

AN ABSTRACT OF THE THESIS OF

Cory Kissinger for the degree of Master of Science in Computer Science presented on

May 19, 2006.

Title: Supporting End-User Debugging.

Abstract approved:

__

Margaret M. Burnett

Although researchers have begun to explicitly support end-user programmers’

debugging by providing information to help them find bugs, there is little research

addressing the right content to communicate to these users. The specific semantic content

of these debugging communications matters because, if the users are not actually seeking

the information the system is providing, they are not likely to attend to it. This thesis

reports a formative empirical study that sheds light on what end users actually want to

know in the course of debugging a spreadsheet, given the availability of a set of

interactive visual testing and debugging features. Our results provide insights into end-

user debuggers’ information gaps, and further suggest opportunities to improve end-user

debugging systems’ support for the things end-user debuggers actually want to know.

Following up on those suggestions, we then present the design and implementation of a

solution aimed at helping to close some of those information gaps.

©Copyright by Cory Kissinger

May 19, 2006

All Rights Reserved

Supporting End-User Debugging

by

Cory Kissinger

A THESIS

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Master of Science

Presented May 19, 2006

Commencement June 2007

Master of Science thesis of Cory Kissinger presented on May 19, 2006

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my thesis will become part of the permanent collection of Oregon

State University libraries. My signature below authorizes release of my thesis to any

reader upon request.

Cory Kissinger, Author

ACKNOWLEDGEMENTS

I would like to first thank my major professor Dr. Margaret Burnett. Without her

encouragement, wisdom, and vision this work would not have been successful. Her

positive outlook and quality as a researcher were an inspiration.

Additionally, chapters two through five were part of a joint effort to produce the work

presented in [21]. The researchers who helped to produce that paper put in a tremendous

effort in each of their roles. I thank Dr. Simone Stumpf and Dr. Mary Beth Rosson for

their expert opinion that guided so much of the experiment design and for their

immaculate writing ability. For dutifully completing many of the less appealing tasks and

following up on every lead I thank Neeraja Subrahmaniyan and Dr. Sherry Yang. I would

also like to thank Valentina Grigoreanu and Vaishnavi Narayanan for assisting with the

experiment. Lastly, thanks to Laura Beckwith, for her commitment to research, expert

advice and sense of humor.

For their consultation outside of the research group and their help in fostering some of

the original thoughts that sparked this work I would like to recognize Andrew Ko and Dr.

John Pane.

Other members of our research group assisted my research in countless ways,

providing everything from a smooth running implementation to a few laughs—thank you

Flora Tan, Joey Lawarance, Jason Daggit, and Robin Abraham.

Finally, thanks to my other two committee members, Dr. Curt Cook and Dr. Rajeev

Pandey for providing an open door where I knew I could come for answers.

This work was supported in part by the National Science Foundation under Awards

ITR-0325273 and ITR-0405612.

TABLE OF CONTENTS

 Page

1 Introduction.. 1

2 Experiment... 4

2.1 Participants...5

2.2 Environment...5

2.3 Tutorial...7

2.4 Tasks ..7

3 Methodology.. 10

3.1 Segmentation of the Data...10

3.2 Deriving the Codes ..11

3.3 Application and Agreement ...12

4 Results.. 14

4.1 Questions and Explanations About Features and Feedback15

4.2 Big Information Gaps: Whoa! Help! ...15

4.3 Self-Judgments: Am I smart enough to succeed at this task?..........................17

4.4 Oracle and Specification Questions: Is this the right value/formula?..............18

4.5 Strategy: What should we do? ...19

4.6 Implications of Co-occurrences ...20

5 Comparison to Other Work.. 22

6 Follow Up: Recorded Demonstrations... 25

6.1 Detailed Design and Creation of the Demonstrations......................................28

6.2 Future Work ...30

TABLE OF CONTENTS (Continued)

7 Conclusion ... 32

Bibliography ... 34

Appendices.. 37

Appendix A: Sample of Transcribed and Coded Dialogue38

Appendix B: Transcription Conventions ...43

Appendix C: Tutorial Materials ...44

Appendix D: Questionnaires..48

Appendix E: Spreadsheets and Spreadsheet Descriptions59

Appendix F: Storyboards ...68

LIST OF FIGURES

Figure Page

1. Experiment data capture example. .. 6

2. Screenshot of Payroll spreadsheet task. .. 8

3. A stanza in which participants E and F discuss the debugging strategy of
“changing everything”. ..10

4. Code frequency within each 10-minute interval. Task 2 (Payroll) began after 20
minutes. Similar codes were grouped to aid discussion of results........................ 14

5. Frequency of Help and Whoa codes within each 10-minute interval. 16

6. Frequency of strategy codes within each 10-minute interval. 19

7. The top two code co-occurrences for (top) Self-Judgments and (bottom)
Strategy Hypotheses...20

8. Example script for demonstration with matching constraints................................. 28

9. Example storyboard for recorded demonstration.. 29

10. Pseudo-code for the integration of recorded demonstrations into our research
prototype. .. 30

LIST OF TABLES

Table Page

1. The coding scheme. .. 12

2. Code frequencies... 14

3. Overlap of our codes with others’ coding schemes. ... 23

4. Guidelines for producing recorded demonstrations. ... 26

5. Design constraints used to guide the content of our demonstrations...................... 27

 LIST OF APPENDIX TABLES

Table Page

6. List of bugs in Gradebook spreadsheet: Output cells with their formulas when
the spreadsheet is first loaded ..62

7. Formula’s of output cells in the Gradebook spreadsheet...63

8. List of bugs in Payroll spreadsheet: Output cells with their formulas when the
spreadsheet is first loaded ... 66

9. Formula’s of output cells in Payroll spreadsheet when it is first loaded 67

Supporting End-User Debugging

1 Introduction

Research on end-user programming has, in the past, concentrated primarily on

supporting end users’ creation of new programs. But recently, researchers have begun

to consider how to assist end users in debugging these programs (e.g., [1, 10, 22, 25,

36, 37]).

Support for end users in debugging tasks is often problem-oriented; the system

tries to discover candidate bugs, communicate these to the users, and provide user

interaction mechanisms to explore and correct the bugs. The communication about

the bugs may be delivered through diagrams, color highlighting, or similar devices.

Because the user may not understand how to respond to such information displays,

a debugging support system may also provide feature-oriented information that

explains how to interpret or use the debugging features. Feature-oriented information

is typically provided by user interface mechanisms that are tied to the feature in

question, such as pop-up tool tips, linked help pages, video demonstration snippets,

and so on. In this paper, we refer to the collection of support communications, both

problem-oriented and feature-oriented, as the system’s explanations.

Some existing debugging explanation techniques for end-user programmers have

been empirically linked to debugging success [10, 22, 36, 37]. However, many of

these empirical results are so focused on the success of particular features, they do not

provide much general guidance to future designers of end-user debugging support,

such as the semantic-content of what needs to be explained, when, and in what

context.

However, a few studies do provide some general guidance for end-user debugging

explanations. Natural Programming studies for event-based Alice programs [12]

revealed that 68% of the questions asked by the participants (HCI students with

varying amounts of programming background) during debugging in that language

were “why did” or “why didn’t” questions [22]. The Surprise-Explain-Reward

strategy [40] has been studied in the spreadsheet paradigm; the work on this strategy

2

provides general guidance regarding interruption styles for communicating about end-

user debugging situations [35] as well as effective reward communications in these

situations [36]. Finally, because end users may not have experience with debugging

support tools, they may be forced to learn about these features as they work,

suggesting that studies of what online learners want to know may be helpful (e.g., [3,

30]).

Determining the semantic content needed by an end user when debugging might

seem straightforward. For instance, a system could simply describe all visible features

and feedback; this is a common approach to information system design. In our

research prototype designed to support end-user debugging, explanations such as

these have indeed been created for all visible features. We have put significant

research into the semantic content of the explanations, refining them on the basis of

both theory (the model of Attention Investment [9] and Minimalist Learning Theory

[11]) and empirical work. Despite these efforts, it appears that the explanations are

not answering what users want to know. For example, one user in a recent study

commented as follows [4]:

Interviewer: “Weren’t the tool tips helpful?”
S3: “Yeah, they were good but sometimes I didn’t find the answer that I wanted…I
needed more answers than were present.”
Herein lies the problem. Little is known about what information end-user

debuggers such as S3 actually want to know.

This research consists of two parts. The first part builds upon previous works to

help fill a critical gap in what is known about end-user debugging support: the

semantic content of what should be explained to end users to support debugging. To

explore this kind of information, we conducted a formative analysis of information

gap instances—utterances expressing an absence of information—expressed by end-

user programmers working on spreadsheet debugging tasks. During the experiment,

participants interacted with a spreadsheet environment that contained visual features

providing problem-oriented debugging information (e.g., visual colorings of cells that

3

need testing), but that provided no feature-oriented explanations to help users make

profitable use of them. Within this debugging context, we investigated the following

research question:

When debugging, what do end-user programmers want to know?

In the second part, we follow up on the first part’s results regarding both the

content as well as the presentation style of the explanations. Using this information,

we present the design and implementation of an explanation approach aimed at

complementing a traditional feature-oriented approach, which also involved two

steps. First, we generated a list of design constraints that an ideal explanation

approach would meet. The constraints were derived from both the results of our

formative study and also from related literature. We conclude with the design and

implementation of a solution grounded by these constraints.

4

2 Experiment

The experiment procedure was a think-aloud using pairs of participants. The goal

was to allow the participants at least a possibility of succeeding at their spreadsheet

debugging, so that they would stay motivated, but without including explanations that

might bias the content of the participants’ information gaps.

To achieve this balance, we removed all feature-oriented information about how

the debugging features worked. We then administered a tutorial to give just enough

instruction to our participants to be able to perform basic functions in the particular

environment (a research spreadsheet system). Finally, when the participants began

their tasks, we removed the only remaining source of support from the room, the

researcher himself. The participants were recorded (video and audio) and their screen

state was continuously captured along with all instant messenger dialogue (explained

below). Figure 1 shows what the researcher observed remotely.

With so little information, participants could have become “stuck,” at which time

their think-aloud verbalizations would cease to be useful. To avert this situation, we

provided mechanisms for the participants to obtain information. Although they had

both received the same training, the most accessible information to a participant was

his or her partner. This encouraged them to keep talking to each other, which turned

out to be the primary way they worked through their information gaps.

A slightly less accessible, but potentially more valuable, source was an instant

messenger dialogue between the pair and the researcher, with which the participants

could ask questions. Since the researcher was out of the room, the questioner had to

include relevant context information, avoiding simple “What’s that?” questions. The

cost of waiting for the researcher to answer this sort of question (typically 10

seconds), made discussion between the pairs less costly than using the instant

messenger, in terms of time and effort. Researcher responses were restricted to the set

of feature-oriented explanations that had been removed from the environment for

purposes of the experiment. The researcher could also send a hint if the participants

5

expressed confusion about a particular feature and refused to move on. Pairs typically

received one such hint. The participants also had three “wild cards,” which could be

used as a last resort, to bring the researcher back into the room to provide a hint on

how to make progress. (The participants rarely used the wild cards and only

occasionally used the instant messenger.)

2.1 Participants

We chose the pair think-aloud protocol because it is particularly well suited to

eliciting participants’ verbalizations of problem-solving thoughts [19, 20]. This set-up

also creates a different social context than for individuals working alone, but since

collaborative debugging among spreadsheet users is extremely common [26], it does

not introduce validity concerns. Because we wanted participants to feel comfortable

talking together, we recruited only pairs of participants. This mechanism ensured that

each pair already knew each other.

A pre-experiment questionnaire recorded participant background data

(Appendix D contains all questionnaires used in the study). Eleven of the fourteen

participants were business majors. The other three were in education, industrial

engineering, and nutrition, none of whom were paired with each other. None of the

participants had programming experience beyond a first level programming course.

Gender was distributed equally, with two male-male, two female-female, and three

male-female pairs.

2.2 Environment

The debugging features that were present in this experiment were a subset of

WYSIWYT (“What You See Is What You Test”). WYSIWYT is a collection of

testing and debugging features that allow users to incrementally “check off” or “X

out” values that are correct or incorrect, respectively and provide visual feedback

[10]. In WYSIWYT, untested cells have red borders. Whenever users notice a correct

value, they can place a checkmark (√) in the decision box at the corner of the cell they

6

observe to be correct. As a cell becomes more tested, the cell’s border becomes more

blue. (Figure 1 includes many cells partially or fully tested.)

Instead of noticing that a cell’s value is correct, the user might notice that the

value is incorrect. In this case, instead of checking off the value, the user can X-out

the value. X-marks trigger fault likelihood calculations, which cause the interior of

cells suspected of containing faults to be colored in shades along a yellow-orange

continuum.

In addition, arrows that allow users to see the dataflow relationships between

cells also reflect WYSIWYT “testedness” status at a finer level of detail. The optional

dataflow arrows are colored to reflect testedness of specific relationships between

Figure 1: Experiment data capture example.

7

cells and sub expressions. In Figure 1, the participant has turned on the arrows for the

Min_Quiz1_Quiz2 and the Exam_Avg cells.

2.3 Tutorial1

The goals of the tutorial were to familiarize the participants with the think-

aloud procedure, explain pair-programming guidelines, and to familiarize participants

with the environment enough to proceed with their debugging task.

The tutorial began with a think-aloud practice where the pair verbalized a task

that they had recently worked on together, namely finding their way to the

experiment. The researcher also provided basic pair-programming guidelines.

Specifically, the participants were told they would switch between two roles: the

driver, controlling the mouse and keyboard, and the reviewer, who contributes

actively to problem solving. In the experiment, they switched roles every ten minutes.

The brief tutorial on the environment was hands-on, with the pair working on a

sample spreadsheet problem together at the same machine. Participants learned

mechanics of changing input values and editing formulas, as well as mechanics of the

unique actions available in the environment: namely, placing checkmarks, placing X-

marks, and turning arrows on and off. For example, participants were instructed to

“middle-click” on a cell to bring up the cell’s arrows. However, the tutorial did not

explain how to interpret the visual feedback they received as a result.

2.4 Tasks

We asked participants to test two spreadsheets, Gradebook (shown in Figure 1)

and Payroll (Figure 2). For each task, the participants were provided with an untested

spreadsheet and a description of the spreadsheet’s functionality. They were also

provided with an example of the expected output values for given inputs

These spreadsheets were each seeded with five faults created by real end users.

We made use of the spreadsheets and faults of earlier experiments [6, 8, 36] that were

1 Complete tutorial can be found in Appendix C.

8

Figure 2: Screenshot of Payroll spreadsheet task.

created as follows: Three end users were provided with the following: (1) a

“template” spreadsheet for each task with cells and cell names, but no cell formulas;

and (2) a description of how each spreadsheet should work, which included sample

values and correct results for some cells. Each person was given as much time as he

or she needed to design the spreadsheet using the template and the description.

From the collection of faults left in these end users’ final spreadsheets, five

were chosen that provided coverage of the categories in Panko’s classification system

[29] (based upon Allwood’s classification system [2]). Under Panko’s system,

mechanical faults include simple typographical errors or wrong cell references.

Logical faults are mistakes in reasoning and are more difficult to detect and correct

than mechanical faults. An omission fault is information that has never been entered

into a cell formula, and is the most difficult to detect [29]. The Gradebook

spreadsheet was seeded with three of the users’ mechanical faults, one logical fault,

and one omission fault, and Payroll with two mechanical faults, two logical faults,

and one omission fault. Additional information pertaining to the spreadsheets and

their faults is included in Appendix E.

Participants had time limits of 20 and 40 minutes for Gradebook and Payroll

respectively. These simulated the time constraints that often govern real-world

computing tasks, and also prevented potential confounds, such as participants

spending too much time on the first task or not enough time on the second task. The

9

participants were given more time on the Payroll task because it was the more

difficult of the two due to its larger size, greater length of dataflow chains,

intertwined dataflow relationships, and more difficult faults. All participants

performed the (easier) Gradebook task first to allow a gradual introduction to the

environment before the more challenging Payroll task. The participants were

instructed, “Test the … spreadsheet to see if it works correctly and correct any errors

you find.”

10

3 Methodology

The methodology we adopted consisted of four main activities: the segmentation

of the data into topic-related units of utterances, the development of a coding scheme

through a bottom-up organization of the units, the application of the codes to the data,

and the calculation of agreement measures to evaluate the stability and robustness of

the resulting coding scheme.

3.1 Segmentation of the Data

The primary data were audio recordings of participants’ utterances,

synchronized with video recordings of their physical behavior and screen states. To

create an integrated data record, the audio recordings were transcribed and

supplemented with context obtained from the video and screen data (e.g., gestures

and actions). Because a single utterance alone does not allow an analysis to be

sensitive to common context and thread of discussion, the transcripts were segmented

into stanzas [15]. A stanza, typically about 8-15 lines, is a unit of utterances that

occurs between shifts of topic (see Figure 3 for an example). Appendix A includes a

larger sample of transcribed and coded data as well as a link to the complete dataset.

F. Let’s change everything. [tries changing formula]
E. Yeah, but we got the right answer.
F. Did that change the answer at all?
F. Oh wait, did I change the symbol? [changes the formula]
F. Oh, now we’re down to 30 percent tested.
F. I wonder if I go like that- [changes the formula back]
F. Oh no, crazy.
F. Oh, I guess now it’s just this again. [checks off cells that changed]
F. I don’t get how you get to 100%, it’s like a test you can’t pass. Every time I do this

it gets lower.
E. Yeah, I don’t know.
F. Well, that’s confusing.
Switch places. (.)

Figure 3: A stanza in which participants E and F discuss the debugging strategy
of “changing everything”. Notation: [actions] denote actions taken, (.) a pause in

speaking, and italics the researcher’s instant message to the participants. See
Appendix B for complete Transcription Conventions.

11

3.2 Deriving the Codes

The goal of the codes was to support analysis of participants’ information gaps.

We considered an information gap to have occurred when a participant asked a

question, stated a tentative hypothesis, expressed surprise, made a judgment about

whether an information gap was present, or provided an explanation to his or her

partner (implying that the partner had an information gap). We refer to such

utterances as information gap instances.

The research literature does not report coding schemes that are directly

applicable to the information gaps experienced by end-user debuggers. Most studies

of information gaps focus on users in learning or tutorial situations (e.g., [3, 30]). In

contrast, we are interested in the just-in-time learning users undergo to enhance their

productivity, i.e., to make progress in solving a problem; we will return to the

relationships between our coding scheme and others’ in Chapter 5. In trying to

increase productivity, the user must balance the costs of learning a new technique or

feature—which may or may not be relevant to a task—against its potential benefits

for task performance. In these circumstances, learning may be just one of a set of

competing goals.

To develop a coding scheme that matched our aims, we (the authors of [21]) first

grouped stanzas from two of the transcripts into an affinity diagram2, adjusting the

concepts and relations as we progressed. This grouping process allowed us to focus

on types of information gaps, as we compared and organized information gap

instances according to their semantic content such as a question about what might be

a suitable strategy. As types of information gaps were identified, descriptions and

example utterances for each candidate coding category were collated. The coding

scheme was applied to one transcript repeatedly with different coders each time. The

codes were refined to be less ambiguous after each application until acceptable

2 A group decision-making technique designed to sort a large number of items into
“related” groups, from the perspective of those doing the sorting.

12

agreement was achieved (above 80%, see next section for calculation of agreement)

across coders. The 10 codes we identified in this fashion are described in Table 1.

3.3 Application and Agreement

Two of the authors independently coded all of the transcripts. Multiple codes

were allowed per stanza, as there may have been multiple information gap instances

contained in a group of related utterances. The coders discussed their initial coding

Table 1: The coding scheme.
Code Description Examples

Feature/
Feedback

Question or statement expressing general
lack of understanding of the meaning of a
specific visual feedback or action item,
but with no goal stated.

“So with the border, does
purple mean its straight-up
right and blue means it’s not
right?”

Explanation

Explanation to help partner overcome an
information gap. The explanation may be
right or wrong.

“<border color> just has to
do with how much you’ve
been messing around with
it.”

Whoa
Exclamation of surprise or of being
overwhelmed by the system’s behavior.

“Whoa.”

Help
Question or statement explicitly about the
need for additional help.

“Help.”

Self-
Judgment

Question or statement containing the
words “I” or “we,” explicitly judging the
participant or the pair’s mastery of the
environment or task.

“I’m not sure if we’re
qualified to do this
problem.”

Oracle/
Specification

Question or statement reasoning about a
value and/or a formula.

“Divided by 10? I don’t
know...I guess it should be
times 10.”

Concept
Question about an abstract concept, as
opposed to a question about a concrete
feature/feedback item on the screen.

“What does ‘tested’ mean?”

Strategy
Question

Explicitly asks about what would be a
suitable process or what to do next.

“What should we do now”

How Goal
Asks how to accomplish an explicitly
stated goal or desired action. (An instance
of Norman’s Gulf of Execution [27].)

“How do you get 100%?”

Strategy
Hypothesis

Suggests a hypothesized suitable strategy
or next step to their partner.

“Let’s type it in, see what
happens.”

13

decisions and made changes if they agreed that a code had been inadvertently

overlooked or misapplied.

A widely used rule of thumb is that 80% agreement or higher between coders

indicates a reasonably robust coding scheme. Because more than one code could be

placed on a stanza, the calculation of agreement for a particular stanza required

comparing two sets of codes (one from each coder). The percentage of agreement for

a stanza was calculated by dividing the size of the intersection by the size of the

union. For example, if one rater coded a stanza {Help, Self-Judgment} and the second

coded it {Strategy Hypothesis, Self-Judgment}, then the agreement for that stanza

would be |{Strategy Hypothesis, Self-Judgment} ∩ {Help, Self-Judgment}| /

|{Strategy Hypothesis, Self-Judgment} ∪ {Help, Self-Judgment}| = 1/3 = 33%. The

average of all 425 coded stanzas resulted in 90% agreement.

14

4 Results

Table 2 lists the frequencies of each type of information gap found in the 425

stanzas, and Figure 4 shows the distribution over time. (One pair was excluded from

the time graphs, since their overall time was considerably less than that the others’.)

Table 2: Code frequencies.
Code Count (Percent of Total)

Features/Feedback:
 Feature/Feedback (questions) 77 (10%)

 Explanation 48 (6%)

Big Information Gap:
 Whoa 14 (2%)

 Help 23 (3%)

Self-Judgment 67 (9%)

Oracle/Specification 316 (40%)

Strategy:
 Concept 8 (1%)

 Strategy Question 39 (5%)

 How Goal 20 (2%)

 Strategy Hypothesis 169 (22%)

Features

Strategy

Big Info

0

10

20

30

40

50

60

70

10 20 30 40 50 60

C
ou

nt
s

Oracle/Specification

Self-Judgment
Gap

Figure 4: Code frequency within each 10-minute interval. Task 2 (Payroll) began

after 20 minutes. Similar codes were grouped to aid discussion of results.

Whoa,
Help

Concept, Strategy
Question, How Goal,
Strategy Hypothesis
Features/Feedback,
Explanations

15

4.1 Questions and Explanations About Features and Feedback

A widely used approach to introducing users to a new interface is to provide

information about the meaning of features: both user actions available, such as

options user can select, and feedback items they might receive, such as red underlines

under misspelled words. This information is often contained in tool tips and/or online

help systems organized by feature.

In our study, the information gaps that are satisfied by this kind of explanation

were observed as questions participants asked about what specific features mean,

such as “What does the purple border mean?” (type Feature/Feedback), and as

explanations of a specific feature’s meaning by one participant to the other, such as “I

think the purple means it’s wrong” (type Explanation). (Explanations suggest an

information gap because they imply that one participant thinks the other is lacking

this information.)

As Figure 4 indicates, feature-oriented gaps were highest at the end of the

experiment. Still, as can be seen in Table 2, the combined percentage of feature-

oriented information gaps was a surprisingly low 16%. Recall that, as business

students with multiple years of spreadsheet experience, the participants had fixed

bugs in spreadsheets before, seemingly leaving only orientation to the unfamiliar

interface as a barrier. Yet, few of their information gaps were about the interface,

despite our removal of feature-oriented support.

Practical implications: End-user debugging explanation approaches that center

mainly on the meaning of the system’s features and feedback—a common strategy in

online explanation systems—would address only a fraction of what our participants

wanted to know.

4.2 Big Information Gaps: Whoa! Help!

 “Whoa!” Approximately 2% of the responses expressed surprise and confusion

at feedback that had just occurred on the screen. Information gaps of type Whoa were

16

often in response to several visible changes occurring at once, such as turning on

dataflow arrows (Figure 1). Another 3% of the information gaps explicitly expressed

a general need for help (coded Help), implying that there was a need for more

information to even be able to verbalize a more specific question. Both of these types

of questions expressed a lack of clues about the current situation or what to do about

it. These results are good reminders that sometimes when a user needs explanations, a

more specific question does not readily occur to them. In our study, this happened 5%

of the time.

Practical implications: A look at the timing of the Whoa and Help instances

provides some guidance as to how a debugging explanation system might address this

type of information gap. First, note in Figure 5 that the general requests for

information (type Help) were greatest at the beginning of the first task when little was

known about the environment and task, and at the 50-minute point (30 minutes into

the more difficult spreadsheet). This timing suggests that end-user debuggers may

need more broad-based support at the beginning of the task and in moments of

particular difficulty, such as suggesting ideas to help the users (re-)connect to features

or strategies that may help them.

Whoa

Help

0
2
4
6

10 20 30 40 50 60

C
ou

nt
s

Figure 5: Frequency of Help and Whoa codes within each 10-minute interval.

Second, as Figure 5 shows, type Whoa occurred mostly in the middle of the

experiment. At this time participants had enough experience to form an early mental

model of how the environment worked. However, the application of this model

during the more difficult task may point out a serious misconception. According to

research into the psychology of curiosity [24], moments of surprise such as these are

opportune times for explanations, as people curious about such surprises seek to

17

satisfy the information gap that led to the surprise. An explanation system that kept

track of the amount the user has used the features and the amount of recent feedback

may be able to determine whether a generic “help!” button push is more likely to be

the result of a type Help versus a type Whoa information gap. In our study, for the

Whoa type of information gap, a look at the system state sometimes revealed the

likely cause of confusion. In these cases, a context-sensitive explanation system

might successfully respond to Whoa requests by providing assistance on the most

recent feedback.

4.3 Self-Judgments: Am I smart enough to succeed at this task?

Of the participants’ information gap instances, 9% were self-judgments of their

own mastery of the system or of the debugging task, suggesting that self-judgment

was a significant factor in their cognitive processing as they worked on the bugs.

These self-judgments are instances of metacognition, in which a learner monitors the

success of his or her own learning processes [14]. Metacognitive activity is well-

established as an important influence on learning and understanding [38].

These judgments also provide a view of the participants’ self-efficacy. Self-

efficacy is a person’s belief that they will succeed at accomplishing a specific task,

even in the face of obstacles [5]. According to self-efficacy theory, the amount of

effort put forth is impacted by a person’s self-efficacy. In our own work with self-

efficacy, we have seen it have a significant effect on end users’ willingness to use

advanced debugging features [8]. In that work, some users’ self-efficacy was much

lower than warranted, particularly among females. In previous studies as well as in

the current one, we have also observed examples of participants overrating their own

performance, saying things like “We did it right” when in fact they had not. Both

overrating and underrating performance may point to failures of the system to provide

accurate feedback regarding the users’ debugging progress or users not correctly

interpreting the feedback given.

18

Practical implications: An effective explanation system that succeeds at

fulfilling end-user debuggers’ information gaps may also improve the accuracy of

users’ self-judgments. Due to the effects of self-efficacy and metacognition, this in

turn may help increase debugging success simply by helping users persist in their

efforts.

4.4 Oracle and Specification Questions: Is this the right

value/formula?

In debugging a spreadsheet, it may not always be clear to users whether or not a

value is correct. In software engineering, difficulty determining whether a value is

right or wrong is called the “oracle problem.” The oracle problem is important

because its presence weakens many of the user’s problem-solving devices such as the

power of immediate visual feedback, user tinkering, and testing behaviors. After all,

these behaviors are not helpful when the user cannot tell whether the result is right or

wrong.

“How do we know if that’s right or not?” This information gap instance not

only shows one example of the oracle problem occurring, it also expresses a request

for information about how to decide whether a value is right. A closely related

problem that arises in debugging is whether the formula (“source code”) correctly

implements the specifications or, if the user has already determined that it does not,

how to make it do so: “So the average, why is it divided by 3?”

In our study, 40% of the information gap instances fell into the Oracle /

Specification category. Note that this large fraction of the total set of questions is

about the task (debugging), not about the features or the system. This is consistent

with Carroll and Rosson’s description of the “active user” [11], who focuses much

more on the task at hand than on the availability of potentially interesting user

interface features.

19

Practical implications: Some information gap instances of this type centered on

a particular cell, such as “We need some more money for this…we’re missing $300.”

Such instances may be well served by an explanation that suggests changes to a

spreadsheet to produce a desired output, such as the direction of Abraham and

Erwig’s goal-based debugging suggestions [1], or by an approach that explicitly

supports investigation into the reason for a specific value or event, as with Ko and

Myers’s Whyline work [22]. Other information gap instances encompassed a larger

subset of the spreadsheet, such as “Where is it getting the wrong math here?” One

possible solution to this type of question might be to remind the user of narrowing-

down techniques such as WYSIWYT with fault localization [10].

4.5 Strategy: What should we do?

Fully 30% of the information gap instances pertained to strategy issues. There

were four codes relating to strategy: Concept, Strategy Question, How Goal, and

Strategy Hypothesis. The primary type in this group at every time period was Strategy

Hypothesis (Figure 6), in which participants actively hypothesized strategies, which

they usually proceeded to try out. This again calls to mind the active user—one who

seeks mainly information directly pertinent to their goal. Type Strategy Hypothesis

alone accounted for 22% of the information gap instances.

Practical implications: Most of the strategy information gap instances were

global in nature, rather than being about a particular feature (e.g. “What should we do

next?”). Due to the lack of a contextual tie, a feature-anchored explanation such as a

Strategy
Question

Concept0
5

10
15
20
25
30
35
40

10 20 30 40 50 60

C
ou

nt
s

Strategy Hypothesis

How
Goal

Figure 6: Frequency of strategy codes within each 10-minute interval.

20

tool tip seems a poor fit for this sort of information gap. Even so, some of the

remarks, while global, still had ties to particular features. For example, “What’s

testing?” (Concept) could, in our setting, be answered in explanations of the testing

features, and “How do we get to 100%?” (How Goal) might be answered in

explanations of the testing progress indicator (top of the spreadsheet environment in

Figure 1).

This group of information gaps presents a good opportunity for improvement in

end-user debugging explanations. In some help systems, strategy is addressed in

separate tutorials about a system’s usage, but this seems an inappropriate solution

given the active users our participants appear to be. The key may lie in linking

feature-located and feature-centric explanations with broader explanations that tie the

use of features into strategic goals. In [7] the use of broader help information in

expandable tool tips, including some coverage of strategy, was proposed. This is an

example of the “layered” approach to explanations recommended by [13] for use in

minimalist instruction aimed at active users; given our observations of participants’

active debugging style, this may be a step in the right direction.

4.6 Implications of Co-occurrences

Two code types co-occurred in the same stanza with certain other types an

inordinate number of times: Self-Judgments, and Strategy Hypotheses.

Self-Judgment

Oracle/ Specification

45 (64%)
Self-Judgment

Strategy Hypothesis
33 (47%)

Features/Feedback

 34 (20%)

117 (70%)

Strategy Hypothesis

Oracle/ Specification

 34 (44%) Strategy Hypothesis

Figure 7: The top two code co-occurrences for (top) Self-Judgments and (bottom)

Strategy Hypotheses.

21

A majority (64%) of the Self-Judgments occurred in stanzas also showing

Oracle/Specification information gaps, as Figure 7 illustrates. Also, 47% co-occurred

with Strategy Hypotheses. These were far ahead of the third most common co-

occurrence, at only 19%, with Features/Feedback, not shown in the figure. (The

percentages exceed 100% because more than two codes sometimes occurred in a

single stanza.) This suggests that the most appropriate places for debugging

explanations to attempt to improve users’ ability to self-judge will be in the context of

problem-oriented communications and with strategy-oriented communications. In

particular, it appears that a system’s feature explanations are not likely to be the right

context for assisting users in making more accurate self-judgments of their

performance.

Furthermore, 70% of the Strategy Hypothesis instances co-occurred with

Oracle/Specification instances, implying that participants’ main interest in strategy

was in applying it to the problem domain, as opposed to building it up with the

features as a starting point. The second-ranked co-occurrence was with

Features/Feedback at only 20% of the Strategy Hypotheses. However, the flip side of

this runner-up was that 44% of the Feature/Feedback information gap instances

included Strategy Hypotheses, implying that feature-centric “hooks” to strategy hints

would be welcomed by users—but would not alone be enough, since they would still

leave 80% of the Strategy Hypothesis gaps unfilled.

22

5 Comparison to Other Work

Researchers have developed coding schemes for users’ questions and comments in

settings other than end-user debugging. To help understand what might be end users’

unique needs in the debugging context, we first considered and now compare our

coding scheme to several others.

We searched the literature for work that coded some form of information gap. The

most relevant works (Table 3) centered on questions people asked and barriers they

experienced. Anthony et al. [3] analyzed the questions students directed to a

simulated algebra tutor. Person and Graesser [30] summarized a number of studies

examining human-human tutoring dialogs. Gordon and Gill [17] analyzed questions

designed for knowledge elicitation from domain experts [17]. Ko and Myers [23]

studied a usage context somewhat similar to our own—problems experienced by

novices learning a programming language (Visual Basic.Net).

Prevalence To compare our coding scheme with these, we studied the category

description and illustrative examples for each question or comment category, to

determine similarity to one or more of our codes. We used a relatively liberal decision

rule in identifying overlap—if we could find multiple data instances from one of our

own categories that would have been captured by a code in another scheme, we

labeled it as a “match.”

Despite the variation in information and task context, we identified some overlap

for all of our codes except two—Help and Explanation. The lack of overlap for these

codes may be partially due to our experimental set-up that reflected collaborative end-

user debugging: for example, working with a partner probably encourages users to

offer explanations to one another.

Table 3: Overlap of our codes with others’ coding schemes.
Our Codes Anthony et al. [3] Person/Graesser [30] Gordon/Gill [17] Ko/Myers [23]

Goal: Find out what
end-user debuggers
want to know

Goal: Design
intelligent tutor
based on student
questions

Goal: Design
intelligent tutor based
on human-tutor
dialogue

Goal: Knowledge
acquisition from experts
for information systems

Goal: Describe barriers
in learning a
programming language

Feature/Feedback Interface N/A Event, State Understanding

Explanation N/A N/A N/A N/A

Whoa N/A N/A N/A Understanding

Help N/A N/A N/A N/A

Self-Judgment N/A Meta-comment N/A N/A

Oracle/Specification Answer-oriented Problem-related N/A N/A

Concept Principle-oriented,
Definition

 N/A Concepts N/A

Strategy Question N/A N/A N/A Design

How Goal Process-oriented,
Interface

N/A Goal, Goal/Action Use, Selection,
Coordination

Strategy Hypothesis N/A Reminding example N/A N/A

23

24

Instead of asking about specific procedures, our users often seemed to operate at the

more abstract level of goal-setting, such as asking about a suitable process to follow

(Strategy Question) or making a goal-setting proposal to the partner (Strategy

Hypothesis). Together these two codes accounted for 27% of our data, but we found little

overlap between these codes and the other schemes. The clearest case of overlap is with

Ko and Myers [23], who created a “Design” code to classify novice programmer

problems that are inherent to programming and distinct from language mechanisms.

These researchers’ setting was similar to ours because it contained aspects likely to be

unfamiliar to users while also being challenging enough that they sometimes needed help

just to identify reasonable goals.

Only one of the other schemes overlapped with the Self-Judgment code (a judgment

about the mastery level of “I” or “we”). The importance of reflection about one’s own

knowledge state (metacognition) in learning and problem solving is well-established [14].

It is not yet clear what sorts of cognitive or social settings are most likely to evoke

reflection about one’s capacities during problem-solving episodes. Perhaps collaborative

work situations, as in our experiment, encourage self- or pair-evaluation as a sort of

knowledge calibration mechanism; alternatively it may simply be that other researchers

have been less attuned to metacognition and thus have made no analogous distinctions in

their coding.

25

6 Follow Up: Recorded Demonstrations

The results presented above reveal the diversity of information end-user debuggers

want to know about. One issue that arose from this data, however, was that our existing

presentation style (textual explanations inside of pop up tool tips) would not be able to

support this variety of information without heavily burdening the user with reading. We

thus began to consider recorded demonstrations as an explanation approach. The

strengths of this approach—reported in [4, 18, 28, 32, 34, 39]—seemed likely to provide

at least four advantages over static approaches.

 First, our users were observed to be very interested in strategy (30% of all

information gaps). Strategies, in general, can be described as a series of steps, i.e. a

procedure. Palmiter and Elkerton pointed out that recorded demonstrations can be very

effective at teaching a procedure [28]: their demonstration groups were faster and more

accurate than groups receiving textual instructing when learning a procedural task. They

warned, however, that retention was found to be slightly worse in the subjects who

received the recorded demonstrations. We do not view this as a major obstacle since

performance—not education in the long term—is our primary concern.

Secondly, we found there to be a significant number of information gaps where users

judged their own behavior (9% of all information gaps). Research into self-efficacy (see

Section 4.3 for definition) has found that it can have a significant impact on users’

success [5, 8]. Additionally, Bandura’s work with self-efficacy identified one source of a

person’s self-efficacy as vicarious experience, meaning that seeing others successfully

perform a task will help to persuade the user that they too will be successful [5]. Such an

experience would be nearly impossible to produce with text alone. A recorded

demonstration, though, could display an actual person succeeding at the task the user was

struggling with.

The third reason relates to the active disposition of our users. Past research has taken

such “active users” into account when constructing textual user manuals [13]. These

works primarily follow a Minimalist Learning approach [11], one which we have

employed with our textual explanations. However, evidence from the field of video base

26

instruction suggests that instructions can be given more efficiently with video than with

text [39]. This is desirable because if we can provide more efficient instructions we can

return our active users to their task more quickly.

Fourth, using our interface while recording the demonstrations will improve the

closeness of mapping of our explanations to the activities we would like the users to

perform. Closeness of mapping—one of the Cognitive Dimensions of Notations [16]—

describes how closely a representation is related to its domain. The Cognitive

Dimensions provide a framework for designers whose goal is to ease the mental load

placed on the users attempting to make use of the notation.

As a next step, we looked to the work of Plaisant and Shneiderman to advise the

design of our demonstrations. Their work with recorded demonstrations provided the

guidelines shown in the first column of Table 4 for producing successful demonstrations

[32].

Table 4: Guidelines for producing recorded demonstrations.
Constraint or Guideline Type Source / Rational

Provide procedural instruction rather than
conceptual information

Semantic Content

Keep segments short (15 to 60 seconds) Structure

Ensure that tasks are clear and simple Semantic Content

Coordinate demonstrations with textual
documentation

Syntax

Use spoken narration Form

Be faithful to the actual user interface Form

Use highlighting to guide attention Form

Ensure user control Structure

Keep file sizes small Structure

Strive for universal usability Form

Plaisant and
Shneiderman [32]

27

Unfortunately, these guidelines are predominately geared towards the syntax, form,

and structure of the recorded demonstration, as the second column of Table 4 points out.

In order to guide the development of the demonstrations’ semantic content we identified

additional constraints grounded by our formative study, which are given in Table 5.

Table 5: Design constraints used to guide the content of our demonstrations.
Constraint or Guideline Type Source / Rational

Present information in a
concrete to general sense

Semantic
Content

Concrete information gives a “how to” example,
while general information gives advice that they
can apply in other cases.

Include head shot of
person performing actions

Form Having an actual person on the screen will give
the user someone to relate to, presenting the
opportunity for a vicarious experience aimed at
improving the user’s self-efficacy.

Interpret feedback Semantic
Content

Accurate interpretation of feedback avoids
problems in the accuracy of the users’ self-
judgments.

Mention oracle problem
and what to do if values
are hard to decide about

Semantic
Content

Substantial empirical evidence has shown end-
user programmers struggle with this issue (e.g.
[21, 31]).

Make benefits clear Semantic
Content

According to the Surprise-Explain-Reward
strategy [40] and Attention Investment [9],
giving the user a way to judge benefits will have
a significant impact on their future actions.

Keep active user in mind Semantic
Content

The users we intend to support are those whose
primary goal is working on their task.

Use informal terminology Syntax Avoid intimidating vocabulary that could
prevent the user from relating to, or identifying
with the demonstrator.

Verbalize the reasoning
of the speaker

Semantic
Content

To keep user from getting lost, the demonstrator
will need to think out loud.

Give strategy information Semantic
Content

Based on our think-aloud study, users’
information gaps frequently involve strategy.

28

Based on the goals of an individual demonstration, tradeoffs were made as to which

guidelines or constraints were the highest priorities. With these guidelines and constraints

in mind, we produced a series of recorded demonstrations.

6.1 Detailed Design and Creation of the Demonstrations

The creation of each recorded demonstrations involved three steps: First the content

of the demonstration was written out in text (Figure 8). This provided a rough script for

the demonstrator to follow to ensure that we were adhering to our content constraints.

Next, we began to move more away from content and closer towards presentation

by producing storyboards that illustrated visual aspects of the demonstrations that we

wanted to match up with the text in the scripts. The scripts produced in the first step

generally contained visual cues at certain points in the dialogue that aided the creation of

the storyboards. For example, the circled line of the script in Figure 8 can be seen

visually in the third window of Storyboard 1 (Figure 9).

Figure 8: Example script for demonstration with matching constraints.

29

Figure 9: Example storyboard for recorded demonstration.

In the third step—where Plaisant and Shneiderman’s guidelines were most useful—

we created the final product. Screen plus user audio-visual capture technology (the same

that was used to obtain the information gap data during the think-aloud study) was used

to create the demonstrations. This allowed us to interleave the recording of the desired

actions (performed on the user interface) with the video and audio of the person

performing the actions. We experimented with using one demonstrator (male) as

compared to two (a male and a female, where one of the demonstrators performed the

role of a confused user), ultimately choosing the two demonstrator situation because it

more closely fit the rationale behind the “Include head shot…” constraint. The complete

collection of storyboards can be found in Appendix F and the demonstrations can be

viewed at: http://web.engr.oregonstate.edu/~burnett/Forms3/RecordedDemos/RecordedDemos.htm

Once completed, the demonstrations needed to be integrated into our research

prototype and made available to the user. As suggested by the results presented in Section

4.6, we chose to link the demonstrations to feature-centric explanations. Since there was

not a one-to-one relationship between features and demonstrations (more features than

demonstrations) we linked demonstrations to the explanation(s) that most closely related

to the content of the demonstration. For example, the Make Testing Progress

30

demonstration was linked to the explanation for arrows, the checkmark and to the testing

progress bar as they are all primarily used for making testing progress.

The “link” was accomplished by appending a string holding the file name of the

related demonstration onto the text of each tool tip as shown in Figure 10.

Model
Let tooltipText = what we want the user to see
Let demoFileName = the video file’s name
Let internalTooltip = tooltipText + demoFileName

Model sends internal tool tip to front end.
Front end parses internal tool tip back into tooltipText and demoFileName

Front End
Let button = new Button (“Show Me”)
Display tooltipText and button

If users pushes button then
 Open browser with ConstantAddress + “?demo=” + demoFileName
 Where ConstantAddress is on Dr. Burnett’s web space

Figure 10: Pseudo-code for the integration of recorded demonstrations into our
research prototype.

Thus, the web page was displayed as a result of the “Show Me” button being

pressed and was passed the file name of the demonstration using query string parameters.

A media player was embedded into the web page and programmed to start playing the

file found at the location given in the query string. The complete details of this

implementation are displayed at:
https://secure.engr.oregonstate.edu/wiki/forms3/index.php/Recorded_Demonstration_Documentation

6.2 Future Work

An empirical evaluation of the recorded demonstrations is needed to ascertain

whether they are indeed filling the intended information gaps. This will require at least an

analysis of the effect the demonstrations have on users’ strategy (similar to that done in

[33]), self-efficacy (similar to [7, 8]), and how disruptive they are to the users’ primary

goal of completing their task (similar to [35]).

We chose a link from a feature-centric explanation as an entry point to the

demonstration. This decision was supported by the results of our investigation of co-

31

occurrences in Section 4.6. However, the evaluation of the recorded demonstrations

themselves may also point to a more appropriate entry point.

Lastly, it is not likely that these demonstrations will completely fill the information

needs of our users. In fact, any information gaps that we are successful in filling will

provide a scaffolding allowing users to advance to the next step where they are likely to

encounter new types of information gaps. We hope that supporting this next generation of

information gaps will arise as the next challenge to face, as it will indicate that this work

has helped the progression of users’ problem-solving ability.

32

7 Conclusion

The pair think-aloud study presented in this thesis was aimed at capturing the

information gaps arising for end users in the course of debugging spreadsheets. While

further investigation is needed to determine the generality of the results to other settings,

there were several implications that seem applicable to a variety of end-user debugging

systems. To summarize:

• Unlike what is done in many software systems, debugging explanations for end-user

programmers should not be primarily focused on how the debugging features work. In

our study, feature-oriented explanations would address only a fraction of what our

participants wanted to know.

• The greatest need for explanations fell in the Oracle/Specifications category: figuring

out whether a value was right or wrong, whether a particular snippet of code (formula)

was right or wrong, and how to fix values and formulas that were wrong. The

prevalence of this category points to a need for more research on how to support it.

• The second most common category was Strategy. Strategy information gaps

outnumbered feature-oriented information gaps by a 2:1 ratio. To date, there has been

almost no research on supporting information gaps of this type.

• Debugging explanations should focus not only on local information gaps, (e.g.,

pertaining to one cell), but also on global information gaps (e.g., pertaining to an

entire spreadsheet).

• When a generic “help” request is made, an explanation system might be able to figure

out, from the system state and from the timing of the request, if it is a (re-)connect

question versus a feedback-oriented surprise.

• Debugging explanations should strive to fulfill users’ needs to self-judge their

progress. This category contributed a surprising 9% of the information gaps. Accurate

self-judgment matters to debugging effectiveness for both its self-efficacy and its

metacognitive implications.

33

The above results have specific implications for designers of debugging support for

end-user programmers, and also identify some open research questions in this area.

Additionally, we have presented the design and implementation of a complementary

explanation approach grounded in the results of a think-aloud study. The design of this

approach was aimed at exploiting the benefits of recorded demonstrations to address

active users’ strategy and self-judgment information gaps as well as to improve our

explanations’ closeness of mapping. The creation of design constraints from the literature

and from our study advised the content of the demonstrations.

We hope that following up on these results will help to fill end-user programmers’

critical information gaps that currently serve as barriers to the genuine effectiveness of

end-user programming.

34

Bibliography

[1] Abraham, R., Erwig, M., Goal-directed debugging of spreadsheets, IEEE Symp.
Visual Langs. Human-Centric Comp., 2005, 37-44.

[2] Allwood, C., Error detection processes in statistical problem solving. Cognitive

Science, 1984, 413-437.

[3] Anthony, L., Corbett, A. Wagner, A., Stevens, S., Koedinger, K., Student question-

asking patterns in an intelligent algebra tutor, Conf. Intelligent Tutoring Sys., 2004,
455-467.

[4] Baecker, R., Showing instead of telling, In Proc. of SIGDOC, 2002, 10-16.

[5] Bandura, A., Self efficacy: Toward a unifying theory of behavioral change.

Psychological Review, 1977, 191-215.

[6] Beckwith, L., Kissinger, C., Burnett, M., Wiedenbeck, S., Lawrance, J., Blackwell,

A., Cook, C., Tinkering and gender in end-user programmers' debugging, ACM Conf.
Human Factors Comp. Sys., 2006, 231-240.

[7] Beckwith, L., Sorte, S., Burnett, M., Wiedenbeck, S., Chintakovid, T., Cook, C.,

Designing features for both genders in end-user software engineering environments,
IEEE Symp. Visual Langs. Human-Centric Comp., 2005, 153-160.

[8] Beckwith, L. Burnett, M., Wiedenbeck, S., Cook, C., Sorte, S., Hastings, M.,

Effectiveness of end-user debugging software features: Are there gender issues? ACM
Conf. Human Factors Comp. Sys., 2005, 869-878.

[9] Blackwell, A., First steps in programming: A rationale for attention investment

models, Proc. IEEE Symp. Human-Centric Comp. Langs. Envs., 2002, 2-10.

[10] Burnett, M., Cook, C., Rothermel, G., End-user software engineering,

Communications of the ACM, 2004, 53-58.

[11] Carroll, J., Rosson, M., Paradox of the active user, In Interfacing Thought: Cognitive

Aspects of Human-Computer Interaction, J. Carroll (Ed.), MIT Press, 1987, 80-111.

[12] Conway, M., et al., Alice: Lessons learned from building a 3D system for novices,

ACM Conf. Human Factors Comp. Sys., 2000, 486-493.

[13] Farkas, D., Layering as a safety net for minimalist documentation, In Carroll, J. M.,

(Eds.), Minimalism Beyond the Nurnberg Funnel, MIT Press, 1998, 247-274.

35

[14] Forrest-Pressly, D., MacKinnon, G., Waller, T., Metacognition, Cognition, and
Human Performance, Academic Press, 1985.

[15] Gee, J., An Introduction to Discourse Analysis, Routledge, London, 1999.

[16] Green, T., Cognitive dimensions of notations, In A. Sutcliffe and L. Macaulay (Eds.)

People and Computers V. Cambridge University Press, 1989. pp 443-460.

[17] Gordon, S., Gill, R., Knowledge acquisition with question probes and conceptual

graph structures, In T. Lauer, E. Peacock, A. Graesser (Eds.), Questions and
Information Sys., Lawrence Erlbaum Assc., 1992, 29-46.

[18] Harrison, S., A Comparison of still, animated, or nonillustrated on-line help with

written or spoken instructions in a graphical user interface, ACM Conf. Human
Factors Comp. Sys., 1995, 82-89.

[19] Kahler, H., Kensing, F., Muller, M., Methods & tools: constructive interaction and

collaborative work: introducing a method for testing collaborative systems,
Interactions, 7, 3, June 2000, 27-34.

[20] Katalin, E., “Please keep talking”: The ‘think-aloud’ method in second language

reading research, Novelty, 7, 3, 2000.

[21] Kissinger, C., Burnett, M., Stumpf, S., Subrahmaniyan, N., Beckwith, L., Yang, S.,

Rosson, M., Supporting end-user debugging: What do users want to know? ACM
Conf. Advanced Visual Interfaces, 2006, (to appear).

[22] Ko, A., Myers, B., Designing the Whyline: A debugging interface for asking

questions about program failures, ACM Conf. Human Factors Comp. Sys., 2004, 151-
158.

[23] Ko, A., Myers, B., Aung, H., Six learning barriers in end-user programming

systems, IEEE Symp. Vis. Lang. Human-Centric Comp., 2004, 199-206.

[24] Lowenstein, G., The psychology of curiosity, Psychological Bulletin, 116, 1, 1994,

75-98.

[25] Miller, R., Myers B., Outlier finding: Focusing user attention on possible errors,

ACM User Interface Soft. Tech., 2001, 81-90.

[26] Nardi, B., A Small Matter of Programming: Perspectives on End User Computing,

MIT Press, 1993.

[27] Norman, D., The Design of Everyday Things, New York, NY: Doubleday, 1988.

36

[28] Palmiter, S., Elkerton, J., An evaluation of animated demonstrations for learning
computer-based tasks, ACM Conf. Human Factors Comp. Sys., 1991, 257-263.

[29] Panko, R., What we know about spreadsheet errors, Journal of End User Computing,

1998, 15-21.

[30] Person, N., Graesser, A., Fourteen facts about human tutoring: Food for thought for

ITS developers, AIED Workshop on Tutorial Dialogue, 2003, 335-344.

[31] Phalgune, A., Kissinger, C., Burnett, M., Cook, C., Beckwith, L., Ruthruff, J. R.,

Garbage in, garbage out? An empirical look at oracle mistakes by end-user
programmers, IEEE Symp. Visual Langs. Human-Centric Comp., 2005, 45-52.

[32] Plaisant C., Shneiderman, B., Show me! Guidelines for producing recorded

demonstrations, IEEE Symp. Visual Langs. Human-Centric Comp., 2005, 171-178.

[33] Prabhakararao, S., Cook, C., Ruthruff, J. R., Creswick, E., Main, M., Durham, M.,

Burnett, M., Strategies and behaviors of end-user programmers with interactive fault
localization, IEEE Symp. Visual Langs. Human-Centric Comp., 2003 15-22.

[34] Rieber, L. P., Animation in computer-based instruction, Educational Technology

Research and Development, 38 (1), 1990, 77-86.

[35] Robertson, T., Lawrance, J., Burnett, M., Impact of high-intensity negotiated-style

interruptions on end-user debugging, J. Visual Langs. Comp., to appear 2006.

[36] Ruthruff, J. R., Phalgune, A., Beckwith, L., Burnett, M., Cook, C., Rewarding

‘good’ behavior: End-user debugging and rewards, IEEE Symp. Visual Langs. Human-
Centric Comp., 2004, 107-114.

[37] Wagner, E., Lieberman, H., Supporting user hypotheses in problem diagnosis on the

web and elsewhere, ACM Int. Conf. Intelligent User Interfaces, 2004, 30-37.

[38] Weinert, F., Kluwe, R., (Eds.) Metacognition, Motivation, and Understanding,

Lawrence Erlbaum Associates. 1987.

[39] Wetzel, C., Radtke, P., Stern, H., Instructional Effectiveness of Video Media,

Lawrence Erlbaum Associates. 1994.

[40] Wilson, A., Burnett, M., Beckwith, L., Granatir, O., Casburn, L., Cook, C., Durham,

M., Rothermel, G., Harnessing curiosity to increase correctness in end-user
programming, ACM Conf. Human Factors in Comp. Sys., 2003, 305–312.

Appendices

38

Appendix A: Sample of Transcribed and Coded Dialogue

 Cory Neeraja Aggre-
Stanza Text Code Code ment

1
e. whats the difference between like the two
checkmarks? bmean bmean 1

 f. or the two xs?

one of them, the darker one means its right, and then
the lighter one means seems right maybe

 e. oh, ok
 () [rest of tutorial]

2

f. you know how we can click on the red boxes and
show the arrows where they go, if we click on one of
these boxes [input cells] will it show, is there any way
to get an arrow to go to that one [refering to an arrow
from quiz1 to min_q1_q2] hq

bmean,h
q 0.5

 no
 f. oh, ok
 () [rest of description]

3
f. ok, so lets start by quiz1, just we got this, enter
81.25 sh, vf vf 0.5

 e. 81.25, apply
 f. ok, quiz average
 e. wheres the quiz average? oh right there
 f. it's right down there
 e. is 16.2
 f. it doesn't-

e. we have to put in quiz2 too though, we have to put
in all the quizes

 f. oh, ok, ya go ahead
 e. so whats quiz2?
 f. 100
 e. ah, smart
 e. whats quiz3?
 f. 100
 f. quiz4 would be 96, and quiz5 would be 100

4
e. ok, so thats the average now, that doesn't make
any sense vf,sqh vf,sqh 1

 f. ya, thats ninety-
 e. ok, so ya that has to be wrong
 f. scroll that down and see
 e. quiz1 minus minimum
 f. min quiz1 quiz2?
 e. ok, to find the average you have to divide it, so
 f. wait, wait, hold on don't change anything yet,
 e. oh, thats divided by
 f. do not change anything yet.
 e. I'm not

f. miny quiz1, minus quiz1 and quiz2. I don't get what
their asking for? (.)

5 e. its an if statement, so if quiz- vf vf 1

39

 f. one is less than
 [both] quiz2 then quiz1

e. oh that must mean they get to drop the lowest
score between those two

 f. one of the two, ya
6 f. I guess we should read the front of this [reading] sh,vf vf 0.5

f. ok, [reading aloud] the midterm is the average of the
third midterm and the higher of the first two

f. the first midterm is out of 50 points the second
midterms are worth 100 points, students receiving a
non-zero grade on the third midterm recieve a two
point bonus

 e. so two extra credit points
 f. the final exam is out of 146, blah blah blah

f. there are 5 quizes, the average is calculated on only
four of these scores, dropping the lower of the first two
quizes

 e. ok
 f. ok, so

7
f. minus quiz1 or ok minus that [refering to
min_q1_q2] vf, sh sh,vf 1

 f. would we divide by 4?
 e. ya

e. well, is this right though [refering to min_q1_q2],
this part up here

 f. if quiz1, I think so, thats-

e. if quiz1 is < quiz 2, then quiz2 that wouldn't be
quiz1

 f. if quiz1-
 e. oh wait
 f. is less than quiz2, then quiz1, huh?
 e. ya i think it needs to be switched
 f. ok, well lets write down whatever switches we make
 e. ok
 f. so- oh no just keep that, just switch the >= to the <=
 e. ok
 f. or the less than
 e. if quiz1
 f. you didn't change anything
 f. ok

e. if quiz1 is greater than qui2 then quiz1 else quiz2,
ya see

 f. ok, that makes sense
 e. see there we go, see

8
f. ok, then I'm still saying change this to 4 [refering
back to quiz_avg] vf vf 1

 e. ok
 f. cause that just makes way more sense
 e. ya
 f. and that would be-
 e. ya, that looks way better
 f. that would be the right number

40

 e. well, no why-
 f. oh, wait why would it be
 e. ya, it wouldn't be 94 cause it-

f. cause we have 100, 100, 96, 100, um go back up
here [min_q1_q2]

9
f. see its minusing 100 i think, ya, ya it was right the
first time, roll that back the other way [> back to <] vf,sh,I I,sh,vf 1

 e. are you sure?
 f. yep watch
 e. ok

f. ok, 81.25, this minus this [quiz_avg minus
min_q1_q2 ?] divided by four, look 99

 e. ok, ya
 f. see, I roll it
 f. ok so we got it, so we can check this one right

e. maybe as we go along we should cross off the
words-

f. well we got these little checkmarks, ok check that
one as definitely being right [min_q1_q2]

 e. ok check
10 e. and then this ones right? [refering to quiz avg] vf vf 1

 f. that one, should be right, ya
 e. ok

11
f. ok 21% tested, ok, now we can enter these ones in
Midterm1 2 and 3, um roll with 100 or wait 45 sh,vf 0

 e. 45??
 f. um hm,
 e. ok, midterm2?
 f. 96, then midterm3 is 80
 e. midterm3 is 80?
 f. ok hide that [refering to midterm3]

12

f. now midterm3, ok click on this for a sec, oh no,
curved midterm, oh ok ya, they get the extra 2 bonus
points, click that down so we can look at it real quick
[refering to curved_m3] vf vf 1

 [reading formula]
 f. ok ya thats fine, hide
 e. ok

13 e. so then the final vf, sh sh,vf 1

f. check that one cause its right [refering back to
curved_m3]

 e. ok
 f. and then, the final he got 129, final 129

f. ok now wait, lets check this box, is that ok? [refering
to final_per]

 e. yep

f. ok, cause lets see, the final is out of 146, click that
down, [reading formula]

 e. so thats correct?
 f. ya, we can click
 e. click it

14 f. oo, we're 26 percent tested

41

 [laughter]
15 e. midterm1 percentage, 2 * midterm1 vf vf 1

 f. is it out of 50? that would make sense, if its out of 50
 e. so this is correct?
 f. 2 * whatever, ya that should be right

f. that would make sense wouldn't it? if he got 45, he
got a 90 overall, ok ya, thats very clever

16 [e opens fmla for min_m1_m2]

whoa,sh,
eright,vf,
bmean

bmean,er
ight,vf,sh,
whoa 1

 f. ok, wait I didn't want to look at that one yet
 f. why do we have all these arrows up here?
 e. cause I lit them up, well it tells you where to go
 f. i know, but i'm getting lost with the two-
 f. ok, I guess lets look at midterm average first
 [reading fmla for midterm_avg]

f. wow, thats perfect except we need to figure out first
if thats 90, we need to make sure that 90 % is the
lowest, I guess is what I'm tring to say

17 [reading fmla for min_m1_m2] vf sqh,vf 0.5
 f. ok, wheres midterm2?
 e. right there

f. ok, so thats 96 out of 100, so the 90s whats it, out of
100?

 f. ok, ya so thats right, its dropping that one
 f. so we actually got 96

e. so you can drop either midterm? is that what its
saying?

f. the higher of the first two midterms, so you can drop
either one of these number 1 and number 2[refering to
m1 m2], number 3 you get 2 bonus points for taking it,
but thats it

 e. ok, so we wanna drop the 90

f. and thats whats in that box [refering to
min_m1_m2], so thats- hit hide

 e. so is this correct?

18
f. actually lets just see if we got the right grades now
[turns over ss desc.], nope sh, vf vf,sh 1

 f. course avg should be a 92, so we've got issues
 e. midterm avg, doesn't say (.)
 f. well our midterm avg isn't going to be 143, is it?
 e. no
 f. so lets figure that out
 [reading fmla for midterm_avg]

19
f. oh, we should look at Cory conversation, maybe we
should open that just in case

 e. he didn't say anything
 f. i was gonna say, I have no idea how that works
 e. no it will flash

20 [reading fmla for midterm_avg] vf, sh sh,vf 1

e. so don't you think we should change this [mouse
moves over Curved_m3]

42

f. well what I'm saying is curved midterm3 doesn't
make any sense

 f. it would have to be plus midterm3

e. hold on, lets look at this guy [opens fmla for
curved_m3]

 f. ya we got to add plus midterm3
 f. so just add-
 [change midterm_avg fmla to have midterm3 in it]
 f. ok, ya hit that, try that one
 f. still high, ok midterm1 percentage

e. ok well why would you include that [midterm1 perc]
if your not going to include that because we only
include the higher the higher of the two

f. because its subtracting 90 right there, see what its
saying, we gotta account for everything, cause if we
enter it in whats going to happen there

f. midterm1 percentage plus midterm 2 plus curved
midterm3 plus midterm 3

 e. which is right there
 f. ya minus 90 divided by 2
 f. so the question is why are we getting-
 e. should it be divided by 3?
 f. no, cause we only have 2
 e. oh ya

f. midterm 1 + midterm2 + midterm3 minus 90, thats a
problem [only fmla open is midterm avg]

f. oh no midterm1, so 90 + 96 + 86, so why do we get
such a high number?

f. cause the average between those two isn't even
close to that

e. man if we had a calculator, I wonder if we could go
on here and look at the calculator, do you think that
that average is right?

 f. I don't know, Cory can you look at the calculator? (.)
 [typing into im]
 f. he said 5 seconds, I think he can hear (.)

The entire dataset can be found at:
http://web.engr.oregonstate.edu/~burnett/Forms3/RecordedDemos/all-coded-dialogue.xls

http://web.engr.oregonstate.edu/~burnett/Forms3/RecordedDemos/all-coded-dialogue.xls

43

Appendix B: Transcription Conventions

emphasis spoken emphasis on word

(.) audible pause in speaking

(ia) inaudible speech

() irrelevant speech (off topic, reciting of spreadsheet

description, reading off values)

[comments] comments and actions

Line of text group of words said as if they “go together”

Blank line separates “stanzas” (clumps of statements on the same topic)

X. letter of the alphabet representing the subject who was

speaking

Italic anything spoken or typed by the researcher

- sentence or thought ends abruptly

44

Appendix C: Tutorial Materials

Collaboration Tutorial

Hi, My name is Cory， I will be leading you through today's study.

The other people involved in this study are Dr. Margaret Burnett, Dr. Curtis Cook, and the assistants
helping me out today.

Just so you know, I’ll be reading through this script so that I am consistent in the information I provide you
and the other people taking part in this study, for scientific purposes.

The aim of our research is to help people create correct spreadsheets Past studies indicate that
spreadsheets contain several errors like incorrectly entered input values and formulas. Our research is
aimed at helping users find and correct these errors.

For today’s experiment, I’ll lead you through a brief tutorial of Forms/3, and then you will have an
experimental tasks to work on.

But first, I am required by Oregon State University to read aloud the text of the “Informed Consent Form”
that you currently have in front of you:

• (Read form).

Please do NOT discuss this study with anyone. We are doing later sessions and would prefer the students
coming in not to have any advance knowledge.

Questions?

Contact:
 - Dr. Margaret Burnett burnett@cs.orst.edu
 - Dr. Curtis Cook cook@cs.orst.edu

Any other questions may be directed to IRB Coordinator, Sponsored Programs Office, OSU
Research Office, (541) 737-8008

Think aloud practice:

In this experiment we are interested in what you say as you perform some tasks that we give you. In order
to do this we will ask you to TALK TO EACHOTHER CONTINUALLY as you work on the problems. If
any of you is silent for any length of time, the assistant will remind you to keep talking to each other. It is
most important that both of you keep talking. Do you understand what I want you to do?

Good. For practice, I want you to talk to each other while you answer the following question:

How did you find your way to this room while coming here with your partner?

How to Work in Pairs

You will work in pairs as you do the spreadsheet tasks.

The two of you will work on the same computer with one mouse and one keyboard. One of you will be the
“driver” who controls the mouse and keyboard, doing all the input.

45

The other will be the “reviewer.” The reviewer is not a passive observer. The reviewer analyzes the current
situation, discusses the situation with the driver, makes suggestions and comments, looks for errors, and
thinks about the next steps: There should be lots of discussion and interaction between the driver and
reviewer.

The driver and reviewer change every 10 minutes. You will be notified when it is time to switch by Instant
Messenger, which I will explain further shortly.

Experiment

In this experiment you will be working with the spreadsheet language Forms/3. To help you become
familiar with the features of Forms/3, we're going to start with a short tutorial in which we'll work through
a sample spreadsheet problem. After the tutorial you will be given a spreadsheet and asked to test it,
correcting any errors you find.

As we go through this tutorial, I want you to actually PERFORM the steps I'm describing. When I say,
"click", I'll always mean click the left mouse button once unless I specify otherwise. Pay attention to your
computer screen while you do the steps.

If you have any questions, please don't hesitate to ask me to explain.

For each spreadsheet that we will be working, you will have a sheet of paper describing what the
spreadsheet is supposed to do
Hand out purchase budget description, wait for them to read it

Now open the Purchase Budget spreadsheet by clicking on the bar labeled Purchase Budget at the bottom
of the screen

This is a Forms/3 spreadsheet. There are a few ways that Forms/3 spreadsheets look different than the
spreadsheets you may be familiar with:

• Forms/3 spreadsheets don't have cells in a grid layout. We can put cells anywhere.
However, just like with any other spreadsheet you can see a value associated with
each cell.

• We can give the cells useful names like PenTotalCost. (Point to the cell on the

Spreadsheet).

• Some of the cells have colored borders.

Let’s start by looking at a few formulas. To open the formula for the Pens cell, click on the arrow on the
lower right hand side of the cell. This cell is just a value. Try changing the value to 25 and click the apply
button.

Now open the formula for the PenQCheck cell. You may notice that this cell is not just a value. Its formula
says if the sum of the Pens and PensOnHand is greater than 68, then the cell should contain “not enough
pens”, and otherwise it should contain “pen quantity ok”. Fortunately, for the purposes of this tutorial this
formula is incorrect. Lets try changing this formula so that it correctly prints “pen quantity ok” if Pens +
PensOnHand is greater than 68 and “not enough pens” otherwise. There are two ways to make this change,
either switch the text that comes after the else part with the text that comes after the then part OR change
the > symbol to a <= symbol. Then click the apply when your done.

Forms/3 has several features that respond visually to your actions to help you test and find errors in your
spreadsheet.

46

You might be wondering what does testing have to do with spreadsheets? Well, as you have just seen it is
possible for errors to exist in spreadsheets, but what usually happens is that they tend to go unnoticed. It is
in our best interest to find and weed out the errors in our spreadsheets so that we can be confident that they
work correctly in all situations.

One of the features that you may have noticed is the small box with a question mark in it in the upper right
hand corner of the cell. This decision box is how we communicate to the system which values we think are
correct and which we think are wrong.

Go ahead and click the decision box in the upper right corner of the PenTotalCost cell. Four choices appear
– 2 X marks and 2 check marks. Past research has shown that people who use these features are more
effective at testing and finding errors in their spreadsheets. Placing an X on this cell means the value is
wrong, placing a check means the value is right.

Use the sample correct values in spreadsheet description to help you decide which mark to place. Now try
placing one of these marks by clicking on it. One of the visual responses to this action occurs in the
progress bars at the top of the page. To undo this decision click on the mark again. Notice that everything
went back to how it was. I’ll give you a minute to try each of these marks out. Wait one minute

Another feature is arrows. Position your mouse to the middle of the PaperQCheck cell and click the middle
mouse button (the scroll wheel). Notice that arrows appear. Click the middle mouse button again on any
one of these arrows—it disappears. (PAUSE) Now, click the middle mouse button again on PaperQCheck
cell—all the other arrows disappear.

Make this whole paragraph first person
Any question should be directed to me. I will be out of the room, but there are two ways to ask me
questions: you can either say “Cory” and then your question into the microphone or you can type your
question into the instant messenger. Let’s try asking me a question using the microphone, will the driver
say into the microphone “Cory, what does the X mark mean”. I will respond as soon as I get back to my
computer. All of my responses will show up in the instant messenger window that is labeled Cory at the
bottom of your screen. However, there is a short delay any responses will take 10 to 15 seconds. I will also
instant message you when it is time to switch places.

You also get three free hints to be used to help you test and find errors. (hand them tokens) Simply wave
one of these in front of the screen and I’ll come back in the room to give you a hint.

 have them minimize the Purchase Budget spreadsheet

Spreadsheet task
Gradebook.frm hand out description

Here is a gradebook spreadsheet problem. Let’s read the second paragraph at the top of the description:

“Your task is to test the updated spreadsheet to see if it works correctly and to correct any errors you find.”

The front side of this description describes how the spreadsheet should work.
Also, if you turn to the backside of this sheet (turn over your description), you’ll see that two correct
sample report cards are provided to you. You can use these to help you in your task.

While you are working on the spreadsheet, remember to keep talking to each other. Please talk together
about any questions you have about Forms/3, about the task or errors, any thoughts you have about how to
do the task, or any reasons why you are taking particular actions to complete the task. If you are silent for a
while, the assistant will remind you to keep talking to each other.

Remember, your task is to test the spreadsheet, and correct any errors you find. If you have any questions,
talk about it with your partner or ask Cory. You may find learning those checkmarks and X-marks useful.

47

Start your task now, and I’ll tell you when time is up.

Have them switch places

Payroll.frm hand out description

Here is a Payroll spreadsheet problem. Let’s read the second paragraph at the top of the description:

“Your task is to test the updated spreadsheet to see if it works correctly and to correct any errors you find.”

The front side of this description describes how the spreadsheet should work.
Also, if you turn to the backside of this sheet (turn over your description), you’ll see that two correct
sample payroll stubs are provided to you. You can use these to help you in your task.
While you are working on the spreadsheet, remember to keep talking to each other. Please talk together
about any questions you have about Forms/3, about the task or errors, any thoughts you have about how to
do the task, or any reasons why you are taking particular actions to complete the task. If you are silent for a
while, the assistant will remind you to keep talking to each other.

Remember, your task is to test the spreadsheet, and correct any errors you find. If you have any questions,
talk about it with your partner or ask Cory. You may find learning those checkmarks and X-marks useful.

Start your task now, and I’ll tell you when time is up.

48

Appendix D: Questionnaires

Number: __________
Background Questionnaire

2. Gender (circle your selection): Male / Female

3. Age < 20 20 – 29 30 – 39 40 – 49 50 – 59 60+

4. Major or Educational Background: ______________________

5. Year or Degree Completed: Fresh. Soph. Jun. Sen. Post Bac. Grad.

6. Cumulative GPA: ______________________

7. Do you have previous programming experience?

a. High school:

• How many courses? _____

• What programming languages? _____________________

b. College:

• How many courses? _____

• What programming languages? _____________________

c. Professional and/or recreational

• How many years? _____

• What programming languages? _____________________

8. Have you ever created a spreadsheet for (please check all that apply):

 A high school course How many? ____________

 A college course How many? ____________

 Professional use How many years? ____________

 Personal use How many years? ____________

9. Have you participated in any previous Forms/3 experiments? Yes / No

10. Is English your primary language? Yes / No

If not, how long have you been speaking English? ______ years.

49

Pre-session Questionnaire
The following questions ask you to indicate whether you could use a new spreadsheet system under a
variety of conditions. For each of the conditions please indicate whether you think you would be able to
complete the job using the system.

Given a spreadsheet which performs common tasks (such as calculating course grades or payroll) I could
find and fix errors:

... if there was no one around to
tell me what to do as I go.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had never used a
spreadsheet like it before.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had only the software
manuals for references.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had seen someone else
using it before trying it myself.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I could call someone for
help if I got stuck.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if someone else had helped
me get started.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had a lot of time to
complete the task.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had just the built-in help
facility for assistance.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if someone showed me how to
do it first.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had used similar
spreadsheets before this one to
do this same task.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

What is your relationship to the person doing the study with you today (i.e. close friend, friend, classmate,
significant other, etc)?

50

Number: _________

Post-session Questionnaire (Gradebook)

I. Circle the answer corresponding to how much you agree or disagree with the following statements.

1. I am confident that I found all the bugs in the Gradebook spreadsheet? (circle one)

Strongly Disagree Neither Agree Agree Strongly
Disagree Nor Disagree Agree

2. I am confident that I fixed all the bugs in the Gradebook spreadsheet? (circle one)

Strongly Disagree Neither Agree Agree Strongly
Disagree Nor Disagree Agree

II. How much additional time would you need to complete this task?

 _____ None. It only took me _____ minutes.

 _____ None. I took about the entire time.

 _____ I would need about _____ more minutes.

 _____ I am not sure.

51

Number: _________

Post-session Questionnaire (Payroll)

Circle the answer corresponding to how much you agree or disagree with the following statements.

1. I am confident that I found all the bugs in the Payroll spreadsheet? (circle one)

Strongly Disagree Neither Agree Agree Strongly
Disagree Nor Disagree Agree

2. I am confident that I fixed all the bugs in the Payroll spreadsheet? (circle one)

Strongly Disagree Neither Agree Agree Strongly
Disagree Nor Disagree Agree

3. How much additional time would you need to complete this task?

 _____ None. It only took me _____ minutes.

 _____ None. I took about the entire time.

 _____ I would need about _____ more minutes.

 _____ I am not sure.

4. If there are still errors in the spreadsheet this is because… (Circle 1 reason you agree with most)

 a. The computer should have helped me spot the errors

 b. I should have spent more time trying to find the errors

 c. There was not enough time

 d. None of the above

52

Post-session Questionnaire
The following questions ask you to indicate whether you could use a new spreadsheet system under a
variety of conditions. For each of the conditions please indicate whether you think you would be able to
complete the job using the system.

Given a spreadsheet which performs common tasks (such as calculating course grades or payroll) I could
find and fix errors:

... if there was no one around to
tell me what to do as I go.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had never used a
spreadsheet like it before.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had only the software
manuals for references.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had seen someone else
using it before trying it myself.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I could call someone for
help if I got stuck.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if someone else had helped
me get started.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had a lot of time to
complete the task.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had just the built-in help
facility for assistance.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if someone showed me how
to do it first.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

... if I had used similar
spreadsheets before this one to
do this same task.

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

53

 5. Mark how you found the following features for finding and fixing errors:
Cell border colors helped me
make progress

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

Interior Cell Coloring (yellow
and red) helped me make
progress

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

X-marks helped me make
progress

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

Checkmarks (√) helped me
make progress

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

Arrows helped me make
progress

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

Instant messenger responses
helped me make progress

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

Three free hints helped me
make progress

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

My partner helped me make
progress

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

Percent tested indicator helped
me make progress

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

Bug likelihood bar helped me
make progress

Strongly
Disagree

Disagree Neither Agree
Nor Disagree

Agree Strongly
Agree

5a. Rank your preference for the following features from 1 – most preferred feature to 9 – least
preferred feature:

_______ Cell border colors

_______ Interior cell colorings

_______ X-marks

_______ Checkmarks

_______ Arrows

_______ Instant messenger responses

_______ Three free hints

_______ Percent testedness indicator

_______ Bug likelihood bar

6. What does the X- mark in the decision box mean?

54

7. In the figure below what does the orange color in the interior of the cell mean?

8. In the figure below what does it mean when the color in the interior of one cell is darker than others?

Please provide any other general comments you may have regarding the cell interior colorings:

Q9 to Q14: Refer to the Figure Above and choose your answers from the choices below.
 One or more Questions can have the same answer.

9. If we place an X- mark in cell D the color of the cell D:

a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

10. If we place an X- mark in cell D the color of the cell C
a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

55

11. If we place an X- mark in cell D the color of the cell E
a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

Assume for the next three Questions (12-14) that an X- mark has been placed on the cell D.

12. If we place an X- mark in cell C the color of the cell C

a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

13. If we place an X- mark in cell C the color of the cell B

a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

14. If we place a Checkmark in cell C the color of the cell D

a. Remains the same
b. Gets darker
c. Gets lighter
d. Don’t know

15. What does a blue border of a cell with a yellow-orange interior mean (refer to figure below)?

(Circle 1 option for each part)

a) The value is: (circle 1) CORRECT WRONG COULD BE
EITHER

b) The cell is: (circle 1) TESTED UNTESTED COULD BE
EITHER

c) The cell has: (circle 1) BUG LIKELIHOOD NO BUG
LIKELIHOOD

COULD BE
EITHER

d) My answers to a, b, and c are
just guesses.

YES, JUST
GUESSES

NO, NOT GUESSES

e) The combination of blue border
and yellow-orange interior colors
on this cell: (circle 1)

MAKES SENSE MAKES NO SENSE NOT SURE

56

16. A spreadsheet has two cells that look as follows.

Suppose you have determined that their values are correct. To increase percent testedness, you would
check:

_____cell a only. Why?__
_____cell b only. Why?__
_____cells a and b. Why?__
_____neither. Why?__
_____I'm not sure.

17. There is a purple cell with a blank in its decision box.

A) If you place a check mark in that decision box, does the border color change?
_____ yes
_____ no
_____ I'm not sure

B) What is the border color after you've placed the checkmark in the decision box?
_____red
_____same purple
_____"bluer" purple
_____blue
_____I'm not sure

C) The form's Percent Tested indicator will:
_____Increase.
_____Stay the same.
_____Decrease.
_____Not enough information to tell.
_____I'm not sure.

18. There is a purple cell with a question mark in its decision box.

A) If you place a check mark in that decision box, does the border color change?
_____ yes
_____ no
_____ I'm not sure

B) What is the border color after you've placed the checkmark in the decision box?
_____red
_____same purple
_____"bluer" purple
_____blue
_____I'm not sure

57

C) The form's Percent Tested indicator will:
_____Increase.
_____Stay the same.
_____Decrease.
_____Not enough information to tell.
_____I'm not sure.

Directions.
Score yourself. Circle the number that best ranks your behavior for the given question. A
rank value of 1 means "Not at all true for me" while a rank of 7 means "very true for me".
Be as precise as possible.

Remember: 1 = not true at all ... 7 = always true

1. During class time, I often miss important points because I'm thinking of other things.

1 2 3 4 5 6 7

2. When reading for a course, I make up questions to help focus my reading.
1 2 3 4 5 6 7

3. When I become confused about something I'm reading, I go back and try to figure it
out.

1 2 3 4 5 6 7

4. If course materials are difficult to understand, I change the way I read the material.
1 2 3 4 5 6 7

5. Before I study new material thoroughly, I often skim it to see how it is organized.

1 2 3 4 5 6 7

6. I ask myself questions to make sure I understand the material I have been studying.
1 2 3 4 5 6 7

7. I try to change the way I study in order to fit the course requirements and the
instructor's teaching style.

1 2 3 4 5 6 7

8. I often find that I have been reading for a class but don't know what it was all about.
1 2 3 4 5 6 7

9. I try to think through a topic and decide what I am supposed to learn from it rather than
just reading it over when studying.

1 2 3 4 5 6 7

10. When studying, I try to determine which concepts I do not understand well.

58

1 2 3 4 5 6 7

11. When I study, I set goals for myself in order to direct my activities in each study
period.

1 2 3 4 5 6 7

12. If I get confused taking notes, I make sure I sort it out afterwards.
1 2 3 4 5 6 7

59

Appendix E: Spreadsheets and Spreadsheet Descriptions

Purchase Budget

You are in charge of ordering office supplies for the office you work at. You must order enough pens and
paper to have on hand.

You must keep more than 68 boxes of pens and 400 reams of paper on hand.

Pen and Paper
The quantity of pens and paper that you are ordering and the quantity you have on hand.

Costs of Pen and Paper
The cost of pens is $2 per box, and the cost of paper is twice that, $4.

Pen and Paper Check
These cells are used to check to ensure you are ordering enough pens and paper to restock the shelves.

Example data for correct spreadsheet

Pens
Paper

PensOnHand
PaperOnHand

PenTotalCost
PaperTotalCost

PenQCheck
PaperQCheck

25
400

25
21

50
1600

not enough pens
paper quantity ok

Task: Test the spreadsheet to see if it works correctly and correct any errors you find.

60

GRADEBOOK SPREADSHEET PROBLEM

Another teacher has updated a spreadsheet program that computes the course grade of a student. Two
correct sample report cards and information about the class’ grading policy are provided.

Your task is to test the updated spreadsheet to see if it works correctly and to correct any errors you find.

Quizzes and Exams

The exam average is the average of the midterm average and the final exam.

The midterm average is the average of the third midterm and the higher of the first two midterms. The first
midterm is out of 50 possible points. The second and third midterms are worth 100 points. Students
achieving a non-zero grade on the third midterm receive a two point bonus. The final exam is out of 146
possible points. Exams not based on 100 points have their percents computed for later averaging.

There are five quizzes. The average is calculated on only four of these scores, dropping the lower of the
first two quizzes.

Course Grade

Quizzes are worth 40% of a student’s grade. Midterms are worth 40% of a student’s grade. The final
contributes 20%. A student’s course grade is determined by their course average, in accordance with the
following scale:

90 and up : A
80 - 89 : B

70 – 79 : C
60 - 69 : D
Below 60 : F

61

 Example Correct Gradebook Report Cards

John Doe Report Card

Quiz1 81.25
Quiz2 100
Quiz3 100
Quiz4 96
Quiz5 100

Midterm1 (Original) 45
Midterm2 96
Midterm3 (Original) 80

Final 129

Course_Avg 92.87
Course_Grade A

Mary Smith Report Card

Quiz1 0
Quiz2 88.24
Quiz3 85
Quiz4 87
Quiz5 100

Midterm1 (Original) 24
Midterm2 61
Midterm3 (Original) 66

Final 106
Final_Percentage

Course_Avg 76.34
Course_Grade C

62

List of bugs in the Gradebook spreadsheet

The Gradebook spreadsheet was seeded with five faults created by real end users.

Table 6: List of bugs in Gradebook spreadsheet: Output cells with their formulas
when the spreadsheet is first loaded. (Note: All the other input cells have a value 0)

Cell Name Original Formula Correct Formula
Curved_Midterm3 if Midterm3 > 0 then 2

else 0
if Midterm3 > 0 then

Midterm3+2 else 0
Quiz_Avg ((Quiz1 + Quiz2 + Quiz3 +

Quiz4 + Quiz5) -
Min_Quiz1_Quiz2) / 5

((Quiz1 + Quiz2 + Quiz3 +
Quiz4 + Quiz5) -
Min_Quiz1_Quiz2) / 4

Midterm_Avg Midterm1_Perc +
Midterm2 +

Curved_Midterm3 -
Min_Midterm1_Midterm2

/ 2

(Midterm1_Perc +
Midterm2 +
Curved_Midterm3 -
Min_Midterm1_Midterm
2) / 2

Exam_Avg (Midterm_Avg +
Final_Percentage) / 3

(Midterm_Avg +
Final_Percentage) / 2

Course_Avg (Quiz_Avg * 0.4) +
(Midterm_Avg * 0.4) +
(Final_Percentage * 0.2)
/ 10

(Quiz_Avg * 0.4) +
(Midterm_Avg * 0.4) +
(Final_Percentage * 0.2)

63

Table 7: Formula’s of output cells in the Gradebook spreadsheet (Note: All the
other input cells have a value 0)

Cell Name Original Formula
Min_Quiz1_Quiz2 if (Quiz1 < Quiz2) then Quiz1

else Quiz2
Midterm1_Perc 2 * Midterm1
Min_Midterm1_Midterm2 if (Midterm1_Perc < Midterm2) then

Midterm1_Perc
else Midterm2

Curved_Midterm3 if Midterm3 > 0
then 2
else 0

Final_Percentage Final / 146 * 100
Quiz_Avg ((Quiz1 + Quiz2 + Quiz3 +

Quiz4 + Quiz5) - Min_Quiz1_Quiz2) / 5
Midterm_Avg Midterm1_Perc + Midterm2 +

Curved_Midterm3 -
Min_Midterm1_Midterm2 / 2

Exam_Avg (Midterm_Avg +
Final_Percentage) / 3

Course_Avg (Quiz_Avg * 0.4) +
(Midterm_Avg * 0.4) +
(Final_Percentage * 0.2) / 10

Course_Grade if Course_Avg >= 90 then "A"
else
(if Course_Avg >= 80 then "B"
else
(if Course_Avg >= 70 then "C"
else
(if Course_Avg >= 60 then "D"
else "F")))

64

PAYROLL SPREADSHEET PROBLEM

• A spreadsheet program that computes the net pay of an employee has been
updated by one of your co-workers.

• Below is a description about how to compute the answers.
• On the backside of this sheet are two correct examples, which you can

compare with the values on screen.

Your task is to test the updated spreadsheet to see if it works correctly and to
correct any errors you find.

FEDERAL INCOME TAX WITHHOLDING

To determine the federal income tax withholding:
1. From the monthly adjusted gross pay subtract the allowance amount (number of

allowances claimed multiplied by $250). Call this amount the adjusted wage.
2. Calculate the withholding tax on adjusted wage using the formulas below:

d. If Single and adjusted wage is not greater than $119, the withholding tax is $0;
otherwise the withholding amount is 10% of (adjusted wage – $119).

e. If Married and adjusted wage is not greater than $248, the withholding tax is
$0; otherwise the withholding amount is 10% of (adjusted wage – $248).

SOCIAL SECURITY AND MEDICARE

Social Security and Medicare is withheld at a combined rate of 7.65% of Gross Pay.
The Social Security portion (6.20%) will be withheld on the first $87,000 of Gross
Pay, but there is no cap on the 1.45% withheld for Medicare.

INSURANCE COSTS
The monthly health insurance premium is $480 for Married and $390 for Single.
Monthly dental insurance premium is $39 for Married and $18 for Single. Life
insurance premium rate is $5 per $10,000 of insurance. The monthly employer
insurance contribution is $520 for Married and $300 for Single.

ADJUSTED GROSS PAY

Pretax deductions (such as child care and employee insurance expense above the
employer’s insurance contribution) are subtracted from Gross Pay to obtain Adjusted
Gross Pay.

65

 Example Correct Payroll Stubs
John Doe Month Year-To-Date

Marital Status – Single
Allowances 1
Gross Pay 6,000.00 54,000.00
Pre-Tax Child Care 0.00
Life Insurance Policy Amount 10,000
Health Insurance Premium 390.00
Dental Insurance Premium 18.00
Life Insurance Premium 5.00
Employee Insurance Cost 413.00
Employer Insurance Contribution 300.00
Net Insurance Cost 113.00
Adjusted Gross Pay 5,887.00

Federal Income Tax Withheld 551.80
Social Security Tax 372.00
Medicare Tax 87.00
Total Employee Taxes 1,010.80
Net Pay 4,876.20

Mary Smith Month Year-To-Date

Marital Status – Married
Allowances 5
Gross Pay 8,000.00 72,000.00
Pre-Tax Child Care 400.00
Life Insurance Policy Amount 50,000
Health Insurance Premium 480.00
Dental Insurance Premium 39.00
Life Insurance Premium 25.00

(25.0002 ok)
Employee Insurance Cost 544.00
Employer Insurance Contribution 520.00
Net Insurance Cost 24.00
Adjusted Gross Pay 7,576.00
Federal Income Tax Withheld 607.80
Social Security Tax 496.00
Medicare Tax 116.00
Total Employee Taxes 1,219.80
Net Pay 6,356.20

66

List of bugs in the Payroll spreadsheet

The Payroll spreadsheet was seeded with five faults created by real end users.

Table 8: List of bugs in Payroll spreadsheet: Output cells with their formulas when
the spreadsheet is first loaded. (Note: All the other input cells have a value 0)

Cell Name Original Formula Correct Formula
SingleWithHold if AdjustedWage < 119

 then 0
else (AdjustedWage -248) *.10

if AdjustedWage < 119
then 0 else
(AdjustedWage -119)
*.10

MarriedWithHold if GrossPay < 248
 then 0
else (GrossPay – 248)*.10

if AdjustedWage < 248
then 0 else
(AdjustedWage -
248)*.10

SocSec if GrossOver87K = 0
then (GrossPay * 0.062 * 0.0145)
else (87000 * GrossPay * 0.062 *

0.0145)

if GrossOver87K = 0
then (GrossPay * 0.062)
else (87000 * 0.062)

SocSec if GrossOver87K = 0
then (GrossPay * 0.062 * 0.0145)
else (87000 * GrossPay * 0.062 *

0.0145)

if GrossOver87K = 0
then (GrossPay * 0.062)
else (87000 * 0.062)

AdjustedGrossPay GrossPay - PreTax_Child_Care –
EmployeeInsurCost

GrossPay -
PreTax_Child_Care -
NetInsurCost

67

Table 9: Formula’s of output cells in Payroll spreadsheet when it is first loaded.
(Note: All the other input cells have a value 0)

Cell Name Original Formula
FedWithHoldAllow Allowances * 250
AdjustedWage AdjustedGrossPay - FedWithHoldAllow
SingleWithHold if AdjustedWage < 119

 then 0
else (AdjustedWage -248) *.10

MarriedWithHold if GrossPay < 248
 then 0
else (GrossPay - 248)*.10

FedWithHold if (MStatus = "Single") then SingleWithHold
else MarriedWithHold

NewYTDGrossPay YTDGrossPay + GrossPay
GrossOver87K if NewYTDGrossPay > 87000

 then NewYTDGrossPay - 87000
else 0

SocSec if GrossOver87K = 0
 then (GrossPay * 0.062 * 0.0145)
else (87000 * GrossPay * 0.062 * 0.0145)

Medicare GrossPay *.0145
LifeInsurPremium LifeInsurAmount *.0005
HealthInsurPremium if MStatus="Married"

 then 480
else 390

DentalInsurPremium if MStatus = "Married"
 then 39
else 18

AdjustedGrossPay GrossPay - PreTax_Child_Care -
EmployeeInsurCost

EmployeeInsurCost HealthInsurPremium + LifeInsurPremium +
DentalInsurPremium

EmployerInsurContrib if MStatus = "Married"
 then 520 else 300

NetInsurCost if EmployeeInsurCost >
EmployerInsurContrib

 then EmployeeInsurCost -
EmployerInsurContrib else 0

EmployeeTaxes SocSec + Medicare + FedWithHold
NetPay AdjustedGrossPay - EmployeeTaxes
Mstatus (Input cell) “Single”

68

All recorded demonstrations could be accessed via the same entry point

(Figure 11). The remainder of this appendix presents a storyboard for each of the

individual demonstrations. The screenshots were taken from the final version of the

recorded demonstration and the embedded scripts follow what was actually said by

each researcher in the demonstration. The topics covered along with which

feature(s) they are linked to are as follows:

Appendix F: Storyboards

• Storyboard 1: Overall (default, plays if none other specified)
• Storyboard 2: Making Testing Progress (arrows, checkmark, testing

progress bar)
• Storyboard 3: Finding Errors (X-mark, bug likelihood bar)
• Storyboard 4: Fixing Errors (link on web page)
• Storyboard 5: Changing Values (link on web page)

a. To make testing progress (purple border)
b. To make values easier to decide about (?)

(Note: each demonstration can also be reached via a link on the web page)

Figure 11: Entry point-the demo can be accessed by clicking the
“Show Me!” link embedded inside a feature-centric tool tip.

Storyboard 1: Overall 69

2

R2: If you find wrong values, use the X-marks and
checkmarks together to help find errors in the spreadsheet.
R1: These two look wrong, I’ll X them. Looks like the error
is in Quiz_Avg.

 1

R1: In general, what should I be trying to do?
R2: Well, you should try to make testing progress by checking
off cells with correct values in them.
R1: Ok, the value of the Min_Quiz1_Quiz2 cell looks right so I’ll
check that one off.

Storyboard 1 (continued)

70

4

R2: Changing input values will aid you in each of these tasks.
R1 Ok I’ll change the value of the Quiz1 cell, oh ya it changed
and it still looks right so I’ll check it again!
 5

R2: If you would like more details there are separate
demonstrations over each of these steps. Just follow the links!

 3

R2: Carefully fix any errors you find and then retest your new
values.
R1: Ok I’ll fix this formula by changing the 3 to a 2, now the
value is right, so check!

Storyboard 2: Making Testing Progress 71

3

R2: If you open the formula tabs for two cells that an arrow
connects you will see all of the situations for the two cells and
the individual testedness of these situations.
R1: Oh, the “else” situation that has the red arrow pointing to it
is the one I haven’t tested so I’ll change the value and test this
one again.

 1

R1: How do I make progress in testing my spreadsheet?
R2: Cells with ?s in their decision box contain values that
haven’t been tested. To make testing progress, first find one of
these values that you can tell is right and put a checkmark on it.
If the border of that cell then turns to blue, that cell has been
tested enough, but more testing is always a good idea.

 4

R1: Ok, this value still looks right so I’ll check it, but wait, the
border color didn’t change
R2: Looks like your new value still doesn’t get into the “else”
situation, a ? in the decision box tells us this is a new testing
situation. Your goal for changing values to make testing
progress should be to get a ? to appear in the cell.

 2

R1: What if the border turns to purple?
R2: That means there are situations involving this cell that
still haven’t been tested. You will need different values to
find these situations. The arrows also show testing progress
and can help you see the different situations.

Storyboard 3: Finding Errors 2

R2: The coloring of cells' interiors show the system’s guesses
at which cells are likely to have an error in them. Probably not
all of these cells have an error, but at least one of them does.
The more checks and Xs you place, the better the guesses get.
Can you tell if any other values are right or wrong?.

 1

R1: Look, in this Gradebook spreadsheet this student has scores
above ninety on all quizzes and exams, but their Course Grade is
a B so something is wrong here. How do I find the error?
R2: In general, if you can tell that some of the values on the
spreadsheet are either wrong or right, Xing out wrong values and
checking off right values will help you to find errors in the
formulas. If you can't tell if a value is right or wrong try
changing the values in the uncolored cells.

3

R1: Yes, the value of the Midterm_Homework_Avg cell looks
right, and so does the value of the Min_Quiz1_Quiz2 cell
R2: Good, so now the system has narrowed our search for the error
from 7 cells down to 3. Try that on your own spreadsheet!

72

2

R2: In general there are four things that are likely to be causing the
error in the formula:
1) As you have just seen, one of the constants, or numbers in the
formula is wrong
2) There is a missing or wrong cell reference in the formula, one quick
way to check this is to turn on a cell’s arrows to see which cells it is
referencing
R1: It looks like it is referencing all the right cells.

Storyboard 4: Fixing Errors 73

 1

R1: I can tell where the error is but how do I fix it?
R2: After locating the cell likely to have an error in it
carefully look at the formula and try to decide if it is doing
what it is supposed to.
For example I know that the Quiz Average is supposed to
be the average of the third quiz and the higher of the first 2
quizzes.
R1: Looking over the formula it looks like it is averaging 3
quizzes instead of just 2.

 3

R2: 3) The operators, like +, -, *, /, could be used incorrectly
R1: The operators look right too
R2: Lastly, the parentheses, many formulas use parentheses to
group numbers, cell references, and operators, make sure that
yours are grouping correctly.
R1: Oh ya, so since there aren’t parentheses it is only dividing
Quiz 3 by 2 instead of dividing the sum of all the quizzes so I
need to add some parentheses around all of this.

Storyboard 5: Changing Values

74

R1: You mentioned that I need to change values, why would you want to change values?
R2: There are two reasons you would want to change values:
1) Find situations you have not yet tested
2) Make it easier to tell if values in cells with formulas are right or wrong

 3

R1: Oh so since this one says “if Quiz1 < Quiz” and I have
already tested Quiz1 bigger than Quiz2 I should try a
situation where Quiz2 is bigger?
R2: Exactly

Storyboard 5a: To Make Testing Progress 75

 1

R1: How do I change values to find situations I have not yet
tested?
R2: If you are trying to find situations you have not yet tested, it
would be a good idea to look at some formulas.

 2

If there is a comparison of two values (i.e. >, <, =) you may want
to try a situation where one value is greater than the other, one in
which it is less than the other, and one where they are equal.

4

R1: That still looks right so I’ll check it off.

 2

R2: Try putting values like 0, 1, or multiples of 10 into cells
since these values can make it easier to tell if a formula has
the right arithmetic.
R1: Oh so if I change the values of Quiz1, Quiz2, and Quiz3
cells, it will be easier to tell if the value in the Quiz_Avg cell
is correct or not

 1

R1: How do I change values to make it easier to tell if
Midterm_Avg is right or wrong?
R2: Sometimes it’s hard to tell if a value is right or wrong.
Changing values can sometimes make the decision easier.

Storyboard 5b: To Make Values Easier to Decide About

76

	1 Introduction
	2 Experiment
	2.1 Participants
	2.2 Environment
	2.3 Tutorial
	2.4 Tasks

	3 Methodology
	3.1 Segmentation of the Data
	3.2 Deriving the Codes
	3.3 Application and Agreement

	4 Results
	4.1 Questions and Explanations About Features and Feedback
	4.2 Big Information Gaps: Whoa! Help!
	4.3 Self-Judgments: Am I smart enough to succeed at this tas
	4.4 Oracle and Specification Questions: Is this the right va
	4.5 Strategy: What should we do?
	4.6 Implications of Co-occurrences

	5 Comparison to Other Work
	6 Follow Up: Recorded Demonstrations
	6.1 Detailed Design and Creation of the Demonstrations
	6.2 Future Work

	7 Conclusion
	Bibliography
	Appendices
	Appendix A: Sample of Transcribed and Coded Dialogue
	Appendix B: Transcription Conventions
	Appendix C: Tutorial Materials
	Appendix D: Questionnaires
	Appendix E: Spreadsheets and Spreadsheet Descriptions
	Appendix F: Storyboards

