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REDUCTION OF THE NUMBER OF ELEMENTS IN THE 
SYNTHESIS OF RC AND RC -NIC NETWORKS 

I. INTRODUCTION 

1. 1 Background Remarks 

Unrestricted realization of performance characteristics as well 

as the elimination of inductors from low- frequency networks has al- 

ways been the ambition of the circuit -designer. However, it was not 

until recently, with the development of the field of active networks, 

that this condition was fulfilled. 

The current trend of active -network synthesis was first estab- 

lished by Linvill [ 33] with the realization of any transfer function. 

Since then, various techniques have been introduced for the realiza- 

tion of any network- function with the most extensively used methods 

being: 

1. Yanagisawa's technique of transfer function realization. 

2. Sipress's technique for realization of one or more charac- 

teristic functions. 

Without exception the realization of a given function by any of 

the existing techniques requires the arbitrary selection of either 

additive or common divisor negative- real -root polynomials. The 

main criterion in the selection of these polynomials is to make 
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possible the realization of the given function; other criteria, set 

forth by many investigators, on this selection are: Minimization of 

pole or zero sensitivity [5, , 6, 7, 22, 24] ; and unique realization of 

active -RC networks [2, 35, 36,42]. Realization of RC networks with 

a minimum number of elements has received surprisingly little at- 

tention in the literature [8, 9] . In the presentation that follows, 

this criterion is fully treated. 

1. 2 Findings of This Thesis 

This presentation assumes a knowledge of both passive- network 

and active -network synthesis. The different synthesis techniques, 

such as transfer function synthesis, active -RC realization with 

parallel connected networks, and others are reviewed briefly when 

they are first encountered but are not developed rigorously. 

The discussion in this work is broken into three chapters. In 

Chapter II the well -known polynomial decomposition techniques are 

looked upon as means of element reduction in the synthesis of RC 

networks. Chapter III gives a complete treatment of element reduc- 

tion in passive -RC network synthesis. Chapter IV presents a unifi- 

cation of the field of RC -NIC network synthesis and outlines proce- 

dures for the selection of the negative- real -root polynomials such 

that the number of elements in the resulting network realization is 

minimized. 
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The major contributions of this work are: 

1. Introduction of a new method of passive -RC network syn- 

thesis from an open- circuit voltage -ratio transfer function which 

greatly reduces the number of elements in the resulting network and 

broadens the class of rational functions that can be realized by pas - 

sive-RC networks. 

2. Computer synthesis of RC- networks from simultaneous 

realization of a driving -point function and a transfer function. 

3. Unification of the field of RC -NIC network synthesis. 

4. Introduction of a new network configuration for RC -NIC 

network synthesis. 

5. Outline of procedures for the selection of negative -real- 

root polynomials such that the number of elements in the resulting 

RC -NIC networks is minimized. 



II. POLYNOMIAL DECOMPOSITION 

2. 1 Introduction 

Polynomial decomposition has been widely used for the mini- 

mization of pole or zero sensitivity of the realized active RC -net- 

works. The nature of the decomposition also lends itself to the re- 

duction of the number of elements in these networks. 

The advantage of this method is derived from the fact that if 

a given polynomial, P(s), is Hurwitz, then it can be decomposed 

into two other polynomials, A(s) and B(s), in a manner that proves 

useful to network synthesis. 

2. 2 The Horowitz Decomposition 

Horowitz [24, p. 299], has shown that if a polynomial, P(s), 

is Hurwitz and with no roots on the negative real axis, it can be de- 

composed as, 

such that 

m m-1 
P(s) _ 

I I(s+ai) - I ( (s+bi) a2(s) - sb2(s) 
i=1 i=1 

b1<a1 <a2<b2<b3 . . ., <bm-2<bm-1<am-1<am 

4 

(2. 1) 

and that a(s) /sb(s) and b(s) /a(s) are both passive RC impedances. 

We will refer to the decompositon of equation (2. 1) as the optimum 

= 

. 
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Horowitz decomposition where it is tacitly understood that P(s) has 

no zeros on the negative real axis. 

If P(s) has roots on the negative real axis from single algebraic 

considerations, it can be concluded that P(s) can be decomposed as 

follows: 

n m m-1 
P(s) - II (s+hi) 

I I 
(s+ai) - I 

I 

(s+bi) 
i=1 i=1 i=1 

n 
= TT (s+hi) [a2(s) - sb2(s)] 

i=1 
(2. 2) 

where the I I (s +h.) contains all the roots on the negative real axis 
i =1 

and where the roots a. and b. and the polynomials a(s) and b(s) have 

the same properties stated for the decomposition(2. 1). 

It is noted here that the optimum Horowitz decomposition 

P(s) = a2(s) - sb2(s), is unique and that it minimizes the root sensi- 

tivity of every simple zero of P(s) with respect to the conversion 

ratio of the requisite NIC. 

2. 3 The Calahan Decomposition 

Calahan has shown that a polynomial, P(s), being Hurwitz and 

having no roots on the negative real axis, can be also decomposed 

in the following form 

m m 
P(s) = I I (s+ci) + I (s+di) = c2(s) + d2(s) 

i=1 i=1 
(2. 3) 



such that, 

dl<d2<c1<c2<d3 . . . . <dm-1<dm<cm-1<cm 

and that 

6 

c(s) /d(s) is an RC impedance. 

As in Horowitz decomposition we will refer to (2. 3) as the 

optimum Calahan decomposition. 

If P(s) has roots on the negative real axis Calahan's decompo- 

sition will be written as, 

P(s) _ (s+ri) 
i=1 

- 
m m 

I I (s+c.) + 
I I 

(s+di) 
i=1 i=1 

= 
I 

T(s+ri ) [c2(s) + d2(s)] 
i=1 

(2. 4) 

where I I (s +r.) contains all the negative real roots and where the 
i= 1 

roots c. and d, and the polynomials c(s) and d(s) have the same 

properties stated for decomposition (2. 3). 

It is noted here that the optimum Calahan decomposition 

c2(s) d2(s) P(s) = + is unique and that it minimizes the root sensitivity 

of every simple zero of P(s) with respect to the inversion ratios of 

requisite impedance inverter. 

2. 4 Preselection of Zeros in Polynomial Decomposition 

In the optimum decomposition of both Horowitz and Calahan no 

preselection of zeros is possible. However, it has been shown, by 

n 
I I 

n 
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both investigators that if a polynomial P(s) of degree n has no roots 

on the negative real axis, a preselection of at least n roots can be 

made in both the Horowitz and the Calahan decompositions. If such 

a preselection is made, P(s) will have the following form: 

P(s) = A(s) - B(s) in Horowitz decomposition. (2. 5) 

and 

P(s) = C(s) + D(s) in Calahan decomposition. (2. 6) 

Two important theorems stating relationships between Horowitz 

decompositions have been derived by Thomas [42, p. 271] , and are 

stated here without proof. 

Theorem 2. 1 

Let P1(s) be a polynomial of degree n1 with Horowitz decompo- 

sition + [al(s) - sb1(s)] . Let P2(s) be another polynomial or degree 

n2 with n2 > n1 and with no zeros on the positive real axis. Then 

P2(s) can always be decomposed as 

P2(s) _ ± [a1(s)a2(s) - sb1(s)b2(s)] 

such that ai(s) /sb1(s), b2(s) /a(s), a2(s) /sb1(s) and bl(s) /a2(s) are 

all passive RC impedances. 

Theorem 2. 2 

Let P(s) be a polynomial of degree n with Horowitz 
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decomposition ± [a1(s) - sbl(s)] . Let P2(s) be any polynomial of 

degree not greater than n. Then P2(s) can always be decomposed as, 

P2(s) = al(s)b2(s) - a2(s)bi(s) 

such that al(s) /sb2(s), b2(s) /al(s), a2(s) /sbl(s) and bi(s) /a2(s) are 

all passive RC- impedances. 

The last two theorems represent a vast number of applications 

to network synthesis. 

2. 5 Decomposition 

From theorems (1) and (2) it can be concluded that any rational 

function F(s) = p(s) /q(s) with the degree of the numerator equal to or 

one different from the degree of the denominator can be decomposed 

into the following form: 

p(s) 
a1(s)a2(s) - sb1(s)b2(s) 

F(s) 
q(s) b2(s)a1(s) - a2(s)b1(s) 

b2(s)a1(s) - a2(s)b1(s) 
or a1(s)a2(s) - sb1(s)b2(s) 

where the ratios ai(s)/b.(s) and sb.(s)/a.(s) (i = 1, 2; j = 1, 2), 

(2. 7) 

satisfy the conditions for RC driving -point functions. Note that if 

the root at zero of sb1(s)b2(s) can be shifted to any location - a 

where la 
l 

< I first root of a1(s)a2(s) I the ratios will still satisfy 

the conditions for RC driving -point functions. 

- 



9 

The procedure of obtaining the decomposition of Eq. (2. 7) is 

as follows [36, p. 190] , 

1. Given F(s) = p(s)/q(s), obtain the polynomial 

Q(s)=-- q(s2) - sp( s 2), 

2. Find the zeros of polynomial Q(s). Form the polynomial 

a1(s)2 + b1(s)2 from the left -half plane zeros of Q(s) including the 

zeros at the origin, if any, and from the right -half plane zeros of 

Q(s) form the polynomial a2(s2) 2(s2) 
- b2(s 2). 

3. From a (s2) 
1 

+ b1(s 2) and a2(s2) - b 2(s 2) 2(s2) 
obtain the even 

and odd parts and by s2 to s transformation obtain a (s ), a 2(s ), 

b1(s), and b2(s). 

Decomposing a polynomial by the above method, especially 

step 2, often is a rather long and cumbersome task. If the decom- 

position is done using the basic step of polynomial decomposition, 

i. e. , partial- fraction expansion, the set of decomposition poly- 

nomials are less dependent on the degree of the original polynomial 

and the numerical computations for the decomposition become con- 

siderably easier. The difference introduced via the use of this de- 

composition is in the form of equation (2. 7) which changes from 

a1(s)a2(s) - sb1(:)b2(s) /b2(s)a1(s) - a2(s)b1(s) to al(s)a2(s) 

- sb1(s)b2(s)/b3(s)a1(s) - a3(s)b1(s). Since the relative location of 

the roots in both forms of decomposition is the same, the ratio of 

ai( s) /b.(s), (s + a,)bi(s)/a.(s) still satisfies the conditions for an RC 
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driving -point function. 

The following numerical examples have been decomposed by 

this method. 



III. PASSIVE RC NETWORKS 

3. 1 Introduction 

11 

One or two -port passive RC- networks without ideal trans- 

formers are obtained from synthesizing: 

1. A driving -point function 

2. A transfer function 

3. Part of a characteristic function 

4. A driving -point and a transfer function. 

This chapter develops the constraints for the class of functions 

by which RC networks are realized with a minimum number of ele- 

ments. These constraints are then used in the derivation of syn- 

thesis techniques used to obtain a reduction in the number of ele- 

ments of RC networks. 

3. 2 Synthesis of a Driving -Point Function 

A rational function, p(s) /q(s), describes a driving -point func- 

tion, if 

1. p(s) /q(s) belongs to the class of positive real functions. 

2. The sets of {a. }, 
{b. }, which represent the roots of the 

numerator and denominator polynomials respectively arranged in 

order of increasing magnitude, are such that: 
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a. b1 < a2 . . . <an 
n 

<b , 
n 

for RC driving -point impedance. 

b. a1 < b2 . . . <bn <an, for RC driving -point admittance. 

Both conditions being satisfied, realization of an RC- network can 

be accomplished by either Cauer's or Foster's Method of Synthesis. 

Regardless of the method used, the realized network will have 

the minimum possible number of elements. These networks are 

referred to as canonical networks. 

3. 3 Synthesis of a Transfer Function 

Given a transfer function Z12(s), Y12(s), or G12(s) of the form 

q(s the realization can be obtained by a symmetrical lattice net- 

work, which in many cases can be decomposed into a grounded ladder - 

network. The constraints for the realizability of RC transfer func- 

tions are listed. 

Case I; GI 7(s) Realization 

If G12(s) is realized with a symmetrical lattice network, 

Figure 3. la, it can be easily shown that, within a constant multiplier 

k, realization of G12(s) will give 

Za(s) 1 - kG12(s) 
q(s) - kp(s) - P(S) 

Zb(s) 1 + kG12(s) q(s) + kp(s) Q(S) 

The most direct choice in satisfying equation (3. 1) is to let 

(3. 1) 



or 

Za = 1 - kG12(s) and Zb = 1 + kG12(s) 

1 1 

Za 1 + kG12(s) and Z - 
b 1 - kG12(s) 

Z 
a 

Z 
a 

Z 
a 

Figure 3. 1. Form of lattice realization and its equivalent 
ladder decomposed network. 

If a common divisor, r(s), is selected such that p(s) and q(s) 

13 

are both RC driving -point impedance functions, a significant reduc- 

tion in the number of elements is possible in the network realization. 

This approach will also broaden the class of G12(s) functions that 

can be realized with a passive RC- network. The classes of functions 

that can be realized with passive RC- networks and a result of the 

introduction of the polynomial r(s) are discussed in the following 

pages. 
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Theorem I: 

If p(s) and q(s) have only real roots, let the number of zeros of 

p(s) and q(s) more positive than any s = - 0-0, (s = v + jw) be XA and 

XB respectively; then, if 

n> IXA-XBI>0 - oo< < 0 

the function G12(s) is RC realizable. n is a positive integer. 

Proof: 

The proof will be accomplished by examining the real axis 

from s = 0 to s = - 00 and revealing the relative locations of zeros 

of p(s) and q(s), subjected to the constraint that either 

or, 

qP(( ) and Q(S) are driving -point impedance functions q(s) s 

P(S)) and Q s)) are driving -point impedance functions 

(3. 2) 

(3. 3) 

where r(s) is an arbitrary- selected polynomial with roots on the 

negative real axis. 

To satisfy the constraint imposed by equation (3. 2), if the 

real axis is scanned beginning with s = 0, the first zero must belong 

toq(s), Figure 3. 2a, the second to P(S), and third to Q(S) or vice 

versa, the fourth to q(s) and so on. Next, assuming a root -locus 

a- 
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viewpoint, the roots of P(S) and Q(S) are obtained from the following 

expressions: 

1 -kp) - 0 q(s) 

1 + 
kqs) 

- 0 

(3. 4) 

(3.5) 

The second zero, therefore, must belong to p(s) to satisfy 

constraints (3. 5) and (3. 2), as k varies from zero to infinity, Figure 

3. 2b. It cannot depart from the real axis to the interval -a, -b; 

for, to do so would require Q(S) to have complex coefficients. 

The third zero has to be a zero of q(s) to satisfy constraints 

(3. 4) and (3. 3), Figure 3. 2c, and the same argument is applied as for 

the second zero; thus a cycle is completed in that the next zeros can 

be assigned to either p(s) or q(s), using identical arguments. In 

any case, the resemblance of all other cycles to the first demands 

that the zeros of q(s) and p(s) alternate starting with a zero of q(s), 

and the theorem holds under constraint (3. 2). Note that constraint 

(3. 2) requires P(S) /q(s) to be of the form of RC driving -point im- 

pedance. 

Using the principle of scanning of the real axis, it can be easily 

shown that constraint (3. 3) is satisfied if the roots of P(S) and Q(S) 

alternate in any of the sequences shown in Figure 3. 3. Then utilizing 

the root -locus expressions (3. 4) and (3. 5) and keeping in mind that 

r(s) is an arbitrary polynomial in s, it can be concluded that the roots 
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A A X X 

a2 a1 

X X A A X 

( 
I ? o al X 

Figure 3. 2. Zeros of p(s) and q(s). 

0 X A X A X AX 
jw 

U 

AA X X n D X X 0A X 

X X 0 A X X A L X X A 

Figure 3. 3. Possible alternations of zeros of(S) 
and Q(S). 

b 
o 

a 
Xn 

b a b a, b a, 
X o3 ó X2 ó X 

o 

iw 

bn bn-1 a an-1 b4 b3 a3 a2 b2 b1 
al 

0 0 X o o X X o o X 

b b b a a 
n n-1 n-2 b b a 

1 X X XL o ó ó X 

i 

bn bn-1 a4 a3 b2 b1 a2 al 
0 o X X o X X 

Figure 3. 4. Examples in zero alternation of '(3) aid 
q(s). 

a 

an bn "G 
b al 

o 

J 

i 
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o 
3 

o 

o 

a. 
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of p(s) and q(s) must alternate on the real axis in groups of m, where 

m is any positive integer, Figure 3. 4, and the theorem is proved. 

Theorem I imposes constraints for the RC- network realizability 

of G12(s), if both p(s) and q(s) have all their roots on the negative 

real axis. Another class of functions, G 2(s), having the polynomial 

p(s) with complex roots can also be realized by passive RC- networks. 

This can be concluded from the root locus shown in Figure 3. 5, which 

indicates that if q(s) has roots on the negative real axis while p(s) 

has roots on the complex plane, the roots of their sum and difference 

for some k = k 
a 

can all be made negative real in all cases but the one 

in which there is a critical frequency at zero. 

Case II. Realization of Z12(s) 

Realization of Z12(s) with a symmetrical lattice network, 

Figure 3. 1, will give 

kP(s) k 
a2(s) b2(s) 

kZ12(s) = q(s) - 2 a (s) - Zb(s)J = bl(s) al(s) (3.6) 

where kp(s) = a1(s)a2(s) - bl(s)b2(s), and q(s) = al(s)bl(s). 

From equation (3. 6), it can be seen that a necessary condition 

for Z12(s) to be RC realizable is that q(s) has negative real roots. 

Polynomial p(s) can have complex roots provided that it has a decom- 

position such that a2(s) /bl(s) and b2(s) /al(s) are RC driving -point 

impedance functions. Since any rational function p(s) can be 

- 



q(s)/p(s) + k 
X 

q(s)/p(s)-%41.14 

Figure 3. 5. Zeros of p(s) and q(s). 
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Figure 3. 6. Roots of p(s) and q(s) with relation 
of those of kp(s) - q(s) and kp(s) + q(s). 
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decomposed into the form p(s) = a1(s)a2(s) - b1(s)b2(s), so that 

a1(s) /b1 (s) and b2(s) /a1(s) are RC driving -point impedance functions, 

RC- realization of Z12(s), under the above restriction is always pos- 

sible. 

In summary, transfer function RC realizability requires that 

the function, p(s) /q(s), satisfy the following restrictions: 

I. for G12(s): 

1. p(s) /q(s) is of the form of RC driving -point 

impedance function. 

2. p(s) /q(s) has poles and zeros on the real axis and 

they alternate in groups of m. 

3. If p(s) has complex roots, they must lie on the 

left plane while the roots of q(s) must always be 

negative real. 

II. for Z12(s): 

The roots of q(s) must lie on the negative real axis. 

3. 4 Reduction of the Number of Elements in RC Networks 
Realized from a Transfer Function 

The root -locus plot of Figure 3. 6 indicates that if [q(s) -p(s)] 

q(s) and [q(s) + kp(s)] /q(s) are to be RC driving -point impedances, 

then p(s) /q(s) is necessarily an RC- impedance function. This class 

of functions is, therefore, the only class of functions that can be 
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realized with RC passive -networks if Za(s) and Zb(s) are as expressed 

on page 13. The number of elements in the realized network is de- 

duced from the expressions of Za(s) and Zb(s) for a canonical Foster 

form of RC- network realization, i. e. , 

Z k m k. 
a o i 

Zb s s+6 
i=1 

i 
+ koo (3. 7) 

where m equals the number of roots, j, of q(s) and the k's the 

residues of Za(s) and Zb(s) at all critical frequencies. 

From equation (3. 7) it can be concluded that the number of 

elements in the realized network will be equal to 8(m + 1), assuming 

that both ko and koo are present. In comparison, the introduction of 

the polynomial, r(s), if it achieves, for instance, t1 and t2 cancella- 

tions in Za(s) and Zb(s) respectively, will realize the network with a 

reduction in the number of elements equal to 4(t1 + t2), i. e. , the 

network will have 8(m + 1) - 4(t1 + t2) elements. 

In general, for functions which satisfy constraints (1), (2), and 

(3) of G12(s), reduction in the number of elements is made if r(s) is 

selected so that maximum cancellation occurs between r(s) and the 

numerator polynomials of Za(s) and /or Zb(s), while at the same time 

it satisfies constraint (3. 3). 

No detailed discussion as to the selection of the roots of r(s) 

is made here, since their selection will follow directly from root 

ao 
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locus plots similar to those of Figures 3. 3, 3. 4, and 3. 5. 

The aforementioned method for the realization of Z12(s) results 

in a network with a fixed number of elements. This can be easily 

concluded from the fact that the number of elements in the realized 

network depends wholly upon the number of poles of Z12(s). Under 

any partitioning of Z 2(s) 
i 

into Za(s) and Zb(s), the total number of 

poles of Za(s) and Zb(s) will always be equal to that of Z12(s). In 

general, if 

(s) 
a1(s)a3(s) - b1(s)b3(s) 

12 q(s) ai(s)bi(s) 

then Za(s) and Zb(s) will be 

a3(s) b3(s) 
Za(s) = 

1 

and Zb(s) 
a 

1 

Examples: 

(3. 8) 

(3.9) 

3. 1 Consider the realization of the open- circuit voltage ratio 

transfer function having only negative real zeros 

s3 + 952+235+15 _ _ (s+1)(s+3)(s+5) 

G12(5) s3+6s2+8s s(s+2)(s+4) (3.10) 

equation (3. 10) is of the form of an RC driving -point impedance func- 

tion and therefore can be realized either by the direct method assign- 

ing the expressions of page 13 to Za(s) and Zb(s) or by the method 

discussed in this work. 

p(s) 

b 
- 

_ 

- 

3 

1s) (s) 

_ 



Let 

and 

a. Direct Method 

Z s= 1 - ks3+9s2+23s+15 
( ) 

s3+6s2+8s 

(1-k)s3+(9-6k)s2+(23-8k)s+15 

s3+6s2+8s 

Z 
b 

(s) = 1 + ks3+9s2+23s+15 
b ) 

s3+6s2+8s 

( l+k)s 3+(9+6k)s 2+( 23+8k)s+15 

s 3+6 s 2+8 s 
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(3. 11) 

(3. 12) 

from the root locus plots, Figure 3. 7, of equations (3. 11) a_D. (3. 2) 

it can be seen that the values of k for RC realizability depends totally 

on those values which will make Za(s) an RC impedance function. The 

RC impedance character of Zb(s) is inde;endent of the value of k. 

Za( s) 

jw 

o- 

Zb(s) 

Figure 3.7. Root locus plots of equations (3. 11) and (3. 1 2). 

o 

1 
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A desirable value for k can be found, without plotting any of the 

above locii, through the following procedure: select a root to the left 

of the most negative zero, for instance -6; consider it as a zero of 

Za(s), factor it out of the numerator and obtain k by setting the re- 

mainder equal to zero. 

(1 -k)s 3 +(9 -6k)s 2 +(23- 8k)s +15 (1 -k)s 2 +3s +(5 -8k) 

Remainder 15-30+48k I 

s +6 

therefore k = 
48 

and substituting this value in equations (3. 11) and 

(3. 12) the expressions for Za(s) and Zb(s) are as follows: 

Z 
. 69s3+7. 12s2+20. 5s+15 

a s3+6s2+8s 

(3. 13) 
69(s+1. 13)(s+3. 2)(s+6) 

s( s+2)( s+4) 

1. 31 s 3 +10. 88 s 2 +25. 5s +15 
Zb 

s 
3+6s 2+8s 

(3. 14) 

= 1. 31( s+. 88)(s+2. 26)( s+5. 12) 
s(s+2)(s+4) 

The resulting network, realizing Za(s) and Zb(s) by Foster's 

method of synthesis is shown in Figure 3. 8 and has a total of 20 ele- 

ments. 

= 

_ 

: 

_ 
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Figure 3. 8. Realized network from G12(s) by the direct method. 

b. Alternate Method Introduced in This Work 

From equation (3. 1) and for k = 148 5 Z (s) a 
/Z (s) 

b 
takes the fol- 

lowing form 

Za(s) 
. 69(s+1. 13)(s+3. 2)(s+6) 

Zb(s) 1. 1 3(s+. 88)(s+2. 26)(s+5. 12) 
(3. 15) 

Select r(s) = (s +. 88)(s +1. 13)(s +5. 12); division of both numerator 

and denominator polynomials of equation (3. 15) by r(s) 

Z (s) . 69(s+3. 2)(s+6) 
a (s+.88)(s+5. 12) 

Zb(s) 1. 13(s+2. 26) 
s+1. 13 

results in the following expressions for Za(s) and Zb(s). 

(s+3. 2)(s+6) Za(s) = . 69 12) 

and 

(3. 16) 

.. 

_ 

a 



s Z = 1. 13 
s+2.26 

b( ) s+1.13 
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(3.17) 

The resulting network, realizing Za(s) and Zb(s) by Foster's 

method of synthesis is shown in Figure 3. 9 and has a total of 16 

elements. 

Figure 3.9. Realized network from G12(s) with 

r(s) = (s+. 88)(s +l. 13)(s +5. 12) 

3. 2 The transfer function of equation (3. 18) is an example 

of a function in which the poles and zeros do not alternate. 

G12(s) = k 
3+18 2 

s .32s +86.24s+53.24 

s2+8s+11. 6 

k 
(s+1. 8)(s+6.2) 

(s +. 72)(s +6. 82)(s +10. 77) 

(3. 18) 

Since the function is not of the form of an RC driving- 

point impedance function it cannot be realized 

..69 f 
2.212 .53512 

3.66 f 

o 
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by the direct method. Because it satisfied constraint (2), page 19, 

it can be realized by the alternate method. From the root locus plots, 

Figure 3. 10 , it can be seen that for k = 1 all the roots of 1 - kG12(s) 

and 1 + kG12(s) will be negative real and 

Za(s) (s3+18. 32s2+86. 24s+53. 24) - (s2+8s+11. 6) 

Zb(s) (s3+18. 32s2+86. 24s+53. 24) + 
(52+85+11. 

6) 

(s +. 62)(s +7)(s +9. 7) 
(s +. 82)(s +11. 8)(s +6. 7) 

iw 

Cr 

Figure 3. 10. Root locus plots of 

1 - k s 2 +8s+11.6 

s3+18. 32s+86. 24s+53. 24 

(3, 19) 

The most desirable expression for r(s) which will make Za(s) 

and Zb(s) RC realizable with the minimum number of elements is 

r(s) _ (s +. 62)(s+. 82)(s +9. 7). Za(s) and Zb(s) will take the following 

form 

_ 

C 

J 

a 

7 
I i 

1 

I 

b b á 
u 
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Z (s) -_ s+7 and Z (s) = (s+6.7)(s+ll. 8) 
a s+. 82 b ( s+. 62) ( s+9. 7) 

and the resulting network realized with Foster's method of synthesis 

is shown on Figure 3. 11. 

o 

1 S2 

.9752 

1. 25 f 
1. 27 S2 

1. 1252 . 128 f 

1. 44 f 

Figure 3. 11 RC- realization of 

o 

(s+l. 8)(s+6. 2) 
G12(s) (s+.72)(s+6. 82)(s+10.77) 

3. 3 The following example is the realization of a transfer 

function having only complex zeros and negative real poles. 

s2+2s+2 
G12(s) = 

s +6s+8 
(3. 20) 

From the root locus plots, Figure 3. 12, of expressions 

1 - kG12(s) and 1 + kG12(s) it can be seen that a k exists which will 

make all their roots negative real and for k = . 1 . 

1S2 

- 



Za(s) (s2+6s+8) - 1(s2+2s+2) 
Zb(s) (s2+6s+8) + . 77(s2+2s+2) 

. 1(s +4. 68) 
(s +2. 2)(s +3. 44) 

jw 

o 
X 

u- 

Figure 3. 12. Root locus of 1 + ks +25+2 

s +6s +8 

o 
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(3. 21) 

For RC realizability, with the minimum number of elements, 

of Za(s) and Zh(s) set r(s) = (s +1.88)(s +2. 2) and therefore 

1(s+4. 68) s+3.44 Za(s) and Zb(s) s+1.88 

The resulting network realized with Foster's method of syn- 

thesis is shown on Figure 3. 13. 

_ 
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s+2. 2 
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o-- VV 

SZ 

.11352 
--VVV- 

4.03f 

1.252 

. 64f 

-0 

52 +2s +2 Figure 3. 13. RC- realization of G12(s) " 

3. 5 Synthesis of Parts of a Network Function 

s 2+6s+8 

29 

Parts of a network function, that is the real part, the imaginary 

part or the angle function, are realized by an RC- network if their 

corresponding driving -point function satisfies the conditions for RC 

driving -point functions. If a driving -point function, F(s), is written 

in the form 

ml(s) + nl(s) 
F(s) _ m2(s) + n2(s) (3. 22) 

where ml, m2 and n1, n2 are the even and odd parts of its numerator 

and denominator polynomials, then the even part Ev F(s), odd part 

Od F(s) and angle function Arg F(s) will take the following forms, 



Ev F(s) 
m1(s)m2(s) - n1(s)n2(s) 

= 

Od F(s) - 

m2(s) - n2(s) 

m2(s)n1(s) - ml(s)n2(s) 

Arg F(s) = tan -1 

m2(s) - n2(s) 

m2(s)n1(s) - ml(s)n2(s) 

m1(s)m2(s)- n1(s)n2(s) 
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(3. 23) 

(3. 24) 

(3. 25) 

The right -hand side expressions of (3. 23), (3. 24), and (3. 25) 

are the decompositions of the rational functions Ev F(s), Od F(s), 

and Arg F(s) respectively and according to theorems (2. 1) and (2. 2) 

these decompositions are unique; therefore, within a constant multi- 

plier, F(s) is derived uniquely from all parts of network functions. 

As discussed in paragraph (3. 1), the network from a driving - 

point function realized by Foster's or Cauer's method is canonical; 

therefore, it is concluded that parts of network functions realize 

canonical networks. 

3. 6 Synthesis of Driving -Point Function and Transfer Function 

Simultaneous realization of a driving -point, F1(s), 1(s), and a trans- 

fer function, F2(s), by an RC- network requires that: 

1. F1(s) satisfies the conditions for RC driving -point functions. 

2. The poles of F2(s) are poles of F1(s) and the zeros of Fs) 
lie on the negative real axis and are in number equal to or less than 
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the zeros of F1(s). 

The synthesis of a network from these two functions is accom- 

plished through the known method of zero - shift, pole -removal tech- 

nique. By this technique the network realization will be dependent 

upon the sequence in which the zero shifting is accomplished. These 

equivalent networks may have the same or a definite number of ele- 

ments depending upon the zero shifting sequence. If the realization 

is accomplished with a single shift of each zero, the number of ele- 

ments required is m2, where m is the number of zeros in F2(s); the 

total number of elements required will be higher if multiple shifting 

of the zeros is required. 

To obtain the network with the least number of elements, all 

possible network configurations have to be realized, since the effect 

of any zero shift on the other zeros and on the following zero - shifts 

and pole -removals, cannot be determined in advance. 

Due to the amount of work involved in obtaining all the possible 

configurations a computer program has been written, Appendix 2, to 

perform this task. The network with the minimum number of ele- 

ments, if present, is then obtained by scanning the program's output. 

To indicate the existence of networks with different number of 

elements and the work involved, the following simple example is 

given. 
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3.4 The transfer function specified by equations (3.25) has 

pole and zeros that alternate on the negative real axis. This transfer 

function can therefore be realized as an RC- ladder network. 

and 

(s+l)(s+3)(s+5) 
y11(s) = (s+2)(s+4)(s+6) 

s(s+1/2)(s+2.72) 
2(S) (s+2)(s+4)(s+6) 

(3.25) 

Two different configurations have been obtained by changing 

the order of zero - shifting and zero- producing steps. The various 

zero- shifting and zero - producing steps in the network development 

and the corresponding networks are given in Figure (3. 14) and 

Figure (3. 15), having a total of 8 and 9 elements respectively. 

- 
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IV. ACTIVE RC- NETWORKS 

4. 1 Introduction 
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This chapter deals with the element reduction on active RC- 

networks realized with a negative impedance converter, NIC. It is 

pertinent to observe that the major methods of RC -NIC synthesis 

techniques come about from the different interconnections of two 

three -terminal networks, one of which consists of a connection in 

tandem of an NIC and RC network. Such consideration leads to a 

unification of the field of active RC- networks, in that they can be 

obtained from the interconnection of this type of networks. Appendix 

2 gives the configurations and characteristic functions of all possible 

interconnections of an RC and an RC -NIC network. 

Written in a general form the transfer functions, T(s), and 

driving -point functions, D(s), have the following expressions. 

f1(s)f2(s) 
1. T(s) F1(s) - F2(s) 

f2(s)-f1(s) 
2. T(s) 

F1(s) - F 2(s) 

3. T(s) - 
f1(s) + f2(s) 

F1(s) - F2(s) 
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fl(s)F2(s) - f2(s)F1(s) 
4. T(s) F1(s) - F2(s) 

fl(s) 
5. D(s) = F1(s) 

F1 T(s) - F2 (s) 

fl(s) - f2(s) 
6. D(s) = F1(s) + F2(s) Fi(s) F2(s) 

Where f1(s) and f2(s) designate the transfer functions of the 

RC and RC -NIC network respectively, and where the F(s)rs designate 

their driving -point functions; primed in the expressions where both 

input and output driving -point functions of the same network are 

present to indicate their existence in the expression. 

Active -RC- network synthesis, with interconnections of two or 

more three -terminal networks leads to an unlimited number of pos- 

sible configurations for active RC- network realization. Thus, the 

selection of the particular configuration, based on its character, 

sensitivity or number of elements of the given function to be realized, 

is broadened considerably. 

4. 2 Transfer Function Synthesis of the Form 
f1(s)f2(s) /[F1(s) - F2(s)] 

Realization o f a transfer function of the form, 

transfer function = 

f1(s)f2(s) 

F1(s) - F2(s) 
(4. 1) 

- 

- 



can be achieved with the configuration of Figure 1, Appendix 2, 

where 

_ z12a(s)z12b(s) 

Z12(s) z22a(s)-zllb(s) 

For realization of the transfer function, z12(s) - 
qSÌ, 

the 
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(4. 2) 

numerator and denominator are divided by an arbitrary polynomial 

r(s), having n distinct negative real roots, 0- 
1' a-2' cr 3' * 

. . a ; n 

where n is equal to or greater than the degree of p(s) or q(s), 

whichever is greater. 

P(S) (s+6 1)(s+0- 2) . . . ( s+a n) r( s) _ 

Z12(s) q(s) q(s) 

p(s) 

r(s) (s+a. 1)(s+6 2) . (s+Q- ) 
n 

(4. 3) 

The denominator of equation (4. 3) is then expanded into partial frac- 

tions yielding terms with positive and negative residues. The sum of 

the terms with positive residues is associated with z22a while the 

sum of the terms with negative residues is associated with z llb (s). 

When z22a(s) and zllb(s) have been determined, the appropriate 

factors of p(s) may be associated with z12a(s) and z12b(s), and the 

networks realized by passive network synthesis methods. 

The number of elements in the realized network can be reduced 

through proper selection of the polynomial r(s). Such a selection is 

made utilizing the theorems of polynomial decomposition in Chapter 2. 

- 
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Case I: 

If the polynomial p(s) has only negative real roots and q(s) is 

any prescribed real polynomial of degree equal to or smaller than 

the degree of p(s), then the right -hand side of equation (4. 3) can be 

decomposed and written in the form, 

al(s)bl(s) 
ai(s)bi(s) 

Z12(s) - al(s)a2(s) _ bi(s)b2(s) 

al(s)bl(s) (4. 4) 

1 

a2(s) b2(s) 

b1(s) 1(s) 
a 1(s) 

Comparing equations (4. 2) and (4. 4) yields the following identification 

of parameters, 

a2(s) 
z12a(s) = 1' z22a(s) b1(s) 

b2(s) 
z21b(s) - 1; zllb(s) ai(s) 

Case II: 

(4. 5) 

(4. 6) 

If p(s) has only negative real roots and q(s) is any prescribed 

real polynomial of degree greater than the degree of p(s), then the 

right -hand side of equation (4. 3) can be decomposed and written in 



the form, 

Z12(s) _ 

p(s) 
al(s)bi(s) 

a1(s)a2(s) - b1(s)b2(s) 

al(s)bl(s) 

1 

c(s) 
a2(s) b2(s) 
b1(s) a1(s) 
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(4. 7) 

Comparing equations (4. 2) and (4. 7) yields the following identi- 

fication of parameters, 

1 

z12a(s) cl(s)' 

1 

z12b(s) c2(s)' 

a2(s) 
z22a(s) = 

b1(s) 
1 

(4.8) 

b2(s) 
zllb(s) al(s) 

1 

(4. 9) 

where c(s) = c1(s)c2(s) and c1(s) and c2(s) are factors of b1(s) and 

al(s) respectively. 

Case III: 

If p(s) and q(s) are any prescribed real polynomials, the trans- 

fer function synthesis will require realization of complex zeros of 

transmission. Realization of complex zeros of transmission with 

RC- networks can be accomplished with ladder- networks by the 

methods of Guillemin [ 18] , Dasher [ 10] , and Hakimi and Seshu [20]. 

= 
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Reduction in the number of elements in these networks can be 

done through proper decomposition of q(s). The reduction of the 

number of elements for this case will not be discussed here because 

the parallel structure of Figures 2 and 3, Appendix 2, will realize 

complex zeros of transmission with relatively simple network struc- 

tures. 

Example 4. 1 

The following example is the realization of a transfer function 

having only negative real zeros and complex poles. 

Z (s) = k (s+l)(s+2)(s+3)(s+4) 
12 

4+5s 3 2 +14s s +18s+12 
(4. 1.0) 

The degrees of numerator and denominator polynomials of 

equation (4. 10) are the same. Therefore, according to equation (4. 4), 

Z12(s) can be written as: 

Z12(s)= k 

and 

(s +1)(s +2)(s +3)(s +4) 
(s1-1)(s +2)(s +3)(s +4) 

s(s+l. 08)(s+2)(s+4)(s+10. 85) -- (s+l)(s+2. 35)(s±3)(s+24. 6) 
(s+l)(s+2)(s+3)(s+4) 

1/2 
(s +1.08)(s +10.85) (s +2.35)(s +24.6) 

- 
(s +l)(s +3) 1/2 (s +2)(s +4) 

(s+1. 08)(s+10. 85) 
z12a.- 1 

z 22 (s+1)(s+3) 

z12b 1/2 ' 

(s +2. 35)(s +24. 6) 

(s+2)(s+4) 

(4. 1.1) 

(4. 12) 

' 
= 

2 zllb 1 8 - 



For the realization, the removal of the private poles of the 

driving -point functions, -1 and -3 for z22a, 
22a, -2 and -4 for zl 

1 lb' as 

series impedances will result in the following expressions for 

zllb(s) and z22a(s), 

22a = 
1 and 
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(4. 13) 

Equations (4. 13), (4. 12), and (4. 11) will realize networks con- 

taining only a shunt resistor, and the complete realization of equa- 

tions (4. 10) is given by the following network. 

1 0 

11 o 

3.94C2 2.51Q 

2.54f .133f 

1S2 

N L----- á---- J 

NIC 

2.1252 .99S-2 -- 
--"/V`- I 

.118f .503f I 

02 

Figure 4. 1 Realization with networks in cascade of 
(s +1)(s +2)(s +3)(s +4) 

Z12(s) s4+5s3+1452+185+12 
r(s) _ (s+l)(s+2)(s+3)(s+4). 

with 

J o' 

zllb 1/2 

) I---- ---- --- 

- 
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If an arbitrary selection of r(s) were made, for example, let 

r(s) = s(s +1. 5)(s +2. 5)(s +4), 

zllb(s), z22a(s), obtained through 

z12a(s) 

the expressions for z12a(s), 

partial fraction expansion, 

( s+ l ) ( s+ 3) 

z12b(s)' 

are: 

s(s+2, 5) 
(4. 14) 

(s+7. 25)(s+.475) 
z22a( s) s( s+2. 5) 

z 12b( s) 
8( s+ 1. 9) 

(s+1.5)(s+4) 
(4. 15) 

s+2 
zllb(s) - s+1. 5 

Realization of equations (4. 14) and (4. 15) by the zero -shift 

pole -removal technique, results in the following network, with 4 

more elements than the network of Figure 4. 1. 

1, 17f 1, 29S2 ,- -i 

31f 

, l f 

1 t 

860 

1 
. 65'r , 54 SZ 

NIC 

1, 670 1, 370 ------------- 
149f 385f 

a 

2.6sß 

38552 

L-- - "b ----_à 
Figure 4. 2. Realization with networks in cascade of 

Z (s) 
(s+ l) (s +2) (s +3) (s +4) with 

12 
4 +5s + 14x2 s +18s +12 

r(s) = s( s+1. 5)(s+4). 

) 

1. 

I 

° 2 

a2 
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4. 2 The following example is the realization of a transfer func- 

tion having negative -real zeros and complex poles, but with zeros of 

transmission at infinity. 

s+1 
Z 12(s) 

- 

s4+5s3+14s2+18s+12 
(4. 16) 

In equation (4. 16) the degree of the numerator polynomial is 

smaller than the degree of the denominator polynomial. Therefore, 

according to equation (4. 7), Z12(_s) can be written as: 

Z12(s) - 

(s ±1) 
(s +3)(s +4) +1)(s +2)(s 

2(s +1. 08)(s +2)(s +4)(s +10. 85) - (s +1)(s +7.. 35)(s +24 6) 
(s +1)(s +2)(s +3)(s +4) 

1/2 
_ (s+2)(s+3)(s+4) 

(s+.l. 08)(s+10. 85) 1/2(s+2. 35)(s 6) 
(s (s+3) (s +2)(s +4) 

from which the following are easily obtained. 

1 (s+l. 08)(s+10. 85) (4. 

(4. 

17) 

18) 

z12a(s) s+3 ' z22a(s) 

- 
1/2 

(s+1) (s+3) 

6) 

z12b(s) (s+2)(s+4) 

= 1/2 (s+2 35)(s+24. 
z (s) 

1 lb (2+2)(s+4) 

Equations (4. 17) and (4. 18) give realization to the network of 

Figure 4. 3. 



lo 

l' 

3942 2.7l2 

.254f .122f 

NIC 
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1 
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Figure 4. 3. 

Nb 

Realization with networks in cascade of 
s+1 

Z 12(s) = 
s4+5s3+14s2+18s+12 

r(s) _ (s+l)(s+2)(s+3)(s+4) . 

with 

Realization of equation (4. 16) with an arbitrary selection of 

2' 

r(s), r(s) = s(s +5)(s +7)(s +10), gives rise to a network of Figure 4.4 

with 2 more elements of that of Figure 4. 2. 

Figure 4.4. Realization with networks in cascade of 

7 (s) s +1 
12 

s4 +5s3 +14s2+ 18s +12 

r(s) = s(s+5)(s+7)(s+10). 

- 
-T _irl -1 
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4. 3 Transfer Function of Form [f2(s)- f1(s)] /[F1(s)- F2(s)] 

Synthesis 

Realization of a transfer function of the form, 

f2(s) - f1(s) 
transfer function -F1(s) - F2(s) 

45 

(4. 19) 

is accomplished with the configurations of Figure 2 and Figure 3, 

Appendix 2. 

In the previous transfer function synthesis only the poles of the 

overall transfer function were controlled by the NIC. It is apparent 

from equation (4. 19) that in the synthesis with this form the NIC con- 

trols the zeros as well as the poles of the transfer function. Conse- 

quently, by this technique realization of complex zeros of transmis- 

sion is accomplished using relatively simple RC- structures. 

For example, consider realizability with the configuration of 

Figure 2, Appendix 2, where 

y12b(s) y12a(s) 

G12(s) y22a(s) y22b(s) 
(4. 20) 

From equation (4. 20) it is evident that y22a(s) and y12a(s) as 

well as y22b(s) and y12b(s) cannot be synthesized separately. The 

proposed method of realization of these networks is through the use 

of inverted -L circuits as shown in Figure 4. 5a. 

- 
- 



i o 

11 o 

Yla 

1 

a 

NIC 

2 

Figure 4. 5a. Realization with inverted -L circuits, 

The voltage transfer function of this circuit is 

G12(s) (Ylb-Yla)+(Y2b-Y2a) 

Ylb - Yla 
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o 21 

(4. 21) 

A rational function p(s)/q(s) to be realized with inverted -L 

circuits is first written in the form 

G ( s) 
P(s) - p( s) 

12 q( s) p( s) + q( s) - p(s) 
(4. 22) 

The numerator and denominator are then divided by a polynomial r(s) 

with n distinct negative real roots, o' o- , T The degree of 

r(s) being equal to or greater than the highest degree of p(s) or q( s), 

From equations (4. 21) and (4. 22) 

p( s) is k , lb Yla - r( s) - k s+ko 
+ s+6 . 

i=1 
i 

(4. 23) 

n 

7 
L,, 

Y 

- 

o 



q(s) - p(s) k' s + k' + 
y2b y2a r(s) co o 

i= 

k' .s 
i 

s+0- 
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(4. 24) 

In equation (4. 23) the terms with negative values of k, are as- 

sociated with yla(s) and those with positive values of ki with ylb(s). 

Similarly, in equation (4. 24) the terms with negative values of k'. 

are associated with y2a(s) and those with positive values with y2b(s). 

These four RC- admittances can be easily synthesized on two terminal 

RC- networks by known methods. 

Reduction of the number of elements in the realization of this 

tranfer function can, in certain cases, be made. This reduction is 

accomplished by using decomposition of the given transfer function 

for the selection of the common divisor and realizing the network by 

the basic configuration of Figure 2, Appendix 2. 

Any prescribed real rational function G12(s) = p(s) /q(s) can be 

decomposed and written in the following form. 

p(s) 
b2(s)a1(s) 

- 
a2(s)b1(s) 

G12(s) q(s) lai(s)a2(s) - sbl(s)b2(s) (4. 25) 

Selecting the common divisor r(s) = a1(s)b1(s) and dividing the nu- 

merator and denominator of equation (4. 25) by it, G12(s) can be 

written as 

- - 

_ 



b2(s) a2(s) 

bi(s) al(s) 

G12(s) a2(s) sb2(s) 

b1(s) a1 (s) 

48 

(4. 26) 

Comparing equations (4. 20) and (4. 25) yields the following 

identifications of parameters, 

b2(s) a2(s) 

y12a(s) b1(s) 1(s) ylla(s) bl(s) 

a2(s) sb2(s) 

y12b(s) a1(s) ' yllb(s) b1(s) 

(4. 27) 

(4. 28) 

Comparison in the number of elements in the resulting networks 

using either the basic configuration or the inverted -L configuration 

can be made through direct observation of equations (4. 23) and (4. 24) 

and equations (4. 27) and (4. 28). In the inverted -L realization the 

number of elements will depend on the number of roots of r(s) which, 

in turn, depends on the power of the highest degree polynomial p(s) 

or q(s). If the highest degree is n, assuming both residues at zero 

and infinity are present, the number of elements in the network 

realizationwillbe 2(2n +2). In the realization with the basic configura- 

tion no positive statement as to the exact number of elements in the 

resulting network can be made. In the worst case, if the highest 

power polynomial is of degree n, assuming that every zero of trans- 

mission requires one zero shift and since a zero -shift produces one 

- 



element and a pole - removal two elements, the number of elements 

required for the realization of the given function is 2(Z + n + 1). 

Therefore, using the basic configuration, the resulting network is 

realized with at least n elements less. 

4. 3 The following example is the realization of a transfer 

function having only complex poles and zeros. 

G12(s) 2 
s +3s+6 

2s 
2 

+s +3 
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(4. 29) 

with the configuration of Figure 2, Appendix 2. 

a. Realization with the Basic Configuration 

Equation (4. 29) can be put into the form of equation (4. 25) by 

the use of polynomial decomposition, from which 

2s2+s+3 6(s+1%2)(s+1) - 4s(s+2) 

G12(s) _ 
ks2+3s+6 k5(s+6/5)(s+1) - 4s(s+2) (4. 30) 

If r(s) = 6(s +1)(s +2), the admittance expressions according to 

equations (4. 27) and (4. 28) will be 

s+l/"L 5 s+6/5 
-y12a(s) s+2 ' 

y 
y22a(s) 

s) 
3 s+2 

2 s 

-}'12ó(s) = 3 s+1 

where k = 1/2. 

- 4 s 

y22b(s) 3 s+l 

(4. 31) 

(4. 32) 

= 

' 

- 
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Two points of interest are noted in the above example. r(s) 

has a constant multiplier 6, equal to the constant multiplier of 

y 12a(s) in equation (4. 30). This is done to realize G12(s) exactly. 

The constant multiplier of yl2b(s, equation (4. 32), is realized by 

changing the conversion ratio of the NIC from -1 to -4/6. Then the 

resulting network will be realized with grounded RC- ladder networks 

provided that the Fialkow -Gerst condition is satisfied. If this condi- 

tion is not satisfied, G12(s) must be realized within a constant multi- 

plier k as shown above. 

Synthesis of equations (4. 31) and (4. 32) gives the network con- 

figuration of Figure 4. 5b. 

2.640 

1 I 

I .88 S-2 II 
lb 

.76f 

.78p NIC 
1.33± 75SZ 

I-a 2 

L - - b-- - -I 

o 

Figure 4. 5b. Parallel realization of 
2s +s +3 

G12(s) - using the basic configuration 
s 

2+3+6 

and r(s) = 6(s +1)(s +2). 
+3 
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b. Realization with Inverted -L Sections 

From equation (4. 21) and for r(s) = (s +l)(s +2) one obtains the 

following expressions for ÿ1b - yla and y2b - Y2a 
if G12(s) is to be 

realized within a constant multiplier of 1/2. 

3/2 9/2 4 (4. 33) 

(4. 34) 

ylb - yla s 

_ 3/2 

s+2 

2 

s+1 

7/2 
y2b - y2a s s+1 s+2 

The resulting network will therefore have the element values 

and configurations of Figure 4. 6. The number of elements in this 

realization is 10 as compared to 6 of the previous realization. 

1' o 

.66f 2.25S-2 

( )' 

.25f 

4S2 

.22f T.66f 

2S2 
.5f 

NIC 
1.45 . 3f 

Figure 4. 6. Parallel realization of 

G12(s) 

2s 2 +s +3 

s2 +3s +6 

configuration. 

using the inverted -L 

o 

1 

? 

i 

= 



4. 4 Transfer Function of Form [fl(s) +f2(s)] /[F1(s)- F2(s)] 

Synthesis 

Realization of a transfer function of the form, 

transfer function = 

f1(s) + f2(s) 

F1(s) - F2(s) 
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(4. 35) 

is accomplished with the configuration of Figure 2 and Figure 3, 

Appendix 2. 

As in the previous realization form, the NIC controls the zeros 

as well as the poles of the transfer function. Consequently, by this 

technique realization of complex zeros of transmission is accom- 

plished using relatively simple RC- structures. 

Realization of a transfer function, with this new form, is pos- 

sible provided that the function has a numerator and denominator 

which satisfy the conditions for Calahan and Horowitz decomposition 

respectively. For example, consider the realizability with the con- 

figuration of Figure 2, Appendix 2, where 

G12(s) y22a(s) y22b(s) 

y12a(s) + y12b(s) 
(4. 36) 

From equation (4. 36) it is evident that y22a(s) and y12a(s) as 

well as y22b(s) and y.1Lb(s) cannot be synthesized separately. The 

proposed method of realization of these networks is as follows: 

If the function to be realized is of the G12(s) = p(s) /q(s), and 

- 



p(s) and q(s) are polynomials containing both real and imaginary 

roots, they can be decomposed and written into the form 

and 
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p(s) = C(s) + D(s)V(s) (4. 37) 

q(s) = ai(s)a2(s) bi(s)b2(s) (4. 38) 

Where V(s) is a polynomial containing all the real roots of 

p(s) and where C(s) and D(s) are the decomposed polynomials of 

some function V(s) containing all the complex roots of p(s). 

To proceed with the realization, the decomposition of p(s) is 

obtained and is written in the following form 

p(s) = [a3(s)C3(s) + b3(s)C4(s)] V(s) (4. 39) 

The decomposition of q(s) is then obtained according to the 

procedure discussed in Chapter II using as a divisor the polynomial 

a3(s)b3(s)V(s). Therefore, 

q(s) _ ai(s)a2(s) ° bi(s)b2(s) 
a3(s)b3(s)V(s) a3(s)b3(s)V(s) 

or 

q(s) = ai(s)a2(s) m bi(s)b2(s) (4. 40) 

In view of equations (4. 39) and (4. 40), G12(s) can be written 

as 

- 



or 

C3(s) C4(s) 

a4(s) + b4(s) 
G12(s) 

a2(s) 
b1(s) a1(s) 

C3(s) C4(s) 
+ 

b4(s) a4(s) 
G12(s) 

b1(s) b1(s) 
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if n even (4. 43) 

if n odd (4. 44) 

From equations (4. 43) and (4. 44) the expression for admittance 

functions, Y12a(s }, y12b(s)' y22a(s), and y22b(s) can be easily ob- 

tained. 

The use of decomposition in obtaining the functions for the sub- 

network of equations (4. 42) and (4. 43) results in a network with a 

minimum number of elements for a network with the configuration of 

Figure 2, Appendix 2. 

4. 4 The following example is an alternate realization of a trans- 

fer function having negative -real zeros and complex with zeros of 

transmission at infinity. 

G12(s) = 
k(s+2. 5) 

1 2 
s 

2+2s+2 
(4. 45) 

Decompose equation (4. 45) into the form of equation (4. 39) 

(s +3) + (s +2) 

G12(s) s2+2s+2 
(4. 46) 
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Setting a3(s)b3(s)V(s) _ (s +2)(s +3), the denominator of equation 

(4. 45) is decomposed as 

s2+2s+2 = 3(s+4/3)(s+2) - 2(s+1)(s+3) (4.47) 

From equations (4. 46) and (4. 47) and with a3(s)b3(s)V(s) on a 

common divisor G12(s) takes the following form. 

1 1 

s+2 s+3 
G12(s) 3(s+4/3) 2(s+1) 

(s+3) 
_ 

(s+2) 

By consequence of equation (4. 48) 

1 _ 2(s+1) -y12a(s) = s+2 ' y22a(s) (s+2) 

-y12b(s) = s+3 ' y22b(s) 
3(s+4/3) 

(s+3) 

and the related network is given in Figure (4. 7). 

1 

1' o 

NIC 

(4.48) 

N 
L -- b -- 

Figure 4. 7. Parallel realization of 
2+1 2s 2 +24s +14 

s 2 +2s +2 

021 

_ 

o 
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1.2S-2 i 1 S2 

.5 1SZ 

o 
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- 
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4. 5 The following example is an alternate realization of a 

transfer function having only complex poles and zeros, 

2s 2+s+3 

G12(s) s2+3s+6 

with the configuration of Figure 2, Appendix 2. 
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(4. 49) 

Decompose equation (4. 49) into the form of equation (4. 39) 

G12(s) s2+3s+6 

s(s+5. 94) + 2s(s+. 25) 

Setting a3(s)b3(s)V(s) _ s(s +. 25)(s +5. 94) the denominator of 

equation (4. 49) is decomposed as 

s2+3s+6 - 4. 73(s+5. 07)(s+. 25) - 3. 73s(s+5. 94) 

as in the previous example 

.5 2s 

from where 

G12(s) 

-y12a(s 

-yl2b(s) 

s+. 25 s+5. 94 

(4. 

(4. 

50) 

51) 

4. 73(s+5, 07) 3. 73s 

5 

s+5. 94 

' y22a(s) 

Y 22b( 

s+. 25 

3. 73s 
s+, 25 

2s 

s+, 25 

4. 73(s+5. 07) 
s+5. 94 s+5.94 

. _ 

- 

' 

= 

_ 
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Figure 4. 8. Parallel realization of 

2s 2 +s +3 

G12(s) s2 +3s +6 

-J 

4. 5 Comparison of the Methods of Transfer Function Synthesis 

From the above it is concluded that if the numerator polynomial 

of the given transfer function has only negative real roots or it is of 

degree zero, the cascade method of synthesis will realize a network 

with a minimum number of elements. This is because the transfer 

functions of the subnetworks can be made to have all their zeros at 

infinity, a condition that cannot be attained with either one of the 

methods. 

If the numerator polynomial has complex roots, then the syn- 

thesis by the methods of paragraphs (4. 3) and (4. 4) will yield a 

realization with a minimum number of elements. In general, both 

--'N.A/V`- 

114.9f 
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methods will realize a given function with the same number of ele- 

ments in the resulting network except in the case when one zero -shift 

will allow more than one pole -removal in one method but not in the 

other. This chance occurrence cannot be controlled by the decom- 

position or be determined in advance. 

4. 6 Driving -Point of Form F1(s) +F2(s) - 

[fl(s) - f2(s)] /[F1(s) - F,.,(s)] Synthesis 

Realization of a driving -point function of the form 

Driving -point function = F1(s) +F2(s) 

-, 

fl(s) - f2(s) 

F1(s) - F2(s) 

is accomplished through configurations of Figure 2 and Figure 3, 

Appendix 2. 

Sipress [41] introduced this realization with Figure 2, for 

which the realized function is 

Y(s) y 
l la(s)+y 1 lb(s) 

2 

yl2a(s) 
w 

Y1>b() 

y22a(s - y22b(s) 
(4. 52) 

or if negative impedance conversion ratio k is different than unity, 

Y(s) y1 s) 
la( + 

y l lb(s) 

[ >r12a(s) - y12b(s)][ yl7a(s) ' kyl2b(s)] 

y22a(s) ky22b(s) 
(4. 53) 

- 

= 

- 

= 
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and indicated that F1(s) fi(s) /[F1(s) - F2(s)] is a special case of 

this realization. This realization is of special interest because it 

realizes any driving -point function. To carry out the realization of 

a given Y(s) an arbitrary selection for the expression ylla(s) la(s) 

+yl lb(s) is made. The degree of the numerator and denominator of 

yl la(s) + yl lb(s) must be equal to the highest degree of the numerator 

or denominator of Y(s). 

Let the given function to be realized be Y(s) = N(s) /D(s), then 

yl lb(s) = A(s) /B(s) from equation (4. 52) through simple if ylla(s) 
algebraic manipulations one obtains 

2 
y12a(s) - y12b(s) k1A(s)D(s) - N(s)B(s) 

y22a(s) y22b(s) B(s)D(s) 

where k1 is a constant, as yet undetermined. 

From root locus considerations and properties of A(s) and B(s), 

a positive value of k1 can be determined such that 

(4. 54) 

k1A(s)D(s) - N(s)B(s) = KU(s)V(s) 

= 1/2[KU(s) + V(s)] 2 - 1/2[KU(s) - V(s)] 2 (4. 55) 

where U(s) is a polynomial containing the complex roots and V(s) a 

polynomial containing the real roots of the expression k1A(s)D(s) 

- N(s)B(s). If k = 1, Va(s) = 1 /2[KV(s) + V(S)] and Ub(s) = 1 /2[KU(s) 

-V(s)] but if k / 1, Ua(s) kKV(1 
+k 

V(s) and Ub(s) -KU() )k V(s). 

- 

- 

= 

= 



Substituting equation (4. 55) into (4. 54) and dividing the nu- 

merator and denominator by B2(s), the following expression is ob- 

tained 

2 2 
Y1 (s) Y12b(s) B2(s) 

y22a(s) - y22b(s) D(s) 
B(s) 

KaUa( s ) - 
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(4. 56) 

where Ka is determined at the end so that the Fialkow -Gerst condition 

is satisfied for each network. 

From the above it can be concluded that 

y12a(s) - y12b(s) 
= KaUa(s) - U 

2(s) 

D(s) 

(4. 

(4. 

(4. 

57) 

58) 

59) 

y22a(s) - y22b(s) B(s) 

_ A(s) 
+ yl la(s) yl lb(s) B(s) 

from which the expressions for all the admittance functions may be 

easily obtained by proper partitioning. 

Note that expressions for the admittance functions are given 

for k = 1, but similar expressions for k / 1 can be easily derived 

[41, p. 262] . A value of k 1 is used in many cases when different 

values of K are needed to make both Ua(s) and Ub(s) have roots on 

the negative real axis. 

- 

_ 

a 

- 

7 
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4.7 Simplifications 

The number of elements in the resulting network will depend 

greatly on the expression selected for la(s) + y1 lb(s). For ex- 

ample, since realization of only one of the given admittances, (either 

input driving -point or output driving -point admittance) is obtained, 

to realize the other admittance it may be necessary to use com- 

pensating networks such as those shown in Figure 8. 

In general, element reduction in the resulting network is 

achieved if a selection of yl la(s) + yl lb(s) is made such that one or 

more of the following simplifications is attained. 

1. Selection of y l l a(s) + y1 l b(s) such that the compensating 

networks are simplified or are completely eliminated. 

2. Selection of ylla(s) + yllb(s) such that the zeros of trans- 

mission of network "a" and "b" are the same as those of y (s) and 1 l 
yl lb(s) respectively. 

3. Selection of yl la(s) + yllb(s) such that either y12a(s) or 

y12b(s) is equal to zero. 

4. Application of polynomial decomposition techniques in 

certain cases greatly reduces the number of elements. 
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Simplification 1 

Because there is no direct relation between the two driving- 

point functions and the transfer function of a network, an expression 

for y11a(s) 
+ yl lb(s) which will simplify the compensating networks 

is not possible and cannot be obtained through a relation of these 

functions. However, an alternate approach can be used utilizing the 

principle of simplification 4. 

Given a function Y(s) = N(s) /D(s), obtain an arbitrary decom- 

position of D(s) that is, 

D(s) = al(s) - sb1(s). 

If A(s) is formed as 

A(s) = a1(s) + sb1(s) 

(4. 60) 

(4. 61) 

a function B(s) can always be found [Chapter II] , such that A(s) /B(s), 

al(s) /B(s), sb1(s) /B(s) are RC driving -point admittance functions. 

Equations (4. 60) and (4. 61) reveal that the input and output 

open- circuit admittances are the same in each subnetwork. This 

suggests that if the function is realized with a symmetrical network 

no compensating networks will be needed. 

The realization will be done from the transfer function defined 

as 

y12(s) 
G12(s) y 

22(s) y22( 
(4. 62) 
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where the expressions for y12(s) and y22(s) are obtained as discussed 

above with the stipulation that A(s) and D(s) satisfy equations (4. 60) 

and (4. 61). 

4. 7 The following example is the realization of a Butterworth 

function without the use of compensating networks. 

Form 

Y(s) - 1 

s 2+2s+2 

Decompose the polynomial D(s) as 

D(s) = s2+2s+2 = 3/2 (s+1)(s+. 75) - 1/2 s(s+3) 

A(s) = 3/2(s+1)(s+. 75) + 1/2s(s+3) = 1/8(16s2+33s+9) 

= 1 /8(s +. 322)(s +1. 74) 

The selection of polynomial B(s) is made such that 

(4. 63) 

3/2(s +1)(s +. 75) and 1/2 s(s +3) are RC impedance functions. 
B(s) B(s) 

Therefore B (s) _ (s +. 8)(s +4). 

The expressions for y12a(s)' y12b(s) 
are obtained as in the 

previous example. 

KA(s)D(s) - N(s)B(s) _ (2s4+8. 15s3+13. 4s2+10. 5s+2. 25) 

- s 85+3. 
2+4. 

2 



Let K - 2 
'25 

, then 

KA(s)D(s) - N(s)B(s) = s(2.84s3+11. 6s2+18s+10. 1) 

= s(s+1. 3)( 2. 84s 2+7. 
9s+7. 75) 

and consequently 

Ua(s) = K1(2. 84s 2+7. 9s+7. 75) + s(s+1. 3) 

Ub(s) = K2(2.84s2+7. 9s+7. 75) - s(s+1. 3) 
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(4. 64) 

(4. 65) 

Note here that this is a case in which a different value of K for 

Ua(s) and Ub(s) must be selected to force all their roots to be on the 

negative real axis. Setting K1 = . 05 and K2 = . 5 the following ex- 

pressions are obtained. 

Ua(s) = 1. 142s2+1. 7s+. 388 = 1. 142(s+1. 2)(s+. 285) (4. 66) 

Ub( s) _ . 42s 2+2. 65s+3. 88 = . 42( s+2. 32)( s+4) (4. 67) 

From equations (4. 66) and (4. 67) it is easily derived that the 

negative impedance converter must have an amplification factor of 

100. 

To satisfy the Fialkow -Gerst condition equations (4. 66) and 

(4. 67) are realized within a constant multiplier k 
a 

= 110. The ex- 

pressions for Y12a(s)' Y12b(s)' Y1la(s)' y11b(s'' y22a(s)' and y22b(s) 

can now be easily obtained from equations (4. 63), (4. 66), and (4. 67) 

and 



and 

. 

11(s+1. 2)(s+. 285) 

(4. 
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68) 

y12a(s) 

_ 

(s+.8)(s+4) 

75(s+. 75)(s+1) 
ylla(s) (s+.8)(s+4) 

_ 

. 

75(s+. 75)(s+l) 
y22a(s) (s+.8)(s+4) 

42(s+2. 32)(s+4) 
y12b(s) . (s+.8)(s+4) 

_ . 5s(s+3) 
y11b(s) (s+.8)(s+4) 

. 5s(s+3) 
y22b(s) (s+.8)(s+4) 

(4. 69) 

Forming the open- circuit transfer -voltage ratio equation (4. 62), 

for each of the subnetworks, the realization is achieved through the 

known methods of lattice- network synthesis techniques. 

(s+1. 2)(s+. 285) 
G12a(s) _ . 0825 

(s+. 75)(s+1) 

G (s) = .84 (s+2. 32)(s+4) 
G12b(s) s(s+3) 

and the resulting network structure is given in Figure 4. 9 where 

G12a(s) and Gl2b(s) are realized within a constant multiplier. 

- 

- 

- 

- 
' 

- 

' 

_ 
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Figure 4. 9. Realization of Y(s) - 1 using 
s +2s +2 

symmetrical network structures. 

Simplification 2 

02 

This simplification reduces the number of elements in the 

realized function because the synthesis of network "a" and "b" from 

yl la(s)' y12a(s), and yl lb(s)' yl2b(s), respectively will be done 

without zero shifting. In such a case, for a given Y(s) = N(s) /D(s), 

equation (4. 52) will have the form: 

al (s) a2(s) 

Y(s) = N(s) - a1(s) a2(s) B2(s) B2(s) 
d(s) B(s) B(s) D(s) 

B(s) 

Manipulating equation (4.70) results in, 

(4. 70) 

.63SZ 1 SZ 

II--- 
59f 
10 

/ 
/ 

/ .2f 

I 

+ 

2' 
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[al(s)+a2(s)] [D(s)-(al(s)-a2(s))] 
(4.71) 

(4.72) 

D(s) 

from where 

N(s) 

D(s)B(s) 

-al(s)+a,2(s) 
[D(s)-(a1(s)-a2(s))] ` 

Equation (4. 72) will give the conditions that either, 

al(s) +a2(s) 
1 and therefore, B(s) 

N(s) = D(s) - [al(s)-a2(s)] (4. 73) 

D(s) - (al(s) - a2(s)) Q(s)B(s) 
or that, 

B(s) B(s) Q(s) 

and therefore, 

N(s) = Q(s)[al(s) +a2(s)]. 

Theorem I. 

(4. 74) 

If a1(s) /B(s) and a2(s) /B(s) are RC- admittance functions and 

if al(s) +a2(s) = B(s), than al(s) = a2(s) = B(s) /2. 

Proof: 

Figure 4. 10 indicates the location of the zeros of al(s) and 

a2(s) with respect to those of B, and satisfying the restriction that 
al(s) a2(s) 

B(s) and are driving -point admittance functions. Figure 4. 10 

shows the root -locus of a1(s) +ka2(s) and indicates the regions of the 

N(s) 

= 

- 

B(s) 

_ 

B(s) 
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zeros of this function. It can, therefore, be seen that the realization 

of al(s) +a2(s) = B(s) will hold only if al(s) = a2(s) = B(s) /2. 

Application of the results of Theorem I to equation (4.73) 

shows that this condition can be considered if, and only if, N(s) =D(s) 

which is the trivial case Y(s) = 1. 

Condition (4. 74) is then the only one which, if satisfied, will 

lead to representation of the given function Y(s) in the form pre- 

scribed by equation (4. 70). The fact that a1(s) /B(s) and a2(s) /B(s) 

are RC driving -point admittances requires that a1(s) and a2(s) be of 

degree equal to, or one greater than, the degree "m" of D(s); 

therefore N(s) must contain at least (m -1) real roots. This is a 

necessary condition. The sufficiency is secured if condition (4. 74) 

is satisfied. In conclusion, any given rational real function Y(s) of 

numerator and denominator polynomial degree n and m, respectively, 

can be written in the form prescribed by equation (4. 70) if 

a. The numerator polynomial contains at least m -1 real 

roots. 

b. The condition (4. 74) is satisfied. 

The feasibility of this method comes from the fact that for a 

given polynomial p(s) with roots on the real axis there is only a 

finite number (if any) of decompositions of the form p(s) = a1(s) 

+ a2(s), such that al(s) /B(s) and a2(s) /B(s) are RC driving -point 

functions, B(s) being an arbitrary polynomial. These decompositions 
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can only be obtained by trial- and -error procedure. 

B3 B2 B1 

X X X 

a .f 
ora12 ora22 

' 
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I 
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b 

Figure 4. 10. Roots of a1(s), 
1 

a2(s), and B(s) and regions of 
root location of a1(s) + a2(s). 

To illustrate the simplification and to outline its procedure, 

the following example is given. 

4. 8 The following example is the realization of a driving -point 

function with negative -real zeros and complex poles by the method of 

Sipress. 

Y(s) 
s2+2s+2 s2+2s4-2 

s 2+1. 5s+, 5_ ( s+. 5)(s+l) 
(4. 75) 

Since the numerator and denominator polynomials of equation 

(4.75) are of the same degree Q(s) = 1. Therefore, from equation 

(4. 74), 

KN(s) = K(s`+1. 5s+. 5) = al(s)+a2(s) (4. 76) 

iw 

_ 

iRegítn 1 



and 

KaD(s) - al(s) - a2(s) (s2+2s+2) - a1(s) - a 
2 
(s) 

B(s) B(s) 

70 

(4. 77) 

The next step is the selection of a polynomial for a1(s) or a2(s), 

and here is where the trial- and -error procedure enters. As a rule 

select a polynomial a(s) such that N(s) /a(s) is an RC admittance 

function. The following steps follow directly from equations (4. 76) 

and (4. 77) and are explained here with the help of the root -locus 

diagram, Figure (4. 11). 

location of roots of Q 9 
I-1 -.5 

al(s) + a2(s). 

locus of KN(s)- a2(s), 
K= 00 o =0 

allowable regions. ., I 

for roots of al(s). 

K = I K = 
Representative locations for ( 0 --- __ 

roots of al(s)x, locus of I 

a1(s) -a2(s) and allowable (2/ 
regions. . . , for roots of I 

al(s)- a2(s). i I 

Representative locations for X I 

roots of a1(s)- a2(s)x locus of 

KaD(s)- (a1(s)-- a2(s)) and de- 

sirable locations of roots of 

KaD(s)- (ai(s)-a2(s)) 0-\ 

iw 
o- 

K=1.32 

K=2. 34 

Figure 4. 11. Loci of expressions of Examples 4.8. 

. 

I I 

o_ 

i I 

I 

I I 

I 

I 
I 
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Assume a2(s) = (s +1. 1)(s +. 6); then from equation (4. 76) 

al(s) _ (k -1)s2 + (1. 5k -1. 7)s +. 5k -. 66 (4. 78) 

where k is, as yet undetermined, but as easily derived from Figure 

(4. 11), k must satisfy the restriction 

k > 1. 32 (4. 79) 

The expression for a1(s) - a2(s) can now be written as 

a1(s) - a2(s) _ (k -2)s2 + (1. 5k -3. 4)s +. 5k -1. 32 (4.80) 

and again from Figure (4. 11) it is seen that k must satisfy the fol- 

lowing restriction 

be 

k < 2. 24 (4.81) 

From equations (4. 45) and (4. 47) the value of k must therefore 

1. 35 < k< 2.24 (4.82) 

If from equation (4.82) k = 1. 32, the expressions for al(s) and 

al(s) 
1 

- a2(s) will be equations (4. 78) and (4.80), 

a1(s) _ . 32s 
`2 

+ . 28s = . 32s(s+. 875) 

a (s) 
1 

- a2(s) _ - (. 
2 

+ 1. 42s + . 66) 

= - . 68(s +. 698)(s +1. 39) 

and for Ka = . 066, 
a 
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KaD(s) - 

Therefore, from 

(a1 (s)-a2(s)) = 1. 

equation (4. 70) 

(s+. 6)(s+1. 1) 

93(s+. 9)(s+1. 18) 

Y1 la(s) 1. 93(s+. 9)(s+l. 18) 

(s+. 6)(s+1. 1) 

Y12a(s) 1. 93(s+. 9)(s+1. 18) 

c(s) 
y22a(s) 1. 93(s+. 9)(s+1. 18) 

. 32s(s+. 875) 
Y1 lb(s) 1. 93(s+. 9)(s+1. 18) 

. 32s(s+. 875) 
Y1 yl2b(s) 1. 93(s+. 9)(s+1. 18) 

d(s) 
Y22b(s) 1. 93(s+. 9)(s+1. 18) 

where c(s) - d(s) = s2 +2s +2, and the realization of Y(s) can be at- 

tained from Yl la(s)' Y12a(s), and Y1lb(s)' yl2b(s), without zero 

shifting. 

Simplification 3 

Going back to equation (4. 78), if Y1la(s) + Y1lb(s) is set equal 

to KA(s) /B(s) for a given Y(s) _s> , we will have 

2 2 

KA(s) N(s) y12a(s) yl2b(s) 
B(s) D(s) Y22a(s) `¡22b(s) 

(4.83) 

from where Y12a(s) - yl 2b(s) = KA(s)D(s) N(s)B(s). (4.84) 

For simplification 3, it is desirable for KA(s)D(s) - N(s)B(s) 

- 

- 

- 

' 

' 
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be a perfect square and have roots on the negative real axis. If we 

arbitrarily select any polynomial for N(s) or D(s) from the root - 

locus configuration of equation (4.84), it is seen that one necessary 

condition is that one of the polynomials N(s) or D(s) must have only 

negative real roots. If either N( s) or D(s) has complex roots, i. e. , 

N(s), then, from the root -locus, B(s) must be unity and the degree 

of A(s)D(s) must be one less than the degree of N(s). As shown in 

Figure 4. 13, this is restricted to the case when either N(s) or D(s) 

is of degree 2 and the other of degree zero. 

For the case where both N(s) and D(s) have real roots, condi- 

tions for KA(s)D(s) - N(s)B(s) to be a perfect square with roots on 

the negative real axis can be found from the following considerations. 

Let 

KA(s)D(s) - N(s)B(s) = V2(s) (4. 85) 

The polynomial V(s) can now be thought of as being a summa- 

tion or a difference of two polynomials a(s) and b(s). 

The former assumption gives 

V2(s) _ [a(s)+k b(s)] 2 = a2(s)+k1 2 b`(s)+2k1a(s)b(s) 

(4. 86) 

_ a2(s) + K1b(s)[k1b(s) + 2a(s)] 

where k1 is a positive constant, the value of which is to be deter- 

mined later. 

No direct association of the terms of (4.85) and (4.86) can be 
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Figure 4. 1Z. Root -locus plot of KA(s)D(s) 
O. N(s)B(s) 

iw 

Figure 4. 13. Root -locus of KA(s)D(s) 1 = O. N(s)B(s) 

1 = 

0 



made and such a representation is being rejected. 

Considering the difference of polynomials 

V2(s) = [a(s) - klb(s)] 2 

= a2(s) + k.ib2(s) - 2k1 a(s)b(s) 

= a2(s) - k1b(s)[2a(s) - klb(s)] 

75 

(4. 87) 

(4.88) 

where k1 is as defined as above. 

Comparison of equations (4.85) and (4.87), direct association 

of the similar terms will give, 

for V2(s) positive 

KA(s)D(s) = a2(s) 

N(s)B(s) = klb(s)[2a(s) - klb(s)] 

for V2(s) negative 

KA(s)D(s) = klb(s)[2a(s) - klb(s)] 

N(s)B(s) = a2(s) 

2 from where (consider only case, V (s) positive, ) 

or 

KA(s) = a(s), D(s) = a(s) 

(4. 89) 
B(s) = klb(s), N(s) = 2a(s) - klb(s) 

KA(s) = a(s), D(s) = a(s) 

B(s) = 2a(s)-klb(s), N(s) = klb(s) (4. 90) 
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For the comparison the other possibility of grouping, 

V2(s) = a2(s) + b2(s) - 2a(s)b(s), is not considered because the term 

a2(s) + b2(s) contains only complex roots while each term to the left 

of equation (4.85) contains real roots at least equal to the number of 

roots of either A(s) or B(s) depending on the term. 

Returning to equations (4. 89) and (4. 90) it can be concluded 

that since A(s) /B(s) must be an RC driving -point admittance function 

N(s) /D(s) is either an admittance or an impedance driving -point 

function, depending on the choice of the value of k1. In such a case 

no active -network realization is necessary. Similar conclusions can 

be drawn for the case V2(s) negative. In summary, simplification 3 

can only be applied to the case in which either N(s) or D(s) is of de- 

gree two with complex roots only, whereas the other is of degree 

zero. 

Simplification 4 

Polynomial decomposition in the realization of Y(s) by equation 

(4. 52), under the constraint that the degree of numerator and de- 

nominator polynomials are equal, can be used if certain conditions 

are satisfied. Decomposition results in a reduction of elements be- 

cause it realizes networks "a'' and "b" with describing polynomials 

having degrees one -half of that of the polynomials of Y(s). 

By algebraic manipulations equation (4. 52) can be expressed 



in the following form, 

1/z (s) - y (s) 
Y(s) - N(s) 22a y22b(s) 

D(s) lla y22a(s) - Y22b(s) 

y22a(s) - l/z22b(s) 
yl lb Y22a(s) - y22b(s) 
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(4. 95) 

Note here that each term on the right -hand side of equation 

(4. 95) is of the form F1(s) - f1(s) /[F1(s) - F2(s)]. 

The application of polynomial decomposition requires at least 

one of the polynomials, N(s), D(s), to have only complex roots, 

which will give us the following cases. 

Case 1: If N(s) and D(s) have only complex roots, then appli- 

cation of Horowitz decomposition will allow the following expressions 

for the synthesis of Y(s) within a constant multiplier, 

N(s) 
a1(s)a2(s) - sb1(s)b2(s) 

from which 

Y(s) _ 

D(s) a1(s) - sb1(s) 

b2(s) 
Y(s) 

b 1(s) 

a1(s)a2(s) - sb1(s)b2(s) 

a1(s) - sb1(s) 

a2(s)/b2(s) - sb1(s)/al(s) 

ai(s)/b1(s) - sb1(s)/al(s) 

a2(s) a1(s)/b1(s) - sb2(s)/a2(s) 
+ al(s) 1(s) a1(s) - sb 1(s) 

(4. 96) 

+ 

= 
Y 

_ 
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where the ratios of ai(s) /bj(s) and sbi(s) /q(s) (i = 1, 2 and j = 1, 2) 

satisfy the conditions for RC driving -point admittance functions. 

Furthermore, if b2(s) /b1(s) and a2(s) /a1(s), satisfy also the condi- 

tions for RC driving -point functions such a decomposition can be 

applied. From (4.95) and (4. 96) the following associations can be 

made. 

b2(s) 
ylla(s) b1(s) 

a2(s) 
yllb(s) a1(s) 

a1(s) 
y22a(s) b1(s) 

a2(s) 
1/Z22a(s) b (s) 

2 

sb2(s) 

1/Z22b(s) a2(s) 

sb1(s) 

y22b(s) al(s) 

Case 2: If N(s) is any polynomial with one root at the origin 

and D(s) is a polynomial with only complex roots, the application of 

Horowitz decomposition gives the following expression: 

Y(s) _ al(s)b3(s) - a3(s)b1(s) 

s a1(s) - sb1(s) 

a1(s)b3(s) - a3(s)b1(s) 
+ 

a1(s) - sb1(s) 

a3(s) b3(s)/a3(s) 
b1(s) al(s)/bl(s) 

b3(s) a1(s)/b1(s) 
+ al(s) ai(s)/bi(s) 

- b1(s)/a1(s) 

- sb1(s)/al(s) 

- a3(s)/b3(s) 

- sb (s)/a 1(s) 

(4. 97) 

' 

= 
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Multiplying through by "s" 

a3(s) sb3(s)/a3(s) - sbl(s)/al(s) 
Y(s) bl(s) al(s)/bi(s) - sbl(s)/al(s) 

(4. 98) 
sb3(s) al(s)/b1(s) - a3(s)/b3(s) 

+ al(s) al(s)/bi(s) - sbl(s)/al(s) 

where the ratios of ai( s) /sb(s) and sb(s) /a.(s) satisfy the conditions 

for RC driving -point admittance functions. 

Comparison of (4. 98) and (4.95) yields the following parameter 

identification: 

a3(s) sb3(s) 

ylla(s) b (s) 
1 

' 1/Z22a(s) a3(s) ; 

sb2(s) 

yllb(s) al(s) ' 

a3(s) 
1/z22b(s) b3(s) ' 

al(s) sb1(s) 

y22a(s) b (s) 
1 

' y22b(s) a1(s) 

No other cases exist because the numerator of each term of 

the right -hand side of equation (4.95) contains a term which appears 

in its denominator. For the above decompositions to be applicable 

it must be shown that 

1. y12a(s) and yin(s) are rational and they can always be 

obtained. 

2. The residue condition is always satisfied. 

- 



Requirement 1 

To show that a rational y12(s) can always be obtained, it is 

helpful to solve y12(s) in terms of the decompositions present. In 

general 

2 

y12(s) - y11(s)(y22(s) - 1/z22(s)) 

For this problem y12a(s) and y12b(s) zb(s) become: 

a1(s)b2(s) - a2(s)b1(s) 

y12a(s) 
2 b 1(s), 

sa2(s)b1(s) - sa1(s)b2(s) 

y12b 2 
al(s) 

for Case 1, and 

y12a(s) 2 
b1(s) 

a1(s)a3(s) - sb1(s)b3(s) 

y12b(s) 2 
a (s) 

s2b1(s)b3(s) - sa1(s)a3(s) 
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(4.99) 

(4. 100) 

(4. 101) 

for Case 2. 

Clearly the polynomials appearing in the numerators of expressions 

(4. 100) and (4. 101) must be full squares in order that y12's to be 

rational. The proof that the y/ 2's are rational is similar to all ex- 

pressions of (4. 100) and (4. 101). Therefore, only the proof for 

y12(s) _ [a1(s)b2(s) - a2(s)bi(s)]/b2(s) is shown. The rest will be 



similar. Before proceeding, recall here the proof of Theorem 2, 

Chapter 2. In proving this theorem, given a rational function 

p1 (s) /p2(s), sp1(s2) /p2(s2) was formed, which in turn was treated 

as the odd part of a positive real admittance. This admittance has 

the form, 

A2(s) + sB2(s) 

A1(s) + sBl(s) 
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(4. 102) 

where s was substituted for s2, and the theorem was proven. If, 

in (4. 102), the odd part is formed and s is substituted for s2, ex- 

pression (4. 103) results 

a1(s)b2(s) - a2(s)b1(s) 

a1(s) - sbi(s) 
(4. 103) 

Thus, the polynomial to be made a full square has as its zeros the 

left -half plane zeros of the odd part of the constructed admittance 

(4. 102). The odd part zeros of a positive real admittance need not 

be of even multiplicity and so al(s)b2(s) - a2(s)b1(s) is not neces- 

sarily full square. 

To show that the polynomial in question can always be made 

full square proceed as follows. Suppose that constructed admittance 

(4. 102) is augmented by a Hurwitz polynomial, Ao(s) - sBo(s). This 

augmentation propagates into the even and odd parts of the constructed 

2 admittance as Ao (s) 2 - s Bo(s ). The substitution of s2 by s reveals 
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that the numerator of y12(s) has been multiplied by the polynomial 

2 2 
ao(s) - sbo(s) , while the admittance function to be realized is aug- 

2 2 2 mented by a surplus factor a 
o 
(s) - s b 

o 
(s). In other words the given 

admittance function can always be augmeted by a surplus factor 

which makes y12(s) full square and so rational. 

Requirement 2 

To show that the residue condition is always satisfied, form 

y11(s)Y22(s) 

for Case 1. 

in terms of the decomposition present, 

b2(s)a1(s) 

ylla(s)y22a(s) _ 
2 

b 
1( 

s) 

y1 lb(s)y22b(s) 2 
al(s) 

Sat( s)b 1( s) 

a3(s)a1(s) 

ylla(s)y22a(s) - 2 ' 

bi(s) 

s2b3(s)b1(s) 

yllb(s)y22b(s) 2 ai(s) 

(4,104) 

(4.105) 

for Case 2, 

Since the poles in the expressions of (4. 104) and (4. 105) appear 

as zeros of the negative part in the corresponding expressions of the 

y12's, equations (4. 100) and (4. 101), the residue condition at the 

finite poles is satisfied with an equal sign. Furthermore, it can be 

seen that the poles (if any) at infinity also satisfy the residue condition. 
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V. PRACTICAL CONSIDERATIONS 

The problems selected for the examples in this work are in a 

normalized form. The quantities most often normalized are the 

level of the network function and the frequency. Normalization in 

the synthesis of a network is desirable because it offers the advan- 

tages of making the calculations easier and allowing the use of the 

so- called universal curves. Denormalization can be done at any 

convenient stage in the calculations or it may be performed on the 

network. For example, consider a case where both the level and the 

frequency have been scaled down by the factors H and W respectively. 

The removal of the normalization on the network is then accomplished 

by multiplying every resistance by H, every inductance by H /W, and 

every capacitance by 1 /HW [41, p. 40] . 

In practice the network functions are commonly given as plots 

in the frequency domain and their mathematical expressions are ob- 

tained either by polynomial (Butterworth, Chebyshev, Bessel) or 

break -point approximation. Normalization is then applied to these 

expressions. 

Example s 

Figure 5. 1 gives the magnitude characteristic of a compensa- 

tion network. It is required to find a network function which 



84 

approximates this curve. 

Figure 5. 1 shows the break -point approximation of the charac- 

teristic curve with low- frequency asymptote of 12 db /octave and 

high- frequency asymptote of 0 db /octave. There is also a "resonant 

peak" indicating a second degree factor, at W = 14000 radians /sec. 
Mag 
db 

18 

12 

6 

0 
5x103 104 3 x 104 Normalized scale 

W radians /sec 3 4 

Figure 5. 1. Magnitude characteristic for Example 5. 1 

For these asymptotes, the break frequencies are 14000, 

20, 000, and 40, 000 radians /sec. The second degree factor was 

obtained with the use of the universal curves and has the form 

s2 +2s+2. The frequency normalized gain function is then, 

G(s) = 102 
s+2s+2 
s 2+6 s +8 

(5. 1) 

The network corresponding to Equation (5. 1) has been realized, 

1. 
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within the constant multiplier 102, on Chapter III and is shown on 

Figure 3. 13. The removal of the normalization from the network of 

Figure 3. 13 (level normalization constant 102, frequency normaliza- 

tion constant 104) will result in a network with element values indi- 

cated on Figure 5. 2. 

Figure 5. 2. Network with magnitude characteristic is 
given by Figure 5. 1. 
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VL SUMMARY 

The procedure for minimal RC and RC -NIC network realization 

has been systematically developed and can be applied to a variety 

of problems in different realizations. 

In the synthesis of RC network it was noted that the realization 

of a driving -point function or part of a network function results in a 

canonical network. Element reduction, therefore, can be made only 

in the realization of a transfer function or in the simultaneous reali- 

zation of a driving -point function and a transfer function. A synthesis 

method has been introduced, which will permit a reduction in the 

number of elements in the synthesis of transfer functions. Further- 

more, this new method of synthesis broadens the class of functions 

that can be realized with RC- networks. The ladder realization of 

RC transfer functions requires zero shifting. The effect of this zero 

shift on the remaining zeros cannot be determined in advance. The 

reduction in the number of elements in the RC ladder network was 

therefore obtained through a trial -and -error procedure. A FORTRAN 

program was written to assist in this direction. 

The application of the concept of interconnection of two -three 

terminal networks (in this case an RC network and an RC -NIC net- 

work) lead to the unification of the field of RC -NIC network synthesis 

and introduce a variety of configurations through which RC -NIC 
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realization can be attained. Element reduction in these networks 

has been shown in this work that can be achieved proper selection of 

the real- root -polynomials. The selection of such polynomials which 

will render minimal RC -NIC networks can be obtained through proper 

decomposition of the numerator and denominator expressions of the 

function to be realized. The rules and procedures for the selection 

of the polynomials are given in Chapter IV. 
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SUGGESTIONS FOR FURTHER STUDY 

Variations of a network characteristic function with small 

modification of their pole or zero location has been given considerable 

attention in the literature today. A need, however, was felt in this 

work for variations of these functions with arbitrary modification of 

their poles or zeros. The study of this problem may be of interest. 

Continuously equivalent networks were thought as an approach 

to be used in the element reduction of realized network structures. 

Its feasibility, however, was not studied and could present another 

area of investigation. 

Finally, a more sophisticated unification of the field of RC- 

NIC network synthesis can be obtained through topological considera- 

tions. This may be of special interest in that it may open new ways 

to active network synthesis which avoids the problems inherent in 

dividing active network synthesis into the synthesis of separate, 

purely passive and purely active networks. 
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APPENDIX I 

The simultaneous realization of a driving -point function and 

a transfer function has been programmed and its flow chart and 

FORTRAN listing is given in the following pages. 

The program has been written so as the user has only to enter 

as the input the coefficients of the numerator and denominator poly- 

nomials of the driving -point function and transfer function or their 

roots. The program will perform the realization of the network and 

will write out the value of the elements of each branch of the realized 

ladder network. 



SIMULTANEOUS RC- NETWORK REALIZATION 

OF A DRIVING -POINT FUNCTION (Y (s ): p1(S) 
P,ls) 

AND A TRANSFER FUNCTION (Y12(s) Q2(s) 
) P (s) 

READ ROOTS 

OF POLYNOMIALS 

01, PI 021152 

FORM 
POLYNOMIALS 
FROM THEIR 

ROOTS 

NO 

IF 
PI HAS 

OTHER ROOTS (Pi) 
BESIDES THOSE 

OF 
P2 

YES 

READ 

COEFFICIENTS 
OF POLYNOMIALS 

QI, PI, 02,P2 

CALL SUBROUTINE 
AND FIND 

THE ROOTS OF 

POLYNOMIALS 

FIND RESIDUES 

(K1) OF "S.Y,,' AT 

THE EXTRA 
ROOTS OF Pi 

NO 

END 

94 

\\ 

SUBTRACT 
FROM Y,, TRE 

FUNCTION 
N ¡S 

SIP, 



YES 

POSITIVE 

EVALUATE YII AT 
ONE OF THE 
ZEROS OF YI2 
CALL IT Y 

NEGATIVE 

95 

(GO TO (1 ) 
PRINT 

YES 
ARE 
ALL 

ROOTS OF 
EXAUSTED 

SUBTRACT FROM 

YII Y FORM 

Y, AS Y =YI)Y 

ARE 
ALL 

ODEFFICIEN 
OF Y, 

POSITIVE 

SELECT A POLE OF Y,. THE 
ABS. VALUE OF WHICH IS GREATER 
FROM THE ABS. VALUE OF AT 
LEAST ONE ZERO OF Via AND 
ONE ZERO OF Y,,. UNDER THE 
RESTRICTION THAT THERE 
IS NO OTHER POLE BETWEEN 
THIS POLE THESE ZEROS. START 
WITH A POLE WITH THE SMALLEST 
ASS. VALUE. 

GOTOXL 

CALL 
SUBROUTINE 

FACTOR NUMER. 
OF YI 

ARE 
ANY 

ZEROS OF 
WITH THOSE 

OF YI= 

IF B IS VALUE OF 
SELECTED POLE 
FORM EQUATION 

11- 
S +B.Y 

WHERE A= CONST. 

EVALUATE Y AT THE 
ZERO (D) OF Viz CLOSEST 
TO THIS POLE. SET 'f 
TO ZERO,SOLVE FOR 

A' S +BIS DJ 

IF ALL 

FIND RESIDUE (K) 
OF S.Y. AT THE 

SELECTED POLE (B) 
FORM *Arlin AS 

R 

GO TO (3I) 
O y 
IL 

YES 

INVERT 
YI FORM 

Z 
FIND BCD WHICH 
WILL BE EQUAL TO 
THE RATIO OF THE 
COEFFICIENTS OF THE 
HIGHEST POWER TERMS 
OF NUN. AND DEN. 
POLYNOMIALS 

CGQ TO (Y) 

{Y. 



FIND RESIDUES 
OF Z, AT 

THESE POLES (Pi) 

SUBTRACT FROM 

Zi THE FUNCTION 
KI 

PRINT 
I KI 

Kt ' 

¡Pi 

FORM 22 AS 

Z282 -Z Kt 
9 +Pi 

CALL SUBROUTINE 
FACTOR RUDER. 

OF 22 

F NONE 

IF SOME 

IF ALL 

INVERT 
;FORM Y13 

MULTIPLY %BY S 

PRINT 
Km 

IF BOTH 

DOES 
EITHER 

MIMER OR 
DEN POLYNOM 
HAVE A VALUE 

THER THA 
ERO AT 
S0 

IF NONE 

SET VALUE OF 
THAT POLYNOM. 

AT 5 :0 TO BE 
EQUAL TO ONE 

FORM K° AS 

VAL.OF NUMAT S=0 

KO VAL.OFDEN.ATS=0 

PRINT 

K° 

FIND RESIDUES 
(KI) OF Z AT 
ALL IT'S POLES 

PRINT 
I PI 

Ki Ki 

END 

SELECT 
ANOTHER 

ZERO OF YI2 
INVERT 23 TO 

FORM Y3 

FIND RESIDUE (K,) 

OF S.YAAT 

THESE ZEROS (A 

CO TO (I) 

INVERT Z2 
FORM Y2 

MULTIPLY Y2 

BY S 

NO 

96 

FORM YR AS 

YR =Y_ 
S+13 

(GO TO (I ) 

YES 

ARE 

MIMER. AN 
DENOM 

POLYNOM 
OF SAME 
DEGREE 

NO 

(GO TO (Y)) 

FIND K 

SELECT A POLE OF Y. 
THE ASS VALUE OF 
WHICH IS GREATER OF 
THE ASS. VALUE OF AT 
LEAST ONE ZERO OF 
Y12 AND ONE OF Y 

RESTRICTION NO OTHER 
POLE BETWEEN THIS 
POLE AND THE ZEROS. 

ARE 
ANY 

ZEROS Of 
ZtTNE SAME e TNO 

OFYM 
AR 

ALL 
ZEROS OF 
EXAUSTED 

YES 

END 



TAKE DISTANCE 
BETWEEN THE 
POLE OF Y1AND 

THE ZERO OF Y12 

DIVIDE DISTANCE 

BY A GIVEN VALUE 

CALL QUANTITY X 

ARE 
ANY 

ZEROS 
OF Y5 

THE SAME 
AS THOSE 

OF 

Yo2 

TO THE VALUE OF 

THE ZERO OF 

Yt2 ADD X1 CALL 

NEW VALUE XI 

DOES 

EITHER 
HUMER. OR 

DEN POLYNOM 

HAVE A VALU 
THER THAN 

ZERO AT 
SO 

FIND RESIDUE 
OF Y AT X, 

CALL SIDUE XR 

INVERT 3 
FORM Z3 

FORM Ko 

VALUE OF NUM. ATS0 
VALUE OF DIX ATS0 

FIND RESIDUE 

(Ki) OF Y2AT 

PRINT 

Km ,KO,Ki, 
Kli 

END 

YES 

REDEFINE XI 

AS XI +X 

PRINT 

XR 

EVALUATE To AT 
XR 

FORM Y, 'G, -XR 
INVERT Y, FORM 

L I /Y, 

OF 2, AT SXR 
FORM Z2 

ZZ=Z'- 
SAAR 

PRINT 

Ki XR 

(GO TO (I) 

97 

PRINT 

KI 4 

FORM Y3 AS 

KIS 

s .Y -L g+Ai 

IF NONE 

\ 
CO TO S) GO TO II 

YES 

ARE 
N UMER S 

DEN OM. 

POLYNOM. 
OF THE 

SAME 
POWER 

FIND KID 

IF ALL 

FIND RESIDUES 

(KI) OF ZB AT 

THESE ZEROS 

PRINT 
I Ki 

Xi AI 

FORM Z4 AS 
Ki 

Z4. Z3 - S+Ai 

(GO TO II) 

I F BOTH IF NONE 

IS 
XR -Ka) 

POSITIVE 

NO 
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$JOBLH /05052 -00 CEP ROOM447A 301 IX 08 11 2 D100111 LVS 

$EXECUTE IBJOB 

$IBJOB 

$IBFIC MAIN NODECK, NOLIST 
DIMENSIONL (4), C (11), D (11), E (11),F (11), ALPHA (10), BETA (10), THETA (10) 

1, DELTA (10), A (11),B (10), NN (5) 
71 FORMAT (11F7. 0) 

51 FORMAT (11,412) 
61 FORMAT (10F8.0) 
53 FORMAT (1HO 2F 12. 3 ) 

55 FORMAT (7HL1. /Y =, F12. 5) 

57 FORMAT (6HOK -8 =, F 12.4) 
58 FORMAT (6HOK -0 =, F 12. 4) 

X -0. 
READ (5, 51) ISENSE, (1(I), I =1ï 4) 
IF (ISENSE. EQ. 1) GO TO 100 

C 

C FIND COEFFICIENTS OF POLYNOMIALS 

C 

K=1 

DO 205 I=1, 4 

M=L (I) 
MM=M+ 1 

READ (5, 61) (B (J), J=1,M) 
DO 211 J-MM, 10 

B (J)-O. 
211 A(J)=0. 

CALL COEFIN (K, M, B, A) 

WRITE (6, 53) B(1),A(i) 
DO 205 J = 2, M 

N= M-(J-2) 
IF (I- 2) 206, 207, 208 

206 ALPHA (J) =B (J) 

C (J) A (N) 
C(1)= A(1) 
ALPHA (1)-R(1) 
GO TO 205 

207 BETA (J) 

D(J)=:A(N) 
D(1)=A(1) 
BETA(1)= B(1) 
GO TO 205 

208 IF (I. EQ. 4) GO TO 210 
THETA(J)=B(J) 
E(J)- A(N) 
THETA (1) B (1) 
E(1)-=A(1) 
GO TO 205 

210 DELTA (J) = B (J) 
F (J) -: A (N) 
F(1)- A(1) 
DELTA(1)==B(1) 

= 
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205 WRITE (6, 53) B(J), A(J) 

GO TO 101 

C 

C FIND ROOTS OF POLYNOMIALS 

C 

100 XE=.1 
DO 351 I = 1, 4 

M=L(I)+1 
READ(5, 71) (B(J), J = 1, M) 

CALL ROOTFN (M, XE, B, A) 

DO 351 J=1,M 
IF (I - 2) 317, 318, 319 

317 C(J) = B(J) 

ALPHA(J) = A(J) 

GO TO 351 

318 D(J) = B(J) 

BETA(J) = A(J) 

GO TO 351 
319 IF (I. EQ. 4) GO TO 320 

E(J) = B(J) 
THETA(J) = A(J) 

GO TO 351 

320 F(J) = B(J) = B(J) 
DELTA(J) = A(J) 

351 CONTINUE 
101 IF(L(2). LE. L(4)) GO TO 500 

C 

C PI HAS OTHER ROOTS THAN THOSE OF P2 

C 

K = L(2) - L(4) 

DO 410 I =1,K 
M = L(2) 
N = L(4) 
DO 410 J =1,M 
IODD =0 
DO 411 JJ =1,N 
IF (BETA(J). NE. DELTA(JJ)) GO TO 411 

IODD = 1 

411 CONTINUE 
IF (IODD. EQ. 1) GO TO 410 

NT = L(1) + 1 

CALL RESID (J, M, NT, D, C, BETA, RES, X) 

IF (RES. LT. 0) GO TO 1000 
JODD = 

CALL SUBTRA(J, NT, RES, JODD, D, C, ALPHA, BETA, X) 

L(1) = L(1) - 1 

L(2) = L(2) - 1 

410 CONTINUE 
C 

C EVALUATE Y1 1 AT ONE OF THE ROOTS OF THE NUM. OF Y12 
C 



500 LJ = 0 

510 UBAR = D(1) 

YBAR = C(1) 

LJ=LJ+1 
U = THETA(LJ) 
M = L(1) + 1 

DO 501 J=2,M 
501 YBAR = YBAR + C(J)*U**(J - 1) 

MM = L(2) + 1 

DO 502 J=2,MM 
502 UBAR = UBAR + D(J)*U**(J - 1) 

YBAR = YBAR/UBAR 
IF (YBAR. LT. 0) GO TO 600 
UBAR = 1. /YBAR 
WRITE (6, 55) UBAR 

DO 503 J = 1, MM 

C(J) = C(J) - YBAR*D(J) 

IF (CO). GE. O.)GO TO 503 

IODD = 1 

503 CONTINUE 
IF (IODD. EQ. 1) GO TO 600 

C 

C FACTOR NUMERATOR OF Y1 

C 

CALL ROOTFN (M, XE, C, ALPHA) 

LL =O 
MM = L(1) 

MN = L(3) 

DO 504 J = 1, MM 

DO 504 K = 1, MN 

IF (ALPHA(J) - THETA(K)) 504, 505, 504 
505 LL = LL + 1 

NN(LL) = J 

504 CONTINUE 
IF (LL. EQ. 0) GO TO 600 
IF (LL. EQ. MM) GO TO 700 

C 

C SOME ROOTS OF NUM, OF Y1 ARE THE SAME AS THOSE OF Y12 

C COMPUTE RESIDUES AT THESE ROOTS OF Z1 

C NN(LL) = INDICES OF THESE ROOTS 
C FORM Z2 BY SUBTRACTING RESIDUALS FROM ZI 

C 

DO 506 J = 1, LL 

M = NN(J) 

NT = L(2) + 1 

CALL RESID (M, MM, NT, C, D, ALPHA, RES, X) 

JODD = 1 

CALL SUBTRA (M, NT, RES, JODD, C, D, BETA, ALPHA, X) 

L(1) = L(1) - 1 

506 L(2) = L(2) - 1 

C 

100 
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C FACTOR NUMERATOR OF Z2 

C 

513 CALL ROOTFN (NT, XE, D, BETA) 

LL = 

DO 507 J = 1, MM 

DO 507 KK = 1, MM 

IF (BETA(J). NE. THETA(KK)) GO TO 507 

LL=LL+1 
NN(LL) = J 

507 CONTINUE 
IF (LL. EQ. 0) GO TO 800 

IF (LL, EQ. L(3)) GO TO 900 

C 

C SOME ROOTS OF 22 ARE THE SAME AS THOSE OF Y12 

C 

MM = MM + 1 

DO 508 J = 1, MM 

508 CU + 1) = C(J) 

C(1) = 0. 
CALL ROOTFN(MM, XE, C, ALPHA) 

DO 509 J = 1, LL 

M = NN(J) 

NT = L(1) + 1 

CALL RESID (M, MM, NT, D, C, BETA, RES, X) 

JODD = 0 

CALL SUBTRA (M, NT, RES, JODD, D, C, ALPHA, BETA, X) 

L(1) = L(1) - 1 

509 L(2) = L(2) - 1 

C 

C FACTOR NUMERATOR OF YBAR 3 

C 

CALL ROOTFN (NT, XE, C, ALPHA) 

LL 

J=1,MM 
DO 511 JI = 1, MM 

IF (ALPHAU). NE. THETAUJ)) GO TO 511 

LL=LL+ i 
NN(LL) = J 

511 CONTINUE 
IF (LL. EQ. 0) GO TO 800 

IF (LL. EQ. L(3)) GO TO 700 

C 

C SOME ROOTS OF YBAR 3 ARE THE SAME AS THOSE OF Y12 

DO 51.2 J = 1, LL 

M =NN(J) 
NT = L(2) + 1 

CALL RESID (M, MM, NT, C, D, ALPHA, X) 

JODD = 1 

512 CALL SUBTRA (M, NT, RES, JODD, C, D, BETA, ALPHA, X) 

GO TO 513 

800 IF (LJ. EQ. L(3)) GO TO 1000 

=O 
DO 511 
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GO TO 510 

C 

C ALL ROOTS OF Y1 ARE THE SAME AS Y12 

C 

700 IF (L(1). NE. L(2)) GO TO 701 

M = L(2) 

EIGHT = D(M) /C(M) 
WRITE (6, 57) EIGHT 

701 IF (D(1). EQ.0.) GO TO 702 

GO TO 704 
702 IF (C(1). EQ. 0.) GO TO 703 

704 OK = D(1) /C(1) 
WRITE (6, 58) OK 

703 M = L(1) 

DO 705 J = 1, M 

NT = L(2) + 1 

CALL RESID (J, M, NT, C, D, ALPHA, RES, X) 

YBAR = ALPHA(J) /RES 
RES = 1. /RES 

705 WRITE (6, 53) RES, YBAR 

GO TO 1000 
C 

C ALL ROOTS OF Z2 ARE THE SAME AS Y12 

C 

900 IF (L(1). NE. L(2)) GO TO 901 

M = L(1) 

EIGHT = C(M) /D(M) 
WRITE (6, 57) EIGHT 

901 IF (C(1). EQ.0.)GO TO 902 

GO TO 904 
902 IF (D(1). EQ.O.) GO TO 903 

904 OK = C(1) /D(1) 
WRITE (6, 58) OK 

903 M = L(2) 

DO 905 J =1,M 
CALL RESID (J, M, NT, D, C, BETA, RES, X) 

YBAR = BETA(J) /RES 
RES = 1. /RES 

905 WRITE (6, 53) RES, YEAR 

GO TO 1000 
640 DO 651 I = 1, M 

X = ABS(T(1)) 
X1 = -1. 
X2 = -1. 
DO 649 J = 1, MM 

DO 649 K = 1, MN 

IF (X. LE. ABS(B(J))) GO TO 649 
IF (X. LE. ABS(A(K))) GO TO 649 
X1 = ABS(B(J)) 

X2 = ABS(A(K)) 
649 CONTINUE 
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IF(X1. EQ. -1.) GO TO 651 

DO 650 II = 1, M 

IF (X - X1. GT. ABS(T(II)) - X1) GO TO 651 

IF (X - X2. GT. ABS(T(II)) - X2) GO TO 651 

650 CONTINUE 
GO TO 652 

651 CONTINUE 
GO TO 655 

652 U=0.1 
V=O. M=M+1 
DO 653 K=1,M 

653 M = M + E(K)*X1**(K - 1) 

DO 654 J=1.,M 
654 V = V + F(J)*X1**(J - 1) 

AX = M*(X1 + X)/(V*X) 
C 

C EVALUATE Y AT THE ZERO OF Y12 CLOSEST TO THE POLE, SET Y TO 0. AND 

C SOLVE FOR AX. 

C 

NT = L(1) + 1 

M=M- 1 

CALL RESID (I, M, NT, D, C, BETA, RES, X) 

R = AX/RES 
WRITE (3, 53) X, RES, AX, R 

IF (R. LT.0. ) GO TO 651 

IF (R. GE.1.) GO TO 651 

JODD=O 
CALL SUBTRA (I, M, RES, JODD, D, C, ALPHA, X) 

R = BETA(I)/AX 
WRITE (3, 53) AX, R 

GO TO 510 

655 CONTINUE 
M = M + 1 

FIGHT = C(M)/D(M) 
WRITE (3, 57) EIGHT 

M=M - 1 

DO 656 I = 1, M 

X = ABS(BETA(I)) 

X1 = -1. 
X2 = -1. 
DO 657 J = 1, MM 

DO 657 K = 1, MN 

IF (X. LE. ABS(DELTA(J))) GO TO 657 

IF (X. LE. ABS(THETA(K))) GO TO 657 

X1 = ABS(DELTA(J)) 

X2 = ABS(THETA(K)) 
657 CONTINUE 

IF(X1. EQ. -1. ) GO TO 656 

DO 658 II = 1, M 

IF (X - X1. GT. ABS(BETA(II)) - X1) GO TO 656 

IF (X - X2. GT. ABS(BETA(II)) - X2) GO TO 656 
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658 CONTINUE 
GO TO 659 

656 CONTINUE 
659 XX =X -X1 

X1 = X1 + X 

660 CALL RESID (I, M, NT, D, C, BETA, RES, X) 

IF(RES- EIGHT. LT. O.)GO TO 661 

X1 = X1 + X 

GO TO 660 
661 EIGHT = 1. / (RES- EIGHT) 

WRITE (3, 53) RES, EIGHT 

M = 0. 

V =0. M =M +1 
DO 662 J =-1,M 
V = V + C(J) *RES * *(J - 1) 

662 CO) = CO) - RES 

M = L(2) + 1 

DO 663 J = 1, M 

M = M + D(J) *RES * *(J - 1) 

663 DU) = D(J) - RES 

V = V/M 
WRITE (3, 53) V 

C 

C INVERT Y1 FORM Z1 AND FIND RESIDUAL AT XR. 
C 

M = L(1) 

CALL (I, M, NT, C, D, ALPHA, RES, X) 

X1 = 1. /RES 
X2 = RES /ALPHA(11) 
GO TO 510 

1000 STOP 

END 

$IBFTC ROOTF NODECK, NOLIST 

SUBROUTINE ROOTFN(M, XE, B, A) 

DIMENSION A(11), B(10) 

72 FORMAT (44HLPOLYNOMIAL IS NOT REAL OR HAS COMPLEX ZEROS, 15) 

53 FORMAT (1HO, 2F12. 3) 

XINCRE = XE 

DO 306 J = 1, 10 

306 A(J) = 0. 
N =0 
X =0. 
IF (B(1). LE.. 000001) GO TO 307 

302 X = X + XINCRE 
303 V = 0. 

AX = -X 
DO 301 J =1,M 

301 V = V + B(J) *AX * *(J - 1) 

TODD = 0 

DO 304 J = 1, 9, 2 

IF (N. NE. J) GO TO 304 
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IODD = 1 

304 CONTINUE 
IF(IODD. EQ. 0) GO TO 323 

V = V*(-1. ) 

323 IF (V. LT. 0. ) GO TO 321 

IF (XINCRE. LE. . 0000001) GO TO 305 

IF ( V. GT.. 0001) GO TO 302 

GO TO 305 

307 B(1) = 0. 
GO TO 305 

321 X = X - XINCRE 

XINCR= XINCRE/2. 
XINCRE = XINCR 

X = X + XINCR 
GO TO 303 

305 N=N+1 
A(N) = -X 
IF (N. EQ. (M - 1)) GO TO 316 

IF (B(1). EQ.O. ) GO TO 312 

IF (X. GT. B(1)) GO TO 315 

311 X=X+XE 
XINCR = XE 

GO TO 302 

312 IF (X. LE. B(2)) GO TO 311 

315 WRITE (6, 72) M 

STOP 
316 DO 317 J=1,M 
317 WRITE (6, 53) A(J), B(J) 

RETURN 
END 

$IBFTC COEFI NODECK, NOLIST 

SUBROUTINE COEFIN (K, M, B, A) 

DIMENSION A(11), B(10) 

T1=0. 
S1=0. 
DO 178 J=1,10 

178 B(J) = ABS(B(J)) 

DO 177 J = 1, 11. 

177 A(J) = ABS(A(J)) 

DO222I=1,5 
S1=S1+BO) 

222 T1 = T1 + B(I + 5) 

T2 = 0. 
S2=0. 
DO 220 I = 1, 4 

JJ = I + 1 

DO 220J = JJ, 5 

S2 = S2 + B(I)*B(J) 

220 T2 = T2 + B(I + 5)*B(J + 5) 

T3 = 0. 
S3 = 0. 
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IODD = 1 

304 CONTINUE 
IF(IODD. EQ. 0) GO TO 323 

V = V*(-1. ) 

323 IF (V. LT. O. ) GO TO 321 

IF (XINCRE. LE. . 0000001) GO TO 305 

IF (V. GT.. 0001) GO TO 302 

GO TO 305 

307 B(1) = 0. 
GO TO 305 

321 X = X - XINCRE 

XINCR= XINCRE/2. 
XINCRE = XINCR 

X = X + XINCR 
GO TO 303 

305 N=N+1 
A(N) = -X 
IF (N. EQ. (M - 1)) GO TO 316 

IF (B(1). EQ.0. ) GO TO 312 

IF (X. GT. B(1)) GO TO 315 

311 X=X+XE 
XINCR = XE 

GO TO 302 

312 IF (X. LE. B(2)) GO TO 311 

315 WRITE (6, 72) M 

STOP 

316 DO 317 J=1,M 
317 WRITE (6, 53) A(J), B(J) 

RETURN 
END 

$IBFTC COEFI NODECK, NOLIST 

SUBROUTINE COEFIN (K, M, B, A) 

DIMENSION A(11), B(10) 

Ti = 0. 
S1 = 0. 

DO 178 J = 1, 10 

178 B(J) = ABS(B(J)) 

DO 177 J=1,1]. 
177 A(J) = ABS(A(J)) 

DO 222 I=1,5 
S1=S1+B(I) 

222 T1 = T1 + B(I + 5) 

T2 = 0. 
S2 = 0. 

DO 220 I = 1, 4 

JJ = I + 1 

DO 220J = JJ, 5 

S2 = S2 + B(I)*B(J) 

220 T2 = T2 + B(I + 5)*BU + 5) 

T3 = 0. 
S3 = 0. 
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DO221 I=1,3 
JJ = I + 1 

DO 221 J = JJ, 4 
KK = J + 1 

D0 221 K1 = KK, 5 

S3 = S3 + B(I)*B(J)*B(K1) 
221 T3 = T3 + B(I + 5)*B(J + 5)*B(K1 + 5) 

S4 = O. 

T4 = O. 

D0 223 I = 1, 2 

JJ = I + 1 

DO 223 J = JJ, 3 

KK = J + 1 

D0 223 J1 = KK, J 

II=J1+1 
D0 223 K1 = II, 5 

S4 = S4 + B(I)*B(J)*B(J1)*B(K1) 
223 T4 = T4 + B(I + 5)*B(J +5)*B(J1 + 5)*B(K1 + 5) 

S5 = B(1)*B(2)*B(3)*B(4)*B(5) 
T5 = B(6)*B(7)*B(8)*B(9)*B(10) 
A(1) = B(1) 

IF ( M. EQ, 1) GO TO 206 

DO 204 J=2,M 
204 A(1) = A(1)*B(J) 
206 A(2) = Si + Ti 

A(3)=S2+T1*S1+T2 
A(4)=S3+TI*S2+T2*SI+T3 
A(5) = S4 + Ti*S3 + T2*S2 + T3*S1 + T4 
A(6) = S5 + Ti*S4 + T2*S3 + T3*S2 + T4*S1 + T5 
A(7) = TI*S5 + T2*S4 + T3*S3 + T4*S2 + T5*Si 
A(8) = T2*S5 + T3*S4 + T4*S3 + T5*S2 
A(9) = T3*S5 + T4*S4 + T5*S3 
A(10) = T4*S5 + T5*S5 
MM = M + 1 

DO 205 I = 1, M 

J = MM - 1 

P = A(J) 

A(J) = A(I) 
205 A(I) = P 

A(MM) = K 

RETURN 
END 

$IBFTC RESI NODECK, NOLIST 

SUBROUTINE RESID (MM, M, NT, B, A, T, RES, X) 

C 

C MM = POWER OF ROOT OF DEN, AT WHICH RESIDUAL IS BEING EVALUATED 

C M = POWER OF POLYNOMIALS 

C B = COEFFICIENTS OF DENOM 

C A = COEFFICIENTS OF NUM 

C T = ROOTS OF' DENOM 

C RES = RESIDUAL 
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C NT = NO. OF COEFFICIENTS OF NUM. 

C 

DIMENSION A(11), B(11), T(10) 
81 FORMAT (1HO, 215, 11F10. 3, /, 1H , 10X, 11F10. 3) 

80 FORMAT (1HO, 4F15. 5) 

X = T(MM) 
DO514 J=1,M 
IF (J. LE. MM) GO TO 514 

T(J - 1) = T(J) 
514 CONTINUE 

T(M) = O. 

K=1 
KK = M + 1 

CONST = B(KK) 

DO 1006 J = 1, KK 

1006 B(J) = B(J)/B(KK) 

WRITE (6, 81) K, M, T,B 

CALL COEFIN (K, M, T, B) 

WRITE (6, 81) K, M, T, B 

YBAR = A(1) 
DO 1001 J=2,NT 

1001 YBAR = YBAR + A(J)*X**(J 1) 

IF (B(1). NE,O.)GO TO 1003 
DO 1004 J = 2, KK 

1004 B(J - 1) = B(J) 

1003 DO 1005 J = 1, M 

1005 B(J) = B(J)*CONST 
UBAR = B(1) 

B(KK) =0. 
WRITE (6, 81) K, M, T, B 

IF (X. EQ. 0. ) GO TO 1002 

DO 1000 J = 2, M 

YBAR = YBAR + A(J)xX(J - 1) 

1000 UBAR = UBAR + B(J) +,X**(J - 1) 

1002 RES = YBAR/UBAR 
WRITE (6, 80) RES, YBAR, UBAR, X 

RETURN 
END 

$IBFTC SUBTR NODECK, NOLIST 
SUBROUTINE SUBTRA (MM, M, RES, JODD, T, B, A, AA, X) 

C 

C MM = INDICE OF ROOT AT WHICH RESIDUAL IS BEING COMPUTED 
C M = POWER OF POLYNOMIAL 

C RES = RESIDUAL 

C T = COEFF. OF DEN, 

C B = COEFFICIENTS OF NUM. 
C A = ROOTS OF NUM. THAT ARE RETURNED 
C 

DIMENSION T(11), B(11), A(10), AA(10) 

81 FORMAT (1HO, 215, 11F10. 3, /, 1H , 10X, 11F10. 3) 

53 FORMAT (1HO, 2F12. 5) 

- 
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YBAR = RES/X 
WRITE (6, 53) RES, YBAR 

XE=.1 
M=M+1 
DO 422 KK = 1, M 

IF (JODD. EQ. 0) GO TO 423 

JJ = KK 

GO TO 422 

423 JJ = KK + 1 

422 B(JJ) = B(JJ) - T(KK)*RES 
M=M- 1 

K=1 
WRITE (6, 81) K, M, B, A 

CALL ROOTFN (M, XE, B, A) 

WRITE (6, 81) K, M, B, A 

M=M- 1 

AA(M) = X 

DO 425 I = 1, M 

DO 425 J=1,M 
IF (AA(I). NE. A(J)) GO TO 425 

II = I 

JI = J 

425 CONTINUE 
DO 427 J=1,M 
IF (J. LE. II) GO TO 426 

AA(J - 1) _ AA(J) 

426 IF (J. LE. JI) GO TO 427 
A(J - 1) = A(J) 

427 CONTINUE 
AA(M) = O. 

A(M) = O. 

X = B(M + 1) 

DO 429 J=1,M 
429 B(J) = B(J + 1) 

B(M + 1) = 0. 

M=M- 1 

WRITE (6, 81) K, M, A, B 

CALL COEFIN (K, M, A, B) 

WRITE (6, 81) K, M, A, B 

M = M + 1 

DO 428 I=1,M 
428 B(I) = B(I) +X 

WRITE (6, 81) K, M, A, B 

WRITE (6, 81) K, M, AA, T 

RETURN 
END 

NO. OF CARDS IN FILE = 557 
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APPENDIX 2 

Appendix 2 gives a tabulation of the describing matrices and 

characteristic functions of the different interconnections of an RC 

two -port network and RC -NIC two -port network. Note that from each 

interconnection only the characteristic function that could be used 

for RC -NIC synthesis are given. 

Connection in Tandem 

Il 
"rr 

I2 

1 2 

Na NIC Nb 

1' 2' 

Figure 1. Connection in cascade 

1 

Describing Matrix 

all 

Al 

Cl 

B1 

D1 
0 

o 

-1 

A2 

C2 

B2 

D2 
2 

a 
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in terms of z's 

A 

-all 

zl2az21a 
zlla +zllb-z22a 

zl lb z22a 

z12az12b 

zllb z22a 

in terms of y's 

A 

-all 

Y I la + 
Y1lb-Y22a 
Y2laY12a 

Y12aY12b 

Yllb Y22a 

Characteristic Functions 

z l 2a z l 2b 
z12 zllb-722a 

1 taz 22a 

Z z llb 22a 

z 1 2bZ 21 b 
z22ó zllb-z22a 

Y12bY21b 

Yl lb-y 22a 

Y12bY21b 
Y22ó 

y1 lb -Y22a 

Y 12aY 1 2b 

Y12 Y1 lb_ti 22a 

Y12Y21 Y12Y21a 
in Y11 - y22-yL J Yl la - Y22a Y11 

Z Z21 
1 2, G12aZ21a 

Zi n Z11 z2L-Z2 zlla Z22a°Zllb 

- 

L 



For ENIC 

A 

all 

Al 

C1 
1 

B1 -1 

0 

0 

1 

A2 

C2 

B2 

D2 

in terms of z's 

A - 
- all 

z12az21a 
z lla - Z22a-Zllb 

z21az12b 

z22a-zllb 

in terms of y's 

A 

áll 

yl2ay21b 
yl Ia 

- 
y22a-Y1 lb 

Y21aY21b 

Y22a Y11b 

Characteristic Functions 

z22az2lb 
Z12 z22a-z11b 

Z21aZ2lb 

z22a-z11b 

z22bz21b 
z22ó z22a -zl lb 

y21ay21b 

y22a yllb 

yl 2by2lb 
y22b 

-r 
y22a-yl lb 

y21ay21b 
Y12 

Y11b 
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D1 



Yin Ylla Y22a'Yllb 
Y12aY2la 

Parallel -Parallel Connections 

z12az21a 
Zin - Z1 la z -z 

22a llb 

Na 

Nb NIC 

Figure 2. Parallel -parallel connection 

Describing Matrix 

For INIC 

Y 

all 

Ylla Yl2a 

Y21a Y22a 

Yllc Y12c 

Y21c Y22c 
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in terms of ya's and yb's 

Y 

L all 

Ylla 

Y21a 

- 

+ 

Yllb 

Y21b 

Characteristic Functions 

G12 Y22a Y22b 

Yin Y 

For ENIC 

Y l 2a Y 12b 

r 
Y 

Ylla Y12a 

Y21a Y22a 

Y1 2a Y1 2b 

Y22a Y22b 

(Y12a-Y12b)(Y21a Y21b) 

Y22a Y22b 

+ 

in terms of ya's and yb's 

Y 

Y11c Y12c 

Y21c Y22c 

ylla + yllb Y Y12a + Y1 2b 

Y21a 
T 

Y 21 Y22a + Y22b Y22b 

113 

+ 1la 

all 

- -all 

- 



Characteristic Functions 

Y12a + y 12 
G - 12 

Y22a y22b 

Yin yl la + yl lb y22a y22b 

(y12a+y12b)(y21a-y21b) 

Series -Series Connection 

I }/ 
1 1 CCCSSS/ 

l' 
NIC 

Na 

Figure 3. Series - series connection 

Describing Matrix 

For INIC 

z 

z11a z12a 

z21a z 22 

zllc z12c 

z21c z22c 
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r; 

- 

ill 
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in terms of za's and zb's 

z 

all 

zlla zllb z12a + z12b 

z21a z21b z22a + z22b 

Characteristic Functions 

_ z12a + z12b 
G12 zlla - zllb 

For ENIC 

z 

all 

zlla .z12a 

z21a z22a 

+ 

in terms of za's and zb's 

z1 lc z12c 

z2lc z22c 

á.11 

zlla 

z21a 

e zllb 

+ z21b 

z12a 

z22a 

z12b 

+ z22b 

Characteristic Functions 

- G12 z22a - z22b 

z 12a - z 12b 

- 

_ 

z 

= 

- 



Changing the order of Nb and NIC 

1 

1' N 
b 

Na 

-E- 12 

NIC 

Figure 4. Series - series connection 

In terms of za's and zb's for INIC 

z 

zlla + zllb z12a z12ó 

z21a + z21b z22a z22ó 

Characteristic Functions 

Zin - zlla + zllb 
zl. á z12b,(z21a+z21b) 

z22a z22b 
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E2 

2' 

I1 

all 
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In terms of z a 's and z 
n 

's for ENIC 

r - 

Z 

zlla + zllb z12a + z12b 

ál1 z21a - z21b 

Characteristic Functions 

Zin - zlla + z lb 

Series -Parallel Connection 

1 o 

z22a z22b 

(z 
1 2a+zl 2b)(z21a-z21b) 

z -z 22a 22b 

Na 

NIC 

Figure 5. Series -parallel connection 

_ 

= 

_ - 
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Describing Matrix 

For INIC 

H1 Hlla H12a 1 

H = 

all H21a H22a 

H1 la + 
HI lb 

H11c -H12c 

-H21c 
H22c 

HI 
2a + H 1 2b 

- H21a H21b H22a H22b 

In terms of z's 

f(z) 
z12az22b `12bz22a 

z22b-z22a 

z22az22b-z21bz22a z22az22b 

z22b-z22a z22b-z22a 

Characteristic Functions 

Z21 
z21az22b 

e 
z21bz22a z22az22b 

21 z22b - z22a z22b-z22a 

+ 

- 

r 

[H] 
all 

z 



Changing the order of Nb and NIC 

1 

Figure 6. Series -parallel connection 

Describing Matrix 

For INIC 

H 

- all 

Hlla .H12a 

H21a H22a 

H1 la H1 lb 

H21a + H21b 

Hllc -H12c 

H21c H22c 

H12a H 1 2b 

H22a + H22b 
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1' 

= 

- 



in terms of y's 

all 

yllayllb 
yllb ylla 

yl2ayllb+yl2by1 la 
yllb-ylla 

Characteristic Functions 

yl2ayllb yl2bylla 
Y12 

yllb - ylla 

y 12ayl lb_-yl2byl la 
yllb-ylla 

f y) 
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[HI 

- - 


