
1

AN ABSTRACT OF THE DISSERTATION OF

Minho Kim for the degree of Doctor of Philosophy in Electrical and Computer

Engineering presented on August 4, 2006.

Title: Cryptanalysis and Enhancement of Authentication Protocols .

Abstract approved:

Çetin Kaya Koç

Authentication protocols play important roles in network security. A va-

riety of authentication protocols ranging from complex public-key cryptosystems

to simple password-based authentication schemes have been proposed. However,

currently there is no fully secure authentication scheme that can resist all known

attacks. When a user authentication is performed over an insecure network, addi-

tional problems arise due to the fact that the communication may be intercepted,

or even altered, by an attacker. In general, one cannot assume that there is a

secure channel between the client and the server. In this dissertation, we present

specific cryptanalytic attacks on existing protocols and show their vulnerabilities

in order to design more secure protocols. In particular, we propose improved se-

curity schemes to overcome certain security defects with registration, login, and

password/identifier-change schemes. We also propose new authentications schemes

which are more secure against guessing, stolen-verifier, replay, denial-of-service,

and impersonation attacks than the existing protocols.

c©Copyright by Minho Kim

August 4, 2006

All Rights Reserved

Cryptanalysis and Enhancement of Authentication Protocols

by

Minho Kim

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented August 4, 2006
Commencement June 2007

Doctor of Philosophy dissertation of Minho Kim presented on August 4, 2006.

APPROVED:

Major Professor, representing Electrical and Computer Engineering

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection

of Oregon State University libraries. My signature below authorizes release of my

dissertation to any reader upon request.

Minho Kim, Author

ACKNOWLEDGMENTS

Thank God for guiding me to get through this journey.

I wish to express my gratitude to Professor Çetin Kaya Koç, my advisor, for his

encouragement, insightful guidance and patience throughout my Ph.D. degree at

OSU. I would like to thank Professor Ben Lee for his valuable feedback and profes-

sional teaching. I also want to extend great appreciation to Professor Zhongfeng

Wang, Traylor Roger, Thomas Schmidt, and Greg Baker for their serving in my

graduate committee.

I would like to thanks my colleagues in Information Security Laboratory, Dr.

Gokay Saldamli, Dr. Lo’ai Tawalbeh, Onur Aciicmez, Weetit Wanalertlak, and

Wen-Chun Yang that they were always good mentors, general supports and being

such good friends. In particular, I would like to thank Gerald Lai and Phuc Vo

for helping me to understand English and fruitful discussions. Warm thanks go

to Electrical and Computer Engineering staff especially Ferne Simendinger for her

generous helps whenever I needed.

I want to thank Korean Air Force and Air Force Academy for giving chance

to study and fully supporting me in USA. In special, I thank to go Faculty Board

in KAFA and Dept. of Computer Science and Statistics for patience about my

studies for the last three years.

Finally, I express my deepest appreciation and love to my deceased father,

SeongYun Kim, and my mother, HyunIm Jeong, who have been encouraging, car-

ing, and praying for my whole life. I dedicate my dissertation to my mother. I

would like to acknowledge my parents-in-law ByungGyun Yoo and SoonRye Hwang

for their care and patience. I also express my thanks to my brothers BongHo and

KyungHo, a younger sister and brother of my wife BokHee and HeeJeong in Korea

for their love, care, and prayers. In special, I would like to express my deepest

gratitude to my wife, BokRye Yoo who has shown endless patience and love. She

supported me fully with victimizing her important period in her life. I thank very

much my daughter, SeoHee Kim and my son, Kijin Kim for well-breeding with

health and happiness.

I Love God.

Kim, Minho

Corvallis, Oregon, August 2006

TABLE OF CONTENTS

Page

1. INTRODUCTION . 1

1.1. Authentication Scheme . 6

1.1.1. Basic Authentication Scheme. 6

1.1.2. Authentication in Secret Key Cryptography 8

1.1.3. Authentication in Public Key Cryptography 9

1.1.4. User Authentication Protocol . 9

1.2. Attacks against Protocols . 14

1.2.1. Passive and Active attacks . 14

1.2.2. Man-in-the-middle Attack . 15

1.2.3. Known-Plaintext Attack . 16

1.2.4. Chosen-Plaintext Attack . 17

1.2.5. Replay Attack . 18

1.2.6. Denial-of-Service Attack . 18

1.2.7. Guessing Attack . 19

1.2.8. Impersonation (Forgery) Attack . 22

1.2.9. Stolen-Verifier Attack . 22

1.2.10.Forward/Backward Secrecy . 23

1.3. Related Works . 24

1.3.1. ElGamal-based Password Authentication
Schemes . 24

1.3.2. RSA-based Password Authentication Schemes 26

1.3.3. Hash-Based Strong-Password Authentication
Scheme . 28

1.3.4. ID-based Password Authentication Scheme
using Smart Cards . 31

1.3.5. Hash-Based Secure User Authentication
Scheme . 32

1.3.6. User Remote Authentication Scheme . 33

1.3.7. Novikov and Kiselev User Authentication
Scheme . 33

1.3.8. Authenticated Key Agreement Scheme 34

1.3.9. Micropayment Scheme . 35

TABLE OF CONTENTS (Continued)

Page

2. A SIMPLE ATTACK ON A RECENTLY INTRODUCED HASH-BASED
STRONG-PASSWORD AUTHENTICATION SCHEME 38

2.1. Ku’s Hash-Based Strong-Password
Authentication Scheme . 38

2.1.1. Notations . 39

2.1.2. Registration Protocol . 39

2.1.3. Login Protocol . 40

2.2. Our Attack . 41

2.3. Conclusions . 43

3. A SIMPLE ATTACK ON A RECENTLY INTRODUCED HASH-BASED
SECURE USER AUTHENTICATION SCHEME . 45

3.1. LLH Scheme . 45

3.1.1. Notations . 46

3.1.2. Registration Phase . 46

3.1.3. User Authentication Phase . 46

3.1.4. Change Password Phase . 47

3.2. KCC Impersonation Attack
with Stolen-Verifier . 48

3.3. Our Denial of Service Attack
with the Stolen-Verifier . 50

3.4. No Lack of Backward Secrecy . 52

3.5. Conclusions . 53

4. VULNERABILITIES IN THE ADACHI-AOKI-KOMANO-OHTA MI-
CROPAYMENT SCHEME . 54

4.1. Adachi et al’s Micropayment Scheme. 54

4.1.1. Notations . 54

TABLE OF CONTENTS (Continued)

Page

4.1.2. Adachi et al’s Scheme . 55

4.2. Our Attacks . 57

4.3. Conclusions . 59

5. ENHANCED SECURITY FOR THE MODIFIED AUTHENTICATED
KEY AGREEMENT SCHEME . 60

5.1. Hsu et al.’s scheme. 60

5.1.1. Notations . 61

5.1.2. Key Establishment Phase . 61

5.1.3. Key Validation Phase of the Hsu et al.’s scheme 62

5.2. Lee-Lee’s scheme. 62

5.2.1. Key Validation Phase of the Lee-Lee’s scheme 62

5.3. Our Attack . 63

5.3.1. Off-line Guessing Attack on the Hsu et al.’s scheme 63

5.3.2. Off-line Guessing Attack on the Lee-Lee’s scheme 64

5.3.3. Man-In-The-Middle Attack. 65

5.3.4. Reflection Attack . 66

5.4. Our Enhanced Secure Scheme . 67

5.4.1. Enhanced Key Establishment Phase . 67

5.4.2. Enhanced Key Validation Phase . 68

5.5. Security Analysis . 69

5.5.1. Off-line Guessing Attack . 69

5.5.2. Man-In-The-Middle Attack. 70

5.5.3. Reflection Attack . 70

5.6. Conclusions . 71

TABLE OF CONTENTS (Continued)

Page

6. TWO SIMPLE ATTACKS ON THE ID-BASED PASSWORD AUTHEN-
TICATION SCHEME USING SMART CARDS AND FINGERPRINTS 72

6.1. KLY Scheme. 72

6.1.1. Notations . 73

6.1.2. Timestamp based authentication scheme 73

6.1.3. Nonce based authentication scheme . 75

6.2. Our Attack . 77

6.2.1. Replay Attack . 77

6.2.2. Impersonation Attack . 77

6.3. Conclusions . 79

7. SECURITY IMPROVEMENTS ON A NEW USER REMOTE AUTHEN-
TICATION SCHEME . 80

7.1. Wu-Chieu Scheme . 80

7.1.1. Notations . 80

7.1.2. Registration Phase . 81

7.1.3. Login Phase . 81

7.1.4. Authentication Phase . 82

7.2. Our Attack . 82

7.2.1. Compromised Attack . 82

7.2.2. Impersonation Attack . 84

7.3. Our Improved Scheme . 84

7.3.1. Registration Phase . 85

7.3.2. Login Phase . 85

7.3.3. Authentication Phase . 86

7.4. Security Analysis . 86

7.4.1. Compromised Attack . 86

7.4.2. Impersonation Attack . 87

TABLE OF CONTENTS (Continued)

Page

7.4.3. Password Guessing Attack . 87

7.5. Conclusions . 88

8. IMPROVING THE NOVIKOV AND KISELEV USER AUTHENTICA-
TION SCHEME . 89

8.1. Novikov-Kiselev Scheme . 89

8.1.1. Notations . 89

8.1.2. The First Stage . 90

8.1.3. The Second Stage . 90

8.2. Yang-Lee-Hsiao Attack. 91

8.3. Awasthi Attack . 92

8.3.1. The First Stage . 92

8.3.2. The Second Stage . 92

8.4. Our Improved Scheme . 93

8.4.1. The Synchronization Phase . 94

8.4.2. The Authentication Phase . 94

8.4.3. The Change ID Phase . 95

8.5. Security Analysis . 96

8.6. Cost Comparisons . 98

8.7. Conclusions . 99

9. A SECURE HASH-BASED STRONG-PASSWORD AUTHENTICATION
PROTOCOL USING ONE-TIME PUBLIC-KEY CRYPTOGRAPHY . 100

9.1. The Proposed Scheme . 100

9.1.1. Notations . 101

9.1.2. Registration Protocol . 101

9.1.3. Login Protocol . 102

TABLE OF CONTENTS (Continued)

Page

9.1.4. “Forget Password” Protocol . 103

9.1.5. Password/Verifier Change Protocol . 104

9.2. Security Analysis . 105

9.2.1. Guessing Attack . 105

9.2.2. Stolen-Verifier Attack . 105

9.2.3. Replay Attack . 106

9.2.4. Denial-of-Service Attack . 107

9.2.5. Impersonation Attack . 107

9.3. Conclusions . 108

10. CONCLUSION . 109

BIBLIOGRAPHY . 110

To my parents SeongYun Kim and HyunIm Jeong,

my parents-in-law ByungGyun Yoo and SoonRye Hwang,

my wife BokRye Yoo,

my daughter SeoHee, and my son KiJin,

my brothers BongHo and KyungHo,

a younger sister and brother of my wife BokHee and HeeJeong,

and the Almighty God.

CRYPTANALYSIS AND ENHANCEMENT OF

AUTHENTICATION PROTOCOLS

CHAPTER 1. INTRODUCTION

As society has developed, the need for more sophisticated methods of pro-

tecting data has been increased. History is filled with examples where people tried

to keep information secret from their adversaries. In the battlefield, a commander

communicated with their troops using simple cryptographic methods to prevent

the enemy from learning sensitive military information. For various reasons, peo-

ple have always tried to keep information away from others. As the world becomes

more convenient, the demand for information and the need for good service are

greater than ever.

Using a password, a user can create and send a valid login message to a remote

system in order to gain access. When a user receives a message, he wants to be sure

that it has been created recently and for a particular purpose by the principal who

claims to have sent it. The user must be able to detect when a message has been

created or modified by a malicious principal or attacker with access to the network

or when a message was issued for a different purpose and is currently being replayed

on the network. A variety of authentication protocols ranging from complex public-

key cryptosystems to simple password-based authentication schemes have been

proposed. An authentication protocol is a sequence of message exchanges between

principals that either distributes secrets to some of those principals or allows the

2

use of some secrets to be recognized. Due to its simplicity, the most common form

of user authentication is password-based. That is, a user must be able to provide

a password in order to be authenticated.

Password-based authentication mechanisms are the simplest and most con-

venient way to authenticate a user in order to provide services of a computing or

communication system to a pre-selected group of authorized users. These mecha-

nisms are less costly than biometric methods of authentication, such as fingerprint,

iris scan, voice signature, etc. In conventional password authentication schemes,

a network user not only needs to log into various remote servers with repetitive

registration, but also needs to remember the various user identities and passwords.

Large passwords are more cryptographically secure but are also more cumbersome

to remember. This problem can be circumvented by using passwords that are small

and easy to remember with keys that are large and can be recorded. However, users

often choose weak passwords in order to be able to remember them easily. These

weak passwords are potentially susceptible to dictionary attacks. Dictionary at-

tacks are brute force attacks on passwords that are performed by testing a large

number of likely passwords against some publicly available information about the

desired password. Strong symmetric keys need 60 bits or more, and nobody talks

about memorizing public-keys. It is also fair to assume that a memorizable pass-

word belongs to a brute-force searchable space. To counter the threat of attack,

we assign the user painfully large passwords and force frequent password changes.

Another problem in using the traditional password authentication method is that

a server must maintain a password table that stores each users ID and password.

Therefore, the server requires extra memory space to store the password table.

Many researchers have attempted to create a remote authentication scheme with-

out using passwords. With ever-increasing computing power, there is a growing

3

gap between the size of the smallest safe key and the size of the largest easily

remembered password. Unfortunately, most commonly-known remote password

methods require a large password.

When user authentication is performed over an insecure network, additional

problems arise due to the fact that the communication may be intercepted, or even

altered, by an attacker. In general, one cannot assume that there is a secure chan-

nel between the client and the server. A considerable number of authentication

protocols have been specified and implemented. The area is, however, remarkably

subtle and many protocols have been shown to be flawed a long time after they were

published. Recently, several user authentication protocols have been introduced

and subsequently attacked [1–39]. Many of them can be classified into three types:

ElGamal-based, RSA-based, and Hash-based password authentications. A generic

password-based authentication system usually hashes the password of the user with

the help of a hash function derived from a secret-key cryptographic function, such

as MISTY, DES, or FEAL [40–42]. The hashed password is stored on the server

in order to prevent the adversary from stealing the password. Unfortunately, there

are two known limitations in password-based authentication systems: 1) the user

must submit the bare password at every authentication, and 2) the transmitted

password could be stolen by wiretapping or sniffing. Because of these limitations,

password-based authentication must deal with password guessing, replay, imper-

sonation (forgery), stolen-verifier, denial-of-service (DoS), and man-in-the-middle

attacks, etc.

Another area that needs improvement is the payment protocol authentica-

tion. One of our works discusses weakness in the payment protocol authentication.

There exist several payment protocols for electronic commerce [43–49]. The most

commonly used protocols for Internet e-commerce are based on credit card charges

4

over the Secure Sockets Layer (SSL). Such schemes require the merchant to per-

form an online credit check through a process hidden from the user. The cost of a

check is around 10 cents, which is expensive for low-value transactions. A secure

and user-friendly solution for micropayments can be built to provide a cost-efficient

and effective infrastructure for creating a network of interoperable payment ser-

vice providers. Such a solution offers the following: 1) facilitation of independent

operators of the system for interoperation, thus enabling the operators to reach

out rapidly to a critical mass of consumers and merchants, 2) multi-channel access

to different devices, 3) an open and extendible platform for developing multiple

payment applications, and 4) lower operational costs and automated dispute reso-

lution. Generally, micropayment systems collect the accumulated amount of money

as one regular payment either before or after the transactions. It is well suited as

a charging mechanism for public transportation systems, access control to sites

and services, content sales (music, video, software, etc.), subscriptions, and “pay-

per-view or -click” Web services for small amounts of money called “microcents”.

Since it is not practical for individual users to charge small amounts of money, such

as a penny or a fraction of a penny, to a major charge card, a different method of

payment is needed for sites that wish to go “micro”.

Although many micropayment systems already exist, none has obtained a

dominant market position. This is because customers and providers would have

to install and use multiple systems; something that is undesirable to both parties.

Several methods of micropayment collection are being examined, many of which

involve the encoding of per-fee-links inside HTML pages and an Internet wallet

account. Through this account individuals would establish a cash balance with a

third-party application that would monitor, collect, and distribute micropayments.

A central requirement for any electronic payment system is that a compromise or

5

failure should not have tragic consequences. For example, it should not be possible

to double spend in a digital cash system. Nor should the compromise of a client’s

authorization secret entail unlimited client liability or uncollectible transactions.

The purpose of this dissertation is to describe specific cryptanalytic attacks

on existing protocols and show their vulnerabilities in order to design more secure

protocols. Particularly, we propose improved security schemes to overcome certain

security defects with registration, login, and password/identifier-change schemes.

We then propose new authentications schemes which are more secure against guess-

ing, stolen-verifier, replay, denial-of-service, and impersonation attacks than the

existing protocols.

The organization of this dissertation is as follows: we first introduce the

necessary background, such as authentication schemes, attacks against protocols,

and related works. In chapter 2-5, we then show our works that are published

and accepted in journals: A Simple Attack on a Recently Introduced Hash-Based

Strong-Password Authentication Scheme [50]; A Simple Attack on a Recently In-

troduced Hash-Based Secure User Authentication Scheme [37]; Vulnerabilities in

the Adachi-Aoki-Komano-Ohta Micropayment Scheme [51]; and Enhanced Secu-

rity for the Modified Authenticated Key Agreement Scheme [52]. In chapter 6-9,

we present our works which are in processing at various journals: Two Simple

Attacks on the ID-based Password Authentication Scheme Using Smart Cards and

Fingerprints [53]; Security Improvements on a New User Remote Authentication

Scheme [54]; Improving the Novikov and Kiselev User Authentication Scheme [55];

and A Secure Hash-Based Strong-Password Authentication Protocol Using One-

Time Public-Key Cryptography [56]. Finally, we conclude our work with final

comments in chapter 10.

6

1.1. Authentication Scheme

The whole point of cryptography is to keep the plaintext (or the key, or both)

secret from the adversary (also called eavesdropper, attacker, intruder, enemy,

etc.). The adversary is assumed to have complete access to the communications

between the sender and the receiver. While real-world cryptanalysts do not always

have such detailed information, it is a good assumption to make. If others cannot

break an algorithm, even with knowledge of how it works, then they certainly will

not be able to break it without that knowledge. Cryptanalysis is the art and science

of recovering the plaintext of a message without access to the key. Successful

cryptanalysis may recover the plaintext or the key. It also may find weaknesses

in a cryptosystem that eventually leads to the previous results. The loss of a

key through noncryptanalytic means is called a compromise and an attempted

cryptanalysis is called an attack.

1.1.1. Basic Authentication Scheme

Authentication is the process of reliably verifying the identity of someone (or

something). There are lots of examples of authentication in human interaction.

A mail order company might accept as authentication the fact that we know the

expiration date on our credit card. When A logs into a host computer (ATM,

telephone banking system, or other type of database management systems, etc.),

how does the host know who he is? How does the host know he is not malicious

attacker trying to falsify A′s identity?

In the context of an HTTP transaction, the basic authentication scheme is

7

a method designed to allow a web browser, or other client program, to provide

credentials - in the form of a user name and password - when making a request.

Although the scheme is easily implemented, it relies on the assumption that the

connection between the client and server computers is secure and can be trusted.

Specifically, the credentials are passed as plaintext and could be intercepted easily.

The scheme also provides no protection for the information passed back from the

server.

One advantage of the basic authentication scheme is that it is supported by

almost all popular web browsers. It is used on normal Internet web sites but may

sometimes be used by small, private systems. A later mechanism, digest access

authentication, was developed in order to replace the basic authentication scheme

and enable credentials to be passed in a relatively secure manner over an otherwise

insecure channel.

A typical transaction between an HTTP client and an HTTP server running

on the local machine is comprised of the following steps:

• The client asks for a page that requires authentication but does not provide

a user name and password. Typically this is because the user simply entered

the address or followed a link to the page.

• The server responds with the response code and provides the authentication

realm. At this point, the client will present the authentication realm (typi-

cally a description of the computer or system being accessed) to the user and

prompt for a user name and password.

• The user may decide to cancel at this point. However, once a user name

and password have been supplied, the client re-sends the same request but

includes the authentication header. In this example, the server accepts the

8

authentication, and the page is returned. If the user name is invalid or the

password incorrect, the server might return the response code and the client

would prompt the user again.

• A client may pre-emptively send the authentication header in its first request,

with no user interaction required.

The basic authentication scheme was originally defined by RFC 1945 (Hyper-

text Transfer Protocol HTTP/1.0) [57] although further information regarding se-

curity issues may be found in RFC 2616 (Hypertext Transfer Protocol HTTP/1.1)

[58] and RFC 2617 (HTTP Authentication: Basic and Digest Access Authentica-

tion) [59].

1.1.2. Authentication in Secret Key Cryptography

Authentication means that someone can prove knowledge of a secret without

revealing it. Strong authentication is possible with cryptography and is particularly

useful when two computers are trying to communicate over an insecure network.

Suppose, user A and user B share a key KAB, and they want to verify that they

are talking to each other. They each choose a random number, called a challenge.

A chooses RA and B chooses RB. The value X encrypted with KAB is known

as the response to the challenge X. If the adversary impersonates A, he could

get B’s information to encrypt a value for him, however, this information would

not be useful later in impersonating B to the real A because the real A would

choose a different challenge. If A and B complete this exchange, they have each

proven to the other party that they know KAB without revealing it to the attacker.

In this protocol, there is an opportunity for the adversary to obtain some pairs

9

(chosen plaintext, ciphertext), since he can insist to be B and request A to encrypt

a challenge for him. This is the general idea of a cryptographic authentication

algorithm, though this algorithm has a subtle problem that would prevent it from

being useful in most computer-to-computer cases.

1.1.3. Authentication in Public Key Cryptography

In secret key cryptography, if people want to talk secretly, they have to share

a secret key. If A wants to be able to prove his ID to lots of places, then he

should remember a secret key for each place to which he would like to prove his

ID. He could use the same shared secret with B as with the third party, but

that has the disadvantage that the third party and B could impersonate A to each

other. Public key technology is more convenient than secret key technology. A

only needs to remember his own private key. If A wants to be able to verify his

identity in many places, he does not need to remember a lot of keys. He only

needs to know the public keys. For example, A chooses a random number R and

encrypts it using B’s public key PubKB, and sends the result to B. B proves he

knows B’s private key, PriKB, by decrypting the message and sending R back to

A. Thus, in public key cryptography, no one needs to keep any secret information

for verification purposes.

1.1.4. User Authentication Protocol

Authentication is done somewhat differently depending on the capabilities of

the thing being authenticated. The two most important capabilities are the ability

10

to store a high-quality cryptographic key and the ability to perform cryptographic

operations. A computer has both of these capabilities; a person has neither of them.

Humans are incapable of securely storing high-quality cryptographic keys, and have

unacceptable speed and accuracy when performing cryptographic operations.

User authentication consists of a computer verifying that we are who we

claim to be. There are three main techniques: “what we know”, “what we have”,

and “what we are”. Passwords provide a method of reassuring someone that we

are who we claim to be, and fit into the “what we know” category. Physical keys

or ATM cards fit into the “what we have” category, and biometric devices are fit

into the “what we are” category.

• Password Authentication

In order to establish communications over a PPP (Point-to-Point Protocol),

each end of the PPP link must first send LCP (Link Control Protocol) pack-

ets to configure the data link during Link Establishment phase. After the

link has been established, PPP provides for an optional Authentication phase

before proceeding to the network-layer protocol phase. By default, authenti-

cation is not mandatory. If authentication of the link is desired, an implemen-

tation must specify the authentication-protocol configuration option during

link establishment phase. These authentication protocols are intended for

use primarily by hosts and routers that connect to a PPP network server via

switched circuits or dial-up lines, but might be applied to dedicated links as

well. The server can use the identification of the connecting host or router

in the selection of options for network layer negotiations.

PAP(Password Authentication Protocol) is an authentication protocol that

requires users to enter a password before accessing a secure system. The

11

user’s name and password are sent over the wire to a server, where they

are compared with a database of user account names and passwords. This

technique is vulnerable to wiretapping (sniffing) because the password can be

captured and used by someone to log on to the system. PAP provides a simple

method for the peer to establish its identity using a two-way handshake. This

is done only upon initial link establishment. After the link establishment

phase is complete, an ID/Password pair is repeatedly sent by the peer to

the authenticator until authentication is acknowledged or the connection is

terminated.

PAP is not a strong authentication method. Passwords are sent over the

circuit “in the clear”, and there is no protection from playback or repeated

trial and error attacks. The peer is in control of the frequency and timing of

the attempts. Any implementations which include a stronger authentication

method must offer to negotiate that method prior to PAP. This authenti-

cation method is most appropriately used where a plaintext password must

be available to simulate a login at a remote host. In such use, this method

provides a similar level of security to the usual user login at the remote

host. PAP is not recommended in most cases. However, some authenti-

cation systems will fall back to PAP if no better authentication scheme is

available. CHAP (Challenge Handshake Authentication Protocol) is an al-

ternative protocol that avoids sending passwords in any form over the wire

by using a challenge/response technique, as described under CHAP [60].

• Authentication Token

An authentication token is a physical device that a person carries around and

uses in authenticating and fall in the “what we have” category. There are

12

several forms of authentication token in use today. The most ubiquitous is

the key that people use to unlock their home or car. Another common form of

authentication token is the credit card. If a credit card includes a picture or

a signature, it combines an authentication token with a primitive biometric

device. Credit cards contain a magnetic strip that contains information. The

advantages that magnetic strip cards offer over simple passwords is that they

are hard to reproduce and can conveniently hold a large amount of data that

most people are unable to memorize.

A better form of authentication token is the smart card. This is a device

about the size of a credit card but with an embedded CPU and memory.

When inserted in a smart card reader, the card carries on a conversation

with the device. There are various forms of smart cards: Cryptographic cal-

culator (or readerless smart card), Cryptographic challenge/response cards,

Pin protected memory card, etc.

• Biometrics

Biometric devices authenticate us according to “what we are”. They measure

our physical characteristics and match them against a profile. There are a

variety of biometric devices available. All are too expensive to be in everyday

use, but is some cases the costs are coming down to where they may become

commonplace. The biometric technologies available now includes:

Face Recognition - Looking at a digitized picture of a person, a computer

can measure facial dimensions.

Iris Scanner - This maps the distinctive layout of the iris of eye. It has the

major advantage of having a less intimidating user interface.

Retinal Scanner - Like an Iris Scanner, this device examines the tiny blood

13

vessels in the back of eye. The layout is as distinctive as a fingerprint and

apparently easier to read. These devices are quite expensive.

Fingerprint Reader - This device would seem an obvious technology since

fingerprints have been used as a method of identification for many years.

Handprint Reader - This is more widely used than fingerprint readers. It

measures the dimensions of the hand: finger length, width, etc. However, it

is not as accurate as fingerprint, but it is less expensive.

Voiceprint - It is possible to do a frequency spectrum analysis of someone’s

voice and get identification nearly as accurate as a fingerprint. This tech-

nology, however, can be defeated with a voice recording, and may refuse to

authenticate someone whose voice has changed due to illness.

Signature - This is a classic human form of authentication, and there are

human experts adept at determining whether two signatures were produced

by the same person. When not just the signature is recorded, but also the ac-

tual timing of the movements that go into scribing the signature is recorded,

there is sufficient information for authentication.

Keystroke timing checker - The exact way in which people type is quite

distinctive, and experiments have been done with identification based on the

way people type. However, various injuries can throw off the timing.

14

1.2. Attacks against Protocols

1.2.1. Passive and Active attacks

Cryptographic attacks can be directed against the cryptographic algorithms

used in protocols, against the cryptographic techniques used to implement the

algorithms and protocols, or against the protocols themselves. People can try

various ways to attack a protocol. Someone not involved in the protocol can

eavesdrop on some or all of the protocol. This is called a passive attack, because

the attacker does not affect the protocol. All he can do is observe the protocol

and attempt to gain information. This kind of attack corresponds to a ciphertext

only attack. Since passive attacks are difficult to detect, protocols try to prevent

passive attacks rather than detect them.

Alternatively, an attacker could try to alter the protocol to his own advan-

tage. He could pretend to be someone else, substitute one message for another,

delete existing messages, replay old messages, insert new messages in the protocol,

interrupt a communications channel, or alter stored information in a computer.

These are called active attacks, because they require active intervention. The form

of these attacks depends on the network.

Passive attackers try to gain information about the parties involved in the

protocol. They collect messages passing among various parties and attempt to

cryptanalyze them. Active attacks, on the other hand, can have much more diverse

objectives. The attacker could be interested in obtaining information, degrading

system performance, corrupting existing information, or gaining unauthorized ac-

cess to resources. Active attacks are much more serious, especially in protocols

in which the different parties do not necessarily trust one another. The attacker

15

does not have to be a complete outsider. He could be a legitimate system user

like the system administrator. There could even be many active attackers working

together.

It is also possible that the attacker could be one of the parties involved in

the protocol. He may lie during the protocol or not follow the protocol at all. This

type of attacker is called a cheater. Passive cheaters follow the protocol, but try

to obtain more information than the protocol intends them to. Active cheaters

disrupt the protocol in progress in an attempt to cheat. It is very difficult to

maintain a protocol’s security if most of the parties involved are active cheaters,

but sometimes it is possible for legitimate parties to detect that active cheating is

going on.

1.2.2. Man-in-the-middle Attack

This attack is an attack in which an attacker is able to read, insert and modify

at will, messages between two parties without either party knowing that the link

between them has been compromised. The attacker must be able to observe and

intercept messages going between the two victims. The man-in-the-middle attack

is particularly applicable to the original Diffie-Hellman key exchange protocol when

it is used without authentication. Most web applications do not require client-side

certificates due to complexity, cost, logistical and effectiveness issues. This creates

an opening for a man-in-the-middle attack, particularly for online banking.

The man-in-the-middle attack may include one or more of: 1) eavesdropping,

including traffic analysis and possibly a known plaintext attack; 2) chosen cipher-

text attack, depending on what the receiver does with a message that it decrypts;

16

3) replay attacks; 4) denial of service attack. For instance, the attacker may jam

all communications before attacking one of the parties. The defense against a man-

in-the-middle attack is for both parties to periodically send authenticated status

messages and to treat their disappearance with paranoia. Man-in-the-middle is

typically used to refer to active manipulation of the messages, rather than pas-

sively eavesdropping.

1.2.3. Known-Plaintext Attack

The known-plaintext attack (KPA) is an attack model for cryptanalysis where

the attacker has samples of both the plaintext and its encrypted version (cipher-

text) and is at liberty to make use of them to further reveal secret information;

such as the secret key. Encrypted file archives such as ZIP are also very prone

to this attack. For example, an attacker with an encrypted ZIP file needs only

one unencrypted file from the archive which forms the “known-plaintext”. Then

using some publicly available software they can instantly calculate the key required

to decrypt the entire archive. To obtain this unencrypted file the attacker could

search the web site for a suitable file, find it from another archive they can open,

or manually try to reconstruct a plaintext file armed with the knowledge of the

filename from the encrypted archive. Classical ciphers are typically vulnerable to

known-plaintext attack. For example, a Caesar cipher can be solved using a single

letter of corresponding plaintext and ciphertext to decrypt a ciphertext entirely.

In World War II, a known plaintext attack was used during the Sahara campaign.

17

1.2.4. Chosen-Plaintext Attack

A chosen plaintext attack (CPA) is an attack model for cryptanalysis which

presumes that the attacker has the capability to choose arbitrary plaintexts to be

encrypted and obtain the corresponding ciphertexts. The goal of the attack is to

gain information that will reduce the security of the encryption scheme. In the

worst case scenario, a chosen plaintext attack could reveal the scheme’s secret key.

Two forms of chosen-plaintext attack can be distinguished: 1) Batch chosen-

plaintext attack, where the cryptanalyst chooses all plaintexts before any of them

is encrypted. This is often the meaning of an unqualified use of chosen-plaintext

attack; 2) Adaptive chosen-plaintext attack, where the cryptanalyst makes a series

of interactive queries, choosing subsequent plaintexts based on the information

from the previous encryptions. For example, the air traffic controllers or pilots

want to identify an airplane as friend or foe. They send a message to the plane,

which encrypts the message automatically and sends it back. Only a friendly

airplane is assumed to have the correct key. The system compares the message

from the plane with the correctly encrypted message. If they are matched, the

plane is our side; otherwise it is enemy. Of course, the adversary can send a

large number of chosen messages to one of the planes and look at the resulting

ciphertexts. If this allows them to deduce the key, the enemy can equip their

planes and masquerade as friend.

18

1.2.5. Replay Attack

This attack is a form of network attack in which a valid data transmission is

maliciously or fraudulently repeated or delayed. This is carried out either by the

originator or by an adversary who intercepts the data and retransmits it, possibly

as part of a masquerade attack. Suppose Alice wants to prove her identity to Bob.

Bob requests her password as proof of identity, which Alice dutifully provides.

Meanwhile, an adversary can eavesdrop their conversation and record the password.

After the interchange is over, the adversary connects to Bob pretending to be Alice;

when asked for a proof of identity, the adversary can send Alice’s password recorded

from the earlier session.

1.2.6. Denial-of-Service Attack

A denial-of-service attack (DoS attack) is an attack on a computer system or

network that causes a loss of service to users. Typically the loss of network connec-

tivity and services is done by consuming the bandwidth of the victim network or

overloading the computational resources of the victim system. A denial-of-service

attack can be perpetrated in a number of ways. There are three basic types of at-

tack: 1) consumption of computational resources, such as bandwidth, disk space,

or CPU time; 2) disruption of configuration information, such as routing infor-

mation; 3) disruption of physical network components. Denial of Service attacks

can also lead to problems in the network ‘branches’ around the actual computer

being attacked. For example, the bandwidth of a router between the Internet

and a LAN may be consumed by a denial-of-service, meaning not only will the

19

intended computer be compromised, but the entire network will also be disrupted.

If the denial-of-service is conducted in a sufficiently large scale, entire geographical

swathes of Internet connectivity can also be compromised by incorrectly config-

ured or flimsy network infrastructure equipment without the attacker’s knowledge

or intent. Attacks can be directed at any network device, including attacks on

routing devices and Web, electronic mail, or Domain Name System servers. A

“banana attack” is another particular type of DoS. It involves redirecting outgoing

messages from the client back onto the client, preventing outside access, as well as

flooding the client with the sent packets.

1.2.7. Guessing Attack

One way of guessing passwords is simply to type passwords at the system

that is going to verify the password. To thwart such an on-line attack, the system

can make it impossible to guess too many passwords in this manner. For example,

ATM does not return our card if we type three consecutive incorrect passwords.

Alternatively, the system can be designed to be slow, so as not to allow very

many guesses per unit time. Also, with an on-line attack, the system can become

suspicious that someone might be attempting to break in, based on noticing an

unusually large number of incorrect passwords. The system might then dispatch

a human to investigate. In contrast, in an off-line attack, an intruder can capture

a quantity X that is derived from a password in a known way. Then the intruder

can, in complete privacy, use an arbitrary amount of compute power to guess

passwords, convert them in the known way, and see if X is produced. Because a

source of good password guesses is from a dictionary, an off-line password guessing

20

attack is sometimes referred to as a dictionary attack.

A dictionary attack is a technique for defeating a cipher or authentication

mechanism by trying to determine its decryption key or passphrase by searching

a large number of possibilities. In contrast with a brute force attack, where all

possibilities are searched through exhaustively, a dictionary attack only tries pos-

sibilities which are most likely to succeed, typically derived from a list of words

in a dictionary. Generally, dictionary attacks succeed because most people have a

tendency to choose passwords that are easy to remember, and from their native

language. Dictionary attacks may be applied in two main situations: 1) in crypt-

analysis, in trying to determine the decryption key for a given piece of ciphertext;

2) in computer security, in trying to circumvent an authentication mechanism for

accessing a computer system by guessing passwords. In the latter case, the effec-

tiveness of a dictionary attack can be greatly reduced by limiting the number of

authentication attempts that can be performed each minute, and even blocking

further attempts after a threshold of failed authentication attempts is reached.

Generally, three attempts are considered sufficient to cope with mistakes made by

legitimate users; beyond that, one can safely assume that the user is a malicious

attacker.

A brute force attack is a method of defeating a cryptographic scheme by try-

ing all possibilities. In most schemes, the theoretical possibility of a brute force

attack is recognized, but it is set up in such a way that it would be computationally

infeasible to carry out. Accordingly, one definition of “breaking” a cryptographic

scheme is to find a method faster than a brute force attack. The selection of an

appropriate key length depends on the practical feasibility of performing a brute

force attack. For symmetric-key ciphers, a brute force attack typically means a

brute-force search of the key space; that is, testing all possible keys in order to

21

recover the plaintext used to produce a particular ciphertext. In a brute force

attack, the expected number of trials before the correct key is found is equal to

half the size of the key space. For each trial of a candidate key the attacker needs

to be able to recognize when he has found the correct key. The most straight-

forward way is to obtain a few corresponding plaintext and ciphertext pairs, that

is, a known-plaintext attack. Alternatively, a ciphertext-only attack is possible by

decrypting ciphertext using each candidate key, and testing the result for similarity

to plaintext language. Symmetric ciphers with keys of length up to 64 bits have

been broken by brute force attacks. DES, a widely-used block cipher which uses

56-bit keys, was broken by custom hardware in 1998 [61], and a message encrypted

with RC5 using a 64-bit key was broken more recently by Distributed.net [62].

In addition, it is commonly speculated that government intelligence agencies can

successfully attack a symmetric key cipher with long key lengths, such as a 64-bit

key, using brute force. For applications requiring long term security, 128 bits is

currently thought of as a sufficient key length for new systems using symmetric

key algorithms. NIST has recommended that 80-bit designs be phased out by

2015 [63].

If keys are generated in a weak way, it is possible to exhaustively search for

the key over a much smaller set, like words from a dictionary. For instance, a

guessing attack consists of the attacker guessing a value g, and then verifying that

guess in some way. The verification will be by the intruder using g to produce a

value v, called the verifier. The verifier demonstrates that the guess was correct,

i.e. an incorrect guess would not have led to this value. This verification can take

a number of different forms: 1) the attacker knew v initially, or has seen v during

the protocol run; 2) the attacker produced v in two different ways; or 3) v is an

asymmetric key, and the attackers knows the inverse of v from somewhere [64].

22

1.2.8. Impersonation (Forgery) Attack

This attack deceives the identity of one of the legitimate parties. An attacker

inserts a message and claims that it came from a legitimate sender. For example,

in an electronic funds transfer service, if the attacker manages to register his public

key as the public key of a bank account holder, he can digitally sign fraudulent

fund transfer requests. This attack creates a requirement for key management in

the case of public key cryptography. With public key cryptography, the goal of

key management is to authenticate the public key ownership and associate a pub-

lic key with the identity of the corresponding private key holder. Moreover, this

attack threatens the certification authority itself. Although the potential damages

are significant, the small number of certification authorities makes preventive mea-

sures easier to implement. A successful, intelligent impersonation attack requires

knowledge about the probe algorithm and the communication protocol in order to

bypass or defeat the checking mechanism.

1.2.9. Stolen-Verifier Attack

In the stolen-verifier attack, an attacker who has stolen the password-verifier

from the server uses it directly to masquerade as a legitimate user and may further

mount a guessing attack on it. The main purpose of an authentication scheme

against the stolen-verifier attack is to reduce the direct damage to user authen-

tication. The server stores users’ passwords verifiers instead of the clear text of

passwords.

23

1.2.10. Forward/Backward Secrecy

A protocol is said to have perfect forward secrecy if it is impossible for the

adversary to decrypt a conversation between A and B even if adversary records

the entire encrypted session, and then subsequently breaks into both A and B

and steals their long-term secrets. Forward secrecy has been used as a synonym

for perfect forward secrecy [65], since the term perfect has been controversial in

this context. Forward secrecy means that if a long-term private key like a user

password or server private key is compromised after a given session, it does not

compromise any earlier sessions. However, at least one reference [66] distinguishes

perfect forward secrecy from forward secrecy with the additional property that an

agreed key will not be compromised even if agreed keys derived from the same

long-term keying material in a subsequent runs are compromised.

The trick to achieving perfect forward secrecy is to generate a temporary

session key not derivable from information stored at the node, and discard this key

after the session concludes. If the session will last for a long time, it is common

to generate and forget keys periodically so that even if the adversary seizes A′s

and B′s computers while the conversation is still going on, he will not be able to

decrypt messages received before the last key rollover.

• Forward Secrecy guarantees that a passive adversary who knows a contiguous

subset of old group keys cannot discover subsequent group keys.

• Backward Secrecy guarantees that a passive adversary who knows a contigu-

ous subset of group keys cannot discover preceding group keys.

• Weak Forward Secrecy guarantees that new keys must remain out of reach

of former group members.

24

• Weak Backward Secrecy guarantees that previously used group keys must

not be discovered by new group members.

1.3. Related Works

1.3.1. ElGamal-based Password Authentication

Schemes

It is possible to design a system whose security relies on the difficulty of com-

puting discrete logarithms. This was done by ElGamal in 1985 [67]. The ElGamal

scheme can also be used to create both encryption scheme and digital signature.

ElGamal encryption scheme is as follows. A wants to send a message m to

B. B chooses a large prime p and a primitive root α. Assume m is an integer with

0 ≤ m < p. If m is larger, break it into smaller blocks. B also chooses a secret

integer a and computes β ≡ αa (mod p). The information (p, α, β) is made public

and is B′s public key. A does the following:

• Receives (p, α, β),

• Selects a secret random integer k,

• Computes r ≡ αk(mod p) and t ≡ βk ∗m(mod p),

• Sends the pair (r, t) to B.

B decrypts by computing tr−a ≡ m(mod p), where

tr−a ≡ βk ∗m(αk)−a ≡ (αa)k ∗m ∗ α−ak ≡ m(mod p).

25

ElGamal digital signature scheme is as follows. B wants to sign a message

m. He chooses a large prime p and a primitive root α. B then selects a secret

integer a such that 1 ≤ a ≤ p − 2 and computes β ≡ αa(mod p). These values of

p, α, and β are made public. The security of the system will be in the fact that a

is kept private. It is difficult for an adversary to determine a from (p, α, β) since

the discrete log problem is considered difficult. In order for B to sign a message

m, he does the following:

• Selects a secret random integer k such that gcd(k, p− 1) = 1,

• Computes r ≡ αk(mod p) and s ≡ k−1(m− ar)(mod (p− 1)), where

sk ≡ (m−ar)(mod (p−1)),m ≡ sk+ar(mod (p−1)), and a is a B′s private

key.

• (r, s) is B′s signature on m, and then B sends m, r, and s to A.

A can verify the signature that is declared valid if and only if g1 ≡ g2(mod p),

where g1 ≡ βr ∗ rs(mod p) and

g2 ≡ αm(mod p) ≡ αsk+ar ≡ (αa)r(αk)s ≡ βr ∗ rs(mod p).

Hwang et al. [2] proposed that a new remote user authentication scheme using

smart cards that password or verification tables were not required for verifying

legal user. It is based on ElGamal’s public key cryptosystem. The server only

keeps the secret key for computing the user passwords. Moreover, the Hwang et

al. scheme [2] is able to resist the message replay attack. However, [1, 14, 15, 19]

showed that the Hwang et al. scheme [2] cannot resist against the forgery attack.

Awasthi et al. [14] and Shen et al. [19] proposed an improved scheme to resist

against the forgery attack. Later, Leung et al. [17] showed that the Shen et al.

26

scheme [19] is not able to withstand forgery attack by using an attack similar to

that of Chan et al. [1] or Chang [15]: a legitimate user is able to still impersonate

other legal users to login a remote server. In 2004, Kumar [27] proposed that the

idea of check digits to repair the Shen et als scheme, which removes the threats

devised by Leung et al. [17]. In the same year, Awasthi et al. [68] also proposed a

scheme to against these threats.

1.3.2. RSA-based Password Authentication Schemes

Named after the three inventors - Ron Rivest, Adi Shamir, and Leonard

Adleman - RSA public-Key algorithm has since withstood years of extensive crypt-

analysis [69]. Even though the cryptanalysis neither proved nor disproved RSA’s

security, it does suggest a confidence level in the algorithm. RSA gets its security

from the difficulty of factoring large numbers. The public and private keys are

functions of a pair of large prime numbers. Recovering the plaintext from the pub-

lic key and the ciphertext is conjectured to be equivalent to factoring the product

of the two primes. The RSA scheme can also be used to create both encryption

scheme and digital signatures.

RSA encryption scheme is as follows.

To generate the two keys, A choose two distinct large prime numbers, p and

q. For maximum security, he chooses p and q of equal length and computes the

product, n = pq. He then randomly chooses the encryption key, e, such that

gcd(e, (p − 1)(q − 1)) = 1; that is e and (p − 1)(q − 1) are relatively prime. He

sends the pair (n, e) to B, but he keeps the values of p and q secret.

27

B, who could possibly be an enemy of A, never needs to know p and q to send

her message to A securely. To encrypt a message m, first divide it into numerical

blocks smaller that n. That is, if both p and q are 128 digit primes, then n will

have just under 256 digits and each message block mi, should be just under 256

digits long. The encrypted message, c, will be made up of similarly sized message

blocks ci, of about the same length, and sends ci to A. The encryption formula is

simply ci = me
i mod n.

To decrypt a message, A uses the extended Euclidean algorithm to compute

the decryption key, d, such that ed ≡ 1(mod (p − 1)(q − 1)). In other words,

d = e−1 mod ((p − 1)(q − 1)), where d and n are also relatively prime. A takes

each encrypted block ci and compute mi = cd
i mod n, where

cd
i = (me

i)
d = m

k(p−1)(q−1)+1
i = m1 ∗m

k(p−1)(q−1)
1 = m1 ∗1 = mi (mod n).

Therefore, A can read the message. The numbers e and n are the public key;

the number d is the private key. The two primes, p and q, are no longer needed.

They should be discarded, but never revealed.

RSA digital signature scheme is as follows. B generates two large primes p, q,

and computes n = pq. He selects eB such that 1 < eB < n with gcd(eB, n) = 1,

and computes dB such that eBdB ≡ 1(mod n). (eB, n) is public key, dB is private

key, and (p, q) is kept private.

• B′s signature is s ≡ mdB(mod n),

• s is B′s signature on m, and then B sends (m, s) to A.

A decrypts and accepts the signature as valid by computing g ≡ m(mod n),

where g ≡ seB ≡ (mdB)eB ≡ m(mod n).

28

Password authentication scheme with smart cards is proposed by Yang et

al. [70]. They do not need to store passwords or verification tables in the server, and

user can change their own passwords. It is based on RSA public key cryptosystem.

However, [8, 10, 20, 21, 35, 71] pointed out that the Yang et al. scheme [70] is

vulnerable to forgery attack by impersonating a legitimate user and constructing

a valid login request out of an intercepted login request. Fan et al. [10] proposed

a simple improved scheme to withstand against forgery attack that puts a strict

limit on the ID. Shen et al. [20] also proposed an enhancement of the Yang et

al. scheme [70] that can withstood the forgery attack and the server spoofing

attack. However, Chen et al. [72] pointed out that the Fan et al. scheme [10]

cannot withstand the forgery attack, and Yang et al. [31] showed that the Shen

et al. scheme [20] is still vulnerable to forgery attack. Moreover, Sun et al. [21]

explained that the Chan et al. scheme [8] is unreasonable because [8] forge a clients

identity, and the identity does not exist in the ID table of the remote server. Later,

Yang et al. [35] proposed an improvement of Yang et al. scheme [70] to resist Sun

et al.’s attack. However, Kim et al. [71] pointed out that [35] still vulnerable to

the forgery attack [21,31] and proposed their own improvements. Recently, Wang

et al. [39] showed that the Kim et al. scheme [71] cannot withstand the forgery

attack.

1.3.3. Hash-Based Strong-Password Authentication

Scheme

When a user submits a password, the system has to be able to determine

whether the user got it right. If the system stores the passwords unencrypted,

29

then anyone can steal the passwords with access to the system storage or backup

disks. However, it is not necessary for the system to know a password in order to

verify its correctness. Instead of storing the password, the system stores a hash

of the password. When a password is typed, its hash is computed with a hash

algorithm and compared with the stored value. If they match, the password is

considered to be correct. If the attacker obtains the hashed password file, it is not

immediately useful because the passwords cannot be derived from the hashes.

One-way hash function is a mathematical transformation that takes a mes-

sage of arbitrary-length and computes from it a fixed-length number, h : x −→ y

=⇒ y = h(x). It has the following properties:

• Given x, h(x) = y can be calculated very quickly. However, given y, it is

hard to compute h−1(y) = x.

• Given x1, it is computationally infeasible to find x2 such that x1 6= x2 but

h(x1) = h(x2).

• It is computationally infeasible to find messages x1 and x2 with h(x1) and

h(x2).

One remedy is found the use of one-time password method by Lamport [73].

However, there are some practical difficulties in implementing this method, such

as high overhead and password resetting. Another related method is CINON [74]

which solves these problems, but requires two random numbers generated by the

user, which must be stored by the user in some sort of mobile memory device. On

the other hand, the PERM (Privacy Enhanced Information Reading and Writing

Management) Protocol [75] stores one random number at the host, which is sent

to the user for authentication. However, this system is susceptible to a man-in-

the-middle attack if the adversary obtains the logs of two consecutive sessions.

30

Since the computation cost is lower than those of RSA-based and ElGamal-

based password authentication schemes, many articles have proposed one-way hash

based password authentication schemes. The SAS (Simple and secure password

authentication protocol) protocol proposed in [5] is a simple strong-password au-

thentication scheme that is superior to several well-known schemes. However, it

was shown in [7] that the SAS protocol is vulnerable to the replay attack and the

denial of service attack. The OSPA (Optimal Strong-Password Authentication)

protocol given in [7] claims to be secure against stolen-verifier, replay, and denial

of service attacks. Nevertheless, it was shown in [9] that the SAS and OSPA pro-

tocols cannot resist the stolen-verifier attack as claimed. Also, an impersonation

attack performed in [76] on the OSPA method without an active attack on the

server. Later on, an enhanced OSPA protocol was introduced in [18], which re-

sists guessing, reply, impersonation, and stolen-verifier attacks. However, it was

shown in [77] that the protocol is still vulnerable to reply and denial-of-service

attacks. Furthermore, these two simple attacks can easily be launched without

compromising the server in advance.

Recently, plenty of password authentication schemes with smart cards have

been proposed [1, 4, 6, 12, 16, 23–25, 28, 29, 33, 34, 38, 78, 79]. Sun [4] proposed an

efficient remote use authentication scheme with smart cards. Since it does not

need a password table, the communication and computation costs are reduced.

However, Chien et al. [79] pointed out that the Sun scheme [4] is able to neither

allow users to choose or change their passwords freely nor achieve mutual authen-

tication. Chien et al. [79] and Hwang et al. [12] proposed an efficient and practical

solution to remote authentication scheme and a simple remote user authentication

scheme, respectively. [79] and [12] claimed that their schemes are able to achieve

low communication and computation cost, and withstand the replay attack. How-

31

ever, Hsu [16, 25] showed that the Chien et al. scheme [79] is vulnerable to the

parallel session attack.

In 2004, a hash-based strong-password authentication scheme was described

in [28] to against several attacks, including replay, password-file compromise, denial-

of-service, and insider attacks. In the same year, Lee et al. [29] proposed an im-

proved efficient scheme to remedy the parallel session attack problem. Chen et

al. [23] also proposed two secure SAS-like password authentication schemes with

lower storage, processing, and transmission overheads. Those two schemes can

resist the stolen-verifier attack on SAS [5] and OSPA [7]. Das et al. [24] proposed

a dynamic ID-based remote user authentication scheme with smart cards.

Recently, Liao et al. [33] showed that the Das et al. scheme [24] has some

weakness and Yoon et al. [34] pointed out that the Hwang et al. scheme [12] is

insecure if the secret key of the server is stolen. Moreover, Liao et al. proposed an

improved scheme to against some weakness [33] and further proposed a new scheme

to achieve all of their proposed requirements [38]. Chiang et al. [36] showed that

the Chen et al. scheme [23] are still vulnerable to denial-of-service attack and the

second scheme is not easily reparable.

1.3.4. ID-based Password Authentication Scheme

using Smart Cards

Entity authentications are meant to provide secure communications. The

concept of an ID-based cryptosystem was first proposed by Shamir [80]. He in-

troduced a novel type of cryptographic scheme that enables any pair of users to

communicate securely and to verify each other’s signatures. The scheme does

32

without exchanging private or public keys, keeping key directories, and using the

services of a third party. The corresponding secret key, however, is computed by

a key generation center and issued to the user in the form of smart card when

the user first joins the network. That secret key is fixed in [80]. In the network

communication environment, many algorithms and protocols use the synchronized

clock system. Transmission delay is unpredictable and a potential replay attack

exists in all schemes [81]. In ElGamal’s public key cryptosystem [82], the random

number is as important as the private key. The attacker can obtain the random

number by solving the equations intercepted from a session, if the same random

number is used more than once. In a recently published paper, Kim, Lee, and Yoo

(KLY) proposed an ID-based password authentication scheme using smart cards

and fingerprints [83]. They claimed that their scheme does not require a dictionary

of password or verification tables, and allows users choose their password freely of

their own will. Finally, their scheme was shown to authenticate legitimate users

and to withstand password guessing, message replay, and impersonation attacks.

1.3.5. Hash-Based Secure User Authentication

Scheme

User authentication is an important service in network security. Recently,

several user authentication protocols have been proposed; however, a scheme which

withstands all known attacks is not yet available. An authentication scheme, called

Lee-Li-Hwang (LLH) scheme [11], was proposed to circumvent the guessing attack

in the Peyravian-Zunic (PZ) password scheme [3]. However, Yoon, Ryu, and Yoo

(YRY) [30] discovered that the LLH scheme still suffers from the denial of service

33

attack, and proposed an enhancement of the LLH scheme to solve its security

problems. More recently, Ku, Chiang, and Chang (KCC) [32] demonstrated that

the YRY scheme is vulnerable to off-line guessing and stolen-verifier attacks.

1.3.6. User Remote Authentication Scheme

A remote authentication scheme with several distinct advantages was pro-

posed in [4]. These advantages are including low communication and computation

cost, and the lack of a password table. Furthermore, a user-friendly remote au-

thentication scheme, with smart cards, without using a user password table was

also presented in [84]. In this scheme, the user can choose or change the password.

It was pointed out in [85] that the scheme in [84] is insecure due to password

guessing and message forgery attacks. Additionally, [86] described another mes-

sage forgery attack on the same scheme. Recently, the authors of [84] discovered

that their scheme is insecure to the replay attack, and presented a modified scheme

to overcome this weakness in [87].

1.3.7. Novikov and Kiselev User Authentication

Scheme

Whenever users want to access remote systems, they should be authenti-

cated. Once authorized, they can then access the resources of the server. The

scatter of remote systems in difference places allows more efficient and convenient

access geographically dispersed users. Lamport [73] proposed a remote password

authentication scheme which authenticates remote users over an insecure channel.

34

However, it suffers from the stolen-verifier attack if the adversary has the ability

to obtain the stored verifier. It also has some practical implementation difficulties,

such as the problems of high overhead and password resetting. Since then, many

remote authentication schemes have been proposed [4, 11, 26, 78, 87, 88]. In 2000,

Hwang and Li [2] proposed a remote user authentication scheme using smart cards.

It was shown that no password table is required to keep in their system. In 2003,

Novikov and Kiselev [89] proposed an algorithm of reliable authentication of the

user from a remote autonomous object. Recently, Yang, Lee, and Hsiao [90] have

pointed out that [89] is insecure against the man-in-the-middle attack. Awasthi [91]

also came to the same conclusion and stated that [89] is also vulnerable against

the man-in-the-middle attack and the reflection attack.

1.3.8. Authenticated Key Agreement Scheme

The Diffie-Hellman key agreement protocol was developed by Diffie and

Hellman in 1976 and published in the ground-breaking paper “New Directions

in Cryptography [92].” The protocol allows two users to exchange a secret key

over an insecure medium without any prior secrets. However, it is vulnerable to

the man-in-the-middle attack, because it does not authenticate the participants.

In 1994, Anderson-Lomas showed how collision-rich hash functions can be used

to detect those attacks while they are in progress [93]. Later, Seo-Sweeney pro-

posed an efficient simple key agreement protocol that is based on a pre-shared

password method, and modifies the Diffie-Hellman scheme to provide user authen-

tication [94]. In the Seo-Sweeney protocol, two parties that have shared a common

password can establish a session key by exchanging two messages. This protocol

35

is more efficient than the Anderson-Lomas scheme in terms of computational time

and exchanged messages. In 2000, Tseng [95] pointed out that the key validation

of the Seo-Sweeney scheme cannot resist the replay attack. The adversary can

successfully convince an honest party of a wrong session key. Tseng proposed an

improved scheme to overcome this weakness. However, Ku-Wang showed that the

Tseng’s modified authenticated key agreement protocol is vulnerable to the mod-

ification attack and the backward replay attack without modification [96]. They

then proposed an improved scheme to strengthen the protocol. In 2003, Hsu et

al. showed that the Ku-Wang modified authentication key agreement scheme is

vulnerable to the modification attack, and further proposed an improvement of the

Ku-Wang scheme in [97]. Recently, Lee-Lee showed that the Hsu et al. scheme

is also vulnerable to the modification attack. An attacker can alter the transmit-

ted messages to deceive the communicating parties into believing a wrong session

key [98]. They then proposed another improvement on the modified authenticated

key agreement scheme.

1.3.9. Micropayment Scheme

NetBill [99] is an on-line transactional payment protocol with many advanced

features that requires communication with the NetBill server for each transaction.

However, this protocol has a flaw of double spending. Another scheme proposed

in [100] is unappealing for micropayments for this same reason.

Millicent [101] and NetCents [102] are scrip-based off-line-friendly micro-

payment protocols. The trust model in Millicent defines three roles: vendors,

customers, and brokers. Brokers act as intermediaries between vendors and cus-

36

tomers. A customer enters into a long-term relationship to buy digital money or

scrip from brokers, who are assumed to be large entities such as banks or credit

card issuers. Brokers are the most trusted party in this model; while customers

are the least trusted. Since the monetary unit used in these protocols is vendor-

specific, double-spending is very difficult. The assumption behind both protocols

is that people tend to re-use the same merchants repeatedly. If this assumption

holds, the interactions between the customer and the bank are kept at a minimum.

A hidden assumption is that merchants have total information over their sales, so

double spending with the same merchant is detectable. However, this scheme does

not realize anonymity because the bank purchases scrip from the server on behalf

of the client.

The WebMoney [103] schemes realize the anonymity of the customers and

the divisibility of the coins. Moreover, it still has an on-line check for detecting

double spending. However, it has a flaw in that the bank can deceive the client by

rewriting the sum of cash. It also needs a high commission fee from the bank to

the server, and requires the client to input a 16 decimal digits prepaid number for

every purchase.

Digital cash-based systems [104, 105] provide attractive features such as in-

herent off-line operation, anonymity, identity revealing on double spending and

the Chaum’s blind signatures. However, [104] does not directly address the issue

of double spending, [105] does not fulfill the divisibility of coins and requires an

on-line check for detecting double spending which increases the computation cost

for every purchase. The same drawback is apparent in the micropayment proto-

cols, such as PayWord [106]. While the double-spending possibility is an inherent

property of all such systems, none of the above protocols employ any kind of risk

management scheme to address it.

37

Rivest and Shamir [106] introduced two simple micropayment schemes, “Pay-

Word” and “MicroMint”. Their goal was to minimize the number of public-key

operations required per payment by using hash operations whenever possible. Gen-

erally, there are two positions of the bank with regard to the certificate. In Position

1, the bank takes full responsibility for the certificate and compensates all pay-

ments created by the customer’s purchases. In Position 2, the bank does not

redeem payments exceeding a limit set for the customer and shares the loss with

the shop if trouble occurs.

Recently, Adachi et al. [107] have pointed out that the PayWord scheme

has two security problems. A malicious customer can incur damages to the bank

by purchasing in excess of the customer’s credit. In general, a bank guarantees

the customer’s credit by issuing a certificate. The shop accepts the customer and

initiates the transaction after checking the validity of the certificate that is kept

by the customer. Because the certificate is not amended by the shop, malicious

customers can use the same certificate at another shop and exceed their true credit

level. In the PayWord scheme, the bank could reduce its risk by adopting Position

2 rather than Position 1. However, the bank can damage the shop in Position 2 by

impersonating an imaginary customer and making the shop share the loss with the

bank. Adachi et al. introduced two attacks: 1) customer certificate abuse attack

and 2) bank falsification attack. They then proposed a new micropayment scheme

that demands one on-line communication connection between the bank and the

shop at the beginning of each transaction between the customer and the shop.

38

CHAPTER 2. A SIMPLE ATTACK ON A

RECENTLY INTRODUCED HASH-BASED

STRONG-PASSWORD AUTHENTICATION

SCHEME

Recently, a hash-based strong-password authentication scheme was described

in [28], which withstands to the several attacks, including replay, password-file

compromise, denial-of-service, and insider attacks. However, we show that this

protocol is still vulnerable to stolen-verifier, denial-of-service, replay, and imper-

sonation attacks [50].

2.1. Ku’s Hash-Based Strong-Password

Authentication Scheme

The hash-based strong-password authentication scheme described in [28]

comes with two protocols: the registration protocol and the login protocol. We in-

troduce the notation used to describe the protocols below and explain the detailed

steps of both of these protocols.

39

2.1.1. Notations

• U denotes the User, C denotes the Client, S denotes the Server, and A

denotes the Adversary.

• h denotes a cryptographic hash function, such that h(m) means the mes-

sage m is hashed once, while h2(m) means it is hashed twice, i.e., h2(m) =

h(h(m)). Furthermore, h(a, b) denotes the hash of concatenated a and b, i.e.,

h(a, b) = h(a||b).

• N denotes an integer starting from 1 since U ’s initial registration.

• P denotes the strong password of U .

• KS denotes the secret-key of S.

• T denotes the most recent time U initially registered or re-registered at S.

• ⊕ denotes the bitwise XOR operation, and || denotes the concatenation.

• The expression A −→ B : X means A sends the message X to B via an

insecure channel.

• The expression A =⇒ B : X means A sends the message X to B via a

secure channel.

2.1.2. Registration Protocol

This protocol is invoked whenever U initially registers or re-registers to S.

R1. U sends his registration request to S.

40

R2. S −→ U : N, T .

S sets T as the currently value of the time. If this is U ’s initial registration,

S sets N = 1, otherwise S sets N = N + 1. Next, S sends N and T to U .

R3. U =⇒ S : h2(S||P ||N ||T).

U computes the verifier h2(S||P ||N ||T) and sends it to S.

R4. S computes the user storage key K
(T)
U = h(U ||h(KS||T)) and the sealed

verifier sv(N) = h2(S||P ||N ||T) ⊕K
(T)
U , and then he stores sv(N), N , and T

in the password file.

2.1.3. Login Protocol

This protocol is invoked whenever U logins to S.

L1. U sends his login request to S.

L2. S −→ U : r, n, t.

S selects a random nonce r and retrieves the values of n = N and t = T

from S ′s password file.

L3. U −→ S : c1, c2, c3.

U sends c1, c2, and c3 to S, where

c1 = h2(S||P ||n||t)⊕ h(S||P ||n||t) ,

c2 = h(S||P ||n||t)⊕ h2(S||P ||n + 1||t) ,

c3 = h(h2(S||P ||n + 1||t)||r) .

41

L4. S computes K
(t)
U = h(U ||h(KS||t)), and then derives h2(S||P ||n||t) from the

stored sealed verifier sv(n) using

h2(S||P ||n||t) = sv(n) ⊕K
(t)
U .

Then, S computes u1 and u2 using

u1 = c1 ⊕ h2(S||P ||n||t) = h(S||P ||n||t) ,

u2 = c2 ⊕ u1 = h2(S||P ||n + 1||t) .

If the equalities h(u1) = h2(S||P ||n||t) and h(u2||r) = c3 hold, then S au-

thenticates U . Otherwise, S rejects U ’s login request and terminates the

session.

After a successful authentication, S computes a new sealed-verifier using

sv(n+1) = u2 ⊕K
(t)
U = h2(S||P ||n + 1||t)⊕K

(t)
U ,

and replaces sv(n) with sv(n+1), and sets N = n+1 for U ’s next login protocol.

The value of T is unchanged, i.e., T = t.

2.2. Our Attack

We devise an attack assumption that the adversary steals a copy of user’s

password-verifier h2(S||P ||N ||T). Such scenarios are considered in other paper [9].

The second assumption we make is that A is capable of blocking the com-

munication from U to S. After having stolen a copy of the password verifier, A

launches an attack whenever it can block communication.

Therefore, our attack assumes that a stolen-verifier attack (by obtaining a

copy of the password verifier) and a denial-of-service attack (by blocking the com-

munication from U to S) have succeeded. We then show that under these two

42

assumptions (attacks), the attacker can now successfully login to the system using

replay to impersonate the user.

Below we describe our attack step by step.

1. A steals a copy of U ’s password-verifier h2(S||P ||N ||T).

2. During the U ’s nth login process, A monitors the communication channel

to see the request U made to S and the values r, n, and t sent by S. Next,

A captures the values of c1, c2, and c3 sent by U to S and blocks the com-

munication channel from U to S to prevent these values are from reaching

S.

3. A computes h(S||P ||n||t) and h2(S||P ||n+1||t) with the help of the captured

values c1, c2, and the previously stolen password-verifier h2(S||P ||N ||T) as

h(S||P ||n||t) = c1 ⊕ h2(S||P ||n||t) ,

h2(S||P ||n + 1||t) = c2 ⊕ h(S||P ||n||t) ,

where N = n and T = t.

4. Next, A sends c1, c2, and c3 to S.

5. After receiving this message, S retrieves t from the password file and com-

putes

K
(t)
U = h(U ||h(KS||t))

and then uses K
(t)
U to compute the verifier h2(S||P ||n||t) with the help of the

stored sealed verifier sv(n) as

h2(S||P ||n||t) = sv(n) ⊕K
(t)
U .

43

6. Next, S computes

u1 = c1 ⊕ h2(S||P ||n||t) = h(S||P ||n||t) ,

u2 = c2 ⊕ u1 = h2(S||P ||n + 1||t) .

If h(u1) = h2(S||P ||n||t) and h(u2||r) = c3 hold, S is supposed to authenti-

cate the sender. Since these equalities will hold, S authenticates A as being

U . Therefore, S allows the attacker A to login.

7. After this successful login, S updates the sealed verifier according to the

Step L4 of login protocol. Therefore, the following will be executed by S. S

computes

sv(n+1) = u2 ⊕K
(t)
U = h2(S||P ||n + 1||t)⊕K

(t)
U ,

and replaces sv(n) with sv(n+1), and then he sets N = n+1 for U ’s next login

protocol. The value of T is unchanged, i.e., T = t.

At the end of Step 6, the adversary has successfully logged into the system

impersonating the legitimate user. It can now launch other attacks within the

system or access sensitive documents. If the user logs in after the attacker does,

it may not discover that the attacker, impersonating the user, has logged into the

system unless the user checks the login records. Until the user or system managers

discover the attacker’s successful login, the attacker can continue to impersonate

the user.

2.3. Conclusions

In this section, we have shown that a hash-based strong-password authen-

tication scheme proposed in [28] is vulnerable if the attacker is able to obtain a

44

copy of the verifier (stolen-verifier attack) and briefly block the communication

from the user to the server (denial-of-service attack). Until the legitimate user or

the system manager is able to notice the attack, the attacker can impersonate the

user. If the time between two consecutive logins takes long, then the attacker is

expected to inflict considerable damage by violating the security principles.

45

CHAPTER 3. A SIMPLE ATTACK ON A

RECENTLY INTRODUCED HASH-BASED

SECURE USER AUTHENTICATION SCHEME

The Lee-Li-Hwang (LLH) authentication scheme [11] was proposed to cir-

cumvent the guessing attack in the Peyravian-Zunic (PZ) password scheme [3].

However, Yoon, Ryu, and Yoo (YRY) [30] discovered that the LLH scheme still

suffers from the denial of service attack, and proposed an enhancement for the

LLH scheme to solve its security problems. More recently, Ku, Chiang, and Chang

(KCC) [32] demonstrated that the YRY scheme is vulnerable to off-line guessing

and stolen-verifier attacks. In this chapter, we show that the YRY scheme is also

vulnerable to the denial-of-service attack. Furthermore, it was also claimed in [32]

that the YRY scheme cannot achieve backward secrecy. We show in this chapter

that this claim is not entirely valid [37].

3.1. LLH Scheme

A hash-based secure user authentication scheme was described in [30]. The

scheme has 3 phases: Registration phase, User authentication phase, and Change

password phase. We first introduce new notations used to describe these protocols

(other notations are the same as chapter 2), and then the detailed steps of these

protocols.

46

3.1.1. Notations

• UID denotes the identification of the user.

• P denotes the memorable password of the user.

• Rc and Rs denote random numbers generated by Client and Server, respec-

tively.

3.1.2. Registration Phase

This registration phase is performed only once when a new user wants to join

the system. On the other hand, the authentication phase is executed whenever the

user wants to login to the system. The procedures of this phase are as follows:

R1. U =⇒ S : UID, HPW

U randomly chooses UID and P, and then calculates a password verifier

HPW = h(UID, P).

R2. S stores UID and HPW in the verification table.

3.1.3. User Authentication Phase

In this phase, the user logs in to a server for accessing resources and the

server authenticates the user. The procedures of this phase are as follows:

A1. C −→ S : UID, Rc ⊕HPW, h(Rc).

U enters UID and P to C. C computes HPW = h(UID,P) and randomly

47

chooses a number Rc, and then computes the hash value h(Rc). Next, C

sends UID, Rc ⊕HPW , and h(Rc) to S.

A2. S −→ C : Rs ⊕HPW, h(Rc, Rs).

S retrieves the U ′s password verifier HPW from the verification table, and

then obtains Rc by computing (Rc ⊕ HPW) ⊕ HPW . Next, S verifies the

equality of the computed h(Rc) with the obtained Rc and the received h(Rc).

If they are equal, S randomly generates a number Rs, and then computes

Rs ⊕ HPW , h(Rc, Rs), and AUTH∗ = h(HPW,Rc, Rs). Next, S sends

Rs ⊕HPW and h(Rc, Rs) to C.

A3. C −→ S : UID, AUTH.

C retrieves Rs by using (Rs ⊕ HPW) ⊕ HPW and computes h(Rc, Rs).

If the computed and received h(Rc, Rs) are equal, C computes AUTH =

h(HPW,Rc, Rs) and sends UID and AUTH to S.

A4. S compares AUTH with AUTH∗. If they are equal, S authenticates U .

Otherwise, S rejects C ′s request and terminates the session.

3.1.4. Change Password Phase

The change password phase is invoked whenever client wants to change its

password P with a new one, say NewP . The procedures of this phase are given be-

low. Note that Steps C1 and C2 are the same as the ones in the user authentication

phase.

C3. C −→ S : UID, AUTH, Mask, VMask.

C retrieves Rs by using (Rs ⊕HPW) ⊕ HPW and computes h(Rc, Rs). If

48

the computed and received h(Rc, Rs) are equal, then C computes

NewHPW = h(UID, NewP) ,

AUTH = h(HPW,Rc, Rs) ,

Mask = NewHPW ⊕ h(HPW,Rc + 1, Rs) ,

VMask = h(NewHPW,Rs) .

Then, C sends UID, AUTH, Mask, and VMask to S.

C4. S retrieves the U ′s HPW from the verification table. If AUTH = AUTH∗,

S accepts C to change the U ′s password, and then obtains new password

verifier NewHPW as NewHPW = Mask ⊕ h(HPW,Rc + 1, Rs). Next, S

calculates h(NewHPW,Rs) and compares it with VMask. If they are equal,

S replaces the old HPW with the new password verifier NewHPW in the

verification table. Otherwise, S rejects C ′s change password request and

terminates the session.

3.2. KCC Impersonation Attack

with Stolen-Verifier

Suppose that the adversary has stolen the verifier HPW = h(UID, P) of the

user from the server. The adversary can compute Rc, (Rc ⊕ HPW) ⊕ HPW by

XORing, and then he can get more information in sequence, computing h(Rc), Rs

using (Rs ⊕ HPW) ⊕ HPW , h(Rc, Rs), and AUTH∗ = h(HPW,Rc, Rs). After

that, the adversary has all the information he needs to login into the server. If the

adversary obtains an HPW through the stolen-verifier attack, he can then perform

the following:

49

B1. A can make a random generated number Ra to compute Ra ⊕ HPW and

h(Ra). He sends UID, Ra ⊕HPW , and h(Ra) to the server in Step A1.

B2. S retrieves the Ra = (Ra ⊕HPW)⊕HPW by XORing, and then S verifies

the equality of the computed h(Ra) and received h(Ra). If they are equal, S

randomly generates a number Rs and computes Rs ⊕HPW , h(Ra, Rs), and

AUTH∗ = h(HPW,Ra, Rs). S sends Rs⊕HPW and h(Ra, Rs) to A in Step

A2.

B3. A retrieves Rs using (Rs ⊕HPW)⊕HPW and computes h(Ra, Rs). Next,

if the computed and received h(Ra, Rs) are equal, A computes AUTH =

h(HPW,Ra, Rs) and sends UID and AUTH to S in Step A3.

B4. S compares AUTH with AUTH∗. If they are equal, S authenticates A in

Step A4.

After that, A can impersonate U .

Additionally, this attack can be adapted on the change password phase in

the same way. This is described as below.

B5. A can get the Rs and AUTH = h(HPW,Rc, Rs) after Steps C1 and C2, and

he can then choose his new password Pa and the random number Ra. Next,

A computes NewHPW , Mask, and VMask with his own Pa as

NewHPW = h(UID, Pa) ,

Mask = NewHPW ⊕ h(HPW,Rc + 1, Rs) ,

AUTH = h(HPW,Ra, Rs) ,

VMask = h(NewHPW,Rs) .

Then, A sends UID, AUTH, Mask, and VMask to S in Step C3.

50

B6. After receiving these values, S retrieves U ′s HPW from the verification table

and compares AUTH = AUTH∗. If they are equal, S accepts A to change

the user U ′s password P with A′s password Pa.

B7. S obtains the A′s new password verifier NewHPW as NewHPW = Mask⊕
h(HPW,Rc + 1, Rs), and then S compares h(NewHPW,Rs) with VMask.

Since h(NewHPW,Rs) = VMask, it accepts and S replaces the old HPW

with the new password verifier NewHPW in the verification table.

Thus, the adversary can impersonate as the user to login and change the

password. He can then launch other attacks within the system. If the user logs

in after an attack, she may not be able to discover that the attacker has logged

into the system impersonating as her, without checking the login records. Until

the user or the system manager discovers the attacker’s login, the attacker may

continue to impersonate the user.

3.3. Our Denial of Service Attack

with the Stolen-Verifier

The adversary is able to prevent the client from logging in during the user

authentication phase or change its password P with NewP in the change pass-

word phase by making the server reject all login requests and change password

requests. As mentioned in the impersonation attack, the adversary can replace all

information that were related to the login and change password phases as follows:

• Rc −→ Ra, NewP −→ Pa,

• NewHPW = h(UID, NewP) −→ NewHPW ∗ = h(UID, Pa),

51

• AUTH = h(HPW,Rc, Rs) −→ AUTH∗ = h(HPW,Ra, Rs),

• Mask = NewHPW ⊕ h(HPW,Rc + 1, Rs)

−→ Mask∗ = NewHPW ∗ ⊕ h(HPW,Ra + 1, Rs)

After receiving the replaced message, if the user tries to login the server, he

will be rejected since both the password and the password verifier were changed.

DoS1. In the user authentication phase, U enters UID and P to C. C computes

HPW = h(UID, P) and randomly chooses a number Rc, and then computes

h(Rc). Next, C sends UID, Rc ⊕HPW , and h(Rc) to S in Step A1.

Since S retrieves A′s new password verifier NewHPW ∗ = h(UID, Pa) from

the verification table, he obtains R∗
c that is different from Rc, R∗

c was obtained

by computing (Rc ⊕HPW)⊕NewHPW ∗.

Next, S verifies the equality of the computed h(Rc) and the received h(R∗
c).

They are not equal. Therefore, S rejects C ′s request.

DoS2. Even though this attack happened after U ′s successful login, the problem is

the same as in the user change password phase since the request in Step C1

is the same as in Step A1.

DoS3. If this attack happened after Step C2,

C computes NewHPW = h(UID, NewP), AUTH ′ = h(HPW,Rc, Rs),

Mask = NewHPW ⊕ h(HPW,Rc + 1, Rs), and VMask = h(NewHPW,Rs),

and then C sends UID, AUTH, Mask, and VMask to S in Step C3.

At this moment, AUTH∗ = h(HPW,Ra, Rs) is not equal to AUTH ′ =

h(HPW,Rc, Rs) that S computed in Step C2, not in Step C3. Therefore, S

rejects C ′s to change U ′s password.

52

DoS4. If this attack happened after Step C3, C computes NewHPW,AUTH,Mask,

and VMask the same as Step DoS3, and then C sends UID,AUTH,Mask,

and VMask to S in Step C3. AUTH ′ = h(HPW,Rc, Rs) is equal to AUTH =

h(HPW,Rc, Rs) that S computes in Step C2, accordingly, S accepts C to

change the U ′s password. However, S obtains a different password verifier as

NewHPW ′ = Mask ⊕ h(HPW,Ra + 1, Rs), which is not equal to U ′s new

verifier NewHPW , since Rc was already changed with Ra by A. After that,

S computes h(NewHPW ′, Rs) and compares it with VMask. The value of

h(NewHPW ′, Rs) is not equal to VMask = h(NewHPW,Rs). Consequently,

S rejects C ′s change password request and terminates the session.

For those reason, both the user’s authentication and change password re-

quests are rejected until the user has re-registered with the server.

The adversary can interrupt or lock the account of any user. In addition,

this attack works even if P is a strong password.

3.4. No Lack of Backward Secrecy

It was assumed in [32] that the adversary can steal the HPW . If C detects

that HPW is compromised, it can invoke the password change phase to change

password P with a new one, say NewP . However, by intercepting the messages

transmitted in Step C1 and Step C2 of the change password phase, the adversary

can use the stolen HPW to retrieve Rc and Rs, and compute h(HPW,Rc +1, Rs).

Moreover, by intercepting the message transmitted in Step C3 of the change pass-

word phase, the adversary can use the computed h(HPW,Rc + 1, Rs) to retrieve

53

NewHPW from Mask(= NewHPW ⊕ h(HPW,Rc + 1, Rs)).

However, there is a limitation. Even though the adversary intercepts the

messages in Step C1 and Step C2 of the change password phase, he cannot retrieve

Rc and Rs, because the HPW is already changed to NewHPW , and it is not equal

to HPW of the previous stolen verifier. If the adversary wants to get Rc and Rs

after the change password phase, he needs to obtain the new password verifier.

Only then can the adversary compute h(HPW,Rc + 1, Rs). Therefore, the claim

in [32] is not valid.

3.5. Conclusions

In this chapter, we have shown that a hash-based secure user authentication

scheme proposed in [30], which resists the several attacks (such as replay, server

spoofing, and denial-of-service attacks) is still vulnerable. If the adversary is able

to obtain a copy of the verifier, he can launch denial-of-service, stolen-verifier, and

impersonation attacks to interrupt communication between the user and the server.

Furthermore, we show that the claim made in [32] about the lack of backward

secrecy in the YRY scheme is not valid.

54

CHAPTER 4. VULNERABILITIES IN THE

ADACHI-AOKI-KOMANO-OHTA

MICROPAYMENT SCHEME

Rivest and Shamir presented two simple micropayment schemes [106], “Pay-

Word” and “MicroMint,” for making small purchases over the Internet. Recently,

Adachi et al. [107] have pointed out that the PayWord scheme has two security

problems, and proposed a new micropayment scheme to overcome these problems.

Nevertheless, we show that their protocol is still vulnerable to impersonation and

replay attacks [51].

4.1. Adachi et al’s Micropayment Scheme

This scheme was described in [107]. We first introduce the notation used to

describe the protocols then briefly show their scheme.

4.1.1. Notations

• IB, IC , and IS denote bank B, customer C, shop S ′s ID, respectively.

• PKB/PKC denote the public keys of B and C.

• SKB/SKC denote the secret keys of B and C.

55

• {M}SKB
/{M}SKC

denote a message M with its digital signature that was

generated by B/C ′s secret key.

• E denotes the expiration date of M .

• I denotes any additional information.

• r denotes a random nonce that was selected by S.

4.1.2. Adachi et al’s Scheme

In the PayWord Scheme [106], the bank notices that a customer certificate

abuse attack has occurred when it gets the hash coins with certificates from each

shop used by the client. By this time, the shop has already sent goods or provided

services to the client since it trusted the certificate. To cover the shop’s, the

bank withdraws the money corresponding to the length of the hash chain from

the client’s account and pools it in advance when the client starts a transaction

with the shop. Moreover, the bank guarantees the validity of the customer’s public

key and can impersonate an imaginary customer as an avenue of an attack. To

avoid this possibility, the validity of this key is guaranteed not by the bank but

by the CA. In the Adachi et al’s scheme, instead of the shop, the bank verifies the

commitment M and guarantees its validity for the client’s certificate. The shop

can then check the validity of the commitment and the client’s credit at the same

time. Hence, their scheme can reduce the verification cost of the commitment

without degrading security.

P1. C requests B to establish a bank account.

P2. B makes C ′s bank account and replies to C.

56

P3. C −→ S : M = {IS, w0, n, E}SKC

C produces the value wn at random and computes a hash chain, wn
h−→

wn−1
h−→ · · ·w1

h−→ w0. C can select the length n of the hash chain. Next, C

calculates M and sends it to S.

P4. S −→ B : IC , M, and r

S sends IC ,M, and r to B and requests a check for the validity of C ′s credit.

P5. B −→ S : CC = {IC ,M, Y es, r, I}SKB

B checks M and C ′s credit. If they are valid, B withdraws the money

corresponding to the hash length n from C ′s account and keeps it as a pooled

value in its database (DB). Next, B computes a certificate CC and sends it

to S.

P6. S checks CC using PKB to confirm C ′s credit and M ′s correctness.

P7. C −→ S : h(wi, i)

C sends an order and the hash value h(wi, i) for the payment to S, where i

is the index of the hash value.

P8. S −→ C : Goods or services

S verifies wi−1 = h(wi) and confirms the validity of the payment. If S verifies

all transactions, he sends goods or provides services required to C.

P9. S −→ B : h(wi, i)

S sends the hash value h(wi, i) for the payment to B. In this step, S may

send only the latest coin h(wk, k) received from C for the payment.

57

P10. B verifies CC and h(wk, k) received from S using the information stored in

B′s DB. If they are valid, then B puts money into S ′s bank account from

the pooled value of C in B′s DB. Next, B updates and stores only the latest

coin in B′s DB.

4.2. Our Attacks

In Adachi et al’s proposed scheme, we suppose that the adversary A monitors

their communications. Our attack is briefly summarized below:

A1. C −→ A : M = {IS, w0, n, E}SKC

A intercepts the message M = {IS, w0, n, E}SKC
in Step P3. Next, A de-

crypts M with PKC and obtains IS, w0, n, and E.

A2. A −→ B : IC , M, and rA

A pretends to be S and sends ID of C, M , and his own random number rA

to B. Next, he requests a check for the validity of C ′s credit.

A3. B −→ A : CC = {IC ,M, Y es, rA, I}SKB

B checks M and C ′s credit. If they are valid, B withdraws the money

corresponding to the hash length n from C ′s account and keeps it as a pooled

value in its database (DB). Next, B computes a certificate CC and sends it

to A. A decrypts CC with PKB and obtains IC ,M, Y es, rA, and I.

A4. C −→ A : h(wi, i)

C sends an order and the hash value h(wi, i) for the payment to S. A

intercepts this hash value h(wi, i).

58

A5. A −→ B : h(wi, i)

A sends the hash value h(wi, i) for the payment to B and ask to put the

money A′s account. In this step, A may send only the latest coin h(wk, k)

received from C for the payment.

A6. B verifies CC and h(wk, k) received from A using the information stored in

B′s DB. If they are valid, then B puts money into A′s bank account from

the pooled value of C in B′s DB. Next, B updates and stores only the latest

coin in B′s DB.

When A intercepts the message in Step P3 and obtains M = {IS, w0, n, E}SKC
,

he can decrypt it with PKC to get IS, w0, n and E. Next, A pretends to be S and

replays IC , M , and his own random number rA to B in Step A2. B checks M

and C ′s credit. Since they are valid, B withdraws the money corresponding to the

hash length n from C ′s account and keeps it as a pooled value in his database.

Next, B computes a certificate CC and sends it to A in Step A3. A decrypts CC

with PKB and obtains IC ,M, Y es, rA, and I. Here, A has more information from

I. C sends an order and the hash value h(wi, i) for the payment to S. A intercepts

this hash value h(wi, i). A can replay again by sending the hash value h(wi, i) for

the payment to B. In this step, A may send only the latest coin h(wk, k) received

from C for the payment. After B verifies CC and h(wk, k), B puts money into A′s

bank account from the pooled value of C in B′s DB. In addition, in order to dig a

pit for the third party, A would instead impersonate the third party and cause the

bank to deposit money into the third party’s account. This is achieved by sending

information of which account the bank needs to deposit to in Step A6.

Even though A did not know anything before Step P7, if he can obtain the

hash value h(wi, i) in Step P7, he can attack successfully. By sending h(wi, i) and

59

asking to put the money into A′s account, B will verify CC and h(wk, k). If they

are valid, B puts money into A′s bank account from the pooled value of C in B′s

DB.

After Step A3, A obtains any additional information from I. In addition,

since he gets information h(wi, i) in Step A4, he can compute all hash values.

The attacker can continue to impersonate the customer and the shop. So he can

attack again until consume the whole money which he can spend before the end

of expiration date E.

Thus, A can attack successfully by replaying the original messages and modi-

fying them to impersonate another party. Therefore, their proposed scheme is still

vulnerable against replay and impersonation attacks.

4.3. Conclusions

In this chapter, we have shown that the solutions to the security problems

found in Rivest and Shamir’s PayWord scheme proposed in [107] are still vulner-

able to impersonation and replay attacks.

60

CHAPTER 5. ENHANCED SECURITY FOR

THE MODIFIED AUTHENTICATED KEY

AGREEMENT SCHEME

Hsu et al. [97] showed that the Ku-Wang [96] modified authentication key

agreement scheme is vulnerable to the modification attack and further proposed

an improvement of the Ku-Wang scheme. Recently, Lee-Lee [98] showed that the

Hsu et al.’s scheme is vulnerable to the modification attack and proposed another

improvement on the modified authenticated key agreement scheme. However, we

will show that the Hsu et al.’s scheme suffers from the off-line guessing attack and

the Lee-Lee’s scheme is still vulnerable to off-line guessing, man-in-the-middle, and

reflection attacks. We then propose an enhanced secure scheme to eliminate these

security flaws [52].

5.1. Hsu et al.’s scheme

There are two phases in this scheme: the key establishment phase and the

key validation phase. We first introduce the notation to describe both phases and

explain the detailed steps in each phase.

61

5.1.1. Notations

• A, B, and E denote the two communicating users and the adversary.

• IDA and IDB denote the identities of user A and B.

• a and b denote the random number chosen by A and B.

• n denotes a large prime number.

• g denotes a generator with the order n-1 in GF(n).

• K1 and K2 denote the session key of A and B.

• P denotes the common password shared between A and B.

• Q and Q−1 denote an integer computed from P and the inverse of Q(mod n).

5.1.2. Key Establishment Phase

E1. A −→ B : X1.

A computes X1 = gaQmod n and sends X1 to B.

E2. B −→ A : Y1.

B computes Y1 = gbQmod n and sends Y1 to A.

E3. A computes the session key K1 = Y amod n = gabmod n,

where Y = Y Q−1

1 mod n = gbmod n.

E4. B computes the session key K2 = Xbmod n = gabmod n,

where X = XQ−1

1 mod n = gamod n.

After Step E4, A and B obtain the same session key K1 = K2 = gabmod n.

62

5.1.3. Key Validation Phase of the Hsu et al.’s scheme

HV1. A −→ B : X2.

A computes X2 = h(IDA, K1) and sends X2 to B.

HV2. B verifies the validity of X2 with h(IDA, K2).

HV3. B −→ A : Y2.

If the value is correct, B computes Y2 = h(IDB, K2) and sends Y2 to A.

HV4. A verifies the validity of Y2 with h(IDB, K1).

After Step HV4, A and B share the common session key K1 = K2 = gabmod n.

5.2. Lee-Lee’s scheme

The modified authenticated key agreement scheme described in [98] consists

of two phases: the key establishment phase and the key validation phase. The key

establishment phase is the same as the key establishment phase in the Hsu et al.’s

scheme.

5.2.1. Key Validation Phase of the Lee-Lee’s scheme

V1. A −→ B : X2.

A computes X2 = h(IDA, X1, K1) and sends X2 to B.

V2. B verifies the validity of X2 with h(IDA, X1, K2).

63

V3. B −→ A : Y2.

If the value is correct, B computes Y2 = h(IDB, Y1, K2) and sends Y2 to A.

V4. A verifies the validity of Y2 with h(IDB, Y1, K1).

After Step V4, A and B shared the common session key K1 = K2 = gabmod n.

5.3. Our Attack

First, we show an attack against [97] with the off-line guessing attack. Later,

we show three possible attacks against [98]; the off-line guessing attack, the man-

in-the-middle attack, and the reflection attack.

To attack these schemes, we suppose that the adversary E would eavesdrop

and interpose the communication between A and B.

5.3.1. Off-line Guessing Attack on the Hsu et al.’s scheme

GAH1. E −→ A : YE.

E monitors and intercepts the message X1 = gaQmod n in Step E1. He

randomly selects integer Z, and then computes his own value, YE = gz mod n.

Next, he sends YE to A.

GAH2. A computes the session key K∗
1 = Y ∗amod n = gZaQ−1

mod n,

where Y ∗ = Y Q−1

E mod n.

GAH3. A −→ B : X∗
2 .

To verify the validity of the session key K∗
1 , A computes X∗

2 = h(IDA, K∗
1)

and sends X∗
2 to B in Step HV1.

64

GAH4. E intercepts X∗
2 and tries to find the suitable value. First, he computes QE

and Q−1
E from the guessing password PE. Second, he computes his own value

X∗
E = h(IDA, X

Z(Q−1
E)

2

1). Next, he compares X∗
2 = h(IDA, gZaQ−1

mod n)

with X∗
E. If they match, this guessing attack is succeeded. Otherwise, E

tries to find the password again in this Step GAH4.

Therefore, this off-line guessing attack can succeed when E impersonates B.

5.3.2. Off-line Guessing Attack on the Lee-Lee’s scheme

GA1. E −→ B : XE.

E monitors and intercepts the message X1 = gaQmod n in Step E1. He then

computes his own value XE = g mod n, and sends XE to B.

GA2. E −→ A : YE.

E intercepts Y1 = gbQmod n in Step E2. He then replaces Y1 with YE =

g mod n, and sends YE to A.

GA3. A computes the session key K∗
1 = gaQ−1

mod n,

where Y ∗ = Y Q−1

E mod n = gQ−1
mod n, and

K∗
1 = Y ∗amod n = gaQ−1

mod n.

GA4. B computes the session key K∗
2 = gbQ−1

mod n,

where X∗ = XQ−1

E mod n = gQ−1
mod n, and

K∗
2 = X∗bmod n = gbQ−1

mod n.

GA5. A −→ B : X∗
2 .

To verify the validity of the session key K∗
1 , A computes X∗

2 = h(IDA, X1, K∗
1)

= h(IDA, gaQmod n, gaQ−1
mod n), and sends X∗

2 to B in Step V1.

65

GA6. E intercepts X∗
2 and tries to find the suitable value. E computes QE and

Q−1
E from the guessing password PE. He then computes his own value

X∗
E = h(IDA, X1, X

(Q−1
E)2

1). Next, he compares X∗
2 = h(IDA, X1, K∗

1) =

h(IDA, gaQmod n, gaQ−1
mod n) with X∗

E. If they match, this guessing attack

is successful. Otherwise, E tries to find the password again in Step GA6.

Thus, E can guess the password in this attack. Furthermore, if this attack is

the on-line guessing attack, it might be successful. However, it will be detected

by the system or the users, since E has to access several times more than the

limited access time, if his attack fails. Therefore, this off-line guessing attack can

be successful like the attack on the Hsu et al.’s scheme.

5.3.3. Man-In-The-Middle Attack

MA1. A −→ B : X1 ⇒ E −→ B : XE1.

A computes X1 = gaQmod n and sends X1 to B. However, E monitors

and intercepts the message X1, and then replaces X1 with his own value

XE1 = 1 mod n. Next, he sends XE1 to B.

MA2. B −→ A : Y1 ⇒ E −→ A : YE1.

B computes Y1 = gbQmod n and sends Y1 to A. However, E also intercepts

the message Y1, and then replaces Y1 with his own value YE1 = 1 mod n.

He then sends YE1 to A. Next, E calculates XE2 = h(IDA, XE1, K∗
1) and

YE2 = h(IDB, YE1, K∗
2).

MA3. For the session key, A computes

Y ∗ = Y Q−1

E1 mod n = 1 mod n and K∗
1 = Y ∗a mod n = 1 mod n.

66

MA4. By the same way, B computes

X∗ = XQ−1

E1 mod n = 1 mod n and K∗
2 = X∗b mod n = 1 mod n.

Finally, A and B obtain the same session key K∗
1 = K∗

2 = 1 mod n. After Step

MA4, user A and B start to verify their session key K∗
1 and K∗

2 .

MA5. A −→ B : X∗
2 ⇒ E −→ B : XE2.

A computes X∗
2 = h(IDA, X1, K∗

1) and sends it to B. E intercepts X∗
2 ,

and then easily substitutes X∗
2 with XE2, since XE2 and YE2 are already

calculated after Step MA2. Next, he sends XE2 to B.

MA6. After received it, B verifies the validity of XE2 = h(IDA, XE1, K∗
1) with

h(IDA, XE1, K∗
2).

MA7. B −→ A : Y ∗
2 ⇒ E −→ A : YE2.

Similarly, B computes Y ∗
2 = h(IDB, X2, K∗

2) and sends Y ∗
2 to A. However,

E substitutes Y ∗
2 with YE2, and sends YE2 to A.

MA8. After A received it, he verifies the validity of YE2 = h(IDB, YE1, K∗
2) with

h(IDB, YE1, K∗
1).

Since the session key K∗
1 = K∗

2 = 1 mod n, A and B get the common session key

and convince it without doubt. Thus, E can attack Lee-Lee’s scheme, if he can

eavesdrop certain users’ communications.

5.3.4. Reflection Attack

RA1. A −→ E : X1.

A computes X1 = gaQmod n and sends X1 to B.

67

RA2. E −→ A : XE.

E intercepts the message X1 in Step E1. He then computes his own value

XE = g mod n, and sends A the XE instead of Y1.

RA3. A −→ E : X∗
2 .

A computes the session key K∗
1 = gaQ−1

mod n,

where Y ∗ = XQ−1

E mod n = gQ−1
mod n and K∗

1 = Y ∗amod n = gaQ−1
mod n.

To verify the validity of the session key K∗
1 ,

A computes X∗
2 = h(IDA, X1, K∗

1) = h(IDA, gaQmod n, gaQ−1
mod n), and

sends X∗
2 to B in Step V1. However, E intercepts X∗

2 , and ferrets out the

proper value as we attacked in Step GA6. Finally, he can compute QE and

Q−1
E with the guessing password PE.

As we have shown in this attack, it is obvious that all users have communicated

with malicious adversary E, not with the trusted parties. Thus, E is able to put

up an illusion to deceive other users.

5.4. Our Enhanced Secure Scheme

To resist the above weaknesses, we propose an enhanced secure scheme taking

into account off-line guessing, man-in-the-middle, and reflection attacks of [98].

5.4.1. Enhanced Key Establishment Phase

EE1. A −→ B : X1.

A computes X1 = gaQ ⊕Q and sends X1 to B.

68

EE2. B −→ A : Y1.

B computes Y1 = gbQ ⊕Q and sends Y1 to A.

EE3. A computes the session key K1 = gabQmod n,

where Y = Y1 ⊕Q = (gbQ ⊕Q)⊕Q = gbQ and K1 = Y amod n.

EE4. B computes the session key K2 = gabQmod n,

where X = X1 ⊕Q = (gaQ ⊕Q)⊕Q = gaQ and K2 = Xbmod n.

After Step EE4, A and B obtain the same session key K1 = K2 = gabQmod n.

5.4.2. Enhanced Key Validation Phase

In this phase, to fend off the man-in-the-middle attack, A and B check the

value of K1 6= 1 and K2 6= 1, respectively. If the values are correct, then they can

start this phase.

EV1. A −→ B : X2.

A computes X3 = K−a
1 mod n = gbQmod n and X2 = h(IDA, Y1, K1)⊕h(X3),

and then sends X2 to B.

EV2. B −→ A : Y2.

B computes X ′
3 = gbQmod n, and verifies the validity of X2 with h(IDA, Y1, K2)

⊕h(X ′
3). If they are correct, B computes Y3 = K−b

2 mod n = gaQmod n and

Y2 = h(IDB, X1, K2)⊕ h(Y3), and then sends Y2 to A.

EV3. A computes Y ′
3 = gaQmod n, and verifies the validity of Y2 with h(IDB, X1, K1)

⊕h(Y ′
3). If they are correct, then A and B are able to share the common

session key K1 = K2 = gabQmod n. If they are not, then they discard the

session key.

69

5.5. Security Analysis

5.5.1. Off-line Guessing Attack

If E eavesdrops and intercepts the information for the off-line guessing attack,

he can obtain information such as X1 = gaQ ⊕ Q and Y1 = gbQ ⊕ Q. After that,

E replaces X1 and Y1 with XE = ga′Q′ ⊕Q′ and YE = gb′Q′ ⊕Q′, respectively. He

then sends them to A and B in Step GA3 and GA4, respectively. Next, A and B

compute K∗
1 , K

∗
2 , X

∗
2 , and Y ∗

2 , where

K∗
1 = Y ∗amod n = (gb′Q′ ⊕Q′ ⊕Q)amod n

from Y ∗ = YE ⊕Q = (gb′Q′ ⊕Q′)⊕Q,

K∗
2 = X∗bmod n = (ga′Q′ ⊕Q′ ⊕Q)bmod n

from X∗ = XE ⊕Q = (ga′Q′ ⊕Q′)⊕Q,

X∗
2 = h(IDA, YE, K∗

1)⊕ h(X∗
3) from X∗

3 = gb”Q”mod n, and

Y ∗
2 = h(IDB, XE, K∗

2)⊕ h(Y ∗
3) from Y ∗

3 = ga”Q”mod n.

They then send X∗
2 and Y ∗

2 to each other for verification. E intercepts this informa-

tion, and tries to find the appropriate values by the guessing attack. However, E

cannot obtain the result. It is very difficult to solve the equation K∗
1 = gabQmod n

without knowing a, b, and Q, because it meets the Diffie-Hellman problem [92].

In addition, A and B can detect the modified value XE and YE from the key vali-

dation phase. As an example, A sends X∗
2 to B, then B computes X ′

3 = gbQmod n

and verifies the validity of X∗
2 with h(IDA, Y1, K∗

2) ⊕ h(X ′
3). B finds out that

they are not matched, because of YE 6= Y1 and h(X∗
3) 6= h(X ′

3), even though K∗
1

and K∗
2 are the same. Therefore, our proposed scheme is secure against the off-line

guessing attack.

70

5.5.2. Man-In-The-Middle Attack

If E wants to modify the value by using the man-in-the-middle attack, he

can obtain and replace the information, such as X1 to XE, and Y1 to YE. However,

E ′s attack still ends in failure. With the reason aforementioned, B makes out that

they are not equal through the key validation phase, because YE is not equal to his

own value Y1, and h(X∗
3) is not equal to h(X ′

3). Furthermore, they already checked

the values of K1 6= 1 and K2 6= 1 as a measure against as our man-in-the-middle

attack. Thus, our proposed scheme withstands the man-in-the-middle attack.

5.5.3. Reflection Attack

Whenever E tries to attack with the reflection attack, he can intercept and

replace the information such as X1 = gaQ⊕Q with XE = ga′Q′ ⊕Q′, in Step EE1.

After that, A computes the session key K∗
1 = Y ∗amod n = (gb′Q′ ⊕Q′⊕Q)amod n

from Y ∗ = YE ⊕ Q = (gb′Q′ ⊕ Q′) ⊕ Q, and X∗
2 = h(IDA, YE, K∗

1) ⊕ h(X∗
3)

from X∗
3 = gb”Q”mod n. He then sends X∗

2 to B for validation in Step EV1. E

intercepts X∗
2 , and tries to seek the suitable value, but it is hard to find a, b,

and Q from the value X∗
2 = h(IDA, YE, K∗

1) ⊕ h(X∗
3) by using the information

that E has, such as X1 = gaQ ⊕ Q. Moreover, after Step EV1, E computes

Y ∗
2 = h(IDB, XE, K∗

2)⊕h(Y ∗
3) from Y ∗

3 = ga”Q”mod n, and sends Y ∗
2 to A. A can

detect that this phase is modified. If E sends Y ∗
2 , then A computes Y ′

3 = gaQmod n,

and verifies the validity of Y ∗
2 with h(IDB, X1, K∗

1)⊕ h(Y ′
3). Finally, A finds out

that they are not matched, because of XE 6= X1 and h(Y ∗
3) 6= h(Y ′

3). In addition, if

E does not respond to A after Step EV1, then A recognizes that this key agreement

71

protocol is modified or realizes that something is wrong. He then discards this

session key. Consequently, our proposed scheme can resist the reflection attack.

5.6. Conclusions

In this chapter, we have shown that the Hsu et al.’s scheme suffers from

the off-line guessing attack, and the Lee-Lee’s scheme is still vulnerable to off-line

guessing, man-in-the-middle, and reflection attacks. We then propose an enhanced

secure scheme to eliminate those security flaws.

72

CHAPTER 6. TWO SIMPLE ATTACKS ON

THE ID-BASED PASSWORD

AUTHENTICATION SCHEME USING

SMART CARDS AND FINGERPRINTS

Recently, Kim, Lee, and Yoo proposed an ID-based password authentication

scheme [83], a timestamp based scheme and a nonce based scheme. The proposed

schemes do not require a dictionary of passwords or verification tables. These are

based on the concepts of ID-based schemes, fingerprint verification systems, and

smart cards. They proposed that their schemes would be secure against off-line

guessing, message replay, and impersonation attacks. Nevertheless, we show that

the Kim-Lee-Yoo (KLY) protocol is still vulnerable to the replay attack and the

impersonation attack [53].

6.1. KLY Scheme

This scheme is described in [83] and it comes with three phases: registra-

tion, login, and verification. We first introduce the notation used to describe the

protocols. Then, we briefly show these protocols.

73

6.1.1. Notations

• n, g, and f denote public elements,

where n is a large prime number, g is a generator of order n− 1 in Z∗
n, and

f is a one-way function.

• Ui denotes each legal user and E denotes the adversary.

• S denotes the remote system and SC denotes the smart card.

• IDi/PWi/CIDi/FPi denote the identity/password/SC’s identifier/fingerprint

of Ui.

• SK denotes the secret key maintained by the remote system.

• Ti/Ts denote the current timestamp of the input device/remote system.

• ri/rs denotes the random number generated by the smart card/remote sys-

tem.

6.1.2. Timestamp based authentication scheme

1. Registration phase In the registration phase, the remote system issues

smart cards to the users who request registration. In this phase, the re-

mote system is not responsible for authenticating users. It is responsible for

generating key information, issuing smart cards to new users, and serving

password-changing requests for registered users.

R1. Ui =⇒ S : IDi and PWi.

74

R2. S generates CIDi, and computes Si and hi,

where Si = ID
(SK)
i (mod n),

hi = g(PWi·SK)(mod n).

CIDi is for validating the legality of smart cards in the verification

phase. Even though, IDi and n are known, it is hard to find SK from

Si because of the discrete logarithm problem.

R3. S −→ Ui : SC.

S writes n, g, f, IDi, CIDi, Si, and hi to SC and issues the card to Ui.

This registration phase is only required when new users request to join

or registered users request to change their passwords.

R4. Ui −→ SC : FPi.

The user registers his fingerprint on his own smart card based on minutia

extraction and authenticates his ownership by matching the fingerprint

with the use of minutia in [108].

2. Login phase In the login phase, the user attaches his smart card to the

terminal, and keys in his identifier and password. The user, then, imprints

his fingerprint on the fingerprint input device that causes the terminal to

send a login request message to the remote system.

L1. Ui −→ SC : IDi, PWi, and FPi.

L2. SC generates a random number r using the co-ordinates of input fin-

gerprint minutia. The fingerprint is used to determine user ownership

of SC. Then, it computes

Xi = gr·PWi(mod n),

Yi = Si · hr·f(CIDi,Ti)
i (mod n),

75

where f(x, y) is a one-way function.

Whenever there is a fingerprint input, a different map of minutia is

made and the input map is used as a one-time random number.

L3. SC −→ S : M = {IDi, CIDi, Xi, Yi, Ti}

3. Verification phase In the verification phase, the remote system verifies the

correctness of submitted messages and determines whether the login request

should be accepted.

V1. S verifies IDi and CIDi, if unsuccessful, S rejects the login request.

V2. S checks that ∆T ≥ (Ts − Ti),

where ∆T is the expected legal time interval for transmission delay.

If it is not satisfied, S stops the request.

V3. S checks whether the following equation holds

Y SK−1

i ≡ IDi ·Xf(CIDi,Ti)
i (mod n)

If this equation holds, Ui is allowed to login to the remote system. If

not, the login request is rejected.

6.1.3. Nonce based authentication scheme

The nonce based scheme also consists of three phases: registration, login, and

verification. The registration phase is the same as that of the timestamp based

scheme. Therefore, we shall only describe the login and verification phases. In

this scheme, timestamp T is replaced with a nonce N as a measure against replay

attacks.

76

1. Login phase

L1. Ui −→ S : M1 = {IDi, CIDi}, initial login request.

L2. S −→ SC : N = f(CIDi, rs).

S verifies the validity of IDi and CIDi. S reserves IDi and CIDi for

the verification phase, if its validity is satisfied. Next, S makes a new

nonce N = f(CIDi, rs) and sends it back to SC.

L3. SC checks the received N , if it is a new one, SC generates ri using

co-ordinates of input fingerprint minutia and computes

Xi = gri·PWi(mod n),

Yi = Si · hri·N
i (mod n).

L4. SC −→ S : M2 = {Xi, Yi}, login request.

2. Verification phase In this phase, the remote system verifies the correctness

of submitted authentication messages sent by a legitimate user and deter-

mines whether the user’s login request is accepted.

V1. S checks whether the following equation holds

Y SK−1

i ≡ IDi ·XN
i (mod n).

If the user uses the correct password that matches the registered key in

the smart card and uses the correct nonce that is identical to the one

the remote system generated, the login request is accepted. If not, it

will be rejected.

77

6.2. Our Attack

6.2.1. Replay Attack

In the timestamp based authentication scheme, suppose that the adversary

intercepts the login message M = {IDi, CIDi, Xi, Yi, Ti} in Step L3 and blocks the

communication. Then, the adversary directly sends M to the remote system. After

that, the remote system verifies IDi and CIDi, tests that ∆T ≥ (Ts − Ti), and

finally checks whether the equation Y SK−1

i ≡ IDi ·Xf(CIDi,Ti)
i (mod n) is correct. In

the login phase, there is only one-time and one-way transaction, and no calculation

of any information. This means that if the adversary intercepts the message,

blocks the communication, and directly sends the message to the remote system,

then the time difference test passes. In this phase, the time difference test is the

most critical. Therefore, this verification procedure is easily circumvented and the

adversary can login access successfully.

6.2.2. Impersonation Attack

If the adversary can obtain someone’s smart card, then he will have infor-

mation such as IDi, CIDi, Si, and hi. The adversary registers and logins to the

remote system with his own IDE, PWE, FPE, CIDE, etc. Next, he can compute

XE = gPWE∗rE(mod n) with rE, a randomly generated number by the adversary.

After that, the adversary starts to attack this protocol by impersonating as legiti-

mate user Ui. The attack procedures are as follows.

A1. E −→ S : M1 = {IDi, CIDi}.

78

E sends IDi and CIDi to the remote system for the initial login request.

A2. S −→ E : N ′ = f(CIDi, r
′
s).

S verifies the validity of IDi and CIDi, and then reserves IDi and CIDi for

the verification phase. If its validity is satisfied, then S makes a new nonce

N ′ = f(CIDi, r
′
s) and sends it back to E.

A3. E computes his own value R, XE, and YE, where

R = IDi ·XN ′
E (mod n),

X ′
E = (R/IDi)

N ′−1

(mod n),

YE = Si · hrE ·N ′
i = (IDi · gPWE ·rE ·N ′

)SK = (IDi ·XN ′
E)SK(mod n).

A4. E −→ S : M2 = {X ′
E, YE}, login request.

A5. S checks Y SK−1

E ≡ IDi ·X ′N ′
E (mod n).

In the left equation,

Y SK−1

E = {(IDi ·XN ′
E)SK(mod n)}SK−1

= IDi ·XN ′
E (mod n) = R.

In the right equation,

IDi ·X ′N ′
E (mod n) = IDi · {(R/IDi)

N ′−1}N ′
(mod n) = R.

Since this equation is valid, the remote system accepts the login request. Even

though the adversary does not know the user’s password, the attacker can continue

to impersonate the user. In addition, if the remote system makes a new nonce

N ′ = f(CIDi, r
′
s) in the login phase, the attacker can still continue to impersonate

the user. Therefore, their scheme is still vulnerable to the impersonation attack.

79

6.3. Conclusions

In this chapter, we have shown that the ID-based password authentication

scheme using smart cards and fingerprints proposed in [83] is vulnerable to replay

and impersonation attacks. In addition, it can be attacked without having the

password, timestamp, and fingerprint.

80

CHAPTER 7. SECURITY IMPROVEMENTS

ON A NEW USER REMOTE

AUTHENTICATION SCHEME

In 2003, Wu-Chieu presented a user friendly remote authentication scheme

[84], with smart cards, without using a user password table. However, Hwang-

Liao [85] and Hwang et al. [86] pointed out that the Wu-Chieu scheme [84] is

insecure. Recently, Wu-Chieu [87] proposed a modified scheme to overcome the

weakness. Nevertheless, we show in this chapter that their new scheme is still

vulnerable to the compromised attack and the impersonation attack. We then

propose an improved scheme to overcome not only the weakness of the Wu-Chieu

scheme [87], but also the password guessing attack [54].

7.1. Wu-Chieu Scheme

We first introduce the notation used to describe the protocols, and then

briefly show the scheme in [87].

7.1.1. Notations

• Ui, S, SC, and E denote the user, the remote system, the smart card, and

the adversary.

81

• PWi denotes user U ′
is password.

• x denotes a secret key maintained by S.

• p denotes a large prime number.

• g denotes a public and primitive number in GF(p).

• T denotes the current date and time of the input device.

The user remote authentication scheme described in [87] comes with three

phases: the registration, the login, and the authentication phases. These phases

are described below.

7.1.2. Registration Phase

In the registration phase, user Ui submits his identifier IDi and his chosen

password PWi to the system in person, or over a secure channel. The procedures

of this phase are as follows:

R1. U =⇒ S : IDi and PWi.

R2. S computes Ai = h(IDi, x) and Bi = gAi·h(PWi)(mod p). Next, S personalizes

the smart card with the secure information : {IDi, Bi, h(·), p, g}.

7.1.3. Login Phase

When Ui wants to login, he inserts his smart card into the card reader, and

keys in his IDi and PW ∗
i . Then the smart card performs the following operations:

82

L1. U −→ SC : IDi and PW ∗
i .

L2. SC −→ S : M = {IDi, C1, D∗
i , T}.

SC computes C1 = h(T⊕Bi) and D∗
i = gh(PW ∗

i)(mod p) and sends a message

M to S.

7.1.4. Authentication Phase

In this phase, after receiving the message M at time T ′, the remote system

S performs the following procedures for authentication Ui.

A1. S verifies the format of IDi. If it is correct, S verifies the validity of the time

interval between T and T ′. If ∆T ≤ (T ′ − T), S rejects the login request.

A2. S computes Ai = h(IDi, x), B∗
i = (D∗

i)
Ai(mod p), and C∗

1 = h(T⊕B∗
i). Next,

S compares C1 with C∗
1 . If they are equal, S accepts the login request.

7.2. Our Attack

We show two possible attacks against [87]; compromise attack and imperson-

ation attack.

7.2.1. Compromised Attack

To attack the new scheme of [87], we suppose that the adversary E monitors

their communications and eavesdropping any message M = {IDi, C1, D∗
i , T}.

83

Once the long-term secret key x, maintained by S is compromised, then all of the

previous keys (important information) will be released. It is described as follows:

EC1. E −→ S : ME = {IDi, CE, D∗
i , TE}.

Adversary E obtains IDi, C1, D∗
i , and T from the eavesdropping any mes-

sage M = {IDi, C1, D∗
i , T} in Step L2. After that, he can compute

Ai = h(IDi, x) with the compromised S ′s secret key x. He then calculates

B∗
i = (D∗

i)
Ai(mod p) and CE = h(TE⊕B∗

i), where TE is the current date and

time when E logs in. Next, E sends the message ME = {IDi, CE, D∗
i , TE}

that was made up of his own value CE and TE for login to S.

EC2. S verifies the format of IDi. If it is correct, S verifies the validity of the time

interval between TE and T ′. Since the format of IDi and ∆T ≥ (T ′ − TE)

are correct, S accepts the login request.

EC3. S computes Ai = h(IDi, x), B∗
i = (D∗

i)
Ai(mod p), and C∗

1 = h(TE ⊕ B∗
i).

Next, S compares CE with C∗
1 . Finally, they are equal, S accepts the login

request.

Thus, once the long-term secret key is compromised, adversary E can obtain

information that was needed for cracking the authentication system, such as Ai,

Bi, and etc. After that, if E wants to attack again, he can successfully conclude

his attack at any time. Therefore, the proposed scheme in [87] still suffers from

the compromised attack.

84

7.2.2. Impersonation Attack

In this attack, we assume that the adversary E can steal or pick up U ′
is

smart card. He can then copy and get information, such as IDi, Bi, h(·), p, and

g from the smart card, and return the smart card to Ui. A detailed attack method

is described as follows:

E1. E −→ S : ME = {IDi, CE, D∗
i , TE}.

Adversary E, eavesdrops the message M = {IDi, C1, D∗
i , T} in Step L2.

Next, he computes CE = h(TE ⊕ Bi) by using Bi that was obtained from

the smart card, and then changes the message M = {IDi, C1, D∗
i , T} to

ME = {IDi, CE, D∗
i , TE}, where TE is the current date and time when E

logs in.

The remaining attack procedures are the same as EC2 and EC3. From D∗
i =

gh(PWi)(mod p), it is infeasible to calculate the password of the legitimate user,

PWi, because of the discrete logarithm problem. Even though, the adversary does

not know the authorized user’s password, he can impersonate a legal user. Because

he just changes C1 to CE, and T to TE, respectively, and then uses the value of

D∗
i for computing B∗

i . Thus, E who obtains any message M = {IDi, C1, D∗
i , T}

can be any user at any time, and successfully conclude his attack. Therefore, the

proposed scheme in [87] still suffers from impersonation attack.

7.3. Our Improved Scheme

We make an improvement on [87] by taking into account the compromise at-

tack and the impersonation attack. E monitors their communications, and eaves-

85

drops the message M = {IDi, C1, D∗
i , T}. Next, he obtains the information he

needs. Here we notice the weakness. If E can compromise S’s secret key x, or

obtain information Bi from the smart card, then he can replace C1 and T , with

CE and TE, respectively. Next, E sends the message ME = {IDi, CE, D∗
i , TE}

for login to S at any time. Therefore, we suggest the improved scheme as follows.

7.3.1. Registration Phase

In the registration phase of [87], user Ui submits his identifier IDi and his

chosen password PWi to the system in person, or over a secure channel. However,

the server computes information, and stores some of them in its database. The

procedures of this phase are as follows:

R’1. U =⇒ S : IDi and PWi.

R’2. S computes Ai = h(IDi, x), Bi = gAi·PWi·h(PWi)(mod p), and Ci = h(IDi, PWi).

Next, S stores IDi and Ci in S ′s database, and then personalizes the smart

card with the secure information : {IDi, Bi, h(·), p, g}.

7.3.2. Login Phase

In the login phase of [87], when Ui wants to login, he inserts his smart card

into the card reader, and keys in his ID∗
i and PW ∗

i . The smart card then performs

the following operations:

L’1. U −→ SC : ID∗
i and PW ∗

i .

L’2. SC −→ S : M = {ID∗
i , Qi, Ki, T}.

86

SC computes Qi = h(T ⊕ Bi ⊕ C∗
i) and sends message M to S, where

C∗
i = h(ID∗

i , PW ∗
i) and Ki = gPW ∗

i ∗h(PW ∗
i)(mod p).

7.3.3. Authentication Phase

In this phase, after receiving the message M at time T ′, the remote system

S, performs the following procedures for authentication Ui.

A’1. S verifies the format of IDi. If it is correct, S verifies the validity of the time

interval between T and T ′. If ∆T ≤ (T ′ − T), S rejects the login request.

A’2. S computes A∗
i = h(ID∗

i , x), B∗
i = (Ki)

A∗i (mod p), and Q∗
i = h(T ⊕B∗

i ⊕Ci)

by using Ci in its database. Next, S compares Qi with Q∗
i . If they are equal,

S accepts the login request.

7.4. Security Analysis

In this section, we briefly explain why the proposed scheme is secure against

the compromise attack and the impersonation attack.

7.4.1. Compromised Attack

Even though, once the long-term secret key x, maintained by S is compro-

mised, and E obtains IDi, Qi, Ki, and T from the eavesdropping any message

M = {ID∗
i , Qi, Ki, T} in Step L’2, only two information will be released such

as Ai = h(ID∗
i , x) and B∗

i = (Ki)
Ai(mod p). Next, he wants to change message

87

M = {ID∗
i , QE, Ki, TE} with his own value QE and TE, and sends M to S in Step

L’2. However, he cannot get the important information QE = h(TE ⊕ Bi ⊕ C∗
i),

because he does not know C∗
i = h(ID∗

i , PW ∗
i). Consequently, this attack is failed.

In addition, if E sends message M = {ID∗
i , Qi, Ki, TE} to S without modifica-

tion, then S knows Qi = h(T ⊕Bi ⊕ C∗
i) is not equal to Q∗

i = h(TE ⊕Bi ⊕ Ci) in

Step A’2. E ′s log in request is also rejected. Thus, E cannot attack our scheme

using this attack.

7.4.2. Impersonation Attack

If the message M was eavesdropped in Step L’2, then E can only obtain IDi

and Ki without knowing the password. Next, he would want to change message

M = {ID∗
i , QE, Ki, TE} to his own value QE and TE in Step L’2. However,

according to the above compromised attack, he cannot get the important informa-

tion QE = h(TE ⊕ Bi ⊕ C∗
i). Consequently, this attack is failed. Moreover, if E

sends message M = {ID∗
i , Qi, Ki, TE} to S without modification, after receiving

M , S also knows Qi is not equal to Q∗
i in Step A’2. Therefore, E cannot attack

our scheme using the impersonation attack.

7.4.3. Password Guessing Attack

Now we check to see why “password guessing” does not work, and here are the

reasons: If the long-term secure key is compromised and the attacker can get Bi,

then the attacker computes Ai = h(IDi, x). He then tries to guess a password PW ′

from Bi = gAi∗PW ′∗h(PW ′)(mod p). If the attacker intercepts Ki of a user instead, he

88

then tries to get password PW ′ from Ki = gPW ′∗h(PW ′)(mod p) using the password

guessing attack. However, those are difficult to guess the password PW ′ unless he

can solve the Diffie-Hellman problem [92]. The Diffie-Hellman problem depends

on the discrete logarithm problem for its security. It is computationally infeasible

to calculate k = gabmod p given the two public values gamod p and gbmod p

when the prime p is sufficiently large. Therefore, our proposed scheme is secure

against the password guessing attack and its security depends on the security of

the Diffie-Hellman.

7.5. Conclusions

In this chapter, we show that the new protocol given in [87] still suffers from

the compromised attack and the impersonation attack. We then propose a new

scheme that overcomes not only the weakness of the Wu-Chieu scheme, but also

the password guessing attack.

89

CHAPTER 8. IMPROVING THE NOVIKOV

AND KISELEV USER AUTHENTICATION

SCHEME

Novikov and Kiselev [89] proposed an authentication method of a user from

a remote autonomous object. Recently, Yang et al. [90] and Awasthi [91] have

pointed out that the Novikov-Kiselev scheme is insecure against the man-in-the-

middle attack. In this article, we propose an improved version of the Novikov-

Kiselev scheme to overcome such vulnerability [55].

8.1. Novikov-Kiselev Scheme

8.1.1. Notations

• Ui, O, and E denote the user, the remote autonomous object, and the ad-

versary.

• IDi and K denote the user’s identifier and the control command.

• (SPKU
, SSKU

) and (SPKO
, SSKO

) denote a pair of session keys of Ui and O.

• Ti denotes the time parameter.

The Novikov-Kiselev authentication scheme described in [89] comes in two

stages described below.

90

8.1.2. The First Stage

The first stage is the pre-tuning of the parameters Ui and O. Ui produces

IDi and synchronizes Ti with the remote object. This processing is executed just

once. IDi and T0 are produced and stored in the operative memory of O by Ui.

8.1.3. The Second Stage

The second stage is the communication session between Ui and O. The

procedures of this stage are as follows:

S1. Ui −→ O : signal S.

Ui sends start request signal S to O.

S2. O −→ Ui : SPKO
.

O computes a pair of session keys SPKO
and SSKO

by using the RSA algorithm

[69]. Next, O sends SPKO
to Ui, and then turns on the timer to record the

session beginning at time T1.

S3. Ui −→ O : ESPKO
(IDi, SPKU

).

Ui generates a pair of session keys SPKU
and SSKU

, and then encrypts IDi

and SPKU
with SPKO

using the encryption function of the RSA algorithm.

Next, he sends it to O.

S4. O −→ Ui : ESPKU
(X).

O decrypts the received message with SSKO
using the decryption function.

O records T2, which indicates the time that the message was received, and

91

checks that ∆T = T2 − T1. If ∆T ≥ T0, then this communication is termi-

nated. Otherwise, O checks received IDi and stored IDi in its own memory.

If they are correct, O encrypts the message X which includes the command

K with SPKU
. Next, O sends it to Ui and records the time T3.

S5. Ui −→ O : ESPKO
(newID, K).

Ui decrypts the received message with SSKU
, and then obtains X. He derives

the command K from the message X, and then encrypts the command K

and new identifier newID with SPKO
. Next, Ui sends it to O. After that, Ui

records the value of newID in his memory and destroys his pair of session

keys (SPKU
, SSKU

) and SPKO
.

S6. O checks ∆T = T3−T2. If ∆T ≥ T1, then this communication is terminated.

If it is valid, then O decrypts the received message with SSKO
and obtains

the command K. Next, O replaces newID in his memory and destroys a

pair of session keys (SPKO
, SSKO

). Finally, O executes the command K.

8.2. Yang-Lee-Hsiao Attack

The procedures of attack are briefly described as follows:

In Step S1, the adversary E intercepts the signal S.

In Step S2, E intercepts SPKO
.

In Step S5, E intercepts ESPKO
(newID, K) and replaces it with ESPKO

(newID′, K ′),

and then sends it to O.

The adversary can attack by replacing the legal identifier of the user. There-

fore, E can easily supplant the legal user.

92

8.3. Awasthi Attack

8.3.1. The First Stage

The user Ui sends IDi and T0 to the object O. On this communication, the

adversary E intercepts the information and sends the tuple IDi and T∗ instead of

the original one.

8.3.2. The Second Stage

AS1. Ui −→ O : signal S.

Ui sends start request signal S to O. E intercepts S and sends it to O.

AS2. O −→ Ui : SPKO
.

The object O computes a pair of session keys SPKO
and SSKO

by using the

RSA algorithm. Next, O sends SPKO
to Ui, and then turns on the timer to

record the session beginning at time T1.

AS3. E −→ Ui : SPK′
O
.

E intercepts SPKO
and sends a self generated SPK′

O
to the user.

AS4. Ui −→ O : ESPK′
O

(IDi, SPKU
).

Ui generates a pair of session keys SPKU
and SSKU

, and then encrypts IDi

and SPKU
with SPK′

O
using the encryption function of the RSA algorithm.

Next, he sends it to O.

AS5. E −→ O : ESPKO
(IDi, SPK′

O
).

E intercepts this encrypted message and decrypts it using SSK′
O
. He modifies

93

the encrypted message as ESPKO
(IDi, SPK′

O
) and sends it to O.

AS6. O −→ Ui : ESPK′
O

(X).

O decrypts the received message with SSKO
using the decryption function.

O records T2, which indicates the time that the message was received, and

checks that ∆T = T2 − T1. If ∆T ≥ T∗, then this communication is ter-

minated. O encrypts the message X which includes the command K with

SPK′
O
. Next, O sends it to Ui.

AS7. E −→ Ui : ESPKU
(X).

E intercepts this message and decrypts ESPK′
O

(X) using SSK′
O
. Next, he

encrypts X with SPKU
and sends it to Ui.

AS8. Ui −→ O : ESPK′
O

(newID, K).

Ui decrypts the received message with SSKU
, and then obtains X. He derives

the command K from the message X, and then encrypts the command K

and the new identifier newID with SPK′
O
. Next, Ui sends it to O.

AS9. E −→ O : ESPK′
O

(newID, K).

E intercepts the message ESPK′
O

(newID, K) and decrypts it with SSK′
O
. E

can get newID and K. After that, E can make whatever modifications he

wants.

8.4. Our Improved Scheme

We will make an improvement on the Novikov-Kiselev scheme by taking into

account the man-in-the-middle attack of [90] and [91]. E monitors their communi-

cations and then eavesdrops the messages, such as S, SPKO
, and ESPKO

(newID, K).

94

Next, he sends the replaced messages to O. Here we notice the weakness. Since O

did not check the command K, E can obtain SPKO
and replace ESPKO

(newID, K)

with ESPKO
(newID′, K ′) at any time. We modify the Novikov-Kiselev scheme as

follows:

8.4.1. The Synchronization Phase

The user Ui sends IDi to the object O. O computes a pair of session keys

(SPKO
, SSKO

) by using the RSA algorithm and sends his session public key SPKO

to Ui. Next, they synchronize according to time T0. During this phase, these

transactions are done via a secure communication channel. Next, O stores IDi

and T0 in its memory.

8.4.2. The Authentication Phase

A1. Ui −→ O : ESPKO
(IDi, Ti).

Ui checks the current time Ti and encrypts IDi and Ti by using session public

key SPKO
. Next, Ui sends start request signal to O with encrypted message

ESPKO
(IDi, Ti).

A2. O −→ Ui : ESSKO
(Tj+1, X).

When O receives the message, as a first step, it records the current time Tj,

and then decrypts the received message by using session private key SSKO

and obtains IDi and Ti. Next, O compares the time ∆Tx = Tj − Ti with T0

that is stored in the memory at the synchronization phase. If ∆Tx ≥ T0, then

this communication is terminated. If they are valid, O turns on the timer

95

and records the session beginning time Tj+1, and then sends ESSKO
(Tj+1, X)

to Ui.

A3. Ui −→ O : ESPKO
(Ti+1, T ∗

j+1, Ti+2, K ′).

When Ui receives the message, he records the current time Ti+1 with priority,

and then computes DSPKO
[ESSKO

(Tj+1, X)] to decrypt and obtain T ∗
j+1 and

X. He can derive the command K ′ from the message X, and then encrypt

Ti+1, T ∗
j+1, Ti+2 and K ′ with SPKO

, where Ti+2 is the new current time of

Ui. Next, Ui sends it to O. After that, Ui destroys session public key SPKO
.

A4. When O receives the message, it begins by recording the current time Tj+2,

and then computes DSPKO
[ESPKO

(Ti+1, T ∗
j+1, Ti+2, K ′)] to decrypt and ob-

tain Ti+1, T ∗
j+1, Ti+2 and K ′. Next, O checks that T ∗

j+1 equals to Tj+1 that

was sent by O in Step A2. If they are the same, then O compares the time

∆Ty = Tj+1−Ti+1 and ∆Tz = Tj+2−Ti+2 with T0. If ∆Ty ≥ T0 or ∆Tz ≥ T0,

then this communication is terminated. If both are valid, then O checks the

received commands K ′ and K that were sent in Step A2. If they are correct,

O executes the command K and destroys a pair of session keys (SPKO
, SSKO

).

8.4.3. The Change ID Phase

C1. - C2. First two Steps are the same as the authentication phase A1 and A2.

C3. Ui −→ O : ESPKO
(Ti+1, T ∗

j+1, Ti+2, K ′, old IDi, new IDi).

When Ui receives the message, he records the current time Ti+1 with priority,

and then computes DSPKO
[ESSKO

(Tj+1, X)] to decrypt and obtains T ∗
j+1 and

X. He can derive the command K ′ from the message X, and then encrypts

96

Ti+1, T ∗
j+1, Ti+2, K ′, old IDi and new IDi with SPKO

, where Ti+2 is the

new current time of Ui. Next, Ui sends it to O.

C4. O −→ Ui : ESSKO
(Tk, new ID∗

i).

When O receives the message, it begins by recording the current time Tj+2,

and then computes DSSKO
[ESPKO

(Ti+1, T ∗
j+1, Ti+2, K ′, old IDi, new IDi)]

to decrypt and obtain Ti+1, T ∗
j+1, Ti+2 and K ′. Next, O checks that T ∗

j+1

equals to Tj+1 that was sent by O in Step C2. If they are correct, then O

compares the time ∆Ty = Tj+1 − Ti+1 and ∆Tz = Tj+2 − Ti+2 with T0. If

∆Ty ≥ T0 or ∆Tz ≥ T0, then this communication is terminated. If both

are valid, then O checks the received commands K ′ and K that was sent in

Step C2. If they are correct, O changes old IDi to new IDi. After that, O

encrypts new ID∗
i and Tk with SSKO

and sends it to Ui, where Tk is the new

current time of O. Next, O destroys a pair of session keys (SPKO
, SSKO

).

C5. When Ui receives the message, he records the current time Tk+1 with priority,

and then decrypts the message with SPKO
and obtains Tk and new ID∗

i .

Next, Ui compares the time ∆Tc = Tk+1 − Tk with T0 that was stored in the

memory at the synchronization phase. If T0 ≥ ∆Tc and new ID∗
i = new IDi,

then Ui destroys session public key SPKO
. If they are invalid, Ui considers

that this communication was forged and he sets up new ID′
i and a pair of

new session keys (S ′PKO
, S ′SKO

) again through the synchronization phase.

8.5. Security Analysis

In this section, we briefly explain why the proposed scheme is secure against

the man-in-the-middle attack and also more efficient.

97

In the synchronization phase, Ui and O transact the user’s session public key

SPKO
and synchronize time T0 via a secure communication channel. Even though

E intercepts the start signal and ESPKO
(IDi, Ti) in Step A1, he cannot change

or replace this information, since he neither knows nor is able to intercept SPKO
.

This can prevent the man-in-the-middle attack of [90] and [91].

In addition, we substitute the encrypted new IDi and Tk with SPKO
in our

scheme in order to improve security. If E changes the value of newIDi or K to his

own value newID∗
i or K∗, respectively, it should be known to Ui in Step C5. This

is because Ui compares the time ∆Tc = Tk+1 − Tk with T0 that was stored in the

memory at the synchronization phase. If ∆Tc ≥ T0 or new ID∗
i 6= new IDi, then

this communication is terminated. Therefore, E cannot obtain new IDi without

SPKO
.

In the Yang-Lee-Hsiao scheme, E can eavesdrop and replace the message

ESPKO
(newID, K) with ESPKO

(newID′, K ′) in Step S5. It is impossible to replace

this message without knowing SPKO
in our scheme. However, even though it occurs

in our scheme, O checks the time difference ∆Ty = Tj+1 − Ti+1 and ∆Tz = Tj+2 −
Ti+2 with T0 in Step C4. If ∆Ty ≥ T0 or ∆Tz ≥ T0, then this communication is

terminated. Moreover, Ui checks that the time T0 ≥ ∆Tc and new ID∗
i = new IDi

in Step C5. If they are invalid, Ui will find out that this communication was forged

and he will set up new ID′
i and a pair of new session keys (S ′PKO

, S ′SKO
) again

through the synchronization phase. E does not have enough time to eavesdrop

and to perform replacement within ∆Ty and ∆Tz. Therefore, E cannot attack our

scheme.

Thus, our proposed scheme is more secure against Yang-Lee-Hsiao’s man-in-

the-middle attack.

98

8.6. Cost Comparisons

We compare the computational cost of the Novikov-Kiselev scheme with our

proposed scheme. We define some notations and show the comparative results as

follows.

• DT: Data Transmission,

• E/D: Encryption/ Decryption,

• SKO/SKU : A pair of Session Keys of the Object/ User

Novikov-Kiselev Our Authentication Our Change ID

5DT + 3E + 3D 3DT + 3E + 3D 4DT + 4E + 4D

SKO SKO SKO

SKU X X

Since the command is formalized and O does not recheck command K ′ in

[89], E is able to replace EPKO
(newID, K) with EPKO

(newID′, K ′) at any time.

Moreover, whenever Ui wants to use O, Ui not only has to change his old IDi, but

also has to create and record new IDi in his memory. However, our scheme is able

to reduce the time and the storage that were needed in the presence of newID, if

Ui does not want to change his old IDi. In the real world, not many people would

want to change their IDs frequently. Furthermore, our scheme does not need to

generate and store a pair of session keys for the users.

99

8.7. Conclusions

In this paper, we propose a new scheme that overcomes the weakness of the

Novikov-Kiselev scheme. Our scheme is more efficient; it requires less time and

storage space provided that the users do not change their IDs.

100

CHAPTER 9. A SECURE HASH-BASED

STRONG-PASSWORD AUTHENTICATION

PROTOCOL USING ONE-TIME PUBLIC-KEY

CRYPTOGRAPHY

Secure communication is an important issue in networks and user authenti-

cation is a very important part of the security. Several strong-password authenti-

cation protocols have been introduced, but there is no fully secure authentication

scheme that can resist all known attacks. Recently, a hash-based strong-password

authentication scheme was described in [28], which withstands several attacks,

including replay, password-file compromise, denial-of-service, and insider attacks.

However, more recently, Kim-Koc [50] showed that the Ku’s scheme [28] is still

vulnerable to stolen-verifier, denial-of-service, replay, and impersonation attacks.

In this chapter, we propose enhanced secure schemes with registration and login

protocols, and add the “forget password” and password/verifier change protocols.

We show that our scheme is more secure against guessing, stolen-verifier, replay,

denial-of-service, and impersonation attacks than previously introduced protocols.

9.1. The Proposed Scheme

There are some cases for our scheme: 1) If someone forgets his password,

he should use the “forget password” protocol. 2) If the user just wants to change

101

password, then he should use the password/verifier change protocol. This protocol

should be used after a user logs in successfully. 3) Lastly, if someone wants to

change user ID and password, then he should use the register protocol.

9.1.1. Notations

• ESpu denotes the encryption with the public key of the server.

• DSpr denotes the decryption with the private key of the server.

• Ku is a random generated key selected by U.

• P represents the strong password of U .

• Ts denotes the timestamp.

• AuthQ/AuthA denotes the authentication question/answer for the registra-

tion, “forget password” and password/verifier change protocols.

9.1.2. Registration Protocol

R1. U −→ S : PV = h(Ku||P)⊕Ku

U inputs his ID, password, and private key into the client system. The client

system computes the user’s password verifier PV = h(Ku||P) ⊕ Ku, and

sends it to S for a registration request.

R2. S −→ U : R, AuthQ

S stores PV and computes R = PV ⊕Ts. Next, S sends R and AuthQ to U .

102

R3. U −→ S : ESpu(UV, T ′
s, Uid, K ′

u, P ′, AuthQ ⊕ AuthA)

U derives T ′
s by XORing R with PV , and computes the user’s important

verifier UV = h(K ′
u||P ′||T ′

s||Uid)⊕K ′
u. Next, U encrypts UV, T ′

s, Uid, K ′
u, P ′

and AuthQ ⊕ AuthA with S’s public key, and sends it to S.

R4. S decrypts DSpr(ESpu(UV, T ′
s, Uid, K ′

u, P ′, AuthQ ⊕ AuthA)) and derives

UV , T ′
s, Uid, K ′

u, P ′, and AuthQ ⊕ AuthA. S computes h(K ′
u||P ′) ⊕K ′

u.

S then compares h(K ′
u||P ′)⊕K ′

u and T ′
s with PV and Ts, respectively, that

were stored and sent in Step R2. If both are equal, then S stores the sealed-

verifier SV = h(K ′
u||P ′||Uid) ⊕ Kpr, PV , UKP = ESpu(Uid, K ′

u, P ′), and

QAK = AuthQ⊕AuthA⊕Kpr in his password file, where Kpr is the server’s

private key.

9.1.3. Login Protocol

L1. U −→ S : PV ′ = h(K ′
u||P ′)⊕K ′

u

U inputs his ID, password, and private key into the client system. The client

system computes the user’s password verifier PV ′ = h(K ′
u||P ′) ⊕ K ′

u, and

sends it to S for a login request.

L2. S −→ U : PV, rs

S compares PV ′ with the PV that was stored in R2. If they are equal, then

S generates a random nonce rs, and then sends PV and rs to U .

L3. U −→ S : L

U compares PV ′ with PV . If they are equal, then U computes h(Ku||P ||Uid).

Next, U computes L = h(h(Ku||P ||Uid)⊕PV ′)⊕h(Ku||P ||Uid)⊕PV ′⊕ rs,

103

and sends it to S.

L4. S derives C1 = h(h(Ku||P ||Uid)⊕PV ′)⊕h(Ku||P ||Uid)⊕PV ′ by XORing L

with rs. S then computes C2 = SV ⊕Kpr = h(Ku||P ||Uid) using the stored

SV and Kpr in Step R4 and C3 = h(C2 ⊕ PV)⊕C2 ⊕ PV . Next, S checks

C1 = C3. If they are equal, S authenticates U .

9.1.4. “Forget Password” Protocol

FP1. U −→ S : “forget password” request.

FP2. S −→ U : Auth′Q, RF

S generates a random nonce RF , and then sends Auth′Q and RF to U .

FP3. U −→ S : ESpu(FP, U ′
id)

U computes FP = Auth′Q ⊕ Auth′A ⊕ RF , and encrypts it and U ′
id with S’s

public key. Next, S sends ESpu(FP, U ′
id) to S.

FP4. S −→ U : AuthA ⊕K ′
u, AuthA ⊕ P ′

S decrypts DSpr(ESpu(FP, U ′
id)), and derives D1 = Auth′Q⊕Auth′A by XOR-

ing FP with RF . S then derives D2 = AuthQ ⊕ AuthA by XORing QAK

with Kpr that was stored in Step R4. After that, S checks D1 = D2. If

they are equal, S decrypts UKP , DSpr(ESpu(Uid, K ′
u, P ′)) that was stored

in Step R4. Otherwise, S rejects this request. Next, S derives K ′
u, Uid and

P ′, and then checks U ′
id = Uid. If they are equal, S computes AuthA ⊕ K ′

u

and AuthA⊕P ′, and then sends these values to U . If not, S terminates this

session.

104

FP5. U obtains the former password P and private key Ku by XORing AuthA⊕K ′
u

and AuthA ⊕ P ′ with AuthA.

9.1.5. Password/Verifier Change Protocol

PC1. U −→ S : password-change request.

PC2. S −→ U : Auth′Q, RC

S generates a random nonce RC , and sends Auth′Q and RC to U .

PC3. U −→ S : ESpu(W1, Pnew, Kunew , Uidnew)

U computes W1 = Auth′Q ⊕ Auth′A ⊕ RC ⊕ h(Ku||P ||Uid), and encrypts W1

and the new values of Kunew , Pnew, and Uidnew with S’s public key. Next, U

sends ESpu(Auth′Q ⊕ Auth′A ⊕ RC ⊕ h(Ku||P ||Uid), Kunew , Pnew, Uidnew) to

S.

PC4. S decrypts DSpr(ESpu(W1, Kunew , Pnew, Uidnew)), and obtains W1, Kunew , Pnew,

and Uidnew . S then computes P2 = AuthQ⊕AuthA by XORing QAK with Kpr

that was stored in Step R4 and W3 = SV ⊕Kpr = h(Ku||P ||Uid) using the

stored SV and Kpr in Step R4. Next, S computes W4 = W2 ⊕ RC ⊕ W3

and checks W1 = W4. If they are equal, then S stores a new SV ′ =

h(Kunew ||Pnew||Uidnew) ⊕ Kpr, a new PV ′ = h(Kunew ||Pnew) ⊕ Kunew , a new

UKP ′ = ESpu(Uidnew , Kunew , Pnew), and QAK = AuthQ ⊕ AuthA ⊕Kpr in

his password file.

105

9.2. Security Analysis

We will briefly demonstrate that the proposed scheme is secure against guess-

ing, stolen-verifier, replay, denial-of-service, and impersonation attacks.

9.2.1. Guessing Attack

By nature, due to the use of a strong password, this scheme is able to resist

the off-line guessing attack. Additionally, the user’s password is always secretly

concealed with the private key Ku within the hash function, since it is hard to find

P and Ku from h(Ku||P)⊕Ku. Therefore, no one can reveal the user’s password

P without U ′s permission.

9.2.2. Stolen-Verifier Attack

The server stores the verifier of user’s password instead of the clear text of the

password. In the stolen-verifier attack, the adversary who has stolen the password

verifier from the server uses it directly to masquerade as a legitimate user. If

the adversary obtains a copy of the password verifier h(Ku||P) ⊕Ku in Step R1,

he also can obtain Ts by copying h(Ku||P) ⊕ Ku and computing PV ⊕ Ts with

the previous stolen verifier PV in Step R2. However, the adversary can neither

get any information nor manipulate after Step R3 without the server’s private

key. Since it is hard to find P and Ku in h(Ku||P) ⊕ Ku, the adversary cannot

derive h(Ku||P ||Uid) ⊕Kpr to obtain the sealed-verifier SV from h(Ku||P) ⊕Ku.

Even though the adversary intercepts password verifiers in Steps R1 and R2, the

106

adversary cannot use them since there is no way to derive Uid before Step R2 for

registration. In Step R3, since Uid is encrypted with the server’s public key, the

attacker cannot obtain Uid without the server’s private key Kpr. The adversary

also cannot obtain h(h(Ku||P ||Uid)⊕ PV) for login from h(Ku||P)⊕Ku. Even if

the adversary steals SV = h(Ku||P ||Uid) ⊕ Kpr and AuthQ ⊕ AuthA ⊕ Kpr from

the server, he cannot open them without the server’s private key. If the adversary

obtains the server’s private key, he is able to get any information. However, we

assumed the server’s private key Kpr is kept as a top secret on the server. If

Kpr is released, not only does the server’s private key need to be changed, but

all users should be re-registered too. Since we use the verifier and other unknown

values (e.g. Kpr or Ku) together, even if the attacker steals the verifier, he will

not use it anywhere without knowing Kpr or Ku. Thus, our scheme can resist any

stolen-verifier attacks.

9.2.3. Replay Attack

The replay attack is an offensive action in which the adversary imperson-

ates or deceives another legitimate participant through the reuse of information

obtained in protocols. It indicates an attempt by an unauthorized third party to

record exchanged messages. In Step L3, since Uid is hashed with two other unknown

values Ku and P , the attacker cannot obtain Uid without the knowledge of Ku and

P . The adversary is able to steal PV in Step R1 and rs in Step L2, and then obtain

h(h(K∗
u||P ∗||Uid)⊕PV ′)⊕h(K∗

u||P ∗||Uid). However, he cannot get any information

for login, “forget password” and change password protocols. After that, the adver-

sary will try to change C∗
1 = h(h(K∗

u||P ∗||U∗
id)⊕PV ′)⊕h(K∗

u||P ∗||U∗
id)⊕PV ′ with

107

his own values P ∗, U∗
id and PV ′. However, the server will detect it as modified(i.e.

C∗
1 6= C2) in Step L4, since the attacker needs the encrypted values with Kpr such

as Ku, P , and AuthA. The adversary can steal PV and AuthQ in Step R1 and

R2, respectively. After that, he will use them for the replay attack. However, this

attack cannot be successful, since the adversary needs to know the sealed-verifier

SV and the server’s private key Kpr for this attack. Consequently, our proposed

scheme can resist a replay attack.

9.2.4. Denial-of-Service Attack

This attack is characterized by the explicit attempt of an attacker to prevent

legitimate users of a service from using that service. This attempt includes sev-

eral different flavors: disrupting service to a specific system or user, preventing a

particular user from accessing a service, or denying requests issued by a legitimate

user. The adversary, however, is unable to change the user’s password without

the user’s permission in our scheme, since it is hard to find P and Ku not only in

h(Ku||P)⊕Ku , but also in h(h(Ku||P ||Uid)⊕Kpr)⊕ h(Ku||P ||Uid)⊕Kpr. There

is no chance to change the password or verifier in Step R3 or L3. Therefore, our

improved scheme can resist a denial-of-service attack.

9.2.5. Impersonation Attack

This attack deceives the identity of one of the legitimate parties. An attacker

inserts or changes a message and claims that it originated from a real sender. If

the adversary impersonates U and wants to get the user’s former password P , he

108

should attack the “forget password” protocol. Since he does not know AuthA,

he cannot obtain the password. If the attacker wants to get the password, he

needs to know Kpr for decryption. Moreover, in our protocol, AuthA is always

protected with a S ′s private key Kpr and other unknown values such as RC , RF ,

and h(Ku||P ||Uid). If the adversary logs in the system successfully, he could try

to change it with his own password P ∗. However, to change the password, the

adversary would need to attack the password/verifier change protocol and know

Ku, AuthA, and SV , which is impossible. Thus, our proposed scheme can also

resist a impersonation attack.

9.3. Conclusions

In this chapter, we have proposed a secure hash-based strong-password au-

thentication protocol using one-time public-key cryptography that includes not

only secure registration and login authentication, but secure “forget password”

and password/verifier change protocols. It is more secure against guessing, stolen-

verifier, replay, denial-of-service, and impersonation attacks.

109

CHAPTER 10. CONCLUSION

This dissertation outlines the background and the current state of our re-

searches. We introduce the necessary fundamental background, such as authenti-

cation schemes, attacks against protocols, and related works. We then show our

works that are published in journals and present our works that are in processing

at various journals.

This dissertation is consist of two categories. One is to describe specific

cryptanalytic attacks on existing protocols and show their vulnerabilities in order

to design more secure protocols, such as chapter 2,3,4, and 6. Another one is to

propose improved security schemes to overcome certain security defects, such as 5,

7, 8, and 9.

It is the belief of the author that topic of this dissertation is the most funda-

mental area for authentication and research here is paramount for the protection

against hacking or breaking of authentication protocols. We hope that this disser-

tation is useful for authentication in many researches, applications, and commercial

communication markets.

110

Bibliography

[1] C. K. Chan and L. M. Cheng, “Cryptanalysis of a remote user authenti-
cation scheme using smart cards,” IEEE Transactions on Consumer Elec-
tronics, vol. 46, no. 4, pp. 992–993, 2000.

[2] M. S. Hwang and L. H. Li, “A new remote user authentication scheme using
smart cards,” IEEE Transactions on Consumer Electronics, vol. 46, no. 1,
pp. 28–30, 2000.

[3] M. Peyravian and N. Zunic, “Methods for protecting password transmis-
sion,” Computers & Security, vol. 19, no. 5, pp. 466–469, 2000.

[4] H. M. Sun, “An efficient remote use authentication scheme with smart
cards,” IEEE Transactions on Consumer Electronics, vol. 46, no. 4, pp.
958–961, Nov. 2000.

[5] M. Sandirigama, A. Shimizu, and M. T. Noda, “Simple and secure password
authentication protocol (SAS),” IEICE Transactions on Communications,
vol. E83-B, no. 6, pp. 1363–1365, June 2000.

[6] H. Y. Chien, J. K. Jan, and Y. M. Tseng, “A modified remote login authen-
tication scheme based on geometric approach,” jss, vol. 55, pp. 287–290,
2001.

[7] C. L. Lin, H. M. Sun, and T. Hwang, “Attacks and solutions on strong-
password authentication,” IEICE Transactions on Communications, vol.
E84-B, no. 9, pp. 2622–2627, Sept. 2001.

[8] C. K. Chan and L. M. Cheng, “Cryptanlysis of timestamp-based password
authentication scheme,” Computers & Security, vol. 21, no. 1, pp. 74–76,
2002.

[9] C. M. Chen and W. C. Ku, “Stolen-verifier attack on two new strong-
password authentication protocols,” IEICE Transactions on Communica-
tions, vol. E85-B, no. 11, pp. 2519–2521, Nov. 2002.

[10] L. Fan, J. H. Li, and H. W. Zhu, “An enhancement of timestamp-based
password auhentication scheme,” Computers & Security, vol. 21, no. 7, pp.
665–667, 2002.

[11] C. C. Lee, L. H. Li, and M. S. Hwang, “A remote user authentication scheme
using hash functions,” ACM Operating System Review, vol. 36, no. 4, pp.
23–29, Oct. 2002.

111

[12] M. S. Hwang, C. C. Lee, and Y. L. Tang, “A simple remote user authentica-
tion scheme,” Mathematical and Computer Modelling, vol. 36, pp. 103–107,
2002.

[13] T. C. Yeh, H. Y. Shen, and J. J. Hwang, “A secure one-time password
authentication scheme using smart cards,” IEICE Transactions on Com-
munications, vol. E85-B, no. 11, pp. 2515–2518, 2002.

[14] A. K. Awasthi and S. Lal, “A remote user authentication scheme using smart
cards with forward secrecy,” IEEE Transactions on Consumer Electronics,
vol. 49, no. 4, pp. 1246–1248, 2003.

[15] C. C. Chang, “Some forgery attack on a remote user authentication scheme
using smart cards,” International Journal Informatica, vol. 14, no. 3, pp.
289–294, 2003.

[16] C. L. Hsu, “Security of two remote user authentication schemes using smart
cards,” IEEE Transactions on Consumer Electronics, vol. 49, no. 4, pp.
1196–1198, 2003.

[17] K. C. Leung, L. M. Cheng, A. S. Fong, and C. K. Chan, “Cryptanalysis
of a modified remote user authentication scheme using smart cards,” IEEE
Transactions on Consumer Electronics, vol. 49, no. 4, pp. 1243–1245, 2003.

[18] C. W. Lin, J. J. Shen, and M. S. Hwang, “Security enhancement for optimal
strong-password authentication protocol,” ACM Operating System Review,
vol. 37, no. 2, pp. 7–12, Apr. 2003.

[19] J. J. Shen, C. W. Lin, and M. S. Hwang, “A modified remote user au-
thentication scheme using smart cards,” IEEE Transactions on Consumer
Electronics, vol. 49, no. 2, pp. 414–416, 2003.

[20] ——, “Security enhancement for the timestamp-based password authenti-
cation scheme using smart cards,” Computers & Security, vol. 22, no. 7, pp.
591–595, 2003.

[21] H. M. Sun and H. T. Yeh, “Further cryptanalysis of a password authenti-
cation scheme with smart cards,” IEICE Transactions on Communications,
vol. E86-B, no. 4, pp. 1412–1415, Apr. 2003.

[22] B. Wang, J. H. Li, and Z. P. Tong, “Cryptanalysis of an enhanced
timestamp-based authentication scheme,” Computers & Security, vol. 22,
no. 7, pp. 643–645, 2003.

[23] T. H. Chen, W. B. Lee, and G. Horng, “Secure sas-like password authen-
tication schemes,” Computer Standards and Interfaces, vol. 27, no. 1, pp.
25–31, 2004.

112

[24] M. L. Das, A. Saxena, and V. P. Gulati, “A dynamid id-based remote
user authentication scheme,” IEEE Transactions on Consumer Electronics,
vol. 50, no. 2, pp. 629–631, 2004.

[25] C. L. Hsu, “Security of chien et al.s remote user authentication scheme
using smart cards,” Computer Standards and Interfaces, vol. 26, no. 3, pp.
167–169, 2004.

[26] W. S. Juang, “Efficient multi-server password authenticated key agreement
using smart cards,” IEEE Transactions on Consumer Electronics, vol. 50,
no. 1, pp. 251–255, 2004.

[27] M. Kumar, “New remote user authentication scheme using smart cards,”
IEEE Transactions on Consumer Electronics, vol. 50, no. 2, pp. 597–600,
2004.

[28] W. C. Ku, “A hash-based strong-password authentication scheme without
using smart cards,” ACM Operating System Review, vol. 38, no. 1, pp. 29–
34, Jan. 2004.

[29] S. W. Lee, H. S. Kim, and K. Y. Yoo, “Improved efficient remote user
authentication scheme using smart cards,” IEICE Transactions on Com-
munications, vol. 50, no. 2, pp. 565–567, May.

[30] E.-J. Yoon, E.-K. Ryu, and K.-Y. Yoo, “A secure user authentication scheme
using hash functions,” ACM Operating System Review, vol. 38, no. 2, pp.
62–68, Apr. 2004.

[31] C. C. Yang, H. W. Yang, and R. C. Wang, “Cryptanalysis of security en-
hancement for the timestamp-based password authentication scheme using
smart cards,” IEEE Transactions on Consumer Electronics, vol. 50, no. 2,
pp. 578–579, 2004.

[32] W. C. Ku, M. H. Chiang, and S. T. Chang, “Weaknesses of Yoon-Ryu-
Yoo’s hash-based password authentication scheme,” ACM Operating System
Review, vol. 39, no. 1, pp. 85–89, Jan. 2005.

[33] I. Liao, C. C. Lee, and M. S. Hwang, “Security enhancemento for a dynamic
id-based remote user authentication scheme,” in International Conference
on Next Generation Web Services Practices (NWeSP05). IEEE CS Press,
Aug 2005, pp. 437–440.

[34] E. J. Yoon, E. K. Ryu, and K. Y. Yoo, “An improvement of hwang-lee-tangs
simple remote user authentication schemes,” Computers & Security, vol. 24,
no. 4, pp. 50–56, 2005.

113

[35] C. C. Yang, R. C. Wang, and T. Y. Chang, “An improvement of the yang-
shieh password authentication schemes,” Applied Mathematics and Compu-
tation, vol. 162, no. 3, pp. 1391–1396, 2005.

[36] M. H. Chiang and W. C. Ku, “Weaknesses of two sas-like password authen-
tication schemes,” IEICE Transactions on Communications, vol. E89-B,
no. 2, pp. 594–597, 2006.

[37] M. Kim and Ç. K. Koç, “A simple attack on a recently introduced hash-
based secure user authentication scheme,” International Journal of Com-
puter Science and Network Security, vol. 6, no. 5B, pp. 157–160, May 2006.

[38] I. Liao, C. C. Lee, and M. S. Hwang, “A password authentication scheme
over insecure networks,” Journal of Computer and System Sciences, vol. 72,
pp. 727–740, 2006.

[39] R. C. Wang and C. C. Yang, “Cryptanalysis of two improved password au-
thentication schemes using smart cards,” International Journal of Network
Security, vol. 3, no. 3, pp. 283–285, Nov 2006.

[40] M. Matsui, “New block encyrption algorithm MISTY,” in Fast Software
Encryption, E. Biham, Ed. Springer Verlag, LNCS Nr. 1267, 1997, pp.
54–68.

[41] National Institute for Standards and Technology, “Data Encryption Stan-
dard (DES),” Oct. 1999, FIPS 46-3.

[42] A. Shimizu and S. Miyaguchi, “Fast data encipherment algorithm FEAL,”
IEICE Transactions, vol. J70-D, no. 7, pp. 1413–1423, July 1987.

[43] M. Strobel, “Design of roles and protocols for electronic negotiations,” Elec-
tronic Commerce Research, vol. 1, no. 3, pp. 335–353, 2001.

[44] O. Chun, M. K. Lars, and B. Jonathan, “A formal service specification for
the Internet open trading protocol,” in Applications and Theory of Petri
Nets 2002: 23rd International Conference, ICATPN 2002. Springer Verlag,
LNCS Nr. 2360, 2002, pp. 352–373.

[45] V. F. Kleist, “A transaction cost model of electronic trust: Transactional
return, incentives for network security and optimal risk in the digital econ-
omy,” Electronic Commerce Research, vol. 4, no. 1-2, pp. 41–57, 2004.

[46] I.-W. Lee, H.-J. Park, and S.-H. Kim, “Development of Electronic Com-
merce Micropayment System with a Pay-later Payment Method,” in Com-
munication Systems and Applications(CSA 2004). ACTA Press, 2004, pp.
161–165.

114

[47] V. Patil and R. K. Shyamasundar, “An Efficient, Secure and Delegable
Micro-Payment System,” in the 2004 IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE-04). IEEE Computer Society
Press, March 2004, pp. 394–404.

[48] Y. Kawatsura, “Secure Electronic Transaction (SET) Supplement for the
v1.0 Internet Open Trading Protocol (IOTP),” June 2003, RFC 3538.

[49] B. Meng and H. Zhang, “An Electronic Commerce System Prototype and
Its Implementations,” in Proceedings of the 2005 The Fifth International
Conference on Computer and Information Technology (CIT05). IEEE
Computer Society Press, Sep 2005, pp. 966–970.

[50] M. Kim and Ç. K. Koç, “A simple attack on a recently introduced hash-
based strong-password authentication scheme,” International Journal of
Network Security, vol. 1, no. 2, pp. 77–80, Sep 2005.

[51] ——, “Vulnerabilities in the adachi-aoki-komano-ohta micropayment
scheme,” International Journal of Network Security, vol. 4, no. 2, pp. 235–
239, Mar 2007.

[52] ——, “Enhanced security for the modified authenticated key agreement
scheme,” International Journal of Computer Science and Network Security,
vol. 6, no. 7B, pp. 164–169, Jul 2006.

[53] ——, “Two simple attacks on the id-based password authentication scheme
using smart cards and fingerprints,” International Journal Informatica, In
process, 2006.

[54] ——, “Security improvement on a new user remote authentication scheme,”
Journal of Computer and System Sciences, In process, 2005.

[55] ——, “Improving the novikov and kiselev user authentication scheme,” In-
ternational Journal of Network Security, To appear in 2007.

[56] ——, “A secure hash-based strong-password authentication protocol using
one-time public-key cryptography,” Journal of Information Science and En-
gineering, In process, 2006.

[57] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext Transfer Protocol
- HTTP/1.0,” May 1996, RFC 1945.

[58] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and
T. Berners-Lee, “Hypertext Transfer Protocol - HTTP/1.1,” June 1999,
RFC 2616.

115

[59] J. Franks, P. Hallam-Baker, S. L. J. Hostetler, P. Leach, A. Luotonen, and
L. Stewart, “HTTP Authentication: Basic and Digest Access Authentica-
tion,” June 1999, RFC 2617.

[60] W. Simpson, “PPP Challenge Handshake Authentication Protocol
(CHAP),” Aug. 1996, RFC 1994.

[61] Electronic Frontier Foundation, Cracking DES - Secrets of Encryption Re-
search, Wiretap Politics and Chip Design. O’Reilly Press, 1998.

[62] Distributed.net, “Project RC5,” in http://www.distributed.net/rc5/, Sep
2002.

[63] B. Burr, “NIST Cryptographic Standards Program,” in
http://csrc.nist.gov/wireless/, Dec 2002.

[64] G. Lowe, “Analyzing protocols subject to guessing attacks,” in Workshop
on Issues in the Theory of Security (WITS02), Jan 2002.

[65] IEEE 1363-2000, “IEEE Standard Specifications For Public Key
Cryptography, Institute of Electrical and Electronics Engineers,” in
http://grouper.ieee.org/groups/1363/, 2000.

[66] Telecom Glossary 2000, “T1 523-2001, Alliance for Telecommunications In-
dustry Solutions (ATIS),” in http://www.atis.org/, 2000.

[67] T. ElGamal, “A subexponential-time algorithm for computing discrete log-
arithms over GF (p2),” IEEE Transactions on Information Theory, vol. 31,
no. 4, pp. 473–481, July 1985.

[68] A. K. Awasthi and S. Lal, “An enhanced remote user authentication scheme
using smart cards,” IEEE Transactions on Consumer Electronics, vol. 50,
no. 2, pp. 583–586, 2004.

[69] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, Feb. 1978.

[70] W. H. Yang and S. P. Shieh, “Password authentication schemes with smart
cards,” Computers & Security, vol. 18, no. 8, pp. 727–733, 1999.

[71] K. W. Kim, J. C. Jeon, and K. Y. Yoo, “An improvement on yang et al.s
password authentication schemes,” Applied Mathematics and Computation,
vol. 170, no. 1, pp. 207–215, 2005.

[72] K. F. Chen and S. Zhong, “Attacks on the (enhanced) yang-shieh authen-
tication,” Computers & Security, vol. 22, no. 8, pp. 725–727, 2003.

116

[73] L. Lamport, “Password authentication with insecure communication,”
Communications of the ACM, vol. 24, no. 11, pp. 770–772, 1981.

[74] A. Shimizu, “A dynamic password authentication method by one-way func-
tion,” IEICE Transactions, vol. E73-DI, no. 7, pp. 630–636, July 1990.

[75] A. Shimizu, T. Horioka, and H. Inagaki, “A password authentication
method for contents communication on the internet,” IEICE Transactions
on Communications, vol. E81-B, no. 8, pp. 1666–1673, Aug. 1998.

[76] T. Tsuji and A. Shimizu, “An implementation attack on one-time password
authentication protocol OSPA,” IEICE Transactions on Communications,
vol. E86-B, no. 7, pp. 2182–2185, July 2003.

[77] W. C. Ku, H. C. Tsai, and S. M. Chen, “Two simple attacks on Lin-Shen-
Hwang’s strong-password authentication protocol,” ACM Operating System
Review, vol. 37, no. 4, pp. 26–31, Oct. 2003.

[78] M. S. Hwang, “Cryptanalysis of a remote login authentication scheme,”
Computer Communications, vol. 22, no. 8, pp. 742–744, 1999.

[79] H. Y. Chien, J. K. Jan, and Y. M. Tseng, “An efficient and practical solution
to remote authentication: smart card,” Computers & Security, vol. 21, no. 4,
pp. 372–375, 2002.

[80] A. Shamir, “Identity-based cryptosystems and signature schemes,” in Pro-
ceedings CRYPTO 84. Springer Verlag, LNCS Nr. 196, 1984, pp. 47–53.

[81] L. Gong, “A security risk of depending on synchronized clocks,” ACM Op-
erating System Review, vol. 26, no. 1, pp. 49–53, Jan. 1992.

[82] T. ElGamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,
no. 4, pp. 469–472, July 1985.

[83] H.-S. Kim, S.-W. Lee, and K.-Y. Yoo, “Id-based authentication scheme
using smart cards and fingerprints,” ACM Operating System Review, vol. 37,
no. 4, pp. 32–41, Oct. 2003.

[84] S. T. Wu and B. C. Chieu, “A user friendly remote authentication scheme
with smart cards,” Computers & Security, vol. 22, no. 6, pp. 547–550, 2003.

[85] K. F. Hwang and I. E. Liao, “Two attacks on a user friendly remote authen-
tication scheme with smart cards,” ACM Operating System Review, vol. 39,
no. 2, pp. 94–96, Apr. 2005.

117

[86] M. S. Hwang, J. W. Lo, C. Y. Liu, and S. C. Lin, “Cryptanalysis of a user
friendly remote authentication scheme with smart card,” Journal of Applied
Sciences, vol. 5, no. 1, pp. 99–100, 2005.

[87] S. T. Wu and B. C. Chieu, “A note on a user friendly remote authentication
scheme with smart cards,” IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, vol. E87-A, no. 8, pp.
2180–2181, Aug. 2004.

[88] K. Tan and H. Zhu, “Remote password authentication scheme based on
cross-product,” Computer Communications, vol. 18, pp. 390–393, 1999.

[89] S. N. Novikov and A. A. Kiselev, “The authentication of the user from
the remote autonomous object,” in 4th Siberian Russian Workshop and
Tutorials EDM 2003: Section II, Erlagol. NSTU, 2003, pp. 137–138.

[90] C. Y. Yang, C. C. Lee, and S. Y. Hsiao, “Man-in-the-middle attack on the
authentication of the user from the remote autonomous object,” Interna-
tional Journal of Network Security, vol. 1, no. 2, pp. 81–83, 2005.

[91] A. K. Awasthi, “On the authentication of the user from the remote au-
tonomous object,” International Journal of Network Security, vol. 1, no. 3,
pp. 166–167, 2005.

[92] W. Diffie and M. E. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, pp. 644–654, Nov. 1976.

[93] R. J. Anderson and T. M. A. Lomas, “Fortifying key negotiation schemes
with poorly chosen passwords,” Electronics Letters, vol. 30, no. 13, pp.
1040–1041, 1994.

[94] D. H. Seo and P. Sweeney, “Simple authenticated key agreement algorithm,”
Electronics Letters, vol. 35, no. 13, pp. 1073–1074, 1999.

[95] Y. M. Tseng, “Weakness in simple authenticated key agreement protocol,”
Electronics Letters, vol. 36, no. 1, pp. 48–49, 2000.

[96] W. C. Ku and S. D. Wang, “Cryptanalysis of modified authenticated key
agreement protocol,” Electronics Letters, vol. 36, no. 21, pp. 1770–1771,
2000.

[97] C. L. Hsu, T. S. Wu, T. C. Wu, and C. Mitchell, “Improvement of modified
authenticated key agreement protocol,” Applied Mathematics and Compu-
tation, vol. 142, no. 2, pp. 305–308.

118

[98] N. Y. Lee and M. F. Lee, “Further improvement on the modified authenti-
cated key agreement scheme,” Applied Mathematics and Computation, vol.
157, no. 3, pp. 729–733, 2004.

[99] B. Cox, D. Tygar, and M. Sirbu, “NetBill security and transaction proto-
col,” in In Proceedings of the First USENIX Workshop on Electronic com-
merce. USENIX, Jul 1995, pp. 77–88.

[100] E. Foo and C. Boyd, “A Payment Scheme Using Vouchers,” in In Pro-
ceedings of the Second International Conference on Financial Cryptography.
Springer Verlag, 1998, pp. LNCS Nr. 1465, pp. 103–121.

[101] H.-P. Messmer, The Indispensable Pentium Book. Addison-Wesley, 1995.

[102] T. Poutanen, H. Hinton, and M. Stumm, “NetCents: A Lightweight Pro-
tocol for Secure Micropayments,” in In Proceedings of the Third USENIX
Workshop on Electronic Commerce. USENIX, Sep 1998, pp. 25–36.

[103] WebMoney Corporation, “WebMoney for Internet shopping,” in
http://www.webmoney.com, 2005.

[104] M. Bellare, J. Garay, C. Jutla, and M. Yung, “VarietyCash: a Multi-Purpose
Electronic Payment System,” in In Proceedings of the Third USENIX Work-
shop on Electronic Commerce. USENIX, Sep 1998, pp. 9–24.

[105] J. B. Friis, “Digicash implementation,” in http://www.appliedcrypto.com,
2003.

[106] R. L. Rivest and A. Shamir, “Payword and micromint : Two simple micro-
payment schemes,” in Fourth Cambridge Workshop on Security Protocols.
Springer Verlag, April, 1996, pp. 69–87.

[107] N. Adachi, S. Aoki, Y. Komano, and K. Ohta, “Solutions to security prob-
lems of Rivest and Shamir’s PayWord scheme,” IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences, vol.
E88-A, no. 1, pp. 195–202, Jan. 2005.

[108] N. K. Ratha and A. K. Jain, “A real-time matching system for large finger-
print database,” IEEE Transactions on Pattern Anal. Mach. Intell., vol. 18,
pp. 799–813, 1996.

