results

3.5.1. Threshold - maximum eigenvalue

The maximum of the three eigenvalues obtained from the Hessian matrix is

used as a threshold value. The threshold value should be adjusted in such a manner

that the final number of voxels (hotspots) are neither “too few” nor “too many”.

Figure 3.4-(a), (d), (g) shows the original volume sets - “smoothhead.vox”, a head

with (128× 128× 128 voxels), “toga.vox”, a brain with (200× 200× 200 voxels)

and “twins.vox”, a 3D ultrasound with (128× 128× 128 voxels) and (b), (c), (e),

(f), (h) and (i) shows the reduced set of voxels that represent the entire volume.

3.5.2. Results of the “Test Case”

Test Case - For the test case, we took an original volume data “smooth-

head.vox” and a transformed volume data “smoothrotate.vox”, which is the orig-

inal volume data rotated by an angle of 45 degrees about Y-axis. Since we know

that the eigenvalues are rotationally invariant, the two volumes should come up

with almost the same eigenvalues. We selected this as the test case because if this

volume matching doesn’t work successfully, we cannot expect real volume-volume

matching to work at all.

18

(a) 128× 128× 128 (b) 852585 (c) 977

(d) 200× 200× 200 (e) 852585 (f) 1890

(g) 128× 128× 128 (h) 167276 (i) 3644

FIGURE 3.4. Thresholding hotspots : (a), (d) and (g) original volume files and

(b), (c), (e), (f), (h) and (i) important subsets of volume data. The numbers

below the figures are the number of voxels in the volume.

We observed the same hotspots in both Figure 3.5-(a) and (b), despite

transformation of the second. We rotated the second set by 45 degrees about

19

(a) (b)

(c)

FIGURE 3.5. Results for “Test Case”: (a) Hotspots for smoothhead.vox (b)

Hotspots for smoothrotate.vox (c) Combined Hotspots

Y-axis and observed that the hotspots are almost in the same relative locations

as shown in Figure 3.5-(c). This proved rotational invariance and marked the

successful achievement of the first stage in volume-volume matching.

Clearly, we cannot perform all permutations of hotspot-hotspot transfor-

mations, so we needed to reduce the problem size by clustering the hotspots.

20

4. CLUSTERING

After the previous stage, in which we determine the hotspots, we were left

with almost 1000 voxels in each data set. Clearly, in order to compare two volume

data sets we cannot perform 1000! combinations as we do not know the corre-

spondence between the hotspots. We have to further reduce these voxels to a few,

so that it is feasible to perform volume-volume matching. This is accomplished

by clustering the data and then taking the mean of the clusters.

Clustering [4] is the classification of similar objects into different groups,

or more precisely, the partitioning of a data set into subsets (clusters), so that

the data in each subset share some common trait - often proximity according to

some defined distance measure. There are many clustering methods present and

each one of them is capable of giving a different grouping of data sets. They can

be hierarchical or partitional . Hierarchical algorithms find successive clusters

using previously established clusters, whereas partitional algorithms determine all

clusters at once.

The outline of this chapter is as follows: We tried several clustering algo-

rithms starting with median cut. Not satisfied with the results achieved by the

original median cut, we performed some modifications to it by not limiting it to X,

Y and Z axis subdivision and determining the cutting plane based on exhaustive

search using the Golden Ratio method. It definitely improved the results, but still

it wasn’t exactly what we wanted. It was observed that this clustering wasn’t ro-

tationally invariant and the sum of squared error metric used was very sensitive to

outliers, and it degraded the performance of clustering. After trying the k-means

algorithm, we observed the performance of all the three clustering algorithms tried

so far. We concluded that in our case, hierarchical clustering would be better than

21

partitional clustering because it follows a bottom-up approach rather than top-

down. We finally tried the hierarchical clustering algorithm which was robust to

outliers and gave good clustering results.

4.1. Median Cut

The concept behind the median cut algorithm introduced by Heckbert [19,

31] is to use each of the colors in the synthesized colormap to represent a rep-

resentative number of pixels in the original image. This algorithm repeatedly

subdivides the color space into smaller and smaller rectangular boxes. It starts

with one box, which tightly encloses the colors of all pixels from the original image.

Iteration step: Split a box. The box is “shrunk” to fit tightly around the

points (colors) it encloses, by finding the minimum and maximum values of each

of the color coordinates. “Adaptive partitioning” is then used to decide which

way to split the box. The enclosed points are sorted along the longest dimension

of the box, and segregated into two halves at the median point. Approximately

equal numbers of points will fall on each side of the cutting plane.

The above step is recursively applied until K boxes are generated. After

K boxes are generated, the representative for each box is computed by averaging

the colors contained in each.

Other criteria could be used to decide which coordinate to bisect. Instead

of choosing the coordinate with the largest range, one might use the one with the

largest variance or choose the split plane so that the sum of variances for the two

new boxes is minimized. This would tend to minimize the mean squared error

better than the median criterion.

22

We applied this clustering process to our 3D points. It was observed that

the clusters achieved were not optimal as the performance of clustering was being

highly affected by outliers and axis aligned cutting planes. The result for 5

clusters using Median Cut is shown in Figure 4.1.

FIGURE 4.1. Results of Median Cut clustering on “smoothhead.vox” (We can

clearly see that axis aligned feature and cutting at median feature results in poor

clustering.)

We observed the drawbacks of the Median Cut clustering algorithm

when applied to our data set as:

• It forces the clustering alignment to be parallel to the principal axis (X, Y

and Z).

• When a single cluster contains disproportionately more points than the rest,

the median of all points may lie in the middle of the large cluster, forcing

the median cut algorithm to erroneously divide that cluster into two. This

scenario is clearly depicted in the Figure 4.1.

• This clustering method is very sensitive to outliers.

23

4.2. Improved Median Cut

Some changes were incorporated in the Median Cut algorithm so as to

improve the clustering results.

We start with one box that tightly encloses the points. The box is “shrunk”

to fit tightly around the points it encloses, by finding the maximum and minimum

values of each of the point coordinates.

Next, we used “adaptive partitioning” to decide which way to split the box.

According to the original Median Cut, the enclosed points are sorted along the

longest dimension of the box, and segregated into two halves at the median point.

We achieved better results by instead considering squared Manhattan distance

(which is rotationally invariant) as a metric to determine error. The two main

modifications made were:

1. Use a Least Square Plane [8] approach to determine the 3D orientation for

the optimal bounding box. This was accomplished by first computing the

centroid of the points present in the bounding box, as the least square plane

is guaranteed to pass through this point. A new list was then created in

which the points were centered around the centroid and a least squares 3×3

matrix was formed. The 3 eigenvectors of this matrix determined the three

principle directions. Computing the minimum and maximum “d” (in plane

equation: ax + by + cz + d = 0) values for each principle direction defined

the search space to look for the optimal cutting plane location.

2. Determine the best location to split that box using the Golden Ratio optimal

search [29] technique. After getting the bounding planes in the three prin-

ciple directions using a Least Square Plane, we find two additional planes in

24

either directions based on the Golden Ratio. If P and Q are the bounding

planes, d value of two additional planes R and S can be given by:

Rd = Pd + G× (Qd + Pd)

Sd = Pd + (1−G)× (Qd + Pd),

where G (Golden Ratio) = 0.38197.

Now, we determine the Manhattan Distance (Md) [22] for each of the planes

using:

Md = max(
n∑

i=0

(Pi − P̂)2,

m∑
j=0

(Pj − P̂ ′)2)

where Pi are the points on left side of the plane,

P̂ is the mean of points on the left,

Pj are the points on the right side of the plane,

P̂ ′ is the mean of points on the right.

Based on this distance, we eliminate one of the bounding planes and repeat

the process until the distances of the two planes in the middle are the same.

This is done for each principle direction and the plane with the least error

is selected as the cutting plane.

The steps performed durng Improved Median Cut clustering algorithm can

be shown in Figure 4.2.

The Improved Median Cut algorithm was applied to the points achieved

after the first stage. The results are shown in Figure 4.3.

After the implementation of Improved Median Cut, the results of the clus-

tering stage improved a lot and the error metric was considerably smaller(∼ 60%)

as compared to Median Cut. It still did not satisfy the results that we expected.

Some of the drawbacks of this algorithm were:

25

Return the clusters.

Form two nodes N1 and N2 by
splitting node N at the cutting

plane.

Determining the bounding
planes for N1 and N2.

Determine which node N to split−
one with the maximum error.

Determine the bounding planes
using Least Squares Plane method.

Begin with one node N that
tightly encloses all the points.

Determining the cutting
planes for N1 and N2.

Determine the cutting plane
using Golden Ratio method.

Is desired number
of clusters achieved?

No Yes

FIGURE 4.2. Algorithmic flow of Improved Median Cut algorithm

26

(a) smoothhead.vox (b) smoothrotate.vox

FIGURE 4.3. Results of Improved Median Cut on “Test Case” (11 clusters are

represented by 11 bounding boxes)

• It partitioned a cluster containing many points closer to one another rather

than partitioning another cluster that had many small sub-clustered points

separated from other sub-clusters in it. This scenario is clearly depicted in

Figure 4.3 where the big cluster is partitioned into 6 sub-clusters when there

are some small clusters which should have been 2 clusters rather than one.

• The results were not as rotationally invariant as we expected because of the

round-off error when rotated.

• The results were sensitive to outliers.

4.3. k-means Clustering

K-means is one of the simplest unsupervised learning algorithms [4, 32] and

hence an easy way to quantize a given data set into a given number of clusters.

The main idea is to define k centroids, one for each cluster. These centroids

27

should be placed as far from each other as possible because different locations

cause different results. The next step is to take each point belonging to the data

set and associate it to a nearest centroid. After associating all the points, the first

groupage is over. Now we recalculate the new k-centroids and new binding has to

be done for these same data points and new nearest centroids.

This algorithm aims at minimizing the objective function [32] which in this

case is squared error function. The objective function is:

J =
k∑

j=1

n∑
i=1

||x(j)
i − cj||

2
,

where ||xj
i − cj||

2
is a chosen data measure between a data point, x

(j)
i and cluster

center cj, is an indicator of distance of n points from their respective cluster

centers.

The algorithm for k-means clustering can be given as and the flow

of execution can be shown in Figure 4.4:

1. Place K points into the space represented by the objects that are being

clustered. These points represent initial group centroids.

2. Assign each object to the group that has the closest centroid.

3. When all objects have been assigned, recalculate the positions of the K

centroids.

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a

separation of the objects into groups from which the metric to be minimized

can be calculated.

For successful k-means clustering, the initial centroids should be carefully

selected and should be as far from each other as possible. For this project, out of

28

Do
centroids move?

Define k initial centroids,
one for each cluster.

Assign each data point
to the closest centroid.

Recalculate the positions
of the k centroids.

Return the clusters.
NoYes

FIGURE 4.4. Algorithmic flow of k-means clustering algorithm

all the points, we selected two points which were farthest from each other; then

we selected the third point which was farthest from those two points and so on.

This way we got 11 initial seeds for the algorithm. The results achieved through

k-means are shown in Figure 4.5.

Some of the observed drawbacks of k-means [5] are:

• Since all the attributes have the same weight, we can never determine which

attribute contributes more to the grouping process.

• It is sensitive to the initial condition. Different initial conditions can produce

different clusterings.

29

(a) smoothhead.vox (b) smoothrotate.vox

FIGURE 4.5. Results of k-means clustering on “Test Case” (11 clusters are rep-

resented by 11 different colors)

FIGURE 4.6. Drawbacks of k-means (The highlighted region above should have

been 3 clusters whereas the one below should have been a single cluster.)

• We never know which attribute contributes more to the grouping process

since we assume that each attribute has the same weight.

• The arithmetic mean is not robust to outliers.

The combined effect of all these drawbacks is depicted in Figure 4.6.

30

4.4. Hierarchical Clustering

Hierarchical cluster analysis [4, 32] is a statistical method for finding rel-

atively homogeneous clusters of points based on measured characteristics. It can

be either agglomerative (iteratively joining small clusters into larger) or divisive

(starting with one cluster and separating these into several smaller). Hierarchi-

cal clustering starts with each point in a separate cluster and then combines the

clusters sequentially, reducing the number of clusters at each step until only one

cluster is left. When there are N cases, this involves N − 1 clustering steps, or

fusions.

In hierarchical clustering each sample is initially thought off as a cluster.

A similarity measure is computed between all pairs of clusters and the two most

similar are grouped together as a new cluster. This procedure is repeated until

there is only one cluster left or some cut-off point of minimum similarity is reached.

1. Initialize every point as a cluster.

2. While more than one cluster remains

(a) Calculate similarity between all the pair of clusters.

(b) Find the most similar pair of clusters.

(c) Merge the two clusters.

3. End.

An important component of hierarchical clustering is the distance mea-

sure [25] between the points. If the components of the data instance vectors are

all in the same physical units then Euclidean distance metric is sufficient to

successfully group similar data instances. In a univariate example the Euclidean

31

distance between two values is the arithmetic difference, i.e. value1 − value2. In

the bivariate case, the minimum distance is the hypotenuse of a triangle formed

from the points. For three variables the hypotenuse will be extended through

3-dimensional space. This method has certain advantages (e.g., the distance be-

tween any two objects is not affected by the addition of new objects to the analysis,

which may be outliers).

EuclideanDistance(x, y) = {
∑

i(xi − yi)
2}1/2.

City-block (Manhattan) distance is another distance metric. This

distance is simply the sum of difference across dimensions. The effect of a single

large difference in one variable is dampened and Manhattan distance is more

robust to outliers.

ManhattanDistance(x, y) =
∑

i |xi − yi|.

In order to place progressively greater weight on objects that are further

apart, we may want to square the standard Euclidean distance.

SquaredManhattanDistance(x, y) =
∑

i(xi − yi)
2.

4.4.1. Representation

This hierarchical clustering process can be represented as a tree, or den-

drogram [4] (binary tree with a distinguished root) as shown in Figure 4.7, where

a join of the tree illustrates each step in the clustering process.

4.4.2. Agglomerative Methods

An agglomerative hierarchical clustering [2] procedure produces a series of

partitions of the data, Pn, Pn−1, . . . , P1. The first Pn consists of n single object

“clusters”, the last P1, consists of a single group containing all n points. At

32

(a) set of 6 points (b) dendogram

FIGURE 4.7. Hierarchical Clustering based on Euclidean Distance (image taken

from Wikipedia [19])

each particular stage the method joins together the two clusters that are closest

together (most similar). There are different ways of defining the similarity between

clusters.

4.4.2.1. Single Linkage Clustering

This is one of the simplest agglomerative hierarchical clustering methods

also known as the nearest neighbor technique. The defining feature of the method

is that distance between clusters is defined as the distance between the closest

pair of points as shown in Figure 4.8-(a), where only pairs consisting of one point

from each cluster are considered.

D(r, s) = min{d(i, j)}, where point i is in cluster r and point j is cluster s.

The distance between two clusters is given by the value of the shortest link

between the clusters.

33

4.4.2.2. Complete Linkage Clustering

Complete Linkage Clustering is also known as farthest neighbor technique.

Distance between clusters is defined as the distance between the most distant pair

of points, one from each cluster.

D(r, s) = max{d(i, j)}, where object i is in cluster r and object j is in cluster s.

The distance between two clusters is given by the value of the longest link

between the clusters as shown in Figure 4.8-(b).

(a) Single Linkage (b) Complete Linkage (c) Average Linkage

FIGURE 4.8. Agglomerative Hierarchical Methods

4.4.2.3. Average Linkage Clustering

The distance between two clusters is defined as the average of distances

between all pairs of points as shown in Figure 4.8-(c), where each pair is made up

of one point from each cluster.

D(r, s) =
Trs

(Nr ×Ns)

where, Trs is the sum of all pair wise distances between cluster r and cluster s.

Nr and Ns are the sizes of the clusters r and s respectively.

34

4.4.3. Single Linkage Clustering Algorithm

In our application, we make use of Single Linkage Clustering [13] because

we want to cluster the points which are closer to one another based on Euclidean

distance. The algorithmic flow is shown in Figure 4.9 and the algorithm is as

follows:

1. Begin with disjoint clustering having level L(0) = 0 and sequence number

m = 0.

2. Find the least dissimilar pair of clusters in the current clustering, say pair

(r), (s), according to d[(r), (s)] = mind[(i), (j)], where the minimum is over

all pairs of clusters in the current clustering.

3. Increment the sequence number: m = m+1. Merge clusters (r) and (s) into

a single cluster to form the next clustering m. Set the level of this clustering

to L(m) = d[(r), (s)].

4. Update the proximity matrix, D, by deleting the rows and columns corre-

sponding to clusters (r) and (s) and adding a row and column correspond-

ing to the newly formed cluster. The proximity between the new cluster,

denoted (r, s) and old cluster (k) is defined in this way: d[(k), (r, s)] =

mind[(k), (r)], d[(k), (s)].

5. If all objects are in one cluster, stop. Else, go to step 2.

4.4.4. Results of Hierarchical clustering

Finally after removing the outliers, 8 clusters are considered (shown in 8

different colors) in Figure 4.10.

35

Begin with disjoint clustering,
L(0)= 0, sequence no. m=0.

Find the least disimilar
pair of clusters (r, s).

m=m+1, Merge the clusters
r and s, L(m)=d(r, s).

Return the clusters.Is desired number
of clusters achieved?

corresponding to clusters r and s
and add a new row and column to

newly formed cluster.

Delete the rows and columns

No Yes

FIGURE 4.9. Algorithmic flow of Hierarchical clustering algorithm

4.5. Outliers

An outlier [16] is an observation or subset of observations, which appear

to be inconsistent with remainder of that set of data.

Possible sources of outliers [11, 16] are:

• Data recording or entry errors.

• Incorrect assumption about the data distribution can lead to mislabeling

data as outliers.

36

(a) smoothhead.vox (b) smoothrotate.vox

FIGURE 4.10. Results of Hierarchical clustering applied on “Test Case”(8 clus-

ters shown in 8 different colors.)

• “Rare” event syndrome. Another reason for outliers is the ”rare” event

syndrome - extreme observations may occur that for some legitimate reason

do not fit within the typical range of other data values.

• Noise in data sets.

Developing techniques to look for outliers and understanding how they im-

pact data analysis are extremely important parts of a thorough analysis, especially

when statistical techniques are to be applied to the data. Several problematic ef-

fects of outliers include:

• Any statistical test based on sample means and variances can be distorted in

the presence of outliers. Regression coefficients estimated that minimizing

the Sum of Squares for Error (SSE) are very sensitive to outliers.

• Sums of squares are inflated which make it unlikely you will partition sources

of variation in the data into meaningful components.

• They may cause bias or distortion of estimates.

37

• They may lead to faulty conclusions.

Thus, it becomes really important to detect the outliers in data and remove

them in order to get desirable results.

4.5.1. Detecting and removing outliers

One of the commonly used methods to detect outliers is Interquartile

Range (IQR). IQR is the width of the box in a box-and-whisker plot [3, 23].

Statistics assumes that data values are clustered around some central value. The

IQR tells how spread out the “middle” values are; it can also be used to tell when

some of the other values are “too far” from the central value. These “too far

away” points are called “outliers”, because they “lie outside” the range in which

we expect them. Figure 4.11-(a) shows the clustering of “smoothhead.vox” with

boxes representing the clusters and points in green being detected as outliers using

Inter-Quartile Range shown in elipitical regions.

Defining Q1 and Q3 to be first and third quartiles, and IQR to be In-

terquartile Range (Q3 −Q1), mild outlier can be identified in the range:

< Q1 − 1.5× IQR or > Q3 + 1.5× IQR.

Q1 and Q3 define the so-called inner fences, beyond which an observation would

be labeled a mild outlier. Extreme outliers are the values beyond outer fences i.e

< Q1 − 3× IQR or > Q3 + 3× IQR.

Another method that could be used to detect outliers with hierarchical

clustering is to threshold the distance metric used for clustering. This step

can be preformed in the beginning, by setting the threshold on Euclidean Distance

and ignoring the points whose distance is greater than the threshold value. The

hierarchical clustering works in a way that it finds out the two closest points and

38

(a) Inter Quartile Range (b) Threshold Euclidean Distance

FIGURE 4.11. Detecting outliers for “smoothhead.vox”

clusters them together. This process is repeated until desired number of clusters is

achieved. The outliers are the points that are widely separated from the data and

hence after clustering they will exist in separate clusters and can also be ignored

at this time. These clusters are shown in Figure 4.11-(b).

Finally after clustering, the average points of the boxes were selected and

Least Squared methods was applied to determine the final transformation matrix

by which the second volume data set was transformed so that it optimally aligned

with the first one.

39

5. OPTIMAL TRANSFORMATION

Given two sets of points in correspondence with each other, it is straight-

forward to determine the transformation matrix that transforms one set of points

to other. But in our application, after successful clustering we are left with only a

few points (“8” points for “Test Case”) in each of the data sets, with no knowledge

of which clusters in one data set might correspond best with which clusters in the

other data set. Hence, we consider the original cluster average points and all pos-

sible permutations of transformed cluster average points to yield a transformation

matrix for each combination. But there is just one optimal transformation matrix

and one optimal ordering on the transformed set of points. We incorporate the

sum of squared error metric on each transformation matrix and the one with least

error corresponds to the optimal transformation matrix. In this chapter, we

discuss the following things:

• To compute all the possible permutations of a set of points.

• Computation of the transformation matrix.

• Error metric to determine the optimal transformation matrix and optimal

ordering on transformed points.

• Decomposition of the transformation matrix into translation, scaling, shear

and rotation matrices.

5.1. Permutations

The permutation of a set is the number of ways that the items in the set

can be uniquely ordered. For example, the permutations of the set {1, 2, 3} are

40

{1, 2, 3}, {1, 3, 2}, {2, 1, 3}, {2, 3, 1}, {3, 1, 2} and {3, 2, 1}. For N objects, the

number of permutations is N ! (N factorial, or 1× 2× 3× ...N). Permutation sets

are usually calculated via recursion.

5.1.1. Algorithm to compute permutations

The algorithm used to compute the permutations is explained below [12]:

Lets take a string “123”. If we rotate this string in a circular manner, we get 231

and 312. If we find one string of N ! permutations, we can produce N permutations

by rotating it circularly. This reduces time that is proportional to N . The greater

the value of N , the more the algorithm is optimized. In short, the algorithm finds

a number and rotates the number circularly N times to get N numbers.

5.1.2. Application of the algorithm

Application of the above algorithm to strings of various lengths can be seen

as:

Case 1 : Let the string be {12} of length 2. The unique pattern is 12 and if we

rotate it we get 21.

Case 2 : Let the string be {123} of length 3. The unique patterns are as follows:

1(23): 123 is unique pattern resulting in (123).

1(32): Rotate the pattern (23) to get (32) resulting in a pattern (132).

(231): By rotating the pattern (123).

(312): By rotating the pattern (123).

(321): By rotating the pattern (132).

(213): By rotating the pattern (132).

41

The output patterns are:

Level 1 Level 2 Permutations

123

1(23) 123

231

312

1(32) 132

321

213

5.2. Determining the optimal transformation matrix

We initially start with two matrices, one is a 4 × n matrix consisting of

original set of points and the other is 3×n matrix consisting of transformed set of

points, where n is the number of points in each of them. The original set contains

x, y, z and w co-ordinates of points where “w” is the perspective component and

transformed set contains x, y and z co-ordinates. Now, our basic goal here is to

compute the transformation matrix (M) as:

[P ′]3×n = [M]3×4[P]4×n, (5.1)

where P ′ = 3× n matrix containing original points,

M = 3× 4 transformation matrix, and

P = 4× n matrix containing transformed points.

Since P is not a square matrix, we cannot directly compute the inverse

of P . We have to perform some manipulation on Equation 5.1 so that P turns

into a square matrix and we can easily compute the transformation matrix as

[M] = [P ′][P]−1.

42

The task now is to convert P to a square matrix so that Equation 5.1

can be easily computed. For this, we need to consider the transpose of a matrix.

(Transpose of a matrix is a matrix formed by turning all the rows of a given matrix

into columns and vice-versa. The transpose of matrix P is written P T)

We post multiply both sides of Equation 5.1 by transpose of P (P T).

[P ′]3×n[P]Tn×4 = [M]3×4[P]4×n[P]Tn×4. (5.2)

After multiplying matrix P ′ by P T , we get a 3× 4 matrix and multiplying P by

P T yields a 4× 4 matrix. Equation 5.2 hence reduces to:

[P ′
new]3×4 = [M]3×4[Pnew]4×4 , or

[M]3×4 = [P ′
new]3×4[Pnew]−1

4×4.

Now, we have to determine the inverse of a square matrix.

This method is incorporated to compute the inverse of Pnew matrix in our

application. Now that we have successfully computed the inverse of the square

matrix (Pnew), we can simply use it to get the final transformation matrix (M)

by post multiplying the inverse Pnew matrix by P ′
new matrix.

5.3. Error Metric

Given two sets of points, we take the original set of points as a 4×n matrix

(P) and for all possible permutations of the transformed set of points which is a

3×n matrix (P ′), we compute the transformation matrix (T) as given by Equation

5.1. Now out of all these transformation matrices, there is just one matrix that is

optimal i.e. there is one best correspondence between the two sets of points. In

order to determine this optimal transformation matrix, we make use of an error

43

metric. After computing the transformation matrix (T) for each permutation,

we multiply this transformation matrix by the original set of points to get the

new transformed matrix (T̂). The sum of squared error (sse) between the

elements of the transformed matrix and new transformed matrix is used as a

metric to determine the optimal transformation matrix as shown in Equation 5.3.

sse =
3∑

i=0

4∑
j=0

(Tij − T̂ij)
2 (5.3)

5.4. Decomposition of Transformation Matrix

It is easier to view a transformation matrix in terms of simple transforma-

tions such as scale, rotation etc. that reproduces a given transformation matrix.

Concatenating a sequence of transformations in the order forms the transforma-

tion matrix:

Scale(sx, sy, sz)ShearxyShearxzShearyzRotatexRotatey

RotatezTranslate(tx, ty, tz)Perspective(px, py, pz, pw)

The algorithm [15] works by undoing the transformation sequence in re-

verse order. It first determines the perspective elements that, when removed from

the matrix, will leave the last column as (0, 0, 0, 1)T . Then extracting the trans-

lations leaves the 3 × 3 transformation matrix comprising of scales, shears and

rotations. It is decomposed from left, extracting first the scaling factors and then

the shearing components, leaving a pure rotation matrix. This is broken down

into three consecutive rotations.

For extracting the perspective components, we need to solve the matrix equation:

44

M1,1 M1,2 M1,3 M1,4

M2,1 M2,2 M2,3 M2,4

M3,1 M3,2 M3,3 M3,4

M4,1 M4,2 M4,3 M4,4

=

M1,1 M1,2 M1,3 0

M2,1 M2,2 M2,3 0

M3,1 M3,2 M3,3 0

M4,1 M4,2 M4,3 1

1 0 0 px

0 1 0 py

0 0 1 pz

0 0 0 pw

,

reduces to:

M1,4

M2,4

M3,4

M4,4

=

M1,1 M1,2 M1,3 0

M2,1 M2,2 M2,3 0

M3,1 M3,2 M3,3 0

M4,1 M4,2 M4,3 1

px

py

pz

pw

.

Assuming that upper left 3× 3 partition of M is not singular, this can be solved

easily for px, py, pz and pw. The next step is to extract the translations. We find

tx = M4,1, ty = M4,2 , tz = M4,3. At this point, we are left with a 3 × 3 matrix

(M ′).

The process of finding the shear and the scale factors is interleaved. We

first find, sx = |M ′
1|. Then we compute the initial value for xy shear factor

sxy = |M ′
1M

′
2|. The second row of the matrix is made orthogonal to the first by

setting M ′
2 = M ′

2 − sxyM
′
1.

Then, the y scaling factor, sy, is the length of the modified second row.

The second row is normalized and sxy is divided by sy to gets its final value. The

xy and yz shear factors are computed, the third row is made orthogonal to first

two rows, the z scaling factor is computed, the third row is normalized and xz

and yz shear factors are rescaled.

The resulting matrix is a pure rotation matrix. Finally we need to decom-

pose the rotation matrix into a sequence of rotations about x, y and z axes. If

the rotation angle about x is α, about y is β and about z is γ, then the composite

rotation is:

45

R =

cos(β)cos(γ) cos(β)sin(γ) −sin(β)

sin(α)sin(β)cos(γ)− cos(α)sin(γ) sin(α)sin(β)cos(γ) + cos(α)sin(γ) sin(α)cos(β)

cos(α)sin(β)cos(γ) + sin(α)sin(γ) cos(α)sin(β)sin(γ)− sin(α)sin(γ) cos(α)cos(β)

 ,

where, β = arcsin(−R1,3)

If cos(β) 6= 0, α is derived easily from R2,3 and R3,3 and γ from R1,2 and R1,1.

If cos(β) = 0, then R reduces to:
0 0 ±1

sin(α± γ) cos(α± γ) 0

cos(α± γ) −sin(α± γ) 0

 .

In this case, we can arbitrarily set γ to 0 and derive α from R2,1 and R2,2.

Decomposition process is now complete.

5.5. Results

The Test Case consists of a volume data file, smoothhead.vox and another

volume data file, smoothrotate.vox which is smoothhead.vox rotated by 45 degrees

across Y -axis. The original and the transformed points which are the mean of

the clusters from the clustering stage are considered. Then for all the possible

permutations of the transformed set of points, we compute the transformation

matrix. Sum of squared error determines the optimal transformation matrix and

the optimal ordering on the transformed set of points. After we get the optimal

transformation matrix, we decompose it into rotation, scaling, shear and trans-

lation components. In this case, we got the transformation matrix consisting of

negligible translation, scale and shear and 44.2 degrees rotation about Y-axis.

46

The original points are:

P1 = [-0.285282 -0.160508 -0.497274]

P2 = [-0.092172 0.1162570 0.3811950]

P3 = [0.2886090 0.0456690 0.0122830]

P4 = [0.5312800 0.4082460 0.0192060]

P5 = [-0.752663 -0.057897 -0.069013]

P6 = [-0.102362 0.7322830 0.0669290]

P7 = [-0.106299 -0.183071 0.3562990]

P8 = [-0.336333 -0.141357 0.4488190]

The transformed points are:

P1’ = [0.3877740 0.4083900 -0.364199]

P2’ = [-0.330709 -0.116142 -0.202756]

P3’ = [0.2101630 0.0494360 -0.218118]

P4’ = [-0.552056 -0.160105 -0.149606]

P5’ = [-0.078277 0.7239460 0.1551640]

P6’ = [0.1968500 -0.188976 0.3438320]

P7’ = [-0.579527 -0.064567 0.4803150]

P8’ = [0.0854030 -0.144760 0.5542090]

The least error = 0.001026

47

The optimal transformation matrix is:

0.734140 −0.071126 0.716802 0.006759

0.008998 0.992474 −0.005515 −0.001075

−0.719109 0.030140 0.715749 0.002124

0.000000 0.000000 0.000000 1.000000

Decomposition of transformation matrix yields:

tranlate = 0.006759, -0.001075, 0.002124 ≈ (0.,0.,0.)

scale = 1.027696, 0.993467, 1.012336 ≈ (1.,1.,1,)

shear = -0.063625, 0.011036, -0.033983 ≈ (0.,0.,0.)

rotate = -0.019852, 0.775018, 0.012256 ≈ (45.,0.1.,0.)

48

6. RESULTS

Test Case: We have a volume data set “smoothhead.vox” and another

volume data set “smoothrotate.vox”, which is smoothhead rotated by 45 degrees

about the Y-axes. Given just these volumes, we wanted to see if these methods

are able to determine the transformation matrix that transforms smoothhead.vox

to smoothrotate.vox (i.e. transformation matrix should have only rotation term,

45 degrees about Y axes, with no translation, shear and scaling factor). These

two volumes are shown in Figure 6.1.

(a) smallhead.vox (b) smoothrotate.vox

FIGURE 6.1. Volume data sets (rotated) for matching

The first step in “volume-volume matching” is smoothing. Raw volumes

are often degraded by noise and hence greatly affect the volume matching process.

We apply Gaussian smoothing to smooth the volumes and remove the noise.

The results of smoothing are shown in Figure 6.2.

The second step in volume-volume matching is to identify the important

subsets of the volume data to perform reliable matching of volumes. This is

achieved by considering the maximum eigenvalues of the Hessian matrix as the

49

(a) smallhead.vox (b) smoothrotate.vox

FIGURE 6.2. Gaussian smoothing applied to volume data sets (rotated)

threshold value as it determines where data values are changing rapidly. The

distinctive invariant voxels (hotspots) are shown in Figure 6.3.

(a) smallhead.vox (b) smoothrotate.vox

FIGURE 6.3. Identifying hotspots in volume data (rotated)

The combined hotspots for smoothhead.vox and smoothrotate.vox are be

shown together in Figure 6.4. The hotspots in smoothrotate.vox are rotated by -45

50

degrees and then displayed. The figure clearly shows that the hotspots detected

in two volumes are indeed rotationally invariant.

FIGURE 6.4. Combined hotspots displayed in green for smoothhead.vox and red

for smoothrotate.vox

After detecting the hotspots in volume data sets, we perform clustering to

reduce the number of voxels to a few so that it is feasible to consider all possible

combinations of voxels between the two sets. We use single-linkage hierar-

chical clustering where the distance between the clusters is defined as distance

between the closest pair of points in a cluster. The results of this clustering is

shown in Figure 6.5.

After clustering the points into clusters, we take the mean value of these

clusters. We then apply least squared transformation to mean points both

the clusters to determine the optimal transformation matrix that transformed the

first volume data set to the second. The optimal transformation matrix with least

sum of squared error is:

51

(a) smallhead.vox (b) smoothrotate.vox

FIGURE 6.5. Identifying clusters in volume data (rotated) - 8 clusters in 8 dif-

ferent colors.

0.734140 −0.071126 0.716802 0.006759

0.008998 0.992474 −0.005515 −0.001075

−0.719109 0.030140 0.715749 0.002124

0.000000 0.000000 0.000000 1.000000

.

The number of hotspots identified should be optimal, neither “too few” nor

“too many”. If they are too few, then some important details in the volume might

be missed and if they are too many, they might over represent the volume data

and could create problems in clustering. The maximum eigenvalue at each voxel

is taken as a threshold value. Figure 6.6 shows the plot of Number of Hotspots and

Threshold Value for “smoothhead.vox” and “smoothrotate.vox” volume data sets.

After thresholding the hotspots, they are clustered and optimal transformation

matrix is determined for the two volume data sets. Figure 6.7 shows a plot of

the Number of Hotspots and Error. After clustering, the mean of the clusters are

considered for determining the optimal transformation. The number of clusters

52

should also be optimal, because for determining the optimal transformation and

optimal ordering on the points, we consider all the possible combinations of the

points in the two volume data sets. Hence, the number of clusters should be such

that it takes minimal time and gives minimal error while determining the trans-

formation matrix. Table 6.1 and Figure 6.8 shows a plot of Number of Clusters vs

Error and Number of Clusters vs Time (in sec.). The data was taken on Intel[R]

CPU with processor speed of 1.83GHz and 1.00GB of RAM.

Number of Clusters N! Error Time(in sec.)

4 24 0.001123 0

6 720 0.000594 0

8 40320 0.001026 8

10 3628800 0.001324 1009

12 479001600 0.002103 3706

TABLE 6.1. Data for plot of “Number of clusters”, “Error” and “Time”

53

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

-10000 -5000 0 5000 10000 15000 20000 25000 30000

Nu
m

be
r o

f H
ot

sp
ot

s

Threshold Value

2097150 2096641

611340

174871

25373 2914 977 324

(a) smoothhead.vox

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

-15000 -10000 -5000 0 5000 10000 15000 20000 25000 30000

Nu
m

be
r o

f H
ot

sp
ot

s

Threshold Value

2097150 2096696

606336

167736

21194 2467 987 238

(b) smoothrotate.vox

FIGURE 6.6. Plot of “Number of Hotspots” vs “Threshold Value”

54

 0

 0.5

 1

 1.5

 2

 2.5

 200 400 600 800 1000 1200 1400 1600 1800 2000

Er
ro

r

Number of Hotspots

0.087642
0.176487

0.009071 0.001026 0.011039

1.467409

2.101356

FIGURE 6.7. Plot of “Number of Hotspots” vs “Error”

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 0.0016

 0.0018

 0.002

 0.0022

 4 5 6 7 8 9 10 11 12
 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

Er
ro

r

Ti
m

e
(s

ec
.)

Number of Clusters

Error
Time

FIGURE 6.8. Plot of “Number of Clusters” vs “Error” and “Number of Clusters”

vs “Time”

55

We also tried to find the optimal transformation matrix considering two

translated volumes. The first volume data set is “smoothhead.vox” and the

second volume data set is “smoothtranslate.vox”, which is head data translated

by 0.16 units along Z-axes. The original volume lies between the range −1 and

1. We translate the important information inside the volume by 0.16 units along

Z-axes so that the translated volume still is in the same range −1 and 1.

The first step in matching these two volumes is to filter the volumes us-

ing Gaussian smoothing . The result of Gaussian smoothing on smoothtrans-

late.vox can be shown in Figure 6.9.

FIGURE 6.9. Gaussian smoothing applied to smoothtranslate.vox (translated

head)

The second step i.e. to identify the important subsets of volume data

set (hotspots) is shown in Figure 6.10.

After identifying the important subsets, we still need to reduce the number

of points; hence we applied hierarchical clustering to achieve the same. The

results of clustering for the two volumes - original and translated volume can be

shown in Figure 6.11.

56

(a) smoothhead.vox (b) smoothtranslate.vox

(c) Combined Hotspots

FIGURE 6.10. Identifying hotspots in volume data (translated) -(a) shows

hotspots in smoothhead.vox, (b) shows hotpots in smoothtranslate.vox and (c)

shows combined hotspots (red for smoothhead and green for translated head)

57

(a) smoothhead.vox (b) smoothtranslate.vox

FIGURE 6.11. Hierarchical clustering applied to volume data (translated) - 8

clusters are shown in 8 different colors

We take mean of these clusters and determine the optimal transformation

matrix and optimal ordering on these points using the least squared method .

The resultant transformation matrix is:

0.999294 0.000379 0 −0.000291

0.000167 0.999910 0 0.000069

−0.000992 0.000531 1 −0.157889

0 0 0 1

.

Splitting this transformation matrix into individual transformations we can

see that we get translation of ∼ 0.16 about Z-axes with negligible scaling, shear

and rotation components.

tranlate = -0.000291, 0.000069, -0.157889 ≈ (0.,0.,-0.16)

scale = 0.999294, 0.999910, 1.0 ≈ (1.,1.,1.)

shear = 0.000546, -0.000992, 0.000532 ≈ (0.,0.,0.)

rotate = 0.000532, 0.000993, 0.000167 ≈ (0.,0.,0.,0.)

58

7. CONCLUSION AND FUTURE WORK

This approach can be used effectively to compare two volumes without

having to compare all the voxels in one volume to all the voxels in other volume

set. In chapter 3, we presented the various filtering strategies to reduce noise from

raw volume data and introduced an approach to identify volume-data features

(hotspots) based on eigenvalues of the Hessian matrix. In chapter 4, we presented

the various clustering methods applied to the hotspots to extract the vital features

or further reduce the number of voxels under consideration. In chapter 5, we

determine the optimal ordering on the points and the optimal transformation

matrix that transforms one volume data set to the other. Though the volume-

volume matching method involves a number of steps, none of these steps is very

time consuming.

As chapters 3-5 deal with distinct topics, we concluded them separately.

Nevertheless, more general conclusions which are based on acquired experience

during the development of concepts and implementation can be pointed out as:

• The information in 3D volumes is carried by 9 distinct numbers, i.e. 3

gradient components plus 6 elements from the Hessian matrix.

• The barrier which creates difficulties in extending analyses from 2D to higher

dimensions resides is additional degree of freedom in choosing the direction

to be examined.

• Computation of eigenvalues of real symmetric matrices is relatively cheap

compared with general matrices. This fact has to be considered during

implementation.

59

• Hierarchical clustering (agglomerative) is better than other clustering strate-

gies (partitional) in the case of raw volume data as it is more robust to

outliers and creates an ordering of points that might be useful.

• When no correspondence is known between the two set of points, the optimal

transformation matrix and optimal ordering on points is determined by the

sum of squared error metric. Sum of squared error metric is computed

between the transformation matrix determined by least square approach

and the new transformation matrix determined by multiplying the original

set of points by the transformation matrix.

In order to make this methodology perfect to match two volumes, we still

need to figure out some steps but we keep them as future work. Some of these

steps are:

• Do the computation on parallel processors to achieve better timing perfor-

mance. For instance, the computation of the eigenvalues for each voxel can

be done in parallel and then results can be combined together and thresh-

olding of hotspots can be done.

• A method to define 3D volume descriptors, so that we know the correspon-

dence between the voxels in one volume data set and the other. In this case,

we need not consider all the combinations of voxels (mean of the clusters)

in one volume set and the other.

• A standard metric to threshold the number of hotspots and number of clus-

ters.

• Try volume-volume matching algorithm on similar, but not identical vol-

umes.

60

BIBLIOGRAPHY

[1] Wikipedia. http://en.wikipedia.org/wiki/Hessian matrix.

[2] Agglomerative methods.
http://www.resample.com/xlminer/help/HClst/HClst intro.htm.

[3] Box plots. http://en.wikipedia.org/wiki/Interquartile range.

[4] Data clustering. http://en.wikipedia.org/wiki/Data clustering.

[5] Drawbacks of k-means clustering algorithm.
http://people.revoledu.com/kardi/tutorial/kMean/index.html.

[6] Gaussian and salt and pepper noise.
http://en.wikipedia.org/wiki/Image noise.

[7] Gaussian smoothing.
http://www.homepages.informatics.ed.ac.uk/rbf/HIPR2/gsmooth.htm.

[8] Least square plane. http://www.infogoaround.org/JBook/LSQ Plane.html.

[9] Mean filter. http://www.cee.hw.ac.uk/hipr/html/mean.html.

[10] Median filter. http://www.cee.hw.ac.uk/hipr/html/median.html.

[11] Outliers. http://en.wikipedia.org/wiki/Outlier.

[12] Permutations.
www.codeguru.com/Cpp/algorithms/combinations/atricle.php/c7605.

[13] Single linkage clustering.
http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial html/hierarchical.html.

[14] Volume rendering methods. http://en.wikipedia.org/wiki/Volume rendering.

[15] Arvo, J. Graphics Gems II. Morgan Kaufmann, 1994.

[16] Barnett, V., and Lewis, T. Outliers in Statistical Data. John Wiley &
Sons, 1994.

[17] Gerstner, T. Fast multiresolution extraction of multiple transparent
isosurfaces. In Data Visualization 2001, Proceedings of the Joint
EUROGRAPHICS - IEEE TCVG Symposium on Visualization (2001),
pp. 35–44, 336.

[18] Gonzalez, R. C. Digital Image Processing. Prentice Hall; 2nd edition,
2002.

61

[19] Heckbert, P. Color image quantization for frame buffer display. Computer
Graphics (1982).

[20] Hladuvka, J. Derivatives and Eigensystems for Volume Data Analysis
and Visualization. PhD thesis, Vienna University of Technology, 2001.

[21] Hladuvka, J., Konig, A., and Groller, E. Exploiting eigenvalues of
the hessian matrix for volume decimation. Tech. rep., Institute of Computer
Graphics and Algorithms, Vienna University of Technology, October 2000.

[22] Horn, R. A., and Johnson, C. R. Matrix Analysis. Cambridge
University Press, 1985.

[23] Johnasson, J., Ljung, P., Jern, M., and Cooper, M. Revealing
structure within clustered parallel coordinates display. In IEEE Symposium
of Information Visualization, 2005 (October 2005).

[24] Kindlmann, G., and Durkin, J. W. Semi-automatic generation of
transfer functions for direct volume rendering. In Proceedings of IEEE
Symposium on Volume Visualization (1998), pp. 79–86.

[25] Kull, M. Fast clustering in metric space. Master’s thesis, University of
Tartu, 1999.

[26] Lorensen, W. E., and Cline, H. E. Marching cubes: A high resolution
3d surface construction algorithm. In Proceedings of ACM SIGGRAPH
(1987), pp. 163–170.

[27] Lowe, D. Scale invariant feature points. International Journal of Computer
Vision 60, 2 (2004), 91–110.

[28] Mroz, L., Hauser, H., and Groller, E. Interactive high-quality
maximum intensity projection. In Proceedings of EUROGRAPHICS (2000),
pp. 341–350.

[29] Press, W. H., Flannery, B. P., Teukolsky, S. A., and
Vetterling, W. T. Numerical recipes in C:Art of Scientific Computing.
Cambridge University Press, 1992.

[30] Saito, T. Real-time previewing for volume visualization. In Proceedings of
IEEE Symposium on Volume Visualization.

[31] Salomon, D. Digital Image Processing. Springer Verlag, 1999.

[32] Shapiro, L. G., and Stockman, G. C. Computer Vision. Prentice Hall,
2001.

62

[33] TeraRecon, Inc. Voxel File Format Specification, August 2001.
http://www.terarecon.com/downloads/support/vp500 vol file format.pdf.

63

64

APPENDICES

65

APPENDIX A. Volume Data File Format

V ox1999a is a simple, flexible format for voxel data storage, exchange

and input and output filter targeting. The file format is operating system and

processor independent. It is capable of storing 1, 8, 16, 32 and 64 bit volumes, each

of which can contain multiple fields. This format also enables to store multiple

volumes in a single file. Volumes stored in this format are assumed to be consisting

of slices of voxels with equal distance between the slices.

The voxel file format consists of three logical sections. The first one is the

file header that is used to identify the file as being the proposed voxel file format.

The header is followed by a volume description that describes the first volume

and voxel data in it. The volume data section follows the volume description

section. Each datum in the data section represents a voxel containing one or more

fields. The file header and the volume description sections contain text in ASCII

encoding, organized as descriptors. The parameter types used in descriptors are

int, float, word, rest-of-line and quoted-string.

A.1. File Header

• Signature - required: The signature (Vox1999a) must appear at the begin-

ning of the file (bytes 0-7) and must be immediately followed by end of

line.

• Comments - optional: Comments are introduced by // and terminated by

the end of line and can appear anywhere in the file header after the signature.

66

• Volume Count - optional: This descriptor (VolumeCount int) specifies the

number of volumes stored in the file. If it is 0 then an arbitrary number of

volumes are stored in the file. The last volume is followed by the end of file.

• Title - optional: This descriptor (Title rest-of-line) is used to hold the de-

scriptions of the overall data, such as the origin of the data, date it was

acquired/generated, etc.

• Copyright Notice - optional: This descriptor (Copyright rest-of-line) is used

to place a copyright notice.

• Attribute - optional: This descriptor (Attribute word rest-of-line) is available

for application specific purposes.

• Data - optional: This descriptor (Data word int) is available for application

specific purposes, for binary data related to the entire file. The integer

argument represents the size, in bytes, of the data, which must appear after

the end-of-section marker.

• End of Section - required: This sequence (## \ f) signals the end of the file

header.

A.2. Volume Description

• Start of Section - required: This sequence signals the start of the volume

description. It must appear on a single line with no leading spaces.

• Volume Size - required: This descriptor (VolumeSize int int int) describes

the size of the volume. The three arguments are the number of voxels in the

x, y, and z dimensions of the volume.

67

• Voxel Size - required: This descriptor (VoxelSize int) specifies the size of

voxel data stored in the volume data section immediately following the de-

scriptor block.

• Endian - required: The argument (Endian word) must be either L or B to

indicate little-endian and big-endian modes, respectively.

• Volume Scale - optional: This descriptor (VolumeScale float float float)

describes the scale of the three axis. The three floating-point numbers rep-

resent the voxel spacing between adjacent voxels in each direction.

• Volume Position - optional: This descriptor (VolumePosition float float

float) describes the position of the volume.

• Voxel Field - Field0 required and remaining optional: The first line of this

descriptor must include Field and the field number. The name-value pairs

inside the parentheses can appear in any order, and the end of line indica-

tor can appear anywhere that blank space is acceptable. The end of line

indicator must follow the close parenthesis.

• Model matrix - optional: This descriptor specifies a 4x4 model matrix to

describe how the voxel center positions map to a corrected coordinate space

that is rectilinear and scaled equally in all three dimensions.

• Attribute - optional: This descriptor (Attribute word rest-of-line) is available

for application specific purposes, for textual (ASCII) data related to this

volume.

• Additional Data - optional: This descriptor (Data word int) specifies addi-

tional data that is to follow the voxel data.

68

• Comments - optional

• Title - optional

• Copyright - optional

• End of Section - required

A.3. Volume Data

• Voxel Data: With the information in the data descriptor block, the total

size, in bytes, of the volume can be computed as follows:

TotalBytes = Floor((Nx×Ny ×Nz × V oxelSize + 7)/8)

• Additional Data: Additional data, if any, follows immediately after the voxel

data.

• End of Data: The end of the volume data section is determined solely by the

voxel data size and the sizes of all Data descriptors in the volume description.

A simple example of a vox file header and descriptor is:

Vox1999a

\ f

##

VolumeSize 128 128 128

VoxelSize 16

Endian B

Field 0 (Position 0 Size 16 Name Test Data)

\ f

