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Chapter I

Introduction

The Sheppard's correction for the calculation of mo-

ments of order n of the frequency function f(x), which

is assumed to be single-valued and continuous, is based

on the fact that the domain of the frequency function is

broken up into equal intervals. Let ...., x_2, x_1, x0,

xl, x2, .... represent an infinite set of points on the

x-axis, such that the difference xi4.1- xi = w is a con-

stant. Furthermore, let f(x) be so normalized that

MD = ff(x) dx = 1.
-00

The nth order moment of the frequency function f(x)

is defined as

(1.2) Mn = f xnf (x) dx,

while the calculated or raw moments are defined as

(1.3)

where

(1.4)

Mn = L x " Ai,

i=-m

x . +
w w

i 2 7
A. = ," f ( x ) dx = f f ( x . + y) dy
i i

w w
xi- 2--- -7
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is the frequency corresponding to the interval

(xi- - c-L3

' i 2
x+ L3). Another assumption about the frequency

f(x) is that it has a high order of contact with the

x-axis as x becomes large, such that

(1.5) lim xnf(2m)(x)4-°,
x.4-1-00

for all positive integral n and m.

The form of the Euler-MacLaurin identity of interest

at this point is that presented in the Cramer (1946) trea-

tise,

n
2

1 1
g(a+nw) = f g(a+xw) dx + -g (a+n

1 2
w) + (a+n

2
w)

2
-g

n=n
1

n
1

n
2

(1.6) -w Jr P1 (x) g'(a+xw) dx.
n
1

If g(x) has continuous derivatives of higher orders the

last term can be transformed by repeated partial integra-

tion,

n
2 2

1 1
g(a+nw) = j g(a+xw) dx + v(a+niw) + v(a+n2w)

n=n
1

n
1

N B
2n 2n-1 (2n-1) (2n-1)

E TTETT w [g (a+n w) g
1

(a+n
2
w)]

n=1

(1.7)



(1.7) con't

3

+ (-1)
N+1

w
2N+1

p
2

P2N+1 (x)g
(2N+1)

(a+xw)dx,
n
1

where the set of even and odd periodic functions is de-

fined by

7 cos 2nTrx sin 2nTrx
(1.8) p

2k 4- 2n -1 2k ' P2k+1(x) 1 2n 2k+1.
n=12 n=1 2 (n7)n7

Each of these functions has unit period; in particular,

P
1
(x) is the sawtooth function. The Bernoulli polynomials

of order n are given by the identity

B
(n)(x)

t
n
e
xt

k k
k!

t ;(1.9) Lt un
k=0

For x = 0 the general set of Bernoulli numbers is de-

fined by

(1.10)
to v-

00 B
k= L tk

(et- 1)n k=0 k!

(n)

(n)_That is, B
o

- 1,

B(n). n
2
(n-1)

(n) n
B
1

- --
2 ' B22

B
(n) n(15n

3
30n

2

n(3n-1)
1212 .

+ 5n + 2
3 8 ' 4 240

(n) n(63n
5
- 315n

4
+ 315n 3 + 91n

2
-

B
42n 16)

6 4032

The case n = 1, written B
2k

in the identity (1.7), is

1 1 1
of most significance: Bo= 1, B1= B2= B4= --30 -
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1 1 5 691 7
B = -- B = B = -- B = ----- B =
6 42 ' 8 30 ' 10 66 ' 12 2730 ' 14 6 '

3617
B =
16 510

---- , and all odd order numbers, except
'

for B1, are zero.

The simple Euler-MacLaurin identity of (1.6) may be

implemented in the form

L(1.11)wEx.n f (2m)
(xi) = ji xnf (2m) (x) dx + R

11 -m

The present idea is to discuss the deduction of the

Sheppard correction of the raw moments associated with a

frequency function of high order contact. The development

is based on the condition

(1.12) n+ljX

f(x y) dy4-0 as t

7

which is not a severe restriction on f(x). Using (1.6) in

the form
w w

2 . f
(1.13)E3J1 1J-f0c.+Y) dy = 1 ,r xndx Jr f(x+y) dy + R

1w
-00 w

2 2

it is easy to arrive at a formula giving the raw moments in

terms of the true moments

(1.14) 11
n

=

[L1]
2

1
2i

c- n+11,(1.)1

n+1 n-21 '
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where [x] is taken to mean "greatest integer < x".

It is the raw moments which are measurable in the

field so it is clearly preferable to invert the infinite

set of linear algebraic equations in (1.14). Cramer (1946)

writes down the inverse set (Sheppard's Correction Formula)

(1.15)
n

M = (I)(2-2 )() B.M
n-

.
n 1 7 1 1

i=0

and refers to a paper by Wold (1934) for the procedure in-

volved. A more complete study of the problem was made by

Kendall (1938) and Langdon and Ore (1929). Part of this

thesis is concerned with the detailed derivation of the

several moment relationships. Wold (1934) also derived the

correction formula described in the Langdon and Ore (1929)

paper for the semi-invariants {A }
'

which take a promi-

nent place in error analysis. There should be an additive

error term in (1.15) but analysis of that is postponed.

The study of moment relationships may be made more general

by the introduction of an arbitrary function (P(x), so

Co

(1.16) M[P(x)] = Jr (1)(x) f(x) dx.

This thesis is also concerned with the study of the

remainder term R
1

appearing in (1.16) and derivation of the

moment relationship of a given normal distribution function

using a Taylor series expansion.
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Chapter II

Moment Relationships

In terms of an arbitrary (P(x) define a new function

g(x) by a functional equation

(2.1)

w
7

w J
g (x+y) dy = (t) ((x)

7
If 4'(x) exists the integral relationship may be changed

to a difference relationship,

(2.2) g(x) = g(x+w) (1)'(x1).

So the general moment problem reduces to the evaluation of

the integral

(2.3)

M(q5) = (x) f (x) dy

w
7

g 0c4 f (x.-1-y) dy + R1
.

1=-00 7

which follows from the Euler-MacLaurin formula. A second

application yields

w w

7 co 7
1

y(2
. 4) Z g (xi) f f (x .

3.

+ ) dy + R1 = w f g (x) dx i f (x+y)dY,

i=-00 w w7 7
or



7

w
7

(2.5) M(4)) = Jr f(x) dx
1
71 g(x+y) dy.

w
--2-

This relation holds up under the assumption that the condi-

tion

(2.6) lim 0%(y) dy][1- f(x+y) dy] = 0
x+±-00 0

-7

is satisfied. The remainder R
1

can be written as

7 C 7

R1 --c-t-

1

Jg(x"ixff(36-17"17-Eg(xi) J f(x.+17) dY
-00

(2.7)

where

(2.8)

2 2

00

- P
1
(x) Ft (x) dx,

_00

sin 21
x

cc. 7

P1(x) = (?i]
x + 1 =
w 2 . 71

1=1

the sawtooth function. Also,

(2.9) F(x) = g(x) f f (x+y) dy

To demonstrate that (2.5) is valid observe that the right

member of (2.4) may be integrated by parts, yielding
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w w

1
. 7 7

_Jr g(x) dxf f(x+y) dy = (fg(y) dyj f(x+y) dy]l
w
-00 w 0 w -m

CO

(2.10)

2 2

x
f g(y) dy (f(x+(f) - f(x - 2)] dx

-00 0

00

w
00 f

wx+
2

= i f ( x ) dx f g(y) dy = Jr f(x) dx L g(x+y) dy ,

-00 w .
x-7 2

re°

= j Ox) f(x) dx ,

-00

where the limit condition of (2.6) has been imposed.

Three special cases of cl)(x) are of interest, the

polynomial x
n

, the factorial polynomial x
(n)

=

[x-(n-l)w], and the exponential e
tx

. Consider

(2.11) (1)(x) = xn,

and (2.2) takes the form

(2.12)

(P'(x+21) = n(x+2.-)n-1;
2

n-1A
g(x) = n wn-1 rx 1

Nu) -f)

Since AB
n
(x) = nx

n-1
(see Milne-Thompson (1933), p. 136)

it is clear that

(2.13) g(x) = wn B +
n w 2

and the polynomial moment relationship is
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w
x. 7

(2-14)M(c11)=(011\--
Z-

Eln
2 1

f(x.+y) dy + R
1

.

w

2

The relationship (see Norlund (1924))

(2.15)
n

Bn (x+y) = (1) B. x
n-i

. 1
1=0

is applicable here; the polynomial moments take the form

w
n-s

00 n x. 7
1

(2.16) M
n = w

n F_\
Z- (s) (W) Bsyff(x.1 +y) dy + R

l'
i = -°° s=0 w

The multiplicative theorem for Bernoulli polynomials of or-

der unity is of interest here. Write the defining equation

(1.9), for n = 1, in the form

to
(x+)t B

k m(x+)
k(2.17)

z
t

e
t

k=0- 1
k!

then sum on the index s:
mxt

00 k m-1 st t m
text m-1

Z TT- E Boxi.) = 1 L em _
m
m

k=0 s=0 e -1 s=0 e
t/m-1

(2.18)
co B (mx)

= m E k ft\
k

k! 'TIT'
k=0

That is,



(2.19)

and, for x = 0,

(2.20)

or, finally,

(2.21)

m-1
Bk (mx) = mk-1 B

k m(x+s) ,

s=0

m-1 Bk
B
k

+ B, (a)
mk-1 '

m-1
Bk(g..) -(1

m
Bk.

s=1

10

For the case at hand take m = 2 so (2.16) has the form

(1.15) but with an additive error term. The first six re-

lationships, without remainder term, for the polynomial mo-

ments in terms of the raw moments are listed by Cramer

(1946).

Consider a similar procedure for derivation of the

factorial moment relationships. Write

(2.22) (x) = x
(n)

= w
n x x( - 1)w w

- n+1).

Milne-Thompson (1933), p. 130, establishes that

(n+1)
(2.23) B

n
(x) = (x -1) (x 2)

SO

(x-n) = (x-1)
(n)



(2.24) (i)(x + Li) = n (n+l)

2 w B
n (7 4- 2).

Another well-known property of the generalized Bernoulli

polynomials is that

(2.25)

SO

(2.26)

ddx B
k
(n)

(x) = k B kn-(1
)

(x)
'

co.1 wn-lB(n+1)(E 2)
2' n-1 'w 2'

and (2.2) has the form

(2.27)
A wn-1 x 3

B (, + --)
w n-1 w 2

The difference relation, corresponding to (2.25), is

(2.28)

which leads to

(2.29)

or, finally,

(n) (n-1)
AB

k
(x) = k Bk-1 (x),

A wn A B(n+2),x 31

w 'J w n (1) 2/

11
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(2.30)
wn (n+2 ) 3\

'w 2'

The factorial moments are now defined by

F' 7
M(n) = -co (x)

f(x) dx = E g(xi)jr f(xi+y) dy + R1

(2.31)

2

w
x.

+ --
2

7
wn 7 B(n+2) 1 3

a.
(
w

)ff(x.+y) dy + R
1

.

n

7

Another identity in Milne-Thompson (1933), p. 133, is

(2.32)

so

(n) L (n-s)
Bk (x+h) = L (s) Bk_s (h) x(s)

s=0

.

(n+2) 3
n

B
n

(w
x1

+ = (

n
) B

(n+2-s) (xi) (s)

s 0
s n-s

=

x.

) B(

BS S +2)
=

y- n(s+2) 3
2

(

s w
1

)

s=0

Equation (2.31) may now be written in the form

(n-s)
wn ,

x. 7v n(s+2) 1,
M S s

2/
, t

jr f(x.1 +y)dy+R
1

i=-c° s=0 7
(2.34)



(2.34) con't

n
= ws (n) B

( Rs+2)
(1)

s

BS S +2)

(n-s)
+ R

I
.

s=0

13

This is a Wold (1934) result not usually appearing in text-

books. Further reduction is possible because of the iden-

tity (2.23). The familiar binomial theorem goes as

= B

x(2.35) (l+t)
x-1= 1 +

(x-1) (x-2)...(x-n)tn_ n )tn
n! n!

n=1 n=0

(n+1)

Differentiation with respect to x yields

(x-1) (x-n) + x-n ] to
n! x-1 x-2

n=1

(2.36) B
(n+1)
n-1=

= E (x) to
n=1

so, at least formally,

(2)
(-2
3

B ) = 1
0

(,\
=B

1
3) 3

2
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and, in general,

B
(n+1),3,

3

n-1 '7) (-2-- 1) 2) (2- n) [2-24- 7.-2 2
2

(2.37)

or, finally,

B
(n+2)q) n+1 1.1.3.... (2n -1) (1
n

2
n
(n+1)

3 5

(2.38)

n > 3 ,

(...1)n+1 (2n)! (1 1 1
2.

22n(1.1.1)13 5 2n-1"

The first six moments in terms of the raw factorial moments

are listed from (2.34) and (2.38) :

= 1M(0) = M0 = R(0)

M(1) M(1) '

2

M
(2)

=
(2)

- YL
12

2

M(3) = M(3) -

2

M(4)
(4)

=
F4

(4)
-

2

'

g
(1)

+ 4

M(2)
3 g 71 4

(2) w
M(1)

TO- w
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M(5)
(5)

M
(6)

=

=

M(5)(5)

M(6)

5w
2

M(3)
5w3

+ M - m
(1)

M
(2)

+

+

31w
5

6

5w m

2 (2)

3+ 5w M
(3)

16

213w4

'

93w 5

M
4 (4) 16 4 (1)

9129
6

448 '

The third choice of function is

(2.39)

and from (2.2)

(2.40)

To take

(2.41)

etx

t(x+L)-)
A

g(x) = (1)1(x+2 ) = t e 2

t(x+92)
wt e

e
wt - 1

is consistent with (2.40). As in the earlier discussions

the idea is to develop a general formula which will give

the true moments in terms of the raw moments evaluated by

measurement in some kind of field operation. Implementa-

tion of (1.16) leads to
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(2.42)

00

VINO = /i g(x.).,f f(x.+y) dy + R
1.1=00

2

wt

wt e
2

co txif2
=

e
wt

1 .

e f(x.+y) dy + Ri
1=-03

2

wt
2

wt

e
wt

1

e txMfe ] + R1.

The semi-invariants {An} are defined by

m co

Mie
tx

] = exp( E _a
t
n

) = e
tx

J
(2.43) f(x) dx

n!
n=1 -00

and the raw semi-invariants by

w

°O T 00 txi 2

(2.44)Ff[etx]=exp(E-atil)=Zef(x.1-y) dy.
! 1

n=1 n i=-.00 w

Let the remainder term be considered negligible so a

very simple relationship is



(2.45)

wt
2

M[e
tx

]

wt

e
wt

e tx
M[e ].

1

Logarithmic differentiation leads to

(2.46)

tx d tx
Mle ] ai M[e

1 w

m[etx] g[etx] t 2

w ewt

e
wt

-1

1 w wt
t 2 t(e

wt
1)

To implement the indicated differentiation is easy, so

(2.46) reduces to

(2.47)
,x to -1 1 w 1 wt

1
n n)(n-1)! t 2 t

e
wt- 1n=

17

The quotient on the right is at once the generating func-

tion for the Bernoulli numbers, the case n = 1 in (1.10).

Recalling that Bo = 1, B1 =
1

, (2.47) becomes

n-1 = B

(2.48)
z

1
n) (n-1) !

w
n

2
n!

(wt)n
-1.

n= n n=



The implication is

(2.49)

and

(2.50)

B w
n

n
n
= 7n -

n

1

n > 2.

18

Since the odd order Bernoulli numbers are all zero, excep-

tion noted above, the final statement goes as

(2.51)

x
2n+1 72n+1 '

n > 0,

B
2n

w
2n

= 72n
n 2n

n > 1.

This result is due to Langdon and Ore (1929).



19

Chapter III

Error terms

In a recent paper Gould and Squire (1967) have exploit-

ed the fact that there is a second Euler-Maclaurin summation

formula, and that a general form exists such that both the

first and second formulas are special cases. Their point is

that the remainder term for the one is quite likely to be of

opposite sign to that of the other, thus forming a bracket

for the true result of some summation or integration. They

seemed to be unaware that Hildebrand (1956) had rather exten-

sively discussed the two forms in a readilty accessible text-

book, although they did mention a few such names as Jacobi,

Darboux, Lindelof, etc. In a fashion quite similar to the

estimation of error for a Taylor series representation of a

function Hildebrand writes the error estimate

2N+2
N+2 w

(3.1) E
N

= r
B 22N+2)!

f
(2N+2)

(E) , a < E < a+rw,
(

to go with the first form of the summation formula,

x
r

r
f + f

(3.2) f
k

= 1 Jr f(x)dx + 0

2
r

k=0 x0

7
n
2n 2n-lrc(2n-1) (2n-1)

] + E ,

n=1
TEITT w ''r

- f
0
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where f
k

= f(a+kw), x
0

= a, x
r

= a + rw. The second form

goes as

(3.3)

where

r-1
r

f 1
f(x)dx

k=0 k+
2 0

N
1-2n

(1-

[f
(2n -1)-

0

2n w
2n-I (2n-1) - f

(2n-1)
] + E

N
,

n=1

-1-2n
(1-2 )B

2N+2
w
2N+2

f
(2N+2),e,

,
< <a +rw(3.4) E

N
= r tc)(2N+2)!

Note the opposite algebraic signs. In both situations the

uncertainty lies in the location of Knopp(1947) intro-

duces a similar form for the estimate of error for the first

formula;by a rather elaborate procedure the uncertainty is

introduced by a positive fractional factor,

2N+2

EN
B
2N+2 (2N+1)
(2N+2)1 L-r 0

0 < e < 1.

Both textbooks offer much information and advice on how to

safely estimate the error.

In the case at hand it is the Cramer (1946) treatment

which is of greatest interest. Construct an identity in
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terms of the periodic function P1(x), period unity, of

(2.8) :

wjrk+1

P
1
(x)g'(a+wx)dx = P

1
(x)g(a+wx)lk + g(a +wx)dx

(3.6)

1
k+1

1
= g[a+(k+l)w] g(a+kw) +jr g(a+wx)dx.

2

Summation from k = n
1

to k = n
2
-1 yields

n
2

n
2

E g(a+kw) =jr g(a+wx)dx + ig(a+n
1
w)+ ig(a+n

2
w)

2
k=n

1
n
1

(3.7)

2

P
1
(x)g'(a+wx)dx.

If n
1

and n
2

are allowed to become arbitrarily large,

left and right, Cramer's (12.2.5) takes the form

(3.8) E g(a+kw) =jr g(a+wx)dx wjr P
1
(x)g'(a+wx)dx,

since g(x) must vanish at the extremities of the x-axis.
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special case discussed. by Cramer is for a = 0,

n
1
= 1, n2 = n, g(x) = 1.

Pi(x)

k- + 1 + 1x.
1 1

z
1 x

_
n

+
2

From the defL,lition of P
1
(x) it is clear that

co

0 <Ip
(.,

1

n X n.2

co

8n
dx < P1 (x) (Ix <

. 1

1

2

The 1P3 is the area of the triangle between an integer k

and k + 4. If the Euler constant may be defined as

then

coP (v)
C =

2
+ji -

1

-2- = 0 5772...
1 x

n
1

= ln n + C + + C(1--)

k n
2
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Chapter IV

Taylor Series Approach

In this chapter emphasis is placed on the derivation

of relationships between the true and the raw moments of a

given distribution by means of Taylor series expansions.

Formally the definition of (1.4) may be written as

(4.1)

w w
x.

2 7

i
A = 1

1
+

f(x)dx = Jr
i

f(x + y) dy
w w

f (x.)

01)2j

1 3 A 7 2

j=0 7! Y `417 (2'+1)!f
(2j)

(xi"
j=0 3

-7

The raw moments Mn of (1.3) may now be written as

(4.2)

CO

Mn E xn
i
A.
1i._00

2j

(Li) n - (2j)
= w

j=o (2j+1)! L xi r

n = 0,1,2,...

The interchange of order of summation must be justified in
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each case. The density function f(x) is assumed to satis-

fy the condition (1.5). The Euler-Maclaurin identity (1.6)

leads to

(4.3) 1: xn f(2j) =I xn f(2j)
(x) dx + R.

i.-. 1

Assume that R is negligible; it is easily established that

00

(4.4)

x
n
f
(2j)

(x)dx =

2j > n,

00

n(n-1)...(n-2j+1)j xn-2jf(x)dx,

2j > n,

n!
(n-2j)! Mn -2j,

2j<n, n = 0,1,2,...

1

...CO

From (4.2) and (4.4) the set of raw moments in terms of the

true moments is

(4.5)

[3] 2j
n

Mn
!

(7) (23+1)!(n-23)! Mn-2j
3=0

n+1

2

3=0

2j( n+1

(2--)
2j+11

1

Mn
23
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the same as (1.4). Note that the inversion of this triangu-

lar system of linear equations is not at all an obvious pro-

cedure.

The special case of interest is the normal density func-

tion,

(4.6)
(0)

e-x
2
/2

f (x) = (x)
/TT

-c° < x < °°.

The well-known table of the error function and its first

twenty derivatives, published by the Harvard Computation

Laboratory (1966), is indicated for choice of notation.

That is,

(n) n (0)
(4.7) (x) = (-1) (1) (x) Hen(x) ,

and this set of Hermite polynomials takes the general form

n

(-1)
k

x
n-2k

(4.8) Hen(x) = n! L
k=0 2kk! (n -2k) !

Because of the symmetry present only even order polynomials

will appear and it is convenient to write
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(-1)n(2n)! n (-1)k (2x2)k
He

2n n (2k)!(n-k)!
=

Special cases are He0(x) = 1, He2(x) = x
2

1,

He
4
(x) = x

4
- 6x

2+ 3, He
6
(x) = x6 - 15x

4
+ 45x

2
15,

For this normal density function the set of true mom-

ents is

Mn jr xn. (0)
(x) dx =

00

It is easily established that

n odd,

n (0)
x (I) (x)dx, n even.

n 2
(4.10) Mtn = x2-4)

(0) (n)!
(x)dx = (-1)nHe 2n (0) ,

0 2
n
n!

n = 0,1,2,...

The raw moments depend on the interval,



(4.11)

pair:

27

=

2j
(2n)!

M2n . 2
9±) (2j+1)!(2n-2j)! M

2n-2j

(2n)! n w 2j 1

2n
(2) (2j+1)!(n-3)!

It is instructive to consider the Laplace transform

1 a
2

(4.12) s
n-Y

e
-ate 1

e
-IT

2n Y2t(

74=

1/7t(2t)n

a,t > 0, n =

(see Erdelyi, et. al. (1954)). In order to establish the

Theta function identity which is of interest the case

a = 0 may be included. Also, let n = 0 be excluded.

One transform pair is defined in terms of the sum of resi-

dues,

(4.13)

1 co

s
n-2- coshii

Rr
sinh 1/7

r=1



2P

where

(4.14)

Also,

R
r

= lim 2s
n
e
st 72(-r

2
7
2

)

n
e
-r`-t

2 2
s
r
±-r

1 1

(4.15) s
11f coshs

s

n--f e-2F

sinhi/ -21/s
1 e

1
n-7 co

= s [1 + 2 e ] ,

so a second entry in the table is

1n 7 cosh/ 1(4.16) [(-1
sinh 1/7(2t)n n

co 2
, j+ 2 E e

-r /t
He

2n
tr t)].

r=1

For the special f(x) under consideration (4.2) may

be written as
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2j

(4.17)
11-2n 2w

j =0
(2j+1)!

x.
2n (0)

(x.)He
23 1
.(x.)

3=0 1=1

2j

(-L122-)

2n+2k (0)
co

E(-1)

2j

(2i)!
(2k(-)-1I

)

(

k

j-
2

k

k

)1
x.cl) (xi).= 2w E (2J-1-1)!

j=0 k=0 i=1

Note that because of symmetry x0 = 0. To use the Theta

function identity it is essential that xi = i, i =

meaning that the symmetrically spaced intervals are of

unit length. It is formally correct to write

(4.18)

00

2(-1)n72n r2n e-r
2
7
2
t

r=1

1
[( 1)nM

2n r=1
+ 2 E e

-r
2
/t

He 4)]
VTE(2t)n 2n t

and if 27
2
t = 1 then

L 2n (0)
00 22

(4.19) 2 L r c) (r) M2n+ 2(-1)nE He2n(27r).
r=1 r=1



Eauation (4.17) now has the form

(4.20)

(-1)J 2k

512n j=0 2 (2j+1)
3j (2k)!(3-k)! [142n

co 2 2

+ 2(-1)n 2: e-
27 r

He2n+2k
(27r)].

r=1

30

The double summation before M
n

has the value of a certain

simple definite integral:

(4 . 2 1)

1 )
J J 2k

j=0
23j (2j+1) k0 (2k)!(j-k)!

Elo.

2k (-1)

(2k ! 3j .

k=0 j=k 2 (23+1)(j-k)!

2k
00 (..a)r+k

(2i) ! E 3 (r+k)
k=0 r=0 2 (2r+2k+1) r !

00

(-1)
k 2

x
2k

e
-x /8dx

k=0 2
2k

(2k)! 0

x
=

1

cos 7 e-x
2
/8dx = 0.9222 ,

J0
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where the decimal approximation has been obtained by the use

of Simpson's rule. So, finally,

00 j+n j
2
k 00

v. e-27
2
r
2

A
0
M
2n

= Mtn -2
.

7z..., (-1)
3j . E (2k)!(3-k)! 1--,30 2 (23+1) k0 r=1

(4.22) He2n+2k (27r),

where A
0

is the decimal approximation obtained above.
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