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A DATA-DRIVEN MODEL OF PEDESTRIAN MOVEMENT

1. INTRODUCTION

With the persistent threat of terrorist attack and natural disasters, the

issue of public safety is of rising concern. How prepared are we in the event that

a catastrophe strikes within our transportation facilities, sports arenas, and high-

rise office buildings? How can we ensure the safety of their occupants? We can,

for example, train building occupants to practice emergency plans and evacuation

drills, and we can design new facilities with the goal of providing for the fast and

efficient egress of diverse populations. Our goal is to create realistic and reliable

models for how people move. If we do this we can open the door for creating

accurate and efficient simulations of diverse populations that can be used in the

analysis of building design and the training for evacuation.

We hypothesize that realistic models of pedestrian motion will be useful

for architects in evaluating the design of new facilities. Helbing illustrated that

changing the shape of a room and placing obstacles strategically in a space can

improve the effectiveness of egress by easing congestion and increasing the flow of

pedestrians [12]. We hypothesize that the more realistic the models of pedestrian

motion, the more accurate the results of the simulation. Architects could use these

models to evaluate the design of their buildings under emergency conditions. By

using a simulation, architects could make modifications and evaluate the effect of

the change on the rate of egress. These models will help architects gain confidence

that their designs adequately provide for the rapid egress of diverse populations.
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Not only will realistic models of pedestrian motion be useful in designing

new buildings, we hypothesize they will be useful for training and studying as-

pects of evacuation. To track the spread of disease or a bioterrorist agent among

people during an evacuation, we need accurate models of how people move. This

could help emergency responders plan appropriately for worst case scenarios. Fur-

thermore, emergency personnel could use these models to learn to better manage

evacuations of large crowds of people. In addition, building occupants could im-

merse themselves in a training environment where they practice evacuations. A

simulation may provide a less disruptive, more convenient, and cost effective way

to practice evacuation and emergency response decisions. Participants could prac-

tice strategies and react to emergencies without fear of personal injury and without

the expense of practical drills. This is of particular importance in cases, such as

large high-rise office buildings, when a full evacuation would be difficult.

We argue that in order for these devices to be effective, the participants

must be able to suspend their disbelief and become engaged in the simulations.

The closer the simulation mimics real life, the more believable it will be. No matter

how realistic the simulation environment is, unless the people are believable the

simulation will not be believable. Therefore, we need to see realism in the motion

of the individual pedestrians and realism in the composition of the crowds. A

crowd is more realistic when it contains motion from pedestrians with various

physical capabilities, such as individuals of all ages, people in wheelchairs, and

those using crutches. As we observe people walking everyday, we develop an

acute sense of what natural looking human motion is. The more realistic the

motion of the individual pedestrians in our simulations, the easier it will be for

participants to suspend their disbelief. Abnormal accelerations and unnatural

direction changes stand out and interfere with suspension of disbelief. Similarly,
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homogeneity stands out since we are used to seeing diverse walking styles. We

argue that the best way to build accurate models of how people move is to observe

real people walking and build models from these observations. We could then use

these models to build simulations of heterogeneous crowds.

This thesis introduces a new model of pedestrian motion for use in 2D

simulations that is based on motion capture data. Our first step in building a

model from observations was to record 3D walking motions from human subjects

with motion capture equipment (Figure 1.1). In the simulation we maintain a

FIGURE 1.1. Impression of motion capture system. Highly reflective optical

markers placed on subject are recorded by infrared cameras as he walks.

notion of the pedestrian’s current state. Current state can be described by a

pedestrian’s position, orientation, and body configuration or pose. Poses are based

on a 3D kinematic model of a human subject and consist of joint angles for one

frame of motion. The set of poses that a pedestrian can be in is consistent with the

motion data we have collected. Similarly, the motion generated for our pedestrians

by our model is consistent with the recorded motions. While our ultimate goal is

to generate motion for 3D simulations, our initial efforts focus on 2D simulations.
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At any point in the simulation, we say a pedestrian has the capability to

reach a number of spatial points within some small time step. The variety of these

reachable points is determined by the pedestrian’s current state. To move forward

in the simulation, the pedestrian must select one of these locations and begin to

move there. Thus, we say the pedestrian’s behavior is reflected in its particular

choice of movement. Hence, we call our model the capability-behavior model of

pedestrian motion.

The remainder of this thesis progresses as follows. In chapter 2 we dis-

cuss some of the related work in pedestrian simulation and computer animation.

We present our capability-behavior model in more detail in chapter 3. We de-

scribe the algorithm for generating the set of possible spatial points given the

pedestrian’s current state and the process for selecting one of these points for

movement. Chapter 4 presents qualitative and quantitative results for validation

of our model. We demonstrate the realism of our approach through a few small

scale and one large scale simulations. In the few small scale examples, we look for

self-organization and emerging crowd phenomena. In the larger test, we demon-

strate the feasibility of our current simulator to move pedestrians around in more

complex environments. In the last experiment, we compare speed and density

of pedestrians walking in a single file line to existing empirical data. Finally, we

discuss some of the problems with this model and offer suggestions for future work

in chapter 5.
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2. RELATED WORK

Pedestrian simulations can be modeled at the macroscopic or microscopic

levels. Microscopic simulations focus on the pedestrian at the individual level

whereas macroscopic simulations focus on the pedestrians collectively. Macro-

scopic simulations focus on the aggregate characteristics of pedestrian flow rather

than consider the influence direct interactions between pedestrians can have on

collective behavior. Macroscopic simulations treat pedestrians as a type of fluid

flow and use partial differential equations to model the movement of pedestrians

through a space. One such example is Helbing’s use of fluid dynamics to model

pedestrian movement [10], others include [6, 14–16]. These simulations are gen-

erally fast and can process large numbers of people quickly. However, there is

concern that pedestrians do not exactly behave like liquid and therefore may not

be appropriate to use fluid and gas equations directly to model them. For exam-

ple, pedestrians when walking do not generally utilize the full extent of the space

but rather leave small gaps; if the gaps are ignored the resulting flow would be

higher. In addition, there are some behaviors, such as the affect that a physical

disability can have on mobility, that cannot be simulated in the macroscopic level

and therefore may cause the results to be less accurate. It is for these reasons

that our interest lies in microscopic simulations.

Microscopic simulations consider the movement of pedestrians at the in-

dividual level. They treat pedestrians as individuals and model the individual’s

behavior with the expectation that dynamic crowd behaviors will emerge from the

interactions between individuals and the environment. Microscopic simulations

can be more complex than macroscopic simulations and, as such, are generally

better for smaller scale simulations. Many microscopic simulations already exist,
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and one way to group them is to divide them into cellular automata models, be-

havioral force models, and agent-based models. For a more complete survey of

these models see Helbing et al. [12].

In cellular automata models, the simulation space is divided into regularly

spaced grid cells and pedestrians can move from one cell to a neighboring one. A

small set of local rules, based on the occupancy of neighboring cells, govern the

pedestrian’s action for the next move [4]. These models are computationally sim-

ple and thus able to simulate large numbers of people quickly, however, the nature

of the grid causes the motion of the pedestrians to be discrete. Unfortunately, the

discrete motion undermines our goal of creating accurate human motion.

In contrast to cellular automata models, behavioral force models use a

continuous space which allows for the creation of more accurate motion. Pedes-

trians are represented as point-masses and move through the environment pushed

along by external forces. Their positions and velocities are updated according

to Newton’s laws of motion. Helbing argued that humans are so familiar with

their environment that their behaviors and actions become fairly predictable and

automatic and thus we can model human behavior using equations of motion [11].

A person who sees that a wall is in front of them will not usually hit it nor do

people tend to collide with each other or walk close to someone they do not know.

A pedestrian’s increasing discomfort with these situations can be modeled with a

repulsive force that will keep them away from other people and obstacles. Simi-

larly, the pedestrian’s desire to reach a goal will act as an attractive force pulling

him toward his target.

These behavioral force models can reproduce many existing crowd phe-

nomena when crowd densities are high, such as lane formation when pedestrians

are moving in opposite directions and jamming at exits. However, a couple of
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issues can make them difficult to use in some cases. First, pedestrians inside

dense crowds can exhibit an unnatural “jitter” motion due to the repulsive forces

that keep the pedestrians apart. The pedestrians keep moving because the forces

pushing them away from other pedestrians are too strong. Second, our experience

with this model is that there is no single set of parameters that works for every

simulation environment. Instead, the parameters have to be carefully tuned to fit

the scenario being modeled. Finally, it is unclear how we could model people in

wheelchairs, crutches, and individuals with limited mobility using this approach.

For example, a person walking with crutches or using a wheelchair cannot instan-

taneously shift sideways to avoid collisions with other pedestrians.

Agent-based models are generally more computationally expensive than

behavioral force or cellular automata models, yet their ability to allow each pedes-

trian to have unique behaviors makes it much easier to model heterogeneous pop-

ulations. We classify our capability-behavior model as an agent-based model.

Antonini et al. present an agent-based model that closely resembles ours [1].

They use a discrete choice framework calibrated from recorded video sequences to

model the movement of pedestrians. They describe a discretized region of space

in front of the pedestrian as the set of possible next moves that can be made.

These moves become the alternatives in the choice set. Then for each time step, a

pedestrian must move to a selection from the alternatives in the choice set. Each

option in the choice set is evaluated using a utility function. The utility function

scores the options based on a set of attributes that describe the alternatives, for

instance, how aligned is the option with direction to goal, and the set of socio-

economic attributes that describe the pedestrian, including, his or her speed [1].

Antonini et al. interpret the speed of the pedestrian to be an alternative specific

socio-economic attribute. There may be unknown or unmeasurable factors that
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affect the pedestrian’s movement choice; thus an error term is used in conjunction

with the utility to build a probability for choosing an alternative. The pedestrian

selects an alternative according to these probabilities and moves there. The best

choices correspond to the alternatives with the highest probabilities and will be

selected most frequently. However, this does not guarantee the best moves will al-

ways be chosen, which allows for some variability or randomness in the pedestrian

movement.

Our approaches are similar in that we are both using human motion data

to build our models and choosing a movement option from among a set of possible

next moves. Since we are using motion capture data, we retain information about

what pose a pedestrian is in and thus are able to maintain some notion of what

their physical limitations are. For example, a pedestrian in a fast walking stride

might not be able to turn as suddenly as another in a standing position. It is not

clear how the discrete choice model with the current utility function will be able

to account for such factors.

Imagine an animator has already recorded a person walking and another

person jumping, and now would like to animate a character who walks up to an

obstacle and jumps over it. Most commonly, an animator would have to record

a person walking up to an obstacle and jumping over it to achieve a natural

animation. As motion capture becomes more accessible we do see an increase in

available data; nonetheless it is still expensive, and it would be convenient to be

able to reuse existing motion for different purposes, rather than recording new

sequences. This concept has motivated research in human motion generation.

We would like to be able to utilize the previously existing motion sequences in

generating the animation for our character’s new motion without having it look

unnatural.
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Recent advances in computer animation research have lead to graph-based

algorithms for generating natural human motion [2, 18, 20, 21]. These approaches

build graphs to encode the possible transitions between sequences of motion in

a database. Steps are made to ensure that only the smoothest transitions are

made between frames of motion to ensure that a path through the graph yields a

new, natural looking motion sequence. Graph-based approaches can generate very

realistic looking motion for animated characters that adhere to some constraint,

such as following a given path or reaching key animation frames. However they

typically do so at the expense of a global search. The graph is searched for

an optimal path through the data that meets some constraint and returns a new

smooth sequence of human motion. To generate motion for our characters from the

recorded walking sequences, we based our work on these motion graph techniques.

We would like to be able to run large scale simulations at interactive rates and are

therefore unable to utilize a global search technique at run-time. For this reason,

we further process the graph to produce a data structure similar to Srinivasan et

al. that sacrifices memory space for speed [24].

Another important area of research in computer animation and simulation

is level of detail generation. Levels of detail are commonly used to increase the

efficiency, for example, of rendering an animation. As the model or object is moved

farther from the viewer, the amount of detail used to render it is decreased. This

way one can trade accuracy, by switching to a level with less detail, in order to

gain efficiency and speed. Most closely related to our work is that of Brogan

and Hodgins [5]. They model a physically simulated character’s ability to move

given its current state. Physical simulations are run offline to generate a set of

possible movement options from some initial states. These options describe the

character’s capabilities and limitations. At run-time rather than incur the cost of
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physically simulating the character, a motion is generated from the set of possible

precomputed moves. In this respect, Brogan and Hodgins trade accuracy of the

physical simulation to increase processing speed and scalability.

To decide the next move for a character given its current state, the al-

gorithm of Brogan and Hodgins searches for the initial state that most closely

resembles the character’s current state and compares the resulting set of move-

ment options. Each of the movement options are weighed against the characters

goals, such as the desire to follow a given trajectory. The algorithm interpolates

between the two options that are closest to meeting these goals to produce the

motion for the character. We take a similar approach, but instead of using a

physical simulation to generate the set of capabilities for a particular state, we

use motion capture data.
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3. MODEL

Our goal is to build a 2D motion model that encodes the capabilities of a

walking human. In previous models, a pedestrian’s choice of movement is depen-

dent upon, for example, its current velocity, desired direction of travel, proximity

to neighboring pedestrians, obstacles, and walls. These models can also account

for physical characteristics of the pedestrians, such as weight and size, when mak-

ing movement decisions. However, we believe there are other characteristics that

can also effect a pedestrian’s ability to move, such as a disability or its current

state. It is unlikely for a pedestrian who, for example, is in the middle of a walk-

ing stride to be able to execute a quick turning maneuver, whereas, if he were

standing still he might. These limitations should constrain the set of movements

available to our simulated pedestrians.

To be able to account for a pedestrian’s physical characteristics and state

when making decisions, we build our model from real human motion data that

has been recorded from motion capture technology. Motion capture technology

records motion that can be played back later in much the same way that a tape

player records sound.

We used a Vicon 612 3D optical motion capture system with 6 high speed

infrared cameras to collect all of our motion data [27]. The cameras were placed

around the perimeter of an area around the subject whose data we were collecting

and faced toward the center of activity. We placed reflective markers, 5 mm in

diameter, on the subject in strategic locations to record joint angles. Only the

reflective markers are visible to the infrared cameras. As the subject walks around

the capture region, the cameras record the images of the markers. The motions

were captured at a rate of 60Hz. Figure 1.1 gives an impression of a typical motion
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capture session. Once the recording is complete, the Vicon system reconstructs

the 3D location for each marker for each frame of motion. This data is then

cleaned and converted to joint angles, according to our kinematic model of the

subject (Figure 3.1), using the Vicon Workstation and BodyBuilder Software.

Shoulder 

Elbow 

Wrist 
Pelvis (Root Joint) 

Head 

Hips 

Knees 

Ankles 

Feet 

Lower 
 Back 

Upper 
 Back 

Clavicle 

Upper 
 Neck 

Lower 
 Neck 

Fingers 

FIGURE 3.1. Our kinematic human model consists of 30 joints.

Our kinematic model is a hierarchical character that has 30 joints and

whose root joint is centered at the pelvis. The position and orientation of the

character is specified by the position and orientation of the root. The offset and

orientation of each joint is specified with respect to its parent joint. For example,

the location and orientation of the right knee is given with respect to the right

hip joint. We define a pose to be the combination of the body’s position and

orientation at the root, and the set of angles for each joint for one frame of

motion. Each joint has three degrees of rotational freedom corresponding to its

Euler angles and thus contributes three floating point values. The root has six

degrees of freedom to represent position and orientation of the body. Thus, for

each frame, we have a total of 96 floating point values representing a pose.

We begin the process of building our model from observations by collect-

ing 3D motion data from subjects using a Vicon optical motion capture system.
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The subjects’ motions were recorded as they performed various tasks relevant to

pedestrian locomotion, such as walking straight at various rates, turning at vari-

ous radii, coming to a stop, starting from a stop, and turning in place. For each

subject, we took the recorded sequences of motion and combined the frames into

a single database. To date, we have captured approximately 20 minutes of motion

from a single individual, generating 114 sequences for a total of 33,404 poses in

our database. We then use this database to build our motion model.

Motion capture can reproduce subtleties of human motion but we are re-

stricted to motions that have already been captured and limited by the lack of

control over our character’s movements. Suppose we have recorded different mo-

tion sequences of a subject turning right, turning left, and walking straight, and

now we would like to animate a pedestrian turning right around a corner, walking

straight for a while, then turning left to cross a street. It would be convenient to

be able to reuse this existing motion for animating our pedestrians (Figure 3.2).

Therefore, we utilize existing motion generation techniques to construct new se-

Right Turn Sequence Walk Straight Sequence Left Turn Sequence

New Sequence

Transition Spots

FIGURE 3.2. Pieces of existing motion sequences, for example, from a right turn,

walk straight, and left turn sequence, can be combined to yield new sequences.

The transitions between the sequences should be smooth so the new motion looks

seamless and natural.
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quences of motion for our animations without having the motion look unnatural

[2, 18, 20, 21].

3.1. Motion Graphs and Mobility Map

Our 2D motion model is based on work from the 3D animation field in

which motion capture data is used to generate the motion of 3D characters [2, 18,

20, 21]. Each of these techniques is based on the idea of using a graph. The frames

are nodes, and the arcs represent possible transitions between the frames. More

specifically, these motion graphs encode natural transitions between sequences of

motion, for example, from poses that come from walking straight to those that

come from turning. By traversing this graph we can generate new sequences of

motion. Between any two poses in the graph, the path connecting them is a

smooth sequence of poses that transitions the pedestrian from one pose to the

other naturally. For example, the path connecting a pose in the middle of a walk

cycle to a standing pose is a smooth sequence of motion that has the pedestrian

finishing the walk cycle and coming to a stop.

Graph-based approaches typically perform a global search over the motion

graph, looking for the smoothest sequence of poses that satisfies some constraint,

such as finding the smoothest sequence that brings a pedestrian from its current

location to a given spatial request. Research in this area has produced controllable

characters whose motion also looks very real. The following section briefly explains

the process of creating a motion graph. For more details about motion graphs,

see [2, 18, 20, 21].

To build the motion graph we follow the same process as other researchers

[2, 18, 20, 21]. We first build a fully connected graph. Its nodes are the poses



15

from our original motion sequences, and the arcs represent the cost to transition

between poses. The transition cost function measures the similarity between any

two poses i and j with respect to their joint angle differences, Θi,j, joint velocities,

Θ̇i,j, and the linear velocity of the root, vi,j. When the differences are small, the

cost will be low. We use the same function to compute the transition cost as

Srinivasan et al. It is calculated as follows:

τi,j = ωΘ ∗Θi,j + ωθ̇ ∗ Θ̇i,j + ωv ∗ vi,j

where ωΘ, ωθ̇, and ωv weight the joint angle, joint velocity, and root velocity

differences respectively [24]. In general, the cost to transition from pose i in

sequence 1 to pose j in sequence 2 is low if pose j is likely to follow pose i in a

smooth motion sequence (Figure 3.3).

 Sequence 1 New Sequence

 Sequence 2

 i

 j

FIGURE 3.3. For the transition from pose i to pose j to look smooth in the new

sequence, the differences between their joint angles, joint angle velocities, and root

velocity should be small.

If the cost is too high, any transition between the poses may look unnat-

ural and should not be considered. Therefore, we prune the graph to remove all

transitions above a given threshold. Removing these transitions may introduce

dead ends. Dead ends are nodes in the graph that have no outgoing transitions.

If during motion generation we produced a sequence that included this dead end,

the pedestrian would have no way to transition out of this pose and would be un-
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able to continue moving. To ensure smooth and continuous playback these dead

end nodes and nodes that lead only to dead ends must be removed. Ideally, any

pose in the graph should be reachable from any other pose through some path.

Therefore, we compute the largest strongly connected component and take that

to be our motion graph. A walk through this graph produces smooth motion

sequences between poses.

Rather than search the entire motion graph at run-time to animate our

pedestrians, we take a similar approach to Srinivasan et al. to localize and limit

the size of the search space in order to achieve interactive rates [24]. We try to

precompute as much of the search as possible by using a data structure called a

mobility map that sacrifices memory space for execution speed.

To build the mobility map we process the motion graph. For each pose in

the graph, we compute the shortest path from it to every other pose in the graph.

We call the result an “all pairs shortest path” (APSP) graph. The shortest path

is defined as the sequence of poses that have the lowest cumulative transition cost.

Since the transition cost is the lowest, following the shortest path between pairs of

poses produces the smoothest and most natural motion sequence between them.

For each pose in the APSP graph, we can identify a set of possible motions given

this state. We collect all of the poses that can be reached in some time step, say

1.5 seconds or 45 frames. Then, for each of these reachable nodes, we store the

sequence of poses along the path leading to the reachable node, and the relative

change in position and orientation from the current node to the reachable node

(Figure 3.4). The resulting data structure is what we call a mobility map.

During the simulation, pedestrians are animated by moving from one pose

to another in a sequence. Pedestrians maintain information about which pose

they are in, and at run-time they can use this pose to query the mobility map
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Current Pose

 45 Frames 

FIGURE 3.4. Illustration of the movement options from one single pose in the

mobility map. Each pose reachable from the current pose in 45 frames is called

a movement option. The final position and final orientation with respect to the

current pose is stored along with the sequence of poses leading to it.

that is stored in memory. It returns the locations that can be reached in 1.5

seconds, how the pedestrian will be oriented, as well as the sequence of poses to

get it there (Figure 3.4). These locations describe the pedestrian’s capabilities.

The pedestrian is constrained to these movement options in deciding what their

next move should be. Since a pedestrian’s motion at any time depends on its

current state, two pedestrians may exhibit different behavior, even though they

are using the same mobility map. From our observations, we found that the time

step of 1.5 seconds is long enough to provide the pedestrian with a reasonable

number of movement options, yet short enough to keep the memory requirements

reasonable. It is important to note that the pedestrians can be interrupted at any

point during the simulation to determine a new move, without having to finish

motion playback from the previous move choice.
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3.2. Mobility Map Problems

Using mobility maps, Srinivasan et al. have shown they can produce nat-

ural looking motion for 3D characters at interactive rates and have demonstrated

the ability to maintain these rates for crowds of up to 500 pedestrians [24]. There

remains, however, one limitation to this solution. Sometimes the smoothest se-

quence of poses may not yield the most direct path to a given spatial request. This

lack of a direct path can cause the pedestrian to appear as though it is wandering.

In most cases, there simply was not enough of the right kind of motion data in the

database to be able to generate a smooth sequence from the pedestrian’s current

location and pose to the desired location. Therefore, the character wanders until

it reaches a more flexible area of the graph.

In 3D animations, the smoothness constraint is extremely important, as

viewers, being accustomed to observing walking everyday, are very good at rec-

ognizing the subtleties of human walking motions. Even small discontinuities in

the motion can become noticeable, which can undermine the viewer’s ability to

suspend disbelief and become immersed in the training environment. Therefore,

any synthesized motions used in our 3D animations must be smooth. Fortunately,

we are not as attuned to the subtle differences in 2D motions and in our approach

we can take advantage of the fact we are not creating 3D animations but devel-

oping 2D motion models. This allows us the freedom to relax the smoothness

constraint and modify the mobility map approach in order to reduce the amount

of wandering by keeping “more” of the data. As a result, we see an increase in

the reactivity and controllability of the pedestrians.

In the next section we describe how similar poses can be grouped together

into clusters, allowing us to build a more coarse-grained mobility map. The result
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is a clustered mobility map, where each pose is replaced by a cluster of poses.

The movement options of each pose in a cluster are combined to produce a larger

number of movement options.

3.3. Clustered Mobility Maps

Within a time step of 1.5 seconds, a pedestrian has the capability to reach

a number of spatial locations, which we call mobility points. The current body

posture or pose that a pedestrian is in determines its mobility points and hence

the type of motion it is capable of. For instance, if a pedestrian is standing in a

pose with both feet on the floor, it is likely that he will continue to stand or begin

to walk at a low velocity. In contrast, if the pedestrian has only one foot on the

floor, the character may be in a position to move more quickly because it is likely

in the middle of a walking stride. Likewise, the motions from similar poses should

exhibit similar dynamics. For example, the motion sequences starting from one

pose that has its left heel down and right toe pushing on the floor should share

the same characteristics as motion sequences generated from another pose that

also has its left heel down and right toe on the floor. It is possible that these

poses generate different motion sets. One may generate motions that are right

turns, whereas the other generates left turns, yet these motions should be possible

from both poses. Therefore, we group similar poses together into a single cluster

in order to generate a more complete set of options from the set of initial poses

(Figure 3.5).

In order to identify groupings of similar poses, we use a subtractive cluster-

ing algorithm described by Kim et al. [17]. The algorithm estimates the number

of clusters and their respective centers by first measuring the potential each pose
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∪

FIGURE 3.5. Illustration of the effect clustering has on movement options.

has for being a cluster center. The algorithm selects the pose with the highest

potential to be a cluster center and then removes the effect of its potential from

the rest of the poses. To determine the number of clusters, the algorithm iterates

until the potential values for the remaining poses fall below a given threshold. To

arrive at a threshold of 2.0, we experimented with a few values and visually ex-

amined the resulting clusters. The algorithm then compares the remaining poses

against each cluster center and places them in the nearest cluster. In determin-

ing the clustering for an able-bodied pedestrian we can ignore the upper body.

Therefore, to compare how close a pose is to a particular cluster center, we use

nearly the same pose distance metric that we used in building the motion graph

except that we set the upper body weights to zero.

The subtractive clustering algorithm generated a total of 670 clusters. The

average number of poses in each cluster is approximately 50 with a standard

deviation of 53 poses. Approximately 6.1% of the clusters contain more than 100

poses, with an average of 193 poses. The remaining clusters on average have only
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40.5 poses. The clusters with the largest number of poses are comprised mainly

of poses with two feet planted side by side.

Once the poses have been clustered, we can combine the individual mo-

bility maps for each pose in a cluster into a single mobility map for the cluster.

The cluster shares the movement options from all the poses within it, thus giving

a simulated pedestrian more mobility and greater ability to react to movement

requests. In related work, Srinivasan and Metoyer developed a metric for com-

paring the responsiveness of an animated character. In their experiments, they

found that the pedestrians using this new clustered mobility map were quicker

to respond to changes in movement requests and thus more controllable than

the pedestrians using the unclustered mobility maps [25]. The following section

describes how we use this new clustered mobility map to drive the 2D simulation.

3.4. Capability-Behavior Model

At run-time we use the clustered mobility map to generate the motion of

each 2D pedestrian. At any point in time, a pedestrian will be in a particular

pose of a cluster and will have movement options dictated by the mobility map

of that cluster. We assume that the pedestrian simulator makes target requests

for each pedestrian. We define a target as a position a pedestrian wants to reach,

such as the location of the nearest exit. Pedestrians choose one of the options and

the recorded motion is played to move them forward in time. Pedestrians move

toward the targets to exit the building.

Given a target request, the movement options are first ranked based on a

cost function:

Ci = ωDD + ωθΘ − ωSS +
∑

ωP P
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The cost function is similar to Srinivasan et al. [24], where D measures the Eu-

clidean distance from the mobility point to the target and Θ is the deviation

angle (Figure 3.6). The deviation angle is the angle between the facing direction

a pedestrian has upon taking a movement option and the vector from the mobility

point to the target. We modify the function to include a term, S, which encour-

ages faster movement, and another term, P , which incorporates interference from

neighboring pedestrians. The term, S, represents the distance from the pedes-

trian’s current position to the mobility point. Options that move the pedestrian

farther in 1.5 seconds will have a lower cost.

D

    Facing
  Direction

θ

Current Pose in Cluster i

Target

Final Pose in 
    Cluster j

FIGURE 3.6. A cost function ranks each movement option from the clustered

mobility map. The cost depends on the distance from the target and the deviation

between the facing direction and the target direction.

The last term in the cost function measures the influence that proximity

to neighboring pedestrians has on the choice of movement options. We represent

this influence with a function similar to that used by Helbing and Molnar in the

social forces model [11]. The closer the mobility point is to another pedestrian,
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the higher the cost. If, however, the pedestrian is moving at a slower velocity, it

will be more comfortable selecting a move that is close to another pedestrian. We

represent the cost with a decreasing exponential function:

P = a ∗ e−d/(b∗v)

where d is the distance between the pedestrian at the mobility point and the

predicted position of another pedestrian (Figure 3.7). To compute the predicted

position of the other pedestrians, we assume constant velocity over the time step.

The velocity of the pedestrian at the mobility point is represented by v, while

a and b are constants with values 10.5 and 0.09, respectively. These values were

found through visual experimentation and used throughout all of our experiments.

The total pedestrian interference for each movement option is the summation of

the influences from each of the neighboring pedestrians. We use a grid subdivision

scheme to determine the nearby pedestrians efficiently.

Pedestrian A

Pedestrian B

d

 

1.5s

Predicted Position 
  of Pedestrian B

FIGURE 3.7. Since each mobility point is 1.5 seconds from pedestrian A’s current

position, we measure d as the distance between a mobility point and the predicted

position of pedestrian B. We use this distance to determine the cost due to the

proximity of nearby pedestrians.
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Variables ωD, ωθ, ωS, and ωP are weighting terms for the distance, deviation

angle, speed, and pedestrian influence, respectively. Pedestrians that are behind

the mobility point are not considered to be interfering. In this situation, ωP = 0,

otherwise ωP = 1. We find the values 1.0, 2.5, and 0.4 work well for the weights

ωD, ωθ, and ωS respectively.

We rank the movement options according to their cost and store them in

a priority queue. The first option in the priority queue has the least cost. Our

algorithm iteratively extracts the options from the queue and tests them for inter-

sections with walls or nearby obstacles. We implemented a quadtree subdivision

scheme to efficiently determine nearby obstacles and walls for intersection tests [9].

The first option with no intersections is chosen as the desired option; it is used to

animate the motion of the pedestrian for the next 1.5 seconds or 45 frames. The

pedestrian can be interrupted at anytime during the playback of the motion to

plan its next move. Then from its current pose it will reevaluate its options from

the corresponding cluster and choose another one. If the algorithm cannot find a

suitable option, i.e. picking any option would cause the pedestrian to intersect an

obstacle or wall, then we allow our pedestrian to linearly interpolate its position

and orientation, for four frames, toward the goal. This allows the pedestrian to

move into a position or face away from the obstacle so that at least one movement

option can become feasible. In our experiments, the simulated pedestrians resort

to the interpolation only 2% of the time.

In conclusion, the cost function leads the simulation to prefer movement

options that quickly move the pedestrian closer to its target, orient the pedestrian

toward the target, and keep the pedestrian away from its neighbors.
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4. ANALYSIS

One of our goals is to create realistic and accurate models of how people

move. In our previous chapter, we presented our prescribed motion model and

illustrated how it could be used in our simulator. In this chapter we will present

qualitative and quantitative results for validation of our model.

4.1. Qualitative Analysis

We demonstrate the realism of our approach through a few small scale

simulations and one large scale simulation. In the small scale simulations, we look

for self-organization of the individual pedestrians and emerging crowd phenomena,

such as the formation of pedestrians into a zipper-like pattern in narrow spaces and

crowding at doorways. In the larger scale simulation, we investigate the ability of

our current simulator to move pedestrians around in more complex environments.

In all of our experiments, the pedestrians are represented by small black

circles having diameter 0.4 meters; their velocity and facing direction is visualized

by a light gray line projecting from the center of the circle (Figures 4.1, 4.3,

and 4.4). In addition, all of the parameters of our capability-behavior model are

identical and remain unchanged from experiment to experiment. No parameter

tuning was necessary to make the capability-behavior model fit the particular

situation being tested.

Our first small scale simulation illustrates the movement of pedestrians

through a doorway (Figure 4.1). We populated a room 20.0 meters long and

10.0 meters wide with 50 pedestrians and watched their behavior as they exited

through a door 1 meter wide. The pedestrians must exit the room through the

first door, proceed forward through the next room and exit the building through
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Time:   2.20     Pedestrians: 50 

Time:   9.89     Pedestrians: 50 

Time:  36.26     Pedestrians: 24

Time:  57.14     Pedestrians: 03

FIGURE 4.1. Snapshots of the doorway experiment. Pedestrians must approach

the first door, move through it, and exit through the second door.

the second door. As the pedestrians move, they spread out and avoid collisions

when there is enough space and bunch up when there is not. As the pedestrians

try to move through the first door, the demand for egress becomes higher than

the door can allow. We call the door a bottleneck since it restricts the flow of

pedestrians through it. Congestion forms upstream of the bottleneck as the crowd

of pedestrians stand and wait for their turn to pass through the door. We do not

see any of the characteristic “jittering” of the pedestrians when they are close to

each other that we see in the social forces model.

Daamen et al. have performed many experiments to try and learn the

walking behavior of pedestrians. In one particular experiment, they studied the

flow of pedestrians in bottlenecks [8]. They observed pedestrians walking from an

open region, through a narrow corridor, and circling back around again. Figure
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4.2 gives an impression of Daamen et al.’s experiment. From our observations, we

find the shape of the congestion appearing before the bottleneck in our experiment

(Figure 4.1) agrees with their empirical results (Figure 4.2).

FIGURE 4.2. Pedestrians were told to cycle through the narrow corridor. Groups

of people were asked to walk at different speeds and filtered in gradually to try

to replicate actual conditions and maintain an even initial flow. Since there are

too many people trying to get through the corridor than it will allow congestion

forms upstream of the bottleneck. Figure courtesy of Daamen et al.

In our next experiment, we set pedestrians walking down a long narrow

corridor 1.0 meters wide. The passageway was not wide enough to allow pedes-

trians to pass one another (Figure 4.3). We noticed that even when pedestrians

are walking in a straight line, they still exhibit a natural side to side motion.

Time:  80.42     Pedestrians: 23

Time:  72.93     Pedestrians: 24

Time:  86.91     Pedestrians: 24

FIGURE 4.3. Snapshots from hallway experiments showing pedestrians walking

down narrow corridor.
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This secondary motion adds to the realism of the simulation as it is characteristic

of actual human motion. When real people walk, they sway from side to side

with each footfall. We also observed pedestrians trying to avoid walking directly

behind other pedestrians and forming a zipper-like pattern.

In our final visualization experiment, we used our capability-behavior

model to simulate an orderly evacuation of a large auditorium filled to 98% ca-

pacity and several adjacent offices (Figure 4.4).

Time:   5.49     Pedestrians: 746 Time:  71.43     Pedestrians: 552 

Time: 181.31     Pedestrians: 222 Time: 307.67     Pedestrians: 9  

FIGURE 4.4. Snapshots from a simulation of 746 pedestrians evacuating an au-

ditorium and adjacent offices. Total egress time for this simulation was 5 minutes

and 16 seconds.
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We simplified the simulation by assuming all the pedestrians have the goal

of leaving the building through the nearest exit and all start egress at the same

time. We know from social psychology and from accounts of actual evacuations

that these are not accurate assumptions and, as such, can adversely affect the

realism of the simulation [3, 19, 22]. In contrast, if we had added the ability to

specify a start delay and had some pedestrians exit the way they came in, we

could have added to the realism of the simulation. However, since the simulator

is not the focus of the work, rather, the motion of the individual pedestrians, we

feel justified in making those assumptions. Even using this simplified simulator,

our large scale simulation experiment shows it is capable of moving pedestrians

around in a more complicated setting.

4.2. Quantitative Analysis

If we expect to be able to use the simulation for evaluating the design

of buildings for safe egress, we need to be confident that the motion is accu-

rate. Qualitative analysis is not sufficient for determining the accuracy of our

simulation. We need to be able to perform a quantitative analysis of our model.

Validation of pedestrian simulations through quantitative measure poses an in-

teresting challenge of data collection; it is one of the reasons why validation of

pedestrian simulations is lacking [13]. Comparing our model against data from

real evacuations is ideal. However, acquiring that data can be difficult. We do

not have the right equipment set up in buildings to be able to record data during

an emergency, and there is no guarantee that if we did, the equipment would

work properly. For example, if we used video cameras to record an evacuation

of a building, smoke from a fire may block its view, or flames may completely
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disable it. Instead we rely heavily on data collected from personal accounts and

911 emergency calls to piece together evacuation behavior and response times [3].

Unfortunately, personal recollections can become distorted and may not yield the

most accurate measure of event timing.

Since data collection during an actual emergency can be difficult, some

researchers have begun to collect data to study pedestrian behavior in controlled

environments [7, 26, 13]. Helbing et al. studied the flow of pedestrians through

bottlenecks for uni- and bidirectional streams as well as the flow of two perpen-

dicular intersecting streams [13]. They set up tables in different configurations to

create the boundaries for the experiments. In each case, the pedestrians were told

to walk through the setup and then return to the start to maintain a continuous

stream of people. Daamen and Hoogendoorn performed similar experiments to

observe the behavior of pedestrians in uni- and bidirectional streams under vary-

ing speed distributions, as well as the crossing of two and four pedestrian streams

[7]. They have also studied the effect of widening bottlenecks on the flow of

pedestrians. Seyfried et al. conducted experiments in controlled environments as

well; their team focused their attention on single file movement and measuring the

speed and density of pedestrians as they walked through a small data collection

region [26].

Safe and controlled experiments cannot fully replicate the conditions of an

actual emergency. Therefore, the accuracy of results obtained from these exper-

iments is questionable. Thus a quantitative analysis is limited by a lack of real

evacuation data available for comparison.

A method of validation commonly used is to compare the velocity, density,

and flow of pedestrians through a space to the fundamental diagram (Figure 4.5).

The fundamental diagram explores the relationship between these quantities. As
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density starts to increase the flow of pedestrians will also increase, however, once

the capacity of the space is reached, the flow will start to decrease. Likewise, the

flow of pedestrians through a space is the same when there are fewer pedestrians

traveling at higher velocities as when there are many pedestrians traveling at lower

velocities. One can also compare the relationship between density and velocity.

Generally, as the density grows the velocity of the pedestrians decreases. Daamen

et al. has assembled the experimental findings of many researchers and illustrates

the resulting fundamental diagrams as shown in figure 4.5 [8]. The results show

similar trends, but the curves are not identical.

FIGURE 4.5. Fundamental diagrams showing the relationships between density

and speed, flow and speed, and density and flow. Figure courtesy of Daamen et

al.
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Seyfried et al. have focused their attention on the relationship between ve-

locity and density. They argue that the dependence between velocity and density

is not completely understood and that the differences in the experimental findings

of Figure 4.5 are rooted in the complexity of the problem [26]. They claim that

passing maneuvers and other observed self-organization phenomena, such as lane

formation and zipper effect, that are common for movement in a plane can influ-

ence the relationship between velocity and density. For example, by forming lanes

pedestrians can maintain a higher velocity in greater densities than they would

otherwise. To better understand the fundamental relationship, Seyfried et al. re-

strict the problem domain from movement in a plane to movement along a line,

in an effort to simplify the problem and limit the effect of the influencing factors

in a natural way. They conducted an experiment to collect velocity and density

information as pedestrians walked in a single file line along an elliptical track. In

an effort to validate our motion model, we tried to replicate the experiments and

procedures described by Seyfried et al. and compare our results [26]. The rest of

this section discusses our experimental setup, trials, and findings.

2.0 m

FIGURE 4.6. Experimental setup for the measurement of the velocity and density

relationship for movement in a single file line.

We created an elliptical track measuring 17.3 meters in circumference. To

measure velocity and density information we set up a data collection region 2.0

meters long in the middle of a straight portion of the track (Figure 4.6). The

pedestrians walked clockwise following target locations along the track given by
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the simulator. To try to prevent passing and enforce single file movement we

simplified the cost function. We used only the distance and the deviation angle

terms from the original cost function to rank movement options. The options that

move the pedestrians closer and more aligned with the target were more likely to

be chosen. We ran three experiments with N = 1, 15, and 20 pedestrians. To

generate enough data we ran 5 simulations for 500 seconds for each experiment.

To initialize the simulation we placed N pedestrians evenly spaced around the

track. During the simulation, each time a pedestrian enters and leaves the data

collection region the time is recorded. Afterward, we calculate the velocity for

each pedestrian for each pass through the data collection region and calculate the

average density during the time the pedestrian is inside this region. See table 4.1

for a summary of our results.

N ρ(1/m) ρSeyfried(1/m) ρours(1/m) vSeyfried(m/s) vours(m/s)

1 1.24 (0.15) 1.23 (0.07)

15 0.87 0.77 (0.12) 1.29 (0.17) 0.90 (0.05) 0.86 (0.15)

20 1.16 1.07 (0.11) 1.50 (0.35) 0.56 (0.05) 0.68 (0.27)

TABLE 4.1. Comparison of mean and standard deviation from Seyfried et al. and

our experiments. The first column shows the number of pedestrians on the track.

The second column is the density measured over the entire length of the track.

The third and fourth columns measure the density in the data collection region

from Seyfried et al. and our experiments. The fifth and sixth columns report the

velocity of the pedestrians as they pass through the data collection region.

Seyfried et al.’s results show little variance among the pedestrian’s veloci-

ties, suggesting everyone all kept a steady speed. To get the average velocity for

1 person, Seyfried et al. considered the walking speeds of all 34 subjects as they
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walked one at a time around the track [26]. The density variance also suggests the

pedestrians maintained a fairly even spacing as they walked around the track. In

our experiments, we witnessed the simulated pedestrians walking faster to fill the

gap between them and the pedestrian in front but then slowing down again to try

to avoid a collision. This behavior could explain the larger variance and difference

in velocities. The speeding up and slowing down caused the pedestrians to bunch

up, creating a shock wave that propagated around the track. This phenomenon

could explain the higher densities recorded by our simulation.

To determine how close our model fits the velocity and density data col-

lected from Seyfried et al.’s experiments we ran a hypothesis test. The formulation

of our null hypothesis, H0, and alternative hypothesis, Ha, is as follows:

H0 : µs = µo

Ha : µs 6= µo

In other words, H0 = the velocity/density of the pedestrians in Seyfried et al.’s

experiment is the same as the velocity/density in our experiment, and Ha = the

velocity/density of the pedestrians in Seyfried et al.’s experiment is different than

velocity/density in our experiment.

To assess the validity of our null hypothesis at the 0.05 level of significance

we ran a t-test [23]. We set the degrees of freedom to be df = 33, 14, and 19

for the respective case of N=1,15, and 20 pedestrians. In testing the velocity

distributions, we found the t-value for the case of N=1,15, and 20 to be 0.38,

2.99, and 9.10 respectively, and the p-value to be 0.71, 0.0028, and 2.3 × 10−8

respectively. In testing the density distributions, we found the t-value for the

case of N= 15 and 20 to be 16.64 and 16.17 respectively, and the p-value to be
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7.8 × 10−58 and 1.5 × 10−12 respectively. Generally, the smaller the p-value the

greater the significance.

Therefore, there is significant difference in the mean velocities and densities

in our experiment and Seyfried et al.’s experiment for N=15 and 20 pedestrians.

For the motion of 1 person, the evidence is not sufficient to show that the velocity

of our simulated pedestrians is different from the velocity of the real people in

Seyfried et al.’s experiment.

In our interest to validate our motion model for the individual pedestrians

without the effect of passing maneuvers, self-organization behaviors, and environ-

mental factors, we were lead to Seyfried et al.’s experimental setup and empirical

findings. However, our efforts lead us to believe that the motion cannot be de-

coupled from the simulation, as the interactions between pedestrians and the

environment affect how the pedestrian chooses to move. Unfortunately, this com-

plicates a quantitative validation of our model, because any false assumptions or

poorly modeled higher level behaviors affect the outcome. For example, in the

single file line experiment, pedestrians have to negotiate how much space to leave

between them and the person in front. If we modeled this poorly, it would be

difficult to get an accurate picture of how well our motion model is performing.
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5. DISCUSSION AND FUTURE WORK

Although our model produces motion that looks natural and crowd behav-

ior that is plausible, in this chapter we discuss some of the problems we have with

our approach and present some suggestions for future work.

5.1. Discussion

One of the strengths of our model is that it is built from motion capture

data. This allows us to capture and create models from a wide range of individuals

with different capabilities. This gives us the freedom to include many different

pedestrian types in the simulation, such as able-bodied males and females of dif-

ferent ages, elderly individuals, people in wheelchairs and those using crutches,

so that the composition of the crowds more accurately resembles reality. Rather

than adjusting parameter values to include variation in crowds, we could draw

from our database of models to create heterogeneous crowds more intuitively and

accurately.

In addition, the motion of the individual pedestrians is more realistic. Since

our capability-behavior model is based on the data we have collected, our simu-

lated pedestrians can only make moves that are humanly possible. If pedestrians

are walking quickly they will have to slow down before they can stop, whereas in

other models they could stop unnaturally fast. Unfortunately, one of the strengths

of our model is also one of its weaknesses. The simulated pedestrians’ motions

are limited to the type of data we have collected. If we had collected only clips

of straight walking motions, that would be the only type of motion our simulated

pedestrians could make. Similarly, if we did not collect enough slow walking mo-

tion, our pedestrians will not be able to walk slowly. To ensure that we have
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provided for a range of locomotion types, for instance, fast walking, slow walking,

and turning, we need to be sure we record an appropriate representative sam-

ple. When pedestrians are walking in high density regions they tend to walk very

slowly at a pace that can be described as shuffling. We are using the motion

collected from one subject who was not asked to provide samples of slow shuf-

fling movements. At the time of collection, we did not recognize the importance

of collecting very slow walking motions. This could explain the discrepancy in

the velocities collected in our experiment of single file movement as well as the

higher densities. Since there is not enough slow walking data the pedestrians are

unable to choose these options. As a result they walk faster and may collide with

the pedestrian in front. We stop the offending pedestrian by switching him to a

standing pose; it takes a little while for him to recover his speed which causes

the pedestrians behind him to slow. This creates a shock wave that propagates

around the track and higher densities to be recorded in the data collection region.

To solve this issue we need to be sure we capture all of the motion necessary for

our pedestrians to perform the required tasks.

We have created a model for the motion of individual pedestrians, but in

microscopic simulations the interactions between pedestrians must also be mod-

eled. If we do not have a good sense, for example, of how and when people resolve

collisions, how much space they prefer to have around them, or when they might

decide to overtake the person walking in front, our simulation will not produce as

accurate results. Unfortunately, these interactions can make it difficult to separate

the testing of the motion model from the simulation.

In our experiments we observed pedestrian interactions that were less than

realistic. For example, in our doorway experiment we noticed pedestrians near

the back and on the sides overtaking other pedestrians to get close to the door.
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This idea is realistic, but the execution of the action is not what we would expect

from our experience. From our experience we know that people on the sides of

congestion have more freedom to move faster and cut in front of a lot of the

congestion. What seems unrealistic in our example is that the pedestrians start

to move to the front, but then hesitate and wait behind other pedestrians instead

of moving all the way to the door. When choosing movement options with our

current cost function, the pedestrians must weigh the cost of taking a longer

path to the exit but in a shorter amount of time against waiting behind other

pedestrians to follow the shortest path out of the building.

At higher densities the space is more congested, and pedestrians must in-

teract with each other and make more collision negotiation decisions. An effort

was made to include this in our cost function so that pedestrians could consider

their proximity to others when choosing a movement option. Ideally, the pedestri-

ans would choose moves that keep them from colliding into other pedestrians. In

practice, this was not always the case. Even the best laid plans can fail. Suppose

our pedestrian chose an option that was predicted to keep it away from other

pedestrians, but the other pedestrians took slightly different paths or changed

speeds. It would be possible for our pedestrians to collide with each other. In

addition, assigning a high cost to a mobility point may not guarantee that the

pedestrian will not intersect the predicted position of another pedestrian. It will

indeed be chosen if all other points cause a collision with static obstacles or walls.

This is why we test at each step in the simulation for actual pedestrian collisions.

Perhaps our simple approach was not an adequate model for predicting

how people make decisions about navigating around others. We need to have

something in place to be able to run simulations with many people. However, a

more accurate way to model collision avoidance and negotiation behavior might
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be to abstract it out from the cost function and instead use a simplified model

considering only distance and deviation angle from the target in the cost function

and develop a better system for handling higher level behaviors.

To be able to isolate and validate only our motion model we could set up a

Turing test. We could create two videos: one video showing a digitized version of

a real person walking, and the other video showing a simulated pedestrian walking

using our capability-behavior model. To create the video of a real person walking,

we could record that person’s motion from overhead and then digitize the video

to create a 2D animation in the same style as our simulated pedestrian’s video.

We would ask subjects to watch each video and tell us which one they think is the

real person and which one is simulated. If the subjects are unable to identify the

simulated pedestrian, then we could say our model produces realistic and accurate

motion.

Although each pedestrian is performing only local search over its list of

capabilities, they are spending too much time calculating the cost of each of the

movement options and searching through to find the best move that does not

intersect with static objects in the scene. The average number of movement

options in each cluster is approximately 1034 with a standard deviation of 467,

compared to the average of 38 options in Srinivasan et al.’s approach [24]. With

such a large number of movement options to search through, our approach slows

considerably.

5.2. Future Work

Although we have demonstrated realistic motion of 2D pedestrians in sev-

eral examples, there are areas within our approach that could be improved with
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further effort and future work. To date, we have captured the motion from a

single individual. Though we have demonstrated we can produce plausible crowd

motion when each of those pedestrians are drawing from the same mobility map,

we hypothesize that incorporating motion from individuals with varying abilities

will enhance the realism of our simulations. We plan to collect additional motion

capture data from a greater diversity of pedestrians. We would like to capture

individuals with crutches, canes, in wheelchairs, and of varying ages (children and

elderly), for both males and females. We would process their motion to build a

more diverse database of 2D motion models. The clustering step would need to

be modified to accommodate the differences in locomotion styles among a diverse

population. For example, in determining the clustering for an able-bodied pedes-

trian we were able to ignore the joints in the upper body and compare the simi-

larity of poses by examining the lower half of the body. These lower body joints,

however, are probably the least important to a pedestrian using a wheelchair, and

thus for determining the similarity between poses we would compare the upper

body joints.

Our intention is to create models that can be used in large scale, real-time

simulators. Before our model can meet this standard, we need to make it smaller

and faster. Without rendering and detecting collisions, our simulator can update

the positions of up to 140 pedestrians in real-time using an Intel Pentium 4, 3.2

GHz processor with 1.0 GB of RAM. This result is not as good as the approach by

Srinivasan et al. [24], and not nearly good enough to provide the motion for large

simulations in real-time. With our current approach we are unable to simulate

large numbers of pedestrians in real-time. This is due in part to the time spent

searching through the large numbers of movement options in each cluster and in

part to the size of the mobility map. Although pedestrians of the same type, for



41

instance, all single able-bodied males between the ages of 30-35, can share a single

mobility map in memory, one mobility map still requires 64 MB of storage space.

We are investigating ways to eliminate the need to search through and

store movement options. To reduce storage, we could build the mobility map as

described and then remove the pose from consideration. Our original mobility

map had, from any pose state, a set of movement options that consisted of the

positions it can reach in a small time frame, the final orientation, and the sequence

of poses to get it there. In this case, we would treat the pedestrian’s state as its

velocity and orientation. From any state, the set of movement options from the

mobility map would be the final positions and orientations, and all of the actual

motion that was originally stored would be removed and replaced at run-time with

a simple interpolation scheme. Pedestrians would interpolate their position and

orientation over the time interval to get to the position and orientation specified

by the mobility map. This approach would likely produce more realistic motion

than using social forces alone, but not as realistic as the full pose approach that

we are currently using. Removing the pose from consideration will reduce the

amount of storage but at the expense of losing some of the important information

associated with a pose. A pedestrian in one pose may have a similar velocity

and orientation as another pose but have different dynamics. Also, this approach

would not improve the time spent searching through the movement options.

Another method for reducing our storage requirements would be to exam-

ine the mobility map and remove the redundant options. Options that lead the

pedestrian to similar positions with similar orientations are considered redundant.

During the clustering process the mobility maps of similar poses were combined

to yield a more complete set of options. However, since all of the poses in each

cluster share similar dynamics the likelihood that some of the poses also share
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similar positions and orientations is high. By removing these redundant options

we hope to reduce the size of the mobility map without effecting the quality of the

motion. Preliminary results have shown a reduction in the size of the unclustered

mobility map by 85%.

The previous approaches still require us to store movement options and

search through each one to find the best move; we would like to eliminate this need

altogether. We have been looking at statistical versions of our current model in

hopes of meeting this need. We are investigating replacing the movement options

with movement option distributions that encode the capabilities of a pedestrian

from a given pose with statistical measures.

Once our capability-behavior model is smaller and faster, and we have

built a database of diverse models from a heterogeneous population, we would

like to make our models available for others to use and incorporate into their own

simulations. To improve realism, our model constrains the motion of simulated

pedestrians to moves humans are capable of given a current state. It is not

restricted to use within our own simulator. We are exploring ways of incorporating

our motion model into existing simulation techniques, such as the social force

model. We aim to improve the realism of the social force model by using our

model to generate the motion of the 2D pedestrians. We propose the social force

equations be used to rank the movement options instead of our cost function. The

option with the lowest cost in terms of the social forces would be chosen as the

pedestrian’s next movement. There may be times when none of the movement

options are able to meet the social force constraints, i.e., the cost to make the move

exceeds a threshold. In these situations, we envision a hybrid approach where we

use our motion model when possible and resort to the simple social force model

when there is a problem.
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Our present pedestrian simulation system uses some simplifying assump-

tions to include higher level behaviors, such as route choice and collision negotia-

tion and avoidance. For example, it assumes pedestrians leave buildings through

the nearest exit and pedestrians moving away from collisions go first. A better

approach would be to use higher level behaviors as a way to direct the choice

in movement options. We are investigating adding higher level behaviors, such

as route-choice, grouping, collision negotiation and avoidance, that would sit on

top of our motion model. The behaviors would be included in the cost function

used to rank the movement options and will lead to a choice appropriate for that

desired behavior. For example, a pedestrian walking with a group should pick

different options than if it were trying to pass another pedestrian. To ensure the

greatest accuracy in the design of the behaviors, they should be grounded in social

psychology literature.
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6. CONCLUSION

Realistic and accurate models of how people move are needed to evaluate

the design of facilities for fast and efficient egress of large, diverse populations.

These models should generate realistic motion for the individual pedestrians and

should provide for the ability to simulate heterogeneous crowds. Furthermore,

these models could be used in simulations for evacuation training and evaluat-

ing effective emergency response plans. We hypothesize that as we get closer to

simulating real human motion, the simulations will become more accurate. This

greater accuracy allow us to better identify weaknesses of existing measures and

improve procedures and designs to help prevent human casualties.

Our model can automatically incorporate a pedestrian’s physical limita-

tions and capabilities when making movement decisions, since it takes into account

the current configuration of the character. Our model leverages motion capture

data to generate plausible motion. Although we have found significant evidence

showing us that our model does not yet match speeds and densities for single file

movement of 15 people and more, we are hopeful that with the inclusion of slower

walking data and the addition of higher level collision avoidance and negotiation

behaviors, we will see improvements in our accuracy.

We have shown that our model can reproduce some realistic crowd dy-

namics, such as jamming at doorways, and self-organization effects, such as the

tendency of individuals walking in narrow spaces to form a zipper-like pattern. In

addition, future models can also be built for generating heterogeneous crowds by

collecting motion capture data that includes children, the elderly, pedestrians in

wheelchairs, and people on crutches.
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