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SOME CONDITIONS FOR A GIVEN POSITIVE INTEGER TO BE 
CONTAINED IN A SUM OF SETS OF 

NONNEGATIVE INTEGERS 

CHAPTER I 

INTRODUCT ION 

Let k be any integer where k > 2, and let A. (i = 1 , , k) 

denote subsets of the set of nonnegative integers. 

Definition 1. 1. 

k k 

A. = a.Ia.eA , i=1,,k}. 
1 1 1 i 

i=1 i=1 

Let A be any subset of the set of nonnegative integers. 

Definition 1. 2. For n a positive integer, A(n) denotes 

the number of positive integers not greater than n. 

k 

In this thesis we study conditions on A. (n) , 

1 
not involving 

i =1 

density, which guarantee that a given positive integer n is in 

k 

Ai, or equivalently, restrictions on 

i =1 

that n is missing from 

k 

i=1 

k 

i=1 

Ai( n) by assuming 

Definition 1. 3. A positive integer not occurring in A is a 

gap in A. 

i 

1 Ai . 



Definition 1.4. The complement of A, denoted by A, is 

the set of all gaps in A. 

As a special case of a result of Schur (10, p. 275), Rohrbach 

proved, in 1939, the following theorem (9, p. 206). 

then 

2 

Theorem 1. 1. If ()EA 0 e A2, and n is a gap in A +A2, 

Al (n) + A2(n) < n-1 . 

In 1952, Khinchin gave a proof of Theorem 1.1 independent 

of Schur's result (6, pp. 24 -25). 

In 1958, Erdgis and Scherk stated the following generalization 

(4, p. 45). 

k 
Theorem 1. 2. If ()EA. (i = 1, 2, ,k), and n is a gap in 

A, , then 

i =1 k 

i=1 

Ai(n) < -(n-1). 

We prove Theorems 1.1 and 1.2 in Chapter V. We also show 

there that Theorem 1. 2 is the "best possible" inequality by using an 

example of Erdbs and Scherk (4, p. 45). 

If n is further restricted to be the smallest gap in 

k 

i =1 

A., 
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then stronger results can be obtained. In 1955, Lin proved the 

following theorem (7, pp. 31-40). 

Theorem 1.3. If 0 E A. (i = 1 , 2, 3), 0 < n < 15, and n is 

the smallest gap in Al +A2 +A3, then 

A1(n) + A2(n) + A3(n) < n-1 . 

Lin gives a counterexample which shows that the smallest gap 

can be made no larger in this theorem (7, p. 41). In Chapters II, 

III, and IV, we give a proof of Theorem 1.3 that is a more readable 

version of Lin's proof with more details and some changes. In Chap- 

ters II and III, we give background material to make the proof self 

contained. In Chapter III, we describe Mann's set transformation 

and establish its properties which are needed in the proof. Exam- 

ples, to provide insight into the mechanics of the proof are supplied 

by the author. 
k 

Definition 1 . 5. If n is a gap in A., then 
i 

i=1 

fk(n) = max Ai(n) , 

i=1 

over all collections { A.1 1 < i < k 1. 

i 

iLLL=1 
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If n is a gap in A., then 

i=1 

Ai(n) < fk(n), 

i =1 

for all collections { A. I 1 < i < k } , while 

k 

1 Ai( n) = fk(n) fk(n), 

i=1 

for at least one collection { A. I 1 < i < k } . Thus the central prob- 
e - - 

lem of this thesis is to find information about fk(n), for example, 

upper bounds or asymptotic formulas. 

In 1958, Erdös and Scherk proved the following theorem (4, pp. 

46 - 55). 

Theorem 1.4. If OEA. (i = 1, 2, , k), k > 3, and n 
i - is 

the smallest gap in ) A., then 
LL i 
i=1 

k-1 k-1 

Z 
kn-akn k < fk(n) < 

2 
kn-ykn k 

where ak and yk are positive constants. 

Erdös and Scherk showed furthermore that 

ak = (k +1)22k 
-3 

and 

1 

k+4 
22 (k-1): 

k 

/ 

, 

k 

3k 
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They also conjectured the following stronger asymptotic formula 

(4, p. 46). 

Conjecture 1. 1. If 0 E A. (i = 1, 2, , k), k > 3, and n is - 
k 

the smallest gap in 

i=1 

, then 

k-1 

fk(n) = Zkn - (ßk+o(1))n 
k 

holds, where n tends to infinity, for some constant 

positive. 1/ 
Pk 

which is 

In 1964, Kemperman proved a theorem which yields Conjecture 

1. 1 (5, pp. 376 -385). He gave the following definition and proved 

the following theorem. 

Definition 1. 6. If n is a gap in 

'`)k(n) 
min { (n- 1) 

Z 
- 

over all collections {A, 1 
1 

< i < k 1. 
i 

i=1 

k 

, then 

Ai(n) } 

i=1 

1/ In the original paper this formula is given with a plus sign in 
place of the minus sign, clearly an error. 

= I 

r 



Theorem 1. 5 If OEA. (i = 1, 2, , k), k > 3, and n is 
k 

i - 
the smallest gap in ) A., then 

i 
i=1 

k-1 k-1 

lim k(n) n k = k2 k 
n--"' co 

We show that Conjecture 1. 1 follows readily from Theorem 

1. 5. Since 

k(n) = 2 (n-1)-fk(n), 

then equation (1. 1) may be written 

and so 

k-1 k-1 

lim [ 2 (n-1) -fk(n)] n k = k2 k 
n - 00 

k-1 k-1 

lim [ Zn-kn n k = k2 k 
n -oo 

Hence, this equation may be written 

k -1 k -1 

[ -2 -fk(n)] n k = o(1) +k2 k 

where n tends to infinity. Finally, this equation yields 

k -1 k -1 
k 2n -fk(n) = (o(1) +k2 2 )n k 

or equivalently, k-1 k-1 

fk(n) = 2n-(o(1) +k2 2 ) 
k 

6 

(1. 1) 

n 



k -1 

This is the equation of Conjecture 1. 1 with ßk = k2 2 . Since 

7 

k- 1 

k2 k > 0 and since the hypotheses of Conjecture 1. 1 are the same 

as those of Theorem 1. 5, Conjecture 1. 1 is proved. 
k 

Kemperman also showed that the condition { i 1 <i <n} C. A. 

i=1 

of Theorem 1. 5 can be generalized (5, pp. 381 - 387 ). 

In Chapter V, we include proofs of several further miscellaneous 

smaller theorems. Also some conjectures are made. 

I 
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CHAPTER II 

EVOLUTION OF A CONJECTURE 

Our purpose in this chapter is to investigate in detail the man- 

ner in which a particular conjecture, Conjecture 2. 7, is formulated. 

From Conjecture 2. 7 evolves Theorem 4. 1, proved in Chapter IV, 

which is a powerful tool in the proof of Theorem 1. 3. 

To formulate Conjecture 2.7, we start with Conjecture 2. 1. 

While Conjecture 2.1 is a very natural extension of Mann's funda- 

mental inequality (8, pp. 523 -524), it is seen to be invalid. From 

Conjecture 2. 1, we formulate Conjecture 2. 2, a special case of 

Conjecture 2. 1 closely related to Theorem 1. 3, which is shown here 

also to be invalid. We then introduce several definitions, and Con- 

jectures 2. 3 and 2.4 are reformulations of Conjecture 2. 2 using 

these definitions. Following Conjecture 2.4, we define a new set, 

the inversion set, and prove several properties of this set. We 

introduce the inversion set into our conjecture by making a set substi- 

tution when formulating Conjecture 2. 5. We thereby not only reduce 

our consideration to two, instead of three, sets but we have all the 

properties of the inversion set available to us. Making use of these 

properties and previous definitions, we formulate Conjectures 2.6 

and 2.7. Our evolution terminates with Conjecture 2.7. 
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The purpose of this sequence of conjectures, Conjecture 2. 3 

through Conjecture 2. 7, is to put Conjecture 2. 2 in a form more 

easily handled in the proof of Theorem 4. 1, which is Conjecture 2.7 

under a certain restriction. Each conjecture in our sequence is 

implied by the next one and in some cases the conjectures are equiva- 

lent. This implication or equivalence is shown in each case. We 

include a two page summary of this evolution at the end of this 

chapter. 

The formulation of Conjecture 2. 3 through Conjecture 2. 6, 

as well as the proofs of the equivalences and implications of these 

conjectures and the summary page, is the work of the author. Also, 

for easy referral, we formalize definitions into statements which 

are displayed and numbered, which in most instances Lin does not do. 

First we introduce Conjecture 2. 1 (7, p. 21). In 1942, Mann 

gave the first proof of the aß Theorem for Schnirelmann density 

(8, pp. 523 -527). The aß Theorem is an immediate consequence 

of the following more fundamental theorem which he proves in the 

same paper. In this proof, Mann introduces his method of set con- 

struction which we introduce in Chapter III and use for our purposes 

in this thesis. 

Theorem 2. 1. If 0 E Al and 0 E A2, then for any positive 

integer n, either 



or 

(A 1+A2)(n) 

n 
- 1 , 

(Al +A2)(n) A 1(m)+A2(m) 
> min 

n m 
1 <m <n 

m A1+A2 

Our Conjecture 2. 1 is the generalization of Theorem 2. 1 to 

k sets where k > 2. 

Conjecture 2. 1. If 0 E Ai (i = 1, 2, ,k), then for any 

positive integer 

or 

n, either 

k 

A.)(n) i 
i=1 

n 

k 

Ai) (n) 

i= 1 

n 

- 1 , 

> min 
1 <m <n 

k 

i=1 

m 

10 

This conjecture is not true according to an example following 

Conjecture 2. 2. 

- 

i 

mff 

k 

A.(m) 

i= 1 

Ai 



Next we formulate Conjecture 2. 2 (7, p. 21). In Conjecture 

2. 1 we set k = 3 and restrict n to be the smallest gap in 

3 

Ai . Since i 
i =1 

3 

A.)(n) 

i=1 

we have 

3 

A.)(n) 

i=1 
n 

and so 

n 

3 

n-1 <1 
, 

> min 
1 <m <n 

3 

mi 

A,)(n) > 
i - 

i=1 

i=1 

3 

i=1 

A. 

3 3 

Ai(m) L/ Ai(n) 
i=1 i=1 

A.(n) . 
i 

m n 

Hence the following conjecture follows from Conjecture 2. 1. 

Conjecture 2. 2. If OEAi (i = 1, 2, 3), and if n is the 

3 

smallest gap in 

i= 1 

, then 

11 

i 

n 

/ 

i 

( 

( 

/ 



3 

i=1 

A.)(n) . 

12 

Clearly Conjecture 2. 2 does not imply Conjecture 2. 1 because 

Conjecture 2. 2 is obtained from Conjecture 2. 1 by restricting n 

and k. 

Since in Conjecture 2. 2 we have 

3 

i=1 

A.)(n) = n -1, it follows that 

Conjecture 2. 2 differs from Theorem 1.3 only by not having the 

hypothesis 0 < n < 15 of Theorem 1. 3. 

Since Conjecture 2.2 is a special case of Conjecture 2. 1, the 

following example shows that both are invalid. Let 

Then 

Al = { 0, 1, 8, 10, 12, 14 } , 

A2 ={ 0,2,8, 9, 12, 13 }, 

A3 = {0,4,8,9, 10, 11 } . 

A1 +A2 +A3 = {iI1 < i < 14 } < i < 38 }, 

and so n = 15 is the smallest gap in 

of Conjecture 2.2 are satisfied, but 

3 

i=1 

Ai . Thus the hypotheses 

3 

Ai(n) < ( 

i=1 

( 
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A1(15)+A2(15)+A3(15) = 15 > n-1 . 

We cannot proceed to Conjecture 2. 3 without some preliminary 

groundwork.. In the first place, we wish to avoid the confusion 

which arises in Lin's work with the use of the same set notation for 

the possibly infinite sets Ai and the finite sets 

A. n { 0, 1 , 2 , , n } (i = 1,2,3). To this end, we make the following 

definition. 

Definition 2.1. The set N is defined by N= {j 10 < j < n 1. 

In addition A = A1 N, B = A2 n N, C = A3 n N and 

3 

A +B +C = (, Ai) n N, with similar definitions for all possible 
i=1 

combinations of the A.'s and for the complements of these sets, 

e. g. , A +B = (A 
1 
+A2) n N and A = Al N. 

We also adopt the convention that any new, possibly infinite, 

sets introduced in the discussion to follow will be regarded as their 

intersections with the set N. Thus, for example, if we introduce 

the two sets X and Y, both subsets of the set of nonnegative 

integers, and state that X is a subset of Y, we mean 

Xm NC Y N. 

In the second place, to make our notation more concise, we 

introduce the following definitions. 

i 

i 

r-, 
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Definition 2. 4. The set In is defined by 

I 
n 

= {0,1,2,,n-1}. 

Definition 2. 3. The expression A(n- 1) + B(n- 1) - (A +B)(n) 

will be referred to as the excess of A(n -1) + B(n -1) over 

(A +B)(n) and will be denoted by E (A, B, n). This definition can, 

of course, be extended to three or more sets, e. g. , 

E (A, B,C,n) = A(n- 1) +B(n- 1) +C(n -1) - (A +B +C)(n). 

Definition 2. 4. Let p (n, A, B) denote the number of repre- 

sentations of n as a sum n = a + b, where a E A and b E B. 

With the necessary groundwork laid, we may now proceed to 

a new formulation of our conjecture. 

Conjecture 2. 3. If A +B +C = In, then 

A(n)+ B(n) +C(n) - (A +B +C)(n) < 0 . 

That the hypothesis A +B +C =I 
n 

is equivalent to the hypotheses of 

Conjecture 2. 2 as previously stated, namely, 0 E Ai (i = 1, 2, 3) , and 

n is the smallest gap in 

3 

i=1 
i' 

is made clear by close examination 

of Definitions 1. 1, 2. 1 and 2. 2. That is, A +B +C = In implies 
n 

that n is the smallest gap in A +B +C by the definition of In 

(Definition 2. 2). But by Definition 2. 1, 



A+B+C = 

3 

i=1 

N. Hence I 
n 

= 
i 

3 

3 

i=1 

15 

A.) (Th N, and so n is the 

smallest gap in A. . Conversely, if n is the smallest gap 

i=1 
3 

in Ai, then n is the smallest gap in ( ) Ai) r. N. But 

i =1 i =1 
3 

A.),. N = A +B +C, and so n is the smallest gap in A +B +C. 

i=1 

Thus equivalence is established for one of our two hypotheses. 

Since 0 E I 
n 

and A +B +C = In, it follows by the definition 

of the set sum (Definition 1.1) that 0 is in A +B +C = 

3 

A.) r-- N, i 
i=1 

and so O EA. ( i = 1 , 2 , 3 ) . Conversely, if O E A. (i = 1, 2, 3), then 

0 EA. r N. Hence 0 is in each of the sets A, B and C by 

Definition 2. 1. Thus, the equivalence of hypotheses is substantiated. 

Let us note here that the step from Conjecture 2. 2 to Conjecture 

2. 3 leads us from consideration of possibly infinite sets to that of 

finite sets. 

Conjecture 2.4 is a reformulation of Conjecture 2. 3. Thus the 

hypotheses are the same and imply that n is not in A, B, or C. 

For example, suppose n E A. Then O E B and 0 E C imply that 

n +0 +0 = n is in A +B, contradicting our hypothesis A +B +C = In. 
n 

( Ai)n ( ) L i 

3 

n 

( ) 
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Hence n i s not in A, B, or C. Therefore, we can say that 

A(n) = A(n -1), B(n) = B(n -1), and C(n) = C(n -1). This shows 

that the conclusions are the same by Definition 2. 3. 

Conjecture 2.4. If A +B +C = In, then 

E (A,B,C,n) < 0 . 

Proceeding to Conjecture 2. 5 involves the set substitution 

previously mentioned. Therefore before stating this conjecture, 

we define two new sets and prove several properties of one of these 

sets needed for future reference. To this end, let 

0 < n1 < n2 < < nr = n be the gaps in the sum of some fixed two 

of our three sets, say A +B . 

Definition 2. 5. The set D is defined by 

D = { d. I d. = n-n. , i = 1, , r 1. 
i i i 

Definition 2. 6. Given a set X, for any positive integer n, 

the inversion of X is defined to be the set 

also denoted 

X = {n-XiXEX }, 

. The set X is empty if X = N. (Recall 

our convention regarding the introduction of new sets.) 

Two observations should now be made: (1) comparison of 

ti 
X 

ti 
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Definitions 2. 5 and 2.6 shows us that D = (A +B)`v, and (2) corn- 

parison of Definitions 1.4 and 2.6 shows us that n4 X since 

x> 0 for all XE . 

Lemma 2. 1. For any set X, the following properties hold: 

ti 
a) X = X . 

b) X implies O E . 

ti ti 
c) n4 X + X. (If X = , then X+ X = <D.) 

ti ti 

d) OE (X+ X) . 

e) ni X+ Y if, and only if YCX. 

... 
f) X (n-1) = X (n-1). 

X, 
ti ti 

g) E (X, X, n) = X(n- 1) + X (n-1) - (X+ )-C-)(n)= n-1-(X+X)(n) > 0, 

ti 
equality holding if X+ X = In. 

n 

Proof. a) If a E X , then a = n -b where bt X and 

0 < b < n. Thus b = n -a, and so a e X. Hence X C X. If 

a E X, then n -a X. Consequently, n -(n -a) = a E X. Hence 
ti ti 

X C X . This proves X = X . 

b) If n I X, then n E X. Therefore n -n = 0 E X. 

ti 

l i 

ti ti 

ti 
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ti 
c) Suppose nE X+ X . Then n = x +(n -x) where xE X 

and xE X. Hence x = x contrary to the definition of X. 

ti 
Therefore, n X +X. 

d) By (c), nIX+X By (b), X+X implies OE(X+X)~. 

ti ti 
e) If YC X, then X+YC X+X. By (c), ni X+X 

Thus, n$ X +X and X +Y C X+ X implies that n4 X+ Y. 

ti 
Therefore, if Y C X, then nl X+ Y. 

XE X, 

Conversely, let yE Y and assume 
ti yX Then Y = n-x, 

or n = x +yE X +Y, contrary to our hypothesis, ni X +Y. 

Therefore, our assumption yiX is false. Thus, Y X. This 

proves (e). 

f) For all xE X such that 1 < x < n -1, we have 

1 < n -x < n- 1. Therefore, X(n- 1) > X(n- 1). For all n -xE X 

such that 1 < n -x < n-1, we have 1 < x < n - 1 . Therefore, 
ti - 

X(n-1) > X (n-1). Hence X(n- 1) = X(n-1). 

g) By (f) , 

ti ti ti 
E (X, X, n) = X(n- 1) + X(n- 1) - (X+X)(n) 

= X(n- 1) + X(n- 1) - (X+X)(n) 

ti 
= n- (X+56 1-(X+X)(n), 
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ti 

since X(n -1)+ X(n -1) = n -1. By (c), ndX +X. Hence 

Therefore, 

ti ti 
(X+ X )(n) = (X+ b(n-1) < n-1. 

ti 
E (X, X,n) > n-1-(n-1) = O. 

ti 
However, we have also to show that if X+ X = In, then 
ti ti ti 

E (X, X, n) = 0 . But if X+ X = In, then (X+ X )(n) = n-1, 
ti 

and so E (X, X, n) = O. 

This completes the proof of Lemma 2. 1. Observe here that 
ti 

(a) implies that D = A +B. The proof of Lemma 2. 1, and also 

that of Corollary 2. 1 which follows, is not done by Lin (7, pp. 22 -23). 

The next result is an important one in that it justifies the set substitu- 

tion that we wish to make in Conjecture 2. 5. 

ti ti 
Corollary 2. 1. If X+ Y = I , then Y C X and X+ X = In. 

n - n 

Proof. If X+ Y = In, then n4X +Y. By Lemma 2. 1 (e), 

X'. 
ti 

if n4X +Y, then Y C Therefore, X +Y C. X+ X. By 

ti ti 
Lemma 2. 1 (c), n1X +X. Hence, X +Y = X +X = In. 

This completes the proof of Corollary 2. 1 and gives us the 

material we need to state Conjecture 2. 5, but before we terminate 

our discussion of the inversion set, let us prove another property 

n 



which is needed in Chapter IV (7, p. 23). 

Theorem 2. 2. A necessary and sufficient condition for X 

ti 
to satisfy X+ X = I 

n 
is that, for every h where 0 < h < n, 

we have 

ti 

X+ {O,h} X. 

20 

Proof. If X +X = In, then 

ti 
X +X+ {O,h}= In+ {O,h }, 

for any h. By hypothesis, 0 < h < n, so that 0 < n -h < n, 

which implies that n -h E In. Consequently, n = (n -h) + h E In + {0,h} 

and In+ {0,h }4 In. Now suppose X + { 0, h } = X. Then 

ti ti 
X+X+ {0,h}= In+ {0,h}= X+X = In, 

contradicting our previous result In + { 0, h } In. Hence 

X+ {O,h} X. 

Conversely, let X+ { 0, h } X for all h where 

0 < h < n. Then, for all 0 < i < n, we have 0 < n -i < n. 

Consequently, our hypothesis tells us there exists an X E X such 

that x+ (n -i) < n and x+ (n -i) X. That is x+ (n -i) = X X. 

Hence 

4 

4 

n n 
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i = x+n-x E X+ X . 

Thus x +n -x also satisfies 0 < x +n -x<n. Consequently, 
ti ti 

X+ X = In, for by Lemma 2. 1 (d), not X+ X. 

We now formulate the next conjecture in our evolution. 

Conjecture 2. 5. If A +B +(A +B)"' = In, then 

ti 
(2. 1) E (A, B, (A +B) , n) < 0 . 

We wish to show now that Conjecture 2. 4 is implied by Con- 

jecture 2. 5. First observe that the hypothesis of Conjecture 2.4, 

A +B +C = In, satisfies the hypothesis of Corollary 2. 1, X +Y = In, 

where we are letting X = A +B and Y = C. Consequently, we 

have that C C (A +B) and A +B +(A +B) = In. Hence, we have 

the hypothesis of Conjecture 2. 5. Consider now the conclusions 

of Conjectures 2. 4 and 2. 5. We have in Conjecture 2.4 

E (A, B, C, n) = A(n- 1) +B(n- 1) +C(n- 1)- (A +B +C)(n) < 0 , 

and in Conjecture 2. 5, we have 

ti ti 
E (A, B, (A +B) ,n) =A(n- 1)+B(n-1)+(A+B) (n-1)-(A+B+(A+B) 

ti 
)(n)< O. 

ti 
However, since A +B +C = A +B +(A +B) = In, we have 

n - 
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ti 
(A+B+C)(n) = (A+B+(A+B) )(n) = n- 1 . 

ti ti 
Also, since C C (A +B) , and nlC and n (A +B) , we have 

ti 
C(n -1) < (A +B) (n -1). Hence, 

ti 
E (A, B, C, n) < E (A, B, (A +B) , n) 

and the implication is established. 

Let us progress another step in our evolution by exploring 

(2. 1) more thoroughly. Recalling our previous observations, 
ti ti 

D = (A +B) and D = A +B, we may write 

(2. 2) E (A, B, (A+B) , 

ti 
n)=A(n-1)+B(n- 1)+(A+B) 

ti 
(n- 1)-(A+B+(A+B) )(n) 

ti 

ti ti 
=A(n- 1)+B(n- 1)-(A+B)(n)+D(n-1)+75(n-1)-(D+D)(n) 

ti 
= E (A, B, n) + E (D, D, n). 

ti ti ti 
Since (A +B)(n) = D(n) and D(n) = D(n -1), we have merely added 

ti 
and subtracted D(n) on the right side of (2. 2) in order to obtain 

ti 
the desired result. Observe here that D +D = In and so, by Lemma 

ti 
2. 1 (g), E (D, D, n) = O. Thus (2. 2) becomes 

ti 
(2. 3) E (A, B, (A +B) , n) = E (A, B, n). 

To formulate Conjecture 2. 6, we substitute (2. 3) in Conjecture 2. 5. 

ti 
Conjecture 2.6. If A +B +(A+B) = In, then 
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E (A, B, n) < 0 . 

Clearly Conjectures 2.5 and 2.6 are equivalent. 

Let us concentrate now on the last step of our evolution 

which involves the use of Definition 2. 4. How Definition 2. 4 is 

applicable here is made clear by considering three subsets of the 

set { 1, 2, , n- 1 }. To be more precise, we introduce the follow- 

ing definition. 

Definition 2.7. The sets A' , B' , and L are defined by: 

1) A' _ {n -all< a < n -1, aEA }, 

2) B' = {b1l <b <n -1, bEB }, 

3) L = {17:1.173-= n-a, aEA, beB }. 

The proofs of the following two lemmas concerning these sets 

are not given by Lin. 

Lemma 2.2. The sets A' ,B' , and L are mutually dis- 

joint. 

Proof. We have three statements to prove: a) A' r. B' 

b) A'( L = 1), and c) B'r L = r1). 

a) Assume A' r B' Then there exists an element 

bEB' and an element n -a E A' such that n -a= b, or n = a +b. 

= (1), 

4). 4 
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This contradicts n4 A +B. Hence A' B' _ . 
b) Assume A' , L 13. Then there exists an element 

n -a EA' and an element n -a E L such that n -a = n -a . But this 

implies a = a contrary to the definition of A. Hence A' n L = . 
c) Assume B' L .1). Then there exists an element 

bEB' and an element bEB such that b = b , contradicting the 

definition of B. Consequently, B' r L = . 
Lemma 2. 3. If n is a gap in A +B, then 

A(n- 1) + B(n- 1) + p (n, A, B) = n -1. 

Proof. We show first that A' v B' L = { 1, 2, , n-11. 

By Definition 2. 7, A' , B' , and L are all subsets of the set 

{ 1, 2, , -1 } , and so it follows that A'v B' L C {1, 2, .,n -1 }. 

Suppose XE { 1, 2, , n-11. Then either x = b where bE B 

and 1 < b < n -1, and so XE B' , or x = b where bEB and 

1 < b < n-1. In the latter case, there are only two possibilities. 

Either b = n -a and so bEL, or b = n -a, and so bEA' . 

Consequently, if xE {1, 2, ,n -1 }, then xe A'v B' v L, and 

so { 1, 2, , n- 1 }C A' B' L. This proves 

A' v B' v L = 11, 2, , n- 1 } . This result, in addition to Lemma 

2. 2, shows that 

rm 

v 

v v 

# 
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(2. 4) A' (n- 1)+B' (n- 1) +L(n- 1) = n-1. 

Definitions 2.4 and 2. 7 yield 

A' (n -1) = A(n- 1) , 

B' (n -1) = B(n -1) , 

L(n - 1) = p(n,A,B). 

Making these substitutions in (2. 4), we obtain 

A(n- 1) +B(n- 1) +p (n, A, B) = n -1, 

and the proof is complete. 

Using Lemma 2. 3, we have 

E (A, B, n) = A(n- 1) + B(n- 1)- (A +B)(n) 

(2. 5) = n- 1-p (n, A, B)-(A+B)(n). 

However, since n 4 A +B, we have 

(A+B)(n) + (A+B)(n-1) = n-1, 

or 

(2.6) (A +B)(n) = n-- 1- (A +B)(n -1). 

Substituting (2. 6) in (2. 5) gives 



E (A,B,n) = n-1-p(n,A,B)-[n-1-(A+B)(n-1)] 

(2. 7) = (A+B)(n-1)-p (n,A, B). 

Now recall that we let 0 < n1 < n2 < < nr = n be the gaps in 

A +B, and so A +B has r gaps. Thus, (A +B)(n) = r, or, 

since nEA +B, 

(2. 8) (A +B)(n -1) = r -1 . 

Substituting (2. 8) in (2.7) gives 

(2. 9) E (A, B, n) = r - 1 -p (n, A, B). 

Hence, by substituting (2. 9) in Conjecture 2. 6, we complete our 

evolution (7, p. 26). 

ti 
Conjecture 2.7. If A +B +(A +B) = In, and if A +B has 

r gaps, then 

p(n,A,B) > r-1 . 
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Since substitution of equivalent quantities was our only modifi- 

cation, clearly Conjecture 2.6 is equivalent to Conjecture 2.7. 

The theorem proved in Chapter IV, Theorem 4. 1, is Conjecture 

2. 7 under the restriction r< 5. Hence, since we have shown that 

Conjecture 2. 2 is implied by Conjecture 2. 7, Theorem 4. 1 shows 
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that Conjecture 2. 2 is valid under the added restriction that the sum 

of some fixed two of our three sets, A, B, and C, has less than 

six gaps. 

In the following chapter is a brief discussion of Mann's set 

transformation. We bring into this discussion only those properties 

of this transformation which are needed in the proof of Theorem 4. 1, 

so that this work is self contained. 



Conjecture 

SUMMARY OF THE EVOLUTION 

Statement Arguments 

2. 1 If 0 E A. (i = 1, , k), then for Generalization of 
Theorem 2. 1 to k 

any positive integer n, either sets where k > 2. 

k 

A.)(n) i 
i=1 

n 

k 

Ai) (n) 

i=1 
n 

- 1, or 

min 
1 < m < n 

k 

A. 

i=1 

2. 2 If OEA.(i= 1,2,3), and if n 

is the smallest gap in 

then 
3 

1A.(n) ( Ai)(n) 

i=1 i=1 

3 

3 

Conjecture 2. 1 

for k = 3 and n 
the smallest gap in 

Ai' 3 

i=1 Ai . 

i=1 

28 

2. 3 If A +B +C = In, then Definitions 2. 1, 2. 2 

A(n)+B(n)+C(n)-(A+B+C)(n) < 0. 

- 

( 

> 

mt 

/ 
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2. 4 If A+B+C = In, then 

E (A,B,C,n) < 0 . 

ti 

Definition 2. 3 

2. 5 If A+B+(A + B) = In, 

ti 

then Definition 2. 6 

Corollary 2. 1 

E (A, B, (A+B) , n) < 0 . 

ti 
2. 6 If A +B +(A +B) = In, then Lemma 2. 1 (g) 

Definition 2. 5 

E (A, B, n) < 0 . 

ti 
2. 7 If A+B+(A+B) = In, and if Definition 2. 4 

Lemma 2. 3 

A +B has r gaps, then Equation (2. 9) 

p (n, A, B) > r -1 . 
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CHAPTER III 

SYNOPSIS OF MANN'S TRANSFORMATION 

It is not our intent here to scrutinize minutely Mann's trans- 

formation, but only to dwell on it briefly so that it may be employed 

in Chapter IV without loss of continuity in this work. We introduce 

only those properties which are needed for our purposes and of these 

properties, only those whose proofs are not immediately available 

in the literature (2, pp. 10 -18; 5, pp. 4 -6; 6, pp. 524 -526) will 

be discussed in detail. The sets A, B, and D were defined in 

Chapter II. We emphasize here that in the following definition we 

are assuming that at least one step in the transformation is possible. 

Definition 3. 1. (Mann's Transformation) 

a) Let B =BO =B, T= 
TO 

= and e. 
J 
+1(J >0) 

be any integer in Bj = BO v Bi v B* B. 

b) The subscript iET +1 if there exist aEA, 

d. D (1 < i < r -1), and a subscript k4 T. = T* vT v v T 
0 

such that 

nk-a = e. + di, 
j+1 J 

=1) 

v 

J 

J+ 1 

i#T 



31 

c) Let Bi*+1 = {e. + diIiET3+1 }. 

This defines Mann's transformation up to uniqueness. There- 

fore, to arrive at a uniquely determined construction, choose e. 
+1 

as the least element eE B. such that T +1 is not empty . This 

process terminates at BJ, when TJ 
+1 

is empty. Thus for 

j = 0, we choose the least element el E B such that the equation 

(3. 1) el+dt = nv-a 

is solvable for some dt E D, n E A +B, and a E A. Notice that 

equation (3. 1) may be rewritten 

el+dv = nt-a, 

so that v as well as t is in T 
1 

. We then continue the con- 

struction, if possible, with the sets A, D, and B1 = B Bi, 

where e2EB1 . 

The following properties are readily verified. 

T* ' 
j+1 ' 

Lemma 3. 1. a) B* 
+1 

has the same number of elements as 

b) B. B3+1 

c) Tj T+1 
- ,T; 

- 
0' r` 
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d) No element in B +1 is of the form n -a, where aEA; 

e) n4A+B+1 
' 

f) nteA +Bj+1 if, and only if, tETj+1 

Lemma 3. 2. Let s be the least subscript, if any, not in 

T . If s exists and if nt > ds, then ntEA +BJ (7, p. 11). 

Proof. If n 
t 

> d 
s 

, then n 
s 

> d . t 
Thus 

0 < ns -dt < n. 

Consequently, either ns- dteA +B CA +BJ, or ns-dt is a gap 

in A +B, say ns -dt = nu, u < s. Since s is the least sub- 

script not in TJ, we must have uETJ Hence, by Lemma 

3. 1 (f), ns- dtEA +BJ. Therefore, in either case, 

} s -dt - a +b*, aEA, b *e BJ 

and so teTJ, for if t were not in TJ our construction could 

be carried at least one step further. Thus nt eA +BJ . 

Corollary 3 . 1 . If 0 E A and 0 E B, then n. d 
s 

for all 
1 

i where i < r. 

Proof. Suppose n. = d 
s 

for some i < r. Then, as the 

s t 

] 

. 
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first step in Mann's construction, choose el = OE B with 

el+ds = n1-a, a = O. 

We are immediately led to the false conclusion that c, e T . Hence 

ni ds for all i where i < r. 

The proof of the following lemma is not given by Lin. 

Lemma 3.3. We have BJr, B = Biv Be-) v BJ and 

all elements in B r B are distinct values of b satisfying the 

equation n = a +b, where a E A. 

Proof. If bE BJr, B, then 

b = e+di, iET 
+1 

for some j > 0 , by the definition of BJ . Hence b E B 1 v ,vBJ 

and so BJn BÇ B1 v v By . 

If b*EB1v v BJ , then 

b*=e+d, iET 
+1 

for some j > 0, by the definition of B +1. Suppose b* = b 

where b E B. Then 

b-ej+l+di=nk-a, 

1 



by the definition of 
j+ 1 ' 

and so 

a +b = nk 

This contradicts nk being a gap in A +B. Hence b* = b 

where b E B. Consequently, b *E BJ n B and so 

B1 v BJ C BJ 

34 

B. This proves B3(- B= 131'1._.) B J . 

By Lemma 3. 1(d), no element in B 
1 

BJ is of the 

form n -a. Hence, all elements in BJ B are of the form 

b = n -a where a EA. That these elements are distinct is immedi- 

ate, for in the first place the B'4' s are disjoint by Lemma 3. 1(b), 

and in the second place, if 

ej+l+di = ej+1+dk' 

where iETj 
+1 

and k E T +1, then i = k. Hence all elements 

in BJ m B are distinct values of b satisfying n = a + b, 

where a E A. 

Definition 3. 2. The phrase " e corresponds to k" means 

" e is the least element in B. such that kE T +1. 

This concludes our discussion of Mann's transformation. 

.. 

v 
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CHAPTER IV 

TWO THEOREMS 

In this chapter, we prove two theorems, Theorem 4. 1 which 

is Conjecture 2. 7 under the restriction r < 5, and Theorem 1.3 

which we restate as Theorem 4. 2. The proofs of Theorems 4. 1 

and 4. 2 are reorganized and clarified, and in the case of Theorem 

4. 1, examples are introduced. However, the underlying theory in 

most instances is still that of Lin (7, pp. 27 -40). 

We begin by turning our attention back to Conjecture 2.7. Our 

purpose here is to lay the background for the proof of Theorem 4. 1 

by proving three lemmas pertaining to Conjecture 2. 7 now that 

Mann's set transformation is available to us. We again state 

Conjecture 2.7. If A +B +(A +B) 
ti 

= In, and if A +B has 

r gaps, then 

p (n, A., B) > r-1 . 

Notice that this conjecture is trivially true for r = 1, since 

p (n, A, B) > 0 is always satisfied. Therefore, we assume that 

r > 1 in the argument to follow. 

The necessity of Mann's transformation lies in Lemma 3. 3, 

for we construct r -1 elements b B that are distinct solutions 
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of the equation n = a +b where a EA, some of which are in 

BJnB. 

Lemma 4. 1. The set T is not empty; in particular, 

r -1ETJ. 

Note that the hypothesis of Conjecture 2.7 is assumed in 

Lemmas 4. 1, 4.2 and 4. 3. 

Proof. By hypothesis, A +B +(A +B) 
ti 

= In. Thus, since 
ti 

(A +B) = D, every gap n. (1 < i < r -1) in A +B can be expressed 
1 - - 

asasum 

(4. 1) a+b+dt = ni , 

where a E A, bEB, dt E D, dt 0, or 

ni - a = b+dt . 

Therefore, at least one step in Mann's construction is possible. 

Let us emphasize here that we can say no more than this. That is, 

since we choose bEB to be the smallest b such that 

ni-a = b+dt, 

and since the T s are disjoint by Lemma 3. 1(c), it is entirely 

possible that the construction can be carried no further. However, 
J 
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we have shown that at least T 
1 

is not empty, and hence, TJ is 

not empty. This concludes the first part of the proof. 

If no subscript i where 1 < i < r -1 is missing from TJ, 

then, of course, r- l E TJ . If, on the other hand, there exist sub- 

scripts missing from T3, let s be the least such subscript. 

By ( 4 . 1 ) , there exists a subscript v (l < v <r -1) such that 

and so 

a+b+dv = n1 , 

d v- < n 
1 -< 

n 
s 

. 

By the definition of the set D, we have 

Hence, 

and so 

dr-1 < di (1 < i < r-1) . - - 

dr-1 dv - < 
n1 Ç ns 

n > d , r-1 s 

since equality cannot hold by Corollary 3. 1. Consequently, by 

Lemma 3. 2, nr EA +BJ, and therefore, r - 1 E T3 by Lemma 

3. 1 (f). 

Lemma 4. 2. Conjecture 2.7 is true if at most one subscript 

-< 



i (1<i<r-1) is not in TJ . 

Proof. If no subscript i (1 < i < r -1) is missing from T 

then the equation n = a +b has r-1 distinct solutions where 

bE BJn B by Lemma 3. 3, and Conjecture 2.7 follows. 
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J, 

Assume there exists one subscript s 
4 
T. Again by Lemma 

3. 3, we then have r -2 distinct solutions of n = a +b where 

bE BJ n B. We want to show that we also have at least one more 

solution bE B, but b4 BJn B. By the hypothesis of Conjecture 

2.7, we know that there exists a subscript t (1 < t < r -1) such that 

a+b+d = ns . 

Then b +dt4 BJ, for suppose b +dtE BJ. Then, since we also 

have a +b +ds = nt, we would have b +dsEBJ, and so sETJ, 

contrary to our assumption. Consequently, we assert that b =b +dt 

is another distinct solution of n = a +b where a = a + ds. To show 

this, suppose that b' = b +dt where b' E B. Then also b' =ns -a, 

and so a +b' =ns, contradicting ns being a gap in A +B. Sup- 

pose further that b +dt = n -a' , where a' EA. Then a' +b = nt 

and we reach the same contradiction. Hence b = b +dt is a solu- 

tion of n = a +b with a = a +d 
s 

Distinctness follows from the 

fact that b +dt 
4 

BJ, 

p (n,761-.,53) > r -1 . 

and hence, b +dt4 BJmB, and so 

t s 

s s 
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Lemma 4. 3. Suppose there are subscripts not in T. Let 

s be the least subscript, and t any subscript, not in TJ . Let 

a +b+dk = nt , 

where aEA, bEB, dkED, dk O. Then 

a) kE TJ and k > s; 

b) if e corresponds to k (Definition 3. 2), then b > e; 

c) if t = s, then all subscripts k, k +1, , r -1 are in 

TJ . 

Proof, a) Suppose k ft Ti.. Then, since ti TJ and 

a +b +dk = nt , 

TJ +1 
is not empty. This contradicts the definition of TJ . Hence 

kETJ. Since t{TJ, then nt 4 A +B by Lemma 3. 1(f). Since 

nt4A +BJ, then nt < ds by Lemma 3.2 and Corollary 3. 1, and 

so 

dk<nt<ds . 

Hence k > s by the definition of the set D. 



b) Since kE T by (a), we let e correspond to k. 

Then e +dk E B Suppose b = e. Then 

a +e +dk = nt 

and so t E TJ, contradicting our hypothesis t TJ. 

40 

Hence b / e. 

Suppose b < e. This contradicts our hypothesis that e corre- 

sponds to k by Definition 3. 2. Hence b J e , and so b > e 

follows. 

c) Let the subscript i satisfy k < i < r -1. Then, by the 

definition of the set D, d. < dk. Suppose t = s. Then, by 

hypothesis, 

a+b+dk = n , 

and so dk < ns, strict inequality holding by Corollary 3. 1. Hence, 

and so 

di < dk < ns 

n. > d . 

i s 

Thus, nEA +BJ by Lemma 3. 2, and therefore, iE TJ by Lemma 

3. 1(f). This proves (c), thus completing the proof of Lemma 4. 3. 
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We now state Conjecture 2.7 under the restriction r < 5, 

and proceed with its proof. 

ti 
Theorem 4. 1. If A +B +(A +B) = In, and if A +B has 

r < 5 gaps, then 

p(n,A, B) > r-1. 

Proof. We divide the proof into four parts corresponding to 

r = 2, 3, 4, 5 respectively. 

i) Suppose r =2. Then 1 = r -1 E T by Lemma 4. 1. 

Hence no subscripts are missing from T and Theorem 4. 1 follows 

by Lemma 4. 2. 

ii) Suppose r = 3. Then 2 = r -1 E TJ by Lemma 4. 1. 

Hence there is at most one subscript missing from T and Theo- 

rem 4. 1 again is valid by Lemma 4. 2. 

iii) Suppose r = 4. Then, again by Lemma 4. 1, 3 =r-1 E T. 
If at most one subscript is missing from TJ, then Theorem 4. 1 

again is valid by Lemma 4. 2. Hence, assume the remaining two 

subscripts 1 and 2 are not in T. Thus, if s is the least 

subscript not in T then s 1. Since r = 4, then nl E In, 

and so by hypothesis, there exists a subscript k such that 

n 

== 
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a+b+dk = n1 . 

By Lemma 4.3(a), we have kE T and k > s. By Lemma 4.3(c), 

all the subscripts greater than or equal to k are in TJ. Hence, 

since 2 f T and k > s, we have k = 3. Then 

or equivalently, 

a+b+d3 = n1, 

a+b+d = n3 , 

where b +d3 and b +d1 are values of bEB satisfying n =a +b, 

as shown in the proof of Lemma 4. 2. However, b +d3 and b +d1 

are not in BJ n B since the subscript s = 1 TJ. 
4 

Let e 

correspond to 3. Then e +d3 E BJ (Th B, and e +d3 is a value 

of b satisfying n = a +b by Lemma 3. 3. Also, we have that 

b > e by Lemma 4. 3(b). Hence 

e + d3 < b+d3 < b+d 

and so we have at least three distinct values of bEB satisfying 

n = a +b, namely e +d3, b +d3, and b +d1. This establishes 

our theorem for r = 4. 

iv) Let r = 5. Then 4 = r-1 E TJ again by Lemma 4. 1. 

Hence there are at most three subscripts missing from TJ. If 
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not more than one of these three subscripts is missing from TJ, 

Theorem 4. 1 follows from Lemma 4. 2 again. Hence we assume 

there are at least two subscripts missing from T. Let s be 

the least, and t be any subscript not in T. We have two cases 

to consider, s = 1 and s = 2. 

Suppose s = 2. Let t s. Then t = 3 and so 14ETJ. 

Furthermore, since n2 E In and n3 E In, we have by hypothesis 

that there exist subscripts i and k such that 

a +b +di = n2, 

a' +b' +dk = n3 . 

Consequently, by Lemma 4.3(a), iETJ, kETJ, and i > s, k > s. 

Hence i = k = 4, the only subscript larger than s in TJ, and 

so 

Again we have that 

a+b+d4 = n 2' 

a' +b' +d4 = n3 . 

b+d4, b+d2, b'+d4, 4' b' +d 
3 

are not in BJ B since the subscripts 2 and 3 are not in 

TJ . However, as before these four elements are values of be B 
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satisfying n = a +b, but are not necessarily distinct. Let e 

and e' correspond to the subscripts 1 and 4 respectively. 

Then 

e+d e' +d4 

are in B n B, and therefore, are two distinct values of b 

satisfying n = a +b by Lemma 3. 3. Furthermore, by Lemma 

4. 3(b), w e have b' > e' and b > e' , and so 

b+d4 > e' +d4 

b' +d4 > e' +d4 . 

Consequently, if b b' , then our four distinct solutions are 

e +d e' +d4, b +d4, b' +d4 

since e 
1 

L b +d4 and e +d b' +d4. To show this, we note 

that e+d 1= b+d4 or e+d 1= b' +d4 

or 

a+e+d = n2 

implies that 

a'+e+d1 = n3, 

and so either the subscript 2E TJ or the subscript 3 E T , 

, 

, 

# 
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or both. Now suppose b = b' . Then, we have 

e' +d4 < b +d4 < b' +d3 < b +d2, 

and so our four values of b E B satisfying n = a +b are 

e' +d4, b+d4, b' +d3, b+d2 . 

Observe here that the solution b = e +d1 is not available to us, 

since we do not know that e +d b +d2 or that e 
1 

b' +d3. 

This completes the proof for r = 5, s = 2. 

For s = 1, we argue as follows. By hypothesis, there exist 

subscripts i and k such that 

a+b+di = n1 

a' +b' +dk = nt, t E { 2, 3 } , 

and so, by Lemma 4. 3(a), iETJ, kETJ and i > s, k > s. Sup- 

pose i = 2. Then, by Lemma 4. 3(c), all the subscripts greater 

than 2 are in TJ, contradicting our assumption that at least 

two subscripts are missing from T. Hence, either i = 3 or i =4. 

Suppose i = 3. Then 3,4 E T and so t = 2. Hence, 

k = 3 or k = 4. Let e and e' correspond to the subscripts 

3 and 4 respectively. Then 

# # 

, 



e+d3, e'+d4 

are in BJ B, and therefore, we have two distinct solutions of 

n = a +b by Lemma 3. 3. 

Let k = 3. Then we have 

where, as before, 

a +b +d3 = n1 , 

a' +b' +d3 = n2 , 

b+d3, b+dl, b'+d3, b'+d2 

are values of bE B, but not in B B, satisfying n = a +b. 

Also, by Lemma 4. 3(b), we have b'> e, b > e, and so 

b' +d3 > e +d3 

b +d3 > e + d3 . 

Hence, if b b' , our four distinct values of bE B satisfying 

n= a +b are 

e+d3, e' +d4, b+d3, b' +d3, 

46 

for again e' +d4 b +d3 and e' +d4 b' +d On the other hand, 4 

, 

3 
, 
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if b = b' , then 

e+d3< b+d3 < b'+d2 < b+d1, 

and these four values of b are our solutions. Again we observe 

that b = e' +d4 is not usable since we do not know that 

e' +d4 b+d 
1 

or that e' +d4 b' +d2. 

Now let k = 4. Then 

with 

Here, we have that 

a+b+d3 = n1, 

a' +b' +d4 = n2, 

b+d3 > e+d3, 

b' +d4 > e' +d4. 

b+d3, b+d1, b' +d4, b' +d2 

are not in BJ r B. Hence, if e +d3 < e' +d4, 

e +d3 e' +d4), then 

e +d3 < e' +d4 < b +d4< b' +d2, 

(recall that 

or if e' +d4 < e +d3, then 
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e' +d4 < e+d3 < b+d3 < b+d1, 

and so, in either case, we have at least four distinct solutions of 

n = a +b. This completes the proof for s = 1, i = 3. 

Suppose i = 4. Then we have 

a +b +d4 = n1 

a ' +b' +dk = nt, t E { 2, 3 } . 

Let e and e' correspond to 4 and k respectively. Then 

e + d4, e' +dk 

are in BJn B and satisfy n = a +b again by Lemma 3. 3. Also, 

again by Lemma 4. 3(b), b > e and b'> e' . We have three cases 

to consider, k = 2,3,4. 

For k = 2, we have 2, 4E TJ and so t = 3. Thus, we have 

and as before, 

a+b+d4 = n1 

a'+b' +d2 = n3 , 

b+d4, b+dl, b'+d2, b'+d3 

are in B, and of the form n -a, but are not in BJ n B. Hence, 

, 
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we have 

a) e' +d2 < e+d4 < b+d4 < b+d if e' +d2 < e+d4 

b) e+d4 , e' +d2, b+d4 , b' +d2, if e+d4 < e' +d2 and 

b+d4 # b' +d2 ; 

c) e +d4 < e' +d2 < b' +d2 < b +d if e +d4 < e' +d2 and 

b +d4 = b' +d2, since if b +d4 = b' +d2, then b -b' = d2 -d4 > 0, 

or b > b' . Hence, in all three cases, we have four distinct solu- 

tions of n = a +b. 

For k = 3, we have 3,4ET and so t = 2. We need only 

interchange the subscripts 2 and 3 in the preceding argument 

for k = 2, and the result follows. 

For k = 4, we have t = 2 or t = 3, e = e' and both 

b > e and b' > e. Thus, we have 

and 

a+b+d4 = n 

a' +b' +d4 = nt 

b+d4, b+d1, b' +d4, b' +dt 

are not in Br- B. In addition, we have that e +d4 E B r' B. 

From these five values of b satisfying n = a +b, we find four 

distinct ones as follows: 

; 

, 
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a) e+d4 < b+d4 < b' +dt < b+d 
1, 

if b = b' ; 

b) e+d4 < b+d4 < b' +d4 < b'+dt, if b< b' ; 

c) e+d4 < b' +d4 < b+d4 < b+d if b> b' . 

This concludes the proof for r = 5, and therefore, Theorem 4. 1 

is established. 

The example following Conjecture 2. 2 in Chapter II, also 

serves to show that Theorem 4. 1 cannot be improved. In this 
ti 

example, n = 15, A +B +(A +B) = I 
n 

and r = 6, since 

A +B = (A +A2) nN = { 0, 1, 2, 3, 8, 9, 10, 12, 13, 14 } . However, 
ti 

A(n) +B(n) +(A +B) (n) > n-1. 

At this point, let us emphasize the significance of Theorem 

4. 1 relative to the proof of Theorem 1. 3. Theorem 4. 1 implies the 

following statement. 

If A +B +C = I 
n 

and if the sum of some fixed two of these 

three sets has less than six gaps, then 

A(n)+B(n)+C(n) < n-1 . 

Therefore, we may make the assumption in the proof of 

Theorem 1. 3 that none of the sets A +B, A +C, and B +C have less 

than six gaps. We now restate Theorem 1.3 as Theorem 4. 2, and 

proceed with its proof. 
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Theorem 4. 2. If A +B +C = I 
n 

and 0 < n < 15, then 

A(n)+B(n)+C(n) < n -1 . 

Proof. By Corollary 2. 1, we may assume that 

A = (B+C) , B = (A+C) , C = (A+B) , 

thereby maximizing A(n) +B(n) +C(n). By Theorem 4. 1, we may 

assume that the sets A +B, A +C, and B +C all have more than 

five gaps. These two assumptions imply that 

A(n) > 5, B(n) > 5, C(n) > 5. 

The proof of Theorem 4. 2 consists in showing that A(n) > 5, 

B(n) > 5, C(n) > 5 and our hypotheses, A +B +C = I 
n 

and 

0 < n < 15, are contradictory. 

By Lemma 2. 1(g), we have 

ti 
(A+B)(n) +(A+B) (n) = n-1. 

Combining this result with our assumptions, A(n) > 5, B(n) > 5, 

and C(n) > 5, we conclude that 

(4.2) 5 < B(n) < (A +B)(n) = n- 1 -C(n) < n -6. 

From (4. 2) and the hypothesis 0 < n < 15, we have two results: 

. 
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(4. 3) (A +B)(n) < 8, 

with similar inequalities for A +C and B +C, and 

n > 11. 

This last result establishes Theorem 4. 2 for n < 11 . 

By hypothesis, 1 EA +B +C and must, therefore, be in one of 

our three sets. Without loss of generality, we assume that lEA. 

Let 

A = {O,l,a2,, ah} , h> 5, 

B = {0,b1, - , bk }, k >5. 

Then A +B contains at least the following numbers: 

(4. 4) 1 < bl < 1 +b1 < b2 < 1 +b2 < < bk < l +bk, 

where l +bk < n -1, 

can sharpen (4. 2) to 

and so 

or bk < n -2. Hence, since l +bk4 B, we 

6 < B(n)+ 1 <(A+B)(n) < n-6, 

n > 12. 

This completes the proof for n < 12. 

Suppose that equality holds for all the signs "<" of (4. 4). 
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Then b =m (1 < m < k), and so 
m - - 

B = {0,1,'',k }, 

A + B 0,1,,k+l}. 

Furthermore, we assert that a5 +k < n, and therefore, that the 

elements a5 +m (1 < m < k) are also in A +B. To show this, 

suppose that a5 +k > n. Then k > n -a5 > 0 and so n -a5 E B. 

Thus, n = a5 +(n- a5)EA +B contrary to our hypothesis. Hence 

a5+k < n. But a5+k < n and a5 5 imply that A +B contains 

not only the elements 0, 1, , k +1, but also the elements 

a5 +k -3 (a5 +k -3 > k +2), a5 +k -2, a5 +k -1, and a5 +k (a5 +k < n). 

Hence, 

(A+B)(n) > k+5 > 10, 

contradicting (4. 3), (A +B)(n) < 8, and so equality cannot hold for 

all the signs " < " in (4. 4). We conclude that at least one of the 

inequalities "<" in (4. 4) must be strict inequality. Hence, we 

can again sharpen (4. 2) to 

(4. 5) 7 < B(n) + 2 < (A+B)(n) _= n- 1-C (n) < n-6 , 

and so 

n > 13. 

Consequently, Theorem 4. 2 is valid for 0 < n < 13. 

- > 

Q 



Furthermore from (4. 5) and our assumptions B(n) > 5 and 

C(n) > 5, we establish the following inequalities: 

(4. 6) 

7 < (A+B)(n) < 8 , 

10 < B(n)+C(n) < 11 . 

We have two cases to consider, (A +B)(n) = 7 and (A +B)(n) = 8. 

These two cases incorporate n = 13 and n = 14. We observe 

here that (4. 6) and our assumptions, B(n) > 5 and C(n) > 5, 

give that either B(n) = 5 or C(n) = 5. Hence, without loss of 

generality, we assume that B(n) = 5, or equivalently k = 5, 

in the argument to follow. However, before we proceed to this 

argument, let us display here all the assumptions upon which this 

argument is based. They are: 

1) A+B+C = I ; 
n 

2) 12 <n <15; 

., ,,.. ,N, 
3) A = (B +C) , B = (A +C) , C = (A +B) ; 

4) A(n) > 5, B(n) = 5, 5 < C(n) < 6 ; 

5) 1 E A; and 

6) at least one of the inequalities 

strict inequality. 

It < II in (4. 4) must be 

54 
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Case I. Let (A +B)(n) = 7 and 13 < n < 14. Since 

(A +B)(n) = 7, we have that strict inequality holds for one of the 

signs "< " in (4. 4). Thus, there exists a subscript s such that 

(4.7) 0 < bs < l+bs < bs+1 
-< 

bk = b5 

where 0 < s < 5 and b0 = 0. Hence, since (A +B)(n) = 7, there 

are exactly two elements in A +B which are not in B, namely, 

1 +bs and 1 +b5. We also have 

b =m (m = 1,',$), m 

bs+ bs+1 
+ 

j-1 (j = 1, , 5-s), 
l 

and so 

B = { 0, 1, , s , bs+ l' bs+ 1+ 
1, , bs+ 1+4 

-s 1, 

A+B = { 0 , 1 , , s + l , bs+1' 
' 

+ 5 -s } , } , 

since bs 
+1 

-s = 1 +b5 is the largest element in A +B. Let 

t = bs+ 
1 bs . 

Then, since bs 
+1 > 

bs +1, we have t > 1. We also have 

' 

. 

- 

+1 
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bs+ 1 
= bs+t = s+t > s+ 1, 

bs+2 bs+ 1+1 
= s+t+ 1, 

bs+j-5 b s+j j-1= s+t+(5-s)- 1 = 4+t . 

Consequently, B and A +B can be written in the form 

B = { 0, 1, , s, s +t, , 4 +t } , 

A +B= {0,1, ,s +1,s +t, ,5 +t }. 

Let us now examine the elements in A +B a little more 

closely. For instance, we know that for i = 2, , 5 and 

m= 1,,5, 

ai+bm < 1+b5 if ai+bmEA+B; 

a.+b > n 
1 m if a.+b 4A+B; 

i m 

ai+b0 = ai E A+B; 

ai+b5 > n, 

for ai +b5 - >2+b 
5 

+B. Therefore, there exists a subscript y, 

where 0 < v < 5, such that 

- 

= 



Thus, 

(4. 8) 

and so 

or 

{ 
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ai+bv < 1+b5 < ai+bv+l 

a.+b < 1+b5 < n-1 - 

ai+bv+ 
1 > 

n, 

ai +bv+ 1< n< ai+bv+ 
1 

bv+ 1 < bv+ 
1 

Hence v = s by (4. 7), and so by (4. 8), we have 

ai +s == ai+bs < 1+b5 = 5+t, 

(4. 9) 

ai+s+t = ai+bs+ 
1 > n ' 

and so 

(4. 10) n-(s+t) < a. < 5+t-s (i = 2, 3, 4, 5). 

We note here that (4. 9) gives 

a2+s+3 < a5+s < 5+t < n-1, 

a2+s+t > n, or a2+s+3 > n-t+3, 

. 

- 
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and so 

(4. 11) n-t+3 < a2+s+3 < 5+t < n-1 . 

Hence, since 13 < n < 14, we have 

and so 

(4. 12) 

16-t < 5 +t < 13, 

6 < t < 8. 

Furthermore, we assert that a. > s +t (i = 2,3,4, 5), for 

suppose a. < s +t. Then, since a. EA +B, we must have 

2 < a. < s +1, - l- 

and so s > 1. Then it follows that 

1 < < s, 
ï- 

and so, by the construction of the set B, we have s +2 -a. E B. 

Hence 

s+2 = a. + (s+2-a.) EA+B, 
i i 

and, by (4. 12), s +2< s +t, contradicting our assumption that no 

number in A +B lies between s +1 and s +t. Consequently, 

a. > s +t (i = 2, 3, 4, 5), - 
Hence, this result and (4. 10) give 

1- 

1 i 

s +2 -a. 
- 
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(4. 13) s+t < a. < 5+t-s (i = 2, 3, 4, 5). - 1 - 

We now have the desired contradiction for the case (A +B)(n) = 7, 

for suppose bE B and b < s. Then a2 +b < 5 +t by (4. 9), and 

therefore, 

and so 

a2 +b E A +B. Consequently, 

s +t < a2+b < a5+s < 5+t, 

s+t < a2+b < 4+t. 

However, by assumption, B contains all numbers y such that 

s +t < y < 4 +t. Hence, a2 +bE B, and so 

ti 
Therefore, B + B 

1 0 , a . } + B = B 

by Theorem 2. 2, contradicting our hypothe- 

sis, since by assumption B +B _= B +A +C = In. This completes the 

proof of Theorem 4. 2 for n 13 or n = 14, and (A +B)(n) = 7. 

Before we proceed to the case (A +B)(n) = 8, let us make 

some further observations about the preceding proof, and look at 

some examples. First, we observe that (4. 13) gives 

s+t<a2<2+t-s, 

since a2 < a5 -3, and so we have the added restriction that 

0 < s < 1. 

I 
n 

n 

= 



60 

We could, from this point, proceed with a proof by considering all 

the possible cases reamining under the restrictions 0 < s < 1 and 

6 < t < 8 (4. 12). However, this is not our purpose. We wish 

merely to get some insight into the mechanics of the preceding 

proof. Therefore, suppose s = 1 and t - 6. Then, from n = 13, 

we have 

B { 0, 1, 7, 8, 9, 10 } , 

B + {0,8} = B, 

and so B +B In. For n = 14, let s = 0, t = 8. Then 

B = {O,8,9, 10, 11, 121-, 

B + {0,8} = B, 

and again we conclude that B +B I by Theorem 2. 2. We observe 
Yl 

here that we could compute the set B directly to show that 

B +B In, and thereby bypass Theorem 2.2. 

Let us now consider the last case in the proof of Theorem 4. 2. 

Case IL Let (A +B)(n) = 8. Then we have 

5 < C(n) (n- 1)- +B)(n) _ (n -1) -8 = n -9 , 

and so n -= 14. With (A +B)(n) = 8, we have two possibilities 

arising from (4. 4). If only one of the signs n< !i in (4. 4) is strict 

_ 

# 
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inequality, then, as in the case (A +B)(n) = 7, we have 

and so either 

or 

B = {0,1, , s, s+t, ,4+t}, 

A+B = {0,1,,s+1,x,s+t,,5+t}, 

A+B = {0,1,,s+l,s+t,°°,5+t,x}, 

where the extra element x arises from our assumption 

(A +B)(n) = 8. 

On the other hand, if two of the "< " signs of (4.4) are 

strict inequality, then we have that there exists a subscript u, 

where 0 < u < 5 and u s, such that 

0 < bu < l+bu < bu+ 
1 -< bk 

Hence, instead of two, we have three elements in A +B which are 

not in B, namely, l +bG, 1 +bu, and 1 +b5, and so 

(A +B)(n) _= B(n)+ 3 = 8, satisfying our assumption. Clearly we can- 

not have more than two of the signs "<" in (4.4) being strict 

inequality, for then (A +B)(n) > 8. 

Therefore, we have three cases to consider: 

i) one of the signs 

l+bs < x < bs+1 

" <P? in (4. 4) is strict inequality and 

{ 

u u 



ii) one of the signs 

1 +b5 <x<n; and 

iii) two of the signs 

II <II 

IT <n 

in (4. 4) is strict inequality and 

are strict inequalities and so 
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x = l +b (0< u < 5, u s). We treat these three cases separately. 

i) Suppose one of the signs n <n in (4.4) is strict inequality, 

and that the extra element arising from our assumption (A +B)(n) = 8 

satisfies 1 +bs < x < bs +1 Then we have 

B = { 0, 1, , s, s +t, ° ' , 4 +t } , 

A +B = { 0, 1, ' , s +l, x, s +t, , 5 +t } 

Let x = a +b where a EA and b E B. Then since s +l <x< s +t, 

we have b < s +t and so b < s. Consequently, a> s +1 -b> s +l -s> 1, 

and so a > a2 . 

Since the set B is the same as in the case (A +B)(n) = 7 and 

since 1 +b5 is still the largest element in A +B, we have as before 

that there exists a subscript v, where 0 < v < 5 , such that 

ai+bv < 1+b 
< ai+bv+1 (i > 2). 

We conclude in the same manner that v = s, and so 

u - 

. 
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a.+ s = a.+b < 1+b = 5+t , 
s - 5 

(4. 14) ai+s+t = ai+bs+1 
> 

n, 

1- n-(s+t) <a.< 5+t-s (i >2). 

Letting i = 5 in the first, and i = 2 in the second, inequality (4.14), 

and noting that a5 > a2 +3, we have 

n-t+3 < a2+s+3 < a5+s < 5+t < n-1, 

and so 

(4.15) 7 <t<8. 

Then, using (4. 14) and (4. 15), we have 

(4. 16) a.>3(i>2). 
1 - - 

Since a2 < a < x < bs +1' it follows from (4. 14) that 

> a +bs+ 
1 > 

n, lbs+ 
1 

and so bs +l > 8. This result, together with (4. 15), eliminates 

the case t = 7, b 
s 

= 0. Consequently, if b 
s 

= 0, then t = 8, 

B = {0,8,9,10,11,12 1, 

B + {0,8 }= B. 

Hence, B +A +C = B+ B In by Theorem 2. 2, contradicting our 

and so 

1 1 

- 

s 
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hypothesis. Therefore, b 
s 

> 1 and 1 E B. 

Furthermore, we assert that a. 
i - > b 

s +l - 1, where i > 2, - 
for suppose first that l +bs 

< ai < bs +1 
-2. Then not only ai but 

a.+1 would lie between l +bs and bs+ 
1 

and both be in A +B, 

contrary to our assumption, for since 1 E B, we have 

l +bs < ai < ai +1 < bs +1 . 
Suppose now that ai < l +bs. Then, since 

a, > 3 by (4.16), we have 

-(l+b ) < -a. < -3, 
s - i- 

and so adding b 
s 
+2, we obtain 

1 <b +2-a. <b -1 , - s i- s 

2<b+3-a.<b - s i- s 

Hence, both b 
s 

+2 -a. and b 
s 

+3 -a. are in B, and so both i i 

and 

b +2 = a.+(b +2-a.) 
s i s i 

b +3 = a.+(b +3-a.) 
s i s i 

are in A +B, a contradiction since by assumption x is the only 

member of A +B between bs +1 and bs +1' Consequently, 

ai > bs+ 1 
- 1. 

. 



Hence we have the following results. 

a > a2, 

- ai > b 
s+1 

-1 (i > 2), - 

x==a+b<bs+1' 

x > b 
s 
+1, 

and so we conclude that 

(4. 17) 

x = a2 = bs+1 -1 

a.> b (i > 3). 
i- s+1 - 

Combining (4. 14) with (4. 17) we obtain 

s +t +2 < a5 < 5 +t -s, 

since a5 > a3 +2, and so s < 1. Consequently, s 1 and 

t = 7, 8 respectively are the only remaining cases to consider. 

Therefore let s = 1. Then 

and so 

B : - : { 0, 1, 8, 9, 10, 11 } (t = 7), 

B {0,8}= B, 
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s+1 

= 

' 



and 

and so 

B = { 0, 1, 9, 10, 11, 12 } (t = 8), 

B + {0,91= B. 
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In either case, we reach the same contradiction B +A +C = B +B In, 
n 

which concludes the proof for (i). 

ii) Suppose of the signs n<n in (4. 4) one is strict inequality 

and 1 +b5 < x < n, Then again we have 

and so 

B = { 0, 1, , s, s+t, , 4+t } , 

A+B == { 0 , 1 , , s + 1 , s+t, , 5+t, x } . 

Furthermore, if x = a +b where aE A, b e B, then l +b 
4 

B, 

for suppose 1 +be B. Then a +(1 +b) = l +x > n, since x is the 

largest number in A +B. But since xEA +B, we have x < n -1, 

and so x +1 < n. Hence, since both inequalities cannot be satisfied 

at the same time, we conclude that 1 +b B. Thus it follows, by 

the construction of B, that b = bs or b = b5 . We treat these 

two cases separately. 

Suppose b bs. Suppose also that x = 2 +b5. Then 

a+bs = 2+b5, and so a +bs 
+1 > n. Consequently, it follows that 

= 

# 
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and so 

a+s = 6+t, 

a+s+t > n, 

6 +2t > 14, 

or t > 5. Furthermore, since b5 +2 < n -1, we have 

4 +t = b5 < n -3, and so t > 7. Hence, 

(4. 18) 5 < t < 7. 

We know that a. < a, where i > 2, for suppose first that - 
a2 

2 
> a. Then a < al= 1 and x = a+bE { b, 1 +b } , a contradiction. 

Next suppose that a. > a where i > 3. Then, since by assump- 
1 

tion a +s = 2 +b5, it follows that ai +s > n, where ai < n-1. 

However s satisfies 0 < s < 4. Hence, 

and so 

14 < a.+s < a.+4 , 
1 - 1 

11 < a. < 13 (i > 3). - 1- - 

But these two results, a. +s > 14 and 11 < a. < 13, imply that - 1 - 
nEA +B , since all the numbers less than or equal to s are in 

A +B, a contradiction. For example, suppose a. = 11 for some 

i > 3. Then, since a. +s > n, we have s = 4, and so 3 E B. - 1 

Hence 11 +3 = nEA +B. We conclude that a. < a where i > 2. 1- - 



In addition, we assert that a. > s +t where i > 2. We 1- - 

proved this before in a different situation so let us be brief. Sup- 

pose a. < s +t. Then 

2 <a. <s +1 , - l- 

and so s > 1. It follows that 

1 < s +2 -a. < s, - 

and so s +2 -a. E B. Thus 
1 

but 

s+2 = a. + (a+2-a. ) E A+B , 
1 1 

s+2 < s+t, 

since t > 5. Hence s +2EA +B, and we have a contradiction. 

Therefore a. > s +t (i > 2) . 1- - 

Hence, from these two results, a.< a and a. > s +t, we 1- 1 - 
obtain 

(4.19) s+t < a. < a (i > 2). - 1- - 

Consequently, 

since by assumption 

2s +t < a2 +s < a5 +s -3 < a +s -3 < b5 = 4 +t, 

a+s = 2+b5, and so 

68 



69 

(4.20) 0<s < 1. 

Consequently, we have s = 0, or s = 1. 

We assert further that a2 +s +t > n, for suppose a2 +s +t < n. 

Then since a2 +s +t E A +B, we have 

a2+s+t < x = a+s = 6+t. 

Lin claims strict inequality here, but we are unable to show that 

this follows from his method. Hence, we use an alternate method 

for obtaining a contradiction. By (4. 19), we have 

and so 

s+t < a2 < 6+t-(s+t) = 6-s , 

6-2s > t > 5. 

Therefore, s= 0 and so using this result and (4. 18), we have 

5 <t <6. Hence, we have 

5<s +t <a2 <6 -s =6. 

Our problem is reduced to considering the cases, s = 0, t = 5, 

5 < a2 6 and s = 0, t= 6, a2 = 6. Therefore, we have 

_ 0,5,6,7, 8, 91 (t = 5) , 

< 



and 

B = {0,6,7,8,9,10}(t=6). 

Thus, in either case, a2 = 5 or a2 = 6, we have nEA +B, a 

contradiction. Consequently 

(4. 21) a2 +s +t > n . 

We now use (4. 21) to sharpen (4. 18). We have 

n < a2 +s +t < a5 -3 +s +t < a -3 +s +t = 3 +2t, 

and so 

6 <t<7. 
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This result, together with (4. 20), shows that we need only consider 

the four cases s = 0,1 and t = 6,7 respectively to get our final 

contradiction. Let us then look at these four cases. For t = 6, 

we have 

and so 

For t = 7, we have 

B = {0,6,7,8,9, 10} (s = 0), 

B = {0, 1, 7, 8, 9, 10 } (s = 1), 

B + {0,9}= B. 

B = {0, 7, 8, 9, 10, 111 (s = 0), 

B = {0, 1, 8, 9, 10, 11 } (s = 1), 



and so 

B+ {0,8}= B. 

Hence, in all cases, we have B +B In. Thus we must reject 

the assumption b = bs and x = 2. +b5 . 

Now suppose b = bs and also suppose x > 1+b5. Then 

a +bs > 3 +b5. Let us again determine the subscript v, where 

0 <v <5, such that 

ai+bv < 1+b5 < ai+bv+1 (i > 2). 

In this situation, we have 

and so 

ai+bv+1 x ' 

x-bv+1 ai < 1+b5-bv, 

or 

by +1 -bv > x -(1 +b 5). 

By our assumption x > 1 +b5, we have 

and so 

x-(1+b5) > 1, 

bv+l-bv > 1. 
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V 



Hence v = s, and so 

ai +b 
s - < 1+b 

5' 
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contradicting a +b 
s - > 3+b5. Therefore, b =b 

s 
and x > 2 +b 

5 
are 

impossible. 

Let b = b5 and x =-2+b 
5. 

Then a = a2 = 2. Consequently, 

s +2EA +B, and since no numbers in A +B lie between s +l and 

s +t, we conclude that s +2 = s +t, and so t = 2. Hence, we have 

b5 = 4 +t = 6 and x = 2 +b5 = 8. Since x is the largest number in 

A +B, it follows that 3 < a. < 8, where i > 3. In particular, we 

have that a3 satisfies 
- 1 - 

3<a3 <6, 

and so 

9 12. 

Hence, a3 +b5EA +B and a3 +b5 > x, contradicting our choice of 

x. This shows that we cannot have b = b5 and x = 2 +b5. 

Suppose b = b5 and x > 2 +b5. Then a > 3. As in the 

case b = bs and x > 2 +b5, we have 

bv+l-bv > x-(1+b5) 
5) 

> 1, 

and so v = s. Hence, 
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Consequently, 

ai +b < 1+b5 

ai+bs+1 x (i > 2). 

x = a+b5 > a2+bs+1 - > x' 

since a > a2 and b5 > bs +1' 
and so 

a+b5 = a2+bs+1 . 

Hence, a = a2 and b5_ 
bs +1, and so s = 4. It follows that 

ai > a and ai +b5 > n, where i > 3. Therefore, since - 
a2 +bs > l +bs and since there are no numbers in A +B between 

bs +1 and bs +l' we conclude that a2 +bs > bs +1 
b5 But 

this is a contradiction for then 

b5 < a2 +bs < a5 -3 +bs < 1 +b5 -3 = b5 -2. 

This completes the proof for b b5 and x > 1 +b5. 

iii) Suppose two of the signs "<" of (4.4) are strict inequalities 

and so x 1+b 
u, 

where u r s, u 5 and 0 < s < u < 4. 

Then 

, 

s+1 

= 

- 

L 
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B = {0, 1, . ,b s' bs+ 1' 
. bu, bu+ 1' 

. . ,b51, 

A+B = { 0, 1 , ° , bs+1, bs+1' 
' bu' bu+l, 1+b5 1 . }. 

Let 

t = bs+ 1 bs > 1, w = bu+ 1 -bu > 1. 

If we consider the numbers 

a. +b0, ai +bl, , ai +b5, 

where i > 2, then as earlier we can find a subscript v, where 

0 <v< 5, such that 

ai+bv < 1+b5 

a.i +b v+l > n, 

and conclude in the same manner that by 
+1 

-b -bv > 1. Consequently, 

either v = -s or v =u. 

If v =s, then 

(4. 22) 

ai+bs < 1+b5 

ai+bs+1 
> n, 

bu+1, , 

i 

, 



and if v =u, then 

(4. 23) 

Therefore, either 

a +b 
i u - < 1+b5' 

ai+bu+1 > n (i > 2). 

(4. 24) n-bs+1 < ai < 1+b5 -bs, - 
or 

(4. 25) n-bu+1 < ai < 1+b5 -bu (i > 2). 

Observe here that in either case, v = s or v = u, we have 

(4. 26) 

ai+bs < 1+b5, 

ai+bu+1 
> 

n (i > 2), 

due to our assumption 0 < s < u < 4 . 

Then 

Due to the construction of the set B, we may write 

bs = s,bs+1 = s+t, bu = t+u-1. 

bu+l 

b5 = 5+(t-1)+(w-1) =t+w+3 < n-2 = 12, 
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= 
t+u-l+w, 



and so 

t+w < 9. 

Using these identities, (4. 24) and (4.25) become 

and so either 

or 

14-(s+t) < a. < t+w+4-s, i- 

14 - (t+ u +w - 1) < a < t +w +4 - (t +u - 1) , 1- 

2t +w > 11, 

t+2w > 11. 
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By the definition of t and w, we have t > 2 and w > 2. 

Now suppose t +w < 6. Then since 2t +w > 11, we have t > 5, 

and so w < 6 -t < 1, a contradiction. Similarly, since t +2w > 11, 

we have w > 5, and so t < 6 -w < 1, again a contradiction. 

Hence t +w > 7, and so 

(4.27) 

(4. 28) 

where 

We have that 

7 <t +w < 9. 

a. > max (t, w, b 
s +1 

), 
i - 

i > 2. We may suppose that i == 2. Further suppose that 



a2 < t. Then 

2+bs 
< a2 +bs < bs 

+1 
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contradicting our assumption that no number in A +B lies between 

l +bs and bs +1. 
Hence a2 > t. We have a similar contradiction 

for a2 < w, for then 

2+bu < a2+bu < bu+1 

and again there is no number in A +B between l +bu and bu +1' 

Hence a2 > w. The last possibility, a2 < bs +1 
implies that 

a2 < bs+l = s+l. Hence, 2 < a2 < s+l, or -(s+l) < a2 < -2. 

Thus, adding s +2, we obtain 

1 < s+ 2-a2 < s, 

and so 

a2 +(s +2 -a2) = s +2 

is in A+B. Hence, s+2 = s+t, and so t = 2. By (4. 27), we 

have w > 5, and by what we have just shown a2 > w. Hence, 

5<w<a < s+l < 4, 

since 0 < s < 3, and we have a contradiction. This completes 

the proof of (4. 28). 

- ' 

' 



(4. 29) 

From (4. 28), it follows that 

a. > 4, i- 

where i > 2, since by (4. 27) either t > 4 or w > 4. 

If we can show that 

(4. 30) { 0, ai }+ B = B, 

for some fixed i > 2, then, by Theorem 2. 2, B+33' In. 
n 

This 

is the contradiction that we wish to obtain. Consequently, we wish 

to show that for some fixed i, where i > 2, there does not 

exist an e .E B such that i 

and 

thereby showing that 

a.+e. < n 
i i 

a.+e. B, 
i i 

{0,ai } +B =B 
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for that fixed value of i. Hence, we assume the contrary. That is, 

we assume that for each i where i > 2, there exists an e. E B - 1 

such that 



(4. 31) 

a.+e. < n, 
i i 

a.+e. B . 
i i 
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Then, since a. +e. B and a. +e. EA +B, for each i at least one 
1 1 1 1 

of the following three equations holds: 

a) a.+e. = l+b ; 
1 1 s 

b) ai+ei = 1+b5 ; 

c) a.+e. = l+b . 
1 1 u 

We obtain a contradiction to our assumption by producing a value of 

i for which these three equations all fail to hold. 

a) This equation fails to hold for each i > 2, for by (4. 28), 

a1. > b 
s +1 

Hence, i- 
ai+ei 

> bs+l > l+bs . 

b) Suppose ai +ei = 1 +b5. Then 

ei = 1+b5-ai < b5 . 

Hence e. = b or e. = b , for if this were not the case, then 
1 s 1 u 

1 +e. E B and so 2 +b5 = ai +(1 +ei) EA +B since 2 +b5 < n. We 

$ 
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consider these two subcases separately. 

where 

Suppose ai +ei = 1 +b5 and e. = bs. Then since by (4. 26), 

J 

a . +bs < 1+b5, 

> 2, and by assumption 

ai +bs = 1 +b5, 

we conclude that a. is the largest element in A +B. Hence, 

since A(n) > 5, at least for j = 2,3,4, we have 

(4. 32) aj+bs < 1+b5, 

a contradiction to the supposition a.+e. = 1 +b5 if i = 2, 3, 4. 

Therefore, we have shown that if e. = b , then the equation 
i s 

ai +ei = 1 +b5 fails to hold for i = 2,3,4. 

Next suppose that ai +ei = 1 +b5 and ei = bu, for i fixed 

and 2 < i < 3. Then 

ai+ei = ai+bu = 1+b5 

and so 

Hence, by (4.23), v 

a4+bu > 1+b5 . 

u, and so v = s. Thus, by (4.22), we have 

J 

J s 

, 

# 



and 

a4+bs+ 
1 > 

n, 

a4+bs < 1+b5, 
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strict inequality holding by (4. 32). Using this result and (4. 28), we 

have 

bs+1 < a4 < a4+b. 
J - < b5, 

where 0 < j < s. By (4.31), a4 +e4 < n and a4 +e4t B. Hence 

e4 <bs, for suppose 

a4 +e4 > a4 +bs+ 
1 > 

n, 

that 

e4 > bs. Then e4 > bs+ l' 
contradicting 

and so 

a4 +e4 < n. Thus, it follows 

bs+ 1 
a4 +e4 < b 

and so a4 +e4 = 1 +bu, since 1 +bu is the only member of A +B 

satisfying the above inequalities and which is not in B. But if 

a4 +e4 = l +bu, then for 2 < i < 3 we have by (4. 28) that 

n > 2+b = ai+( 1+ bu) = ai+a4+e4 > bs+ 1+a4+e4 > n, 

a contradiction. Hence, if e. = b , 
i u 

then the equation ai +ei = 1 +b5 

fails to hold for i = 2, 3. Thus for both subcases of case (b) we see 

that the equation ai +ei = 1 +b5 fails to hold for i = 2, 3. 

c) Suppose a. +e. = 1 +b , 
u 

where i = 2, 3. Then 
i i 



a2+e2 = a3+e3, 

and so since a3 > a2, we have e2 > e3. By (4. 29), a. > 4, 

so we also have 

e3 <e2<b 
u. 

We wish to show that e2 < bs +1' 
Therefore, suppose first 

that e2 > bs +1' 
Then, since a2 +e2 = l +bu, we have 

a2-1 = bu-e2 < bu-bs+1 

But, by the definitions of bu and bs +1' 

and so 

Thus 

we have 

bu-bs+1 = 
t+u-1-(s+t) = u-1-s, 

a2-1 < u-1-s. 

4<a2<u-s<4, 

82 

which is a contradiction. Hence, e2 < bs +1' 

Next suppose e2 
= bs +l' Then repeating the same argument 

with equality, we conclude that 

4 < a2 = u-s < 4, 
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and so 

a2=4, s =0, u=4. 

Consequently, since e2 
= bs +1 

and s = 0, we have e2 =b1 =t, 

and so 1 < t < 4 since 4 = a2EA +B and again no numbers in 

A +B are between s +l and s +t. Also since all the numbers 

between bs 
+1 

and bu are in B, we have 

2 
-< 

b1 < b2 = bl +l < b3 = b1 +2 < b4 = bu =b1 +3 < 7. 

Hence, since a2 = 4, we have 

6 < a2 +b = 1 +b4 < a +b2 = 2 +b4 < a2 +b3 = 3 +b4 < a2 +b4 = 4 +b4 < 11 < n, 

and therefore, 

l+b , 2+b , 3+b , 4+b 
u u u u 

are all greater than or equal to l +b 
u 

and are in A +B, 

dicting u = 4. We conclude that e2 bs +1. Hence 

We now have 

and so 

O<e3 <e2<s, 

s > 1, u> 2, 

l<1+e3<1+e2<s+1. 

contra - 

e2 < bs+1 

_ 



Consequently, 1 +e3 E B. Hence, since 1+ e3 < s, we have by 

(4. 26) that 

2+bu = a (1+e < 3+ 3)- a3+bs < 1+b5. 
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Thus 2 +b 
u 

E A +B. Since there exist in A +B no numbers between 

bu +1 and bu 
+1' 

and so 

we must have 

2+bu _ 
bu+1' 

w 
= bu+ 1-bu = 2. 

Thus, by (4. 27) and (4. 28), we have 

5 <t <7, 

a2 > s +t > 5, 

since s > 1. Recalling that 

we have 

since 

b5 = t+w+3, 

bu = t+u-1, 

b5-bu - t+w+3-(t+u-1)=w-u+4 < w+2 = 4. 

u > 2. Thus, 



bu > b5 -4, 

and so 

5 +bu > 1+b5. 

Hence, since a2 > 5, we have 

a2+bu > 5+bu > 1+b5, 

and so, by (4.23), v = s. Therefore, by (4. 22), we have 

a2 +bs 
+1 > 

n, 

a2 +s < a5 +s < 1 +b5. 

The proof can now be completed with the help of the following 

three inequalities, validity of which has already been established 

(see 4.22 and 4.28). 

(4. 33) 

We show that 

a2 - > bs+l 

a2+(l+bs) < b5, 

a2+bs+1 
> n. 

{O,a2 } +A +B =A +B . 
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' 
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Recall that 2 +b 
u 

= b 
u +1 

Therefore, the set 

A +B = { 0, 1, , bs +1, bs +1, , l +b5 } . 

Consequently, if z satisfies 0 < z < b +1, then z eA +B. Thus, - - s 

by (4. 33), 

bs+ 1 - < a2+z < a2+( l+bs ) < 1 + b5 . 

Hence not only z but a2 +z is in A +B. Now suppose z 

satisfies bs +1 < z < 1 +b5. Then again z eA +B and, by (4. 33), 

we have 

Hence 

a2+z > a2+bs+ 
1 > 

n. 

a2 +z 4A +B. Thus, we have shown that 

{ O, a2 }+ A +B = A +B, 

and so A+B+(A+B) I , a contradiction. 
n 

We conclude that we must reject the assumption that 

a.+e. = l +bu, where i = 2, 3. This means that this equation 

fails to hold for i = 2, or i 3, or both of these values for i. 

Hence in all three cases (a), (b), and (c) our equation fails to hold 

for i = 2, or i = 3, and we have obtained our contradiction to 

(4. 30). This completes the proof of Theorem 4. 2. 

= 

# 

x 



87 

The example to show that Theorem 4. 2 cannot be improved was 

given in Chapter II following Conjecture 2. 2. Theorem 4. 2 does not 

say, of course, that it is not possible to find three sets, for n > 15, 

such that A +B +C = In and 

A(n) +B(n) +C(n) < n -1, 

as we will see in the next chapter. 



CHAPTER V 

RESULTS FOR k > 2 SETS 

In this final chapter, we turn our attention to the proofs of 

several miscellaneous theorems, some of which were mentioned 

in Chapter I. Also included here is a discussion of the possibility 

of generalizing Theorems 4. 1 and 4.2 to k sets where k > 3. 

We close the chapter with a few unanswered questions. 

Theorem 1. 1 is a necessary tool in the proof of Erdös and 

Scherk's generalization, Theorem 1.2 (4, p. 45). To keep this 

work self contained, we restate Theorem 1. 1 as Lemma 5. 1 and 

proceed with its proof. 

Lemma 5. 1. If OE A1, OEA2 and n is a gap in Al +A2, 

then 

A1(n) +A2(n) < n -1. 

Proof. Suppose aEA1 and n - 1 . Then 

1 < n -a < n-1. Furthermore, n -a A2, for if n -a E A2, then 

n = a +(n -a) EA1 +A2, contrary to the hypothesis. Hence 

and so 

A1(n-1) < A 2(n- 1) = n-1-A2(n-1) 

A1(n-1)+A2(n-1) < n-1. 
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1 < a 



However, if OEA1, OEA2 and niA1 +A2, then OA, and 

n #A2. Thus, A1(n) = A1(n -1) and A2(n) = A2(n -1), and 

therefore, 

A1(n)+A2(n) < n-1, 

89 

which concludes the proof. 

Now we restate Theorem 1.2 as Theorem 5. 1 and proceed 

with its proof. Erdos and Scherk indicated the lines along which 

a proof of this theorem would proceed, but the details were supplied 

by the author. 

Theorem 5. 1. If OEA. (i = 1, ,k), and n is a gap in 
k 

A., i then k 

i=1 ) Ai(n) < 

i=1 

Proof. By Lemma 5. 1, since OEA., OEA , and n A. +A , m m 

where 1 < j < m < k, then 

A.(n)+A (n) (n) < n-1. 

Thus, 

k-1 k 

[ A.(n)+A (n)] 
m 

< (n-1)[ 1+2+ + (k-1)] , 

j=1 m=j+1 

m - 

) 
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and so 

(k -1 

Finally, 

k 

Ai(n) < 
Z 

(k-1)(n-1) . 

i=1 

k 

Ai (n) < 2 (n-1), 
i=1 

and the proof is complete. 

That this is the "best possible" inequality is illustrated by the 

following example of Erdös and Scherk (4, p. 45). Let n be odd 

and let A. (i = 1, ,k) contain 0 and the set of integers x 
i 

such that n21 
< x < n- 1. The sets Ai thus defined satisfy the 

hypotheses of Theorem 5. 1, for each contains 0 and n is a gap 

k 

in 

i=1 

A.. Furthermore, 
i 

and so 

A = n-1- n21 - n21 
' 

k 

Ai(n) = 2 (n-1). 

i=1 

The above example shows that Theorem 5. 1 cannot be improved 

1 

i 

i 

y 

(n) 
2 2 



91 

without restricting n more severely than to be odd. Let us then 

discuss briefly some other possible restrictions which could be made 

on n. We question, for instance, if Theorem 5. 1 could be im- 

proved if we restrict n to be even. Let us look at the example 

corresponding to the one above and let n be even. Then we let 

A. (i = I, , k) contain 0 and the set of integers x such that 

2 < x < n-1. Again the hypotheses of Theorem 5. 1 are satisfied. 

Furthermore, 

and so 

Ai(n) = n-1-2 = 2 -1 , 

k 

i=1 

Ai(n) = -(n-2). 

Although we don't know that 

k 

i=1 

A.(n) is maximized, for n even, 

with this example, it does point out that Theorem 5. 1 cannot be 

greatly improved under the added restriction that n is even. 

We have already seen some of the results which have been 

obtained under the restriction that n is the smallest gap in 

k 

EA., for instance, the results of Erdös and Scherk (4, p. 46), 

i =1 

and Kemperman (5, p. 376) discussed in Chapter I, and the results 

of Lin (6, pp. 27, 31) proved previously in this work. However, 
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there are still many questions unanswered relative to this restriction, 

and some of these are posed later in this chapter. 

Another possibility for improving Theorem 5. 1 would be to 

restrict n so that n is the sth gap in A., where s > 1. 

i =1 

What could be done, for instance, if n were the second gap, or 

the third? We see that there are many questions yet to be answered. 

The material in the remainder of this chapter is original with 

the author. 

Before we terminate the discussion of Theorem 5. 1, we ob- 

serve here that with Theorem 5. 1 available, a weaker version of 

Theorem 4. 2 is immediate, namely, the following corollary. 

Corollary 5. 1. If A +B +C = I 
n 

and 0 < n < 11, then 

A(n) +B(n) +C (n) < n -1. 

Proof. In order to maximize A(n) +B(n) +C (n), we assume that 

A = (B +C) , B = (A +C) , C= (A +B) . 

By theorem 4. 1, we may also assume that 

A(n) > 5, B(n) > 5, C(n) > 5, 

and so 

(5. 1) A(n) +B(n) +C(n) > 15. 

We note here that these are the same assumptions made in the proof 

Z 
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of Theorem 4. 2. 

Since the hypotheses of Theorem 5. 1 are satisfied, we have 

A(n)+B(n)+C(n) < 
3 

(n- 1). 

Combining this result with (5. 1) yields 

and so 

15 < A(n)+B(n)+C(n) < 2 (n-1), 

11 < n. 

This contradicts n < 11 and the corollary is proved. 

It seems that extending Corollary 5. 1 to the stronger result 

of Theorem 4. 2 is a very difficult process. In searching for some 

way to improve on the proof of Theorem 4. 2, and in particular, 

searching for some way to bypass Theorem 4. 1, and therefore 

Mann's transformation, the author noticed that the inequality 

A(n) +B(n)> (A +B)(n) is implicitly contained in Theorem 4. 2. 

For instance, using Theorem 4. 1, we assumed that A(n) +B(n) >10, 

but using other results also came to the conclusion that (A +B)(n)< 8, 

and eventually showed that this was impossible. In connection with 

these observations, we prove the following result. 

Theorem 5. 2. If A +B +(A +B) = In, then 
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A(n) +B(n) < (A +B)(n) if, and only if, 

ti 
A(n)+B(n) + (A+B) (n) < n-1. 

Proof. The proof is based on Lemma 2. 1 (g), which states: 
ti 

If A +B +(A +B) = In, then 

(A +B)(n) +(A +B) 
ti 

(n) = n -1 . 

Therefore, if A(n) +B(n) < (A +B)(n), then 

n -1 = (A +B) (n) +(A +B) 
ti 

(n) > A(n) +B(n) +(A +B) 
ti 

(n). 

ti 
Conversely, if A(n) +B(n) +(A +B) < n -1, then 

ti 
A(n)+B(n) <n-1-(A+B) (n), 

and so 

A(n) +B(n) < (A +B)(n) . 

This completes the proof. 

Let us illustrate this theorem by altering slightly the sets 

Al and A2, without changing the set sum Al +A2, in the 

example used following Conjecture 2. 2 in Chapter II. Let n = 15 

and 

A = { 0, 1, 8, 10, 14 } , 

B = {0,2,9,13}. 



Then 

and so 

and 

Hence, 
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A+B = {0, 1, 2, 3, 8, 9, 10, 12, 13, 14 }, 

ti 
(A+B) = { 0,4, 8, 9, 10, 11 }, 

ti 
A+B+(A+B) = In, 

n 

7 = A (n)+B(n) < (A+B)(n) = 9. 

A(n)+B(n)+(A+B) (n) < n-1, 

by Theorem 5. 2, whereas, in the original example, 

A1(n) +A2(n) > (Al +A2)(n), and consequently, 

A1(n) +A2(n) +(A1 +A2) (n) > n -1. Also observe in both examples 

that r = 6. Hence, Theorem 4. 1 and Theorem 5. 2 are not related 

in the sense that A +B +(A +B) = I 
n 

and A(n) +B(n) < (A +B)(n) 

imply that r < 5, for this is clearly not the case. However, the 

converse is true, which we state in the following corollary. 

ti 
Corollary 5. 2. If A +B +(A +B) = I 

n 
and A +B has r< 5 - 

gaps, then 

A(n)+B(n) < (A+B)(n) 

Proof. By Theorem 4. 1, under our hypotheses, 

ti 

. 
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A(n)+B(n)+(A+B) < n-1 . 

Consequently, by Theorem 5. 3, 

A(n) +B(n) < (A +B)(n), 

and the proof is complete. 

We note here that Theorem 5. 2 can be generalized to k 

sets where k > 3. The proof is essentially the same as for the 

case k = 3. For instance, for k = 4, we have the statement: 
ti 

If A+B+C+(A+B+C) = In, then A(n)+B(n)+C(n) < (A+B+C ) (n) 

if, and only if, 

ti 
A(n)+B(n)+C (n)+(A+B+C ) (n) < n-1 . 

We wish now to investigate the possibility of generalizing 

Theorems 4. 1 and 4. 2 to k sets where k > 3. Therefore, 

suppose k = 4, then the following questions naturally arise: 

ti 
1. If A +B +C +(A +B +C) = In and if A +B +C has r gaps, 

where r < 5, is 

E (A, B, C, (A+B+C) , 

ti 
n) < 0? 

2. What is the largest positive integer p such that 

A +B +C +E = In and 0< n< p imply that 

ti 

- 
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A(n)+B(n)+C(n)+E(n) < n-1 ? 

We answer " no" to the first question by exhibiting a counter 

example and can only make a conjecture concerning the second 

question. Observe here that the first question is not a generalization 

of Theorem 4. 1 to k sets where k > 3, but a generalization of 

Conjecture 2. 5 under the restriction r < 5 which, for k = 3, 

is implied by Theorem 4. 1. We were unable to produce a counter 

example for the generalization of Theorem 4. 1 to k = 4 sets. 

Consider the following sets as a counter example for the first 

question, where n = 16. Let 

A = {0,1,9,11,13,15 , 

B = { 0, 2, 9, 10, 13, 14 }, 

C = {0,4,9, 10, 11, 12 }. 

Then 

and 

A+B+C = { 0, 1, 2, 3, 4, 5,6,7,9, 10, 11, 12, 13, 14, 15 } , 

(A+B+C) 
M 

= E = { 0, 8 }, 

A+B+C+E = In 
n 

Hence r = 2, but 

. 
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e(A, B, C, E, n) = A(n- 1)+B(n- 1)+C (n- 1)+E(n- 1)- (A+B+C+E)(n) 

= 5+5+5+1-15 > 0, 

contradicting the conclusion of the first question. Also observe 

here that 

15 = A(n)+B(n)+C(n) > (A+B+C)(n) = 14, 

in keeping with the generalization of Theorem 5. 2 to k = 4 sets. 

We make the following conjecture concerning the second 

question and feel quite strongly that it is valid. 

Conjecture 5. 1. If A +B +C +E = I 
n 

and 0 < n < 16, then 

A(n) +B(n) +C(n) +E(n) < n -1, 

where A(n) > 1, B(n) > 1, C(n) > 1, and E(n) > 1. 

The preceding counter example used for the first question also 

shows that Conjecture 5. 1 cannot be improved. Unfortunately, all 

attempts on the part of the author to prove this conjecture have met 

with failure, but on the other hand, all attempts to find a counter 

example for n < 16 have also met without success. 

Another question which deserves consideration concerns the 

following generalization of Theorem 4. 2 and Conjecture 5. 1, 

3. What is the largest positive integer g(k), where k > 3, 

which perhaps depends upon whether k is even or odd, such that: 



If 

k 

i=1 

Ai) r\ N = In and 0 < n < g(k), then 

Ai(n) < n-1, 

i=1 

where A.(n) > 1 (i = 1, ,k) ? - 
The best the author can do with this question is state that it 

appears that it is always possible to find a counter example for 

n = 2k, where k > 4, by forming the sets in a manner which 

appears to maximize 

k 

i=1 

A.(n). This method of set construction 

is as follows We form the first k -1 sets by selecting as few 

numbers as possible in each set in the closed interval [ 0, 2k -1 -1] 

such that the set sum includes all the numbers in the interval, and 

select as many numbers as possible in the interval [ 2k- 1 +1,n -1] 

k 

so that the Ai) ,ThN = 0I0<j<2k-1-1} ..,{j12k-1+1<j<n-1}. 

i =1 

Then the kth set is { 0, 2k -1 }, and so 

k 

i=1 

99 

A.)N = In. This 
i 

procedure was used in constructing the counter example for the first 

question in this chapter. For instance, suppose k = 5. Then using 

this construction, with n = 2k, we have 

illL=1 

i 

( 

n 

/ 

(I 

( 
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A = {0, 1, 17, 19,21,23,25,27,29,31}, 

B { 0, 2, 17, 18, 21, 22, 25, 26, 29, 30 }, 

C {O,4, 17, 18, 19, 20, 25, 26, 27, 28 }, 

1 E = { 0, 8,17,18,19,20,21, 22, 23, 24 } , 

A 

We also have 

but 

F = {0,16}. 

A+B+C+E+F= 

A(n)+B(n)+C(n)+E(n)+F(n) > n-1 

In our concluding remark, we wish to emphasize that the 

largest positive integer g(k) we are seeking is not g(k) = 2k, 

where k > 4, at least not for odd k, for we have a counter 

example for k -= 5, n = 30. However, again we have not been 

able to construct a counter example for n < 30 and k = 5. 

i 

= 

In, 
n 

. 
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